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1 Introduction

Recent years have seen remarkable progress in the study of conformal field theory, where

unitarity and symmetry can be used to constrain the dynamics without the need for a

perturbative expansion (see [1–4] for a review of recent progress). This may potentially lead

to a general understanding of the emergence of AdS gravitational physics from conformal

field theory. An important development in this subject has been the use of AdS space as

a tool for organizing CFT kinematics. In this paper we focus on two dimensional CFTs,

where symmetry constraints are the strongest, although many results can be generalized to

higher dimensions. We will study the bulk gravitational interpretation of global conformal

blocks at zero and finite temperature, where they can be represented as Witten diagrams

in the appropriate gravitational background.
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The states and operators of a conformal field theory can be organized into repre-

sentations of conformal symmetry. A conformal block is the contribution of a particular

representation (or representations) to a given physical observable. A block is a purely kine-

matic object, in that it is uniquely determined by the symmetry structure of the theory

and the choice of representation(s). The conformal symmetries of a CFTd are precisely the

isometries of AdSd+1, so it is natural to expect that any conformal block can be rewritten

in the language of quantum fields in AdS. This program was carried out explicitly in [5]

where the conformal blocks for CFT four-point functions of scalar operators were rewritten

in terms of AdS geodesic Witten diagrams. Further work in this direction, including the

presence of external operators with spin, may be found in [6–14]. The Virasoro symmetry

present for d = 2 allows one to define Virasoro blocks in this case, and bulk representa-

tions for Virasoro blocks, mainly in the so-called heavy-light limit, can be found in [15–22].

The advantage of this approach is that a-priori complicated CFT objects (which sometimes

cannot be computed explicitly) can often be given an extremely simple bulk interpretation.

Thus AdS appears as a useful tool for organizing CFT observables.

In this paper our primary interest is the bulk interpretation of finite temperature

global conformal blocks in two dimensional CFT, i.e. the conformal blocks for correlation

functions on the torus. This is particular interesting because at high temperature the bulk

dual is an AdS black hole, so the holographic description can be interpreted in terms of

bulk dynamics in a black hole background.

As a simple example, let us consider the case of a one-point function of an operator

O1 at finite temperature:

〈O1〉(β) =
∑
i

〈i|O1|i〉e−βEi =
∑

α primary

〈α|O1|α〉 |F(hα, h1, β)|2 . (1.1)

Here we have expanded in terms of conformal blocks1 |F(hα,h1,β)|2 = e−β(hα+h̄α−c/12)(1+...)

which describe the contribution from all descendant operators built on top of a primary

operator α. Our question is simple: what is the bulk AdS interpretation of the expan-

sion (1.1)? Let us imagine working at low temperature, and consider the contribution from

a single primary operator α. This operator is dual to a bulk field in AdS, with mass and

spin determined by the dimensions (hα, h̄α). The factor e−β(hα+h̄α−c/12) is the Boltzmann

factor for this particle sitting at the origin. In Euclidean signature, this is the action of a

bulk worldline at the origin of AdS wrapping the thermal circle.

We will show that |F(hα, h1, β)|2 is precisely equal to the bulk Witten diagram for a

particle which propagates once around the thermal circle, as in figure 1,

|F(hα, h1;β)|2 =

∫
Thermal AdS

d3x
√
gG

(h1)
b∂ (x,w)G

(hα)
1 (x, β) . (1.2)

Here G
(h1)
b∂ (x,w) is the bulk-boundary propagator for the O1 particle to propagate from a

point x in thermal AdS to a point w on the boundary. On the other hand, G
(hα)
1 (x, β) is

1We write |F|2 for the conformal blocks since in two dimensions they factorize into holomorphic and

antiholomorphic parts FF̄ , which we will have occasion to consider separately.
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Figure 1. Bulk dual of the torus one-point block. The blue line represents the bulk-to-boundary

propagator for h1, and the red line the propagator for the α particle to propagate once around the

thermal circle.

the bulk-bulk propagator which describes the α particle propagating exactly once around

the thermal circle. This differs from the full bulk-bulk thermal propagator, which would

involve a sum over windings around the thermal circle, by terms which are exponentially

suppressed at low temperature. Equation (1.2) should be viewed as the generalization of

the results of [5] to thermal blocks. This means that the sum (1.1) can be interpreted

as a sum over particles propagating in a thermal AdS background. In this paper we will

consider only global blocks, which in the bulk language means that the particle does not

back-react on the geometry. We expect that the full Virasoro block should account for

gravitational back-reaction.

This result can also be interpreted in terms of particles propagating in the BTZ black

hole geometry, following [23]. In particular, since correlation functions on the torus are

modular covariant, we can write the one point function as

〈O1〉(β) = β−(h1+h̄1)
∑

α primary

〈α|O1|α〉
∣∣∣∣F (hα, h1,

4π2

β

)∣∣∣∣2 . (1.3)

Here the sum is over states propagating around the spatial circle on the torus, rather than

a sum over states propagating around the thermal circle. In the bulk,
∣∣∣F (hα, h1,

4π2

β

)∣∣∣2 is

now interpreted as a Witten diagram in the BTZ black hole background. The advantage

of this approach is that the contribution to (1.3) from light states will now dominate the

behaviour of 〈O1〉(β) at high temperature. For example, the lightest state α with non-

vanishing one point function gives the leading asymptotics

〈O1〉(β) ∼ β−(h1+h̄1)〈α|O1|α〉 exp
{
−4π2(hα + h̄α − c/12)/β

}
+ · · · (1.4)

– 3 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
9

Indeed, in [23] it was argued that the Witten diagram for an α particle which wraps the

horizon once will reduce precisely to (1.4) in the high temperature limit. In this limit the α

particle just sits at the event horizon. We can now understand the subleading corrections

to (1.4), as captured by the full sum (1.3). In particular, we see that if we include the

full tower of descendant states built on top of α, this simply describes the propagation α

particle in the Euclidean BTZ background, rather than just sitting at the horizon.

In fact, we will see that many of these results can be generalized from one-point

functions to n-point functions. In order to do this, we will introduce a new method for

the computation of sphere and torus blocks in two dimensional CFT. Rather than a direct

computation (as in [24] for the case of the torus one-point block), we will instead derive

a general conformal Casimir equation which is obeyed by these conformal blocks, similar

to that obeyed by sphere four-point blocks. We will work out the case of the one-point

block in detail, and show that this description leads immediately to the bulk description in

terms of the Witten diagram described above. We will generalize this to n-point functions,

where it is difficult to find explicit expressions for the blocks, and discuss the bulk Witten

diagram description of n-point conformal blocks on the sphere and on the torus.

We will then move on to study the semi-classical limit, where a bulk Witten diagram

can be approximated by the action of a collection of bulk geodesics. For example, in this

limit the one-point block is computed by the action of a pair of bulk geodesics — the blue

line and the red circle in figure 1 — one of which wraps the thermal circle. The dynamics

of this pair of geodesics is still somewhat complicated, since the geodesics will pull on one

another in a non-trivial way (which depends on the particle masses) to reach a configuration

that minimizes the total worldline action.2 We will show that the Casimir equations for

our n-point conformal blocks reduce precisely to the correct equations of motion for these

geodesics.

We will conclude by giving an alternate description of these results in the language of

Chern-Simons theory. In this case we show that the conformal blocks can be computed in

terms of a network of bulk Wilson lines, following [6, 7, 27]. In this description, the thermal

blocks are now evaluated in a Chern-Simons background which has non-trivial holonomy

around the thermal circle.

2 Torus one-point block from a Casimir equation

In this section, we derive the global conformal block for torus one-point functions using a

Casimir equation. The result is known in the literature [24], but the derivation using the

Casimir equation is new and will be useful later for the holographic computations as well

as multi-point blocks.

The (holomorphic) torus 1-point block is defined as

F(hα, h1; q) = Tr
[
Pαq

L0φ1(w)
]
. (2.1)

Here, the “external” operator φ1(w) is a quasi-primary field on the cylinder, with coordinate

w. The generators of the holomorphic sl(2,R) are L0, L±1, satisfying the commutation

2Related considerations were discussed in [25, 26].
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Figure 2. 1-point block on torus.

relations [Lm, Ln] = (m − n)Lm+n, with L0 generating translations in w. The insertion

of the projection operator Pα has the effect of restricting the trace to a sum over states

built on the quasiprimary state |hα〉. Up to an overall factor of 〈hα|φ1(0)|hα〉, which is the

three-point coupling φαφαφ1, the one-point block is fully determined by sl(2,R) symmetry.

We shall drop this overall factor for the rest of the paper. The one-point block is depicted

in figure 2, with the “internal” operator φα circulating in the loop and fusing with the

external operators φ1 at a three-point vertex.

It is straightforward enough to compute the one-point block directly: simply enumerate

the states contributing to the trace, and use the sl(2,R) commutation relations to compute

the matrix elements, as was done in [24]. However, as is the case for four-point blocks

on the sphere, it is much more elegant and illuminating to proceed by using the Casimir

operator to derive a second order differential equation obeyed by the block.

