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1 Introduction

In the description of high energy processes involving hadrons one aims at isolating the

underlying hard process in terms of partons, quarks and gluons. The purpose of this

can be twofold. The aim might be to study the quark and gluon structure of hadrons,

or it might be to account for the soft hadronic physics to study unknown details in the

hard process, for instance involving physics beyond the Standard Model. In both cases

one identifies a number of soft functions among them distribution functions fH→i(x) and

fragmentation functions Dh→i(z) for quarks (i = q, where q is an (anti-)quark flavor)

and gluons (i = g), which have a natural interpretation as the probability of finding a

parton i with momentum fractions x in a hadron H or as measure of the number of

hadrons h with momentum fractions z in the ‘decay’ of a parton i. We will refine the

definitions of these fractions below. To some level of accuracy, one can express observables

such as cross sections and asymmetries in terms of these distribution and fragmentation

functions. Going beyond the collinear treatment, one includes the dependence on transverse

momenta. These momenta can serve as degrees of freedom in the connection between
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hadrons and partons very much like spin degrees of freedom. In the case of fragmentation,

transverse momentum is in essence just the mismatch between parton momentum k and

hadron momentum Kh, or better between the fraction of the parton momentum zk and

Kh. This, at least intuitively, corresponds for jet fragmentation to identifying the parton

momentum with an appropriately defined jet direction. Also for initial state hadrons

one can include dependence on transverse momentum, which is the mismatch between an

appropriate fraction of the hadron momentum xP and the parton momentum p. In a high

energy scattering process, one is able to use the presence of a hard scale to identify parton

momenta (integration variables) with accessible combinations of external momenta. This is

best known for the momentum fractions, but it is also possible for the transverse momenta.

In the present paper, we remain at tree-level (to be made more explicit), which implies

that the intuitive language can in most cases also be used at the level of the matrix elements

of quark and gluon fields that constitute correlators [1], which in turn are parametrized in

terms of the beforementioned soft functions connecting partons and hadrons [2]. A compli-

cation that arises already at tree-level, is that the appropriate combinations of quark and

gluon fields in the correlators need to be gauge-invariant combinations. This would trivially

be the case for local products of fields, but already in the collinear treatment which studies

the dependence on the momentum fractions x and z, the partonic field combinations are

non-local along a light-like direction conjugate to the parton momentum. Then one finds

that gluon fields with polarizations along the momentum direction, which naturally appear

in a twist analysis of leading operators, need to be resummed to make up the required path

ordered exponentials or Wilson lines connecting the non-local parton fields [3]. Although

this involves an infinite number of additional gluons, we still refer to this resummation

as tree-level, since one resums leading combinations of coupling constant and field (gA).

Although their momentum is integrated over, these gluons don’t appear in loops but as ad-

ditional gluons connecting the soft and hard parts and as such are at the same level as other

partons. The procedure is in fact ensuring that the non-locality is color gauge invariant, i.e.

the replacement i∂µ → iDµ = i∂µ + gAµ. The importance of the directions of gauge links

was realized in ref. [4]. Even in the case of a light-like non-locality, the links are either past-

or future-pointing, but in the absence of transverse separation this feature becomes irrel-

evant in the squared amplitude. In the case of transverse momentum dependent (TMD)

correlators [5] and correspondingly TMD soft functions [6, 7], one also must account for a

transverse non-locality, requiring more complicated Wilson lines. These Wilson lines have

been extensively studied [8–13]. The TMDs lead to a rich phenomenology of azimuthal

asymmetries [6, 7, 14, 15]. The distinction of past- and future-pointing gauge links pro-

vides a natural explanation of single spin asymmetries at the partonic level. Through the

gauge links, time-reversal odd (T-odd) parts are incorporated in the TMD correlators and

the soft functions in their parametrization within a field theoretical framework of Quantum

Chromodynamics (QCD). Beyond tree-level, many complications arise [16–18], of which at

present certainly not all implications have been investigated. Although higher orders in

QCD may invalidate any tree-level results, we will follow here the diagrammatic approach

outlined in the above that provides us with the basic field theoretical picture which needs

verification in an all-order QCD treatment.
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In section 2 we introduce some of the basics of TMDs needed in the rest of the paper.

