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1 Introdu
tionThe Standard Model (SM) of strong and ele
troweak intera
tions has been su

essfullytested to a great pre
ision [1℄. Nevertheless, it is 
ommonly a

epted that it 
onstitutesmerely an e�e
tive theory whi
h is appli
able up to energies not ex
eeding a 
ertain s
ale Λ.A �eld theory valid above that s
ale should satisfy the following requirements:(i) its gauge group should 
ontain SU(3)C × SU(2)L × U(1)Y of the SM,(ii) all the SM degrees of freedom should be in
orporated either as fundamental or 
om-posite �elds,(iii) at low-energies, it should redu
e to the SM, provided no undis
overed but weakly
oupled light parti
les exist, like axions or sterile neutrinos.In most of beyond-SM theories that have been 
onsidered to date, redu
tion to theSM at low energies pro
eeds via de
oupling of heavy parti
les with masses of order Λ orlarger. Su
h a de
oupling at the perturbative level is des
ribed by the Appelquist-Carazzonetheorem [2℄. This inevitably leads to appearan
e of higher-dimensional operators in the SMLagrangian that are suppressed by powers of Λ

LSM = L
(4)
SM +

1

Λ

∑

k

C
(5)
k Q

(5)
k +

1

Λ2

∑

k

C
(6)
k Q

(6)
k + O

(
1

Λ3

)
, (1.1)
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fermions s
alars�eld ljLp eRp qαjLp uαRp dαRp ϕjhyper
harge Y −1
2 −1 1

6
2
3 −1

3
1
2Table 1. The SM matter 
ontentwhere L(4)

SM is the usual �renormalizable� part of the SM Lagrangian. It 
ontains dimension-two and -four operators only.1 In the remaining terms, Q(n)
k denote dimension-n operators,and C(n)

k stand for the 
orresponding dimensionless 
oupling 
onstants (Wilson 
oe�
ients).On
e the underlying high-energy theory is spe
i�ed, all the 
oe�
ients C(n)
k 
an be deter-mined by integrating out the heavy �elds.Our goal in this paper is to �nd a 
omplete set of independent operators of dimension 5and 6 that are built out of the SM �elds and are 
onsistent with the SM gauge symmetries.We do not rely on the original analysis of su
h operators by Bu
hmüller and Wyler [3℄but rather perform the full 
lassi�
ation on
e again from the outset. One of the reasonsfor repeating the analysis is the fa
t that many linear 
ombinations of operators listed inref. [3℄ vanish by the Equations Of Motion (EOMs). Su
h operators are redundant, i.e.they give no 
ontribution to on-shell matrix elements, both in perturbation theory (to allorders) and beyond [4�9℄. Although the presen
e of several EOM-vanishing 
ombinations inref. [3℄ has been already pointed out in the literature [10�13℄, no updated 
omplete list hasbeen published to date. Our �nal operator basis di�ers from ref. [3℄ also in the four-fermionse
tor where the EOMs play no role.The arti
le is organized as follows. Our notation and 
onventions are spe
i�ed inse
tion 2. The 
omplete operator list is presented in se
tion 3. Comparison with ref. [3℄is outlined in se
tion 4. Details of establishing operator bases in the zero-, two- and four-fermion se
tors are des
ribed in se
tions 5, 6 and 7, respe
tively. We 
on
lude in se
tion 8.2 Notation and 
onventionsThe SM matter 
ontent is summarized in table 1 with isospin, 
olour, and generation indi
esdenoted by j = 1, 2, α = 1, 2, 3, and p = 1, 2, 3, respe
tively. Chirality indi
es (L, R)of the fermion �elds will be skipped in what follows. Complex 
onjugate of the Higgs �eldwill always o

ur either as ϕ† or ϕ̃, where ϕ̃j = εjk(ϕ

k)⋆, and εjk is totally antisymmetri
with ε12 = +1.The well-known expression for L(4)
SM before Spontaneous Symmetry Breakdown (SSB)reads

L
(4)
SM = −

1

4
GAµνG

Aµν −
1

4
W I
µνW

Iµν −
1

4
BµνB

µν + (Dµϕ)† (Dµϕ) +m2ϕ†ϕ−
1

2
λ

(
ϕ†ϕ

)2

+i
(
l̄ 6Dl + ē 6De+ q̄ 6Dq + ū6Du+ d̄ 6Dd

)
−

(
l̄Γeeϕ+ q̄ Γuuϕ̃+ q̄ Γddϕ+ h.c.

)
, (2.1)1Canoni
al dimensions of operators are determined from the �eld 
ontents alone, ex
luding possibledimensionful 
oupling 
onstants. The only dimension-two operator in L

(4)
SM is ϕ†ϕ in the Higgs massterm. � 2 �
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where the Yukawa 
ouplings Γe,u,d are matri
es in the generation spa
e. We shall not
onsider SSB in this paper. Our sign 
onvention for 
ovariant derivatives is exempli�ed by
(Dµq)

αj =
(
∂µ + igsT

A
αβG

A
µ + igSIjkW

I
µ + ig′YqBµ

)
qβk (2.2)Here, TA = 1

2λ
A and SI = 1

2τ
I are the SU(3) and SU(2) generators, while λA and τ I arethe Gell-Mann and Pauli matri
es, respe
tively. All the hyper
harges Y have been listedin table 1.It is useful to de�ne Hermitian derivative terms that 
ontain ϕ†

←

Dµϕ ≡ (Dµϕ)†ϕ asfollows:
ϕ†i
↔

Dµ ϕ ≡ iϕ†
(
Dµ −

←

Dµ

)
ϕ and ϕ†i

↔

D I
µ ϕ ≡ iϕ†

(
τ IDµ −

←

Dµτ
I
)
ϕ. (2.3)The gauge �eld strength tensors and their 
ovariant derivatives read

GAµν = ∂µG
A
ν − ∂νG

A
µ − gsf

ABCGBµG
C
ν , (DρGµν)

A = ∂ρG
A
µν − gsf

ABCGBρ G
C
µν ,

W I
µν = ∂µW

I
ν − ∂νW

I
µ − gεIJKW J

µW
K
ν , (DρWµν)

I = ∂ρW
I
µν − gεIJKW J

ρW
K
µν ,

Bµν = ∂µBν − ∂νBµ, DρBµν = ∂ρBµν . (2.4)Dual tensors are de�ned by X̃µν = 1
2εµνρσX

ρσ (ε0123 = +1), where X stands for GA,
W I or B.The fermion kineti
 terms in L

(4)
SM are Hermitian up to total derivatives, i.e. iψ̄ 6Dψ−h.c.

