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1 Introduction

In recent years, there has been an increased focus on gravitational dynamics in anti-de Sitter

space (AdS), due in large part to the development of gauge/gravity duality [1–3]. Despite

the growing attention, there is a fundamental question that remains unresolved: in classical

general relativity, what are the typical low-energy configurations in global AdS?

The answer to this question is surprisingly intricate. The timelike boundary of AdS

causes gravitational dynamics to behave quite differently from that of de Sitter or Minkow-

ski space. With energy and momentum conserving boundary conditions, the boundary is

reflective. Small-energy excitations in AdS therefore do not disperse and instead either form

a small black hole or reflect off the boundary indefinitely [4–18]. Recent results indicate

that both of these scenarios are generic in the space of initial data [7, 16, 19, 20].

Suppose a small black hole is formed. Generic configurations contain angular momen-

tum, which implies that the black hole will be rapidly rotating. But such a black hole is

superradiant [21–23] (see [24] for a review) and can amplify waves that approach its hori-

zon. These amplified waves will reflect off the boundary and interact again with the black

hole, leading to a cascade of instabilities [25–32]. The endpoint of this instability remains

an open question, with recent studies suggesting that the endpoint is not a steady-state

solution [33–36].

Suppose instead that a black hole is not formed. Such configurations tend to resemble

nonlinear extensions of normal modes of AdS [8, 9, 18, 19, 30, 37, 38]. For pure gravity,

the extensions of normal modes are called geons [33, 39–41]. Yet, even the linear stability

of geons has never been established. They do not have a horizon, and hence the instability

results from [42] cannot be applied. However, they still rotate rapidly enough to contain

ergoregions and hence may suffer from an ergoregion instability (see e.g. [24] for a review).

Perhaps surprisingly, if linear stability is established, the arguments presented in [7] indicate

that nonlinear stability is ensured.

Our understanding of low-energy states in AdS thus hinges upon the endpoint of the

superradiant instability of rapidly rotating black holes and the stability of geons, both of

which remain open problems.

The superradiant instability and geons are intimately connected to each other via black

resonators [34]. Black resonators are black holes that branch off from the onset of specific

unstable superradiant modes. They are non-stationary solutions but contain a “helical”

Killing vector that makes them time-periodic. Though black resonators are stable to the
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mode that generated them, they are still rapidly rotating and hence remain unstable to

other superradiant modes [33–36, 42].

Black resonators form intermediate states in the dynamics of superradiant instabili-

ties [35, 36]. The nature of these instabilities, say in Kerr-AdS, is such that one unstable

mode often dominates the dynamics at early times. The growth of this mode causes the

solution to approach a black resonator until the instabilities of the black resonator itself

develop and drive the continuing dynamics.

Black resonators are also connected to geons, as their limit of zero horizon size is not

AdS, but a geon. Like black resonators, the geons also have a helical Killing field. A small

black resonator can be regarded as a small black hole placed in a geon where the black hole

and geon have a matching angular frequency.

Geons and black resonators have been constructed in four dimensions [34, 37, 39,

41], where this helical Killing vector forms the only continuous symmetry. This lack of

symmetry poses a challenge in studying the stability of these solutions. But recently,

by going to five dimensions and exploiting the extra symmetries that emerge when both

angular momenta are equal, the authors in [43] have constructed black resonators and

geons where the metric is cohomogeneity-1 (i.e. the metric functions have a single variable).

Cohomogeneity-1 black resonators and geons coupled to electromagnetic waves have also

been obtained in [44].

We therefore set out in this paper to study the linear stability of the five-dimensional

cohomogeneity-1 black resonators and geons obtained in [43]. The simplicity of the back-

ground makes it easy to handle the perturbations as they can be expanded in terms of

the spherical harmonics on S3, for which the Wigner D-matrices are a convenient basis.

We consider scalar field, Maxwell, and gravitational perturbations comprehensively. We

map out the onset of superradiant instabilities in black resonators and determine the linear

mode stability of geons. We will find that many geons are stable, but there are certain

ranges of parameters where they are unstable.

This paper is organized as follows. In section 2, we review the five-dimensional

cohomogeneity-1 black resonator background obtained in [43]. The Wigner D-matrices

are introduced in section 3. In section 4, we give an overview of our linear calculation,

while technical details are explained in appendices A–C. Results for the study of these

perturbations are shown in section 5. In section 6, we briefly discuss multi-resonators and

multi-geons that are expected to emerge from the instabilities of the perturbations. We

then construct oscillating geon solutions in section 7, with technical details in appendix D.

The paper is concluded with a summary and discussion in section 8.

2 Cohomogeneity-1 black resonators and geons

We begin with a review of the construction of the cohomogeneity-1 black resonators and

geons in [43]. They are obtained within pure Einstein gravity in global AdS5. Throughout

this paper, we set the AdS radius to unity, and the Einstein equation is given by Gµν −
6gµν = 0.

– 2 –
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Consider the following metric ansatz:

ds2 = −(1 + r2)f(r)dτ2 +
dr2

(1 + r2)g(r)

+
r2

4

[
α(r)σ2

1 +
1

α(r)
σ2

2 + β(r)(σ3 + 2h(r)dτ)2

]
, (2.1)

where the 1-forms σa (a = 1, 2, 3) are defined by

σ1 = − sinχdθ + cosχ sin θdφ ,

σ2 = cosχdθ + sinχ sin θdφ ,

σ3 = dχ+ cos θdφ .

(2.2)

The 1-forms satisfy the Maurer-Cartan equation dσa = (1/2)εabcσb ∧σc. The ranges of the

coordinates (θ, φ, χ) are 0 ≤ θ < π, 0 ≤ φ < 2π, and 0 ≤ χ < 4π. The radial coordinate r

will range from either the origin r = 0 (for geons) or some horizon radius r = rh (for black

holes) to asymptotic infinity r → ∞. We restrict ourselves to asymptotically global AdS5

solutions where the boundary metric is conformal to R(t)×S3. The metric of AdS5 can be

recovered when h is constant and the remaining metric functions are f = g = α = β = 1.

There is another closed-form solution to the Einstein equation that falls within this

ansatz: the equal angular momentum Myers-Perry AdS black hole. The Myers-Perry black

hole [45–48] is a rotating black hole in higher dimensions, which can be viewed as the

higher dimensional generalization of the Kerr black hole solution (see [49] for a review of

higher dimensional black holes). When the angular momenta of the Myers-Perry black hole

are set equal, the solution can be written in cohomogeneity-1 form. We will henceforth

restrict ourselves only to the equal angular momenta family when discussing the Myers-

Perry solutions, and abbreviate the Myers-Perry AdS black hole as “MPAdS”. Within our

ansatz, MPAdS can be expressed as

g(r) = 1− 2µ(1− a2)

r2(1 + r2)
+

2a2µ

r4(1 + r2)
, β(r) = 1 +

2a2µ

r4
,

h(r) = Ω− 2µa

r4 + 2a2µ
, f(r) =

g(r)

β(r)
, α(r) = 1 ,

(2.3)

where the angular velocity Ω is

Ω =
2µa

r4
h + 2a2µ

, (2.4)

and the horizon radius rh is given by the largest real root of g(rh) = 0. MPAdS is a

two-parameter family, which can be conveniently parametrized by rh and Ω.

Let us now discuss the symmetries of the ansatz (2.1), as well as those of some special

cases. Generically, the isometry group of the ansatz is R × SU(2), which can be specified
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by the following four Killing vectors:

K = ∂τ ,

ξx = cosφ∂θ +
sinφ

sin θ
∂χ − cot θ sinφ∂φ ,

ξy = − sinφ∂θ +
cosφ

sin θ
∂χ − cot θ cosφ∂φ ,

ξz = ∂φ .

(2.5)

From these Killing vectors, we can define the angular momentum operators

Li = iξi (i = x, y, z) , (2.6)

which satisfy the commutation relation of SU(2): [Li, Lj ] = iεijkLk. Each 1-form σa is

invariant under the SU(2): Liσa ≡ LLiσa = 0.

An additional SU(2) symmetry appears when h is constant and α = β = 1, essentially

because the 1-forms (2.2) form the basis of a round S3, which has SU(2)×SU(2) isometries.

The additional Killing vectors ξ̄i can be expressed by

ξ̄x = − sinχ∂θ +
cosχ

sin θ
∂φ − cot θ cosχ∂χ ,

ξ̄y = cosχ∂θ +
sinχ

sin θ
∂φ − cot θ sinχ∂χ ,

ξ̄z = ∂χ .

(2.7)

From these, one can define

Ri = iξ̄i , (2.8)

which satisfy the SU(2) commutation relation [Ri, Rj ] = −iεijkRk.
Generically, α, β, and h in the metric ansatz (2.1) will completely break the second

SU(2) isometry corresponding to (2.7), and ξ̄i will no longer be Killing vectors. However,

when α(r) = 1 identically as in the case of MPAdS, this SU(2) is broken only down to the

U(1) subgroup specified by Rz = i∂χ. This implies that the spacetime (2.1) recovers this

U(1) symmetry, and together with the SU(2) symmetries given by ξi, the isometry group

enhances to R×U(2).

The U(1)-generator Rz commutes with the other symmetry generators (2.5): [Li, Rz] =

[K,Rz] = 0. This operator generates “rotation” of σ1 and σ2,

Rzσ± = ±σ± , Rzσ3 = 0 , (2.9)

where we defined

σ± =
1

2
(σ1 ∓ iσ2) . (2.10)

Eq. (2.9) indicates that σ± and σ3 have U(1)-charges ±1 and 0, respectively. Note that, if

α(r) 6= 1, Rz is not a symmetry generator of the spacetime (2.1).

The spacetime (2.1) also has a discrete isometry:

(τ, φ, χ)→ −(τ, φ, χ) . (2.11)

By this isometry, the invariant 1-forms transform as (σ±, σ3)→ (−σ∓,−σ3).

– 4 –
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Let us now describe the construction of geons and black resonators in our ansatz (2.1).

For the boundary conditions, we require regularity at the origin (for geons), or the horizon

(for black resonators). For black resonators, we also take h = 0 at the horizon. The

solutions must also be asymptotically AdS, so as r →∞ we require

f, g, α, β → 1 , h→ Ω , (r →∞) , (2.12)

where Ω is a constant representing the angular velocity of the spacetime.

The asymptotic behavior (2.12) corresponds to a rotating frame at infinity. We can

introduce another frame that is non-rotating at infinity (t, ψ) via dt = dτ and dψ =

dχ + 2Ωdτ . The function h is then shifted as h̄ = h − Ω, whose asymptotic behavior is

h̄→ 0 (r →∞). In this frame, the Killing vector K can be rewritten as

K =
∂

∂t
+ Ω

∂

∂(ψ/2)
. (2.13)

In ref. [43], black resonators and geons were numerically constructed under these

boundary conditions with the ansatz (2.1) as solutions possessing a helical Killing vec-

tor. It was found that they always satisfy Ω > 1. The Killing vector K becomes spacelike

near infinity:

KµKµ → −(1− Ω2)r2 , (r →∞) . (2.14)

In the frame that is non-rotating at infinity, the Killing vector K is helical. There is no

continuous time translation symmetry, but what remains is a discrete one: t ∼ t+π/(2Ω).

Strictly speaking, the lack of a Killing vector that is timelike everywhere at infinity implies

that the spacetime is non-stationary. Nevertheless, for black resonators, this Killing field

serves as a horizon generator, and the entropy of the black hole does not change. In this

sense, black resonators are steady-state solutions. The zero horizon size limit of black

resonators is a geon, which also has this helical Killing field.

