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1 Introduction

In this paper we investigate further the deformed T-dual (DTD) supercoset sigma mod-

els introduced in [1], and we find results that are of interest also when considering the

undeformed case, i.e. when applying just non-abelian T-duality (NATD).

The construction of DTD models is equivalent to applying NATD on a centrally ex-

tended subalgebra as first suggested in [2].1 The models are constructed by picking a

subalgebra of the (super)isometry algebra g̃ ⊂ g — the canonical example is the AdS5×S5

superstring where g = psu(2, 2|4) — and a 2-cocycle, i.e. an anti-symmetric linear map

ω : g̃⊗ g̃→ R satisfying

ω(X, [Y, Z]) + ω(Z, [X,Y ]) + ω(Y, [Z,X]) = 0 , ∀X,Y, Z ∈ g̃ . (1.1)

1The first hint of the relation of YB models to NATD appeared in [3] for the case of Jordanian defor-

mations.
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Together with an element of the corresponding group g̃ ∈ G̃, the 2-cocycle defines a 2-form

B = ω(g̃−1dg̃, g̃−1dg̃) which is closed, i.e. dB = 0, thanks to the 2-cocycle condition. The

idea behind the construction is to add this topological term to the supercoset sigma model

Lagrangian and then perform NATD on G̃. If ζB is added to the Lagrangian, with ζ

a parameter, the resulting model can be thought of as a deformation of the non-abelian

T-dual of the original model with deformation parameter ζ. The classical integrability of

the original sigma model is preserved by the deformation, since both adding a topological

term and performing NATD preserve integrability. We refer to [1] for more details on how

this procedure relates to the construction of [2]. Let us remark that DTD models may

be constructed starting from a generic σ-model, for example the principal chiral model as

in [1], and the starting model does not have to be (classically) integrable. In this paper we

will only consider the supercoset case.

It was proven in [1] that the so-called Yang-Baxter (YB) sigma models [4–7], defined

by an R-matrix solving the classical Yang-Baxter equation (CYBE), are equivalent to DTD

models with invertible ω. This relation was first conjectured and checked for many examples

— in the language of T-duality on a centrally extended subalgebra — in [2]. See also [8] for

a more detailed discussion of some of the examples. In [1] we used the fact that when ω is

invertible its inverse R = ω−1 solves the CYBE, and therefore defines a corresponding YB

model; by means of a field redefinition and relating the deformation parameters as η = ζ−1

we could prove the equivalence of the two sigma model actions [1].

Note that simply by setting the deformation parameter to zero, DTD models include

all non-abelian and abelian T-duals of the original supercoset model, including fermionic

T-dualities. Therefore all the statements we prove for DTD models apply also to (non-

abelian) T-duals of supercoset models. They are also easily seen to describe all so-called

TsT-transformations of the underlying supercoset model. In fact we will argue here that the

class of DTD models is closed under the action of NATD, as well as certain deformations,

meaning that applying these operations yields a new DTD model. They therefore represent

a very broad class of integrable string sigma models.

It was shown in [1] that these models are invariant under kappa symmetry, which

is needed to interpret them as Green-Schwarz superstrings. From the results of [9] it

follows that their target spaces must solve the generalised supergravity equations of [9, 10]

that ensure the one-loop scale invariance of the string sigma model. To have a fully

consistent superstring, however, we must require the stronger condition of Weyl invariance,

which implies that the target space should be a solution of the more stringent standard

supergravity equations. Here we show that Weyl invariance of the DTD model is equivalent

to the Lie algebra g̃ being unimodular, i.e. its structure constants should satisfy f jij = 0. In

fact, this condition is precisely the one found in [11, 12] when analysing the Weyl invariance

of bosonic sigma models under NATD by path integral considerations. The presence of ω

and the deformation does not modify the supergravity condition. When ω is invertible the

condition is also equivalent to unimodularity of the R-matrix R = ω−1, as defined in [13],

which was shown there to be the condition for Weyl invariance of YB models. The fact

that these conditions are the same was in fact an important hint that the latter should

have an interpretation involving NATD [2].
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Here we give the detailed proof of kappa symmetry for DTD models and extract the

target space superfields from components of the torsion as was done for η (i.e. YB) and

λ models in [13]. In particular, the RR fields and dilaton are difficult to extract by other

means but we find that they are given by the simple expressions

e−2φ = sdet′Õ , Sα1β2 = −8i[Adh(1 + 4Ad−1
f Õ

−TAdf )]α1
γ1K̂γ1β2 , (1.2)

with Õ defined in (2.4) and S defined in (5.2) — for definitions of the remaining quantities

see sections 2 and 5. A by-product of these expressions is a formula for the transformation

of RR fields under NATD for the case of supercosets. As we show in section 5 it agrees,

for bosonic T-dualities, with the formula conjectured in [14], see also [15], but our formula

is valid also when doing fermionic T-dualities.

An advantage of the formulation of DTD models is that many statements about the

sigma model boil down to simple algebraic statements about the Lie algebra g̃. One

example is the Weyl invariance condition already mentioned, while another concerns their

transformation under NATD — possibly including additional deformation. The advantages

are clear also when discussing the isometries of these models. We show that they fall into

two classes; in fact, besides the standard ones, i.e. the unbroken part of the G isometries,

there are also certain (abelian) shift isometries. We prove that T-dualising on either type of

isometry we get back a DTD model; in particular, T-dualising on the first type of isometries

is equivalent to the simple operation of enlarging g̃ by the corresponding generators, while

T-dualising on the shift isometries removes generators from g̃. The latter operation can

be used to prove, in this context, that solutions of the generalised supergravity equations

are (formally) T-dual to solutions of the standard supergravity equations [10]. For more

general NATD, where one applies T-duality on both types of isometries at the same time, we

propose that the resulting model is still obtained in a similar way, namely simply by adding

to g̃ the isometry generators that lie outside of it and removing from it the generators that

are inside. We show that this conjecture is indeed consistent, i.e. the resulting model is a

well-defined DTD model, which turns out to be quite non-trivial. As already mentioned

this suggests that the class of DTD models is closed under (bosonic and fermionic) NATD,

including also the deformations considered here.

It was suggested in [1] that it might be possible to think of all DTD models as non-

abelian T-duals of YB models. Here we show that this is in fact not true by providing an

example of a DTD model which cannot be obtained from a YB model by NATD.

The outline of the paper is as follows. In section 2 we introduce the DTD models based

on supercosets, discuss their gauge invariances and the equivalence to YB models when ω

is invertible. Section 3 describes the two classes of global symmetries, or isometries, of

these models. We also address the question of what happens if one performs NATD and

deformation of a DTD model and argue that this gives a new DTD model, proving this in

simpler cases. Models which cannot be obtained by NATD of YB models are also discussed.

In section 4 we demonstrate the kappa symmetry of DTD models and write the DTD model

as a Green-Schwarz superstring. Given these results it is then straightforward to derive the

target space fields of the DTD model from components of the superspace torsion, which we
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do in section 5. This includes a derivation of the Weyl-invariance condition for these models.

In section 6 we work out the supergravity background for two examples of DTD models.

The first is equivalent to a well known TsT-background but is useful to demonstrate the

procedure. The second example is one of the new examples which cannot be obtained

from a YB model by NATD. We finish with some conclusions and open problems. Three

appendices contain some useful algebraic identities, a derivation of the DTD model action

and a proof of integrability.

2 The deformed T-dual models

As described in the introduction the deformed T-dual (DTD) models are constructed as

follows. We start with a supercoset sigma model, e.g. the AdS5 × S5 superstring [16] or

one of the other examples in [17, 18]. We single out a subalgebra g̃ ⊂ g of the (Z4-graded)

superisometry algebra and write the group element as g = g̃f with g̃ ∈ G̃ and f ∈ G. This

parametrization is of course redundant and introduces a corresponding G̃ gauge symmetry

g̃ → g̃h̃−1 and f → h̃f on which we will comment below. The second ingredient, which is

responsible for the deformation, is a Lie algebra 2-cocycle ω on g̃ satisfying (1.1). We add

to the original supercoset sigma model action the term

Sω =
T

4

∫
Σ
ζω(g̃−1dg̃, g̃−1dg̃) , (2.1)

where ζ is a parameter introduced to keep track of the deformation — if there exist many 2-

cocycles we could introduce a parameter for each.2 As explained already, this is equivalent

to adding a B-field to the action, which is closed by virtue of the 2-cocycle condition.

This term is therefore topological and has no effect on local properties of the theory —

issues with boundary conditions are more subtle and will not be considered here. The final

step is to perform NATD on g̃. This is done in the usual way by gauging the global g̃

symmetry and integrating out the gauge field. This procedure guarantees that properties

like integrability are preserved, see appendix C for an explicit proof. However, since T-

duality is a non-local transformation of the fields of the sigma model, ω will now affect

local properties of the deformed model.

If ω is a coboundary, meaning that ω(X,Y ) = f([X,Y ]) for some function f : g̃→ R,

the B-field is exact; this is equivalent to no deformation at all since B is pure gauge —

alternatively a field redefinition can remove the ζ dependent contributions in the deformed

model. Therefore non-trivial deformations are classified by the second (Lie algebra) co-

homology group H2(g̃). The same group also classifies non-trivial central extensions of g̃,

consistent with the interpretation of these models as arising from NATD on a centrally

extended subalgebra of the isometry algebra [2].