= ∂µ(ψ̄γ
µψ). Total derivatives of gauge-invariant obje
ts in LSM are skipped throughoutthe paper, as they give no physi
al e�e
ts. At the dimension-�ve and -six levels, we en-
ounter no gauge-invariant operators that are built out of non-abelian gauge �elds only,and equal to total derivatives of gauge-variant obje
ts. At the dimension-four level, thetwo possible su
h terms G̃AµνGAµν = 4εµνρσ∂µ

(
GAν ∂ρG

A
σ − 1

3gsf
ABCGAν G

B
ρ G

C
σ

) and theanalogous W̃ I
µνW

Iµν should be understood as impli
itly present on the r.h.s of eq. (2.1).They leave the Feynman rules and EOMs una�e
ted, showing up in topologi
al quantume�e
ts only [14�19℄.3 The 
omplete set of dimension-�ve and -six operatorsThis se
tion is devoted to presenting our �nal results (derived in se
tions 5, 6 and 7)for the basis of independent operators Q(5)
n and Q

(6)
n . Their independen
e means thatno linear 
ombination of them and their Hermitian 
onjugates is EOM-vanishing up tototal derivatives.Imposing the SM gauge symmetry 
onstraints on Q(5)

n leaves out just a single opera-tor [20℄, up to Hermitian 
onjugation and �avour assignments. It reads
Qνν = εjkεmnϕ

jϕm(lkp)
TClnr ≡ (ϕ̃†lp)

TC(ϕ̃†lr), (3.1)where C is the 
harge 
onjugation matrix.2 Qνν violates the lepton number L. After theele
troweak symmetry breaking, it generates neutrino masses and mixings. Neither L
(4)
SM2In the Dira
 representation C = iγ2γ0, with Bjorken and Drell [21℄ phase 
onventions.� 3 �
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAνµ GBρν GCµρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aνµ GBρν GCµρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν WKµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGAµνG
Aµν QeW (l̄pσ

µνer)τ
IϕW I

µν Q
(1)
ϕl (ϕ†i

↔

Dµ ϕ)(l̄pγ
µlr)

Q
ϕ eG

ϕ†ϕ G̃AµνG
Aµν QeB (l̄pσ

µνer)ϕBµν Q
(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µνTAur)ϕ̃ G

A
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγ
µer)

Q
ϕfW

ϕ†ϕW̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

↔

Dµ ϕ)(q̄pγ
µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃ Bµν Q
(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνB
µν QdG (q̄pσ

µνTAdr)ϕG
A
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγ
µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγ
µdr)

Q
ϕfWB

ϕ†τ IϕW̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγ

µdr)Table 2. Dimension-six operators other than the four-fermion ones.nor the dimension-six terms 
an do the job. Thus, 
onsisten
y of the SM (as de�ned byeq. (1.1) and table 1) with observations 
ru
ially depends on this dimension-�ve term.All the independent dimension-six operators that are allowed by the SM gauge sym-metries are listed in tables 2 and 3. Their names in the left 
olumn of ea
h blo
k shouldbe supplemented with generation indi
es of the fermion �elds whenever ne
essary, e.g.,
Q

(1)
lq → Q

(1)prst
lq . Dira
 indi
es are always 
ontra
ted within the bra
kets, and not dis-played. The same is true for the isospin and 
olour indi
es in the upper part of table 3.In the lower-left blo
k of that table, 
olour indi
es are still 
ontra
ted within the bra
kets,while the isospin ones are made expli
it. Colour indi
es are displayed only for operatorsthat violate the baryon number B (lower-right blo
k of table 3). All the other operators intables 2 and 3 
onserve both B and L.The bosoni
 operators (
lasses X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those
ontaining X̃µν are CP-odd, while the remaining ones are CP-even. For the operators 
on-taining fermions, Hermitian 
onjugation is equivalent to transposition of generation indi
esin ea
h of the fermioni
 
urrents in 
lasses (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2(ex
ept for Qϕud). For the remaining operators with fermions, Hermitian 
onjugates arenot listed expli
itly.If CP is de�ned in the weak eigenstate basis then Q−

(+)
Q† are CP-odd (-even) for allthe fermioni
 operators. It follows that CP-violation by any of those operators requires a� 4 �
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating
Qledq (l̄jper)(d̄sq

j
t ) Qduq εαβγεjk

[
(dαp )TCuβr

] [
(qγjs )TClkt

]

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )TCet

]

Q
(8)
quqd (q̄jpTAur)εjk(q̄

k
sT

Adt) Q
(1)
qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut) Q

(3)
qqq εαβγ(τ Iε)jk(τ

Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )TCuβr

] [
(uγs )TCet

]Table 3. Four-fermion operators.non-vanishing imaginary part of the 
orresponding Wilson 
oe�
ient. However, one shouldremember that su
h a CP is not equivalent to the usual (�experimental�) one de�ned inthe mass eigenstate basis, just be
ause the two bases are related by a 
omplex unitarytransformation.Counting the entries in tables 2 and 3, we �nd 15 bosoni
 operators, 19 single-fermioni
-
urrent ones, and 25 B-
onserving four-fermion ones. In total, there are 15+19+25=59independent dimension-six operators, so long as B-
onservation is imposed.4 Comparison with ref. [3℄Comparing the B-
onserving operators in tables 2 and 3 with eqs. (3.3)�(3.64) of ref. [3℄,one �nds that(i) The only operator missed in ref. [3℄ is Q(3)
lequ = (l̄jpσµνer)εjk(q̄

k
sσ

µνut). This fa
t hasbeen already noti
ed in refs. [22, 23℄ where (l̄jpuαt )εjk(q̄
kα
s er) = 1