The phase diagram of the five-dimensional black resonator and geon solutions within

this ansatz is shown in figure 1.1 We denote by E and J the mass and angular momentum,

respectively.2 The mass of geons is denoted by Egeon, in particular. In the left figure, Egeon

is shown as a function of the angular momentum. In the right figure, the difference between

the mass of the black resonator and that of the geon with the same angular momentum,

E − Egeon, is used as the vertical axis for visibility. Black resonator solutions exist in

the filled region, which is bounded by the horizontal axis and the upper orange curve,

where the latter gives the onset of the superradiant instability in MPAdS for the mode

that generates the black resonator. MPAdS (not shown) also exists slightly below this

orange curve until extremality is reached. When the MPAdS competes thermodynamically

with the black resonators in the microcanonical ensemble, the black resonators dominate

(i.e. black resonators have more entropy than MPAdS for the same energy and angular

momentum).

1In addition, there are an infinite number of black resonators and geons labeled by a radial overtone

number n, i.e. the number of the nodes in the r-direction. We focus only on the fundamental n = 0 which

has the lowest number of nodes.
2For notational simplicity, we set the five dimensional gravitational constant G5 = 1. One can easily

restore it as E → G5E and J → G5J .
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Figure 1. (a): the mass of geons Egeon as a function of angular momentum J . (b): phase diagram

of cohomogeneity-1 black resonators. In the vertical axis, E−Egeon is used for visibility. The black

resonators exist in the filled region. The horizontal axis represents the geon limit. The orange curve

indicates the onset of the superradiant instability of MPAdS, where the black resonators branch off.

3 Wigner D-matrices

We will study the stability of the cohomogeneity-1 black resonators and geons against

scalar field, Maxwell, and gravitational perturbations. These can be expanded in terms

of the Wigner D-matrix Dj
mk(θ, φ, χ). (For an introduction to the Wigner D-matrix, see

e.g. ref. [50]. See also refs. [28, 51–54] for its application to the scalar field, Maxwell, and

gravitational perturbations in general relativity.)

The Wigner D-matrix has three quantum numbers (j,m, k): the total angular momen-

tum j, and the U(1) charges m and k associated to Lz and Rz, respectively. The ranges of

the quantum numbers are

j = 0, 1/2, 1, 3/2, . . . ,

m = −j, −j + 1, . . . , j ,

k = −j, −j + 1, . . . , j .

(3.1)

The Wigner D-matrix vanishes if (m, k) are outside these ranges. It is the eigenfunction of

L2 =
∑

i=x,y,z L
2
i , Lz, and Rz:

L2Dj
mk = j(j + 1)Dj

mk , LzD
j
mk = mDj

mk , RzD
j
mk = kDj

mk . (3.2)

The subscripts of Dj
mk are shifted by L± = Lx ± iLy and R± = Ry ± iRx as

L+D
j
mk = εm+1D

j
(m+1)k , L−D

j
mk = εmD

j
(m−1)k ,

R+D
j
mk = εk+1D

j
m(k+1) ; R−D

j
mk = εkD

j
m(k−1) ,

(3.3)

where εm =
√

(j +m)(j −m+ 1) and εk =
√

(j + k)(j − k + 1).

Because of the SU(2) symmetry of the spacetime (2.1), the modes with different (j,m)

are trivially decoupled when we decompose the perturbations by the Wigner D-matrices.

– 6 –
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Therefore, in the following, we suppress the indices (j,m) and use Dk for Dj
mk. (Though,

remember that the wavenumber j is still important in that it limits the range of k and

appears in various formulae involving εk.) Unlike (j,m), modes with different k are coupled

in backgrounds where α(r) 6= 1 because in that situation ∂χ is not an isometry. In the

special case that α(r) = 1 as in MPAdS, the extra U(1) isometry allows modes with different

k to be decoupled.

We end this section by showing useful formulae for the derivatives of the Wigner D-

matrix. Solving RzDk = kDk, R+Dk = εk+1Dk+1, and R−Dk = εkDk−1, we obtain

∂θDk = − i
2

(εke
−iχDk−1 + εk+1e

iχDk+1) ,

∂φDk = −ik cos θDk +
1

2
εk sin θe−iχDk−1 −

1

2
εk+1 sin θeiχDk+1 ,

∂χDk = −ikDk .

(3.4)

See also ref. [51] for a derivation of these formulae.

4 Overview of linear calculation

In this section, we give an overview of our computation for linear perturbations. Here, we

mostly focus on details that are necessary for understanding the results. More technical

aspects of our computation can be found in the appendices.

4.1 Massless scalar field

For the massless scalar field, we wish to solve the Klein-Gordon equation on the background

of a black resonator or a geon, �Φ = 0. To find the onset of instability, however, it is

convenient to consider the eigenvalue equation of the Klein-Gordon operator given by3

�Φ = λΦ , (4.1)

and search for solutions to the above equation with zero eigenvalues λ = 0.

We decompose the scalar field by using the Wigner D-matrices as

Φ(τ, r, θ, φ, χ) = e−iωτ
∑
|k|≤j

φk(r)Dk(θ, φ, χ) , (4.2)

where the indices of and summation over (j,m) are suppressed. Substituting this into (4.1),

rewriting the derivatives of the Wigner D-matrices by using the formulae (3.4), and rear-

ranging the index k, we obtain for each k an equation of the form

Lkφk + ck−1φk−2 + ck+1φk+2 = 0 , (4.3)

where Lk is a background-dependent differential operator with only radial derivatives ∂r,

and ck is a function depending on the radial coordinate and background metric. Their

3Note that λ is nothing but the squared mass of a massive scalar field.
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explicit expressions can be found in appendix A.1. φk vanishes if k is outside the range

given in (3.1).

In (4.3), we find that the mode coupling is “double-stepping” — the modes with k and

k ± 2 are coupled. We note that if α = 1 identically as in the case of MPAdS, ck = 0 and

the individual k modes decouple. Otherwise, as in the case for the black resonators and

geons, fixed-j perturbations reduce to a coupled system of scalar fields φk(r).

Note that because of the double-stepping, there is a difference when j is a half-integer

or an integer. For half-integer j, the two following systems are decoupled from each other:

v = {φj , φj−2, φj−4, · · · , φ−j+1} , (4.4)

ṽ = {φj−1, φj−3, φj−5, · · · , φ−j} . (4.5)

Both of these have the same equations of motion, so it suffices to consider just one of them.

For integer j,

v = {φj , φj−2, φj−4, · · · , φ−j} , (4.6)

ṽ = {φj−1, φj−3, φj−5, · · · , φ−j+1} (4.7)

are decoupled systems with different equations of motion. On solutions with ω = 0,

integer j modes can be further decoupled into odd and even perturbations under the

isometry (2.11):

v± = {φk ± φ−k|k ≥ 0} , (4.8)

with the plus and minus signs corresponding to even and odd parity, respectively. Note

that if ω 6= 0, the isometry (2.11) is broken, and if j is a half integer, k and −k modes are

decoupled from each other. This is why the decoupling (4.8) only applies to ω = 0 and

integer j.

To solve the coupled equations (4.3), we need to impose boundary conditions. We re-

quire regularity at the horizon for black resonators or at the origin for geons. At asymptotic

infinity, we choose no-source boundary conditions, where the slowest fall-off of the scalar

field vanishes. With these boundary conditions, a fixed background and fixed j defines an

ODE system for φk with two unknown constants ω and λ.

Unfortunately, typical growth rates Im(ω) for unstable modes of black resonators are

extremely small (often smaller than the 64-bit machine epsilon ∼ 10−16). For this reason,

we only compute the onset of the instability for the black resonators where Im(ω) = 0.

In appendix A.2, we demonstrate that Im(ω) = 0 implies also Re(ω) = 0. We can

therefore set ω = 0, and solve the resulting ODE system with λ in an eigenvalue. Since

ω = 0, the equations are time independent, and we can impose a regularity condition on

the horizon, which is given by the ω → 0 limit of an ingoing wave condition. We vary

parameters of the background until we find that λ = 0, which corresponds to the onset of

an instability. We carry out this computation numerically using a shooting method.

For geons, there is no horizon, and the lack of dissipation implies that the frequency

ω is purely real or purely imaginary. Therefore, for geons, we set λ = 0 and compute ω

directly. We do so using pseudospectral methods with Chebyshev polynomials.
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4.2 Maxwell field

We consider the Maxwell perturbation in the Lorenz gauge. The equations of motion and

the gauge condition are given by

�Aµ + 4Aµ = λAµ , (4.9)

∇µAµ = 0 , (4.10)

where we have introduced the eigenvalue λ for the operator �+4. We seek solutions where

λ = 0. Because the Lorenz gauge condition does not fix the gauge freedom completely, we

will need to check that our solutions are not gauge modes. This technical point is discussed

further in appendix B.6.

Let us decompose (4.9) and (4.10) by using the Wigner D-matrices. First, we define

the basis 1-forms

(eτ , er, e±, e3) = (dτ, dr, σ±, σ3 + 2hdτ) , (4.11)

and write the Maxwell field as

A = Aae
a , (4.12)

where a = τ, r,+,−, 3. The components of the Maxwell field Aa can be decomposed by

the Wigner D-matrices as

AA = e−iωτ
∑
|k|≤j

AkA(r)Dk , A± = e−iωτ
∑
|k∓1|≤j

Ak±(r)Dk∓1 , (4.13)

where A = τ, r, 3. Notice that the index k of the Wigner D-matrices is shifted in the

expansion of A±. This was done so that σ±Dk∓1 have U(1) charge k, matching that of Dk.

Because of the shift of the index, Ak± are defined in |k ∓ 1| ≤ j, while AkA (A = τ, r, 3) are

defined in |k| ≤ j. Then, from (4.9) and (4.10), we obtain coupled differential equations

for Ak ≡ (AkA, A
k
±) of the form

A′′k = P [Ak,Ak−2,Ak+2] , (4.14)

(Akr )
′ = Q[Ak,Ak−2,Ak+2] , (4.15)

where P and Q are linear operators arranged in such a way that the first r derivative is

included in P , but not in Q. Their explicit forms are too cumbersome, and we do not to

reproduce them here.

We again find that the coupling is double-stepping (k modes are coupled to k±2), and

this will again lead to different decoupled systems depending on whether j is a half-integer

or integer in a similar manner as (4.4) and (4.6). Integer j solutions with ω = 0 can be

further divided into even and odd perturbations in a similar manner as (4.8).

In general, there are more equations than unknown linear functions. We will only solve

a subset of these equations and treat the remainder as constraint equations which we will

verify after obtaining a solution. The details of which combinations of the equations we

solve and which we leave for verification afterwards, can be found in appendix B.4.

For boundary conditions, we again require regularity at the horizon or the origin, and

the slowest fall-off at infinity to vanish.
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In the same way as the case of the scalar field, on black resonators we will find the

onset of an instability by setting ω = 0 and computing λ, searching for regions of parameter

space where λ = 0. For geons, we will set λ = 0 and compute the frequency ω directly.

4.3 Gravitational perturbations

We consider gravitational perturbation using the transverse-traceless gauge. The pertur-

bation equations are

�hµν + 2Rµρνσh
ρσ = λhµν , (4.16)

with

∇µhµν = 0 , hµµ = 0 , (4.17)

where we introduced the eigenvalue λ of the Lichnerowicz operator to find the onset of

instability. As in the Maxwell case, we will need to verify that the solutions we will find

are not gauge modes.