Performing the above procedure one obtains the DTD supercoset model action

S = −T
2

∫
d2σ

γij − εij

2
Str
(
Jid̂fJj + (∂iν − d̂Tf Ji)Õ−1(∂jν + d̂fJj)

)
, γij =

√
−hhij ,

(2.2)

2If ω has mixed Grassmann even-odd components the corresponding deformation parameter ζ would be

fermionic. Since the interpretation of such a fermionic deformation is not so clear we will generally assume

that ω has only even-even and odd-odd components and that ζ is real.
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and we refer to appendix B for the details of its derivation. Here J = dff−1 encodes the

degrees of freedom in f , while ν ∈ g̃∗ denotes the dualised degrees of freedom coming from

g̃. We have further defined

d̂f = Adf d̂Ad−1
f , d̂ = P (1) + 2P (2) − P (3) , d̂T = −P (1) + 2P (2) + P (3) , (2.3)

where P (i) project onto the corresponding Z4-graded component of g =
∑3

i=0 g
(i) and Õ−1

is the inverse3 of the linear operator Õ : g̃→ g̃∗

Õ = P̃ T (d̂f − adν − ζω)P̃ . (2.4)

Given a basis {Ti} of g̃ and using the fact that g has a non-degenerate metric given by the

supertrace, we define the Lie algebra g̃∗ ⊂ g dual to g̃ by taking as dual basis {T i}, where

Str(T jTi) = δji . Then we have P̃ and P̃ T which are projectors onto g̃ and g̃∗ respectively.

At the same time we are thinking of the 2-cocycle ω as a map ω : g̃ → g̃∗ so that the

cocycle condition takes the form

ω[x, y] = P̃ T ([ωx, y] + [x, ωy]) , ∀x, y ∈ g̃ . (2.5)

Therefore, modulo the projector on the right-hand-side, ω acts as a derivation with respect

to the Lie bracket, similarly to adν which is a derivation thanks to the Jacobi identity.

In general one needs to make sure that the inverse Õ−1 exists in order to be able to

define the model, and this puts some restrictions on the subalgebra g̃. By expanding in the

parameter ζ we can think of the DTD model as a deformation of the non-abelian T-dual

of the original model, since taking ζ = 0 reduces to ordinary NATD. Therefore, at least

for a small deformation parameter the invertibility is guaranteed if one can apply NATD

with respect to g̃. There may also be cases in which NATD cannot be implemented but the

operator is invertible for finite values of ζ, i.e. the cocycle removes the 0-eigenvalues of Õ.

We now want to turn to the discussion of the gauge invariances of the action (2.2) of

DTD models. Besides the fermionic kappa symmetry, which will be discussed separately

in section 4, the action has two types of gauge invariances:

1. Local Lorentz invariance:

f → fh , h ∈ H = G(0) . (2.6)

2. Local G̃ invariance:

f → h̃f , ν → P̃ T
(

Adh̃ν + ζ
1− eadx

adx
ωx

)
, h̃ = ex ∈ G̃ ⊂ G . (2.7)

The former is obvious and, as in the case of supercosets, it boils down to the fact that

P (0) is missing in d̂. As mentioned at the beginning of this section, the latter comes about

from the decomposition of the original group element as g = g̃f where multiplication of g̃

from the right by an element of G̃ can be compensated for by multiplying f on the left by

3Notice that ÕÕ−1 = P̃T and Õ−1Õ = P̃ rather than 1.
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the inverse group element. To verify that the action is indeed invariant under the second

type of symmetry we use the identities (A.7) and (A.8) that say how the transformations

of Õ and dν can be rewritten. Then the difference of the actions after and before the

transformation (2.7) is proportional to∫
d2σεijStr

(
2∂iνh̃

−1∂j h̃+ h̃−1∂ih̃(adν + ζω)(h̃−1∂j h̃)
)
. (2.8)

The terms involving ν combine to a total derivative, and the one with ω is closed as already

remarked, meaning that it is also a total derivative at least locally. This establishes the

invariance of the action under the local transformation (2.7). This gauge invariance is

obviously present also in the case of NATD, where the shift of ν is absent since ζ = 0.

The classical integrability of DTD models may be argued by the fact that they are

obtained by adding a closed B-field and then applying NATD to the action of a supercoset,

since neither of these operations breaks classical integrability, see e.g. [19] for the argument

in the case of NATD. In appendix C we give a direct proof of the classical integrability of

these models by showing that, similarly to what was shown in the case of DTD of PCM

in [1], the on-shell equations can be recast into the flatness condition

εij(∂iLj + LiLj) = 0 , (2.9)

for the Lax connection

Li = A
(0)
i + zA

(1)
i +

1

2

(
z2 + z−2

)
A

(2)
i +

1

2
γijε

jk
(
z−2 − z2

)
A

(2)
i + z−1A

(3)
i , (2.10)

where z is the spectral parameter, Ai = Ai+ +Ai− and Ai± ≡ Ad−1
f (Ãi±+J i±), with Ãi± given

in (B.5). See appendix B for our notation. Notice that the presence of the Lax connection

still implies that we have conserved charges corresponding to the full original g symmetry.

However, in contrast to the case of supercosets, for DTD models one cannot argue any

more that they are all local, see appendix C.

2.1 Relation to Yang-Baxter sigma models

Given a DTD model with a cocycle ω which is non-degenerate on g̃, we can show that the

action can be recast into the one of a YB model via a field redefinition. This result was

first presented in [1] and we collect here more details of the proof.

Given a non-degenerate ω we denote its inverse by R = ω−1. From the cocycle condi-

tion for ω it follows that R solves the CYBE on g̃∗. Conversely any solution of the CYBE

on g defines an invertible 2-cocycle on a subalgebra4 g̃, which demonstrates the one-to-one

correspondence between DTD models with invertible ω and YB sigma models based on an

R-matrix solving the CYBE. The field redefinition that relates the two models is

ν = ζP̃ T
1−Adḡ

adRx
ωRx , ḡ = eRx ∈ G̃ , (2.11)

4This follows from the fact that the subspace on which R is invertible must be a subalgebra due to the

CYBE [20]. Since ω = R−1 is a 2-cocycle on this subalgebra the subalgebra is quasi-Frobenius. Note that

these results are true also for non-semisimple algebras and superalgebras.

– 6 –
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with x ∈ g̃∗ so that Rx ∈ g̃. In fact, using the identities in (A.5) and (A.4) we find

dν = P̃ T (adν + ζω)(ḡ−1dḡ) , P̃ T adνP̃ = ζP̃ TAd−1
ḡ ωAdḡP̃ − ζω , (2.12)

and the action (2.2) becomes, after a bit of algebra,

S = −T
2

∫
d2σ

γij− εij

2
Str

(
g−1∂igd̂

(
1− Rgd̂

Rgd̂− ζ

)
g−1∂jg+ ḡ−1∂iḡ(adν + ζω)ḡ−1∂j ḡ

)
,

(2.13)

where we have defined g = ḡf and Rg = Ad−1
g RAdg. The last term vanishes up to a total

derivative and we are left precisely with the action of the YB sigma model [6, 7]

S = −T
2

∫
d2σ

γij − εij

2
Str
(
g−1∂ig d̂ (1− ηRgd̂)−1(g−1∂jg)

)
, (2.14)

with deformation parameter η = ζ−1. In the special case when g̃ is abelian the DTD model

is equivalent to a TsT transformation of the original supercoset sigma model, in agreement

with the YB side for abelian R [2, 21].

Let us mention that one can also construct a YB model for an R-matrix solving the

modified CYBE, whose action takes essentially the same form as the above one [6]; however,

in that case it is not clear how to define the operator corresponding to ω, and the relation

to DTD models remains unclear. This case should be related by Poisson-Lie T-duality to

the λ-model of [19, 22].

We will argue in the next section that all (bosonic and fermionic) non-abelian T-duals

of YB sigma models can be described as DTD models with certain degenerate ω. The

converse is not true, in fact it is possible to identify DTD models which are not related to

YB models by NATD; we refer to section 3.2 for an example and a discussion on this.

3 Global symmetries

We will now describe the global symmetries, i.e. superisometries, of DTD models. Setting

ζ = 0 and ignoring the presence of ω this discussion reduces to what one would have in

the case of NATD. In order to identify the global symmetries of these models we study the

global transformations that leave the action invariant, modulo gauge transformations with

a global parameter, since the latter would not produce any Noether charge. We find two

types of global symmetries:5

1. Unbroken global G-transformations :

f → g0f , ν → P̃ TAdg0ν , g0 ∈ G and g0 /∈ G̃,

such that (1− P̃ )Adg0P̃ = 0 , P̃ TAd−1
g0
ωAdg0P̃ = ω .

(3.1)

The requirement g0 /∈ G̃ comes from the fact that for g0 ∈ G̃ a combination of this

isometry and the shift isometries described below is equivalent to a global G̃ gauge

transformation.
5The two sets of transformations do not commute and their commutator is a transformation of the

second type.
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2. Global shifts of ν:

ν → ν + λ , λ ∈ g̃∗ such that P̃ T adλP̃ = 0 . (3.2)

Note that the set of such λ’s will in general not close into a subalgebra, although the

corresponding isometry transformations of course commute since they are just shifts

of ν.