We proceed by inserting the quadratic Casimir operator

L2 =
1

2
(L1L−1 + L−1L1)− L2

0 , (2.2)

into the definition of the block, i.e. we want to compute Tr
[
L2Pαq

L0φ1(w)
]
. The Casimir

commutes with the algebra, so L2 is constant on the representation, with eigenvalue

−hα(hα − 1), from which we immediately conclude that

Tr
[
L2Pαq

L0φ1(w)
]

= −hα(hα − 1)F(hα, h1; q) . (2.3)

On the other hand, we can also derive some identities by commuting the generators in L2

through the other operators and using cyclicity of the trace. For example,

Tr
[
PαLnq

L0φ1(w)
]

= qn Tr
[
Pαq

L0Lnφ1(w)
]

= qn Tr
[
Pαq

L0φ1(w)Ln
]

+ qn Tr
[
Pαq

L0 [Ln, φ1(w)]
]

= qn Tr
[
Pαq

L0φ1(w)Ln
]

+ qnLn Tr
[
Pαq

L0φ1(w)
]
, (2.4)

where we have also used the action of the symmetry generators on a quasiprimary field by

the differential operator Ln

[Ln, φ(w)] = −Lnφ(w) with Lnφ(w) = e−inw
(
nh+i∂w

)
φ(w) (n = −1, 0, 1) (2.5)

– 5 –
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and the identity

Lnq
L0 = qL0+nLn . (2.6)

Thus, we have shown that for n = ±1, we have

Tr
[
PαLnq

L0φ1(w)
]

=
qn

1− qn
Ln Tr

[
Pαq

L0φ1(w)
]

=
qn

1− qn
LnF(hα, h1; q) . (2.7)

We may additionally insert L−n into the above relation and repeat the same steps to obtain

Tr
[
PαL−nLnq

L0φ1(w)
]

=
2nqn

1− qn
q∂qF(hα, h1; q) +

1

(1− qn)(1− q−n)
LnL−nF(hα, h1; q) .

(2.8)

Insertions of L0 can be accounted for by taking derivatives with respect to q:

Tr
[
PαL

2
0q
L0φ1(w)

]
= q∂q (q∂qF(hα, h1; q)) . (2.9)

Combining these results, we rewrite the insertion of the Casimir as a differential operator

(in q) acting on the block:

Tr
[
PαL

2qL0φ1(w)
]

= −
[
q∂qq∂q −

1 + q

1− q
q∂q +

q

(1− q)2

1

2
{L1,L−1}

]
F(hα, h1; q) , (2.10)

where {L1,L−1} ≡ L1L−1 +L−1L+1. Since L0 annihilates Tr
[
Pαq

L0φ1(w)
]

by translation

invariance (i.e. F(hα, h1; q) is in fact independent of w), this can be written as

Tr
[
PαL

2qL0φ1(w)
]

= −
[
q∂qq∂q −

1 + q

1− q
q∂q +

q

(1− q)2
L2

]
F(hα, h1; q) . (2.11)

Now, using eq. (2.3) and L2φ1(w) = −h1(h1 − 1)φ1(w), we arrive at

− hα(hα − 1)F(hα, h1; q) = −
[
q∂qq∂q −

1 + q

1− q
q∂q −

q

(1− q)2
h1(h1 − 1)

]
F(hα, h1; q) ,

(2.12)

which can be rewritten as[
q(1− q)2∂2

q − 2q(1− q)∂q − hα(hα − 1)q−1(1− q)2 − h1(h1 − 1)
]
F(hα, h1; q) = 0 . (2.13)

This is essentially a hypergeometric equation, and the solution with the correct small q

asymptotics (i.e. the solution which behaves as qhα as q → 0) is

F(hα, h1; q) =
qhα

(1− q)h1 2F1(1− h1, 2hα − h1; 2hα; q)

=
qhα

(1− q)1−h1 2F1(h1, 2hα + h1 − 1, 2hα, q) . (2.14)

Notice that if we set h1 = 0 we get F(hα, 0; q) = qhα/(1−q) which is the sl(2,R) character of

the representation built on |hα〉. Furthermore, from the Casimir method or explicitly from

the above solution, it is obvious that the block with external operator with dimension h1 is

the same as its “shadow” which has dimension 1 − h1, i.e. F(hα, h1; q) = F(hα, 1− h1; q).

– 6 –
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For future reference we define the differential operator

Qh = q(1− q)2∂2
q − 2q(1− q)∂q − h(h− 1)

(1− q)2

q
(2.15)

so that eq. (2.13) now reads like an eigenvector equation:

QhαF(hα, h1; q) = h1(h1 − 1)F(hα, h1; q) . (2.16)

3 Holographic description of the torus one-point blocks

In this section, we will describe the bulk dual of a torus one-point block. We will begin

with a general proposal for the bulk representation of the conformal block, before proving

a bulk-bulk propagator identity which will imply that our bulk proposal satisfies the same

Casimir equation as the boundary torus one-point block.

3.1 Generalities

We work with the global AdS3 metric in the form

ds2 =
1

cos2 ρ
(dρ2 + dt2 + sin2 ρ dφ2) (3.1)

and define the complex coordinate w = φ + it. The AdS metric has isometry group

sl(2,R) × sl(2,R). In this section, Ln and Ln will denote these generators acting in the

bulk. In particular, the isometry generators are L±1,0 and L±1,0, which obey the sl(2,R)

algebra

[Lm,Ln] = (m− n)Lm+n , [Lm,Ln] = (m− n)Lm+n . (3.2)

The quadratic Casimir is the differential operator3

L2 = ηABLALB =
1

2
(L1L−1 + L−1L1)− L2

0 A = −1, 0,+1 (3.3)

with eigenvalues L2 = −h(h − 1) when acting on the sl(2,R) representation built on |h〉.
For a scalar primary (where h̄ = h), the relation to the scalar Laplacian on AdS is

L2 = −1

4
∇2 . (3.4)

The bulk-bulk propagator G
(h)
bb for a scalar field of mass m2 = 4h(h− 1) obeys

∇2G
(h)
bb (x′, x) = 4h(h− 1)G

(h)
bb (x′, x) +

1
√
g
δ3(x′ − x) . (3.5)

The bulk-boundary propagator obeys the source free wave equation, with boundary con-

dition G
(h)
b∂ (ρ, t, φ; t′, φ′) ∼ (cos ρ)2−2hδ(2)(t, φ; t′, φ′). The explicit forms of the propagators

will not be needed.

3Explicitly, the non-zero components of ηAB are η00 = −1 and η+1,−1 = η−1,+1 = 1/2.
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Figure 3. Bulk dual of the torus one-point function as a sum over bulk diagrams. The blue line

represents the bulk-to-boundary propagator G
(h1)
b∂ (x). In the first diagram, the red line winding

around the thermal circle once represents the G
(hα)
1 (x, q) contribution, while in the second diagram,

the red line winding around the thermal circle twice represents the contribution from two windings

around the thermal circle. The bulk point x is to be integrated over all thermal AdS.

Thermal AdS is obtained by making the identification w ∼= w+ 2πτ for τ in the upper

half-plane. The bulk solution is then a solid torus, whose conformal boundary is a torus

with modular parameter τ .

We now seek a bulk description the one-point torus conformal block F(hα, h1; q) defined

and computed in the last section. This will involve introducing two fields in the bulk,

namely scalars of mass m2
α = 4hα(hα − 1) and m2

1 = 4h1(h1 − 1). These fields interact via

the cubic coupling λΦ1Φ2
α. Now, given this setup, we can imagine computing the one-point

Witten diagram 〈O1〉 to first order in λ,

〈O1(w)〉 = λ

∫
Thermal AdS

d3x
√
gG

(h1)
b∂ (x,w)G

(hα)
bb (x, x) . (3.6)

Here x denotes a bulk point and w a boundary point. The propagators in thermal AdS can

be obtained from those in global AdS by summing over images to respect the w ∼= w+ 2πτ

identification. From a first-quantised worldline point of view, the sum over images of the

bulk to bulk propagator G
(hα)
bb (x, x) is a sum over topologies of worldlines, organised by the

number of windings around the thermal circle. Decomposing the contributions to 〈O1(w)〉
according to their winding around the thermal circle yields the sum represented pictorially

in figure 3. The zero winding contribution is divergent, but we omit this (equivalently

we add a local counterterm to cancel it) since it corresponds to the one-point function in

global AdS, which vanishes.

Now, the full Witten diagram is expected to be equal to a sum of one-point blocks, as

is familiar in the analogous case of four-point functions on the plane. In the case at hand,

the Witten diagram receives contributions from the infinite tower of multi-trace primary

operators built out of products of the single trace primary Oα with insertions of derivatives.

The question is how to isolate the contribution from a single block, in particular that of

the single trace primary Oα.

In the case of four-point blocks on the plane, part of the bulk prescription involved

restricting the integration over interaction vertices to lie on bulk geodesics connecting the

– 8 –
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boundary operator insertion points. This makes good intuitive sense, as it corresponds

to computing “part” of the full correlator, while respecting conformal invariance. In the

present case we have only a single boundary insertion so there is no natural geodesic over

which to integrate the vertex. A little thought reveals that the only natural thing to do is to

isolate a single winding contribution in the full expression for the bulk-bulk propagator. In

particular, it seems natural to expect that the single winding terms yield the contribution

from the single trace primary running in the loop, dual to the bulk one-particle states.