8Q
(3)
lequ −

1
2Q

(1)
lequ wasused instead. Phenomenologi
al impli
ations for top quark physi
s have been dis-
ussed, e.g., in ref. [24, 25℄. � 5 �
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(ii) One linear 
ombination of the three ϕ4D2-
lass operators in eqs. (3.28) and (3.44)of ref. [3℄ must be redundant be
ause this 
lass 
ontains two independent operatorsonly. In fa
t, presen
e of all the three operators 
ontradi
ts 
orre
t arguments givenin se
tion 3.5 of that paper.(iii) The number of single-fermioni
-
urrent operators in ref. [3℄ be
omes equal to oursafter removing all the 16 operators with 
ovariant derivatives a
ting on fermion �elds(eqs. (3.30)�(3.37) and (3.57)�(3.59) there). As we shall show in se
tion 6, all su
hoperators are indeed redundant. This fa
t has been already dis
ussed in refs. [10�12℄for most of the 
ases. Note that removing those operators helps in eliminating multipleassignment of the same operator names in ref. [3℄.(iv) Our use of ↔Dµ instead of Dµ in 
lass ψ2ϕ2D does not a�e
t the formal operator
ounting, but a
tually redu
es the number of terms to be 
onsidered. The point isthat Hermitian 
onjugates of our operators with ↔Dµ have an identi
al form as thelisted ones, so they do not need to be 
onsidered separately. On the other hand, usings
alar �eld derivatives with a positive relative sign (opposite to that in eq. (2.3))would give redundant operators only, i.e. linear 
ombinations of the three ψ2ϕ3-
lassterms, EOM-vanishing obje
ts, and total derivatives. This issue has been alreadynoti
ed in ref. [13℄.(v) Fierz identities (for anti
ommuting fermion �elds) like the following one:
(ψ̄LγµψL)(χ̄Lγ

µχL) = (ψ̄LγµχL)(χ̄Lγ
µψL) (4.1)make 5 out of 29 four-fermion operators in ref. [3℄ linearly dependent on the others.For instan
e,

(l̄pγµτ
I lr)(l̄sτ

Iγµlt) = 2(l̄jpγµl
k
r )(l̄

k
sγ

µljt ) −Qprstll = 2Qptsrll −Qprstll , (4.2)where the identity
τ Ijkτ

I
mn = 2δjnδmk − δjkδmn (4.3)and eq. (4.1) have subsequently been used. Se
tion 7 
ontains a full des
ription ofthe four-fermion operator 
lassi�
ation.As far as the operator names and their normalization are 
on
erned, our notation is 
losebut not identi
al to the one of ref. [3℄. Taking advantage of the need to modify the notationbe
ause of redundant operator removal, we do it in several pla
es where 
onvenien
e is theonly issue.The 
omplete list of nomen
lature and normalization 
hanges reads:(i) Unne
essary rationals are skipped in front of QϕG, QϕW , QϕB, Qϕ, Qll, Q(1)

qq , Q(3)
qq ,

Qee, Quu and Qdd.(ii) TA instead of λA are used in QuG, QdG and Q(8)
... .� 6 �
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(iii) Fierz transformation and multipli
ation by (−2) is applied in our (L̄L)(R̄R) 
lass toavoid 
rossed 
olour and Dira
 index 
ontra
tions, and to make the notation somewhatmore transparent. In addition, 
olour-Fierz transformations are applied to linear
ombinations of the last four operators of this 
lass.(iv) Operator names are 
hanged in many 
ases to avoid multiple use of the same symbols,indi
ate the presen
e of essential �elds, and make the nomen
lature more systemati
in the four-fermion se
tor. In parti
ular, the names are modi�ed for QϕWB, QϕfWB
,

Qϕud, as well as in the whole (L̄R)(R̄L) and (L̄R)(L̄R) 
lasses.One of the reasons for naming our operators with �Q� rather than with �O� is to indi
atethat many notational details have 
hanged. As far as se
tion 2 is 
on
erned, we have fol-lowed ref. [3℄ everywhere ex
ept for sign 
onventions for the Yukawa 
ouplings in eq. (2.1)and inside 
ovariant derivatives (eq. (2.2)). The latter a�e
ts signs of operators in 
lasses
X3 and ψ2Xϕ.5 Bosoni
 operator 
lassi�
ationBuilding blo
ks for the SM Lagrangian are the matter �elds from table 1, the �eld strengthtensors Xµν ∈ {GAµν ,W

I
µν , Bµν} and 
ovariant derivatives of those obje
ts.3 Using themand imposing just the global SU(3)C × SU(2)L × U(1)Y symmetry is su�
ient to �nd allthe gauge-invariant operators in LSM.Purely bosoni
 operators must 
ontain an even number of the Higgs �elds ϕ (be
auseof the SU(2)L representation tensor produ
t 
onstraints), and an even number of 
ovariantderivatives D (be
ause all the Lorentz indi
es must be 
ontra
ted). Sin
e both ϕ andD have
anoni
al dimension one, while X has dimension two, no dimension-�ve operators 
an arisein the purely bosoni
 se
tor. The only possibilities for the dimension-six bosoni
 operator�eld 
ontents are thus X3, X2ϕ2, X2D2, Xϕ4, XD4, Xϕ2D2, ϕ6, ϕ4D2 and ϕ2D4.The 
lass Xϕ4 is empty be
ause of the antisymmetry of X and absen
e of any otherobje
ts with Lorentz indi
es to be 
ontra
ted. We 
an also skip XD4 be
ause all the pos-sible 
ontra
tions (in
luding those with εµνρσ) lead to appearan
e of at least one 
ovariantderivative 
ommutator [Dµ,Dν ] ∼ Xµν , whi
h moves us to the X2D2 
lass.In the following, we shall show that all the possible operators in 
lasses ϕ2D4, ϕ2XD2and X2D2 redu
e by the EOMs either to operators 
ontaining fermions or to 
lasses X3,