In the case when ω is invertible, which is equivalent to a YB sigma model with R = ω−1,

it is not hard to show that these isometries coincide with the ones of the YB model which

are normally written as t ∈ g such that Radt = adtR.

Having global symmetries at our disposal means that we can gauge them and im-

plement further NATD. Before discussing the details of this in the next subsection, we

would like to exploit this possibility to make a comment regarding Weyl invariance of DTD

models. As we prove in section 5, the target spaces of DTD models solve the standard

supergravity equations if and only if the Lie algebra g̃ is unimodular, i.e. fab
b = 0. The

standard supergravity equations are equivalent to the Weyl invariance at one-loop for the

sigma-model, as opposed to just the scale invariance implied by the generalised supergrav-

ity equations [9, 10]. In the non-unimodular case fab
b 6= 0, and this defines a distinguished

element of g̃; we can rotate the basis so that this element is T1, i.e. f1b
b 6= 0 and fab

b = 0

for a 6= 1. The important observation is that the dual of the generator T1 corresponds to

an isometry. In fact, taking the trace of the Jacobi identity we find fab
1 = 0 and therefore

Str(TbadT 1Ta) = fab
1 = 0 , (3.3)

where T a ∈ g̃∗. This confirms that T 1 satisfies (3.2) and can be used to generate a shift

isometry. Using the results of the next subsection, applying T-duality along the isometry

direction T 1 one obtains a DTD model where T1 is removed from g̃, so that the subalgebra

that is left is now unimodular. Therefore, to each DTD model which is not Weyl invariant

we can associate a Weyl invariant one obtained by (formal6) T-duality along a particular

isometry direction. Obviously this possibility fails if there are obstructions to carrying out

the T-duality, e.g. if the isometry in question is a null isometry. More generally, solutions

of the generalised supergravity equations are formally T-dual to solutions of the standard

supergravity equations [9, 10], and the above argument shows this relation in the specific

context of DTD models.

3.1 DTD of DTD models

It is interesting to start from a DTD model as in (2.2) and further perform NATD, possibly

including a deformation by a cocycle. We do this on the one hand to show that the

application of these transformations on the sigma model does not require to start from

a supercoset formulation, on the other hand to show that after these transformations we

6Our discussion of isometries is at the level of the classical sigma model action, where the dilaton only

appears in the combination F = eφF — together with RR fields — and in derivatives ∂φ. When performing

the T-duality we ignore the Fradkin-Tseytlin term, which will break the isometry referred to here.

– 8 –
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obtain a new DTD model. We will also use these results to argue that the example of the

next subsection is not related to a YB model by NATD.

We can apply NATD by gauging the global isometries discussed above and dualising

the corresponding directions. Obviously, the choice of the type of isometries that we want

to dualise will produce qualitative differences. In fact, if we consider isometries of the first

type (3.1) and dualise a subalgebra ĝ, we essentially enlarge the subalgebra g̃. If instead we

consider isometries of the shift type (3.2) and dualise a subspace V̄ ∗ ⊂ g̃∗, then we remove

generators from the subalgebra g̃. The combination of isometry transformations that we

consider here is therefore

f = ĝf ′ , ν = P̃ T (Adĝν
′ + λ̄) , with ĝ ∈ Ĝ , λ̄ ∈ V̄ ∗ . (3.4)

After gauging them in the usual way we obtain a sigma model action which is just the one

in (2.2), where we replace7

f → f ′ , J → J ′ + Â , dν → dν̌ + P̌ T [Â, ν̌] + ā , (3.5)

where Â ∈ ĝ is the non-abelian gauge field corresponding to the Ĝ isometries and ā ∈ V̄ ∗

is the abelian gauge field corresponding to the shift isometries. We add to the action

the terms8

− T
∫
d2σ Str(ν̂F̂+− + ρ̄f̄+− − ζ̂Â+ω̂Â−) , (3.6)

where F̂+− = ∂+Â− − ∂−Â+ + [Â+, Â−] and f̄+− = ∂+ā− − ∂−ā+, ν̂ and ρ̄ are two new

Lagrange multipliers, and ω̂ is a cocycle on ĝ. Integrating out ν̂ and ρ̄ one obtains the

action from which we started; to apply NATD we integrate out Â and ā instead.

We will now describe what happens when we dualise either ĝ or V̄ ∗, and then use it

to argue what should happen in the most general case where one dualises on both at the

same time.9

Dualising type 1 isometries. Consider first isometries of type 1 above, where we have

P̂ + P̌ = P̃ and P̂ P̌ = 0. After a bit of algebra and dropping primes, we find that the new

action takes the form S = −T
∫
d2σStr(J+d̂fJ− + (∂+ν − d̂Tf J+)Q(∂−ν + d̂fJ−)) where

ν = ν̌ + ν̂ and Q is an operator acting on g̃ = ǧ⊕ ĝ which can be written in a 2× 2 block

form as

Q =

(
Ǒ−1 + Ǒ−1(d̂f − adν̌)U−1(d̂f − adν̌)Ǒ−1 −Ǒ−1(d̂f − adν̌)U−1

−U−1(d̂f − adν̌)Ǒ−1 U−1

)
, (3.7)

7We will now use the notation ν̌ ∈ ǧ for the field and the subalgebra of the DTD model from which

we start. Similarly, we will denote the corresponding operators as P̌ , Ǒ, etc. We do this because we want

to reserve the usual notation for the DTD model that is obtained at the end, after applying the further

deformation of NATD.
8For the sake of the discussion here we fix conformal gauge γ+− = γ−+ = ε−+ = −ε+− = 2 where

σ± = τ ± σ. In principle it is also possible to add a deformation for the second type of isometry by adding

a term āω̄′ā, but we will not consider this possibility further here.
9In the rest of this section we absorb the parameter ζ into ω to simplify the expressions.
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where10 U = Ô − P̂ T (d̂f − adν̌)Ǒ−1(d̂f − adν̌)P̂ . It is straightforward to check that if we

take ω = ω̌ + ω̂ and define Õ as in (2.4), then its decomposition in block form is

Õ =

(
Ǒ P̌ T (d̂f − adν̌)P̂

P̂ T (d̂f − adν̌)P̌ Ô

)
, (3.8)

and that Q = Õ−1. Therefore performing DTD by exploiting the unbroken isometries of

the first type is equivalent to the simple operation of enlarging the dualised subalgebra

as g̃ = ǧ ⊕ ĝ, which is a Lie algebra due to the isometry condition [ĝ, ǧ] ⊂ ǧ. As for the

deformation, we are just adding new contributions, and ω = ω̌ + ω̂ is a 2-cocycle on g̃ due

to the isometry conditions in (3.1).

Dualising type 2 isometries. For isometries of type 2 we have P̄ T that projects on

the space V̄ ∗, so that P̄ P̌ = P̌ P̄ = P̄ and P̃ = P̌ − P̄ . When integrating out ā± we get

equations where P̄ Ǒ−1 appears, so that it is convenient to use the block decomposition on

the space g̃⊕ V̄

Ǒ−1 ≡

(
Õ P̃ T (d̂f − adν̃ − ω̌)P̄

P̄ T (d̂f − adν̃ − ω̌)P̃ P̄ T (d̂f − adν̃ − ω̌)P̄

)−1

(3.9)

=

(
Õ−1 + Õ−1(d̂f − adν̃ − ω̌)U−1(d̂f − adν̃ − ω̌)Õ−1 −Õ−1(d̂f − adν̃ − ω̌)U−1

−U−1(d̂f − adν̃ − ω̌)Õ−1 U−1

)
,

where U = P̄ T (d̂f − adν̃ − ω̌)P̄ − P̄ T (d̂f − adν̃ − ω̌)Õ−1(d̂f − adν̃ − ω̌)P̄ .

Note that g̃ = {x ∈ ǧ | Str(xλ) = 0 , ∀λ ∈ V̄ ∗} is indeed a subalgebra since for x, y ∈ g̃

we have Str([x, y]λ) = −Str(xadλy) = 0 as a consequence of (3.2). In fact for x, y ∈ ǧ we

have in the same way [x, y] ∈ g̃. This means in particular that if V̄ closes into a subalgebra

it must be abelian. Clearly ω̌ reduces to a 2-cocycle ω̃ = P̃ T ω̌P̃ on g̃.

After some algebra and dropping a total derivative dνdρ̄-term, the dualised action

becomes

−T
∫
d2σStr

(
(J+ + ∂+ρ̄)d̂f (J− + ∂−ρ̄) + (∂+ν̃ − d̂Tf J+)Õ−1(∂−ν̃ + d̂fJ−)

+ (∂+ν̃ − d̂Tf J+)Õ−1(d̂f − adν̃ − ω̌)∂−ρ̄− ∂+ρ̄(d̂f − adν̃ − ω̌)Õ−1(∂−ν̃ + d̂fJ−)

− ∂+ρ̄(d̂f − adν̃ − ω̌)Õ−1(d̂f − adν̃ − ω̌)∂−ρ̄− ∂+ρ̄(adν̃ + ω̌)∂−ρ̄
)
. (3.10)

As expected ν̄ = ν̌−ν̃ has dropped out, since we have dualised the corresponding directions.