Similarly, we can expect the n-th winding sector yields contributions from primaries built

out of the n-th power of Oα, but note that there are many such primaries differing by

insertions of derivatives, corresponding to the different possible wavefunctions of n-particle

states in AdS, so for n > 1 we get a sum over blocks rather than a single block.

Our proposal is therefore

|F(hα, h1; q)|2 ∼
∫

Thermal AdS

d3x
√
g G

(h1)
b∂ (x,w)G

(hα)
1 (x, q) , (3.7)

where G
(hα)
1 (x, q) denotes the bulk-bulk propagator in global AdS with endpoints related

by a single thermal translation. On the other hand, G
(h1)
b∂ (x,w) is the full bulk-boundary

propagator in thermal AdS, obtained from the global AdS propagator by summing over all

thermal translations.

In fact, there is an alternative representation of the proposal in eq. (3.7). This is

given by

|F(hα, h1; q)|2 ∼
∫

AdS
d3x
√
g G

AdS,(h1)
b∂ (x,w)G

(hα)
1 (x, q) . (3.8)

Note that the integration in eq. (3.8) is over all of global AdS while G
AdS,(h1)
b∂ (x,w) is the

bulk-boundary propagator on global AdS. The equivalence between eq. (3.7) and eq. (3.8)

is apparent when one interprets eq. (3.7) as letting the interaction vertex go around the

thermal circle any number of times, dragging with it the bulk-boundary propagator.4 This

is natural, as it corresponds to performing the integration over all configurations subject

only to the constraint that the bulk-bulk propagator winds once around the thermal circle.

However, as we will see later, the representation in eq. (3.8) will be more convenient for

generalizations to higher-point torus blocks.

To prove eq. (3.7), in the next subsection, we will show that the r.h.s. obeys the differen-

tial equation (2.16) and also shares the same low temperature asymptotics as F(hα, h1; q).

These two conditions uniquely fix F(hα, h1; q).

Before we go on, we should briefly mention convergence of the integral. Since the

bulk-boundary propagator contains a non-normalizable delta-function supported piece, the

integral over AdS has an IR divergence from the boundary near the point w if h1 > 2hα.

To avoid this subtlety, we will restrict our considerations to the case h1 < 2hα.

4To see this equivalence more explicitly, first note that G
(hα)
1 is independent of t and φ. Then, rewrite

the full thermal AdS bulk-boundary propagator G
(h1)
b∂ (x,w) as a thermal-image sum over the global AdS

bulk-boundary propagator G
(h1)
b∂ (x,w). The thermal sum then converts the integration region from thermal

AdS to global AdS.

– 9 –
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3.2 A bulk-bulk propagator identity

The conjecture eq. (3.7) follows easily from an identity for the AdS bulk-bulk propagator

G
(h)
1 (x, q), namely, that the action of the Laplacian on x is equivalent to the action of the

differential operator Qh on the temperature parameter q.

In this section, it will be useful to realize the bulk-bulk propagator in global AdS

as the vacuum two-point function 〈0|Φ(x)Φ(x′)|0〉 for a free quantum scalar field.5 Now

let (Ln, Ln) be the isometry generators acting on the Hilbert space of the scalar field, as

computed from Noether’s theorem. The operator implementing a translation around the

thermal circle is e2πiτL0−2πiτL0 = qL0qL0 with q = e2πiτ . Therefore, using the sl(2,R)

invariance of the vacuum, the expression for the propagator whose endpoints are displaced

by a single translation around the thermal circle is

G1(x, q) = 〈0|Φ(x)qL0qL0Φ(x)|0〉 . (3.9)

We now derive a differential equation for this object. This analysis will only involve q and

not q, so to avoid clutter we suppress the qL0 insertion in what follows.

Using eq. (3.3)–(3.4), we have

− 1

4
∇2G1(x, q) = 〈0|L2Φ(x)qL0Φ(x)|0〉+ 〈0|Φ(x)qL0L2Φ(x)|0〉+ 2ηAB〈0|LAΦ(x)qL0LBΦ(x)|0〉 .

(3.10)

Note that [Ln,Φ] = −LnΦ, with the usual minus included so that the Ln obey the same

algebra as the Ln. The first two terms are simple, but the cross-term requires some work

to bring it to a more usable form. We use Lmq
L0 = qL0+mLm to rewrite this last term as

2ηAB〈0|LAΦ(x)qL0LBΦ(x)|0〉 = −2ηAB〈0|Φ(x)qL0+ALBLAΦ(x)|0〉 . (3.11)

Explicitly, there are three contributions

−2η1,−1〈0|Φ(x)qL0+1L−1L1Φ(x)|0〉 = −q〈0|Φ(x)qL0(L2 + L2
0 + L0)Φ(x)|0〉 , (3.12)

−2η−1,1〈0|Φ(x)qL0−1L1L−1Φ(x)|0〉 = −q−1〈0|Φ(x)qL0(L2 + L2
0 − L0)Φ(x)|0〉 , (3.13)

−2η0,0〈0|Φ(x)qL0L2
0Φ(x)|0〉 = 2〈0|Φ(x)qL0L2

0Φ(x)|0〉 , (3.14)

which combine to give

2ηAB〈0|LAΦ(x)qL0LBΦ(x)|0〉
= −(q + q−1)〈0|Φ(x)qL0L2Φ(x)|0〉 − (q + q−1 − 2)〈0|Φ(x)qL0L2

0Φ(x)|0〉
− (q − q−1)〈0|Φ(x)qL0L0Φ(x)|0〉 , (3.15)

a form that is useful in eq. (3.10). Replacing insertions of L0 by q∂q as before, and using

the bulk free equation of motion L2Φ = −h(h− 1)Φ, we finally arrive at

− 1

4
∇2G1(x, q) = (q+ q−1−2)h(h−1)G1(x, q)− (q+ q−1−2)(q∂q)2G1(x, q)− (q− q−1)q∂qG1(x, q)

(3.16)

5We use Φ(x) to indicate a bulk scalar field operator dual to the scalar quasiprimary O(w) in the

boundary CFT.
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or, more concisely,

QhG1(x, q) =
1

4
∇2G1(x, q) (3.17)

where Qh is the same differential operator appearing in the Casimir eq. (2.15).

3.3 Application to torus 1-point block

Our proposed bulk representation of the torus one-point block is

W1(hα, h1; q) =

∫
Thermal AdS

d3x
√
gG

(h1)
b∂ (x,w)G

(hα)
1 (x, q) . (3.18)

We take the internal operator to be of dimension hα and the external one to be of dimension

h1. We now act with Qh(q) and use eq. (3.17). Upon integrating by parts we have

QhαW1(hα, h1; q) =

∫
Thermal AdS

d3x
√
gG

(hα)
1 (x, q)

1

4
∇2G

(h1)
b∂ (x,w) = h1(h1 − 1)W1(hα, h1; q) ,

(3.19)

which matches the CFT eq. (2.16). It is also easy to see that our bulk expression has

the small q asymptotics W1(hα, h1; q) ∼ qhα from the long-distance fall-off of the bulk

to bulk propagator G1. This implies that W1(hα, h1; q) = F(hα, h1; q) up to an overall

proportionality factor. The same derivation also applies to the representation in eq. (3.8).

We have thus established our conjecture for the bulk representation of the torus 1-point

block.

4 Torus n-point function blocks

In this section, we generalize the considerations of section 2 to derive a Casimir equation

satisfied by torus n-point-function blocks. We will show that in a particular channel, the

block factorizes as a product of the one-point torus block and an (n + 2)-point block on

the sphere. Finally, we discuss the problem of giving holographic representations of these

higher-point blocks.

4.1 Casimir equations for n-point blocks

As for the one-point functions, the n-point function on the torus can be decomposed into

quasi-primary families labelled by α:

Tr
[
qL0φ1(w) · · ·φn(wn)

]
=
∑
α

Tr
[
Pαq

L0φ1(w1) · · ·φn(wn)
]
. (4.1)

Unlike the n = 1 case, the functional form of the terms in the decomposition is not yet

determined kinematically. By taking the OPE between operators and decomposing into

representations, or by inserting additional projections elsewhere in the trace, we may ulti-

mately reduce the correlation function to sums of blocks determined by conformal symme-

try in terms of only the conformal dimensions, with coefficients depending on quasiprimary

OPE coefficients in the familiar way. There are several ‘channels’, or ways to perform this
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procedure, but for now we will be ambivalent about the choice we have made, and define

an n-point torus block

F(hα;h1, h2, . . . hn;w1, . . . wn; q) = Tr
[
Pαq

L0φ1(w1) · · ·φn(wn)
]

(4.2)

where we have kept only the holomorphic dependence explicit, suppressed additional pro-

jectors onto conformal families, and ignored the coefficient that depends on dynamical

data. None of this will effect the derivation of the Casimir equation which follows.