X2ϕ2, ϕ6 and ϕ4D2. Next, we shall verify that representatives of the latter four 
lasses intable 2 indeed form a 
omplete set of bosoni
 operators.Sin
e the ne
essary 
lassi
al EOMs are going to be used at the O
(

1
Λ2

) level, and weare not interested in O
(

1
Λ3

) e�e
ts, we 
an negle
t all the O
(

1
Λ

) terms in the EOMs, i.e.3If the requirement of gauge invarian
e was relaxed, gauge �elds and their fully symmetrized derivativeslike ∂(µ1
. . . ∂µn

GA
ν) would be the only additional obje
ts. No expression depending on su
h terms 
ouldbe gauge-invariant be
ause one 
an simultaneously nullify all of them at any given spa
etime point by anappropriate gauge transformation. � 7 �
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derive them from L
(4)
SM alone. We get then

(DµDµϕ)j = m2ϕj − λ
(
ϕ†ϕ

)
ϕj − ēΓ†

e l
j + εjk q̄

k Γuu − d̄Γ†
dq
j,

(DρGρµ)
A = gs

(
q̄γµT

Aq + ūγµT
Au + d̄γµT

Ad
)
,

(DρWρµ)
I =

g

2

(
ϕ†i
↔

D I
µ ϕ + l̄γµτ

I l + q̄γµτ
Iq

)
,

∂ρBρµ = g′Yϕ ϕ
†i
↔

Dµ ϕ+ g′
∑

ψ∈{l,e,q,u,d}

Yψ ψ̄γµψ. (5.1)Our ordering of operator 
lasses is su
h that those 
ontaining fewer 
ovariant derivativesare 
onsidered to be �lower�. Throughout the paper, operators are going to be redu
edfrom higher to lower 
lasses. For 
lasses 
ontaining equal numbers of derivatives, orderingis de�ned by the number of X tensors, i.e. lower 
lasses 
ontain fewer X tensors.
ϕ2D4 In this 
lass, we 
an restri
t our attention to operators where all the derivatives a
ton a single ϕ �eld, be
ause other possibilities are equivalent to them up to total derivatives.Contra
tions with εµνρσ 
an be ignored be
ause they lead to appearan
e of [Dµ,Dν ] ∼

Xµν , whi
h moves us to lower 
lasses 
ontaining X. For the same reason, ordering ofthe 
ovariant derivatives a
ting on ϕ 
an be 
hosen at will. We use this freedom to get
DµDµϕ as a part of ea
h of the 
onsidered operators. This moves us by the EOM to lower
lasses ϕ4D2, ψ2ϕD2, and dimension-four operators multiplied by m2.
ϕ2XD2 Here, we allow for X being possibly dual, and forget about εµνρσ otherwise.Indi
es of X 
annot be 
ontra
ted with themselves, so they need to be 
ontra
ted withboth derivatives. We need to 
onsider three 
ases: (i) Ea
h of the derivatives a
ts on adi�erent ϕ. We 
an eliminate this possibility �by parts�, ignoring total derivatives. (ii)Both derivatives a
t on a single obje
t. We obtain [Dµ,Dν ] ∼ Xµν and get moved to the
ϕ2X2 
lass. (iii) One of the derivatives a
ts on X, and one on ϕ. We 
an take advantageeither of the gauge �eld EOM (for the usual tensor) or of the Bian
hi identity DρX̃ρµ = 0(for the dual tensor). The EOM moves us to lower 
lasses ϕ4D2 and ψ2ϕ2D.
X2D2 Similarly to the ϕ2D4 
ase, we 
an restri
t our attention to operators where allthe derivatives a
t on a single tensor. If both derivatives are 
ontra
ted with εµνρσ orwith a single tensor, we obtain [Dµ,Dν ] ∼ Xµν , and get moved to the X3 
lass. Other
ontra
tions with εµνρσ produ
e dual tensors. Thus, we allow the non-di�erentiated tensorto be possibly dual, and forget about εµνρσ otherwise. If ea
h of the derivatives is 
ontra
tedwith a di�erent tensor, we 
an use [Dµ,Dν ] ∼ Xµν to 
hoose their ordering in su
h away that DρXρµ arises. In 
onsequen
e, the operator gets redu
ed by the EOM to lower
lasses ϕ2XD2 and ψ2XD.The last possibility to 
onsider is when the two derivatives are 
ontra
ted with them-selves:
(

X̃
)
µνDρDρXµν = −

(

X̃
)
µν (DρDµXνρ +DρDνXρµ) = X3 + ϕ2XD2 + ψ2XD + E ,(5.2)� 8 �
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In the �rst step, the Bian
hi identity D[ρXµν] = 0 has been used. Next, [Dρ,Dα] ∼ Xραfollowed by the EOM for X have been applied. The symbol E stands for EOM-vanishingoperators.
X3 Here we begin to en
ounter 
lasses whose representatives do appear in table 2. Toindi
ate that the tensors may be di�erent, we denote them by X, Y and Z in this para-graph. Allowing one of them to be dual, we 
an forget about εµνρσ otherwise. The onlynon-vanishing and independent 
ontra
tion of Lorentz indi
es reads X ν

µ Y ρ
ν Z µ

ρ . Thisimplies that all the three tensors must be di�erent, be
ause XαµXβνZ
µνgαβ = 0 bythe antisymmetry of Z. Moreover, neither of the two tensors 
an be related by duality be-
ause X ν

µ X̃
ρ
ν = −1

4δ
ρ
µXαβX̃

αβ is symmetri
 in the indi
es (µρ), while Z is antisymmetri
.It follows that (in parti
ular) B ν
µ W