In a similar way as in the previous sections, we expand (4.16) and (4.17) by the

Wigner D-matrices. We can decompose the metric perturbation by using the orthogonal

basis (4.11) as

hµνdxµdxν = habe
aeb , (4.18)

where a, b = τ, r,+,−, 3. The metric components hab can be expanded by the Wigner

D-matrices as

hAB = e−iωτ
∑
|k|≤j

hkAB(r)Dk , h+− = e−iωτ
∑
|k|≤j

hk+−(r)Dk ,

hA± = e−iωτ
∑
|k∓1|≤j

hkA±(r)Dk∓1 , h±± = e−iωτ
∑
|k∓2|≤j

hk±±(r)Dk∓2 ,
(4.19)

where A,B = τ, r, 3, and we shifted the index k of the Wigner D-matrices in the expansion

depending on the U(1)-charges of the corresponding 1-forms. Note that hkAB and hk+− are

defined in |k| ≤ j, while hk±± and hkA± in shifted domains |k ∓ 2| ≤ j and |k ∓ 1| ≤ j,

respectively. Substituting (4.19) into (4.16) and (4.17), we obtain the coupled equations

for hk ≡ (hk++, h
k
τ+, · · · , hk−−) schematically as

h′′k = P [hk−4,hk−2,hk,hk+2,hk+4] , (4.20)

(hkar)
′ = Q[hk−4,hk−2,hk,hk+2,hk+4] , (4.21)

hk+− = R[hk−4,hk−2,hk,hk+2,hk+4] , (4.22)

where P , Q and R are linear operators; P includes the first derivative terms in r, but Q

and R do not contain such terms.

We again find that the mode coupling is double-stepping. Unlike the scalar and

Maxwell field perturbations, hk±4 appear in the right hand side of the above equations.

There are again different decoupled systems depending on whether j is a half-integer or

integer, and integer j solutions with ω = 0 can be further divided into even and odd

perturbations in a similar manner as (4.8).
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Like the Maxwell field, the equations of motion contain more equations than unknown

functions. We again solve only a subset of these equations and treat the remainder as

constraint equations to be verified after obtaining a solution.

For boundary conditions, we require regularity at the horizon or the origin, and the

slowest fall-off at infinity to vanish as in the case of the scalar and Maxwell fields.

Unlike the scalar field and Maxwell field, the growth rates of gravitational perturbations

are not prohibitively small. We therefore compute the frequency ω directly by setting λ = 0

and solving for ω as an eigenvalue. As a consistency check, we also search for the onsets

of instabilities by setting ω = 0 and finding regions of parameter space where λ = 0. We

perform both types of calculations for both black resonators and geons.

5 Results

5.1 Scalar field

We now describe the main results of our perturbation calculation, beginning with the scalar

field. For a given j, we focus on the set of modes with a dominant k = j component, which

would be the mode with the highest growth rate among those with different k [55]. In

figure 2a, we show the location of the onsets for the superradiant instability (where ω = 0)

on black resonators for three modes with j = 9/2, j = 5, and j = 11/2. MPAdS at

branching points of black resonators are stable for j ≤ 4, as we explain in section A.3 of

the appendix. We also did not find any evidence of instability of black resonators for j ≤ 4.

For j = 5, there are actually two onset curves corresponding to even and odd parity modes

under the discrete isometry (2.11), but they almost coincide. In the inset, we zoom into

the region near the geon where it is easier to see the difference between the j = 5 even and

odd parity modes.

Note that the onset curves intersect the orange branching curve, where black res-

onators merge with MPAdS solutions. By using the known results [26] on MPAdS (see

also appendix A.3 for more details), we can deduce that each mode is unstable below its

onset curve, and stable above it. In other words, we see that black resonators with large

angular momentum J have more stable modes. Though, like MPAdS, black resonators are

in general unstable to an infinite number of modes with arbitrarily high wavenumbers.

For the geon, most modes we have found for the scalar field perturbation are normal

modes. That is, the modes have purely real frequency and geons are linearly stable to these

modes. In figure 2b, we show the perturbative frequency ω on the geons for these same

modes with j = 9/2, j = 5, and j = 11/2, from left to right, respectively.

We note that for the j = 5 mode, there is a small window near J ∼ 2.44 where

this mode becomes pure imaginary and unstable.4 This window is imperceptibly small in

figure 2b, but we show the growth rate in figure 2c.

4Actually, ω goes continuously from purely real, to ω = 0, to pure imaginary. But one can show that if

ω is an eigenfrequency, then −ω is also an eigenfrequency. There is therefore an ambiguity as to whether

this ω continues to a positive imaginary mode, or negative imaginary. We just take the positive imaginary

mode because it corresponds to an instability.
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(a) Onsets for scalar field on black resonator.
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(c) Growth rate of unstable frequency on geons.

Figure 2. (a): phase diagram for the stability of the black resonators against a scalar field.

The colored curves correspond to the onset of an instability where ω = 0. Black resonators are

unstable to a given mode below each curve. Wavenumbers are for the Wigner D-matrices Dj
mk. (b):

perturbative frequency ω for geons. Note that the zero modes of geons where ω = 0 matches where

the zero modes of the black resonators intersect the geon family. (c): growth rate of the unstable

mode on the geon.

Note that the geons have zero modes where ω = 0, and that these zero modes corre-

spond to precisely where the onset curves of the black resonators intersect the geons. This

includes both the odd and even j = 5 modes. Meanwhile, the half-integer zero modes of

the geons are not an onset to an instability as the frequencies are all purely real.

Outside of the small window given in figure 2c (and presumably other similar windows

for higher integer j), geons are linearly stable. Continuity implies that the corresponding

mode on nearby black resonators has a small growth rate Im(ω).

Both the geon zero modes and the black resonator onsets correspond to τ -independent

perturbations. This suggests a new family of geons and black resonators with nontrivial

scalar “hair”. We will discuss these solutions in section 6.

5.2 Maxwell field

In figure 3, we show results for Maxwell fields for modes with j = 3/2 and j = 2. MPAdS

at branching points of black resonators are stable for j ≤ 1, as we explain in section B.2

of the appendix. We also did not find any evidence of instability of black resonators for

j ≤ 1. For j = 2, there are two onset curves corresponding to even and odd parity modes
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(b) Maxwell field frequency on geons.
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(c) Growth rate of unstable frequency on geons.

Figure 3. (a): phase diagram for the stability of the black resonators against a Maxwell field. The

colored curves correspond to the onset of an instability where ω = 0. Black resonators are unstable

to a given mode in the region to the left of each curve. Wavenumbers are for Wigner D-matrices

Dj
mk. (b): perturbative frequency ω for geons with j = 3/2 and j = 2. Frequencies are purely real

or purely imaginary. Geons are unstable to the j = 2 mode in the gap around J ∼ 10.5, where this

mode becomes purely imaginary. (c): growth rate of the unstable mode on the geon.

under (2.11); the onset of the odd perturbation is shown only in the inset in figure 3a

for visibility. Much of the behaviour is similar to that of the scalar field. That is, black

resonators with large J tend to have more stable modes, although they are nevertheless

still unstable to modes with arbitrarily high wavenumbers. The onset of these instabilities

corresponds to a zero mode, which happens to also be a zero mode on the geon. These zero

modes are τ -independent perturbations that will lead to new families of geons and black

resonators with Maxwell “hair”.

Like what was observed in the scalar field, there is a small range of parameters where

the geon is unstable. Notice that in figure 3b near J ∼ 10.5 for the j = 2 mode, there is a

small window. In this region, the mode is purely imaginary, and becomes the mode shown

in figure 3c. This instability likely extends to nearby black resonators as well.

The edges of this instability just below J = 10 and just above J = 10.6 are zero modes

for the geon. From the inset of figure 3a, we see that these zero modes are precisely where

the j = 2 onsets curves for even and odd party perturbations of black resonator intersect

the geon.
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Figure 4. Gravitational perturbations for j = 1/2.

5.3 Gravitational perturbations

We now give results for gravitational perturbations, beginning with the j = 1/2 modes,

which we show in figure 4. In figure 4a, we show the onset curve for the black resonator.

The black resonators are unstable above the purple curve. Note that this onset curve

does not intersect the branching points because MPAdS is already unstable to j = 1/2

perturbations.

In figure 4b, we plot the perturbative frequency on the geons. Note that there are no

zero modes or instabilities on the geons, even though the onset curve in figure 4a appears

to intersect the geon. To explain this behaviour, in figure 5 we show two eigenfunctions

for two different black resonator backgrounds. (These eigenfunctions are defined more

precisely in appendix C.5.) Both black resonators are close to the onset curve, but one of

them is farther from the geon, and the other is closer. We see that the eigenfunctions for

near-geon black resonators have sharper gradients near the AdS boundary. This suggests

that this onset mode becomes singular in the geon limit, which would explain why zero

modes can exist for black resonators but not geons.

Results for the j = 1 perturbation are shown in figure 6. Against the j = 1 pertur-

bation, MPAdS are unstable at the branching points. The black resonators continue to be

unstable in the whole region against such perturbation. (See also figures 15b and 15c.) In

addition to this mode, as shown in figure 6a, a new unstable mode appears above each of

the purple and green curves. Note that the even onset curve (in purple) intersects the geon,

where in figure 6b we see that it corresponds to a zero mode of the geon. This zero mode

on the geon is the onset of an instability, the growth rate of which is shown in figure 6c.

There is a possibility that odd onset curve (in green) also intersects the geon, where it

would correspond to the location where the growth rate in figure 6c reaches zero again.

But this would occur for an angular momentum that is too high for our numerical methods

to capture. Finally, we note that the onset curve for j = 1 perturbations intersects the

j = 1/2 perturbations though this is not shown in our figures.

We expect the unstable gravitational perturbations to have a growth rate that is typi-

cally much larger than that of the scalar field and Maxwell field. This behaviour is similar
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Figure 5. Two eigenfunctions (precise definitions can be found in appendix C.5) for gravitational

perturbations of black resonators near the onset ω ≈ 0. The coordinate ρ is defined so that ρ = 0 is

the horizon and ρ = 1 is the AdS boundary. Left: E ≈ 5.33, J ≈ 3.69 (farther from geon). Right:

E ≈ 1.38, J ≈ 0.904 (closer to geon). We see that the eigenfunctions for black resonators near the

geons have sharper gradients near the AdS boundary.

to perturbations of Kerr-AdS, where perturbing the background with higher-spin fields

will yield greater growth rates in the superradiant instability [32]. This might perhaps be

due to the fact that growth rates tend to decrease exponentially with increasing j, and

gravitational perturbations tend to be unstable for smaller j. Because of the larger growth

rate, it is numerically feasible to compute ω directly for black resonators. The growth rates

Im(ω) for the j = 1/2 modes are shown in figure 7. This can be compared with figure 4a.

We also did a similar analysis for j = 0 gravitational perturbation, which preserves SU(2)

symmetry, but did not find any evidence of instability.

6 Multi-resonators and multi-geons

At the onsets of any instability of black resonators, we find τ -independent perturbations.

For example, the τ -independent scalar field perturbation can be written as

Φ(τ, r, θ, φ, χ) =
∑
|k|≤j

φk(r)Dk(θ, φ, χ) . (6.1)

Now, let us move to the non-rotating frame at infinity (t, ψ):

dt = dτ , dψ = dχ+ 2Ωdτ . (6.2)
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Figure 6. Gravitational perturbations for j = 1.
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Figure 7. Growth rate Im(ω) for a j = 1/2 gravitational perturbation of black resonators. The

green line is the onset of the instability where ω = 0. The black line are the geons, which are the

zero horizon size limit of black resonators.
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The Wigner D-matrix depends on χ as Dk(θ, φ, χ) ∝ e−ikχ. Therefore, in the non-rotating

frame, the solution of the scalar field becomes

Φ(t, r, θ, φ, ψ) =
∑
|k|≤j

e2ikΩtφk(r)Dk(θ, φ, ψ) . (6.3)

This perturbation has eigenfrequencies

ω = 2jΩ, 2(j − 1)Ω, · · · , −2jΩ , (6.4)

in addition to the background frequency ω = ±4Ω.