We may follow the same method as section 2, inserting a Casimir operator and com-

muting through the trace, to arrive at the differential equation6Qhα +

n∑
i=1

L(i)
+1

n∑
j=1

L(j)
−1

F = 0 , (4.3)

where the L(i)
n are differential operators eq. (2.5) acting on wi, and Qhα is the differential

operator acting on q, exactly as in eq. (2.15):

Qh = q(1− q)2∂2
q − 2(1− q)q∂q − h(h− 1)

(1− q)2

q
. (4.4)

Now, we define ‘total’ differential operators

Ltot
A ≡

n∑
i=1

L(i)
A , A = 0,±1, (4.5)

acting on all the ei, equivalent to the insertion of the operator Ln on a cycle surrounding

all the φi, such that the differential equation is succinctly written as[
Qhα + Ltot

+1Ltot
−1

]
F = 0 . (4.6)

Furthermore, by inserting L0 into the trace and commuting L0 through together with

using the cyclicity property of the trace we have translation invariance Ltot
0 F = 0. This

implies that(
Ltot

)2
= ηABLtot

A Ltot
B F =

[
−Ltot

0 (Ltot
0 + 1) + Ltot

+1Ltot
−1

]
F = Ltot

+1Ltot
−1F . (4.7)

With this, we can rewrite the differential equation as[
Qhα +

(
Ltot

)2]F = 0 . (4.8)

The second term
(
Ltot

)2
is the same differential Casimir operator that appears when

deriving the sphere (n + 2)-point conformal block [28], appearing in the sphere correla-

tor 〈φαφ1 . . . φnφα〉.
6To recover the torus one-point block Casimir equation of eq. (2.16) from this equation, use the fact

that L0 annihilates F , and then because there are no cross-terms in the sum, the second term is just the

Casimir differential operator: L(1)
+1L

(1)
−1F = (L(1))2F = −h1(h1 − 1)F .
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φ1 φ2

φ3

φ4

n = 2 :

φ1 φ2n = 3 : φ3φ1 φ2
. . . . . .

n = 4 : φ3φ1 φ2 φ4φ3φ1 φ2 . . . . . .

φp

φp

φp

φp φp

Figure 4. Given a particular OPE channel, φp is the last operator appearing in the OPE.

Now, suppose we have chosen a channel where we do not insert any other projection

operators in the trace, but rather only take the OPE repeatedly as for correlation func-

tions on the plane. At the last stage, once we have taken the OPE with every pair of

operators, the block contains contributions only from the conformal family of some pri-

mary φp (see figure 4). In other words, the block includes a projection operator Pp on

the cycle surrounding all the wi. This means that the differential operator
(
Ltot

)2
acting

on the coordinates wi is just the Casimir of that representation, so it can be replaced by

the constant −hp(hp − 1). The block satisfies the same differential equation in q alone as

the one-point block, and fixing the solution using the low-temperature asymptotics, this

implies that the dependence of q and wi factorizes:

F(hα;h1, h2, . . . hn;w1, . . . wn; q) = F(hα, hp; q) Fn+2(hp, hp, hi;wi) . (4.9)

Here, the first factor is the one-point torus block from above, and the second factor is just

the (n + 2)-point block on the cylinder at zero temperature, with two insertions of the

operator φp, at t = ±∞.

For example, the two-point block in this channel factorizes as the one-point torus

block times the more standard four-point block, with a well-known expression in terms of

a hypergeometric function:

F(hα;h1, h2;w1, w2; q) =
qhα

(1− q)1−hp 2F1(hp, hp + 2hα − 1; 2hα; q)

× (1− z)−h1−h2+hp
2F1 (hp, hp − h1 + h2; 2hp; 1− z) . (4.10)

The first line is the torus one-point block from the previous section, while the second line

is the (holomorphic) T-channel block for 〈φαφ1φ2φα〉, with cross-ratio z ≡ e−i(w2−w1).

In more general channels, with additional projection operators inserted in the trace,

there will not be such a simple factorization, and the solution to the Casimir equation

must be written as a sum over many such factorized pieces with different eigenvalues. It is

possible to get additional Casimir equations in such cases, but we will leave considerations

of these other channels for future work.
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4.2 Holographic description of a torus 2-point block

The holographic representations of higher-point blocks are more subtle than the one-point

block. This is because the Witten diagram contains contributions from double-traces built

from the external operators, coming from contact terms in bulk propagators, which are

hard to project out in a natural way. This is in contrast to the contributions from multi-

trace operators built from the internal conformal family, which are simply and naturally

projected out by replacing the full thermal AdS propagator with G1. In this section, we

discuss possible proposals and the associated difficulties in detail, ending with a tentative

suggestion for a representation of the two-point thermal block.

Building a bulk representation. Given the intuition from previously known results for

geodesic Witten diagrams, and the representation of the one-point torus block, a natural

ansatz to write down for a bulk representation of a two-point torus block is the following:

W2(q;w1, w2)=

∫
AdS

d3x
√
g G

(hα)
1 (x, q)

∫
γ12

dλG̃
(hp)
bb (x; y(λ))G

(h1)
b∂ (w1; y(λ))G

(h2)
b∂ (w2; y(λ)) .

(4.11)

Here, G1 is the bulk propagator used for the one-point block, G̃
(hp)
bb is some ‘bulk-to-bulk

propagator’, the exact form of which we will discuss, and y is a bulk point, which we have

chosen to integrate over the geodesic γ12 between points w1 and w2, following the example

of geodesic Witten diagrams and the ‘OPE block’ introduced in [8], and discussed in more

detail later. For the consideration of the Casimir equation which follows, nothing would

change if we were to integrate y over the whole bulk.

Given this expression W2, let us attempt to derive the Casimir equations for the

two point block. First we act with the differential operator Qhα on the q variable, and

similarly to the derivation in the holographic one-point block in section 3.3, we use the

bulk propagator identity eq. (3.17) to convert this to a Laplacian acting on x. After

integrating by parts, the Laplacian acts on G̃
(hp)
bb , which results in the Casimir equation if

G̃
(hp)
bb (x; y) obeys the free wave equation as a function of x, without sources :

QhαW2(q;w1, w2) =

∫
AdS

d3x
√
g
[
QhαG

(hα)
1 (x, q;hα)

] ∫
dλ G̃

(hp)
bb G

(h1)
b∂ G

(h2)
b∂

=

∫
AdS

d3x
√
g G

(hα)
1

∫
dλ

[(
1

4
∇2
x

)
G̃

(hp)
bb (x; y)

]
G

(h1)
b∂ G

(h2)
b∂

= hp(hp − 1)W2(q;w1, w2) . (4.12)

If G̃
(hp)
bb did not obey the wave equation, but instead had some source in the bulk (for

example, the usual bulk-to-bulk propagator would have a delta-function source at y), we

would not recover the Casimir equation. This would give contact terms in the bulk inte-

gral, which provide the contribution of double-trace operator exchanges in the full Witten

diagram.

Next, similar to the Casimir equation derivation of the holographic representation of

the sphere four-point block [5], we can rewrite

W2 =

∫
d3x
√
g G

(hα)
1 (x, q;hα)F (x;w1, w2) (4.13)
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where F is defined as7

F (x;w1, w2) ≡
∫
γ12

dλ G̃
(hp)
bb (x, y(λ))G

(h1)
b∂ (w1; y(λ))G

(h2)
b∂ (w2; y(λ)). (4.14)

If we assume that the combination F is invariant under AdS isometries acting simultane-

ously on w1, w2 and x, then it satisfies

L(tot)
A F (x;w1, w2) =

[
L(1)
A + L(2)

A

]
F (x;w1, w2) = −L(x)

A F (x;w1, w2) (4.15)

where the operators L
(i)
A act on the coordinates wi while L

(x)
A acts on the bulk coordinate

x. Acting with L
(tot)
A again and summing over A = 0,±1 yields

∑
A

Ltot
A Ltot

A F (x;w1,w2) =
∑
A

(
L(x)
A

)2
F (x;w1,w2) = −1

4
∇2

xF (x;w1,w2) = −hp(hp−1)F (x;w1,w2)

where we once again use the free equation of motion for G̃
(hp)
bb . Since all wi dependence of

W2 is contained in F , this establishes the second Casimir equation for the block.

These conditions on G̃
(hp)
bb are not sufficient to show that the expression W2 really is the

two-point torus block, since the Casimir differential equations do not have unique solutions

without also providing boundary conditions. For example, we might choose G̃
(hp)
bb to be

the usual bulk-to-bulk propagator, minus its ‘shadow’, the Green’s function with alternate

boundary conditions as relevant for a dimension 1 − hp operator. The bulk sources in the

two terms cancel, so the Casimir equation would be satisfied, but the result would not be

a single block, but a linear combination including the shadow block.

In summary, to find a bulk representation of a conformal block, we see two possible

obstacles. Firstly, contact terms in bulk to bulk propagators give unwanted double-trace

contributions, and secondly, the wrong boundary conditions give shadow block contribu-

tions, and both of these must be avoided. For example, the geodesic Witten diagram for

four-point blocks uses the usual bulk-to-bulk propagator to avoid the second problem, and

avoids contact terms by integrating only over geodesics. It is not obvious how to generalize

this to higher point blocks.

