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proton-proton collisions.
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1 Introduction

It is well-known that photons radiated off from electrons can carry linear polarization. In

terms of photon helicity, it corresponds to an interference between +1 and−1 helicity states.

Formally one can view this momentum dependent photon distribution as the distribution of

linearly polarized photons ‘inside’ an electron. Similarly, there are distributions of linearly

polarized photons and gluons inside a proton, here denoted by h⊥ γ
1 and h⊥ g

1 , respectively.

The latter has received growing attention recently, because it affects high energy collisions

involving unpolarized protons, such as at LHC.

The distribution of linearly polarized gluons inside an unpolarized hadron was first

considered in ref. [1] and later discussed in a model context in ref. [2]. In ref. [3] it was

noted that it contributes to the dijet imbalance in unpolarized hadronic collisions, which is

commonly used to determine the average transverse momentum squared (〈p2T 〉) of partons
inside protons. Depending on the size of h⊥ g

1 and on whether its contribution can be

calculated and taken into account, it may complicate or even hamper the determination

of the average transverse momentum of partons. It is therefore important to determine its

size separately using other observables. Although in ref. [3] it was discussed how to isolate

the contribution from h⊥ g
1 by means of an azimuthal angular dependent weighting of the

cross section, proton-proton collisions are expected to suffer from contributions that break

factorization, through initial and final state interactions [4]. In ref. [5] a theoretically cleaner

and safer way was considered: heavy quark pair production in electron-proton collisions,
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for instance at a future Electron-Ion Collider. Another process, where the problem of

factorization breaking is absent, is pp→ γγX, which was investigated in ref. [6] specifically

for RHIC.

Linearly polarized gluons in proton-nucleus scattering have been considered in refs. [7–

10], where factorization may also work out in the dilute-dense regime as discussed in

ref. [10]. These studies also suggest that at small x-fractions of the gluons inside a nu-

cleus, the distribution of linear polarization may reach its maximally allowed size, which

is bounded by the distribution of unpolarized gluons [1]. Moreover, just like in the case

of linearly polarized photons, which are perturbatively generated from electrons, linearly

polarized gluons are also perturbatively generated from unpolarized quarks and gluons

inside the proton [11–13]. This determines the large transverse momentum tail of the

distribution [14]. It shows that the tail falls off with the same power as the unpolarized

gluon distribution. Therefore, the degree of polarization does not fall off with increasing

transverse momentum, see figure 2 of ref. [15]. This means that although the magnitude

has not yet been determined from experiment, the expectation is that it is not small at

high energy.

It has also recently been noted that h⊥ g
1 affects the angular independent transverse

momentum distribution of scalar or pseudoscalar particles, such as the Higgs boson [14–

16] or charmonium and bottomonium states [17]. These results could help pinpoint the

quantum numbers of the boson recently discovered at LHC or allow a determination of

h⊥ g
1 at LHCb for example. These ideas are very similar to the suggestions to use linear

polarization at photon colliders to investigate Higgs production [18–22] and heavy quark

production [23–27], that are of interest for investigations at ILC. There are some notable

differences with the proton distributions though: the transverse momentum of photons ra-

diated off from electrons is known exactly in the photon-photon scattering case, whereas in

proton-proton collisions the gluonic transverse momentum distributions enter in a convo-

lution integral. Moreover, the QED case does not have the problems with non-factorizing

initial and final state interactions (ISI/FSI) that arise in the non-Abelian case for certain

processes. Like any other transverse momentum dependent parton distribution, the func-

tion h⊥ g
1 will receive contributions from ISI or FSI and is therefore expected to be process

dependent. Apart from the fact that h⊥ g
1 can thus be nonuniversal, the ISI/FSI can even

lead to violations of pQCD factorization at leading twist, as already mentioned above. By

considering several different extractions, the nonuniversality and the factorization breaking

can be studied and quantified. From this point of view it is also very interesting to compare

to the linearly polarized photon distribution inside the proton.

In the present paper we will consider heavy quark pair production in electron-proton

and proton-proton collisions. It is partly intended to provide the calculational details of the

results in ref. [5], but it also contains additional results, for example on process dependence.

Also, we include the analogues in muon pair production as a means to probe h⊥ γ
1 , which

describes linearly polarized photons inside unpolarized protons. The paper is organized

as follows. First we will discuss electron-hadron scattering for three cases: heavy quark

pair production, dijet production and muon pair production. After presenting the general

expressions, we identify the most promising azimuthal asymmetries that will allow access
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to h⊥ g
1 and h⊥ γ

1 . We present upper bounds on these asymmetries, for charm and bottom

quarks and muons. This will hopefully expedite future experimental investigations of these

distributions. Next we turn to hadron-hadron collisions and discuss in more detail the color

flow dependence and factorization breaking issues, according to the latest insights [28–30].

2 The TMDs for unpolarized hadrons

The information on linearly polarized gluons is encoded in the transverse momentum de-

pendent correlator, for which, in this paper, we only consider unpolarized hadrons. The

parton correlators describe the hadron → parton transitions and are defined as matrix

elements on the light-front LF (λ·n≡ 0, where n is a light-like vector, n2 = 0, conjugate

to P ). The correlators are parameterized in terms of transverse momentum dependent

distribution functions (TMDs). Specifically, at leading twist and omitting gauge links, the

quark correlator is given by [31]

Φq(x,pT ) =

∫

d(λ·P ) d2λT
(2π)3

eip·λ 〈P |ψ(0)ψ(λ) |P 〉
⌋

LF

=
1

2

{

f q1 (x,p
2
T ) /P + ih⊥ q

1 (x,p2
T )

[/pT , /P ]

2M

}

, (2.1)

with f q1 (x,p
2
T ) denoting the transverse momentum dependent distribution of unpolarized

quarks inside an unpolarized hadron, and where we have used the naming convention of

ref. [34]. Its integration over pT provides the well-known light-cone momentum distribution

f q1 (x) = q(x). The function h⊥q
1 (x,p2

T ), nowadays commonly referred to as Boer-Mulders

function, is time-reversal (T ) odd and can be interpreted as the distribution of transversely

polarized quarks inside an unpolarized hadron [31]. It gives rise to the cos 2φ double