As said, a particularly interesting feature for the TMD soft functions entering the descrip-

tion of hard processes already at tree-level is the non-trivial nature of the Wilson lines

connecting the non-local field operators in the matrix element. This structure of Wilson

lines, arising from both collinearly and some of the transversely polarized gluon fields, now

becomes dependent on the color flow in the hard process. In particular, in those situations

that multiple color flow possibilities exist, this gives rise to an entanglement that can spoil

factorization already at tree-level. How one gets the basic tree-level entangled result in a

diagrammatic approach is outlined in section 3.

The aim of this paper is to show that this entanglement simplifies for the 1-parton

unintegrated (1PU) case, by which we refer to a situation in which only the transverse

momentum in one of the hadrons is manifest. What remains is at tree-level a factorized

expression with a correlator that still does have process dependence, which is contained

in a non-trivial process-dependent gauge link. This is sometimes referred to as generalized

factorization. The proof is given in section 4. We will also show how one can proceed

if transverse parton momenta in several hadrons are involved. In such cases one can

consider weighted asymmetries expressed in terms of transverse moments of the TMD

functions. These weighted asymmetries actually again involve only collinear functions, but

these functions are given by matrix elements of higher twist operators, among them gluonic

pole matrix elements or Efremov-Teryaev-Qiu-Sterman (ETQS) functions. In section 5,

we will use transverse moments to analyse single and double weighted asymmetries and

illustrate this for Drell-Yan (DY) scattering and for a process with quark-quark scattering as

underlying hard partonic process. The complications and non-universality always involves

the gluonic pole matrix elements, which have been extensively studied [19–26]. Since such

matrix elements vanish for fragmentation [27–29], we will not have to worry about the

transverse momentum in the final state. We will comment on this further in our conclusions.

2 Collinear and Transverse Momentum Dependent (TMD) correlators

We have split up this paper in a number of sections, in which we discuss in a diagrammatic

expansion the inclusion of all gluon fields that contribute at leading order and tree-level.

The starting point is a hard subprocess, for which we will consider as the most generic

example a two to two process with a truncated amplitude M (p1, p2; k1, k2), from which

the wave functions of the partons (Dirac spinors u(p1) for quarks, or polarizations ǫ(p1)

for gluons), are omitted. Rather than through wave functions, the external partons are

accounted for through quark or gluon correlation or spectral functions, which are built

from matrix elements of the form 〈X|ψ(ξ)|P 〉 involving hadron states |P 〉 rather than a

free parton wave function 〈0|ψ(ξ)|p〉. This immediately brings in the need to also consider

multi-parton matrix elements with the same states, such as 〈X|Aµ(η)ψ(ξ)|P 〉.

These matrix elements appear as squared contributions in the correlators (including

Dirac space indices i and j),

Φij(p;P ) =
∑

X

∫
d3PX

(2π)3 2EX
〈P |ψj(0)|X〉 〈X|ψi(0)|P 〉 δ

4(p + PX − P )
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∆ (k;Kh)

k k

Kh Kh

(a) (b) (c)

Figure 1. The pictorial momentum space representation of quark-quark correlators for distribution

functions (a), a quark-quark-gluon correlator (b) and a quark-quark correlator for fragmentation

functions (c).

=
1

(2π)4

∫
d4ξ ei p·ξ 〈P |ψj(0)ψi(ξ)|P 〉, (2.1)

pictorially represented in figure 1(a). Usually, a summation over color indices is understood.

This means that we will have Φ(p) = Trc

[
Φ(p)

]
, where Φij(p) is considered also a matrix

in color space, made explicit Φij;rs ∝ ψir(ξ)ψjs(0). Including gluon fields one has quark-

quark-gluon correlators like

Φµ
A ij(p, p1;P ) =

1

(2π)8

∫
d4ξ d4η ei (p−p1)·ξ ei p1·η 〈P |ψj(0)A

µ(η)ψi(ξ)|P 〉, (2.2)

illustrated in figure 1(b), and similarly matrix elements with more partons. The color struc-

ture of the field combination ψr(ξ)ψs(0) in the quark-quark-gluon correlator now actually

has a color octet structure, denoted (when appropriate) as Φ8 = Trc[ΦT
a]T a. Using for