A proposal from the OPE block. One way to think of the two-point thermal block

in eq. (4.10) is as a trace in the representation built on conformal dimension hα, of the

‘OPE block’ [O1(w1)O2(w2)]p discussed in [8], which packages the conformal family of Op
appearing in the O1, O2 OPE. This can be written in Lorentzian signature as a smear-

ing of Op over the causal diamond bounded by the spacelike separated points w1, w2,

with an appropriately chosen kernel. This has a natural bulk description as a free bulk

field Φp(x) integrated over a geodesic, where Φp is defined using the ‘HKLL’ reconstruc-

tion [29, 30] of the free bulk field. This writes Φp(x) as an integral of the operator Op on

the boundary by using the smearing function K
(hp)
HKLL, supported in the causal diamond:

7Note that F here is different from the F in [5] since we use the modified source-free bulk-to-bulk

propagator G̃
(hα)
bb instead of an ordinary AdS bulk-to-bulk propagator G

(hα)
bb .
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Φp(x) =
∫
�d

2wK
(hp)
HKLL(x,w)Op(w). This gives us the following representation for the OPE

block:

[O1(w1)O2(w2)]p =

∫
γ12

dλG
(h1)
b∂ (w1, y(λ))G

(h2)
b∂ (h2, w2, y(λ))

∫
�
d2wK

(hp)
HKLL(y(λ), w)Op(w) .

(4.16)

Note that this is just a CFT operator equation, valid in correlation functions with other

operators inserted outside the causal diamond, though expressed in bulk language.

If we take the matrix elements of this expression between some quasiprimary states

|α〉, |β〉, the right hand side gives 〈β|Op(w)|α〉, the dependence on w being a simple kine-

matically determined function depending only on hα−hβ , integrated against the smearing

kernel. Performing the integrals then results in the four-point block with intermediate

operator Op, which can be checked by doing the integrals with an explicit expression for

the OPE block.

Given this result, and the factorized form for the two-point torus block, a natural

suggestion is to use the HKLL kernel to build the modified bulk-bulk propagator

G̃
(hp)
bb (x, x′) =

∫
∂AdS3

d2w G
(hp)
b∂ (x,w)K

(hp)
HKLL(x′, w), (4.17)

by multiplying the bulk-boundary propagator against the smearing function and integrating

over the common boundary point. This obeys the source free wave equation (∇2−m2
p)G̃ = 0

in x, and as a boundary condition, the coefficient of the non-normalizable mode approaches

the HKLL function. Note that G̃
(hp)
bb here depends implicitly on w1, w2 through the choice

of integration region and HKLL kernel, and is only defined when x′ lies on the geodesic

γ12. The expression is rather formal as it stands, because in the range of integration w

must be Lorentzian, but the finite-temperature interpretation requires x to be allowed to

be a point in Euclidean AdS.

Given this form of G̃
(hp)
bb , the factorized form eq. (4.10) of the block follows directly from

the integral representation. First, we note that the q dependence of W2 is now identical to

the expression for the one-point block eq. (3.8), since the x dependence of G̃
(hp)
bb now comes

through the bulk-to-boundary propagator (albeit to a formally Lorentzian boundary point).

The boundary point w is later integrated over the causal diamond, but this apparent w

dependence is irrelevant, since the one-point block is in any case w independent by time

translation and rotation symmetry. The block therefore factorizes, with the remaining

w-dependent factor being∫
γ12

dλG
(h1)
b∂ (w1; y(λ))G

(h2)
b∂ (w2; y(λ))

∫
∂AdS3

d2w K
(hp)
HKLL(w; y(λ)) . (4.18)

This is nothing other than the expression for the four-point block coming from the expecta-

tion value of the OPE block in some state, as discussed above but with |α〉 = |β〉, in which

case 〈α|Op(w)|α〉 is a constant, independent of w. The choice of state does not come into

this expression, but this is not unexpected since the four-point block itself is independent

of hα (depending only on the difference in dimension between the two states appearing,

which is zero here).
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At this stage, our bulk representation of the two-point torus block is somewhat formal,

as it involves mixed Euclidean and Lorentzian signatures. In particular, it would appear

to be problematic when the bulk point x crosses the lightcone of w, because of lightcone

singularities in the bulk to boundary propagator. Similarly, the convergence properties of

the integrals are unclear. It would be interesting to understand these issues better in order

to make this proposal more rigorous.

5 Bulk geodesic description of torus blocks in the heavy limit

Conformal blocks simplify in the limit in which all operator dimensions, internal and exter-

nal, become large, h� 1. In particular, the conformal blocks exponentiate in this regime.

Based on existing results (see [5]), we expect that the function appearing in the exponent

is equal to the action of a network of bulk worldlines in AdS, whose configuration is taken

to minimize the total worldline action, as obtained from an eikonal approximation. In

this section we will verify this correspondence in full generality. We begin with the sphere

n-point block, showing how the action for the network of worldlines obeys the same con-

formal Casimir equation as does the conformal block. We then consider the extension to

the torus n-point block.

Before proceeding, let us note that global conformal blocks in the limit h � 1 are

expected to coincide with Virasoro blocks in the semiclassical limit in which c → ∞,

h→∞, with h/c held fixed but considered to be small, h/c� 1 [31]. This correspondence

is easily understood from the bulk AdS point of view, where in both cases there is a natural

correspondence with non-gravitating particle worldlines.

5.1 Sphere block

5.1.1 Large dimension limit in CFT

We begin by studying the decomposition of an n-point function on the complex plane in a

particular OPE channel:

〈φn(zn)φ(zn−1) . . . φ1(z1)〉 =
∑
p

〈φn(zn)φ(zn−1) . . . φj+1(zj+1) Pp φj(zj) . . . φ2(z2)φ1(z1)〉

≡
∑
p

|Fp|2 (5.1)

where this may be thought of in radial quantization, with all zi for i ≤ j inside a circle on

which we insert the projector Pp, and those for i > j outside the circle. There may be other

projections inserted, which we suppress. We consider the large conformal dimension limit

hi, hp → ∞, with ratios hi/hp fixed. The subscript p labels the global conformal family

while j tells us how many operators sit to the right of Pp. Furthermore, we perform an

OPE expansion on all operators to the right of Pp, keeping a single representation at each

step, such that the operator φp appears in the last OPE step (see figure 5).
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... ...

...

hpC

Figure 5. An OPE channel where all the operators appearing to the right of Pp (i.e. φ1, . . . , φj)

are grouped inside the blue square.

Next, it is useful to introduce Ward identities [32] for the insertions of conformal

generators

Fp(LCm) ≡ 〈. . . LmPp . . .〉 =

j∑
i=1

(
(1 +m)hiz

m
i + zm+1

i

∂

∂zi

)
〈. . . Pp . . .〉, (5.2)

or more explicitly,

Fp(LC−1)

Fp
=

j∑
i=1

∂

∂zi
logFp

Fp(LC0)

Fp
=

j∑
i=1

(
hi + zi

∂

∂zi
logFp

)
Fp(LC1)

Fp
=

j∑
i=1

(
2hizi + z2

i

∂

∂zi
logFp

)
, (5.3)

where Fp = Fp(1) is just the block itself. The notation C specifies that in radial quantization

the sl(2,R) conformal generators LCA act on operators inside the contour of integration C
(i.e. operators φ1, . . . , φj) defining the moments of the stress tensor. This is depicted by

the dashed square in figure 5.

We also know that inserting the Casimir operator along with the projection gives

〈. . .
[

1
2(L1L−1 + L−1L1)− L2

0

]
Pp . . .〉

〈. . . Pp . . .〉
= −hp(hp − 1). (5.4)

We now make the ansatz that the block exponentiates in the limit of large dimensions,

Fp ≈ e−S , (5.5)

where S scales linearly in the dimensions, of order hp or hi. Keeping only the leading order

in the limit, the Casimir equation then simplifies as

Fp(LC1)

Fp
F(LC−1)

Fp
−
(
Fp(LC0)

Fp

)2

= −h2
p (5.6)
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because we keep only terms where derivatives act on the block itself, and bring down a

factor of dimension, rather than acting on factors from the action of previous Lns.

Next, we will show that the Ward identities eq. (5.3) and hence the semiclassical

Casimir eq. (5.6) are obeyed by the action of a network of particle geodesics in AdS.

5.1.2 Geodesic networks in AdS

In this section we consider AdS in Poincare coordinates,

ds2 =
du2 + dzdz

u2
(5.7)

with Killing vectors

L−1 = −∂z

L0 = −
(
z∂z +

1

2
u∂u

)
L1 = −(z2∂z + zu∂u − u2∂z) (5.8)

obeying the sl(2,R) algebra [Lm,Ln] = (m− n)Lm+n.

We now consider a network of geodesic segments in AdS. A worldline is taken to

emanate from the location of each external operator location on the boundary, and we then

connect them in the bulk using cubic vertices to form a network that mimics the particular

OPE channel considered in the definition of the analogous conformal block. That is, we

push the OPE diagram figure 5 into the bulk, holding fixed the locations of the external

operators on the boundary. The action of the network is given by summing the over the

lengths of the segments weighted by twice the conformal dimension 2h (which is equal to

the bulk mass in the heavy limit) of the corresponding operator. The on-shell action is

given by extremizing with respect to the worldline trajectories (which are geodesics) and

the locations of the vertices. We then wish to show that this on-shell action computes the

conformal block in the heavy limit via

logFp = −Son-shell

(
{zi, z̄i, u(∞)

i }
)
, where Son-shell

(
{zi, z̄i, u(∞)

i }
)

=
∑

segments

2hαlα,

(5.9)

where the lα are the appropriate geodesic lengths, including both the bulk-to-bulk and

bulk-to-boundary geodesics. The geodesics lengths diverge in going to the boundary at

u = 0, and so we have imposed a cutoff u(∞). We should properly deal with a renormalized

action obtained by subtracting off the divergence, but this just contributes an overall zi-

independent factor, and so we will suppress this.

