
J
H
E
P
0
9
(
2
0
1
8
)
1
0
6

Published for SISSA by Springer

Received: July 2, 2018

Accepted: August 29, 2018

Published: September 18, 2018

Holographic complexity of Einstein-Maxwell-Dilaton

gravity

Brian Swingleb,c and Yixu Wanga

aMaryland Center for Fundamental Physics, and Department of Physics, University of Maryland,

College Park, MD 20742, U.S.A.
bCondensed Matter Theory Center, Maryland Center for Fundamental Physics,

Joint Center for Quantum Information and Computer Science,

and Department of Physics, University of Maryland,

College Park, MD 20742, U.S.A.
cKavli Institute for Theoretical Physics,

Santa Barbara, CA 93106, U.S.A.

E-mail: bswingle@umd.edu, wangyixu@terpmail.umd.edu

Abstract: We study the holographic complexity of Einstein-Maxwell-Dilaton gravity us-

ing the recently proposed “complexity = volume” and “complexity = action” dualities.

The model we consider has a ground state that is represented in the bulk via a so-called

hyperscaling violating geometry. We calculate the action growth of the Wheeler-DeWitt

patch of the corresponding black hole solution at non-zero temperature and find that, de-

pending on the parameters of the theory, there is a parametric enhancement of the action

growth rate relative to the conformal field theory result. We match this behavior to simple

tensor network models which can capture aspects of hyperscaling violation. We also exhibit

the switchback effect in complexity growth using shockwave geometries and comment on a

subtlety of our action calculations when the metric is discontinuous at a null surface.

Keywords: AdS-CFT Correspondence, Holography and condensed matter physics

(AdS/CMT), Renormalization Group

ArXiv ePrint: 1712.09826

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2018)106

mailto:bswingle@umd.edu
mailto:wangyixu@terpmail.umd.edu
https://arxiv.org/abs/1712.09826
https://doi.org/10.1007/JHEP09(2018)106


J
H
E
P
0
9
(
2
0
1
8
)
1
0
6

Contents

1 Introduction 1

2 Gravity model 3

2.1 Einstein-Maxwell-Dilaton theory 3

2.2 Action of the Wheeler-DeWitt patch 5

2.3 Action growth in the EMD theory 6

2.4 Maximal volume slice and CV duality 7

3 Tensor network model 8

3.1 (d− θ)-dimensional tensor networks embedded in d-dimensions 8

3.2 d-dimensional branching tensor tetwork, s = 2θ fixed point 10

4 Shockwaves and the switchback effect 11

5 Discussion 13

A Rules for calculating the action: null surfaces and joints 14

B Action growth in the EMD theory: calculational details 15

C Action of the shockwave geometry in EMD theory: calculational details 18

C.1 Contribution from the shockwave discontinuity 19

C.2 Contribution of figure 5a 20

C.3 Contribution of figure 5b 21

1 Introduction

The physics of quantum information has played a growing role in our understanding of

the emergence of spacetime and gravity from non-gravitational degrees of freedom in the

context of the AdS/CFT correspondence. Entanglement [1–4], quantum error correcting

codes [5], and even quantum state complexity [6] have all been used to illuminate various

mysterious aspects of the emergent gravitational degrees of freedom. Here we focus on

quantum state complexity and on its conjectured holographic dual [6–9].

Tensor networks have played an important role in these developments by providing a

middle ground between quantum gravity and quantum information where many features

of both sides can be cleanly identified and studied [4, 10–15]. In the context of complexity,

the early discussions more-or-less identified the complexity of the field theory state with

the number of tensors in the minimal tensor network needed to prepare the state (up
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to a constant) [6–8]. More sophisticated definitions are now being explored in various

contexts [16–18].

On the gravity side, complexity has been conjectured to be dual to various geometric

measures, including the volume of a certain maximal slice (“complexity = volume” or

CV) [7] and the action of a certain spacetime region (“complexity = action” or CA) [8, 19].

In particular, in the context of black hole geometries, it has been argued that the growth of

the interior of the black hole is dual to the growth of the complexity of the field theory state

under time evolution [6, 13]. Moreover, using the action prescription it was observed that

at late times a large class of black holes of equal mass have the same action growth rate and

hence are conjectured to have the same complexity growth rate. This led to a conjecture

that black holes complexify as rapidly as possible [8, 20]; however, this proposal is known to

be violated at least at early times [21] and in sufficiently exotic computational setups [8, 22].

Very recently, while this paper was being prepared, some holographic examples showing

late time violations of the proposed bound were exhibited [23, 24]. There is a growing

body of work extending these results to a wider class of gravity theories and exploring

other proposals [25–40].

In this work, we study holographic complexity, meaning state complexity on the field

theory side and its purported duals on the gravity side, in the context of a very broad class

of gravitational theories known as Einstein-Maxwell-Dilaton (EMD) theories [41]. This is a

class of models that have been considered in particular in the AdS/CMT (condensed matter

theory) literature as possible starting points for describing aspects of strongly interacting

physics at finite charge density, e.g., as occurs in the solid state [41–44]. For our purposes,

the main interesting feature of these models is that they are dual to a broader class of

scale invariant (but not conformally invariant) field theories and hence have a more general

tensor network representation [45, 46].

Our results are as follows. Focusing on so-called hyperscaling violating solutions of

the EMD theory [41], we compute the rates of action growth and volume growth for finite

temperature states dual to black holes as a function of the energy and the two scaling

parameters describing the solutions. As we discuss in detail below, the “dynamical expo-

nent” z controls the relative scaling of space and time while the “hyperscaling violation

exponent” θ relates to the effective dimensionality of space. In terms of these parameters,

we find that for z = 1, the previously obtained action growth for conformal field theories

is obtained for all θ. However, for z > 1 we find that the action growth rate is enhanced

by a multiplicative factor,
δI

δt
= 2E

(
1 +

z − 1

d− θ

)
. (1.1)

Thus these black holes violate the conjectured action growth bound even at late times.