Aµ = AµaT a a matrix-valued field we have Φµ
A = Trc[Φ8A

µ]. In some cases, it will be con-

venient to explicitly use the momentum space fields defined as ψ(p) ≡
∫
d4ξ ei p·ξ ψ(ξ) and

Aµ(p) ≡
∫
d4ξ ei p·ξ Aµ(ξ), which in the case of free fields would have parton and anti-parton

contributions multiplying on-shell factors (2π) δ(p2−m2) θ(±p0). For the correlators, we get

(2π)4δ4(p− p′)Φij(p;P ) =
1

(2π)4
〈P |ψj(p

′)ψi(p)|P 〉, (2.3)

(2π)4δ4(p− p′)Φµ
A ij(p, p1;P ) =

1

(2π)8
〈P |ψj(p

′)Aµ(p1)ψi(p − p1)|P 〉. (2.4)

The corresponding correlators describing fragmentation into hadrons is for quarks given by

∆ij(k;Kh) =
∑

X

1

(2π)4

∫
d4ξ e−ik·ξ 〈0|ψi(0)|Kh,X〉〈Kh,X|ψj(ξ)|0〉

=
1

(2π)4

∫
d4ξ e−ik·ξ 〈0|ψi(0)a

†
hahψj(ξ)|0〉, (2.5)

pictorially represented by the blob in figure 1(c). An averaging over color indices is implicit,

thus ∆(k) = 1
Nc

Trc

[
∆(k)

]
with again ∆(k) a diagonal matrix in color space. The second

expression in the above involves hadronic creation and annihilation operators a†h|0〉 = |Kh〉.

In a momentum space representation for the operators, we have

(2π)4δ4(k − k′)∆ij(k;Kh) =
1

(2π)4

∑

X

〈0|ψi(k)|Kh,X〉〈Kh,X|ψj(k
′)|0〉. (2.6)
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M ∼

Γ1

Γ2

p2

p1

k2

k1

p2

p1

k2

k1

∆ (k1)

∆ (k2)

Φ (p2)

Φ (p1)

Γ1

Γ2

Γ∗
1

Γ∗
2

(a) (b)

Figure 2. For the purpose of illustrating the structure of Wilson lines, we use the hard amplitude

with one particular color flow for the quark lines as shown in (a). The squared amplitude needed

for the cross section of the scattering process initiated by two hadrons with momenta P1 and P2 is

shown in (b).

In fragmentation correlators, one no longer deals with plane wave hadronic states, but with

out-states |Kh,X〉.

We want to give an expression for the cross section of the (semi)-inclusive process

H1(P1) +H2(P2) → h1(K1) + h2(K2) + . . . in a kinematic regime where P1·p1 ∼ P2·p2 ∼

K1·k1 ∼ K2·k2 are small (we will refer to this scale as the squared hadronic mass scale,

M2 ∼ 1 GeV2) as compared to the usual hard invariants in the full or the partonic process

such as s ≈ 2P1·P2, t1 ≈ −2K1·P1, ŝ ≈ 2 p1·p2, t̂ ≈ −2 k1·p1 (we will refer to this scale

as the squared hard scale, Q2 ≫ M2). We note in passing that in cases where heavy

quarks are involved, those quark masses of course have to be included. In a hard process

as described here, we aim for a description in which the squared partonic amplitude |M |2

is convoluted with the correlators Φ(p, P ), ∆(k,Kh), etc. In order to illustrate the use of

the correlators, assume an amplitude M ∝ Γ1 Γ2 as illustrated in figure 2(a). The sim-

plest tree-level diagrammatic contributions to the cross section that can be written down

is shown in figure 2(b) and is of the form

dσ ∼ Trc

[
Φ(p1) Γ∗

1 ∆(k1) Γ1

]
Trc

[
Φ(p2) Γ∗

2 ∆(k2) Γ2

]
, (2.7)

where Trc

[
. . .
]

parts are traced over color. This expression still needs to be integrated

over the parton momenta, which will be discussed below. In the case that the vertices Γ

don’t have any color structure, one can, because of the simple color singlet structure of