Boer-Mulders asymmetry in the Drell-Yan process and to a violation of the Lam-Tung

relation [32, 33]. Similarly, for an antiquark,

Φ̄q(x,pT ) = −
∫

d(λ·P ) d2λT
(2π)3

e−ip·λ 〈P |ψ(0)ψ(λ) |P 〉
⌋

LF

=
1

2

{

f q̄1 (x,p
2
T ) /P + ih⊥ q̄

1 (x,p2
T )

[/pT , /P ]

2M

}

. (2.2)

Omitting gauge links, the gluon correlator is defined as [1]

Φµν
g (x,pT ) =

nρ nσ
(p·n)2

∫

d(λ·P ) d2λT
(2π)3

eip·λ 〈P | Tr
[

F ρµ(0)F σν(λ)
]

|P 〉
⌋

LF

=
1

2x

{

− gµνT fg1 (x,p
2
T ) +

(

pµT p
ν
T

M2
+ gµνT

p2
T

2M2

)

h⊥ g
1 (x,p2

T )

}

, (2.3)

where Fµν(x) is the gluon field strength and gµνT a transverse tensor given by

gµνT = gµν − Pµnν/P · n− nµP ν/P · n , (2.4)

and where we have used the naming convention of ref. [2]. The transverse momentum

dependent function fg1 (x,p
2
T ) describes the distribution of unpolarized gluons inside an
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unpolarized hadron, and, integrated over pT , gives the familiar light-cone momentum dis-

tribution fg1 (x) = g(x). The function h⊥ g
1 (x,p2

T ) is T -even and represents the distribution

of linearly polarized gluons inside an unpolarized hadron.

3 Electron-hadron collisions: calculation of the cross sections

3.1 Heavy quark pair production

We consider the process

e(ℓ) + h(P ) → e(ℓ′) +Q(K1) + Q̄(K2) +X , (3.1)

where the four-momenta of the particles are given within brackets, and the quark-antiquark

pair is almost back-to-back in the plane orthogonal to the direction of the hadron and the

exchanged photon. Following refs. [3, 35], we will instead of collinear factorization consider

a generalized factorization scheme taking into account partonic transverse momenta. We

make a decomposition of the momenta where q ≡ ℓ − ℓ′ and P determine the light-like

directions,

P = n+ +
M2

2
n− ≈ n+ and q = −xB n+ +

Q2

2xB
n− ≈ −xB P + (P · q)n− , (3.2)

where Q2 = −q2 and xB = Q2/2P · q (up to target mass corrections). We will thus expand

in n+ = P and n− = n = (q + xB P )/P · q. We note that the leptonic momenta define a

plane transverse with respect to q and P . Explicitly the leptonic momenta are given by

ℓ =
1−y
y

xB P +
1

y

Q2

2xB
n+

√
1−y
y

Q ℓ̂⊥ =
1−y
y

xB P +
s

2
n+

√
1−y
y

Q ℓ̂⊥ , (3.3)

ℓ′ =
1

y
xB P +

1−y
y

Q2

2xB
n+

√
1−y
y

Q ℓ̂⊥ =
1

y
xB P + (1−y) s

2
n+

√
1−y
y

Q ℓ̂⊥ , (3.4)

where y = P · q/P · ℓ. The total invariant mass squared is s = (ℓ + P )2 = 2 ℓ · P =

2P · q/y = Q2/xBy. The invariant mass squared of the virtual photon-target system is

given byW 2 = (q+P )2 = Q2(1−xB)/xB. We then have Q2 = xBys andW
2 = (1−xB)ys.

We expand the parton momentum using the Sudakov decomposition,

p = xP + pT + (p · P − xM2)n ≈ xP + pT , (3.5)

where x = p · n. We can expand the heavy quark momenta as

K1 = z1 (P · q)n+
M2

Q +K2
1⊥

2z1 P · q P +K1⊥ , (3.6)

K2 = z2 (P · q)n+
M2

Q +K2
2⊥

2z2 P · q P +K2⊥ , (3.7)

with K2
i⊥ = −K2

i⊥. We denote the heavy (anti)quark mass with MQ. For the partonic

subprocess we have p+q = K1+K2, implying z1+z2 = 1. For our discussions, we introduce

the sum and difference of the transverse heavy quark momenta, K⊥ = (K1⊥−K2⊥)/2 and

– 4 –
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qT = K1⊥+K2⊥ with |qT | ≪ |K⊥|. In that situation, we can use the approximate transverse

momenta K1⊥ ≈ K⊥ and K2⊥ ≈ −K⊥ denoting M2
i⊥ ≈ M2

⊥
= M2

Q + K2
⊥
. We use the

Mandelstam variables

ŝ = (q + p)2 =
x− xB
xB

Q2 = xys−Q2 = (K1 +K2)
2 =

M2
1⊥

z1
+
M2

2⊥

z2
≈ M2

⊥

z1z2
, (3.8)

t̂ = (q −K1)
2 =M2

Q − M2
1⊥

z1
− (1− z1)Q

2 ≈M2
Q − z2 (ŝ+Q2) , (3.9)

û = (q −K2)
2 =M2

Q − M2
2⊥

z2
− (1− z2)Q

2 ≈M2
Q − z1 (ŝ+Q2) , (3.10)

from which we obtain momentum fractions,

x = xB
ŝ+Q2

Q2
=
ŝ+Q2

ys
= xB +

M2
⊥

yz1z2s
, (3.11)

z = z2 =
1

ey1−y2 + 1
= −

t̂−M2
Q

ŝ+Q2
and 1− z = z1 =

1

ey2−y1 + 1
= −

û−M2
Q

ŝ+Q2
, (3.12)

where we have also introduced the rapidities yi for the heavy quark momenta (along the

photon-target direction).

In analogy to refs. [35] and [3] we assume that at sufficiently high energies the cross

section factorizes in a leptonic tensor, a soft parton correlator for the incoming hadron and

a hard part:

dσ =
1

2s

d3ℓ′

(2π)3 2E′
e

d3K1

(2π)3 2E1

d3K2

(2π)3 2E2

∫

dx d2pT (2π)4δ4(q + p−K1 −K2)

×
∑

a,b,c

1

Q4
L(ℓ, q)⊗ Φa(x,pT )⊗ |Hγ∗ a→b c(q, p,K1,K2)|2, (3.13)

where the leptonic tensor L(ℓ, q) is given by

Lµν(ℓ, q) = −gµν Q2 + 2 (ℓµℓ′ν + ℓνℓ′µ) . (3.14)

In eq. (3.13) the sum runs over all the partons in the initial and final states, and Hγ∗a→bc

is the amplitude for the hard partonic subprocess γ∗a → bc. The convolutions ⊗ denote

appropriate traces over the Dirac indices.