We are able to match these results to a simple tensor network model of complexity

growth in hyperscaling violating field theories. We also compare our tensor network results

to the rate of volume growth and find that we need a temperature dependent length scale

on the gravity side to match tensor network expectations. Finally, we study shockwave

solutions and verify the existence of the switchback effect; we also point out a subtlety

concerning the proper definition of action when the metric is discontinuous.
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2 Gravity model

2.1 Einstein-Maxwell-Dilaton theory

The Einstein-Maxwell-Dilaton (EMD) theory is (d+2) dimensional Einstein gravity sourced

by a U(1) gauge field (the Maxwell field) and by a scalar field Φ (the dilaton). The gauge

field is coupled to the dilaton via a warping of the effective gauge coupling. The Lagrangian

density can be written in terms of general functions V and Z via

LEMD =
1

2κ2

(
R− 2(∇Φ)2 − V (Φ)

L2

)
− Z(Φ)

4e2
FµνF

µν (2.1)

where 2κ2 = 16πG is the gravitational constant. The action of the theory is

I =

∫
dd+2x

√
|g|LEMD + . . . (2.2)

where . . . denotes additional boundary and corner terms which we specify later.

Now consider the following ansatz for the metric,

ds2 = L2

(
−f(r)dt2 + g(r)dr2 +

dx2
i

r2

)
, (2.3)

in which the length scale L reduces to the AdS radius in the conformal limit and r is the

emergent holographic direction. We also assume only the time component of the gauge

field is non-zero,

At =
eL

κ
h(r). (2.4)

Following ref. [41], consider the situation in which the dilaton potential V (Φ) and the

coupling Z(Φ) take the following asymptotic form as Φ→∞,

Z(Φ) = Z0 exp (αΦ) (2.5)

V (Φ) = −V0 exp (βΦ) , (2.6)

where α, β are two positive constants. Given these forms, one solution of the EMD equa-

tions of motion is given by eq. (2.3) with

f(r) = (Q̂1/dr)−2−2d(z−1)/(d−θ)V −1
0 (V0Z0)

− θ
d(d−θ) f0 (2.7)

g(r) = Q̂2/d(Q̂1/dr)
−2− 2θ

d(d−θ)V −1
0 (V0Z0)

− θ
d(d−θ) g0

h(r) = (Q̂1/dr)−d−dz/(d−θ)h0

eΦ(r) =
(
Q̂1/d(r/r0)(V0Z0)−1/2d

) 2d
α

(1+ θ
d(d−θ)) )

where the parameters are

Q̂ = Q κe

Ld−1
(2.8)

θ =
d2

α+ (d− 1)β
(2.9)

z = 1 +
θ

d
+

8(d(d− θ) + θ)2

d2(d− θ)α2
. (2.10)

– 3 –



J
H
E
P
0
9
(
2
0
1
8
)
1
0
6

Q is an integration constant identified as the charge density in the dual field theory,

and is defined as

Q = −L
d−1

κe

h′(r)Z(Φ(r))

rd
√
f(r)g(r)

. (2.11)

Given the solution in eq. (2.7), we see that in order to have each term in eq. (2.3) scale

accordingly, the coordinates should scale as

xi → λxi (2.12)

r → λ
d−θ
d r (2.13)

t→ λzt (2.14)

ds→ λ
θ
dds (2.15)

From these scaling relations we know that z is the “dynamical critical exponent”. For

example, in a weakly coupled theory eqs. (2.12) and (2.14) would require a field theory

dispersion relation relating energy ε to momentum k going like ε ∼ kz. From eq. (2.15) we

know that the proper length in the holographic theory transforms under the above scaling

transformation. This implies that the hyperscaling invariance of the boundary field theory

is violated as well. So θ is the so called “hyperscaling violation exponent”.

Further, the coefficients g0 and r0 can be fixed and the combination of f0 and h0 given

by f0h
−2
0 can also be fixed.

g0 = (z − 1)
θ
d−θ (z + d− θ − 1)1+ θ

d−θ (z + d− θ) d2

(d− θ)2
(2.16)

r0 = (z − 1)(z + d− θ − 1)−1 (2.17)

f0

h2
0

= (z − 1)−2− 2θ
d−θ (z + d− θ − 1)1+ θ

d−θ (z + d− θ) (2.18)

More generally, there is an infinite class of solutions of the form eq. (2.3) that corre-

spond to a black hole geometry at non-zero temperature. The metric is modified to

fT (r) = f(r)

(
1−

(
r

rh

)d(1+z/(d−θ))
)

(2.19)

gT (r) = g(r)

(
1−

(
r

rh

)d(1+z/(d−θ))
)−1

(2.20)

where rh is the parameter that labels the solution which is identified with the r coordinate

of the horizon of the black hole. We see that the metric in eq. (2.7) is the zero temperature

limit of this class.

The Hawking temperature of the black hole is given by the surface gravity at the

horizon

T =
∇rf(r)

4π
√
f(r)g(r)

=
d(d− θ + z)

4π(d− θ)

√
f0

g0
r
− dz
d−θ

h Q̂−
z
d−θ . (2.21)

– 4 –
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A

C

B

D

E

Figure 1. The shaded part of the Penrose diagram shows a WDW patch of a Cauchy surface that

intersects r = ∞ at A and B. The past and future horizon are represented by dashed lines, while

the past and future singularity are represented by wave lines.

The Bekenstein-Hawking entropy is related to the surface area of the black hole horizon

and takes the form

S =
Ld

4
r−dh Ωd (2.22)

where Ωd is the regulated volumn of the d-dimensional hypersurface in the spatial xi direc-

tions. For later use, we can obtain the thermal energy E by integrating the thermodynamic

equation dE = TdS with boundary condition E|rh=∞ = 0.

E =
d

16πG
LdΩdQ̂−

z
d−θ

√
f0

g0
r
−(d+ dz

d−θ )
h (2.23)

2.2 Action of the Wheeler-DeWitt patch

According to the CA conjecture [19], the complexity of a boundary state is proportional

to the classical action of a region of spacetime called the Wheeler-DeWitt patch, which is

the domain of the dependence of a Cauchy surface which intersects the boundary of the

spacetime at a given time. A Wheeler-DeWitt (WDW) patch in the AdS-Schwarzschild

black hole spacetime is shown in figure 1.

As the WDW (figure 1) patch is a manifold with boundary, we shall both consider

spacelike surfaces, (such as CD, a segment of the future singularity) and null surfaces

(segments AC, AE, BD, BD). The extrinsic curvature of a null surface is ill-defined, so

the surface action of a null surface needs detailed consideration. Furthermore, the (d+ 1)-

dimensional hypersurfaces may have sharp boundaries when they intersect with each other.

– 5 –
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These joints are d-dimensional hypersurfaces shown as points (A, B, C etc.) in the Penrose

diagram 1.