Φ and ∆ in the quark-quark correlators, perform the color trace separately for Φ and ∆,

Trc[Φ(p) Γ∗ ∆(k) Γ] = Trc[Φ(p)] 1
Nc

Trc[∆(k)] Γ Γ∗ (one summed and one averaged) and the

cross section can be written in terms of the color-traced entities

dσ ∼ Φ(p1)Φ(p2) Γ1 Γ∗
1 Γ2 Γ∗

2︸ ︷︷ ︸
Σ̂

∆(k1)∆(k2), (2.8)

where the remaining contractions are Dirac space and Lorentz indices, which have been

suppressed in both eqs. (2.7) and (2.8). These expressions of course should be extended

– 5 –
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with all possible correlators containing quark and gluon fields, in which cases color traces

become more complicated because the quark-quark part of the correlator can have a color

octet structure (Φ8). The restriction to hard kinematics limits the number of diagrammatic

contributions, although even at leading order, there still are many gluon contributions as

will be discussed in section 3. These will complicate the color tracing, an effect which

is particularly important when dependence on transverse momenta is considered, which

precisely is our goal in this paper. We will only work out leading contributions in an M/Q

expansion, although the separation of various orders requires care, as we will argue in sec-

tion 3. The M2/Q2 effects certainly cannot be calculated in our diagrammatic approach.

At that level, there are many contributions that spoil already at tree-level the possibility

to write down in a consistent way a cross section in the form of eq. (2.7) and certainly to

perform the color traces as in eq. (2.8).

For parton momenta relevant in a hadron correlator (hadron momentum P ) we make

the Sudakov decomposition,

p = xP + pT + (p·P − xM2)︸ ︷︷ ︸
σ

n, (2.9)

where the role of the (approximately) light-like vector n, satisfying P ·n = 1 can come

from any of the hard (external) momenta, e.g. n = Kh/Kh·P or n = k/k·P (provided

k·P ∼ Kh·P ∼ Q2). The momentum fraction x = p·n = pn is O(1). For any contractions

with vectors outside the correlator Φ(p, P ) one has P ∼ Q, pT ∼ M and n ∼ 1/Q. Note

that if n is an exact light-like vector, one can construct two exact conjugate null-vectors,

n+ = P −
1

2
M2 n and n− = n, (2.10)

satifying n+·n− = 1 and n2
+ = n2

− = 0, that can be used to define light-cone compo-

nents a± = a·n∓ (thus x = p·n− = p+). The symmetric and antisymmetric ‘transverse’

projectors are defined as

gµν
T = gµν − n

{µ
+ n

ν}
− = gµν − P {µnν} +M2 nµnν ≈ gµν − P {µnν}, (2.11)

ǫµν
T = ǫn+n−µν = ǫ−+µν = ǫPnµν . (2.12)

Since transverse momentum dependence is a central issue in this paper, we have to worry

about different n vectors. With ∆n = n′ −n ∼ 1/Q one has at O(Q0) that ∆x ≈ ∆p2
T
≈ 0

although the transverse momentum itself does change at order O(1), ∆pT = −∆xP .

The integration over parton momenta,
∫
d4p =

∫
dx d2pT dσ =

∫
d(p·n) d2pT d(p·P ), (2.13)

is insensitive to the particular n vector. In view of the relative importance of the compo-

nents in this integration, one can, upon neglecting any M2/Q2 contributions in the cross

section, integrate within a soft correlator over p·P (i.e. p−) to obtain the TMD correlator

Φ(x, pT ;n) =

∫
d p·P Φ(p;P ) =

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)ψ(ξ)|P 〉

∣∣∣∣
LF

, (2.14)
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which we will still consider as the unintegrated correlator. On the left-hand side the

dependence on hadron momentum P has been suppressed. In the TMD correlator the

non-locality is restricted to the light-front (LF: ξ·n = ξ+ = 0) and the correlator depends

on x = p·n and pT . The light-cone correlators are the collinear correlators containing

the parton distribution functions depending only on the light-cone momentum fraction x,

obtained upon integration over both p·P and pT ,

Φ(x;n) =

∫
d p·P d2pT Φ(p;P ) =

∫
d ξ·P

(2π)
ei p·ξ 〈P |ψ(0)ψ(ξ)|P 〉

∣∣∣∣
LC

, (2.15)

where the subscript LC refers to light-cone, implying ξ·n = ξT = 0. This integration is

generally allowed in hard processes up to M2/Q2 contributions and also up to contribu-

tions coming from the tails, e.g. logarithmically divergent contributions proportional to