Finally ρ̄ can be removed by the field redefinition

f → h̄f , ν̃ → P̃ T
(

Adh̄ν +
1−Adh̄

adρ̄
ω̌ρ̄

)
, h̄ = e−ρ̄ , (3.11)

which resembles a G̃ gauge transformation except for the fact that h̄ /∈ G̃. To check that

we match with the DTD action in (2.2) we use the fact that under the above redefinition

10The operators Ǒ, Ô are obtained from Õ by dressing ν, ω and the projectors with checks or hats.
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Õ → P̌ TAdh̄ÕAd−1
h̄
P̌ which follows from11

P̌ T adν̃P̌ → P̌ TAdh̄P̌
T adνP̌Ad−1

h̄
P̌ + P̌ TAdh̄ω̌Ad−1

h̄
P̌ − ω̌ ,

dν̃ → P̌ TAdh̄(dν − adν(h̄−1dh̄)− ω̌(h̄−1dh̄)) .
(3.12)

The calculations are simple when V̄ is a (abelian) subalgebra since in that case h̄−1dh̄ =

−Ad−1
h̄
dρ̄ and the last dρ̄dρ̄ term vanishes up to a total derivative. When V̄ is not a

subalgebra it is clear that it must still work since these are abelian isometries and we can

just T-dualise one at a time. It is nevertheless instructive to show this explicitly. To do

this we use the fact that h̄−1dh̄+ Ad−1
h̄
dρ̄ is in g̃ since it involves commutators of elements

from V̄ . This simplifies the left-over terms to
∫
dσ2εijStr(h̄−1∂ih̄ ω̌(h̄−1∂j h̄)) which indeed

is a total derivative term and can be dropped. As anticipated, we get that T-dualising on

the shift isometries is equivalent to shrinking g̃ by removing the generators in V̄ .

Dualising type 1 and 2 isometries. We have seen that dualising on the isometries

outside of g̃ has the effect of adding the corresponding generators to g̃. Similarly dualis-

ing on isometries inside g̃ effectively removes the corresponding generators. The natural

conjecture is then that dualising on both types of isometries at the same time again just

adds/removes the generators outside/inside g̃ to give the g̃ of the resulting model.

To be more specific, start from a DTD model with a cocycle on the subalgebra12 ǧ and

imagine the most general NATD of this DTD model where we dualise isometries ti /∈ ǧ of

type 1 as in (3.1) and λI ∈ ǧ∗ of type 2 as in (3.2). Our conjecture is that this results in a

new DTD model where now

g̃ = {x = y̌ + aiti , y̌ ∈ ǧ | Str(λI y̌) = 0 , ∀λI such that Str(λI [ti, tj ]) = 0 , ∀ti, tj} . (3.13)

In other words, g̃ is obtained by adding to ǧ all generators ti and by removing all elements

which are dual to λI , except when these are generated in commutators [ti, tj ]. In fact,

we want the last condition on λI because the commutator of two isometries of type 1 can

generate an isometry of type 2, and if we are adding the ti we want to make sure that

they close into an algebra. Here we will not work out explicitly the transformation of the

action under this NATD since this is quite involved, we will rather just check that this

expectation makes sense and such a DTD model is well-defined.

To start, we must assume that the isometries on which we dualise form a subalgebra

of the isometry algebra. This implies the conditions

[ti, tj ] = cij
ktk + čij

K′ ťK′ , ω̌(ťI′) = δII′λI , P̌ T adtiλI = ciI
JλJ , (3.14)

with some coefficients cij
k, čij

k and ciI
J . The generators ťK′ ∈ ǧ appear because, as

already mentioned, the commutators of two ti can generate an element in ǧ. These must

still satisfy the second condition in (3.1) which translates to the second condition above.

11These are proved using (A.4), (A.5) and P̃Adh̄P̌ = Adh̄P̃ , the last being a consequence of [x, y] ∈ g̃ for

any x, y ∈ ǧ.
12Also here we prefer to change notation and call ǧ the original subalgebra, so that g̃ will be used for the

algebra obtained after applying NATD.
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The first consistency check is to show that g̃ defined above indeed forms a subalgebra of

g so that the corresponding DTD model can be defined. Commuting two elements of g̃

we get

[y̌ + aiti, ž + bjtj ] = [y̌, ž]− biadti y̌ + aiadti ž + aibj [ti, tj ] . (3.15)

The isometry conditions in (3.1) indeed imply that the second and third term are in ǧ.

Taking the supertrace with λI satisfying Str(λI [ti, tj ]) = 0 we get

Str([y̌, ž]λI) + biciI
JStr(y̌λJ)− aiciIJStr(žλJ) = −Str(y̌adλI ž) = 0 , (3.16)

where we used the conditions (3.14) and the fact that y̌, ž ∈ g̃ and, in the last step, the

isometry condition (3.2) for λI . This proves that indeed g̃ in (3.13) defines a subalgebra

of g. To define a 2-cocycle on g̃ we take ω = P̃ T ω̌P̃ — we could also add an additional

deformation in the ti directions but we will not do so here— and we find

ω[y̌ + aiti, ž + bjtj ] = P̃ T
(

[ω̌y̌, ž + biti] + [y̌ + aiti, ω̌ž] + aibjω̌[ti, tj ]
)

= P̃ T [ωy̌, ž + biti] + P̃ T [y̌ + aiti, ωž] + aibjP̃
T ω̌[ti, tj ] , (3.17)

where we used the cocycle condition for ω̌, the fact that adti commutes with ω̌ (3.1), and

in the last step we used (A.1). The first two terms are precisely what we want, it remains

to show that the last one vanishes. By the conditions (3.14) this term is proportional to

a combination of λI and therefore the P̃ T projection means that this term vanishes unless

Str([tk, tl]ω̌[ti, tj ]) 6= 0 for some k, l. However

Str([tk, tl]ω̌[ti, tj ]) =
1

2
Str(ω̌[[ti, tj ], [tk, tl]])

=
1

2
Str(P̌ T [ω̌[ti, tj ], [tk, tl]]) +

1

2
Str(P̌ T [[ti, tj ], ω̌[tk, tl]])

=
1

2
čij

IStr(P̌ T adλI [tk, tl])−
1

2
čkl

IStr(P̌ T adλI [ti, tj ]) = 0 , (3.18)

where we used the cocycle condition and the isometry condition in (3.2). Therefore ω is

indeed a 2-cocycle on g̃ and the corresponding DTD model is well-defined.

3.2 DTD models not related to YB models by NATD

Here we want to present an example of a DTD model which is not related to a YB model

by NATD.13 To argue that this is the case we use two important facts concerning the

dualisation of the two types of isometries discussed above. First, when dualising isometries

of type 1, thanks to the condition (3.1) the original ǧ will become an ideal of the larger

algebra g̃ that is obtained by adding the generators ti, i.e. by applying NATD. That means

that starting from a YB model — or, rather, its corresponding DTD model with non-

degenerate ω — NATD on isometries of type 1 will produce a DTD model with a cocycle

non-degenerate on an ideal of g̃. When we include also isometries of type 2 it remains true

13Let us mention that it is possible to find examples where ω — as well as any 2-cocycle in its equivalence

class — is non-degenerate on a space which does not close into an algebra. This corrects a statement in the

first version of [1].
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that what is left of ǧ forms a proper ideal inside g̃, on which, however, ω does not have to

be non-degenerate. We also remark that, since they are realised as linear shifts, isometries

of type 2 are commuting and are therefore still present even after applying abelian T-

duality along them. After the dualisation the corresponding symmetry will be realised as

an isometry of type 1.

Consider the following algebra and corresponding 2-cocycle

g̃ = span{p1, p2, p3, J12} , ω = k3 ∧ J12 , (3.19)

where we refer to [13] for our definitions and conventions on the generators of the conformal

algebra so(2, 4). The above 2-cocycle is defined on a space which is not an ideal of g̃, and

it is clear that adding an exact term to ω cannot change this, since the only terms that

we could add are k1 ∧ J12 and k2 ∧ J12. According to the above discussion, this rules out

the possibility of this example coming from dualising isometries of type 1 of a YB model.

In fact, since there is no proper ideal in g̃ that contains the subspace {p3, J12} where ω

is defined, a combination of isometries of type 1 and type 2 is also ruled out. This leaves

only the possibility that this example is generated by T-dualising isometries of type 2 only.

If it were true that it comes from a YB model by dualising isometries of type 2, these

should be realised here as isometries of type 1 and we would be able to dualise them back

to find a YB model (in DTD form). However, in this example the only isometry of type 1

corresponds to p0, and adding p0 to g̃ does not help in making the cocycle non-degenerate

on the dualised algebra. We therefore conclude that the above example is not related to

a YB model by NATD,14 and we refer to section 6.2 for the corresponding supergravity

background.

The above example may be obtained by dropping one of the two terms in R11 in table

2 of [13], and similar examples coming from dropping a term in other rank 4 R-matrices

of [13] are e.g.

g̃ = span{p1, p2, p3, p0 + J12} , ω = k3 ∧ (k0+ J12) , from R10 .

g̃ = span{p0, p1, p2, J12} , ω = k0 ∧ J12 , from R13 .

g̃ = span{p1, p2, J12, J03} , ω = J12 ∧ J03 , from R14 .