Iρ
ν W̃ Iµ

ρ = 0, i.e. symmetri
 singlets in produ
ts of twoadjoint representations are absent in the 
onsidered operator 
lass. The only other optionto get a gauge singlet from three di�erent tensors is to use the stru
ture 
onstants fABCor εIJK . This leads us to a 
on
lusion that the four X3-
lass operators listed in table 2 areindeed the only possibilities.
X2ϕ2 The Higgs �eld produ
ts 
ombine to singlets or triplets of SU(2)L. Hyper
harge
onstraints imply that they must be of the form ϕ†ϕ or ϕ†τ Iϕ (but not, e.g., ϕ†τ I ϕ̃).The eight X2ϕ2-
lass operators in table 2 
ontain all the possible 
ontra
tions of two �eld-strength tensors that form singlets or triplets of SU(2)L, and singlets of SU(3)C .
ϕ6 For the total hyper
harge to vanish, exa
tly three of the Higgs �elds must be 
omplex
onjugated. Grouping the six �elds into ϕ⋆ϕ pairs, and writing them as in the previous
ase, we are led to 
onsider tensor produ
ts of singlets and triplets of SU(2)L. Three triplets
an 
ombine to an overall singlet only in a fully antisymmetri
 manner, whi
h gives zeroin our 
ase be
ause all the triplets are identi
al (εIJK(ϕ†τ Iϕ)(ϕ†τJϕ)(ϕ†τKϕ) = 0). Twotriplets and one singlet 
ombine to an overall singlet as (ϕ†τ Iϕ)(ϕ†τ Iϕ)(ϕ†ϕ) that equalsto (ϕ†ϕ)3 thanks to eq. (4.3). Thus, the only independent operator in the 
onsidered 
lassis the very (ϕ†ϕ)3.
ϕ4D2 Hyper
harge 
onstraints imply that exa
tly two ϕ �elds must be 
omplex-
onjugated. Sin
e the two derivatives must be 
ontra
ted, either they a
t on two di�erent
ϕ �elds, or the EOM moves the operator to lower 
lasses. If they a
t on two 
onjugatedor two un
onjugated �elds, we eliminate those possibilities �by parts�. If one of them a
tson a 
onjugated �eld, and the other on an un
onjugated one, our SU(2)L tensor produ
t
ontains four distin
t fundamental representations, whi
h means that exa
tly two indepen-dent singlets must be present. Below, we write them on the l.h.s. as produ
ts of tripletsand singlets, while the r.h.s. explains (via the Leibniz rule) what 
ombinations give the twosimple ϕ4D2-
lass operators in table 2:

(ϕ†τ Iϕ)
[
(Dµϕ)†τ I(Dµϕ)

]
(4.3)
= 2

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
− (ϕ†ϕ)

[
(Dµϕ)†(Dµϕ)

]
,

(ϕ†ϕ)
[
(Dµϕ)†(Dµϕ)

]
(5.1)
=

1

2
(ϕ†ϕ)�(ϕ†ϕ) + ψ2ϕ3 + ϕ6 +m2 ϕ4 + E . (5.3)

� 9 �
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6 Single-fermioni
-
urrent operator 
lassi�
ationTo make general arguments simple, it is 
onvenient to think �rst in terms of only left-handed fermions ψ ∈ {l, ec, q, uc, dc}, i.e. to use 
harge 
onjugates of the SU(2)L-singletfermions as fundamental �elds. In su
h a 
ase, we have only three possibilities for fermioni

urrents (up to h.
.): ψ̄1γµψ2, ψT1 Cψ2 and ψT1 Cσµνψ2. Considering bosoni
 obje
ts withappropriate numbers of Lorentz indi
es and ignoring Xµ
µ = 0, 
omplete sets of buildingblo
ks for our operators are easily determined for ea
h of the 
urrents. They read4

ψ̄1γµψ2 : (ϕD), (XD, ϕ2D, D3),

ψT1 Cψ2 : (ϕ2, D2), (ϕ3, ϕD2),

ψT1 Cσµνψ2 : (X, D2), (Xϕ, ϕD2).

(6.1)A brief look into table 1 ensures that hyper
harges of the 
urrents involving C nevervanish, while hyper
harges of the ve
tor 
urrents never equal ±1/2. Consequently, 
lasses
ψ2X, ψ2D2 and ψ2ϕD are empty. Moreover, the Higgs �eld produ
ts in 
lass ψ2ϕ2 mustgive non-zero hyper
harges, in whi
h 
ase the only possibilities are ±1. There is only asingle fermioni
 
urrent that 
an 
ompensate su
h a hyper
harge, namely the one built outof two lepton doublets. Thus, we obtain the �eld 
ontent of the operator in eq. (3.1). Theisospin stru
ture of that operator is the only available one given the antisymmetry of εjkand the presen
e of just a single Higgs doublet in the SM. This 
ompletes our dis
ussion ofdimension-�ve operators.In the dimension-six 
ase, the number of Higgs �elds asso
iated with s
alar and tensorfermioni
 
urrents is always odd. Consequently, those 
urrents must form isospin doublets.In the standard notation with right-handed singlets, they read ψ̄1ψ2 and ψ̄1σµνψ2. Similarly,ve
tor 
urrents 
an only form isospin singlets or triplets, as they 
ombine with even numbersof the Higgs �elds. Therefore, even if the isospin singlets are taken right-handed, no ve
tor
urrents with C enter into our 
onsiderations. We shall thus return to the standard notationin what follows.Classi
al EOMs for the quarks and leptons that we are going to use below read

i6Dl = Γeeϕ, i6De = Γ†
eϕ†l, i6Dq = Γuuϕ̃+ Γddϕ, i6Du = Γ†

uϕ̃†q, i6Dd = Γ†
dϕ

†q. (6.2)Apart from them, two simple Dira
-algebra identities need to be re
alled, namely
γµγν = gµν − iσµν , γµγνγρ = gµνγρ + gνργµ − gµργν − iεµνρσγ

σγ5 . (6.3)Let us now dis
uss all the dimension-six 
lasses one-by-one.5
ψ2D3 Three 
ovariant derivatives are 
ontra
ted here with a 
ertain ψ̄γµψ 
urrent. Sim-ilarly as in the previously dis
ussed 
lasses ϕ2D4 and X2D2, we 
an remove derivativesa
ting on ψ̄ �by parts�, and 
hoose ordering of the derivatives a
ting on ψ at will. Choosingthe ordering as in ψ̄DµD