The issue of the action for null surfaces and joints was considered in detail in ref. [47].

We summarize the results that are of relevance to our calculation in appendix A. Briefly,

the total WDW patch action is given by

I = Ibulk +
∑
i

IΣi +
∑
i

INi +
∑
i

Iji (2.24)

in which we refer to eq. (2.2) for Ibulk, eq. (A.1) for IΣi , eq. (A.2) for INi , and eq. (A.4)

for Iji .

2.3 Action growth in the EMD theory

In this part we focus on the rate of change of the action as a function of time rather than on

the absolute value of the action. Note that the WDW patch depends on the Cauchy surface

through its intersection with the boundary at r → 0, (e.g. A, B in figure 1) rather than on

the specific details of the Cauchy surface. Our primary interest is thus the dependence of

the action of the WDW patch on the combination (tA + tB). The combination (tA + tB)

appears because the time in the left and right spatial regions flow in opposite directions.

Without loss of generality, we study the time evolution as a function of the left time tA = tL.

An illustration of the change of the WDW patch when we evolve the tL by δt is shown in

figure 2. Note that the deviation of EMD black hole metric from the AdS-Schwarzschild

metric does not affect the qualitative structure of the Penrose diagram.

After analyzing the different parts that may contribute to the action growth (see

appendix B for the details of the calculation), it turns out that only the bulk regions

V1 and V2, the spacelike surface section δΣ, and the null-null surface joints E, E′ will

contribute to the change of the action:

δI =

∫
V1

drdtddxi
√
|g|LEMD −

∫
V2

drdtddxi
√
|g|LEMD −

1

8πG

∫
δΣ
dtddxi

√
|h|K

+
1

8πG

∫
E′
aE′
√
γddxi −

1

8πG

∫
E
aE
√
γddxi

(2.25)

In the late time limit, tA → ∞, the null surface BE lies close to the horizon and the

action growth rate takes a remarkably simple form in terms of E, θ, z and d.

δI

δt
= 2E

(
1 +

z − 1

d− θ

)
(2.26)

Observe that in the limit θ → 0 and z → 1, (2.26) recovers the result for AdS-Schwarzschild

black holes [8].

This indicates a significant violation of the complexity growth bound conjectured in

ref. [8] and inspired by the Lloyd’s conjecture [20]. However, we remind the reader that early

time violations of the conjecture were already known and that some models of computation

have been exhibited which also violate the conjectured bound. Nevertheless, within the

confines of the CA duality conjecture, it seems that hyperscaling violating black holes

complexify much more rapidly than their conformal cousins.
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vu

(u0,v0)A

C

B(u1,v1)

D

A′

C ′

E(u1,v0)

E′

F

V1

u
=
u 0

V2v
=
v
0

u
=
u 0

+
δt

v
=
v
0 +
δt

δt

δΣ

Figure 2. Illustration of the change of the WDW patch after evolving tL by δt. The Penrose

diagram for an EMD black hole shares a similar structure to that of the AdS-Schwartzschild black

hole, and the deviation does not affect the analysis hereafter.

2.4 Maximal volume slice and CV duality

In the CV conjecture [7], the complexity of a state |ψ(tL, tR)〉 is taken to be proportional

to the volume of a maximal volume slice which intersects with the two r → 0 boundaries

at tL and tR.

At late times, the maximal volume slice asymptotes to a fixed slice as tL → ∞ and

tR →∞ [7]. When tL →∞ and tR →∞, the configuration has time translation invariance

so the shape of the maximal volume slice is independent of tL, tR. It turns out that in

this case the slice is a constant r surface whose value rm is obtained by maximizing the

measure, which amounts to finding critical points:

∂r

(
Ld+1

√
|f(r)|r−d

)
= 0. (2.27)

The solution r = rm is proportional to rh,(
rm
rh

)d+dz/(d−θ)
= 2 +

2θ

d2 + dz + dθ − 2θ
. (2.28)

Then the change rate of the volume with respect to tL or tR is given by the spatial volume

of the d-dimensional hypersurface Vd in the xi directions,

δV
δt

= Vd = Ld+1Ωdr
θ
d−θ−( dz

d−θ+d)
m

√
f0Z0(d(d− θ + z))Q̂

2θ−2dz
d(d−θ) (V0Z0)

1
θ−d+ 1

d
−1

d2 − dθ + dz − 2θ

∼ r
θ
d−θ−( dz

d−θ+d)
h ∼ E(Q̂1/drh)

θ
d−θ ∼ ET−

θ
dz .

(2.29)

– 7 –
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The proportionality is obvious from the relation in eq. (2.28). It is worth pointing

out that in the case of non-vanishing θ, Vd has different dependence on rh as compared

to the energy E in eq. (2.23) and an extra dimensional scale Q̂ is introduced to get the

right dependence on dimensionful parameters. Thus we find that while the volume and

the action both grow linearly with time at late time, the rate of growth has a qualitatively

different dependence on temperature in the two cases.

3 Tensor network model

In this section we present two tensor network models that partially capture the complexity

growth of the thermofield double state corresponding to the EMD black hole geometry.

When carrying out the calculations, the following assumptions are made. Since the bound-

ary theory has a scaling symmetry, we assume that the time evolution can be “renormal-

ized” by passing it through the renormalization group (RG) circuit so that it acts only on

low energy degrees of freedom [8]. This renormalization already vastly reduces the naive

complexity of time evolution. Rather than using a detailed model for the thermal state at

a given temperature, we instead approximate the thermal state by taking the ground state

RG circuit and truncating it once the renormalized correlation length is equal to the lattice

spacing. At that final thermal scale where the low energy degrees of freedom reside, we

assume that the complexity growth is proportional to the energy scale of the Hamiltonian

and the number of degrees of freedom.

3.1 (d− θ)-dimensional tensor networks embedded in d-dimensions

By studying the boundary behaviour of the metric eq. (2.3) with solution eqs. (2.7), (2.19)

we know that the boundary field theory should live in d-dimensional space (the number of

xis). Here we show that the scaling of the temperature, entropy, and complexity growth can

be captured by a system composed of a direct sum of (d− θ) dimensional tensor networks.

We also incorporate the dynamical critical exponent z into the analysis.