αs(p
2
T
)/p2

T
tails [30] and relevant when looking at evolution [31]. Such contributions, how-

ever, require next-to-leading order (NLO) QCD, which goes beyond the tree-level resum-

mations that we discuss in this paper. In diagrammatic language they for instance involve

ladder graphs describing emission of gluons into the final state, relevant for the evolution

of the correlators. The collinear correlators are relevant in hard processes in which only

hard scales (large invariants ∼ Q2 or ratios thereof, angles, rapidities) are measured. If one

considers hadronic scale observables (correlations or transverse momenta in jets, slightly

off-collinear configurations) one will need the TMD correlators for a full treatment.

The correlators encompass the information on the soft parts. They depend on the

hadron and quark momenta P and p (and in general also spin vectors). Depending on the

Lorentz and Dirac structure of the matrix elements involved one can look for the pieces in

the correlator that show up as the most dominant matrix elements among the contributions

in the hard process. Including also gluon fields, the Fourier transform of matrix elements

with a maximal number of contractions with n,

〈 ψ(0)/nψ(ξ) 〉 and 〈 Gnα(0)Gnβ(ξ) 〉, (2.16)

(the latter with transverse indices α and β) are the dominant combinations that appear

in the correlators. They are the dominant ones because the contractions with n lower

the canonical dimension of the operator combination, minimizing the power of M that

after contractions of open indices inevitably is the scale of the hadronic matrix elements.

The two matrix elements above have canonical dimension two. The corresponding local

matrix elements, ψ(0) /n ψ(0) and Gnα(0)Gnβ(0) for quarks and gluons, respectively, are

color gauge-invariant (twist 2) operators, the non-local combinations in eq. (2.16) are not

gauge invariant. Expanded into local operators, the expansion would involve operator

combinations with derivatives such as ψ(0) /n ∂n . . . ∂n ψ(0). Color gauge invariance in the

correlators requires in the local matrix elements covariant derivatives or in the non-local

matrix elements the presence of a gauge link connecting the two fields. For the light-cone

correlators the gauge link corresponds to the inclusion of arbitrary number of ‘leading’

gluon fields An(η) in the field combinations in eq. (2.16) which are resummed into a gauge

– 7 –
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link ψ(0)W
[n]
[0,ξ] ψ(ξ) = Trc

[
W

[n]
[0,ξ] ψ(ξ)ψ(0)

]
, given by

W
[n]
[0,ξ] = P exp

(
−i

∫ ξ

0
d η·P n·A(η)

)
. (2.17)

Including this gauge link, the non-local operator combinations

〈 ψ(0)/nW
[n]
[0,ξ]

ψ(ξ) 〉
∣∣∣
LC

and 〈 Gnα(0)W
[n]
[0,ξ]

Gnβ(ξ)W
[n]
[ξ,0]

〉
∣∣∣
LC

, (2.18)

can be expanded into twist two operators ψ(0) /nDn . . . Dnψ(0) and Gnα(0)Dn . . . DnGnβ(0)

for quarks and gluons, respectively (number of Dn’s is the spin of these operators). Also

TMD correlators require a gauge link, but the separation of the two fields is no longer a

simple light-like one and they involve derivatives with transverse indices. It is important

to realize that in principle any gauge link with an arbitrary path gives a gauge-invariant

combination. What is the appropriate link contributing at leading order (in M/Q) in a

given hard scattering process, however, is calculable (see next section).