These perturbations will therefore generate a new solution that has deformations with

multiple angular frequencies, yet preserves a helical Killing field. These solutions can be

described as either black resonators (or geons) with scalar or Maxwell hair, or as a “double

resonator” (or “double geon”) for gravitational deformations. For scalar and Maxwell

perturbations, their energy momentum tensors are invariant under the change of the sign

of the τ -independent perturbations. We therefore only expect a single branch of solutions to

emerge from these perturbations. For a general τ -independent gravitational perturbation,

changing the sign of the perturbation leads to a physically distinct result.

But hairy black resonators and double resonators likely have their own instabilities,

some of which would have onset curves. These will lead to τ -independent configurations

with angular deformations from multiple different modes. These may be described as multi-

haired black resonators/geons, or perhaps as “multi-resonators” and “multi-geons”. The

phase diagram of these solutions is therefore quite complicated.

In the scalar and Maxwell cases, the onset mode of the black resonators intersects a

zero mode of the geon. It is therefore natural to expect that hairy black resonators are

connected to hairy geons, much like black resonators are connected to geons. The situation

is less clear for the j = 1/2 gravitational perturbation given that there are zero modes

to generate multi-resonators, but no zero modes to generate “multi-geons”. The j = 1

gravitational perturbation, however, has a zero mode on the geon which will lead to a

multi-geon that is presumably connected to some multi-resonators.

Because rotational superradiant instabilities are characterised by an infinite number

of unstable modes, it is plausible that multi-resonators will remain unstable. Nevertheless,

they are stable against several modes that are unstable in MPAdS, and these solutions may

be long-lived.

Constructing these new solutions is numerically challenging due to the lack of symme-

tries. Nevertheless, there is a possibility that some of these solutions could be constructed

perturbatively about AdS. We leave such investigations for future work.

7 Oscillating geons

Because the spectrum of geons typically consists of normal modes, these perturbations

generate nonlinear oscillatory solutions, such as those found in [6] for gravitating scalars.

More complicated multi-oscillating solutions can be generated out of several combinations
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of normal modes [19, 20, 56]. These solutions are highly asymmetric, as the helical Killing

symmetry is broken in addition to many spatial symmetries.

Nevertheless, a small modification of our ansatz (2.1) allows similar solutions to be con-

structed that are cohomogeneity two. However, these oscillating geons will not have angular

momentum, and are generated from perturbations about AdS rather than another geon.

Consider the metric ansatz

ds2 =
1

y

{
− f(τ, y)e2δ(τ,y)

Ω2
dτ2 +

dy2

4(1− y)yf(τ, y)
+

(1− y)

4

[
B(τ, y)2σ2

3 +
1

B(τ, y)
(σ2

1 + σ2
2)

]}
, (7.1)

where Ω is a real parameter whose physical significance we detail below and {f, δ, B} are

functions of τ and y to be determined by imposing the Einstein equation.

To understand our choice of ansatz, we initially set f = B = δ + 1 = 1, which brings

the line element (7.1) to

ds2 =
1

y

[
−dτ2

Ω2
+

dy2

4(1− y)y
+

(1− y)

4

(
σ2

3 + σ2
1 + σ2

2

)]
. (7.2a)

Upon the coordinate transformation

τ = Ω t and r =

√
1− y
√
y

, (7.2b)

one recovers the metric of global AdS. From the above considerations, it is clear that we

want to consider y ∈ [0, 1], with y = 0 marking the location of the conformal boundary

and y = 1 the AdS centre. Finally, we are interested in periodic solutions in time with

frequency Ω, and thus we take τ ∈ [0, 2π]. In fact, we can take advantage of an additional

discrete symmetry to reduce the domain to τ ∈ [0, π] without loss of generality.

The ansatz can be placed in the Einstein equation and solved with the conditions of

regularity at the origin and that the metric is asymptotically global AdS. The system has

one more equation than unknown functions, which we treat as a constraint equation to be

verified after finding a solution. Further details can be found in appendix D.

To find our solutions we employed spectral collocation methods, with a uniform cosine-

type grid along the τ direction and a Chebyshev grid along the holographic direction y.

Our findings are consistent with exponential convergence, which seems to be supported by

the fact that we found no non-analytic behaviour at any of the edges of the integration

domain with the gauge we used.

With a solution, we can determine the holographic stress energy tensor using [57]

〈Tµν〉dxµdxν =
1

16π

{
− 3q2dt2 +

1

4

[
(8q1 − q2)σ2

3 − (4q1 + q2)
(
σ2

1 + σ2
2

)]}∣∣∣∣∣
y=0

, (7.3)

from which one can read the total energy of the system E.5

5We will always measure the energy with respect to pure AdS, i.e. we neglect the Casimir energy of

global AdS5.
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Figure 8. Energy E of the squashed geons as a function of Ω for the fundamental mode. For

Ω . 6 the agreement between the exact numerical data (black disks) and the analytic perturbative

approach (solid red line) are in good agreement.

Besides solving for our solutions numerically, we can also use perturbation theory to

construct these objects. This has been extensively used in the literature [6, 33, 39, 40, 58, 59]

in similar contexts and provides a good check of our numerical procedures. We expand

all our functions about AdS in power series in a small parameter ε, with the τ coordinate

expanded as a Fourier series. Solving order by order, we obtain expressions for the angular

frequency and energy, perturbatively about AdS:

E =
9πε2

160
, Ω = 6− 11057ε2

90090
. (7.4)

The details of this perturbative calculation can be found in appendix D.

We are now ready to present our results and compare them with our perturbative

calculations. In figure 8 we show the energy as a function of Ω, with the black disks

corresponding to our numerical data and the red solid line to the analytic perturbative

results (7.4). For Ω . 6, we find good agreement with the perturbative and full nonlinear

solutions. The energy seems to reach a maximum value Emax ' 0.452018 around Ω =

Ωmax ' 5.30219. For Ω < Ωmax the energy decreases with decreasing Ω. We stop finding

new solutions at around Ω? = 5.312, and we suspect that this is due to a formation of a

curvature singularity in the bulk. To inspect whether this is true we monitored

C = max
M

W abcdWabcd , (7.5)

where W is the Weyl tensor. We find that the maximum of W abcdWabcd is always located

at y = 1 and τ = π. In figure 9 we plot C as a function of Ω in a log-scale. We find evidence

that C is blowing up as we take the limit Ω→ Ωmax
+.

We have also extracted 〈Tχχ〉 for several values of Ω, which we depict in figure 10. From

left to right, we have Ω = 5.998, 5.8, 5.312. The black disks represent the exact numerical

results and the solid red line the analytic perturbative results. Like it was for the energy,

we find agreement between the two methods when Ω . 6.
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Figure 9. C as a function of Ω in a log-scale. This plot shows numerical evidence that C is blowing

up as we take the limit Ω→ Ωmax
+.
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Figure 10. 〈Tχχ〉 as a function of τ ≡ Ω t computed for several values of Ω. From left to right,

we have Ω = 5.998, 5.8, 5.312. The black disks correspond to our numerical data and the solid red

lines to our perturbative analytic approximation. For Ω . 6 we find excellent agreement between

the two methods to extract 〈Tχχ〉.

Finally let us comment on the stability of oscillating geons. In many ways, these geons

resemble boson stars and oscillaton stars [6–10, 12, 15, 16], in that they are nonlinear

extensions of normal modes about AdS. There is considerable evidence for the nonlinear

stability of such solutions [9, 10, 12, 15, 16], and there are arguments that this stability

should apply to geons as well. Also like boson stars and oscillaton stars, the oscillating

geons appear to have a maximum energy. We expect that solutions past this maximum

energy (i.e. for Ω . 5.30219) are unstable, as is common for such turning points [60–63].

8 Summary and discussion

We presented a comprehensive study of the linear mode stability of certain five-dimensional

black resonators and geons with equal angular momenta. We find that black resonators

are superradiantly unstable throughout moduli space to scalar, electromagnetic and grav-

itational perturbations. Our findings are in agreement with those reported in [42].

The results pertaining to the geons are more surprising. These horizonless solutions

have an ergoregion, so one might be tempted to think that they are unstable to the so-

called ergoregion instability first studied by Friedman in [64], proved in [65] for scalar
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waves and reviewed in [24]. However, Friedman’s instability only applies to asymptotically

flat boundary conditions, which is not our case. Indeed, Friedman finds initial data with

negative energy and then uses the fact that the Bondi mass is a decreasing function on

null infinity to argue that the energy will continue to grow more negative. In AdS, with

reflecting boundary conditions, the energy is conserved at infinity and thus the instability

is absent. Black holes also do not have this instability because they absorb the negative

energy states in the ergoregion.

In [33, 39], a linear stability argument for geons was presented based on eigenvalue

perturbation theory. Geons are nonlinear realizations of normal modes of AdS, and in

particular, when their energy is small, it is natural that their perturbative spectrum is

similar to that of AdS. Since AdS does not have any mode that is on the verge of becoming

unstable, we expect the geons to be stable. However, this argument is too quick, since we

cannot prove that the spectrum of linear perturbations around a geon yields a selfadjoint

problem in ω2, and thus we cannot rule out the existence of an instability. Remarkably, after

studying scalar and gravitational perturbations we still find that the spectrum remains real,

and in fact many are linearly stable, even moderately far away from pure AdS. Continuity

implies that the growth rate of black resonators should approach zero in the small horizon

limit.

However, for scalar and electromagnetic perturbations, we have found a small window

of parameters where geons are unstable. Our results also indicate that such a window

is plausible for gravitational perturbations as well. This window is bounded by the zero

modes of integer j perturbations with odd and even parity.

The fact that these instabilities exist for scalar, Maxwell, and gravitational perturba-

tions implies that there is some general mechanism that drives this instability. Though at

this stage, it is unclear what physical mechanism is responsible. Such a mechanism would

have to be sensitive to some symmetries of the perturbations, as the instability only seems

to exist for integer j modes, and not half-integer modes.

It would be natural for the instability of these geons to lead to black hole formation.

There are black resonators with the same energy and angular momentum as these geons.

These are the less symmetric black resonators that are bounded in phase space by higher-

mode geons and the onset of higher superradiant modes. In the scalar and Maxwell case,

there may also be hairy black holes that share the same energy and angular momentum.

All of these black hole solutions can serve as intermediate states in the evolution of these

unstable geons, though the ultimate endstate is still unknown as these black holes are still

unstable to superradiance.

We have also commented on the existence of black resonators with scalar or electro-

magnetic hair that branch from the onset curves, and also on the existence of multi-black

resonators generated by the gravitational zero modes. It is natural to expect that under

time evolution, some of these instabilities will evolve towards the hairy solutions, at least

as intermediate states until other instabilities grow. We leave the construction of these

hairy and multi solutions, as well as a comparison of their entropies, to future work.

For the scalar, electromagnetic, and integer j gravitational perturbations, the geons

also have zero modes that coincide with the zero-horizon limit of the zero modes on black
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resonators. It is therefore likely that hairy and multi-geons also exist, and that they may

be the zero horizon limit of hairy or multi black resonators. However, for the j = 1/2 (and

presumable other half-integer) gravitational perturbations, the zero modes do not have a

smooth zero-horizon limit. This leads to the possible existence of black multi-resonators

that likewise do not have a smooth zero-size limit. The non-smooth limit is curious in that

our perturbative results suggest the singularity appears near the boundary, rather than

near the origin. This suggests that the zero-size limit is not a singularity that is covered

by a horizon.