(3.20)

In each case it is easy to see that ω cannot be defined on an ideal in g̃ even if we add

exact terms — in the first case the only terms that we could add are k1 ∧ (k0 + J12) and

k2 ∧ (k0 +J12), in the second and third case they are k1 ∧J12 and k2 ∧J12. In the first case

the only isometry of type 1 corresponds to p0, while in the second and third there is no

isometry of type 1. Note that the second case can be embedded into so(2, 3) and therefore

gives a deformation also of AdS4.

4 Kappa symmetry and Green-Schwarz form

As we will show in a moment the action of DTD models is invariant under kappa symmetry

variations, and this will allow us to put it into the Green-Schwarz form. To show invariance

14It would be interesting to understand whether this or similar examples are related to YB models in

other ways, e.g. contractions.
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under kappa symmetry we need to consider the variation of the action under the fields ν

and f , as well as the worldsheet metric γij . The variation of the action with respect to the

fields is computed in (C.1). To define a kappa symmetry variation we should also say how

δf and δν are expressed in terms of the kappa symmetry parameters κ̃
(j)
i , each of them

being a local Grassmann parameter of grading j. We define Ai± ≡ Ad−1
f (Ãi± + J i±), where

subscripts ± indicate that we act with the worldsheet projectors in (B.3) and Ãi± is given

in (B.5); we take15

d̂T (f−1δκf) = Ad−1
f δκν = −{iκ̃(1)

i , A
(2)i
− }+ {iκ̃(3)

i , A
(2)i
+ } . (4.1)

This relation is fixed by noticing that after we impose it the total variation of the action

with respect to the fields simplifies considerably, and we find

(δf + δν)S = −T
2

∫
d2σ 4 Str

(
A

(2)i
− A

(2)j
− [A

(1)
+i , iκ̃

(1)
j ] +A

(2)i
+ A

(2)j
+ [A

(3)
−i , iκ̃

(3)
j ]
)

= −T
2

∫
d2σ

1

2

[
Str
(
A

(2)i
− A

(2)j
−

)
Str
(
W [A

(1)
+i , iκ̃

(1)
j ]
)

+ Str
(
A

(2)i
+ A

(2)j
+

)
Str
(
W [A

(3)
−i , iκ̃

(3)
j ]
) ]

.

(4.2)

Here we used the property Ai±B
j
± = Aj±B

i
±, which follows from the identity P ij± P

kl
± =

P il±P
kj
± , as well as the identity

A
(2)i
± A

(2)j
± =

1

8
W Str(A

(2)i
± A

(2)j
± ) + cij18 , (4.3)

where cij is an expression which is not interesting for this calculation, and W =

diag(14,−14) is the hypercharge. The above variation does not vanish but it can be com-

pensated by the contribution coming from varying the worldsheet metric. In fact, we first

notice that the contribution of the terms involving the worldsheet metric to the action may

be written as

Sγ = −T
2

∫
d2σγij Str

(
E

(2)
i E

(2)
j

)
, (4.4)

where we have two possible choices for the bosonic vielbein which are related by a local

Lorentz transformation, either E(2) = A
(2)
+ or E(2) = A

(2)
− , where

A+ = Ad−1
f (J + Õ−T (dν − d̂Tf J)) , A− = Ad−1

f (J − Õ−1(dν + d̂fJ)) . (4.5)

The subscript on A± is here used only to distinguish the two fields and should not be

confused with the ± used to denote the worldsheet projections; however, we choose this

notation since projecting on A± with P ij± after reintroducing worldsheet indices we obtain

in fact the Ai± used above.16 We declare the kappa symmetry variation of the worldsheet

metric to be

δκγ
ij = −1

2

[
Str
(
W [A

(1)i
+ , iκ̃

(1)j
+ ]

)
+ Str

(
W [A

(3)i
− , iκ̃

(3)j
− ]

)]
, (4.6)

15We write the kappa symmetry transformation in this way rather than the one in [1] because we want

P (0)Ad−1
f δκν = 0.

16A caveat is that the projections of A± in (4.5) with P ij∓ do not vanish, while P ij∓ A±j = 0. We trust

that this will not create confusion, since the notation has clear advantages and those projections will never

be needed.

– 14 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
4

so that the total variation of the action under kappa symmetry transformations vanishes

(δf + δν + δγ)S = 0. The kappa symmetry transformations for the fields may be also recast

into the form

iδκzE
(2) = 0 , iδκzE

(1) = P ij− {iκ
(1)
i , E

(2)
j } , iδκzE

(3) = P ij+ {iκ
(3)
i , E

(2)
j } , (4.7)

where κ(1) = Adhκ̃
(1) and κ(3) = κ̃(3) and where we made a choice for the bosonic and

fermionic components of the supervielbeins

E(2) = A
(2)
+ = AdhA

(2)
− , E(1) = AdhA

(1)
+ , E(3) = A

(3)
− . (4.8)

The above transformations are the standard ones for kappa symmetry, and the action also

takes the standard Green-Schwarz form

S = −T
2

∫
d2σ γijStr(E

(2)
i E

(2)
j )− T

∫
B , (4.9)

where the B-field is

B =
1

4
Str(J ∧ d̂fJ + (dν − d̂Tf J) ∧ Õ−1(dν + d̂fJ)) . (4.10)

As already noticed, A
(2)
+ and A

(2)
− are related by a local Lorentz transformation, A

(2)
+ =

AdhA
(2)
− for some h ∈ G(0). For later convenience we can also relate other components of

A+ and A− as follows17

A− = MA+ , P (2)M = Ad−1
h P (2) , (4.11)

M = Ad−1
f [1− P̃ − Õ−1ÕT − 4Õ−1AdfP

(2)Ad−1
f (1− P̃ )]Adf

= 1− 4Ad−1
f Õ

−1AdfP
(2) ,

while M−1 is given by the same expression as M but with Õ replaced by its transpose

ÕT = P̃ T (d̂Tf + adν + ζω)P̃ . From this we can derive the useful relation

M−1 − 1 = −(M − 1)Adh . (4.12)

5 Target space superfields

In this section we will derive the form of the target space supergravity superfields for the

DTD model. The calculations are very similar to the ones performed in [13] for the η-

model and λ-model. Once the action and kappa symmetry transformations are written in

Green-Schwarz form as in (4.9) and (4.7), the easiest way to extract the background fields

is by computing the torsion T a = dEa +Eb ∧Ωb
a and Tα = dEα − 1

4(ΓabE)α ∧Ωab where

17As a consequence of this we have for example A
(3)
+ = E(3) − P (3)ME(2).
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Ωab is the spin connection superfield. It was shown in [9] that the constraints on the torsion

implied by kappa symmetry take the form18

T a = − i

2
EγaE ,

TαI =
1

2
EαI Eχ+

1

2
(σ3E)αI Eσ3χ− 1

4
EγaE (γaχ)αI − 1

4
Eγaσ

3E (γaσ3χ)αI

− 1

8
Ea (Eσ3γbc)αIHabc −

1

8
Ea (EγaS)αI +

1

2
EbEa ψαIab , (5.1)

for the type IIB case.19 The target space superfields contained here are the dilatino super-

fields χαI , the gravitino field strengths ψαIab , where I = 1, 2 denotes the two Majorana-Weyl

spinors of type IIB, as well as the NSNS three-form field strength H = dB and “RR field

strengths” encoded in the anti-symmetric 32 × 32 bispinor

S = −iσ2γaFa −
1

3!
σ1γabcFabc −

1

2 · 5!
iσ2γabcdeFabcde . (5.2)

Kappa symmetry implies that the target space is generically only a solution of the gener-

alised type II supergravity equations defined in [9] and first written down, for the bosonic

sector, in [10]. However, when the (Killing) vector

Ka = − i

16
(γaσ3)αIβJ∇αIχβJ (5.3)

vanishes one gets a solution of standard type II supergravity, and a one-loop Weyl invariant

string sigma model. In that case there exists a dilaton superfield φ such that χαI = ∇αIφ
and the RR field strengths are defined in terms of potentials in the standard way F =

eφdC + · · · [23, 24].

Given that the supervielbeins for the DTD model are defined in terms of A± as in (4.8)

we need to compute the exterior derivative of A± defined in (4.5) to find the torsion. With

a bit of work one finds the deformed “Maurer-Cartan” equations20

dA+ =
1

2
{A+, A+} −

1

2
Ad−1

f Õ
−TAdf

(
d̂T {A+, A+} − 2{A+, d̂

TA+}
)
, (5.4)

dA− =
1

2
{A−, A−} −

1

2
Ad−1

f Õ
−1Adf

(
d̂{A−, A−} − 2{A−, d̂A−}

)
, (5.5)

where we have used the identity (A.1) and the fact that, due to the Jacobi identity and the

2-cocycle condition (2.5), both adν and ω effectively act as derivations on the Lie bracket.