Suppose each copy of the (d− θ) dimensional tensor network has lattice length a and

overall size L. The remaining θ dimensions are regularized to have length L0, and each

copy separated by a displacement of length l0 along each of the θ directions. An illustration

of this set up is shown in figure 3. In total we have

Ncopies =

(
L0

l0

)θ
(3.1)

As a simple example of this kind of physics, non-interacting Weyl fermions in d = 3 spatial

dimensions in the presence of a magnetic field organize at low energy into a set of d = 1

dimensional chiral modes propagating along the magnetic field direction. There is also a

similar phenomenon in holographic models [48].

We perform the RG transformation until the lattice spacing reaches some temperature

dependent correlation length ξ so that each site is uncorrelated with the rest. We denote

the complexity generated from performing the series of RG transformation as CRG. Now

– 8 –
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a

L

l0

L0

Figure 3. An illustration of a system described in section 3.1 with d = 3, θ = 1. The two

dimensional networks are aligned along the one dimensional vertical line. The dots are the sites of

the lattice on which the Hamiltonian acts, and the ellipses denote the intermediate layers that are

not drawn in the figure.

the total number of the sites in each (d− θ) dimensional network can be written as

Nsites =

(
L

ξ

)d−θ
(3.2)

The dynamical critical exponent gives ξ ∼ T−
1
z . So eq. (3.2) can be expressed as

Nsites ∼ Ld−θT
d−θ
z . Combined with eq. (3.1), we have the total number of sites in the

whole system as

Ntotal = Ncopies ×Nsites ∼ Ld−θT
d−θ
z

(
L0

l0

)θ
(3.3)

We now compute how RG transformation acts on an infinitesimal time evolution step,

V †e−iH
(a)δtV ≈ V †

(
I(a) − iH(a)δt

)
V = I(2a) − i2−∆HH(2a)δt. (3.4)

Here V is an isometry that transforms the operators defined with lattice spacing a to

operators defined with lattice spacing 2a. The superscripts denote the lattice size the

operators act on. ∆H is the scaling dimension of the Hamiltonian operator. Since the

dynamical critical exponent relates scaling of time and space, we take ∆H = z. In order to

renormalize to the low energy degrees of freedom at scale ξ, we must perform the isometry

n times where n is

n = log2

(
ξ

a

)
. (3.5)

The result of applying the RG isometry n times is

V †n
(
I(a) − iδtH(a)

)
V n ≈ I(ξ) − i2−n∆HH(ξ)δt = I(ξ) − i T

Λz0
H(ξ)δt (3.6)

– 9 –
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where Λ0 ∼ a−1 is a momentum scale corresponding to the inverse of the lattice length

and the energy scale of H(a) and H(ξ) is Λz0. Thus the combination T
Λz0
H(ξ) behaves like

a Hamiltonian with energy scale T acting on (L/ξ)d−θ sites. Equivalently, if we want to

evolve for time t at the unrenormalized scale, we need only evolve for a time T
Λz0
t at the

renormalized scale.

To sum up, the complexity of the unrenormalized state evolving for time t can be

identified with the complexity of the RG transformation to an uncorrelated state plus

the complexity of this renormalized state evolving for time T
Λ0
t. Let c be the complexity

generated by the Hamiltonian acting on each site per infinitesimal time step. Then the

total complexity of the state is

C ∼ CRG + cLd−θT
d−θ
z

(
L0

l0

)θ T
Λz0
t (3.7)

Refering to eqs. (2.23) and (2.21), we see that eq. (3.7) indeed captures the temperature

dependence of the complexity growth rate in eq. (2.26) up to a multiplicative factor which

depends on the details of the Hamiltonian.

3.2 d-dimensional branching tensor tetwork, s = 2θ fixed point

In this section we present another tensor network model which has a similar character to

the first model without the explicit decomposition into non-interacting copies. We still

assume that the effective dispersion relation is ε ∼ kz, and we require the system to be at

s = 2θ fixed point [49]. The structure of the tensor network is now more elaborate, similar

to a so-called branching MERA tensor network in which at each stage of the RG, spatial

lengths are reduced but multiple copies of the system at the longer scale are produced. If

a non-branching MERA can be understood as an isometry relating lattice space a and 2a,

|ψ(a)〉 = V |ψ(2a)〉, then a branching MERA with s branches gives

|ψ(a)〉 = V
[
|ψ(2a)〉⊗s

]
. (3.8)

We set up the model as before: d dimensional tensor networks with lattice spacing a and

overall size L. We denote the momentum scale corresponding to the inverse lattice as Λ0.

At an s = 2θ fixed point, the thermal density matrix ρ(H) ∝ exp(−H/T ) splits into a

direct product of s copies after one RG transformation step

ρ(H(a)) = V

2θcopies︷ ︸︸ ︷
ρ(H(2a))⊗ ρ(H(2a))⊗ . . .⊗ ρ(H(2a))V † (3.9)

An illustration of the density matrix splitting for θ = 2 is shown in figure 4.

We assume that after performing n = log2

(
ξ
a

)
iterations of the isometry V , the

Hamiltonian and the state decompose into 2nθ disjoint copies:

V †n
(
I(a) − iH(a)δt

)
V n = I(ξ) − i2−∆Hn

2nθ∑
`=1

H
(ξ)
` δt (3.10)

V †nρ(H(a))V n =

2nθcopies︷ ︸︸ ︷
ρ(H(ξ))⊗ ρ(H(ξ))⊗ . . .⊗ ρ(H(ξ)) . (3.11)

– 10 –
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ρ(H(a))

one RG step

ρ(H(2a))⊗2θ
n RG steps

ρ(H(ξ))⊗2nθ

2nθ copies

Figure 4. An illustration of a branching tensor network with θ = 2, s = 4. The circles at

each layer represent copies of the thermal density matrix of the corresponding Hamiltonian. After

n = log2

(
ξ
a

)
RG steps, we get 2nθ copies of the density matrices ρ(H(ξ)), corresponding to the

Hamiltonian on a lattice length ξ, where ξ is the correlation length.

Here each H
(ξ)
` is a distinct decoupled Hamiltonian acting on one of the 2nθ copies of

ρ(H(ξ). The assumption of complete decoupling of the copies may be unrealistic, but we

expect corrections to it will not modify the complexity growth estimate dramatically.