In addition to these hairy and multi-geons, the normal modes of geons suggest that

oscillating geons also exist. Though we have not constructed any such solutions branching

from geons, we have constructed an oscillating geon that branches from a normal mode of

AdS. By analogy with what is understood for gravitating scalars, we expect small-energy

oscillating geons to be stable. In the context of gauge/gravity duality, the existence of

these oscillating geons is mysterious as they represent states that are very long lived and

do not appear to thermalise.

Given that our calculations are in AdS5, there are naturally implications for the famous

duality between supergravity in AdS5 × S5 and N = 4 SYM. But the presence of the S5

space introduces other instabilities in black holes. Schwarzschild-AdS5 × S5 black holes

are linearly mode stable above energies E & 0.27,6 but unstable otherwise. A putative

endpoint of this instability was found in [66] and can be described as a ten-dimensional

spherical black hole localised on one of the poles of the S5. To contrast, the Hawking-Page

transition [67] occurs for E ≈ 2.4. The oscillating geons of section 7 will compete with

both the localised and unlocalised black holes with AdS5 × S5 asymptotics, since they

exist for E . 0.45. Note that since these solutions have no horizon, and thus no entropy to

leading order in N , they will always be subdominant with respect to any black hole solution

at fixed E. Thus, at any finite value of N , the new oscillating geons will tunnel to the

aforementioned black hole solutions, which in turn will Hawking evaporate leaving behind

a gas of gravitons. Geons and their oscillating cousins therefore do not thermalise except

via tunneling which is a process suppressed by 1/N2. From the field theory perspective, it

is far from clear how such a state can be realised.
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A Technical details for scalar field perturbations

A.1 Equations of motion

Recall that we decompose the scalar field by using the Wigner D-matrices as (4.2), which

we reproduce here:

Φ(τ, r, θ, φ, χ) = e−iωτ
∑
|k|≤j

φk(r)Dk(θ, φ, χ) . (A.1)

The equation of motion for the scalar field perturbations is in the form (4.3), which

we reproduce below:

Lkφk + ck−1φk−2 + ck+1φk+2 = 0 . (A.2)

We now give the operator and coefficients in full as

Lk = (1 + r2)g
d2

dr2
+

[
1 + r2

2

(
f ′

f
+
g′

g
+
β′

β

)
+

3 + 5r2

r

]
g
d

dr

−
ε2k + ε2k+1

r2

(
α+

1

α

)
− 4k2

r2β
+

(ω − 2kh)2

(1 + r2)f
− λ , (A.3)

and

ck = −εkεk+1

r2

(
α− 1

α

)
. (A.4)

A.2 Finding the onset of an instability

As we will see shortly, an analysis of the equation (4.3) shows that only scalar field per-

turbations with j ≥ 9/2 can be unstable. The growth rate of an unstable perturbation

Imω > 0 is exponentially suppressed by the quantum number j [26], and for j ≥ 9/2 it

would be extremely small (smaller than the 64-bit machine epsilon which is about 10−16).7

Therefore, direct computation of the spectrum ω would be difficult especially for a large j.

Instead, we just focus on locating the onset of the instability.

By definition, the onset of a linear instability occurs when Im ω = 0. We will now

demonstrate that at an onset, we also have Reω = 0, which will allow us to set ω = 0 and

compute the eigenvalue of the Klein-Gordon operator λ. A change in the sign of λ will

then imply a change in stability.

Let us consider the conserved current Jµ:

Jµ =
√
−det gµν (Φ∗∇µΦ− Φ∇µΦ∗) , (A.5)

which satisfies ∂µJ
µ = 0 by the Klein-Gordon equation. We consider the scalar field

perturbation (A.1) at the onset of instability, i.e. Imω = 0. Then, the time dependent

7For example, for the MPAdS with Ω = 1.5 and rh = 0.1, we obtained a growth rate Im(ω) ∼ 10−16 for

j = 3. For j ≥ 9/2, which are modes we are interested in, the growth rate is much smaller.
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factor e−iωτ cancels out in Jµ, and we obtain ∂τJ
µ = 0. Using this and integrating the

conservation law ∂µJ
µ = 0 with respect to the angular coordinates (θ, φ, χ), we obtain the

radial conservation law

∂rQ = 0 , Q ≡
∫
dθ dφ dχJr . (A.6)

The explicit expression of Q is given by

Q = r3(1 + r2)
√
fgβ

∑
|k|≤j

(φ∗k
′φk − φ∗kφ′k) . (A.7)

We can estimate the value of Q at the infinity (r =∞) and the horizon (r = rh). For this,

we consider (4.1). At the infinity, the quickly decaying mode behaves as

φk ∼
1

r2+
√

4+λ
. (A.8)

This gives Q|r=∞ = 0. Near the horizon, the background solution behaves as f, g, h =

O(r − rh) and α, β = O(1) (see [43] for details). Near the horizon, the ingoing wave

solution is given by

φk ∼ (r − rh)−iω/(2κ) , (A.9)

where

κ =
1

2
(1 + r2)

√
f ′g′

∣∣∣
r=rh

(A.10)

is the surface gravity. Using these, we obtain Q|r=rh ∝ ω. From the radial conservation

law, we conclude that ω = 0 at the onset of the instability.

A.3 Scalar field superradiant instability of Myers-Perry AdS black holes

Since black resonators branch off from MPAdS black holes at the onset of the gravita-

tional superradiant instability, MPAdS black holes provide good approximations to black

resonators near the onset point. It would therefore be useful to compute the onset of the

scalar superradiant instability in MPAdS as well. This has essentially8 been done in [26]

using a basis for CPn, but we repeat this calculation here using a decomposition into

Wigner D-matrices. We only need to solve the decoupled equation Lkφk = 0 because of

the additional U(1)-symmetry.

Following the procedure we have set out in previous sections, we set ω = 0 and sub-

stitute (2.3) into Ljφj = 0. We impose a regular boundary condition at the horizon and

integrate the differential equation from the horizon to the infinity. In general, the scalar

field behaves as φj ∼ c1/r
2+
√

4+λ + c2/r
2−
√

4+λ as r →∞, and for the solution we impose

c2 = 0, which corresponds to introducing no source of φ at the AdS boundary. To find

the solution with this condition, we use the shooting method by tuning λ. We repeat this

procedure for various parameters (rh,Ω) and search the point at which the eigenvalue λ

changes its sign. Such a point marks the onset of the instability.

8The calculation presented in [26] applies for any odd dimension, but no explicit results were provided

for D = 5, which is our current case of interest.

– 24 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
6

1.25

1.3

1.35

1.4

1.45

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Branching points of
black resonators

E
xtrem

e M
PA

d
S

Figure 11. Onsets of the scalar field superradiant instability of MPAdS black holes. The onsets

are shown in the (rh,Ω)-plane by purple curves for Wigner D-matrix’s (Dj
mk) wavenumbers j =

4, 9/2, 5, 11/2, k = j, and any allowed value of m. Perturbative modes of MPAdS black holes

are unstable in the region above the corresponding purple curve. The orange curve represents the

branching points to the black resonators from MPAdS, i.e. the onset of a gravitational superradiant

instability of MPAdS.

In figure 11, we summarize the onset of the superradiant instability of MPAdS under

the scalar field perturbation with j = 4, 9/2, 5, 11/2. Above each curve, the MPAdS

is unstable with respect to the corresponding mode. The branching points to the black

resonators are also plotted in the orange curve. For example, for the j = 9/2 perturbation,

the MPAdS is unstable at the branching points in rh . 0.37 but stable in rh & 0.37. We see

that the purple curves intersect with the orange curve with rh > 0 only for wavenumbers

j ≥ 9/2. From this result, we can deduce that the black resonators with a small horizon

radius and in the neighborhood of MPAdS are unstable to perturbations with j ≥ 9/2.

A.4 Classifying scalar field perturbations

We now turn to the analysis of the stability of the black resonators. Unlike the case of

MPAdS, modes with different k couple. However, because of the double-stepping coupling

in (4.3) and discrete isometries, we can reduce the number of coupled equations.

For half-integer j, we obtain two closed systems of scalar field perturbations,

v = {φj , φj−2, φj−4, · · · , φ−j+1} , (A.11)

ṽ = {φj−1, φj−3, φj−5, · · · , φ−j} . (A.12)

These satisfy the same equations of motion, and therefore it is sufficient to solve only for v.

When j is an integer, {φj , φj−2, · · · , φ−j} form a closed system. At the onset of

instability, where ω = 0, we can further decompose this system into two parts using the

discrete isometry (2.11). Under the isometry, the Wigner D-matrix transforms as

Dk → D−k , (A.13)
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and also the perturbation variable φk → φ−k. Therefore, under this isometry, we can divide

the perturbation into the even and odd parity modes as

v = {φk ± φ−k|k = j, j − 2, · · · ; k ≥ 0} , (A.14)

where the plus and minus signs correspond to the even and odd parity, respectively. They

transform as v → ±v and hence are decoupled. There is also a closed system ṽ = {φk ±
φ−k|k = j − 1, j − 3, · · · ; k ≥ 0}. However, because we expect that the one with k = j

would be more unstable, we do not consider ṽ in this paper.

A.5 Scalar field superradiant instability of black resonators

We can now solve the equations for scalar field perturbations in black resonators and locate

the onset to superradiance. We opt for a shooting method from the horizon out to infinity.

Near the horizon and at the onset of the instability, where ω = 0, the equation for the

system v takes the form

v′′ +
1

r − rh
v′ +

M

r − rh
v ' 0 , (A.15)

where ′ ≡ ∂r, and M is a constant matrix derived from (4.3). From regularity, we obtain

v′ = −Mv at r = rh. The components of v|r=rh are free parameters. We set the first

component of v (i.e., φj or φj±φ−j) to 1 at r = rh. This fixes the scale of the perturbation.

We also have a parameter given by the eigenvalue λ. Therefore, in total, we have dim v

tuning parameters when we integrate the equations of motion from the horizon to infinity.

At the infinity, the scalar field behaves as

v ' c1

r2+
√

4+λ
+

c2

r2−
√

4+λ
, (r →∞) . (A.16)

We require that the coefficients of the slowly decaying solution to vanish: c2 = 0. This

gives dim v conditions. In the shooting method, hence, we tune the dim v parameters so

that c2 = 0 is satisfied.

Solving the perturbation equation (A.2), we track how the eigenvalue of the Klein-

Gordon operator λ changes as we vary the parameters of the black resonator background

(rh, α(rh)). Figure 12 displays an example for the scalar field perturbation with j = 9/2.

For this computation, we fix the horizon radius of the black resonator as rh = 0.35 and vary

the horizon deformation parameter α(rh). (Note that α(rh) = 1 corresponds to MPAdS.)

We find that the eigenvalue crosses zero around 1− α(rh) ' 0.138. We also know that the

MPAdS at the branching point (α = 1) is unstable for rh = 0.35 and j = 9/2 from figure 11.

Therefore, in this region of parameter space, black resonators with 1 − α(rh) < 0.138 are

unstable against the j = 9/2 scalar field perturbation, and stable otherwise.9

We repeat the above procedure for various (rh, α(rh)), searching for the zero of λ.

These parameters can be easily converted into the mass and angular momentum of the

black resonators, E and J (see ref. [43]). Results of this computation are presented in

section 5.

9This identification of stable and unstable domains is consistent with the intuition derived from λ being

the squared mass of a massive scalar field.
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Figure 12. Eigenvalue of the Klein-Gordon operator for j = 9/2 and rh = 0.35.