Projecting the first equation with P (2) and using (4.8) and (4.11) we get

dE(2) = {A(0)
+ , E(2)}+

1

2
{E(1), E(1)}+

1

2
{E(3), E(3)} − {E(3), P (3)ME(2)}

− P (2)MT {E(2), E(3)}+
1

2
{P (3)ME(2), P (3)ME(2)}

+ P (2)MT {E(2), P (3)ME(2)} − 1

2
P (2)MT {E(2), E(2)} . (5.6)

18This is valid only for a suitable choice of the spin connection, which can however be extracted from the

same equations. We have dropped the ∧’s for readability.
19Essentially identical expressions hold for type IIA, cf. [23].
20We use anti-commutators rather than commutators because the objects that appear are one-forms, and

therefore naturally anti-commute.
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Using A
(0)
+ = 1

2A
ab
+ Jab, E

(2) = EaPa etc. and the algebra in appendix A of [13] this gives the

form for the bosonic torsion T a in (5.1) provided that we identify the spin connection with21

Ωab = (A+)ab + 2i(E2γ[a)βM
β2
b] +

3i

2
EcMα2

[a(γb)αβM
β2
c] +

1

2
Ec(Mab,c− 2Mc[a,b]) . (5.7)

In a similar way, using (4.8) and (5.5) we find that

dE(3) = {A(0)
+ , E(3)}+ {P (0)ME(2), E(3)}

+ Ad−1
h {E

(1) + P (1)AdhME(2), E(2)}+
1

2
P (3)M{E(3), E(3)}

+ 2P (3)Ad−1
f Õ

−1Adf

(
2Ad−1

h {E
(1) + P (1)AdhME(2), E(2)}+Ad−1

h {E
(2), E(2)}

)
,

(5.8)

which leads to the torsion Tα2 taking the form in (5.1) with the background fields given by22

Habc = 3M[ab,c] − 3iMα2
[a(γb)αβM

β2
c] ,

Sα1β2 = − 8i[Adh(1 + 4Ad−1
f Õ

−TAdf )]α1
γ1K̂γ1β2, (5.9)

χ2
α = − i

2
γaαβM

β2
a ,

ψα2
ab = 2[Ad−1

f Õ
−1AdfAd−1

h ]α2
cdK̂abcd +

1

4
[AdhM ]β1

[a(γb]S12)β
α .

Here K̂AB denotes the inverse of the metric defined by the supertrace Str(TATB) = KAB,

see appendix A of [13] for more details on our conventions.

Since the DTD model contains NATD as a special case we obtain as a by-product the

transformation rules for RR fields under NATD — starting from a supercoset model. As

a check we can compare this to the formula conjectured in [14] based on analogy to the

abelian case [25] — consistency of that formula was checked in some particular cases also

in [8]. Setting ζ = 0, which removes the deformation, and restricting to a bosonic g̃, so

that P̃ = P̃ (P (0) + P (2)) = (P (0) + P (2))P̃ , we find23

Sα1β2 = −8i[Adh|θ=0]α1
γ1K̂γ1β2 + fermions , (5.10)

which agrees with the transformations conjectured in [14]. Note that our result generalises

this to the case where also fermionic T-dualities are involved.

Finally we must compute Tα1 to extract the other dilatino superfield χ1. We find

dE(1) = {AdhA
(0)
+ − dhh−1, E(1)}+ Adh{E(2), E(3) − P (3)ME(2)}

+
1

2
P (1)AdhM

−1Ad−1
h {E

(1), E(1)}

+ 2P (1)AdhAd−1
f Õ

−TAdf

(
2{E(2), E(3) − P (3)ME(2)}+ {E(2), E(2)}

)
. (5.11)

21The components of M are defined as MTA = TBM
B
A.

22These expressions have obvious close analogies with the ones found for the η-model in [13].
23Note that (P (0) + P (2))AdfP

(1) = 0+fermions.
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Taking the exterior derivative of the equation A
(2)
+ = AdhA

(2)
− , cf. (4.11), we find the

relation

[AdhA
(0)
+ − dhh−1]ab = Ωab −

1

2
EcHabc + 2i(E1γ[a)α[AdhM ]α1

b], (5.12)

which can be used to show that the torsion again takes the form in (5.1), where the

remaining components of the background fields are24

χ1
α =

i

2
(γa)αβ [AdhM ]β1

a , ψα1
ab = 2[AdhAd−1

f Õ
−TAdf ]α1

cdK̂abcd −
1

4
(S12γ[a)

α
βM

β2
b] .

(5.13)

It remains only to analyse the question of when this is a solution to the standard or the

generalised type II supergravity equations, in other words to identify the conditions under

which Ka defined in (5.3) vanishes. We do this in the next subsection.

5.1 Supergravity condition and dilaton

By analogy with the calculations performed in [13] there is a natural candidate for the

dilaton superfield for the DTD model namely25

e−2φ = sdet′Õ . (5.14)

We will now show that this guess is indeed correct by verifying that its spinor deriva-

tives reproduces the dilatini found above. Using the formula for the supertrace StrM =

K̂ABStr(TAMTB) we find

dφ = − 1

2
Str(dÕÕ−1) = −1

2
K̂ABStr

{
([J, d̂Tf TA]− d̂Tf [J, TA] + [dν, TA])Õ−1TB

}
= − 1

2
K̂ABStr

{(
[J, d̂Tf TA]− d̂Tf [J, TA] + [Adf d̂

TA+, TA]

+ [(adν + ζω)(AdfA+ − J), TA]
)
Õ−1TB

}
=

1

2
K̂ABStr

{
TA
(
d̂[A+,Ad−1

f Õ
−1AdfTB]

+ [d̂TA+,Ad−1
f Õ

−1AdfTB]− [A+, d̂Ad−1
f Õ

−1AdfTB]
)}

+ K̂ABStr
{

[(AdfA+ − J), TA]P̃ TB
}
. (5.15)

If the last term vanishes, then using (4.8), (5.13), (5.9) and (4.11) one may check that the

E(1,3)-terms are indeed equal to

Eα1χ1
α + Eα2χ2

α . (5.16)

Therefore χαI = ∇αIφ which implies that Ka in (5.3) vanishes and we have a solution to

standard type II supergravity. Since (AdfA+ − J) ∈ g̃ can be regarded as an arbitrary

24Just as in [13], one finds a superficially different expression for Habc namely

Habc = 3[AdhM ][ab,c] + 3i[AdhM ]α1
[a(γb)αβ [AdhM ]β1

c] .

However consistency requires this to be the same as the expression in (5.9) and this can also be verified

explicitly similarly to [13].
25The prime on the superdeterminant denotes the fact that we must restrict to the subspace where Õ is

defined, i.e. the subalgebra g̃.
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element of the Lie algebra, the vanishing of the last term in (5.15) is equivalent to fAB
A = 0

for the structure constants of g̃, i.e. g̃ must be unimodular. This condition is therefore

sufficient to get a standard supergravity solution. Following a calculation similar to the

one done in [13], computing Ka in (5.3) and requiring it to vanish one finds that this

condition is also necessary.26

Our results imply that the DTD model gives a one-loop Weyl invariant string sigma

model precisely27 when the subalgebra g̃ is unimodular. This is in fact the same condition

that was found long ago for NATD on bosonic sigma models by path integral considera-

tions [11, 12]. Since the DTD model includes NATD as a special case, the analysis here

coupled with the results of [9, 10], gives an alternative derivation of the Weyl anomaly for

NATD of supercosets.

A nice fact is that we do not have to impose extra conditions on the cocycle ω used

to construct the deformation. When ω is non-degenerate unimodularity of g̃ is equivalent

to unimodularity of R = ω−1 as defined in [13], see the discussion there; this is consistent

with the fact that the YB models are a special case of the DTD models.

6 Some explicit examples

Here we would like to collect some formulas that are useful when deriving the explicit

background for a given DTD model, and then work out two examples in detail. We denote

the generators of g̃ ⊂ g by Ti, i = 1, . . . , N = dim(g̃), and those of the dual g̃∗ by T i. They

satisfy Str(T iTj) = δij . The action of the projectors on a generic element x ∈ g may be

written as

P̃ (x) = Str(T ix)Ti, P̃ T (x) = Str(Tix)T i, (6.1)

where summation of repeated indices is assumed. Given a cocycle ω = 1
2ωijT

i ∧ T j with

ωji = −ωij , its action on an element of the algebra is

ω(x) = ωijT
i Str(T jx), (6.2)

and it must satisfy the cocycle condition, which may be written as

Str
(
Tk(ω[Ti, Tj ]− [Ti, ωTj ] + [Tj , ωTi])

)
= 0, ∀Ti, Tj , Tk ∈ g̃. (6.3)

With the above definitions one may easily construct the operator Õ : g̃ → g̃∗ defined

in (2.4), that can be encoded in an explicit N ×N matrix

Õij = Str(Õ(Ti)Tj), (6.4)

26In very special cases it is possible for Ka to decouple from the remaining generalized supergravity

equations. One then obtains a background solving both the generalised and standard supergravity equations

depending on if Ka is included or not. One such example is the pp-wave solution discussed in appendix B

of [26]. We thank B. Hoare and S. van Tongeren for pointing this out.
27This is modulo possible subtleties with the special cases mentioned in the previous footnote. One should

also note that this condition is true provided one only allows a local (Fradkin-Tseytlin) counter-term. If

one relaxes this condition one can find a non-local counter-term also when Ka is non-zero, since solutions of

the generalised supergravity equations are formally T-dual to solutions of the standard ones; see also [27].