The counting of degrees of freedom is now similar to the previous model. For the

renormalized state with lattice spacing ξ, the number of sites in each copy is

Nsites =

(
L

ξ

)d
∼ LdT

d
z (3.12)

The density matrix splitting effect gives

Ncopies = 2nθ =

(
ξ

a

)θ
=

Λθ0

T
θ
z

(3.13)

With all the same arguments as for the previous model, our complexity estimate is

C ∼ CRG + cLdT
d−θ
z TΛθ−z0 t (3.14)

which has the same temperature dependence as eq. (3.7) and thus also captures the growth

rate eq. (2.26).

4 Shockwaves and the switchback effect

In this section we study CA duality for hyperscaling violating black holes in the presence

of a bulk shockwave. This shockwave is dual to the insertion of a perturbation in the

past of the thermofield double state. The complexity added by this perturbation can
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be understood in terms of the minimal quantum circuit needed to apply the Heisenberg

operator W (tw) = eiHtwWe−iHtw to the thermofield double state. As discussed in ref. [7],

we expect a partial cancellation of the forward and backward time evolutions generating

W (tw), so that the total additional complexity for large tw is proportional to 2(tw − t∗)
with t∗ the scrambling time.

Here we verify that this “switchback effect” is also present for hyperscaling violation

black holes. We do this in the context of CA duality by explicitly evaluating the action

growth of an eternal black hole perturbed by a shockwave. We find that the switchback

effect is indeed reproduced and roughly matches our tensor network expectations. One

subtlety which arises is how to correctly evaluate the action when the spacetime has dis-

continuities along null surfaces as in the shockwave geometry. We show that one way to

consistently calculate the action using the “Perimeter-style” method of ref. [47] (so that it

agrees with the “Stanford-style” method of ref. [8] and reproduces our physical expecta-

tions) is to open the geometry up along the null discontinuity and take a two-sided limit.

It is convenient to carry out the shockwave calculation in Kruskal-Szekeres coordinates.

These coordinates can be defined throughout the eternal black hole spacetime as

U = −e−
2π
β
u
, V = e

2π
β
v

(right exterior region)

U = e
− 2π
β
u
, V = e

2π
β
v

(black hole region)

U = e
− 2π
β
u
, V = −e

2π
β
v

(left exterior region)

U = −e−
2π
β
u
, V = −e

2π
β
v

(white hole region)

(4.1)

where β here is again the inverse temperature,

β =
4π

∂ρf(1/ρ)|ρh
. (4.2)

We set up the configuration such that the null shell is injected from the left boundary

at time tw → −∞ with infinitesimal energy δε. When the shell arrives at the horizon, the

UU component of the energy-momentum tensor is exponentially blue shifted to

TUU =
δε

Ld+2
e2π|tw|/βδ(U). (4.3)

As stated above, the shochwave leads to a discontinuity of the metric at the U = 0 horizon.

The discontinuity turns out to be a finite shift in the Kruskal-Szekeres variable V

δV = h ∼ e2π(|tw|−t∗)/β (4.4)

where t∗ = β
2π log Ld

GN
. An illustration of the Penrose diagram for the shockwave geometry

is shown in figure 5. The calculation of the action of the WDW patch proceeds as before,

except that we find that the discontinuity at U = 0 must be treated specially. We show in

appendix C the details of the action calculation and discuss how the discontinuity can be

dealt with (see section. C.1).
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vu

A

C

B

D

J(−V −10 ,− U−10 − h)

O

F

O′

H

E

G

U
=
U 0

U
=
−V
−1

0

h

(a)

vu

A

M

C

B

N

D

O

F

O′

H
E

G

h

(b)

Figure 5. Illustration of the Penrose diagram for the shockwave geometry. Left (5a): the patch

only intersects with future singularity; right (5b): the patch intersects with both singularities. The

bulk regions whose actions are time-independent are colored in green while those whose actions are

time-dependent are colored in blue.

The result of the calculation is

Itotal = (2(|tw| − t∗) + tL − tR) 2E

(
1 +

z − 1

d− θ

)
+ . . . (4.5)

where . . . denotes other terms that are not time-dependent. We see two principle features.

First, the extra action contributed by the perturbation is proportional twice tw times the

previously computed action growth rate without the shock. Second, the switchback effect is

present as expected. As shown in ref. [50], the scrambling time in the hyperscaling violating

black hole is still proportional to β
2π , i.e., they continue to maximally scramble [51]. These

features are also present in the tensor network models discussed above.

5 Discussion

In this work we studied the CA and CV conjectures in the context of a general class of

scaling solutions to the EMD theory. We found that CA and CV differ in their temperature

dependence for these EMD black holes. In particular, when the dynamical exponent z is

larger than 1, we found that the rate of complexity growth was enhanced relative to the

z = 1 result. We were able to match the results of the CA calculation to simple tensor

network models. Depending on the choice of the arbitrary length scale in the CV proposal,

it is also possible to force the CV results to match the tensor network models. However, this

matching appears artificial without a principle to choose the length scale. Without this

special length scale choice, we do not know how to recover the CV temperature dependence

in a tensor network model.

There are several potential directions to pursue. Of course, the EMD theory considered

here is not expected to be a UV complete theory of quantum gravity, so it would also be

interesting to study action growth and its analogs in a more complete theory, perhaps
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a string theory, to at least gain some insight into the physics of the singularity. We

did not consider the additional counterterm from appendix B of ref. [47]; its inclusion

is not expected to modify the growth rate, but it may have a significant effect on the

complexity of formation or in more complex geometries. Other directions include the

formulation of a more defined tensor network model and comparisons to the recent free

field theory complexity calculations, perhaps in the context of the branching tensor network

in ref. [52]. Finally, given that the conjectured complexity growth rate bound in ref. [8]

is now thoroughly falsified [22, 23], it is interesting to consider other possible bounds that

might illuminate in which senses black holes are the fastest computers.
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A Rules for calculating the action: null surfaces and joints

We list the results that are of relevance to our calculation below. They are discussed in

detail in ref. [47].

• For a spacelike / timelike (d+1) dimensional hypersurface, the action is given by the

York-Gibbons-Hawking surface action

IYGH = sign(Σ)
1

8πG

∫
Σ

√
|h|KdΣ (A.1)

where Σ is the surface of interest, h = dethab is the determinent of induced metric

hab, and K = habKab is the extrinsic curvature. If Σ is spacelike, sign(Σ) = 1(−1) if

Σ lies to the past (future) of the bulk of interest. If Σ is timelike, then sign(Σ) = 1.