The total geodesic network does not have loops, so for any worldline we may split it into

two parts, joined together by that geodesic. The two parts connect up to boundary points

z1, . . . zj and zj+1, . . . zn respectively, and are joined by a worldline carrying dimension hp.

This structure is chosen to coincide with the OPE channel chosen in the CFT.
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We now compute the variation of the on-shell action generated by the action of a Killing

vector K on the locations of the external operators at x1, . . . xj where xi ≡ (zi, u
(∞)
i ).8 Since

Son-shell is a scalar function of the xi’s, it transforms as

δKSon-shell({xi}) =

j∑
i=1

K(i)Son-shell({xi}), (5.10)

where K(i) is the Killing vector acting on the xi coordinate as

K(i) = Kµ(xi)
∂

∂xµi
. (5.11)

On the other hand, because of the on-shell condition, the variation of the action is a

boundary term,9

δKSon-shell({xi}) =

j∑
i=1

2hi〈K, l̂i〉(xi), (5.12)

where l̂i denotes the unit tangent vector of the geodesic with xi = (zi, u
(∞)
i ) as the end

point. Here and subsequently, 〈·, ·〉 denotes the inner product in the AdS metric, i.e.

〈A,B〉(x) ≡ gµν(x)Aµ(x)Bν(x) for vectors Aµ(x) and Bν(x).

We now note two facts. First, since K is a Killing vector, the inner product 〈K, l̂i〉
is a constant along any geodesic segment. Second, extremization of the action imposes a

local condition on the tangent vectors at each cubic vertex, which can be thought of as

‘balancing the forces’ between the three geodesics,

3∑
k=1

hk l̂k

∣∣∣∣∣
v

= 0 , (5.13)

where the tangent vectors l̂k all point out from a bulk vertex v. These two properties imply

that we can express eq. (5.12) in terms of data of the hp worldline,

δKSon-shell({xi}) = −2hp〈K, l̂p〉(vp) (5.14)

where l̂p is the unit vector pointing out of the vertex vp connected by the particle worldline

with dimension hp. Comparing the two variations of the action, we have

j∑
i=1

K(i)Son-shell({xi}) = −2hp〈K, l̂p〉(vp). (5.15)

8If we acted with the Killing vector on the locations of all boundary points x1, . . . xn the total action

would be invariant by symmetry.
9This follows from the standard derivation of the geodesic equation by extremizing the worldline action

l, but keeping track of the boundary term, which is given by −gab dX
a

ds
δXb where Xa(s) is the geodesic

parametrized by s and δXa is the variation. Defining the tangent vector l̂a ≡ dXa

ds
and setting δXµ = Kµ

give eq. (5.12).

– 20 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
9

Using the explicit form of the Killing vectors, we can evaluate this equation for the sl(2,R)

generators:

2hp〈L−1, l̂p〉 =

j∑
i=1

[
∂

∂zi
Son-shell

]

2hp〈L0, l̂p〉 =

j∑
i=1

[
zi
∂

∂zi
Son-shell +

1

2
u

(∞)
i

∂

∂u
(∞)
i

Son-shell

]

2hp〈L1, l̂p〉 =

j∑
i=1

[
z2
i

∂

∂zi
Son-shell −

(
u

(∞)
i

)2 ∂

∂zi
Son-shell + ziu

(∞)
i

∂

∂u∞i
Son-shell

]
.

(5.16)

Note that the l.h.s. is evaluated at the bulk vertex vp while the r.h.s. is evaluated at the

boundary points {xi}.
To evaluate the derivatives with respect to the cutoff, we note that the action for the

geodesic segments approaching the boundary diverge logarithmically as S ∼ −2hi log u
(∞)
i ,

and so we have u
(∞)
i

∂

∂u
(∞)
i

Son-shell = −2hi. Substituting this into eq. (5.16) and sending

the cutoffs u
(∞)
i to zero gives

−2hp〈L−1, l̂p〉 =

j∑
t=1

∂

∂zit
(−Son-shell)

−2hp〈L0, l̂p〉 =

j∑
i=1

[
hi + zi

∂

∂zi
(−Son-shell)

]

−2hp〈L1, l̂p〉 =

j∑
i=1

[
2hizi + z2

i

∂

∂zi
(−Son-shell)

]
. (5.17)

These reproduce the Ward identities in eq. (5.3) if we identify

logF = −Son-shell

(
{zi, z̄i, u(∞)

i }
)

+ constant

F(LA)

F
= −2hp〈LA, l̂p〉(vp) . (5.18)

Note that interestingly in the r.h.s. , the object in the first line depends on purely boundary

points (as it should) while the object in the second line is evaluated at the bulk vertex vp.

Lastly, since at each point in AdS, the vectors LA’s form a complete basis of vectors,

satisfying

4
(
〈L0, l̂p〉2 − 〈L1, l̂p〉〈L−1, l̂p〉

)
= 〈l̂p, l̂p〉 = 1 , (5.19)

under the identifications of eq. (5.18), we recognize this as giving the Casimir in eq. (5.6).

In summary, we have shown that geodesic networks obey the same semiclassical Casimir

equations as blocks at large dimension in CFT. As a pair of external operators are brought

together, the geodesic network also share the same behavior as boundary conditions for

the Casimir equations in the CFT. This establishes that the two quantities are equal, up

to a unimportant overall factor.
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hp1

hp2h1 h2

hp1

hp2

h1 h2

(a) Projection channel (b) OPE channel(a) Projection channel.

hp1

hp2h1 h2

hp1

hp2

h1 h2

(a) Projection channel (b) OPE channel(b) OPE channel.

Figure 6. Two different channels for two point function conformal blocks on the torus, with either

a projection inserted between the operators, or the OPE taken between them.

5.2 Torus blocks

Building on the previous subsection, we now present the holographic description of global

blocks on the torus in the large conformal dimension limit.

5.2.1 Field theory

As discussed in section 4, there are various channels depending on where the projection

operators are inserted. As an example, for torus two-point blocks, there are two possible

channels, as illustrated in figure 6. We shall focus on torus multi-point blocks such as that

in figure 6b, where we first perform the OPE of all external operators.10

Recall that the global torus n-point block can be defined as

Fp = Tr
[
Ppq

L0φ1(w1)φ2(w2) . . . φn(wn)
]

(5.20)

where we have left implicit the OPE decomposition of the string of operators. Let us now

define

F (u)(LA) ≡ Tr
[
Ppq

L0LAφ1(w1)φ2(w2) . . . φn(wn)
]

F (d)(LA) ≡ Tr
[
PpLAq

L0φ1(w1)φ2(w2) . . . φn(wn)
]
. (5.21)

Using eq. (2.6), we have

F (u)(L0) = F (d)(L0) = q
∂

∂q
Fp

F (u)(L−1) = qF (d)(L−1)

F (u)(L1) =
1

q
F (d)(L1). (5.22)

10See the discussions below eq. (4.8) for a more detailed description of this channel.
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On the other hand, from the commutation relations and the cyclicity of the trace, we have

F (u)(L−1)−F (d)(L−1) = Tr qL0Pp[L−1, φ1(w1)φ2(w2) . . .] =

n∑
j=1

e+iwj

(
−hj + i

∂

∂wj

)
Fp

F (u)(L1)−F (d)(L1) = Tr qL0Pp[L+1, φ1(w1)φ2(w2) . . .] =
n∑
j=1

e−iwj
(
hj + i

∂

∂wj

)
Fp.

(5.23)

Thus, we obtain

F (u)(L0)

Fp
= q

∂

∂q
logFp

F (u)(L−1)

Fp
=

q

1− q

n∑
j=1

eiwj
[
hj − i

∂

∂wj
logFp

]
F (u)(L1)

Fp
=

1

1− q

n∑
j=1

e−iwj
[
hj + i

∂

∂wj
logFp

]
. (5.24)

In the heavy limit, the Casimir equation reads

F (u)(L1)

Fp
F (u)(L−1)

Fp
−

(
F (u)(L0)

Fp

)2

= −h2
p . (5.25)

5.2.2 AdS side

In this section we write AdS in the global coordinates

ds2 = dρ2 + cosh2 ρdt2 + sinh2 ρdφ2 (5.26)

and write w = φ+ it. The sl(2,R) Killing vectors are

L0 = −i∂w

L−1 = −ieiw
(

cosh 2ρ

sinh 2ρ
∂w −

1

sinh 2ρ
∂w −

i

2
∂ρ

)
L1 = −ie−iw

(
cosh 2ρ

sinh 2ρ
∂w −

1

sinh 2ρ
∂w +

i

2
∂ρ

)
. (5.27)

The torus block Fp({xi}, q) will be related to the action of a geodesic network, as in

eq. (5.9). Most of the steps are similar to that in section 5.1.2, so we shall be terse and only

highlight the differences in some of the intermediate steps as well as a few new ingredients

in the computations. We also follow the notations in section 5.1.2.