The correlators in this section have been rewritten into matrix elements of non-local

products of fields. They involve both quark and gluon fields as well as hadronic states or

hadronic creation and annihilation operators. For them there is no systematic perturbative

expansion in terms of the strong coupling constant. The kinematic separation of soft

and hard, however, allows the integration over p− = p·P , leaving a product of operators

at the light-front, that is at equal light-cone time ξ+ = ξ·n = 0. For such a product

the time-ordering is automatic, which means that the p−-integrated parton correlators,

thus, can be considered as a cut anti-parton-hadron scattering amplitude, i.e. a Green

function, untruncated in the parton legs [32]. This is the case for both collinear and TMD

correlators [33]. This identification has been very important in deep inelastic processes [34],

allowing the use of analyticity and unitarity properties of field theories, at least under the

assumption that these properties apply to QCD. We will use it later in this paper for

fragmentation correlators.

3 Color gauge invariance

It is worthwhile to repeat the steps that lead to color gauge invariance by including collinear

gluon fields, which will also be the first step to obtain the Wilson lines in TMD correlators.

We include in the diagrammatic approach matrix elements with gluon fields for which we

make a Sudakov expansion,

Aµ(η) = An(η)Pµ +Aµ
T (η) +

(
AP (η) −An(η)M2

)
nµ. (3.1)

A similar expansion can be written down for Aµ(p). In order to use Ward identities it will

be convenient to look at the (collinear) gluon field component along parton momentum pµ,

hence we write

Aµ(p) =

∫
d4η ei p·η Aµ(η)

=

∫
d4η eip·η

[
An(η)

p·n
pµ+

(p·n)Aµ
T (η)−pµ

T A
n(η)

p·n
+

(p·n)AP (η)−(p·P )An(η)

p·n
nµ

]
.

(3.2)

– 8 –
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Γ

p

k
Γ

p−p1 p1

kk−p1

Γ

p−p1−p2 p2

k−p1 k

p1

A0 A1 A2

Figure 3. Inclusion of collinear gluons from ΦA...A(p − p1 . . . − pN , p1, . . . , pN ) coupling to an

outgoing (colored) quark line with momentum k.

In the correlator the momentum pµ −→ i∂µ(η), so

Aµ(p) =
1

p·n

∫
d4η ei p·η

[
An(η) pµ + i∂n(η)Aµ

T (η) − i∂µ
T (η)An(η)

+
(
i∂n(η)AP (η) − i∂P (η)An(η)

)
nµ

]
(3.3)

=
1

p·n

[
An(p) pµ + iGnµ

T (p) + iGnP (p)nµ

]
. (3.4)

Although the latter appears to be only true for the Abelian case, we will find the same

result in the non-abelian case, but to complete that proof, we first need to incorporate the

collinear gluons into the matrix elements. Using the expansion in eq. (3.4) rather than

the one in eq. (3.1) streamlines the inclusion of collinear gluons circumventing the explicit

treatment of transverse momentum dependent parts (as done in ref. [9]). The results are

of course identical.

3.1 Collinear gluons

Since matrix elements involving operator combinations ψ(0)An(η1) . . . A
n(ηN )ψ(ξ) and

Gnα(0)An(η1) . . . A
n(ηN )Gnβ(ξ) for quarks and gluons are as leading as the matrix ele-

ments without collinear gluons, the contributions of correlators with gluon fields of which

the polarization is along its momentum pµ, i.e. the first term in eq. (3.4) need to be in-

cluded in the leading expression for the cross section. Using Ward identities, only the

contributions of gluons coupling to external parton lines survive as discussed in detail in

ref. [11]. The resummation is best illustrated by looking at the example of gluons attached

to a Φ(p) correlator attached to an outgoing quark line with momentum k (see figure 3).

The results of these parts within the amplitude are

A0 = ψ(k)Γψ(p),

where the ψ(p) and ψ(k) are fields belonging to the correlators of initial (momentum p)

and final state quark (momentum k) respectively. The one-gluon contribution to the link is

A1 =

∫
d4p1

(2π)4
ψ(k)

−i /p1
Ak(p1)

p1 · k

i(/k − /p1
)

(−2k · p1 + iǫ)
Γψ(p − p1).