In order to derive an expression for the cross section in terms of parton distributions,

we insert the parametrizations in eqs. (2.1), (2.2) and (2.3) of the TMD correlators into

eq. (3.13). In a frame where the virtual photon and the incoming hadron move along the

z axis, and the lepton scattering plane defines the azimuthal angle φℓ = φℓ′ = 0, one has

d3ℓ′

(2π)3 2E′
e

=
1

16π2
sy dxB dy , and dyi =

dzi
z1z2

. (3.15)

With the decompositions of the parton momenta in eq. (3.5), the δ-function in eq. (3.13)

can be rewritten as

δ4(p+ q −K1 −K2) = δ

(

x− xB − M2
⊥

yz1z2 s

)

δ

(

ys

2
(1− z1 − z2)

)

δ2(pT − qT ) , (3.16)
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with corrections of order O(1/s). After integration over x and pT , one obtains from the first

and last δ-functions on the r.h.s. of eq. (3.16), relations of x in terms of other kinematical

variables [eq. (3.11)], while pT is related to the sum of the transverse momenta of the heavy

quarks, pT = qT . Hence the complete angular structure of the cross section is as follows:

dσ

dy1 dy2 dy dxB d2qTd2K⊥

=

α2αs

πsM2
⊥

1

xBy2

{

A0 +A1 cosφ⊥ +A2 cos 2φ⊥ + q2T
[

B0 cos 2(φ⊥ − φT )

+B1 cos(φ⊥ − 2φT ) +B′

1 cos(3φ⊥ − 2φT ) +B2 cos 2φT

+B′

2 cos 2(2φ⊥ − φT )
]

}

δ(1− z1 − z2) , (3.17)

with φT and φ⊥ denoting the azimuthal angles of qT and K⊥, respectively. The terms

Ai, Bi, with i = 0, 1, 2, and B′
1,2, calculated at leading order (LO) in perturbative QCD,

are given explicitly in the following. For this calculation we have used the approximations

discussed above, which are applicable in the situation in which the outgoing heavy quark

and antiquark are almost back to back in the transverse plane, implying |qT | ≪ |K⊥|. In

order to access experimentally A1, B1 and B′
1, the measurement of the electric charge of

both the heavy quark and antiquark is required. This would allow one to distinguish be-

tween the two of them, avoiding the cosφ⊥, cos(φ⊥−2φT ) and cos(3φ⊥−2φT ) modulations

from averaging out [36]. The terms Ai in eq. (3.17) are given by the sum of several contri-

butions Aea→ebc
i coming from the partonic subprocesses ea → ebc underlying the reaction

eh→ eQQ̄X,

Aeh→eQQ̄X
i = e2Q TR Aeg→eQQ̄

i fg1 (x, q
2
T ) , i = 0, 1, 2 , (3.18)

with TR = 1/2. They obey the relations

Aeg→eQQ̄
0 = [1 + (1− y)2]Aγ∗g→QQ̄

U+L − y2Aγ∗g→QQ̄
L ,

Aeg→eQQ̄
1 = (2− y)

√

1− yAγ∗g→QQ̄
I ,

Aeg→eQQ̄
2 = 2(1− y)Aγ∗g→QQ̄

T , (3.19)

where we have introduced the following linear combinations of helicity amplitudes squared

Aλγ ,λ′

γ
for the process γ∗g → QQ̄ (λγ , λ

′
γ = 0,±1) [37]:

AU+L ∼ A++ +A−− +A00 ,

AL ∼ A00 ,

AI ∼ A0+ +A+0 −A0− −A−0 ,

AT ∼ A+− +A−+ . (3.20)

– 6 –
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We find

Aγ∗g→QQ̄
U+L =

1

D3
− z(1−z)

D3

{

2− 4
M2

Q

M2
⊥

+ 4
M4

Q

M4
⊥

−
[

4z(1−z)
(

2− 3
M2

Q

M2
⊥

)

+ 2
M2

Q

M2
⊥

]

Q2

M2
⊥

− z(1−z)[1− 2z(1−z)] Q
4

M2
⊥

}

, (3.21)

Aγ∗g→QQ̄
L = 8

z2(1−z)2
D3

(

1−
M2

Q

M2
⊥

)

Q2

M2
⊥

, (3.22)

Aγ∗g→QQ̄
I = 4

√

1−
M2

Q

M2
⊥

z(1− z)(1− 2z)

D3

Q

M⊥

[

1− z(1−z) Q
2

M2
⊥

− 2
M2

Q

M2
⊥

]

, (3.23)

Aγ∗g→QQ̄
T = 4

z(1−z)
D3

(

1−
M2

Q

M2
⊥

)[

z(1−z) Q
2

M2
⊥

+
M2

Q

M2
⊥

]

, (3.24)

where the denominator D is defined as

D ≡ D

(

z,
Q2

M2
⊥

)

= 1 + z(1− z)
Q2

M2
⊥

. (3.25)

The remaining terms in eq. (3.17) depend on the polarized gluon distribution h⊥ g
1 (x, q2T )

and have the following general form,

Beh→eQQ̄X
i =

1

M2
e2Q TR Beg→eQQ̄

i h⊥ g
1 (x, q2T ) , i = 0, 1, 2 ,

B′ eh→eQQ̄X
1,2 =

1

M2
e2Q TR B′ eg→eQQ̄

1,2 h⊥ g
1 (x, q2T ) , (3.26)

where, in analogy to eq. (3.19), one can write

Beg→eQQ̄
0 = [1 + (1−y)2]Bγ∗g→QQ̄

U+L − y2 Bγ∗g→QQ̄
L ,

Beg→eQQ̄
1 = (2−y)

√

1−y Bγ∗g→QQ̄
I , B′ eg→eQQ̄

1 = (2−y)
√

1−y B′ γ∗g→QQ̄
I ,

Beg→eQQ̄
2 = 2(1−y)Bγ∗g→QQ̄

T , B′ eg→eQQ̄
2 = 2(1−y)B′ γ∗g→QQ̄

T , (3.27)

with

Beg→eQQ̄
U+L =

z(1−z)
D3

(

1−
M2

Q

M2
⊥

){

[−1 + 6z(1−z)] Q
2

M2
⊥

+ 2
M2

Q

M2
⊥

}

, (3.28)