First, let us write the identification that defines the boundary torus as w ∼= w + 2π ∼=
w + 2πτ , so that q = e2πiτ . We then have

q
∂

∂q
Son-shell({xi}, q) =

1

i

∂

∂(2πτ)
Son-shell({xi}, q). (5.28)
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Focusing on the geodesic that winds around the τ cycle, roughly speaking, when we increase

τ we are effectively adding in an extra segment of this geodesic, whose unit tangent vector is

l̂p. More concretely, the variation of the on-shell action with respect to 2πτ can be thought

of as a variation of the geodesic action with respect to its endpoints. As usual, such a

variation is given by the canonical momentum conjugate to the displaced coordinate. The

canonical momentum conjugate to w-translations, which are isometries generated by iL0,

is 2ihp〈L0, l̂p〉,11 and so

q
∂

∂q
Son-shell({xi}, q) = 2hp〈L0, l̂p〉(vp). (5.29)

Next, we displace all of the boundary points along a Killing vector K to obtain

j∑
i=1

K(i)Son-shell({xi}, q) =

j∑
i=1

2hi〈K, l̂i〉(xi). (5.30)

As in the sphere n-point block case, these geodesics fuse with each other. However, in this

case they eventually fuse into the two geodesic end points which connect with each other

around the torus. Thus,

j∑
i=1

K(i)Son-shell({xi}, q) = 2hp

[
〈K(wp), l̂p(wp + 2πτ)〉 − 〈K(wp), l̂p(wp)〉

]
, (5.31)

where wp denotes the w’s coordinates of the bulk vertex vp.

Note that the hp geodesic has a kink at the location of the vertex, due to the pulling

from the other geodesic segment. Therefore l̂p(wp + 2πτ) 6= l̂p(wp) and the two terms on

the right hand side do not cancel. On the other hand, since 〈K(wp + 2πτ), l̂p(wp + 2πτ)〉 =

〈K(wp), l̂p(wp)〉, we can rewrite (5.31) in terms of the discontinuity of the Killing vector

around the circle, δK = K(wp + 2πτ)−K(wp).

Using the explicit form of the Killing vectors now gives

j∑
k=1

−i ∂

∂wk
Son-shell = −2hp〈δL0, l̂p〉

j∑
k=1

−ieiwk
(

cosh 2ρ
(∞)
k

sinh 2ρ
(∞)
k

∂

∂wk
− 1

sinh 2ρ
(∞)
k

∂

∂w̄k
− i

2

∂

∂ρ
(∞)
k

)
Son-shell = −2hp〈δL−1, l̂p〉

j∑
k=1

−ie−iwk
(

cosh 2ρ
(∞)
k

sinh 2ρ
(∞)
k

∂

∂wk
− 1

sinh 2ρ
(∞)
k

∂

∂w̄k
+
i

2

∂

∂ρ
(∞)
k

)
Son-shell = −2hp〈δL1, l̂p〉 .

(5.32)

11The calculation is basically the same as that in footnote 9.
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The action of a geodesic approaching the boundary diverges with the cutoff as S ∼
2hρ(∞), so

j∑
k=1

−i ∂

∂wk
Son-shell = −2hp〈δL0, l̂p〉

j∑
k=1

−ieiwk
(

∂

∂wk
Son-shell − ihk

)
= −2hp〈δL−1, l̂p〉

j∑
k=1

−ie−iwk
(

∂

∂wk
Son-shell + ihk

)
= −2hp〈δL1, l̂p〉 . (5.33)

The Killing vectors obey

L0(w + 2πτ) = L0(w)

L−1(w + 2πτ) = qL−1(w)

L1(w + 2πτ) =
1

q
L1(w), (5.34)

which leads to

j∑
k=1

∂

∂wk
Son-shell = 0

−2hp〈L−1, l̂p〉 =
q

1− q

j∑
k=1

(
hk + i

∂

∂wk
Son-shell

)

−2hp〈L1, l̂p〉 =
1

1− q

j∑
k=1

(
hk − i

∂

∂wk
Son-shell

)
. (5.35)

Using the completeness relation

(2hp〈L1, l̂p〉)(2hp〈L−1, l̂p〉)− (2hp〈L0, l̂p〉)2 = −h2
p〈l̂p, l̂p〉 = −h2

p, (5.36)

we then arrive at the same Casimir equation as on the CFT side, with the identifications

logF = −Son-shell + constant

F(Lj)

F
= −2hp〈Lj , l̂p〉. (5.37)

This establishes our bulk geodesic description of the heavy torus multi-point block in the

semi-classical limit.

6 Wilson line formulation of conformal blocks

In three bulk dimensions, there exists an alternative holographic description of conformal

blocks based on the Chern-Simons description of 3D gravity. A background metric solving
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Einstein’s equations with negative cosmological constant is described (in Euclidean signa-

ture) by a flat sl(2,C) connection,12 so the only gauge-invariant quantities are built from

Wilson lines carrying some representation, joined at junctions with a singlet state to main-

tain gauge invariance, or ending at the boundary where the boundary conditions pick out a

preferred gauge. As shown in previous work [6, 7], such networks correspond to conformal

blocks, where the representations carried by the Wilson lines correspond to the conformal

family of the operator under consideration. In this section, we show that, in general, the

Wilson line networks satisfy the Casimir equations of the corresponding conformal blocks,

which could be used as an alternative derivation of earlier results. This will include net-

works in the thermal AdS background, which has the novelty of a non-contractible cycle

around which the gauge field has nontrivial holonomy. Including Wilson lines which wrap

the thermal cycle, we recover the expected thermal conformal blocks.

6.1 Chern-Simons gravity

We briefly collect the required background for convenience and to fix conventions. For a

more extensive review, see [33].

In three dimensions, a metric and metric-compatible connection can be defined by a

dreibein e and spin-connection ω, both being one-forms valued in the su(2) Lie algebra of

2× 2 anti-Hermitian matrices (isomorphic to so(3), appearing as the local Lorentz group).

Concretely, the metric is given by

gµν = −2 Tr(eµeν) (6.1)

where the trace is taken in the two-dimensional fundamental representation. This metric is

automatically covariantly constant under the connection ω, by the Lie algebra invariance

property of the quadratic form given by the trace. Now, if we combine the dreibein and

connection into the SL(2,C) connection A = ω + ie, the flatness of A is equivalent to Ein-

stein’s equations with negative cosmological constant (including ω being torsion-free, so it

is the usual Levi-Civita connection). The SL(2,C) gauge transformations, decomposed into

Hermitian and anti-Hermitian parts, act as the local Lorentz group and as diffeomorphisms

(on-shell).

The Einstein-Hilbert action in first-order formalism in terms of these variables becomes

a Chern-Simons action, with level determined by Newton’s constant and the AdS radius (or

by the central charge in the language of the dual CFT). Reproducing the global conformal

blocks requires only quantum field theory in a fixed background, without dynamical gravity.

We will therefore focus only on the relationship between flat connections and asymptotically

AdS geometries.

Solutions obeying the appropriate boundary conditions, choosing a flat boundary met-

ric written in holomorphic coordinates (ds2 = dzdz̄), can be written as the gauge transfor-

mation of the manifestly flat connection a = a(z)dz:

A = b−1ab+ b−1db, with b = eρL0 , a =

(
L1 − 2π

6T (z)

c
L−

)
dz . (6.2)

12Gravity in Lorentzian signature is recovered by an analogous construction with an sl(2,R) ⊕ sl(2,R)

connection.
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Here we have chosen a basis for sl(2,C) spanned by L±1 with Lie brackets

[L±1, L0] = ±L±1, [L1, L−1] = 2L0, (6.3)

which may be written in the fundamental representation as

L0 =
1

2

(
1 0

0 −1

)
, L1 =

(
0 0

−1 0

)
, L−1 =

(
0 1

0 0

)
. (6.4)

Now, computing the metric from the dreibein e = 1
2i(A + A†) and eq. (6.1), it is an

asymptotically AdS3 metric in the Fefferman-Graham gauge, with the desired boundary

metric, and stress-tensor expectation value T (z):

ds2 = dρ2 + e2ρdzdz̄ + 2π
6T

c
dz2 + 2π

6T̄

c
dz̄2 + e−2ρ

(
12π

c

)2

T T̄dzdz̄ . (6.5)

The boundary metric ds2 = dzdz̄ is read off from the leading order piece as ρ → ∞, and

the stress tensor from the subleading piece [34].

This metric may have singularities somewhere in the bulk (the metric in (z, z̄, ρ) co-

ordinates is singular on the surface e2ρ = 12π
c |T |). For our purposes, we want to find the

solution corresponding to global AdS3, for which the z coordinate is periodically identified

as z = φ + it ∼ z + 2π so the boundary spacetime is a cylinder. The bulk is a solid

cylinder in which the spatial circle is contractible, which implies that the holonomy of the

gauge field around that cycle must be trivial. This is satisfied by constant stress tensor

expectation value T (z) = − c
48π , so that

a =

(
L1 +

1

4
L−1

)
dz (6.6)

and this indeed reproduces the usual global AdS3 metric, with r = sinh(ρ + log 2). The

zero mode of T (z) is L0 =
∫ 2π

0 T (z)dz = − c
24 , corresponding to the usual Casimir energy

of the CFT on a circle. Thermal AdS is just this metric with the additional identification

z ∼ z+ 2πτ . The Euclidean BTZ black hole is constructed similarly by instead trivializing

the holonomy around the time circle.