• For a null surface N , the boundary action is given by

IN = −sign(N )
1

8πG

∫
N
κ
√
γddxidλ (A.2)

where
√
γddxi is the volumn element for the d dimensional spacelike hypersurface and

λ is the parameter of the geodesic that generates the null surface N . sign(N ) = 1(−1)

for N in the past (future) of the bulk of interest. If we denote the vector along the

null geodesic as kα = ∂xα

∂λ , then the surface gravity κ is given by

kβ∇βkα = κkα (A.3)
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Note that if λ is chosen to be an affine parameter of the null surface, then by definition

κ = 0. So when we affinely parametrize the null surface N , the corresponding

boundary action IN = 0.

• For joints that come from intersection of at least one null surface, the boundary

action is given by

Ij = sign(j)
1

8πG

∫
j
aj
√
γddxi (A.4)

If a null surface N intersects with a spacelike surface S, and if k is the null tangent

vector of N and n is the normal vector of S, then the function aj is given by

aj = log |k · n|. (A.5)

If a null surface N intersects with another null surface N̄ , and if k and k̄ are the null

tangent vectors of N and N̄ respectively, the function aj is given by

aj = log

∣∣∣∣12k · k̄
∣∣∣∣ . (A.6)

The rule of the sign is that sign(j) = 1 if the null segment N lies to the past (future)

of the bulk of interest and the joint is at the past (future) end of the segement, and

sign(j) = −1 otherwise.

B Action growth in the EMD theory: calculational details

The incoming and outgoing Eddington-Finkelstein coordiantes are convenient for the cal-

culation. By defining

ρ =
1

r
, v = t+ ρ∗, u = t− ρ∗ (B.1)

where ρ∗ is given by

dρ∗

dρ
= ρ−2

(
g(1/ρ)

f(1/ρ)

)1/2

, (B.2)

we get the variations of the metric eq. (2.3)

ds2 = L2
(
−f(1/ρ)du2 − 2ρ−2

√
f(1/ρ)g(1/ρ)dudρ+ ρ2dx2

i

)
(B.3)

ds2 = L2
(
−f(1/ρ)dv2 + 2ρ−2

√
f(1/ρ)g(1/ρ)dvdρ+ ρ2dx2

i

)
(B.4)

ds2 = L2
(
−2f(1/ρ)dudv + ρ2dx2

i

)
. (B.5)

The change of the action arising from evolving tL for δt can be written

δI = (IV1 − IV2) + IδΣ + (IACE − IA′C′E′) + (IC′ − IC) + (IA′ − IA) + (IE′ − IE) . (B.6)

The meaning of the terms are explained in figure 2.
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We first show that the action given by the joints at A and C are independent of time.

The future directed unit normal vector of CD, at a constant ρ slice, is

nρ = −L(−g)
1
2

ρ2
(B.7)

The null surface AC is determined by a scalar function Φ(u, ρ, xi) = u − const. = 0. The

future directed normal null vector of AC is given by kα = −∂αΦ. The non-vanishing

component is ku = 1. We appeal to the metric eq. (B.3) and use the formula eq. (A.4)

with eq. (A.5):

IC = − 1

8πG

∫
C

log |k · n|√γddxi =
1

8πG
LdΩd

(
ρd log

(
L(−f)

1
2

)) ∣∣∣
ρ→0

. (B.8)

This term may be not well defined when ρ→ 0, but it is independent of u, hence invariant

under time translation. So (IC′ − IC) = 0.

By defining k̄ such that the non-vanishing component is k̄v = −1, with metric eq. (B.5)

and formulas (A.4) and (A.6), we can show that

IA =
1

8πG

∫
A

log |1
2
k · k̄|√γddxi = − 1

8πG
LdΩd

(
ρd log

(
−2L2f

)) ∣∣∣
ρ→∞

. (B.9)

By the same argument as before, IA depends only on the combination of u− v, hence it is

invariant under time translation. So (IA′ − IA) = 0.

For the null surface action ICAE with the null normal vectors chosen to be ku = 1 for

CA and k̄v = 1 for AE, we can calculate explicitly that

kβ∇βkα = 0, k̄β∇β k̄α = 0. (B.10)

Thus ICAE = 0 since κ = 0 on both AE and CA. So also is IC′A′E′ = 0.

To summarize so far, the action change in eq. (B.6) has been reduced to eq. (2.25) as

claimed. We now turn to the different parts in eq. (2.25).

• The bulk action (IV1 − IV2)

IV1 =
1

16πG

∫ u0+δt

u0

du

∫ ρ(u,v0+δt)

0
dρ

∫
ddxiL

d+2ρd−2
√
f(1/ρ)g(1/ρ)LEMD (B.11)

and

− IV2 = − 1

16πG

∫ v0+δt

v0

dv

∫ ρ(u0,v)

ρ(u1,v)
dρ

∫
ddxiL

d+2ρd−2
√
f(1/ρ)g(1/ρ)LEMD. (B.12)

By defining

F (ρ) =

∫
dρLd+2ρd−2

√
f(1/ρ)g(1/ρ)(2κ2)LEMD (B.13)

and changing variable u = u0 + v0 + δt− v, it turns out that

IV1 − IV2 = Ωd

∫ v0+δt

v0

dvF (ρ(u1, v)) ≈ Ωdδt (F (ρ(u1, v0))− F (0)) . (B.14)
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The result is

IV1 − IV2 = − 1

8πG
ΩdδtLdQ̂−

z
d−θ ρ(u1, v0)d+dz/(d−θ)

√
f0

g0

(B.15)

• The spacelike surface action IδΣ is

IδΣ = − 1

8πG

∫
Σ

√
|h|Kdtddxi (B.16)

where the extrinsic curvature K is given by

K = ∇αnα (B.17)

and the future directed normal vector nα is defined in (B.7).