µ 6Dψ, we get an operator that redu
es by the EOMs to 
lass ψ2ϕD2.4Bosoni
 terms leading to dimension-�ve and -six operators are 
olle
ted in separate bra
kets.5There are six of them. Note that both the s
alar and tensor 
urrents o

ur in the ψ2ϕD2 
ase.� 10 �
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ψ2ϕD2 As follows from eq. (6.1), this 
lass involves s
alar and tensorfermion 
urrents only. We remove the derivatives a
ting on ψ̄ �by parts�, andtake into a

ount that ψ̄σµνψDµDνϕ and ϕψ̄σµνDµDνψ belong a
tually to
lass ψ2Xϕ be
ause [Dµ,Dν ] ∼ Xµν . The four remaining possibilities[ ψ̄ψ DµD
µϕ, ϕψ̄DµD

µψ, (Dµϕ)ψ̄σµνDνψ and (Dµϕ)ψ̄Dµψ ℄ are EOM-redu
ed to lower
lasses as follows:
ψ̄ψDµD

µϕ
(5.1)
= ψ4 + ψ2ϕ3 +m2 ψ2ϕ + E ,

ϕψ̄DµD
µψ

(6.3)
= ϕψ̄ 6D 6Dψ + ψ2Xϕ

(6.2)
= ψ2Xϕ + ψ2ϕ2D + E ,

(Dµϕ)ψ̄σµνDνψ =
i

2
(Dµϕ)ψ̄ (γµ 6D − 6Dγµ)ψ = i(Dµϕ)ψ̄γµ 6Dψ − i(Dµϕ)ψ̄Dµψ

(6.2)
= −i(Dµϕ)ψ̄Dµψ + ψ2ϕ2D + E ,

2(Dµϕ)ψ̄Dµψ = (Dµϕ)ψ̄(γµ 6D + 6Dγµ)ψ

= (Dµϕ)ψ̄γµ 6Dψ − ψ̄ 6
←

DγµψD
µϕ− ψ̄γνγµψDνDµϕ+ T

(6.2)
= ψ2ϕ2D + ψ4 + ψ2ϕ3 +m2 ψ2ϕ + ψ2Xϕ + E + T , (6.4)where T stands for a total derivative. In the last step above, one should realize that

ψ̄γνγµψDνDµϕ
(6.3)
= ψ̄ψ DµD

µϕ− iψ̄σνµψDνDµϕ

(5.1)
= ψ4 + ψ2ϕ3 +m2 ψ2ϕ + ψ2Xϕ + E . (6.5)

ψ2XD As in several previous 
ases, we allow for X being possibly dual, and forgetabout εµνρσ otherwise. Sin
e we deal here with ψ̄γµψ 
urrents only, the derivative must be
ontra
ted with X. If it a
ts on X, we obtain either the gauge �eld EOM (for the usualtensor) or the Bian
hi identity DρX̃ρµ = 0 (for the dual tensor). The EOM moves us tolower 
lasses ψ2ϕ2D and ψ4. Removing �by parts� terms with derivatives a
ting on ψ̄, we�nd that the only expression still to be 
onsidered is Xµν ψ̄γµDνψ. It gets redu
ed to lower
lasses as follows:
Xµν ψ̄γµDνψ =

1

2
Xµν ψ̄(γµγν 6D + γµ 6Dγν)ψ =

1

2
Xµν ψ̄(γµγν 6D − 6Dγµγν)ψ +Xµν ψ̄γνDµψ

(∗)
=

1

4
Xµν ψ̄(γµγν 6D − 6Dγµγν)ψ =

1

4
Xµν ψ̄γµγν 6Dψ +

1

4
ψ̄ 6
←

DγµγνψX
µν (6.6)

+
1

4
ψ̄γργµγνψD

ρXµν + T
(6.2)
= ψ2Xϕ + ψ2ϕ2D + ψ4 + E + T .In the third step above (denoted by (∗)), we have taken into a

ount that the last term inthe pre
eding expression is equal to our initial operator but with an opposite sign. In thelast step, we have used the equality

ψ̄γργµγνψD
ρXµν (6.3)

= 2 ψ̄γµψDρXρµ − iερµνσ ψ̄γ
σγ5ψD

ρXµν = ψ2ϕ2D + ψ4 + E .(6.7)� 11 �
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Both the gauge �eld EOM and the Bian
hi identity are ne
essary in eq. (6.7), irrespe
tivelyof whether the initial X is dual or not.
ψ2ϕ3 A

ording to the arguments given above eq. (6.2), the fermion 
urrent must be anisospin doublet and 
olour singlet of the form ψ̄1ψ2, i.e. one of those present in the Yukawaterms in eq. (2.1). The number of 
onjugated and un
onjugated s
alar �elds in ϕ3 is �xedfor ea
h of the fermioni
 
urrents by hyper
harge 
onstraints. Combining those s
alar �eldsinto an isospin doublet is unique be
ause one of the two doublets in 2̂ ⊗ 2̂ ⊗ 2̂ vanishesin ea
h of the 
ases due to ϕ†ϕ̃ = εjk(ϕ

j)⋆(ϕk)⋆ = 0 = εjkϕ
jϕk. Consequently, the onlypossibilities for this 
lass are the Yukawa terms multiplied by ϕ†ϕ, as in the upper-rightblo
k of table 2.