– 9 –
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The numerator becomes /p1
(/k−/p1

) = /p1
/k = {/k, /p1

} = 2 k ·p1. The added term is zero since

ψ(k)/k ≈ 0. Thus one has (note that the sign of k · p1 is positive),

A1 = ψ(k)

∫
d4p1

(2π)4
Ak(p1)

(−k · p1 + iǫ)
Γψ(p − p1) = ψ(k)U

[k](1)
+ Γψ(p), (3.5)

which is the one-gluon contribution to a path-ordered exponential (see appendix A). The

two-gluon term becomes

A2 =

∫
d4p1

(2π)4
d4p2

(2π)4
ψ(k)

Ak(p1)

p1 · k

Ak(p2)

p2 · k
/p1

1

/k − /p1

/p2

1

/k − /p1
− /p2

Γψ(p − p1 − p2)

=

∫
d4p1

(2π)4
d4p2

(2π)4
ψ(k)

Ak(p1)

p1 · k

Ak(p2)

p2 · k

/p1
(/k − /p1

)

(−2k · p1 + iǫ)

×
/p2

(/k − /p1
− /p2

)

(−2k · p1 − 2k · p2 + iǫ)
Γψ(p − p1 − p2)

= ψ(k)

∫
d4p1

(2π)4
d4p2

(2π)4
Ak(p1)

(−k · p1 + iǫ)

Ak(p2)

(−k · p1 − k · p2 + iǫ)
Γψ(p − p1 − p2)

= ψ(k)U
[k](2)
+ Γψ(p). (3.6)

This is the two-gluon contribution to the path-ordered exponential. This term illustrates

the recursive procedure that gives the all-gluon results to the full path-ordered exponential

or Wilson line (see appendix A),

∞∑

N=0

AN = ψ(k)U
[k]
+ Γψ(p), (3.7)

where

U
[n]
+ ψ(p) =

∫
d4ξ exp (i p · ξ) P exp

(
−ig

∫ ξ·P

∞
d(η · P ) An(η)

)
ψ(ξ) (3.8)

is the Fourier transform of the field including the Wilson line of which the indices of U
[n]
+

indicate its direction, namely a Wilson line running from light-cone +∞ to ξ along the

light-like direction n. We will instead of the notation with the contraction, mostly use the

notation

ψ(k)U
[k]
+ Γψ(p) = ψ(k)U

[k]
+ [p] Γψ(p). (3.9)

The second expression gives the Wilson line a label [p], indicating that all fields in it belong

to the correlator Φ(p), to which also ψ(p) belongs. The problem with this path-ordered

exponential is that it is a unitary matrix in color space that is stuck in the respective

traces, although it is in fact only the (symmetric) color charge operators T a1 . . . T as of the

terms U
[n](s)
+ in the expansion of the U

[n]
+ that are stuck there.

For the gluon insertions coming from a particular correlator and coupling to an incom-

ing fermion line one finds a Wilson line connecting to light-cone −∞, which is a consequence

– 10 –
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∆ (k1)

∆ (k2)

Φ (p2)

Φ (p1)

Γ1

Γ2

Γ∗
1

Γ∗
2

∆ (k1)

∆ (k2)

Φ (p2)

Φ (p1)

Γ1

Γ2

Γ∗
1

Γ∗
2U

[k2]†
+U

[k2]
+

(a) (b)

Figure 4. (a) An example of a diagram with two gluons attaching to the same outgoing line with

momentum k2. (b) In more detail these couplings are discussed in the appendices and they result

into one gauge connection U
[k2]
+ [p1, p2, k1], which combines all collinear gluons coming from Φ(p1),

Φ(p2) and ∆(k1). Together with transverse pieces, and combining it with gauge connections at

other legs one will get a full color gauge invariant result, discussed in section 3.

of the sign k · pi being negative in that situation. Including all multi-gluon interactions

originating from Φ(p1) in figure 2(b), we get the diagrammatic result

dσ ∼ Trc

[
Φ(p1) Γ∗

1 U
[k1]†
+ [p1]∆(k1)U

[k1]
+ [p1] Γ1

]

× Trc

[
U

[p2]†
− [p1] Φ(p2)U

[p2]
− [p1] Γ

∗
2 U

[k2]†
+ [p1]∆(k2)U

[k2]
+ [p1] Γ2

]
, (3.10)

with the (color charge of the) Wilson line stuck in the color traces at the ‘positions’

corresponding to the external parton lines. Note that in eq. (3.10) the Wilson lines in

sub-expressions like U
[k1]†
+ [p1]∆(k1)U

[k1]
+ [p1] are part of the Fourier transform in correlator

Φ(p1). In coordinate space, taking ξ1 to be the coordinate conjugate to p1, the link and

conjugate link actually run between different points, in this case U+ in U
[k1]
+ [p1] . . . ψ(p1)

corresponds actually to U
[k1]
[+∞,ξ1]

, while the conjugate link U †
+ in ψ(p1) . . . U

[k1]†
+ [p1] cor-

responds to U
[k1]
[01,+∞]. Wilson lines between 01T and ξ1T are still lacking, so eq. (3.10) is

certainly not color gauge-invariant.