A.6 Scalar field perturbations of geons

Unlike black resonators, geons do not have a horizon. Their perturbations do not have

dissipation, and therefore generate modes which are either purely real or purely imaginary.

For geons, we can compute the perturbative frequency ω directly rather than search for

zero modes. For this calculation, we will work with a different radial coordinate ρ defined

by r = ρ
√

2− ρ2/(1− ρ2), so that ρ ∈ [0, 1]. We also perform a field redefinition from φk
to ϕk given by

φk = ρ2j(2− ρ2)j(1− ρ2)4ϕk . (A.17)

With this field redefinition, the boundary conditions are guaranteed to be satisfied if ϕk is

finite on the domain. The basic structure of the equations, including the double-stepping

coupling between modes with k and k ± 2, is the same as that of the black resonator.

Now we set λ = 0 in the equations of motion, with the geon as a background solu-

tion. We can then reduce the linear perturbation equations and boundary conditions to a

matrix eigenvalue problem (with eigenvalue ω) using pseudospectral methods. The matrix

eigenvalue problem spectrum is solved by QZ decomposition. We track individual modes

in parameter space using a Newton-Raphson algorithm. See e.g. [68] for an introduction

to the various methods used here. Again, we present the results of this calculation in

section 5.

B Technical details for Maxwell perturbations

B.1 Equations of motion

Recall that we decompose the Maxwell field into Wigner D-matrices according to (4.13),

which we reproduce here:

AA = e−iωτ
∑
|k|≤j

AkA(r)Dk , A± = e−iωτ
∑
|k∓1|≤j

Ak±(r)Dk∓1 , (B.1)
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Figure 13. Onsets of the Maxwell superradiant instability of MPAdS black holes for perturbations

with Wigner D-matrix’s (Dj
mk) wavenumbers j = 1, 3/2, 2, k = j + 1, and any m. These are shown

in the (rh,Ω)-plane in purple curves. The orange curve represents the branching points to black

resonators from MPAdS.

where A = τ, r, 3. The equations of motion take the form (4.14)–(4.15)

A′′k = P [Ak,Ak−2,Ak+2] , (B.2)

(Akr )
′ = Q[Ak,Ak−2,Ak+2] . (B.3)

Their explicit forms are too cumbersome, and we decided not to reproduce them here.

B.2 Maxwell field superradiant instability of Myers-Perry AdS black holes

Again, in the limit of MPAdS, i.e. α(r) → 1, the U(1)-symmetry generated by Rz is

recovered, and the modes with different U(1) charges decouple. Here, we focus on k = j+1,

which has the largest k for a fixed j, and then there is a single perturbation variable Ak=j+1
+ .

In the same way as the scalar field perturbation of MPAdS in section A.3, we search the

values of (rh,Ω) where λ = 0.

Results are shown in figure 13 for j = 1, 3/2, 2. In the region above each curve, MPAdS

is unstable to the corresponding mode. The branching points to black resonators are also

shown in the orange curve. We find that the MPAdS at the branching points change the

stability against the perturbations with j ≥ 3/2. Therefore, the black resonators with a

small horizon radius and small deformation near the MPAdS should also be unstable.

B.3 Classifying Maxwell perturbations

We turn to the Maxwell perturbations in the black resonator background. First, we classify

the coupling of the perturbations.

In the same way as the case of the scalar field perturbations, we can reduce the number

of coupled variables by making use of the double-stepping coupling and the discrete isom-

etry (2.11). Let us consider the case of j = 3/2 for example. All perturbation variables
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k −5/2 −3/2 −1/2 1/2 3/2 5/2

A+ X X

AA X X

A− X X

Table 1. Coupled variables for the Maxwell perturbation with j = 3/2. The variables in (B.5) are

marked with X. Variables do not exist in gray cells. Other variables which are not here considered

also exist in blank cells.

k −3 −2 −1 0 1 2 3

A+ X X X

AA X X

A− X X X

Table 2. Coupled variables for the Maxwell perturbation with j = 2. The closed system including

k = j + 1 is marked with X.

can be listed as

A
k=5/2, 3/2, 1/2,−1/2
+ , A

k=3/2, 1/2,−1/2,−3/2
A , A

k=1/2,−1/2,−3/2,−5/2
− . (B.4)

Among them, because of the double-stepping coupling, we find a closed system with

A
k=5/2, 1/2
+ , A

k=1/2,−3/2
A , A

k=1/2,−3/2
− . (B.5)

To analyze the stability, we will focus on this closed system including the variable with the

highest k: Ak=j+1
+ . The coupled variables for this case is summarized in table 1. We can

proceed with the same analysis for j = 2, and the result is summarized in table 2.

For integer j, we can further decompose the perturbation when ω = 0. By the discrete

isometry (2.11), the orthogonal basis transforms as

(eτ , er, e±, e3)→ (−eτ , er,−e∓,−e3) . (B.6)

Using this and (A.13), we find that the transformation of the perturbation variables is

(Akτ , A
k
r , A

k
±, A

k
3)→ (−A−kτ , A−kr ,−A−k∓ ,−A−k3 ) . (B.7)

Hence, we can group the variables into the even and odd parity modes as

Even: (Akτ −A−kτ , Akr +A−kr , Ak3 −A−k3 , Ak± −A−k∓ ) ,

Odd: (Akτ +A−kτ , Akr −A−kr , Ak3 +A−k3 , Ak± +A−k∓ ) .
(B.8)

They decouple in the perturbation equations.

B.4 Maxwell field superradiant instability of black resonators

We again resort to a shooting method to solve the equations. To adjust the asymptotic

behavior at the horizon and infinity, we define rescaled variables (akA, a
k
±) by

(Akτ , A
k
r , A

k
3, A

k
±) =

(
F (r)

r
akτ ,

i

r3
akr ,

1

r
ak3,

i

r
ak±

)
, (B.9)
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where F (r) ≡ 1−(rh/r)
6. We also multiplied i =

√
−1 to akr and ak± so that the coefficients

in the perturbation equations are real.

We introduce the variables v and w which will be used in numerical calculations as

follows. In w, we collect the components whose indices include r. The others are packaged

in v. For example, for j = 3/2, v and w are given by

v = (a
5/2
+ , a

1/2
+ , a1/2

τ , a
1/2
3 , a

1/2
− , a−3/2

τ , a
−3/2
3 , a

−3/2
− ) ,

w = (a1/2
r , a−3/2

r ) .
(B.10)

For j = 2, they become

v = (a3
+ ∓ a−3

− , a1
+ ∓ a−1

− , a1
τ ∓ a−1

τ , a1
3 ∓ a−1

3 , a1
− ∓ a−1

+ ) ,

w = (a1
r ± a−1

r ) ,
(B.11)

where the upper and lower signs correspond to the even and odd parity modes.

From (4.14) and (4.15), we obtain second and first order differential equations for v

and w, respectively:

v′′ = N1v
′ +N2v +N3w , (B.12)

w′ = N4v +N5w , (B.13)

where N1,··· ,5 denote matrices whose entries are r-dependent functions. We can also obtain

equations including w′′ from (4.14) as

w′′ = N6v
′ +N7v +N8w , (B.14)

where we eliminated w′ by using (B.13).

We do not integrate this equation but use it as constraints to check numerical accuracy.

Differentiating (B.13) by r and eliminating w′′ by using (B.14), we obtain

C = (N4 −N6)v′ + (N ′4 +N5N4 −N7)v + (N2
5 +N ′5 −N7)w = 0 , (B.15)

where we again used (B.13) to eliminate w′. This constraint is conserved under the “r-

evolution” by (B.12) and (B.13) as C ′ = N9C. This constraint equation is automatically

satisfied if we impose a regular boundary condition at the horizon.

Near the horizon, we can expand the perturbations as

v =
∞∑
m=0

vm(r − rh)m , w =
∞∑
m=0

wm(r − rh)m . (B.16)

Substituting the above series into (B.12) and (B.13), we find that vm≥1 and wm≥0 are

determined by v0. We can impose the first entry of v0 to be 1, and this fixes the scale of

the perturbation:

aj+1
+ |r=rh = 1 , (j: half-integer) ,

aj+1
+ ∓ a−j−1

− |r=rh = 1 , (j: integer) ,
(B.17)

where the upper and lower signs represent the even and odd parity. We are then left with

(dimv − 1) free parameters in v0, but we also have λ as a free parameter. Therefore,

in total, we have dim v tuning parameters when we integrate (B.12) and (B.13) from the

horizon to infinity.
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Near the AdS boundary, the asymptotic solution of v takes the form

v ∼ c1

r
√

1+λ
+ c2r

√
1+λ , (B.18)

and we impose c2 = 0. One can then check that w also decays as 1/r
√

4+λ when c2 = 0,

and therefore it is sufficient to impose c2 = 0 only. In the shooting method, we tune the

dimv tuning parameters so that c2 = 0 is satisfied. Results are shown in section 5.

B.5 Maxwell field perturbations of geons

For the geon, we compute the frequency ω directly. Like the scalar field, we work with the

modified radial coordinate ρ defined by r = ρ
√

2− ρ2/(1−ρ2), so that ρ ∈ [0, 1]. We work

with rescaled variables ak defined by

Ak = ρ2j(2−ρ2)j(1−ρ2)2
[
akτ dτ + iρ−1(1− ρ2)akρ dρ+ ak3(σ3 + 2hdτ) + iak−σ− + iak+σ+

]
.

(B.19)

Just as we have done for the scalar field, the boundary conditions for Ak are guaranteed

to be satisfied if ak is finite. The basic structure of the equations of motion is the same as

that of the black resonator. We again set λ = 0 and solve for ω using the same numerical

methods as that of the scalar field.

B.6 Comment on gauge modes

The Lorenz gauge condition (4.10) does not completely fix the gauge freedom. However,

we can show that the normal modes found at the onset of instability cannot be gauge

modes. The gauge transformation of the Maxwell field is written as δAµ = ∂µΛ where Λ

is a scalar function. It can be expanded by the Wigner D-matrices as Λ =
∑
|k|≤j ΛkDk.

In particular, the gauge transformation of Ak± is given by

δAk+ = εkΛk , δAk− = εk+1Λk . (B.20)

Because εj+1 = ε−j = 0, we obtain δA
k=±(j+1)
± = 0. This is consistent with the fact that Λk

is defined in |k| ≤ j. Thus we find that A
k=±(j+1)
± are gauge invariant variables. It follows

that, if Ak=j+1
+ and Ak=−j−1

− are non-zero, the perturbation cannot be a pure gauge mode.

In our numerical calculations, we impose (B.17), and therefore the perturbation cannot be

a gauge mode.

C Technical details for gravitational perturbations

C.1 Equations of motion

Recall that we decompose the metric perturbation into Wigner D-matrices according

to (4.19), which we reproduce again here:

hAB = e−iωτ
∑
|k|≤j

hkAB(r)Dk , h+− = e−iωτ
∑
|k|≤j

hk+−(r)Dk ,

hA± = e−iωτ
∑
|k∓1|≤j

hkA±(r)Dk∓1 , h±± = e−iωτ
∑
|k∓2|≤j

hk±±(r)Dk∓2 ,
(C.1)
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Branching points of
black resonators

Extrem
e M

PA
dS
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0 0.2 0.4 0.6 0.8 1

Figure 14. Onsets of the gravitational superradiant instability of MPAdS. The onsets for

j = 1/2, 1, 3/2 are shown in purple curves in the (rh,Ω)-plane. The orange curve represents the

branching points to cohomogeneity-1 black resonators, which is generated from MPAdS by the j = 0

gravitational perturbation.

where A,B = t, r, 3. The equations of motion we obtain are in the form

h′′k = P [hk−4,hk−2,hk,hk+2,hk+4] , (C.2)

(hkar)
′ = Q[hk−4,hk−2,hk,hk+2,hk+4] , (C.3)

hk+− = R[hk−4,hk−2,hk,hk+2,hk+4] , (C.4)

where P , Q and R are linear operators. In P , we include the first derivative terms by r, but

Q and R do not contain such terms. Again, we do not reproduce the lengthy expressions

of P , Q and R.