This being said, cases where Ka is null may be subtle and deserve further study.
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so that Õ(Ti) = ÕijT
j . The matrix Õ can be inverted with standard methods and used

to construct the action of the inverse operator as Õ−1(x) = Str(xTi)(Õ
−1)ijTj , so that on

the basis generators Õ−1(T i) = (Õ−1)ijTj . Obviously, when choosing a parametrisation

for the group element f , one should make sure that the corresponding degrees of freedom

cannot be gauged away by applying the local transformations discussed in section 2.

To obtain the background fields we use the results of section 5. The metric reads

as ds2 = ηabEaEb, where the components of the bosonic supervielbein are obtained by

Ea = Str(A+Pa), and the B-field is given by equation (4.10). From the superdeterminant

of the matrix Õ it is also straightforward to compute the (exponential of the) dilaton

eφ = (sdet Õ)−
1
2 . In order to determine the RR fields one first identifies the components of

the matrix Mab = Str((MPa)Pb) and then one constructs the local Lorentz transformation

on spinorial indices

(Adh)βα = exp

[
− 1

4
(logM)abΓ

ab

]
β
α , (6.5)

so that AdhΓaAd−1
h = M b

a Γb, where Γa are 32 × 32 Gamma-matrices.28 From (5.2)

and (5.9) one finds that the expression for RR fields is obtained by solving the equation(
ΓaFa +

1

3!
ΓabcFabc +

1

2 · 5!
ΓabcdeFabcde

)
Π = e−φ [Adh(1 + 4Ad−1

f Õ
−TAdf )](4Γ01234)Π,

(6.6)

where Π = 1
2(1 − Γ11) is a projector29 and (−4Γ01234)Π corresponds to the 5-form flux of

AdS5×S5. In order to find the component Fa1...a2m+1 it is then enough to multiply the above

equation by Γa1...a2m+1 and take the trace. As already explained, when the subalgebra g̃

is bosonic the above result simplifies considerably, and only Adh remains inside square

brackets. After obtaining the components in tangent indices we translate them into form

language using F (2m+1) = 1
(2m+1)!E

a2m+1 ∧ . . . ∧ Ea1Fa1...a2m+1 .

6.1 A TsT example

First we will work out a simple example where we dualise a two-dimensional abelian sub-

algebra of the isometry of the sphere so(6), so that the deformation is equivalent to doing

a TsT there [28–30]. This example was worked out already in [2] for the NSNS sector, and

the RR fields were taken into account in [8] by following the T-duality rules of [14]. Here

we will use the matrix realisation of the psu(2, 2|4) superalgebra used in [13], see also [31].

We take g̃ to be the abelian algebra spanned by two Cartans of so(6), T1 ≡ J68, T2 ≡ J79,

and for the dual generators we may just take T 1 = J68, T
2 = J79. We parametrise the

bosonic fields as30

ν = ϕ̃iT
i, f = fa · exp(ϕP5) exp(−ξJ89) exp(− arcsin rP9), (6.7)

where fa is a coset group element parametrised by fields in AdS5. We take ω = T 1 ∧ T 2

which obviously satisfies the cocycle condition. The matrix corresponding to Õ is very

28Alternatively one can use the 16 × 16 gamma matrices used in the previous section.
29With these conventions the self-duality for the 5-form is F (5) = ∗F (5).
30The group elements parametrised by ϕ, ξ and r coincide with those in (A.1) of [32].
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simple

Õij =

(
2r2 sin2 ξ ζ

−ζ 2r2 cos2 ξ

)
, (6.8)

and it is easily inverted. Following the above discussion we immediately find the fields of

the NSNS sector

ds2 = ds2
a +

r2

ζ2 + r4 sin2(2ξ)
(cos2 ξ dϕ̃2

1 + sin2 ξ dϕ̃2
2) + (1− r2)dϕ2 + r2dξ2 +

dr2

1− r2
,

eφ = (ζ2 + r4 sin2(2ξ))−
1
2 , B =

ζ

2

dϕ̃1 ∧ dϕ̃2

ζ2 + r4 sin2(2ξ)
,

(6.9)

where ds2
a is the metric of AdS5. After computing the matrix Mab and the local Lorentz

transformation31 we get that only F (3) and F (5) are non-vanishing

F (3) = 4r3 sin(2ξ)dϕ ∧ dξ ∧ dr,

F (5) = − 2ζ(1 + ∗)
(
r3 sin(2ξ) dϕ̃1 ∧ dϕ̃2 ∧ dϕ ∧ dξ ∧ dr

ζ2 + r4 sin2(2ξ)

)
.

(6.10)

Since ω is non-degenerate on g̃ we can relate the above background to a YB deformation of

AdS5×S5, see also section 2.1. In this particularly simple example the R-matrix of the YB

model is abelian, and therefore it corresponds just to a TsT transformation on the sphere,

see also [21]. In fact, consider the following TsT transformation on AdS5×S5

ϕ1 → T (ϕ1), ϕ2 → ϕ2 − 2ηT (ϕ1), T (ϕ1)→ ϕ1, (6.11)

which produces the following background32

ds2 = ds2
a +

r2

1 + η2r4 sin2(2ξ)
(cos2 ξ dϕ2

2 + sin2 ξ dϕ2
1) + (1− r2)dϕ2 + r2dξ2 +

dr2

1− r2
,

eφ = (1 + η2r4 sin2(2ξ))−
1
2 , B = −ηr

4 sin2(2ξ)dϕ1 ∧ dϕ2

1 + η2r4 sin2(2ξ)
,

(6.12)

for the NSNS sector and

F (3) = 4ηr3 sin(2ξ)dϕ ∧ dξ ∧ dr,

F (5) = − 2(1 + ∗)
(
r3 sin(2ξ) dϕ1 ∧ dϕ2 ∧ dϕ ∧ dξ ∧ dr

1 + η2r4 sin2(2ξ)

)
,

(6.13)

for the RR sector. To match with the above TsT background we need to implement the

field redefinition (2.11) at the level of the DTD background, which in this case just reduces

to ϕ̃1 = η−1ϕ2, ϕ̃2 = −η−1ϕ1 since g̃ is abelian. We find agreement only if we also use the

gauge freedom for B to subtract the exact term 1
2ηdϕ1 ∧ dϕ2; moreover we also need to

redefine the constant part of the dilaton to reabsorb a factor of η, which then appears in

front of the RR fields.
31For 32× 32 Gamma matrices we find convenient the basis used in [31].
32As a starting point we take the undeformed AdS5×S5 background as written in [31].
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6.2 A new example

Let us now consider the example in (3.19)

g̃ = span{p1, p2, p3, J12} , g̃∗ = span

{
− 1

2
k1, −

1

2
k2, −

1

2
k3, −J12

}
ω = k3 ∧ J12 .

(6.14)

In this case we have just one isometry of type 1 corresponding to p0, and the isome-

tries of type 2 are k3 and J12. Inspired by the parametrisation used in (6.19) of [13] we

parametrise33

ν = ξ̃ J12 + r̃ k1 + x̃3 k3 , f = exp(x0p0) exp(log zD) . (6.15)

The above is a good parametrisation because it is not possible to remove degrees of freedom

by applying gauge transformations. This will be confirmed e.g. by the fact that we get a

non-degenerate metric in target space. We find that the (matrix corresponding to the)

operator Õ is

Õij =


2
z2 0 0 0

0 2
z2 0 2r̃

0 0 2
z2 2ζ

0 −2r̃ −2ζ 0

 , (6.16)

which is clearly invertible. We find the following NSNS sector fields

ds2 =
−(dx0)2 + dz2

z2
+ dr̃2z2 +

dξ̃2

4z2 (ζ2 + r̃2)
+
r̃2z2(dx̃3)2

ζ2 + r̃2
+ ds2

s ,

eφ =

(
16
(
ζ2 + r̃2

)
z4

)− 1
2

, B = − ζdξ̃ ∧ dx̃3

2 (ζ2 + r̃2)
,

(6.17)

where ds2
s is the metric on S5. In the RR sector we have only three-form flux

F (3) = −8(dx0 ∧ dξ̃ ∧ dz)

z5
. (6.18)

According to the discussion in section 2.1 the above background is not related to a YB

model by NATD.

7 Conclusions

We have argued that DTD models based on supercosets represent a large class of integrable

string models which is closed under NATD as well as (certain) deformations. Besides

being a useful tool to generate new integrable supergravity backgrounds it would be very

interesting if these deformations could be understood on the dual field theory side. In

the case when the 2-cocycle is invertible these models are equivalent to YB sigma models,

which have been argued to correspond to non-commutative deformations, e.g. [33, 34],

33Even if present, one could remove k2 in ν by means of a gauge transformation.
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of the field theory [35–37] (see also [38]). This interpretation is consistent with the fact

that TsT transformations are special cases of these models [21, 39] and this includes the

so-called β and γ-deformations which have a known interpretation in N = 4 super Yang-

Mills [28, 29, 40, 41]. Recently a certain limit of the γ-deformation has been used to

construct a simplified integrable scalar field theory [42, 43] and it would be very interesting

to explore similar limits of the more general class of deformations considered here to see

whether one can learn more about the AdS/CFT duality for those cases.