Bγ∗g→QQ̄
L = 4

z2(1−z)2
D3

(

1−
M2

Q

M2
⊥

)

Q2

M2
⊥

, (3.29)

Bγ∗g→QQ̄
I = −2

√

1−
M2

Q

M2
⊥

z(1−z)(1−2z)

D3

Q

M⊥

[

z(1−z) Q
2

M2
⊥

+
M2

Q

M2
⊥

]

, (3.30)

B′ γ∗g→QQ̄
I = 2

(

1−
M2

Q

M2
⊥

)

3

2 z(1−z)(1−2z)

D3

Q

M⊥

, (3.31)

Beg→eQQ̄
T = −z(1−z)

D3

[

z(1−z) Q
2

M2
⊥

+
M2

Q

M2
⊥

]2

, (3.32)

B′ γ∗g→QQ̄
T = −z(1−z)

D3

(

1−
M2

Q

M2
⊥

)2

. (3.33)
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If the azimuthal angle of the final lepton φℓ is not measured, only one of the azimuthal

modulations in eq. (3.17) can be defined, and the cross section will be given by [16]1

dσ

dy1 dy2 dy dxB d2qTd2K⊥

=
α2αs

πsM2
⊥

1

xBy2
[

A+B q2T cos 2(φ⊥− φT )
]

δ(1− z1 − z2) ,

(3.34)

where we have defined A ≡ A0 and B ≡ B0. Further integration over y2 leads to

dσ

dy1 dy dxB d2qTd2K⊥

=
α2αs

πsM2
⊥

1

xBy2z(1− z)

[

A+B q2T cos 2(φ⊥− φT )
]

. (3.35)

The proposed observables involve heavy quarks in the final state, therefore they could

be measured at high energy colliders such as the Large Hadron electron Collider (LHeC)

proposed at CERN or at a future Electron-Ion Collider (EIC). The measurement or recon-

struction of the transverse momenta of the heavy quarks is essential. The individual heavy

quark transverse momenta Ki⊥ need to be reconstructed with an accuracy better than the

magnitude of the sum of the transverse momenta K1⊥ +K2⊥ = qT , which means one has

to satisfy δK⊥ ≪ |qT | ≪ |K⊥|, requiring a sufficiently large |K⊥|.
One observes from eqs. (3.26)–(3.29) that the magnitude B0 of the cos 2(φ⊥ − φT )

modulation in eq. (3.17) is determined by h⊥ g
1 and that if Q2 and/or M2

Q are of the same

order as K2
⊥
, the coefficient B0 is not power suppressed. Using the positivity bound [1]

p2
T

2M2
|h⊥ g

1 (x,p2
T )| ≤ fg1 (x,p

2
T ) , (3.36)

we arrive at the maximum value R on |〈cos 2(φ⊥ − φT )〉|:

|〈cos 2(φ⊥ − φT )〉| =
∣

∣

∣

∣

∫

dφ⊥dφT cos 2(φ⊥− φT ) dσ
∫

dφ⊥dφT dσ

∣

∣

∣

∣

=
q2T |B0|
2A0

=
q2T
2M2

|h⊥ g
1 (x,p2

T )|
fg1 (x,p

2
T )

|B0|
A0

≤ |B0|
A0

≡ R . (3.37)

The upper bound R is depicted in figure 1 as a function of |K⊥| (> 1GeV) at different

values of Q2 for charm (left panel) and bottom (right panel) production, where we have

selected y = 0.01, z = 0.5, and taken M2
c = 2GeV2, M2

b = 25GeV2. Asymmetries of this

size, together with the relative simplicity of the suggested measurement (polarized beams

are not required), likely will allow an extraction of h⊥ g
1 at EIC (or LHeC). The bound R′

on |〈cos 2φT 〉| is similarly defined:

|〈cos 2φT 〉| =
∣

∣

∣

∣

∫

dφ⊥dφT cos 2φT dσ
∫

dφ⊥dφT dσ

∣

∣

∣

∣

=
q2T |B2|
2A0

=
q2T
2M2

|h⊥ g
1 (x,p2

T )|
fg1 (x,p

2
T )

|B2|
A0

≤ |B2|
A0

≡ R′,

(3.38)

and is shown in figure 2 in the same kinematic region as in figure 1. One can see that R′

can be larger than R, but only at smaller |K⊥|. R′ falls off more rapidly at larger values

of |K⊥| than R.
1Note that the flux factor of the cross section in eq. (2) of ref. [16] has been corrected. The results on

azimuthal asymmetries remain the same.
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Figure 1. Upper bounds R on |〈cos 2(φ⊥ − φT )〉| plotted as a function of |K⊥| (> 1GeV) at

different values of Q2 for charm (left panel) and bottom (right panel) production in the process

eh→ e′QQ̄X, calculated at z = 0.5, y = 0.01.

Figure 2. Same as in figure 1, but for the upper bounds R′ on |〈cos 2φT 〉|.

Finally, we point out that final state heavy quarks can also arise from diagrams where

intrinsic charm or bottom quark pairs couple to two or more valence quarks [38–43], thus

contributing primarily in the valence region (x > 0.1). Therefore, the expressions for heavy

quark pairs created in the photon-gluon fusion process, as presented in this paper, should
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be applicable for smaller x values, which means s≫M2
⊥
, Q2. Moreover, the intrinsic prob-

abilities scale as 1/M2
Q, unlike the logarithmic contributions from gluon splitting. Strong

polarization correlations of the intrinsic heavy quarks are possible because of their multiple

couplings to the projectile hadron. This is clearly worth further investigation.

3.2 Dijet production

The cross section for the process

e(ℓ) + h(P ) → e(ℓ′) + jet(K1) + jet(K2) +X (3.39)

can be calculated in the same way as previously described for heavy quark production.