C.2 Gravitational superradiant instability of Myers-Perry AdS black holes

In the limit of MPAdS, i.e., α→ 1, we have a decoupled equation for hk=j+2
++ . As employed

in section A.3, we search the zero of the eigenvalue λ for the onset of the gravitational

superradiant instability of MPAdS. Results are shown in figure 14 for j = 1/2, 1, 3/2.

(Recall that the orange branching curve is also the j = 0 onset curve.) Although this result

has already been obtained in [28], we show it again to make this paper self-contained. Above

each curve, MPAdS is unstable to the corresponding mode. This indicates that, on top of

the branching points, MPAdS is always unstable to (j ≥ 1/2)-modes. This is consistent

with the observation in figure 4a that an onset curve for the j ≥ 1/2 perturbation does not

intersect with the branching point curve.

C.3 Classifying gravitational perturbations

Let us consider the gravitational perturbation in the black resonator background.
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k −5/2 −3/2 −1/2 1/2 3/2 5/2

h++ X

hA+ X

hAB X

h+− X

hA− X

h−− X

Table 3. Coupled variables of the gravitational perturbation for j = 1/2. The variables in (C.6)

are marked with X.

k −3 −2 −1 0 1 2 3

h++ X X

hA+ X

hAB X X

h+− X X

hA− X

h−− X X

Table 4. Coupled variables of the gravitational perturbation for j = 1. The closed system including

k = j + 2 is marked with X.

First, we explain the classification of the perturbation using j = 1/2 as an example.

All perturbation variables for this case can be listed as

h
k=5/2,3/2
++ , h

k=3/2,1/2
A+ , h

k=±1/2
AB , h

k=±1/2
+− , h

k=−1/2,−3/2
A− , h

k=−3/2,−5/2
−− . (C.5)

Because of the double-stepping coupling, we can extract a closed system of

h
k=5/2
++ , h

k=1/2
A+ , h

k=1/2
AB , h

k=1/2
+− , h

k=−3/2
A− , h

k=−3/2
−− . (C.6)

The coupled variables for j = 1/2 are summarized in table 3, where we focus only on the

closed system including hk=j+2
++ . A similar closed system obtained for j = 1 is shown in

table 4.

When j is an integer, we can further decompose the perturbation into the even and

odd parity modes by the discrete isometry (2.11) at the onset of the instability ω = 0. By

using (A.13) and (B.6), the transformation of the gravitational perturbation variables by

the isometry is found as

(hkττ , h
k
τr, h

k
τ3, h

k
rr, h

k
r3, h

k
33, h

k
+−, h

k
τ±, h

k
r±, h

k
3±, h

k
±±)

→ (h−kττ , −h−kτr , h−kτ3 , h
−k
rr , −h−kr3 , h

−k
33 , h

−k
+−, h

−k
τ∓, −h−kr∓ , h−k3∓, h

−k
∓∓) . (C.7)

Therefore we can group the variables into the even and odd parity modes, which are
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decoupled, as

Even: (hkττ + h−kττ , h
k
τr − h−kτr , hkτ3 + h−kτ3 , h

k
rr + h−krr , h

k
r3 − h−kr3 ,

hk33 + h−k33 , h
k
+− + h−k+−, h

k
τ± + h−kτ∓, h

k
r± − h−kr∓ , hk3± + h−k3∓, h

k
±± + h−k∓∓) ,

Odd: (hkττ − h−kττ , hkτr + h−kτr , h
k
τ3 − h−kτ3 , h

k
rr − h−krr , hkr3 + h−kr3 ,

hk33 − h−k33 , h
k
+− − h−k+−, h

k
τ± − h−kτ∓, hkr± + h−kr∓ , h

k
3± − h−k3∓, h

k
±± − h−k∓∓) .

(C.8)

C.4 Gravitational superradiant instability of black resonators

To adjust the asymptotic behavior at the horizon and infinity, we introduce rescaled per-

turbation variables Hk
ab as(

hkττ , h
k
τr, h

k
τ3, h

k
rr, h

k
r3, h

k
33, h

k
+−, h

k
τ±, h

k
r±, h

k
±3, h

k
±±

)
=

(
FHk

ττ , ir
−2FHk

τr, FH
k
τ3, r

−4F−1Hk
rr, ir

−2Hk
r3, H

k
33,

Hk
+−, iFH

k
τ±, r

−2Hk
r±, iH

k
±3, H

k
±±

)
. (C.9)

In the same way as the case of the Maxwell perturbation, we introduce the variable v and

w. In w, we assemble the components of the perturbations whose indices include r, and the

others are put in v. However, we can eliminate Hk
+− by using the traceless condition (4.22).

For example, for j = 1/2 mode, v and w become

v = (H
k=5/2
++ , H

k=1/2
τ+ , H

k=1/2
+3 , Hk=1/2

ττ , H
k=1/2
τ3 ,

H
k=1/2
33 , H

k=−3/2
t− , H

k=−3/2
3− , H

k=−3/2
−− ) ,

w = (H
k=1/2
r+ , Hk=1/2

τr , Hk=1/2
rr , H

k=1/2
r3 , H

k=−3/2
r− ) .

(C.10)

For j = 1, they become

v = (Hk=3
++ ±Hk=−3

−− , Hk=1
++ ±Hk=−1

−− , Hk=1
τ+ ±Hk=−1

τ− , Hk=1
+3 ±Hk=−1

−3 ,

Hk=1
ττ ±Hk=−1

ττ , Hk=1
τ3 ±Hk=−1

τ3 , Hk=1
33 ±Hk=−1

33 ) ,

w = (Hk=1
r+ ∓Hk=−1

r− , Hk=1
τr ∓Hk=−1

τr , Hk=1
rr ±Hk=−1

rr , Hk=1
r3 ∓Hk=−1

r3 ) ,

(C.11)

where the upper and lower signs correspond to the even and odd parity modes. Then, we

follow the same procedure as that for the Maxwell field in appendix B.4. To fix the scale

of the perturbation, we impose

Hj+2
++ |r=rh = 1 , (j: half-integer) ,

Hj+2
++ ±H

−j−2
−− |r=rh = 1 , (j: integer) .

(C.12)

Near the AdS boundary, the asymptotic solution of v is given by

v ∼ c1

r
√

4+λ
+ c2r

√
4+λ . (C.13)

We impose c2 = 0. In the shooting method, we tune the dim v parameters including the

eigenvalue λ at the horizon so that c2 = 0 is satisfied at the infinity.
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(a) j = 1/2.
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(b) j = 1: even parity.
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(c) j = 1: odd parity.

Figure 15. Eigenvalue of the Lichnerowicz operator for j = 1/2, 1. The horizon radius is fixed as

rh = 0.35.

Because perturbation equations are linear, there is a linear relation between free pa-

rameters at horizon v|r=rh and coefficients of the growing mode at infinity c2 as c2 =

A(λ)v|r=rh where A(λ) is a λ-dependent matrix. Computing c2 for v|r=rh = (1, 0, · · · , 0)T ,

(0, 1, 0, · · · , 0)T , · · · , (0, · · · , 0, 1)T , we can explicitly construct the matrix A(λ) for a given

λ. If detA(λ) = 0, there is an appropriate v|r=rh such that c2 = 0 is satisfied, i.e., roots

of detA(λ) are eigenvalues. We sometimes use this technique when it is difficult to track

the eigenvalue by the shooing method.

We can also compute the spectrum for ω directly, by setting λ = 0 and solving the

resulting eigenvalue problem. Unlike the scalar and Maxwell fields, the growth rates for

the gravitational perturbations are not prohibitively small for numerics.

Even when a zero mode is found, we need to verify that it corresponds to the onset

of a dynamical instability. For all of these modes, we checked that the zero mode is not a

gauge mode by using the technique which will be introduced in appendix C.6.

In figure 15, we show the eigenvalue of the Lichnerowicz operator as a function of the

horizon deformation parameter 1−α(rh) for j = 1/2, 1. The left edge of each figures is the

MPAdS limit, where α(rh) = 1 and modes with different k decouple. We chose the horizon

radius as rh = 0.35 to clearly show the existence of the zero modes (λ = 0).

For j = 1/2, we find four eigenvalues as in figure 15a. One of them (the purple curve)

approaches the decoupled h
k=j+2=5/2
++ mode in the MPAdS limit. The eigenvalue crosses

zero around 1 − α(rh) ' 0.3. The MPAdS at the branching point of the black resonator

is unstable to this mode as studied in appendix C.2. Therefore, we deduce that the black

resonators are unstable in 1 − α(rh) . 0.3 and stable in 1 − α(rh) & 0.3 with respect to

the (j = 1/2)-perturbation. In section 5, we describe results for the j = 1/2 mode in more

detail, including the growth rates Im(ω).

For j = 1, we find three eigenvalues in each even and odd parity perturbation as in

figures 15b and 15c. Purple curves approach the k = j + 2 = 3 mode in the MPAdS

limit. Unlike the case of j = 1/2, we did not observe the purple curves reaching zero in

the parameter region we examined. From the analysis in appendix C.2, we know that the

black resonators are unstable to the k = j+ 2 = 3 perturbation near the branching points.

Therefore, the black resonators are unstable to this perturbation at least in the region we
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explored. We can also see that green curves cross zero. This indicates that new unstable

modes exist to the right of the zero points.

C.5 Computing the frequency directly for resonators and geons

As for the scalar field and Maxwell field perturbations of geons, we work with a new radial

coordinate ρ defined by r = ρ
√

2− ρ2/(1 − ρ2). We also work with different rescaled

variables than that of the black resonator. For the geon, these are given by(
hkττ , h

k
τρ, h

k
τ3, rh

k
ρρ, h

k
ρ3, h

k
33, h

k
+−, h

k
τ±, h

k
ρ±, h

k
±3, h

k
±±,

)
= ρ2j(2− ρ2)j(1− ρ2)2

(
Hk
ττ , iρ

−1Hk
τρ, H

k
τ3, ρ

−2(2− ρ2)−1Hk
ρρ, iρ

−1Hk
ρ3, H

k
33,

Hk
+−, iH

k
τ±, ρ

−1Hk
ρ±, iH

k
±3, H

k
±±,

)
. (C.14)

The boundary conditions at ρ = 1 are similar to those for the black resonator at r → ∞.

At the origin, we impose regularity. We then set λ = 0 and solve the resulting eigenvalue

problem with ω as an eigenvalue.

For black resonators, we use a modified ansatz from before to compute the frequency.