ψ2Xϕ The antisymmetri
 tensor and the single Higgs �eld enfor
e the fermion 
urrent tobe an isospin doublet of the form ψ̄1σ
µνψ2. Vanishing total hyper
harge 
an be obtainedonly if the Higgs �eld 
ombines with the 
urrents in analogy to the standard Yukawa termsin eq. (2.1). Couplings with Bµν in table 2 show this analogy most transparently. The ten-sorsW I

µν and GAµν need to be 
ontra
ted with isospin triplets and 
olour o
tets, respe
tively,whi
h 
an be formed just in a single way for ea
h of the 
ases, as in table 2. Dualizing the
X tensor in any of the ψ2Xϕ-
lass operators in that table would not give anything newbe
ause of the identities εαβµνσµν = 2iσαβγ5 and γ5ψL,R = ∓ψL,R.
ψ2ϕ2D If the derivative a
ts on any of the fermion �elds, its 
ontra
tion with the ψ̄γµψ
urrent produ
es EOMs and moves us to the previously dis
ussed lower 
lass ψ2ϕ3. Thus,it is su�
ient to 
onsider derivatives a
ting on the s
alars only. The Higgs �elds 
an formisospin singlets or triplets, and are 
olour singlets. The fermion 
urrents must follow thesame sele
tion rules, whi
h allows pre
isely the 
urrents listed in the ψ2ϕ2D-
lass blo
k oftable 2, up to Hermitian 
onjugation of the ūγµd 
urrent. Hyper
harge 
onstraints deter-mine the number of 
onjugated and un
onjugated Higgs �elds. We begin with removing�by parts� derivatives a
ting on one of the s
alars, and forming isospin singlets or tripletsfrom produ
ts of ϕ1 and Dµϕ2, a

ording to the stru
ture of the 
orresponding fermion
urrents, whi
h gives unique expressions in all the 
ases. This way we get operators dif-fering from the ones in table 2 only by the presen
e of D instead of the ↔D. However, we
annot terminate at this point be
ause the operators without ↔D are not Hermitian, andwe still need to 
he
k whether their Hermitian 
onjugates are independent from them ornot. Su
h a question does not arise for any other blo
k of tables 2 and 3 be
ause all theother operators are either manifestly Hermitian (up to �avour permutations in the upperpart of table 3) or their Hermitian 
onjugates are manifestly independent (due to absen
eof hyper
harge-
onjugated fermion pairs). Su
h a manifest independen
e o

urs also inthe 
ase of Qϕud in the 
onsidered 
lass, so we leave it with the usual derivative.6 In theremaining seven 
ases (whi
h 
ontain hyper
harge-neutral 
urrents), we form 
ombinations

6A
tually, eϕ†

„
Dµ −

←

Dµ

«
ϕ = 2eϕ†Dµϕ.

� 12 �



J
H
E
P
1
0
(
2
0
1
0
)
0
8
5

with ↔D as in table 2, and supplement them with symmetrized 
ombinations of the form
[
ϕ†(Dµ+

←

Dµ)ϕ
]
ψ̄γµψ =

[
∂µ(ϕ

†ϕ)
]
ψ̄γµψ = (ϕ†ϕ)ψ̄(6D+ 6

←

D)ψ + T = ψ2ϕ3 + E + T .(6.8)Thus, the symmetrized 
ombinations give redundant operators and 
an be ignored. At thispoint, our 
lassi�
ation of all the single-fermioni
-
urrent operators has been 
ompleted.7 Four-fermion operator 
lassi�
ationFour fermion operators are the most numerous but very easy to 
lassify. As in thebeginning of the previous se
tion, we think �rst in terms of only left-handed fermions
ψ ∈ {l, ec, q, uc, dc}. Lorentz-singlet produ
ts of the fermioni
 
urrents (6.1) and their Her-mitian 
onjugates never give �eld 
ontents like ψψψψ̄ or ψψ̄ψ̄ψ̄. For the remaining options,we sear
h for zero-hyper
harge produ
ts without paying attention to whether they 
an formisospin or 
olour singlets. There are several hundreds of 
ases to be tested, whi
h is donein less than a se
ond by a simple 
omputer algebra 
ode. Apart from trivial results givingprodu
ts of two zero-hyper
harge 
urrents, only a handful of other possible �eld 
ontentsare found, namely

(l̄ēcdcq), (qucqdc), (lecquc), (qqql), (dcucucec), (qqūcēc), (qlūcd̄c), (7.1)and their Hermitian 
onjugates. Apparently, none of them 
an be eliminated using SU(2)Lor SU(3)C 
onstraints. The �rst three are B-
onserving, while the remaining four are
B-violating.In the 
ases with two ψ and two ψ̄ �elds in eq. (7.1), it is enough to 
onsider only asingle pairing of the four �elds into two ψ̄LγµψL 
urrents.7 As far as SU(2)L is 
on
erned,in ea
h 
ase there are two doublet and two singlet �elds, whi
h gives us only one overallsinglet. Finally, there is only one SU(3)C singlet in ˆ̄3 ⊗ 3̂ for the B-
onserving operator,and one in 3̂ ⊗ 3̂ ⊗ 3̂ for the B-violating ones. Consequently, we get just a single operatorfor ea
h of the three 
onsidered �eld 
ontents. They are given by Qledq, Qduq and Qqqu intable 3 after passing to the standard notation with right-handed SU(2)L singlets.In the remaining 
ases in eq. (7.1), four left-handed ψ �elds o

ur. On
e both thes
alar and tensor 
urrents from eq. (6.1) are taken into a

ount, only a single pairing of the�elds into 
urrents needs to be 
onsidered.8 Alternatively, one 
an use the Fierz identity

(ψT1LCσµνψ2L)(ψT3LCσ
µνψ4L) = 4(ψT1LCψ2L)(ψT3LCψ4L) + 8(ψT1LCψ4L)(ψT3LCψ2L) (7.2)to get rid of the tensor 
urrents. We 
hoose the latter option everywhere ex
ept for the

(lecquc) �eld 
ontent (Q(1)†
lequ and Q(3)†

lequ), where we want to retain 
olour index 
ontra
tionswithin the 
urrents. In the three other 
ases ((qucqdc), (qqql) and (dcucucec)), 
onsideringtwo di�erent pairings amounts merely to a di�erent generation index assignment, be
ausetwo �elds of the same type are always present. On
e the �elds are paired into 
urrents, we7There is only one SL(2,C) singlet in (0, 1
2
) ⊗ (0, 1

2
) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0), whi
h shows up in eq. (4.1).8There are only two SL(2,C) singlets in ( 1