This means that eqs. (3.2)–(3.17) and eqs. (3.34)–(3.35) still hold when MQ = 0. One can

then also replace the rapidities of the outgoing particles, yi, with the pseudo-rapidities ηi =

− ln
[

tan
(

1
2θi

)]

, θi being the polar angles of the final partons in the virtual photon-hadron

center of mass frame. The explicit expressions for Ai, Bi, B
′
1,2 appearing in eq. (3.17)

are given below. Note that Ai now receive contributions from two subprocesses, namely

eq → e′qg and eg → e′qq̄. Therefore the upper bounds of the asymmetries will be smaller

than the ones for heavy quark pair production presented in the previous section. More

explicitly, one can write

Aeh→e jet jetX
i =

∑

q,q̄

e2q CF Aeq→eqg
i f q1 (x, q

2
T ) +

∑

q

e2q TR Aeg→eqq̄
i fg1 (x, q

2
T ) , i = 1, 2, 3 ,

(3.40)

where CF = (N2
c −1)/2Nc, with Nc being the number of colors, and, similarly to eq. (3.19),

Aeq→eqg
0 = [1 + (1− y)2]Aγ∗q→qg

U+L − y2Aγ∗q→qg
L ,

Aeq→qg
1 = (2− y)

√

1− yAγ∗q→qg
I ,

Aeq→eqg
2 = 2(1− y)Aγ∗q→qg

T , (3.41)

see also eq. (3.20). Neglecting terms suppressed by powers of |qT |/|K⊥|, in agreement with

the results in ref. [44], we obtain

Aγ∗q→qg
U+L =

1−z
D2

0

{

1 + z2 +
[

2z(1−z) + 4z2(1−z)2
] Q2

K2
⊥

+
[

z2(1−z)2
][

1 + (1−z)2
] Q4

K4
⊥

}

,

(3.42)

Aγ∗q→qg
L = 4

z2(1−z)3
D2

0

Q2

K2
⊥

, (3.43)

Aγ∗q→qg
I = −4

z2(1−z)2
D2

0

[

1 + (1−z)2 Q2

K2
⊥

]

Q

|K⊥|
, (3.44)

Aγ∗q→qg
T = 2

z2(1−z)3
D2

0

Q2

K2
⊥

, (3.45)

with

D0 ≡ D0

(

z,
Q2

K2
⊥

)

= 1 + z(1− z)
Q2

K2
⊥

. (3.46)
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Furthermore, taking MQ = 0 and M⊥ = |K⊥| in eqs. (3.21)–(3.25), for the subprocess

γ∗g → qq̄ we get

Aγ∗g→qq̄
U+L =

1

D3
0

{

1− 2z(1−z) + z2(1−z)2
[

8
Q2

K2
⊥

+ [1− 2z(1−z)] Q
4

K4
⊥

]}

, (3.47)

Aγ∗g→qq̄
L = 8

z2(1−z)2
D3

0

Q2

K2
⊥

, (3.48)

Aγ∗g→qq̄
I = 4

z(1− z)(1− 2z)

D3
0

[

1− z(1−z) Q
2

K2
⊥

]

Q

|K⊥|
, (3.49)

Aγ∗g→eqq̄
T = 4

z2(1−z)2
D3

0

Q2

K2
⊥

. (3.50)

In analogy to eq. (3.26), we have for the terms that depend on the gluon distribution

function h⊥ g
1 :

Beh→e jet jetX
i =

1

M2

∑

q

e2q Beg→eqq̄
i h⊥ g

1 (x, q2T ) ,

B′ eh→ejet jetX
1,2 =

1

M2

∑

q

e2q B′ eg→eqq̄
1,2 h⊥ g

1 (x, q2T ) , (3.51)

with

Beg→eqq̄
0 =

[

1 + (1− y)2
]

Bγ∗g→qq̄
U+L − y2 Bγ∗g→qq̄

L ,

Beg→eqq̄
1 = (2− y)

√

1− y Bγ∗g→qq̄
I , B′ eg→eqq̄

1 = (2− y)
√

1− y B′ γ∗g→qq̄
I ,

Beg→eqq̄
2 = 2(1− y)Bγ∗g→qq̄

T , B′ eg→eqq̄
2 = 2(1− y)B′ γ∗g→qq̄

T . (3.52)

By taking MQ = 0 and M⊥ = |K⊥| in eqs. (3.28)–(3.33), we obtain

Bγ∗g→qq̄
U+L = −z(1− z)[1− 6z(1− z)]

D3
0

Q2

K2
⊥

, (3.53)

Bγ∗g→qq̄
L = 4

z2(1− z)2

D3
0

Q2

K2
⊥

, (3.54)

Bγ∗g→qq̄
I = −2

z2(1− z)2(1− 2z)

D3
0

Q3

|K⊥|3
, (3.55)

B′ γ∗g→qq̄
I = 2

z(1− z)(1− 2z)

D3
0

Q

|K⊥|
, (3.56)

Bγ∗g→qq̄
T = −z

3(1− z)3

D3
0

Q4

K4
⊥

, (3.57)

B′ γ∗g→qq̄
T = −z(1− z)

D3
0

. (3.58)

3.3 Dilepton production

Azimuthal modulations analogous to the ones calculated above arise in QED as well, in the

‘tridents’ processes ℓe(p) → ℓµ+µ−e′(p′ or X) or µ−Z → µ−ℓℓ̄Z [45–49]. Such asymmetries
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Figure 3. Upper bounds R (left panel) and R′ (right panel) on |〈cos 2(φ⊥ − φT )〉| and |〈cos 2φT 〉|,
respectively, as a function of |K⊥| (> 1GeV) at different values of Q2, for the process eh →
e′µ−µ+X, calculated at z = 0.5, y = 0.01.

could be described by the distribution of linearly polarized photons inside a lepton, proton,

or atom. The transverse momentum dependent unpolarized and linearly polarized photon

distributions in a hadron, denoted by fγ1 (x,p
2
T ) and h

⊥ γ
1 (x,p2

T ) respectively, can be defined

in the same way as their gluonic counterparts, see eq. (2.3). Therefore, the cross section

for the electroproduction of two muons,

e(ℓ) + h(P ) → e(ℓ′) + µ−(K1) + µ+(K2) +X , (3.59)

proceeds, at LO in QED, via the subprocess

γ∗(q) + γ(p) → µ−(K1) + µ+(K2) , (3.60)

where the second (real) photon is emitted by the hadron. If the µ−µ+ pair in the final state

is almost back-to-back in the plane perpendicular to the direction of the exchanged (virtual)

photon and hadron, the corresponding cross section is the same as the one in eq. (3.17)

derived for QQ̄ production, with αs replaced by α and MQ by Mµ. The coefficients of the

various azimuthal modulations are those given in eqs. (3.18)–(3.33) with the replacements

e2Q → 1, TR → 1, fg1 → fγ1 , h
⊥ g
1 → h⊥ γ

1 .