Another important question is how the DTD model relates to the other known de-

formations of the AdS5 × S5 string, i.e. the η-model with R-matrix solving the modified

CYBE [44] and the λ-model [22]. These two deformations are related by Poisson-Lie T-

duality and the fact that the latter is Weyl-invariant [13] while the former is not [10, 31]

is explained by the fact that the obstruction to the duality at the quantum level again

involves the trace of the structure constants [45].34 The fact that NATD is used also in the

construction of the λ-model suggests that there might be a bigger picture relating it to the

DTD construction considered here. In fact this seems to be part of an even bigger picture

of general integrable deformations of sigma models where T-duality and its generalizations

play a central role, see for example the recent paper [46].
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A Useful identities

A useful identity is

P̃ [P̃ Tx, (1− P̃ )y] = 0 , ∀x, y ∈ g (A.1)

which is easily proven by taking the supertrace with an element of g. We will also need

some relations related to the well-known formula for the derivative of the exponential map

dex = ex
1− e−adx

adx
dx . (A.2)

Let x ∈ g̃ and define a similar looking object µ = P̃ T e−xδex, where δ is the derivation

acting as δ(x) = ω(x) on x ∈ g̃. Note that this derivation is compatible with the Lie

bracket due to the 2-cocycle condition (2.5), and following the same computations needed

to prove the identity above, one may show that

µ = P̃ T
1− e−adx

adx
ωx. (A.3)

34We thank A. Tseytlin for this comment.
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Taking y ∈ g̃, from the definition of µ we find P̃ T adµy = P̃ TAd−1
ex δ(Adexy) − δy which

implies

P̃ T adµP̃ = P̃ T e−adxωeadxP̃ − ω. (A.4)

Another useful identity valid for the derivative of µ is

dµ = µe−xdex + δ(e−xdex) + P̃ Tde−xexµ = P̃ T (adµ + ω)(e−xdex) . (A.5)

Now, the identity (A.1) implies that

P̃ T adP̃TAdh̃ν
P̃ = P̃ TAdh̃adνAd−1

h̃
P̃ = P̃ TAdh̃P̃

T adνP̃Ad−1

h̃
P̃ (A.6)

and together with (A.4) it implies that if we redefine ν → P̃ T
(
Adh̃ν + ζµ

)
as in (2.7) then

the operator in (2.4) transforms as

Õ → P̃ TAdh̃ÕAd−1

h̃
P̃ . (A.7)

Moreover, using (A.5) we also find

dν → P̃ TAdh̃(dν − (adν + ζω)(h̃−1dh̃)). (A.8)

B Derivation of the action

To derive the action of DTD models we start from the action of a supercoset sigma model,

see e.g. [47], and we rewrite the group element as g = g̃f , where g̃ ∈ G̃ ⊂ G. We then

gauge the G̃ symmetry and introduce the gauge fields Ãi. If we fix the gauge g̃ = 1 we

essentially achieve g̃−1dg̃ → Ã when comparing to the initial supercoset action. At this

point we add a Lagrange multiplier to impose the flatness of Ãi, plus a ω-dependent term

which deforms the model

S = − T

2

∫
d2σ

[
γij − εij

2
Str
(

(Ãi + Ji)d̂f (Ãj + Jj)
)

− εijStr

(
ν(∂iÃj + ÃiÃj)−

ζ

2
ÃiωÃj

)]
. (B.1)

Instead of integrating out ν we integrate out Ã, so that we obtain the equations of motion

P ij−

(
ÕÃj + ∂jν + d̂fJj

)
+ P ij+

(
ÕT Ãj − ∂jν + d̂Tf Jj

)
= 0, (B.2)

where

P ij± =
γij ± εij

2
, (B.3)

are projectors

P ij+ + P ij− = γij , P il±P
j

±l = P ij± , P il±P
j

∓l = 0. (B.4)

Here we used also γij = εikγklε
lj . We also define V i

± ≡ P
ij
± Vj , and it is useful to remember

P ij±AiBj = Ai∓γijB
j
±. We then solve for Ã±

Ãi− = Õ−1
(
−∂i−ν − d̂fJ i−

)
, Ãi+ = Õ−T

(
+∂i+ν − d̂Tf J i+

)
. (B.5)
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The action on the solutions to the equations of motion is

S = −T
2

∫
d2σ Str

[
J+id̂fJ

i
− + (∂+iν − d̂Tf J+i)Õ−1(∂i−ν + d̂fJ

i
−)
]

= −T
2

∫
d2σ

γij − εij

2
Str
[
Jid̂fJj + (∂iν − d̂Tf Ji)Õ−1(∂jν + d̂fJj)

]
.

(B.6)

C Classical integrability

Here we wish to be more explicit and show that the on-shell equations of DTD models

can be recast into the flatness condition for a Lax connection. The argument follows the

one presented in [1] in the case of DTD of Principal Chiral Models. First we compute the

equations of motion for f and ν, which are obtained by the straightforward variations δfS

and δνS of the action

δfS = +
T

2

∫
d2σ Str

(
f−1δf C

)
,

δνS = −T
2

∫
d2σ Str

(
δν F Ã

)
= −T

2

∫
d2σ Str

(
(Ad−1

f δν)FA
)
,

(C.1)

where we defined

C ≡ ∂+i(d̂A
i
−) + ∂−i(d̂

TAi+) + [A+i, d̂A
i
−] + [A−i, d̂

TAi+],

FA ≡ ∂+iA
i
− − ∂−iAi+ + [A+i, A

i
−] = −εij(∂iAj +AiAj),

(C.2)

and similarly for F Ã. Notice that P (0)C = 0. For convenience we also introduced the

(projections of the) field Ai± ≡ Ad−1
f (Ãi± + J i±), where Ãi± is given in (B.5). On the one

hand, imposing the equations of motion δνS = 0 is enough to get FA = 0. Notice that this

equation is equivalent to imposing separately F Ã = 0 and FJ ≡ ∂+iJ
i
−−∂−iJ i+−[J+i, J

i
−] =

0. On the other hand, the equations of motion δfS = 0 imply that C vanishes only on

a certain subspace of the superalgebra g. In fact, in the special case when the whole

superalgebra is dualised g̃ = g, there is no f for which we can compute the variation of

the action, and we should find an independent argument to claim that the equation C = 0

holds. We will now show that an appropriate (rotated) projection of C by P̃ T indeed

vanishes without appealing to the equations of motion for f . Consider the equations of

motion for Ãi± in (B.2) and let us rewrite them as E i± −M i⊥
± = 0 where

E i+ ≡ +(∂i+ + adÃi+
)ν − d̂Tf (J i+ + Ãi+)− ζωÃi+,

E i− ≡ −(∂i− + adÃi−
)ν − d̂f (J i− + Ãi−) + ζωÃi−.

(C.3)

Since we choose M i⊥
± to take values only in the complement of g̃∗, taking P̃ TE i± = 0 gives

indeed (B.2). Clearly (∂+i+adÃ+i
)(E i−−M i⊥

− )+(∂−i+adÃ−i)(E
i
+−M i⊥

+ ) = 0 is identically

true since it just follows from the above equations, and working out all the terms we find

Adf C = [ν,F Ã] + ζωF Ã − (∂−i + adÃ−i)M
i⊥
+ − (∂+i + adÃ+i

)M i⊥
− . (C.4)
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After projecting with P̃ T all terms with M i⊥
± disappear. The remaining terms on the

right-hand-side of the above equation vanish thanks to the flatness of Ã (F Ã = 0) implied

by the equations of motion for ν. To conclude, we obtain P̃ T (AdfC) = 0 as wanted,

which together with the equations of motion for f is enough to claim C = 0 on the whole

superalgebra.

The on-shell equations FA = 0 and C = 0 formally take the same form as those for a

supercoset, where in that case A is the Maurer-Cartan form, see also [47, 48]. Therefore

one may follow the derivation done in the case of the supercoset, and find that they are

encoded in the flatness condition

εij(∂iLj + LiLj) = 0, (C.5)

for the Lax connection

Li = A
(0)
i + zA

(1)
i +

1

2

(
z2 + z−2

)
A

(2)
i +

1

2
γijε

jk
(
z−2 − z2

)
A

(2)
i + z−1A

(3)
i , (C.6)

where z is the spectral parameter. The existence of a Lax connection implies the presence

of a tower of conserved charges, see e.g. [49] for a review. However, differently from the

case of the supercoset, now fewer of them can be argued to be local. In fact, thanks to the

gauge transformation it is always possible to define

L′i = hLih−1 − ∂ihh−1, (C.7)

so that L′i is also flat. In the case of the supercoset, after noticing that Li(z = 1) =

Ai = g−1∂ig, one may choose h = g so that the new Lax connection vanishes at z = 1

L′i(z = 1) = 0. Expanding around that point one finds

L′i(z = 1 + w) = w g
(
A

(1)
i − 2γijε

jkA
(2)
k −A

(3)
i

)
g−1 +O(w2), (C.8)

so that the flatness condition for L′i at order w implies the conservation ∂iAi = 0 for the

current

Ai = εijg
(
A

(1)
j − 2γjkε

klA
(2)
l −A

(3)
j

)
g−1. (C.9)

This is how in the supercoset case one can argue from the Lax connection that the isometries

corresponding to the superalgebra g correspond to local charges. In the case of DTD models

A is not of the Maurer-Cartan form, and in general it is not possible to find a group element

h for which a gauge-equivalent Lax connection vanishes at z = 1. With the exception of

the isometries discussed in section 3, we therefore expect that the initial symmetries of the

undeformed model are traded for non-local charges.
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