The result is

IδΣ =
1

16πG
ΩdδtLdρd+2

√
−f(1/ρ)

−g(1/ρ)
∂ρ

(
log(Ld+1(−f)1/2ρd)

) ∣∣∣
ρ=0

=
1

16πG
ΩdδtLd

d2 + dz − dθ − 2θ

d− θ
ρ
d+dz/(d−θ)
h

√
f0

g0
Q̂−z/(d−θ)

(B.18)

• The joint action (IE′ − IE) is

1

8πG

∫
E′
adS− 1

8πG

∫
E
adS≈−ΩdδtLdρ2

(
f(1/ρ)

g(1/ρ)

)1/2

∂ρ

(
ρd log

(
−L2f(1/ρ)

))∣∣∣
ρ(u1,v0)

=
1

16πG
ΩdδtLd

d2−dz−dθ+2θ

d−θ
ρ
d+dz/(d−θ)
h

√
f0

g0
Q̂−z/(d−θ)

− 1

16πG

ΩdδtLd

d−θ
ρd+dz/(d−θ)

√
f0

g0
Q̂−z/(d−θ)

×

(
−2dz+2θ+d(d−θ)

(
−1+

(
ρh
ρ

)d+dz/(d−θ)
)

log(−L2f(1/ρ)

)∣∣∣
ρ(u1,v0)

(B.19)

We note when ρ(u1, v0)→ ρh, this term approaches

lim
ρ→ρh

(
1

8πG

∫
E′
adS− 1

8πG

∫
E
adS

)
=

1

16πG
ΩdδtLd

d2+dz−dθ
d−θ

ρ
d+dz/(d−θ)
h

√
f0

g0
Q̂−z/(d−θ).

(B.20)

Combining eqs. (B.15), (B.18), (B.20), and using eq. (2.23), we recover the result in

eq. (2.26).
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C Action of the shockwave geometry in EMD theory: calculational

details

In this appendix we present the calculation of the action in a geometry perturbed by a

spherically symmetric null shell falling into the blackhole. The null shell sets of a shockwave

whose physical manifestation is a null shift along the shockwave. For the convenience of the

calculation hereafter, we introduce the metric after changing the u coordinate in eq. (B.3)

to the Kruskal-Szekeres variable U ,

ds2 = L2

(
−f(1/ρ)

β2dU2

4π2U2
+ 2ρ−2

√
f(1/ρ)g(1/ρ)

βdU

2πU
dρ+ ρ2dx2

i

)
. (C.1)

Recall that β is chosen such that the metric is non-singular at the horizon,

β =
4π

∂ρf(1/ρ)

∣∣∣
ρh
. (C.2)

We set up the configuration such that the null shell is injected from the left boundary

at time tw → −∞ with infinitesimal energy δε. When the shell arrives at the horizon, the

UU component of the energy-momentum tensor is exponentially blue shifted to

TUU =
δε

Ld+2
e2π|tw|/βδ(U). (C.3)

The shochwave leads to a discontinuity of the metric at the U = 0 horizon if it is injected

from the left boundary. The discontinuity turns out to be a finite shift in the Kruskal-

Szekeres variable V

δV = h ∼ e2π(|tw|−t∗)/β (C.4)

where t∗ = β
2π log Ld

GN
. An illustration of the Penrose diagram for the shockwave geometry

is shown in figure 5. We will show in section C.1 that the discontinuity across U = 0

crucially contributes to the time dependence of action.

A very distinct feature of the shockwave metric is that the WDW patch can intersect

with past and future singularities simultaneously, while in the unperturbed metric the

patch can only touch both or intersect either past or future singularity. The condition that

the patch intersects with the past singularity is

(U−1
0 + h)V −1

0 = e
4π
β
ρ∗(ρJ ) ≥ 1 (C.5)

where ρJ is the radius of the point J where null boundaries of the past domain of dependence

intersect. We can relate the U0, V0 to the time on the left and right boundary via

U0 = e
2π
β
tL , V0 = e

2π
β
tR . (C.6)

We would like to calculate the time-dependent (boundary condition dependent) part

of the WDW patch action. The time-dependent bulk parts are colored in blue while the

independent parts are colored in green in figure 5. Besides the action contributed by the

discontinuity appendix C.1), the time dependence of the boundary and joint action are

the same as discussed in appendix B. To be specific, in figure 5a, only the action of the

boundary CD and the joint J are considered. In figure 5b, only the action of the boundaries

CD and MN are considered.
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E′

E′′

G′

G′′

O

O′U
=
ε

U
=
−εV

=
−
U −

10

V
=
V
0

V
=
−
U −

10
−
h

V
=
V
0 +
h

Figure 6. Illustration of the treatment of the discontinuity along null segement EG. We take the

limit ε→ 0 so the null segement E′G′ and E′′G′′ approach to EG in the same way.

C.1 Contribution from the shockwave discontinuity

We divide the total bulk into four subregions which are colored in figure 5, thus introducing

three segements as internal boundaries: FO,O′H,EG. Since the metric around FO and

O′H is continuous, the induced null surfaces and joints will have identical action up to a

sign on each side and cancel with each other. However, the metric is discontinuous along

EG, so we should not expect the action on both sides to add up to zero. We calculate the

effect of the discontinuity by comparing the two null surfaces U = ε and U = −ε which

approach to EG in the same way when ε → 0 (as in Cauchy principal value integration).

Figure 6 illustrates the treatment.

Using the Kruskal coordinate U, V and eq. (A.2), it is a straightforward calculation

to obtain

IE′G′ = IE′′G′′ = 0. (C.7)

Using eq. (A.4), we have

IE′ + IE′′ + IG′′ + IG′ =
ΩdLd

8πG

(
H+(ρE′) +H+(ρG′′)−H−(ρE′′)−H−(ρG′)

)
(C.8)

where H±(ρ) ≡ ρd log(±L2f(1/ρ)) as a short-hand notation. The (+) sign applies for

joints outside the future or past horizon while (−) sign applies for those inside the horizon.

As ε → 0, the radius ρ → ρh for all of the four joints. Expanding (ρ − ρh) for H±(ρ)

we get

H±(ρ) = ρdh log(±(ρ− ρh)) + c1 +O(ρ− ρh), (C.9)

where c1 is a constant depending only on d, z, θ and is same for both (+) and (−) case.
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On the other hand, recalling eq. (B.2), we can perform the integral and expand in

(ρ− ρh):

ρ∗(ρ) =
d− θ

d(d− θ + z)
Q

z
d−θ

√
g0

f0
ρ
dz
d−θ
h log(±(ρ− ρh)) + c2 +O(ρ− ρh) (C.10)

where ± sign has the same structure as H±(ρ) and c2 is another constant that depends

only on d, z, θ and is same for both (+) and (−) case.