The bounds R and R′ for the process eh → e′µ−µ+X can be obtained using the

positivity constraint for linearly polarized photon distributions, analogous to the one in

eq. (3.36) for gluons, and they are shown in figure 3. Especially as Q2 increases, they

become very similar to R and R′ for the process eh→ e′QQ̄X.
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4 Hadron-hadron collisions

4.1 Heavy quark production

The cross section for the process

h1(P1) + h2(P2) → Q(K1) + Q̄(K2) +X , (4.1)

in a way similar to the hadroproduction of two jets discussed in ref. [3] (to which we refer

for the details of the calculation), can be written in the following form

dσ

dy1dy2d2K1⊥d2K2⊥
=

α2
s

sM2
⊥

[

A(q2T )+B(q2T )q
2
T cos 2(φ⊥−φT )+C(q2T )q

4
T cos 4(φ⊥−φT )

]

,

(4.2)

where yi are the rapidities of the outgoing particles, qT ≡ K1⊥ + K2⊥, K⊥ ≡ (K1⊥ −
K2⊥)/2 and M⊥ =

√

M2
Q +K2

⊥
, MQ being the heavy quark mass. The momentum qT is

in principle experimentally accessible and is related to the intrinsic transverse momenta of

the incoming partons, qT = p1T + p2T . The azimuthal angles of K⊥ and φT are denoted

by φT and φ⊥, respectively. Besides q
2
T , the terms A, B and C depend on other kinematic

variables not explicitly shown, such as z, which is given in eq. (3.12) with Q2 = 0 and with

the Mandelstam variables defined by the momenta of the incoming (p1, p2) and outgoing

(K1, K2) partons as follows,

ŝ = (p1 + p2)
2, t̂ = (p1 −K1)

2, û = (p1 −K2)
2. (4.3)

Furthermore, they depend on M2
Q/M

2
⊥
and on the light-cone momentum fractions x1, x2,

related to the rapidities, the mass and the transverse momenta of the heavy quark and

antiquark by the relations

x1 =
1√
s

(

M1⊥ e
y1 +M2⊥ e

y2
)

, x2 =
1√
s

(

M1⊥e
−y1 +M2⊥ e

−y2
)

, (4.4)

with, as before, M2
i⊥ = K2

i⊥ +M2
Q ≈M2

⊥
.

The terms A, B, and C have been calculated at LO in perturbative QCD, adopting the

approximation |qT | ≪ |K1⊥| ≈ |K2⊥| ≈ |K⊥| which is applicable when the heavy quark

and antiquark pair is produced almost back-to-back in the transverse plane. Their explicit

expressions, which contain convolutions of different TMDs, are given in the following. As

discussed in ref. [5], the coefficients B and C in eq. (4.2) could be separated by q2T -weighted

integration over qT . We point out that in the limiting situation when |K1⊥| = |K2⊥|, one
has exactly cos 2(φ⊥ −φT ) = −1 and cos 4(φ⊥ −φT ) = 1, since K⊥ and qT are orthogonal.

In this case the remaining angular dependence (on the imbalance angle δφ = φQ−φQ̄−π)

enters through q2T only [5].

The angular independent part A of the cross section in eq. (4.2) is given by the sum of

the contributionsAqq̄→QQ̄ andAgg→QQ̄, coming respectively from the partonic subprocesses

qq̄ → QQ̄ and gg → QQ̄, which underlie the process h1h2 → QQ̄X:

A = Aqq̄→QQ̄ +Agg→QQ̄, (4.5)
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with

Aqq̄→QQ̄ =
N2

c −1

2N2
c

z(1−z)
[

z2+(1−z)2+2z(1−z)
M2

Q

M2
⊥

]

[

Fqq̄(x1, x2, q
2
T )+F q̄q(x1, x2, q

2
T )
]

,

(4.6)

Agg→QQ̄ = A1

(

z,
M2

Q

M2
⊥

)

Fgg(x1, x2, q
2
T ) +

M4
Q

M4
⊥

A2(z) q
4
T N gg(x1, x2, q

2
T ) , (4.7)

where

A1 =
Nc

N2
c −1

1

2

(

z2 + (1−z)2 − 1

N2
c

)[

z2 + (1−z)2 + 4z(1−z)
(

1−
M2

Q

M2
⊥

)

M2
Q

M2
⊥

]

, (4.8)

A2 = − Nc

N2
c −1

z(1− z)

4

[

z2 + (1−z2)− 1

N2
c

]

. (4.9)

We have adopted the following convolutions of TMDs,

Fab(x1, x2, q
2
T ) ≡

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )f

a
1 (x1,p

2
1T )f

b
1(x2,p

2
2T ) , (4.10)

where a sum over all (anti)quark flavors is understood, and

q4T N gg(x1, x2, q
2
T ) ≡ 1

M2
1M

2
2

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )

[

2(p1T · p2T )
2 − p2

1Tp
2
2T

]

× h⊥g
1 (x1,p

2
1T )h

⊥g
1 (x2,p

2
2T ) . (4.11)

The results in eq. (4.6) and in eq. (4.7), integrated over qT , recover the ones calculated

in the framework of collinear LO pQCD, which can be found, for example, in refs. [50–52]

and in refs. [50, 51], respectively. Moreover, taking the limit MQ → 0, agreement is found

between eqs. (4.6)–(4.9) and the explicit expressions derived for massless partons published

in ref. [3] [eqs. (23), (28)], namely

Aqq̄→q′q̄′ =
N2

c − 1

2N2
c

z(1−z)
[

z2 + (1−z)2
][

Fqq̄(x1, x2, q
2
T ) + F q̄q(x1, x2, q

2
T )
]

, (4.12)

and

Agg→qq̄ =
Nc

N2
c − 1

[

z2 + (1−z)2 − 1

N2
c

]

z2 + (1−z)2
2

Fgg(x1, x2, q
2
T ) . (4.13)

In analogy to eq. (4.5), we write

B = Bqq̄→QQ̄ +
M2

Q

M2
⊥

Bgg→QQ̄, (4.14)

where

Bqq̄→QQ̄ =
N2

c − 1

N2
c

z2(1−z)2
(

1−
M2

Q

M2
⊥

)