2
, 0) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0).� 13 �
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determine all the possible isospin and 
olour index 
ontra
tions. Two possibilities exist inthe (qucqdc) and (qqql) 
ases, while only a single one is present for (dcucucec). They areidenti�ed as Q(1)†
quqd, Q(8)†

quqd, Q(1)
qqq, Q(3)

qqq and Q†
duu.This way we have 
ompleted establishing a basis for all the operators that 
annot bewritten as produ
ts of zero-hyper
harge 
urrents, i.e. 
lasses (L̄R)(R̄L), (L̄R)(L̄R) and

B-violating in table 3. The B-violating ones are identi
al to those in ref. [26℄ where theoriginal 
lassi�
ation of refs. [20, 27℄ was 
orre
ted. It is worth re
alling that Q(3)
qqq vanishesin the �avour-diagonal 
ase thanks to symmetry of all the three (τ Iε) matri
es, and tothe equality ψT1 Cψ2 = ψT2 Cψ1 that follows from the fermion �eld anti
ommutation andantisymmetry of the C matrix.If the �eld 
ontent of a four-fermion operator allows to write it as a produ
t of twozero-hyper
harge 
urrents, we write it like that using the Fierz identity (4.1) if ne
essary.Next, we pass to the standard notation with right-handed SU(2)L singlets, whi
h splits the
onsidered set into 
lasses (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R) in table 3. It remains to
onvin
e oneself that the operators listed there indeed form 
omplete bases for those 
lasses.In the beginning, one should 
onsider all the possible produ
ts of 
urrents that form isospinsinglets or triplets, and 
olour singlets or o
tets. Next, it is possible to eliminate several
ases in the (L̄L)(L̄L) and (R̄R)(R̄R) 
lasses using the relation (4.3) together with

TAαβT
A
κλ =

1

2
δαλδκβ −

1

6
δαβδκλ , (7.3)and the Fierz identity (4.1) or its right-handed 
ounterpart. It is essential to take intoa

ount that all the possible �avour assignments are in
luded in table 3. One of su
hsimpli�
ations has been already shown in eq. (4.2). The remaining ones read

(ūpγµT
Aur)(ūsT

Aγµut)
(7.3)
=

1

2
(ūαp γµu

β
r )(ū

β
s γ

µuαt ) −
1

6
Qprstuu =

1

2
Qptsruu −

1

6
Qprstuu , (7.4)

(d̄pγµT
Adr)(d̄sT

Aγµdt)
(7.3)
=

1

2
(d̄αp γµd

β
r )(d̄

β
s γ

µdαt ) −
1

6
Qprstdd =

1

2
Qptsrdd −

1

6
Qprstdd , (7.5)

(q̄pγµT
Aqr)(q̄sT

Aγµqt)
(7.3)
=

1

2
(q̄αjp γµq

βj
r )(q̄βks γµqαkt ) −

1

6
Q(1)prst
qq

(4.1)
=

1

2
(q̄αjp γµq

αk
t )(q̄βks γµqβjr ) −

1

6
Q(1)prst
qq

(4.3)
=

1

4
Q(3)ptsr
qq +

1

4
Q(1)ptsr
qq −

1

6
Q(1)prst
qq , (7.6)

(q̄pγµT
Aτ Iqr)(q̄sT

Aτ Iγµqt)
(7.3)
=

1

2
(q̄αp γµτ

Iqβr )(q̄βs γ
µτ Iqαt ) −

1

6
Q(3)prst
qq

(4.3)
= (q̄αjp γµq

βk
r )(q̄βks γµqαjt )−

1

2
(q̄αjp γµq

βj
r )(q̄βks γµqαkt )−

1

6
Q(3)prst
qq

(4.1)
= Q(1)ptsr

qq −
1

2
(q̄αjp γµq

αk
t )(q̄βks γµqβjr ) −

1

6
Q(3)prst
qq

(4.3)
= −

1

4
Q(3)ptsr
qq +

3

4
Q(1)ptsr
qq −

1

6
Q(3)prst
qq . (7.7)Establishing the above relations 
ompletes the proof that our four-fermion operator set intable 3 is indeed exhaustive. � 14 �
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8 Con
lusionsA tremendous simpli�
ation of the operator basis by the EOMs 
an be appre
iated by
omparing our table 2 that 
ontains 34 entries with ref. [28℄ where 106 operators involvingbosons are present be
ause no EOM-redu
tion has been applied. Going down from 106 to51 with the help of EOMs in ref. [3℄ has been a partial su

ess. It is really amazing that noauthor of almost 600 papers that quoted ref. [3℄ over 24 years has ever de
ided to rederivethe operator basis from the outset to 
he
k its 
orre
tness. As the 
urrent work shows, theexer
ise has been straightforward enough for an M. S
. thesis [29, 30℄. It has required noextra experien
e with respe
t to what was standard already in the 1980's.From the phenomenologi
al standpoint, it is hard to overestimate the importan
e ofknowing the expli
it form of power-suppressed terms in the SM Lagrangian. Althoughtheir overall number is sizeable, usually very few of them 
ontribute to a given pro
ess.For instan
e, anomalous Wtb 
ouplings that 
an be well tested at the LHC are des
ribedby four operators only (QuW , QdW , Q(3)
ϕq and Qϕud) [12, 13, 31℄. Given 14 operators inthe dimension-four Lagrangian (2.1), it is a
tually quite surprising that no more than 59operators arise at the dimension-six level.It is interesting to note that if the underlying beyond-SM model is a weakly 
oupled(perturbative) gauge theory, operators 
ontaining �eld-strength tensors in table 2 
annot betree-level generated [23℄. In 
onsequen
e, their Wilson 
oe�
ients Ck are typi
ally O

(
1

16π2

).Thus, so long as we are interested in operators with O(1) 
oe�
ients only, as little as 14entries of table 2 remain relevant. Investigations involving those operators 
an be found,e.g., in refs. [24, 25, 32℄.Note added. While this arti
le was being 
ompleted, a new paper [33℄ on four-fermionoperator 
lassi�
ation appeared on the arXiv. The number of independent B-
onserving op-erators found there is the same as in our table 3. The key point are the identities (7.4)�(7.7)that have not remained unnoti
ed [34℄, but we are not aware of mentioning them in theliterature previously in the 
ontext of 
orre
ting ref. [3℄.A
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