6.2 The proposal

Given the ingredients involved in a conformal block (the global conformal representations

of the involved operators, and for us the thermal background), there is a simple, natural

candidate to construct it from the Chern-Simons formalism. Firstly, the canonical gauge

chosen for the background gauge field eq. (6.2) is holomorphic, so it is natural to expect

gauge invariant constructions involving a to capture the holomorphic piece, and the con-

jugate connection to pick out the antiholomorphic part. This is special to CFT in two

dimensions, where the conformal group factorizes. Having made this comment, we now

focus exclusively on the holomorphic sector.
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Essentially the only object from which gauge invariant quantities may be constructed

is a Wilson line, or holonomy of the gauge field:

Wα[x0, x1] = P exp

(
−
∫ x1

x0

a

)
. (6.7)

The subscript α labels a representation Rα of the gauge group, so the holonomy acts to

map Rα at the inital point x0 to the end point x1 in a covariant way, transforming as

Wα[x0, x1] → gα(x1)Wα[x0, x1]g−1
α (x0) under gauge transformations. The flatness of the

connection means that the Wilson line depends only on its endpoints and topology, and not

on the details of the path. The Wilson lines may then be connected together into a network,

joined at vertices with appropriate singlet states in the tensor products of representations

to retain gauge invariance. It will be sufficient to consider only trivalent vertices, and

instead of joining using a singlet state in the tensor product of three representations, it

will be convenient (and equivalent) to use an intertwining operator Iα;β,γ : Rα⊗Rβ → Rγ ,

defined to satisfy an invariance property

gαIα;β,γgβgγ = Iα;β,γ . (6.8)

For the irreducible lowest weight representations of sl(2) of interest to us, an intertwiner

operator is unique (up to normalization) if it exists (since Rγ appears at most once in the

decomposition of Rα ⊗Rβ).

Finally, we only require gauge invariance under gauge transformations that vanish on

the boundary, with the large gauge transformations, which do not vanish at the boundary

but preserve the boundary conditions, corresponding to the local conformal group of the

CFT. This means that we may end Wilson lines at the boundary, and contract with some

canonically chosen state in the relevant representation, for which a natural choice is the

lowest weight state, with the smallest eigenvalue of L0 and annihilated by L1, which we

will denote |LWα〉 ∈ Rα.

The result is a network of Wilson lines Wα in the bulk, carrying specified representa-

tions, joined by intertwiners Iα;β,γ at trivalent vertices, and ending at the boundary where

they are contracted with |LWα〉. We will show that this evaluates to a global conformal

block, with the endpoints of Wilson lines on the boundary corresponding to external opera-

tors, and the internal representations corresponding to the exchanged operators appearing

either in the OPE, or for a Wilson line traversing the thermal cycle, a conformal family

appearing in the Boltzmann sum. The simplest example is the sl(2) character of the rep-

resentation, which counts the contribution of a global conformal family to the partition

function, computed from a Wilson loop round the thermal circle:

Trα (Wα[z, z + 2πτ ]) = χα(q) . (6.9)

Including a trivalent vertex on the Wilson loop and a Wilson line from this vertex to the

boundary gives a one-point thermal block:

Trα (Wα[zb, zb + 2πτ ](Iα;α,βWβ [zb, z]|LWβ〉)) = F(α, β; q) . (6.10)
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6.3 The Casimir equation from Wilson lines

The main piece of our argument will be to show that the Wilson line networks satisfy

algebraic relations that are precisely analogous to the corresponding objects in the CFT.

With these in place, it will follow immediately that the networks satisfy the same Casimir

equations as the blocks, since the arguments from CFT will go through unchanged.

The first ingredients in the Wilson line networks are the internal Wilson lines. By the

flatness of the connection, we may take all bulk vertices to lie at any point we wish, so

in particular they may all be coincident at z = 0 (the radial position is irrelevant in the

gauges we work in). This makes the internal bulk Wilson lines trivial, with the exception

of loops with nontrivial topology, wrapping the thermal cycle. These produce factors

exp
(
−2πτ

(
L1 + 1

4L−1

))
in the appropriate representation, which should be analogous to

the insertion of qL0 producing the Boltzmann factors in the CFT. As it stands, this is

unclear, so it will be helpful to do a constant gauge transformation (or equivalently, a

change of canonical sl(2) basis) so that the connection is given by = −iL0dz:

a =

(
L1 +

1

4
L−1

)
dz = g (−iL0dz) g−1; g = e

i
2
L−1e−iL1e−

iπ
2
L0 . (6.11)

The final factor is not required here, but is chosen for later convenience. In this gauge, a

Wilson loop traversing the thermal circle is precisely the operator qL0 with q = e2πiτ , in

the appropriate representation:

Wα[0, 2πτ ] = e2πiτLα0 = qL
α
0 . (6.12)

The other ingredient required is the Wilson line running to the boundary, analogous

to an insertion of an external operator. With this in mind, we define the operator

[φγ(z)]αβ := Iα;β,γWγ [0, z]|̃LWγ〉 (6.13)

from Rβ to Rα. We will show that it satisfies (in the new gauge) an identity, interpreted

as the operator transforming as a primary field

Lαn[φγ(z)]αβ − [φγ(z)]αβL
β
n = −Lγn[φγ(z)]αβ (6.14)

for n = 0,±1, where Lγn = einz(i∂z − nhγ) is the usual differential operator acting on the

coordinate z, hγ is the lowest weight of the representation Rγ , and the superscripts on the

Ln’s indicate the representations in which they are to be taken. The tilde over the lowest

weight state is to indicate that after the gauge transformation, it is no longer lowest weight,

but has been acted on by gγ : |LWγ〉 = gγ |̃LWγ〉.
After using the infinitesimal version of the invariance property of the intertwiner to

pull Lαn past Iα;β,γ , to prove the claimed identity it is sufficient to show that Lγn + Lγn
annihilates Wγ [0, z]|̃LWγ〉. Dropping the γ labels, we have

(Ln + Ln)W [0, z]|̃LW〉 = (Ln + einz(i∂z − nh))eizL0 |̃LW〉

= eiz(L0+n)(Ln − L0 − nh)|̃LW〉 (6.15)
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which automatically vanishes for n = 0, and, taking the sum and difference for n = ±1, we

require that |̃LW〉 is annihilated by L1 + L−1 − 2L0, and is an eigenstate of 1
2(L1 − L−1)

with eigenvalue h. Now, to see what this implies for the untilded state in the original

gauge, undoing the gauge transformation gives g(L1 +L−1− 2L0)g−1 = 4iL1 and g 1
2(L1−

L−1)g−1 = L0, so the conditions are satisfied precisely when L1|LW〉 = 0 and L0|LW〉 =

h|LW〉, so that |LW〉 is a lowest weight state of weight h.

Now we have the Wilson lops round the thermal circle represented as qL0 by choice

of gauge, and external Wilson lines joined to the network by the operators [φγ(z)]αβ sat-

isfying the identity eq. (6.14), which is enough to replicate the arguments leading to the

Casimir equations like eq. (2.16) derived in earlier sections. In that instance, the Casimir

evaluated to a constant because of the insertion of projection operators, but here we need

no projection, since the operators in all cases are in some definite representation, which

encodes the choice of internal conformal multiplets.

6.4 An explicit example: the characters

The arguments above show rather abstractly that the Wilson line networks obey the ex-

pected Casimir equations of global conformal blocks, which when supplemented with ap-

propriate boundary conditions, is enough to show their equality. In this section, we will

make this more concrete in an example, to indicate how direct calculations of the Wilson

line networks proceed. We will focus on the simplest case of characters of sl(2,R), since it

is indicative of the sort of combinatorial arguments involved.

From the general proposal above, the character (contribution of a quasiprimary and its

global descendants to the partition function) should equal the trace of the holonomy γ =

P exp
(
−
∮
a
)

round the thermal circle, in the appropriate representation. Here, we will take

the finite dimensional highest weight (non-unitary) representations corresponding to the

degenerate operator of weight h = −n/2. This is the (n+ 1)-dimensional representation of

sl(2,R) constructed from the symmetrized tensor product of n fundamental representations.

The trace of γ in this representation can be written as

χn = γ
(i1

(i1
γi2i2 · · · γ

in)
in) (6.16)

where γij are the matrix elements of γ in the fundamental two-dimensional representation.

The brackets indicate symmetrization, summing over all permutations and including a

factor of 1/n!.

In this sum over the n! permutations of the n indices i1, . . . , in, each permutation gives

a product of traces of powers depending on its cycle structure. We can split up the sum

over Sn based on the length k of the cycle containing 1:

χn =
1

n!

∑
σ∈Sn

γi1iσ(1)γ
i2
iσ(2)
· · · γiniσ(n)

=
1

n!

n∑
k=1

(n− 1)! Tr(γk)χn−k . (6.17)

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
9

Here the factor (n− 1)! is the number of permutations with 1 in a cycle of length k (which

turns out to be independent of k), Tr(γk) is the contribution from the cycle containing

1, and χn−k accounts for the permutations of the remaining indices. From Tr(γk) =

qn/2 + q−n/2 (since q±
1
2 are the eigenvalues of γ), and the ‘initial condition’ χ0 = 1, this

recursively computes the characters for all n, giving

χn(q) = q−
n
2

1− qn+1

1− q
, (6.18)

which can be proved by induction on n. This is the expected answer, counting one state

at each level between −n
2 and n

2 , with higher weights being annihilated since this is a

degenerate representation.
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