[

Hqq̄(x1, x2, q
2
T ) +Hq̄q(x1, x2, q

2
T )
]

, (4.15)

Bgg→QQ̄ =
Nc

N2
c − 1

B1

(

z,
M2

Q

M2
⊥

)

Hgg(x1, x2, q
2
T ) , (4.16)
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with

B1 = z(1− z)

[

z2 + (1− z)2 − 1

N2
c

](

1−
M2

Q

M2
⊥

)

. (4.17)

Similarly to eqs. (4.10) and (4.11), we have defined the following convolutions of parton

distributions

q2T Hqq̄(x1, x2, q
2
T ) ≡

1

M1M2

∑

flavors

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )

×
[

2(ĥ · p1T )(ĥ · p2T )− (p1T · p2T )
]

h⊥q
1 (x1,p

2
1T )h

⊥q̄
1 (x2,p

2
2T ) ,

(4.18)

and

q2T Hgg(x1, x2, q
2
T ) ≡

1

M1M2

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )

{

[

2(ĥ · p1T )
2 − p2

1T

]

h⊥g
1 (x1,p

2
1T )f

g
1 (x2,p

2
2T )

+
[

2(ĥ · p2T )
2 − p2

2T

]

fg1 (x1,p
2
1T )h

⊥g
1 (x2,p

2
2T )

}

, (4.19)

with ĥ ≡ qT /|qT |. The result given in eq. (36) of ref. [3],

Bqq̄→q′q̄′ =
N2

c − 1

N2
c

z2(1− z)2
[

Hqq̄(x1, x2, q
2
T ) +Hq̄q(x1, x2, q

2
T )
]

, (4.20)

is recovered taking the massless limit of eqs. (4.14)–(4.17).

Finally, the cos 4(φ⊥ − φT ) angular distribution of the QQ̄ pair is related exclusively

to the presence of (linearly) polarized gluons inside unpolarized hadrons. It turns out that

C = Cgg→QQ̄ = C(z)
(

1−
M2

Q

M2
⊥

)2
[

2Igg(x1, x2, q
2
T )− Lgg(x1, x2, q

2
T )
]

, (4.21)

with

C(z) = A2(z) = − Nc

N2
c − 1

z(1− z)

4

[

z2 + (1− z2)− 1

N2
c

]

, (4.22)

see eq. (4.9), where we have introduced the convolutions [3]

q4T Igg(x1, x2, q
2
T ) ≡

1

M2
1M

2
2

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )

×
[

2(ĥ · p1T )(ĥ · p2T )−(p1T · p2T )
]2
h⊥g
1 (x1,p

2
1T )h

⊥g
1 (x2,p

2
2T ) ,

(4.23)

and

q4T Lgg(x1, x2, q
2
T ) ≡

1

M2
1M

2
2

∫

d2p1T d2p2T δ
2(p1T + p2T − qT )p

2
1Tp

2
2Th

⊥g
1 (x1,p

2
1T )h

⊥g
1 (x2,p

2
2T ) .

(4.24)
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In the massless limit, we recover the result in eq. (46) of ref. [3],

Cgg→qq̄ = − Nc

N2
c −1

z(1−z)
4

(

z2 + (1−z)2 − 1

N2
c

)

[

2Igg(x1, x2, q
2
T )− Lgg(x1, x2, q

2
T )
]

.

(4.25)

In arriving at the above expressions we have ignored the modifications due to initial

and final state interactions. We address their effect in section 5.

4.2 Dilepton production

The cross section for the reaction

h1(P1) + h2(P2) → µ−(K1) + µ+(K2) +X , (4.26)

which proceeds via the two channels qq̄ → µ−µ+ (Drell-Yan scattering) and γγ → µ−µ+

(photon fusion), can be recovered from the results for heavy quark pair production by

taking the limit Nc → 0 [53]. It can still be written as in eq. (4.2), with αs replaced by

α and

A = Aqq̄→µ−µ+

+Aγγ→µ−µ+

, B = Bqq̄→µ−µ+

+
M2

µ

M2
⊥

Bγγ→µ−µ+

, C = Cγγ→µ−µ+

,

(4.27)

with

Aqq̄→µ−µ+

= 2z(1−z)
[

z2 + (1−z)2 + 2z(1−z)
M2

µ

M2
⊥

]

[

Fqq̄(x1, x2, q
2
T ) + F q̄q(x1, x2, q

2
T )
]

,

(4.28)

Aγγ→µ−µ+

= A1

(

z,
M2

µ

M2
⊥

)

Fγγ(x1, x2, q
2
T )−

M4
µ

M4
⊥

z(1−z) q4T N γγ(x1, x2, q
2
T ) , (4.29)

Bqq̄→µ−µ+

= 4z2(1−z)2
(

1−
M2

µ

M2
⊥

)

[

Hqq̄(x1, x2, q
2
T ) +Hq̄q(x1, x2, q

2
T )
]

, (4.30)

Bγγ→µ−µ̄+

= 4z(1−z)
(

1−
M2

µ

M2
⊥

)

Hγγ(x1, x2, q
2
T ) , (4.31)

Cγγ→µ−µ+

= −z(1− z)

(

1−
M2

µ

M2
⊥

)2
[

2Iγγ(x1, x2, q
2
T )− Lγγ(x1, x2, q

2
T )
]

, (4.32)

where we have defined the function

A1 = 2

[

z2 + (1− z)2 + 4z(1− z)

(

1−
M2

µ

M2
⊥

)

M2
µ

M2
⊥

]

(4.33)

and the convolutions adopted are the ones in eqs. (4.10)–(4.11), (4.18)–(4.19), (4.23)–(4.24),

with the obvious substitutions fg1 → fγ1 and h⊥ g
1 → h⊥ γ

1 . We note that, because of

the Drell-Yan background process, the cleanest way to extract h⊥ γ
1 in hadronic collisions

would be through the measurement of a cos 4(φ⊥ − φT ) asymmetry, or else a selection

that suppresses s-channel muon pair production, like a sizable lower Q2 cut, should be

considered.
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5 Factorization issues and process dependent color factors