Our background metric is given by

ds2 =
1

(1− ρ2)2

{
− ρ2(2− ρ2)f̂−2ĝ

dτ2

z2
+

+
4dρ2

(2− ρ2)ĝ

+
1

4z2
+

[
β̂

(
1

α̂
σ2

1 + α̂σ2
2

)
+

1

β̂2

(
σ3 + 2ρ2(2− ρ2)ĥdτ

)2
]}

,

(C.15)

where the functions with hats depend on the coordinate ρ, and the solution is parametrised

by z+ and by h(1) = Ω, the angular frequency. Our metric perturbation ansatz is given by

hµνdxµdxν = (1− ρ2)2ρ2iκω(2− ρ2)iκω

{
− ĥττf−2g

dτ2

z2
+

+ ĥρρ
4dρ2

ρ2(2− ρ2)g

+
1

4z2
+

[
β
(
ĥ−−σ

2
− + ĥ++σ

2
+ + 2ĥ−+σ−σ+

)
+ ĥ33

1

β2

(
σ3 + 2ρ2(2− ρ2)ĥdτ

)2

+ 2

(
ĥτ3dτ + iĥρ3

dρ

ρ
+ ih3−σ− + ih3+σ+

)(
σ3 + 2ρ2(2− ρ2)ĥdτ

)]

+ 2

[
i

(
ĥτρ

dρ

ρ
+ ĥτ−σ− + ĥτ+σ+

)
dτ +

(
ĥρ−σ− + ĥρ+σ+

) dρ

ρ

]}
, (C.16)

where κ = − z+f̂(0)
2ĝ(0) . We decompose the perturbation functions as

ĥAB = e−iωτ
∑
|k|≤j

Ĥk
AB(ρ)Dk , ĥ+− = e−iωτ

∑
|k|≤j

Ĥk
+−(ρ)Dk ,

ĥA± = e−iωτ
∑
|k∓1|≤j

Ĥk
A±(ρ)Dk∓1 , ĥ±± = e−iωτ

∑
|k∓2|≤j

Ĥk
±±(ρ)Dk∓2 ,

(C.17)

where A,B = τ, ρ, 3.

– 36 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
6

C.6 Comment on gauge modes

We conclude this section by showing that the normal modes found at the onset of instability

cannot be gauge modes. The gauge transformation of the metric perturbation is given by

δhµν = ∇µζν + ∇νζµ where ζµ denote the gauge parameters. These can be written in

the ea-basis (4.11) as ζµdx
µ = ζae

a (a = τ, r,±, 3), and we expand ζa in the Wigner

D-matrices as

ζA =
∑
|k|≤j

ζkA(r)Dk , ζ± =
∑
|k∓1|≤j

ζk±(r)Dk∓1 , (C.18)

where A = τ, r, 3. Then, the gauge transformation of hkττ , hkτ3, hk33 and hk±± takes the form

δhkττ = 4ikhζkτ − (1 + r2){(1 + r2)f}′gζkr ,

δhkτ3 = −ikζkτ +
r2(1 + r2)

2
gh′βζkr + 2ikhζk3 ,

δhk33 =
1 + r2

4
g(r2β)′ζkr − 2ikζk3 ,

δhk++ = − ir2h

(1 + r2)f

(
α− 1

α

)
ζk−2
τ +

1 + r2

4
g

{
r2

(
α− 1

α

)}′
ζk−2
r

− 2i

β

(
α− 1

α

)
ζk−2

3 + 2εk−1ζ
k
+ ,

δhk−− =
ir2h

(1 + r2)f

(
α− 1

α

)
ζk+2
τ +

1 + r2

4
g

{
r2

(
α− 1

α

)}′
ζk+2
r

+
2i

β

(
α− 1

α

)
ζk+2

3 − 2εk+2ζ
k
− .

(C.19)

Let us focus on the highest k. In the expressions of δhk=j
ττ , δhk=j

τ3 , δhk=j
33 , and δhk=j+2

++ ,

only three gauge parameters ζk=j
τ , ζk=j

r , and ζk=j
3 appear. (The term of ζk=j+2

+ vanishes

because εj+1 = 0.) Eliminating these gauge parameters, we can construct gauge invariant

variables. Similarly, for the lowest k, we can also construct the other gauge invariant

variables from hk=−j
ττ , hk=−j

τ3 , hk=−j
33 and hk=−j−2

−− . Near the horizon, these gauge invariant

variables approach

g± = h
k=±(j+2)
±± − α− α−1

jβ
hk=±j

33

∣∣∣∣
r=rh

. (C.20)

Therefore, if g+ and g− are nonzero, the perturbations cannot be a gauge mode. In our

numerical calculations, we monitor this gauge invariant quantity and check that it does

not reach zero at the onset of instability.
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D Technical details for oscillating geons

The equations of motion from the ansatz (7.1) read

Bττ −
4e2δf2(1− y)yByy

Ω2
−

8B2
(
1−B3

)
e2δf

3Ω2(1− y)
− B2

τ

B
− 2(1− y)yByB

2
τ

B2
−Bτδτ+

4e2δf
[
6−

(
6− 4B +B4

)
y − 3f(1− 2y)

]
By

3Ω2
+

4e2δf2(1− y)yB2
y

BΩ2
= 0 ,

(D.1a)

fy +
4B

3(1− y)
− B4

3(1− y)
+

2

y
− (2− y)f

(1− y)y
−

4(1− y)yf2B2
y

4B2f
− e−2δΩ2B2

τ

4B2f
= 0 ,

(D.1b)

δy +
(1− y)yB2

y

B2
+
e−2δΩ2B2

τ

4f2B2
= 0 ,

(D.1c)

and

C ≡ fτ − 2y(1− y)f
BτBy
B2

= 0 . (D.2)

It is a relatively simple exercise to show that eqs. (D.1) and their derivatives imply that[
1− y
y2

e−δC

]
y

−
2(1− y)2B2

y

yB2
e−δC = 0 . (D.3)

The latter equality shows that C should be regarded as a constraint equation. In particular,

if C vanishes on a particular hypersurface of constant y, eq. (D.3) shows that C must vanish

for all values of y. To see this more clearly, we note that eq. (D.3) can be formally integrated

to give

C(τ, y) =
y2

1− y
eδβ(τ) exp

[
2

∫ y

1

(1− ỹ)ỹB2
ỹ

B2
dỹ

]
, (D.4)

where β(τ) is an integration function. Smoothness of the line element (7.1) at y = 1

demands that f , B and δ admit a regular Taylor series around y = 1 with f(τ, 1) =

B(τ, 1) = 1. These conditions, together with eqs. (D.1), imply that C vanishes at y = 1,

and thus that C = 0 everywhere in the integration domain (τ, y) ∈ [0, π]× [0, 1].

For numerical purposes it is convenient to perform the following function redefinitions

B = 1 + y2(1− y)q1 , f = 1 + y2(1− y)2 q2 and δ = y4q3 . (D.5)

Solving the equations around y = 1 and demanding regularity yields the following set

of boundary conditions

q1 y +
1

16

[
36q1 + 28q2

1 + e−2q3Ω2 (q1 ττ − q1 τq3 τ )
]∣∣∣∣
y=1

= 0 , (D.6a)

q2 + q2
1

∣∣
y=1

= 0 , (D.6b)
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and

q3 y + 4q3|y=1 = 0 . (D.6c)

At the conformal boundary, located at y = 0, we find

q1 y −
1

12
(36q2

1 + Ω2q1 ττ )

∣∣∣∣
y=0

= 0 , q2 y − 3 q2|y=0 , and q3 + q2
1

∣∣
y=0

= 0 , (D.7)

with the constraint equation eq. (D.2) further demanding q2 τ |y=0 = 0. Note that the

constraint is being explicitly enforced at y = 1, but not at y = 0. So we monitor q2(τ, 0) to

get an idea of how well the constraints are being satisfied. Furthermore, one can show that

there are no non-analytic pieces in the expansion of the conformal boundary to all orders

in y.

To find our solutions we employed spectral collocation methods, with a uniform cosine-

type grid along the τ direction and a Chebyshev grid along the holographic direction y.

Our findings are consistent with exponential convergence, which seems to be backed up by

the fact that we found no non-analytic behaviour at any of the edges of the integration

domain with the gauge we used.

One can also go further and determine the holographic stress energy tensor using [57]

〈Tµν〉dxµdxν =
1

16π

{
− 3q2dt2 +

1

4

[
(8q1 − q2)σ2

3 − (4q1 + q2)
(
σ2

1 + σ2
2

)]}∣∣∣∣∣
y=0

, (D.8a)

from which one can read the total energy of the system10

E = −3π

8
q2|y=0 . (D.8b)

Besides solving for our solutions numerically, we can also use perturbation theory to

construct these objects. This has been extensively used in the literature [6, 33, 39, 40, 58, 59]

in similar contexts and provides a good check of our numerical procedures. We expand all

our functions in power series in a small parameter ε as

Ω =

+∞∑
j=0

ε2jΩ(2j) , (D.9a)

q1(τ, y) =
+∞∑
j=0

ε2j+1
j∑

k=0

q̂
(j,k)
1 (y) cos[(2k + 1)τ ] +

+∞∑
j=1

ε2j
j∑

k=0

q̃
(j,k)
1 (y) cos(2 kτ) , (D.9b)

q2(τ, y) =

+∞∑
j=1

ε2j+1
j∑

k=0

q̂
(j,k)
2 (y) cos[(2k + 1)τ ] +

+∞∑
j=1

ε2j
j∑

k=0

q̃
(j,k)
2 (y) cos(2 kτ) , (D.9c)

q3(τ, y) =
+∞∑
j=1

ε2j+1
j∑

k=0

q̂
(j,k)
3 (y) cos[(2k + 1)τ ] +

+∞∑
j=1

ε2j
j∑

k=0

q̃
(j,k)
3 (y) cos(2 kτ) , (D.9d)

10We will always measure the energy with respect to pure AdS, i.e. we neglect the Casimir energy of

global AdS5.
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and define ε to be such that, to all orders in ε, the term proportional to cos τ in the

Fourier-Cosine expansion of q1(τ, 0) is ε.

To first order in ε, we find

q̂
(0,0)
1 (y) = 2F1(−p, p+ 6; 3; y) , and Ω(0) = 6 + 2 p , (D.10)

where 2F1(a, b; c; z) is a Gaussian Hypergeometric function and p indicates the radial over-

tone of the excitation in question.

Focusing on the fundamental mode with p = 0, for the next few orders we find

q̂
(0,0)
1 (y) = 1 , q̃

(1,0)
1 =

1

60

(
9y2 − 1− 3y − 15y3

)
, (D.11a)

q̃
(1,0)
2 (y) =

1

20

(
2y2 − 3− 9y

)
, q̃

(1,1)
2 (y) =

1

2
y2(2− 3y) , (D.11b)

q̃
(1,0)
3 (y) =

1

20

(
14y − 10− 5y2

)
, q̃

(1,1)
3 (y) =

1

28

(
36y3 − 14 + 70y − 91y2

)
. (D.11c)

The equations can be used to infer the energy and Ω as a function of ε to order ε2, as

in (7.4), which we reproduce here:

E =
9πε2

160
, Ω = 6− 11057ε2

90090
. (D.12)
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[12] P. Bizoń and A. Rostworowski, Comment on “Holographic Thermalization, Stability of

Anti-de Sitter Space and the Fermi-Pasta-Ulam Paradox”, Phys. Rev. Lett. 115 (2015)

049101 [arXiv:1410.2631] [INSPIRE].

[13] B. Craps, O. Evnin and J. Vanhoof, Renormalization, averaging, conservation laws and AdS

(in)stability, JHEP 01 (2015) 108 [arXiv:1412.3249] [INSPIRE].
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[27] V. Cardoso, Ó.J.C. Dias and S. Yoshida, Classical instability of Kerr-AdS black holes and the

issue of final state, Phys. Rev. D 74 (2006) 044008 [hep-th/0607162] [INSPIRE].

[28] K. Murata, Instabilities of Kerr-AdS5 × S5 Spacetime, Prog. Theor. Phys. 121 (2009) 1099

[arXiv:0812.0718] [INSPIRE].

[29] H. Kodama, R.A. Konoplya and A. Zhidenko, Gravitational instability of simply rotating

AdS black holes in higher dimensions, Phys. Rev. D 79 (2009) 044003 [arXiv:0812.0445]

[INSPIRE].
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