Using the definition of the Kruskal coordinates,

UV = e
− 4π
β
ρ∗

(inside the horizon), UV = −e−
4π
β
ρ∗

(outside the horizon), (C.11)

we can write

ρ∗(ρE) = − β

4π
log(εU−1

0 ) (C.12)

and similar expressions for E′′, G′, G′′.

Combining eq. (C.12) with eqs. (C.10), (C.9), and using eq. (2.23) for the energy, we

can get an expression for eq. (C.8) in terms of a power series of (ρ− ρh)

IE′ + IE′′ + IG′′ + IG′ =
β

2π

(
log(1 + hV −1

0 ) + log(1 + hU0)
)
E

(
1 +

z

d− θ

)
+

∑
i=E′,E′′,G′,G′′

O(ρi − ρh)
(C.13)

in which the log ε terms precisely cancel with each other provided the four joints approach

to the U = 0 horizon in the same way and the higher order terms in the last line will vanish

in the limit ε→ 0.

So we conclude that the discontinuity of the metric will contribute to the total action by

Idiscontinuity ≡ IE′ + IE′′ + IG′′ + IG′ =
β

2π

(
log(1 + hV −1

0 ) + log(1 + hU0)
)
E

(
1 +

z

d− θ

)
.

(C.14)

C.2 Contribution of figure 5a

The two bulk regions behind the future and past horizon also contribute to the time

dependence of the action:

ICFOGD =

∫ ρh

0
dρ

∫ U0

e
4π
β
ρ∗(ρ)

V0+h

β

2π

dU

U

∫
ddxiL

d+2ρd−2
√
f(1/ρ)g(1/ρ)(2κ2)LEMD

=
β

2π
log(U0(V0+h))Ωd(F (ρh)−F (0))

−2Ωd

∫ ρh

0
dρLd+2ρd−2

√
f(1/ρ)g(1/ρ)(2κ2)ρ∗(ρ)LEMD

(C.15)

IEJHO′ =

∫ ρh

ρ0

dρ

∫ − e 4πβ ρ∗(ρ)

U−1
0 +h

−V −1
0

β

2π
− dU
U

∫
ddxiL

d+2ρd−2
√
f(1/ρ)g(1/ρ)(2κ2)LEMD

=
β

2π
log((U−1

0 +h)V −1
0 ))Ωd(F (ρh)−F (ρJ))

−2Ωd

∫ ρh

ρJ

dρLd+2ρd−2
√
f(1/ρ)g(1/ρ)(2κ2)ρ∗(ρ)LEMD

(C.16)
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where the function F (ρ) is defined in eq. (B.13). Note that the last line of both

calculations are of no interest here since they are time independent.

We refer to eq. (A.1) for the calculation of the boundary action

ICD = −2

∫
dΣK = 2Ωd

∫ U0

1/(V0+h)

βdU

2πU
Ldρd+2

√
−f(1/ρ)

−g(1/ρ)
∂ρ

(
log(Ld+1(−f)1/2ρd)

) ∣∣∣
ρ=0

=
β

2π
log(U0(V0 + h))ΩdLd

d2 + dz − dθ − 2θ

d− θ
ρ
d+dz/(d−θ)
h

√
f0

g0
Q̂−z/(d−θ) (C.17)

The joint action is obtained from eq. (A.4)

IJ = 2

∫
B′
adS = −2ΩdLdρd log(−L2f(1/ρ))

∣∣∣
ρJ

(C.18)

It is cumbersome to sum up all the parts directly, but it is easy to show that in the

limit h→ 0 and ρJ → ρh, summing up all the parts gives

Itotal = 2E(tL + tR)

(
1 +

z − 1

d− θ

)
, (C.19)

which recovers eq. (2.26) when performing either a tL or tR derivative.

C.3 Contribution of figure 5b

In this case, the bulk regions behind the future and past horizon still contribute to the time-

dependent action. The one behind the future horizon has action identical to eq. (C.15),

while the one behind the past horizon has action

IEMNHO′ =

∫ ρh

0
dρ

∫ − e 4πβ ρ∗(ρ)

U−1
0 +h

−V −1
0

β

2π

(
−dU
U

)∫
ddxiL

d+2ρd−2
√
f(1/ρ)g(1/ρ)(2κ2)LEMD

=
β

2π
log((U−1

0 + h)V −1
0 ))Ωd(F (ρh)− F (0))

− 2Ωd

∫ ρh

0
dρLd+2ρd−2

√
f(1/ρ)g(1/ρ)(2κ2)ρ∗(ρ)LEMD. (C.20)

There is no longer a joint action that is time dependent. However, we should take the

boundary action of the spacelike segment MN into account:

IMN = 2Ωd

∫ − 1

U−1
0 +h

−V −1
0

β

2π

(
−dU
U

)
Ldρd+2

√
−f(1/ρ)

−g(1/ρ)
∂ρ

(
log(Ld+1(−f)1/2ρd)

)∣∣∣
ρ=0

=
β

2π
log((U−1

0 +h)V −1
0 ))ΩdLd

d2+dz−dθ−2θ

d−θ
ρ
d+dz/(d−θ)
h

√
f0

g0
Q̂−z/(d−θ).

(C.21)

The total action is obtained by summing up eqs. (C.15), (C.17), (C.20), (C.21),

and (C.14):

Itotal =
β

2π

(
log(1 + hV −1

0 ) + log(1 + hU0)
)

2E

(
1 +

z − 1

d− θ

)
. (C.22)
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Refering to eq. (C.6), if hV −1
0 � 1 and hU0 � 1, which means tR � |tw| − t∗ and

|tw| − t∗ � −tL, the action almost vanishes because the parts behind the past and future

horizon almost cancel with each other. However, if hV −1
0 � 1 and hU0 � 1, the action

reduces to

Itotal = (2(|tw| − t∗) + tL − tR) 2E

(
1 +

z − 1

d− θ

)
. (C.23)

Eq. (C.23) precisely recovers the growth rate of action in eq. (2.26) at late time.

This result is identical to the result obtained by ref. [8] when θ = 0, z = 1. The

calculation in ref. [8] considers an extra boundary term for the past and future horizon

FOG and EO′H, which is given by the null limit of the spacelike boundary action

IN = lim
S→N

IS = lim
ρ→ρh

sign(Σ)
1

8πG

∫
Σ

√
|h|KdΣ. (C.24)

In the calculation method of this paper, these terms are not present, but a similar contribu-

tion is given by considering the effect of the discontinuity of the metric along U = 0 horizon.
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