The results in this paper have assumed TMD factorization. As is well-known, initial and

final state interactions generally lead to modifications of the expressions depending on the

process under consideration. Already at the level of resumming the corresponding collinear

gluons into the gauge links required for color gauge invariance, problems can arise with

factorization [4]. Such factorization breaking effects show up in the dijet and heavy quark

pair production cases, considered in the previous section. Despite these problems with

TMD factorization for the differential (unintegrated) cross sections, transverse momentum

weighted expressions, for h⊥g
1 defined as

h
⊥g(2)[U ]
1 (x) ≡

∫

d2pT (p
2
T /2M

2)2h
⊥g[U ]
1 (x,p2

T ) , (5.1)

can be factorized, but they appear with specific factors for different diagrams in the par-

tonic subprocess [54, 55]. This is simplest in cases where only the transverse momenta in

just one of the hadrons matter [28]. The various factors result from the initial and final

state interactions that can contribute differently in different subprocesses. By studying all

weightings one can calculate and quantify the process dependence and the nonuniversality

of the TMDs involved. Subsequently, one can then re-collect these transverse moments and

express any gauge link dependent TMD into a finite number of TMDs of definite rank, e.g.

three different ‘pretzelocity’ functions (h⊥1T ) in the case of quark TMDs [29]. Each of the

functions corresponds to a Fourier transform of a well-defined operator combination in the

defining matrix element.

Also, when writing down TMD factorized expressions for the processes ep→ e′QQ̄X,

pp → γγX or pp → H/ηc/χc0/ . . .X that have been suggested as clean and safe ways

to extract h⊥g
1 (x,p2

T ), one needs to be aware that one is not extracting a single TMD

function, but a combination of several functions. For example, the γ∗g → QQ̄ subprocess

that transports a color octet initial state into a color octet final state, will lead to a gluon

correlator with a different gauge link structure as compared to the subprocess where two

gluons fuse to produce a color singlet final state.

Using transverse weightings for the case of h⊥g
1 , the gauge link dependent TMDs can

be expressed in a set of five universal TMDs [30],

h
⊥g[U ]
1 (x,p2

T ) = h
⊥g(A)
1 (x,p2

T ) +
4

∑

c=1

C
[U ]
GG,Bc h

⊥g(Bc)
1 (x,p2

T ) , (5.2)

all of which have the same azimuthal dependence. Four of them, labeled (Bc), are gluonic

pole matrix elements with in this case two soft gluonic pole contributions (and hence T -

even), coming with a link dependent factor. There are multiple functions because the

color trace can be performed in different ways. The function labeled with (A) does not

contain a gluonic pole contribution (hence also T -even) and it contributes with factor unity

in all situations. For further details on the definition of these functions and the relevant

(calculable) gluonic pole factors we refer to ref. [30].
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As mentioned earlier it depends on the process under consideration which of the color

structures appear. In ep → e′QQ̄X and in all the processes with a colorless final state,

pp → γγX and pp → H/ηc/χc0/ . . .X, only the two functions h
⊥g(A)
1 and h

⊥g(B1)
1 appear

in the combination h
⊥g[gg→color singlet]
1 = h

⊥g(A)
1 + h

⊥g(B1)
1 , despite the different gauge link

structures. For pp → QQ̄X also the other functions appear due to the more complicated

color flow of the diagram(s) involved. For example, in the case of gg → qq̄ in the hard

scattering amplitude, there are multiple Feynman diagrams contributing to the process

and all five functions in eq. (5.2) are required. Even if the basic tree level values of the

gluonic pole coefficients C
[U ]
GG,c (with c = 1, . . . , 4) can be calculated straightforwardly, one

must be careful in those cases in which transverse momenta of more than just one hadron

are involved, since these hadron-hadron scattering processes do not factorize in general.

Therefore the relative strengths of the various azimuthal dependences attributed to linearly

polarized gluons need further study.

6 Summary and conclusions

In this paper we have presented expressions for azimuthal asymmetries that arise in heavy

quark and muon pair production due to the fact that gluons and also photons inside

unpolarized hadrons can be linearly polarized. We studied these asymmetries for both

electron-hadron and hadron-hadron scattering, not taking into account the presence of

initial and final state interactions, which however modify the expressions by Nc-dependent

pre-factors if not hampering TMD factorization altogether. For the processes considered

in this paper this was addressed at the end in section 5.

First we considered the case of heavy quark pair production in electron-hadron scat-

tering: ep→ e′QQ̄X. We calculated the maximal asymmetries (R and R′) for two specific

angular dependences. These turn out to be very sizable in certain transverse momentum

regions. This finding, together with the relative simplicity of the measurements, are very

promising concerning a future extraction of the linearly polarized gluon distribution h⊥ g
1

at EIC or LHeC. A similar conclusion applies to the linearly polarized photon distribution

inside unpolarized protons through muon pair production. These measurements can be

made relatively free from background, where for heavy quark pair production the contri-

butions from intrinsic charm and bottom can be suppressed by restricting to the x region

below 0.1 (of course, the study of the polarization of intrinsic heavy quarks is of interest in

itself) and for muon pair production the Drell-Yan background can be cut out by kinematic

constraints. For the case of dijet production the asymmetries are expected to be smaller

and background subtractions may be more involved.

Next we considered heavy quark and muon pair production in hadron-hadron collisions.

In this case the main concern is the breaking of factorization due to ISI and FSI. As

explained in section 5, cross sections can be expressed in terms of five universal h⊥ g
1 TMDs,

in process dependent combinations, if factorization holds to begin with. It turns out that

the ep→ e′QQ̄X process probes the same combination of two of the five universal functions

as processes like pp → γγX or pp → H/ηc/χc0/ . . .X. This restricted universality can be

tested experimentally, using RHIC or LHC data. In the process pp → QQ̄X factorization
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is expected to be broken, therefore, it is of interest to compare the extractions of h⊥ g
1 from

ep → e′QQ̄X and pp → QQ̄X, in order to learn about the size and importance of the

factorization breaking effects. A further comparison to ep → e′µ−µ+X and pp → µ−µ+X

will be very interesting in this respect too, since these processes should not suffer from

factorization breaking effects due to ISI/FSI. It will also teach us about the linearly

polarization of photons in unpolarized protons. A further comparison to the distribution

of linearly polarized photons ‘inside’ electrons could also be very instructive. In this respect

any high energy e+e−, ep and pp scattering experiment can contribute valuably to such

interesting comparisons.
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