The next step in our treatment is the inclusion of gluon interactions coming from

different correlators, say Φ(p1) and Φ(p2), coupling to the same quark line with momentum

k2, such as shown e.g. in figure 4(a). They give rise to intertwined Wilson lines. Two

examples of this have been given in appendix B, for the case of two gluons coming from

different correlators and for the case of three gluons, two coming from the same correlator

and one from a different correlator. These examples illustrate the recursive procedure. The

result for all insertions to a particular leg is a color symmetric combination of the insertions

from all correlators, which since all gluon polarizations are identical is just

U
[k2]
+ [p1, p2, k1] = S{U

[k2]
+ [p1]U

[k2]
+ [p2]U

[k2]
+ [k1]}, (3.11)

in which the ordering of the three connections on the right-hand side is irrelevant (fully
symmetrized). This is illustrated in figure 4. Including all multi-gluon interactions from
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Φ(p1), ∆(k1), Φ(p2) and ∆(k2) onto all legs, eq. (3.10) generalizes to

dσ ∼ Trc

[
U

[p1]†
− [p2, k1, k2] Φ(p1)U

[p1]
− [p2, k1, k2] Γ

∗
1 U

[k1]†
+ [p1, p2, k2]∆(k1)U

[k1]
+ [p1, p2, k2] Γ1

]

×Trc

[
U

[p2]†
− [p1, k1, k2] Φ(p2)U

[p2]
− [p1, k1, k2] Γ

∗
2 U

[k2]†
+ [p1, p2, k1] ∆(k2)U

[k2]
+ [p1, p2, k1] Γ2

]
,

(3.12)

illustrated in figure 5(a). We note that the Wilson lines in eq. (3.12) have different light-like

directions, which originate from the fact that we in the decomposition of gluon fields in

eq. (3.4) simply made the most convenient choice depending on the particular correlator.

For two different Sudakov decompositions of the gluon field, one finds that

An(p)

p·n
−
An′

(p)

(p·n′)
=

iGnn′

(p)

(p·n)(p·n′)
. (3.13)

The field Gnn′

(p), however, appearing in a correlator Φn n′

G will not contribute at leading

order, but at subleading order (1/Q). This allows one to replace all the light-like direction

dependence in eq. (3.12) by a generic null-vector n. Even after choosing one light-like direc-

tion, the result in eq. (3.12) is not yet gauge-invariant, since transverse gauge connections

are still missing.

3.2 Collinear correlators

The missing transverse pieces don’t matter when one takes a collinear approach, implying

integration over transverse momenta pT besides the integration over p · P . In that case

there is no transverse separation of the fields. After integration over transverse momenta,

one has a color gauge-invariant result,

σ∼Trc

[
U

[n]†
− [p2, k1, k2] Φ(x1)U

[n]
− [p2, k1, k2] Γ

∗
1 U

[n]†
+ [p1, p2, k2]∆(z1)U

[n]
+ [p1, p2, k2] Γ1

]

× Trc
[
U

[n]†
− [p1, k1, k2] Φ(x2)U

[n]
− [p1, k1, k2] Γ

∗
2 U

[n]†
+ [p1, p2, k1]∆(z2)U

[n]
+ [p1, p2, k1] Γ2

]
.

(3.14)

One can combine the Wilson lines to and from light-cone ±∞, all made up of An fields, into

finite Wilson lines, e.g. W [n][p1] = U
[n]†
+ [p1]U

[n]
+ [p1] since after the integration over p1T they

not only both run along n, but they coincide since one also has 0T = ξT . Furthermore, it

is irrelevant if one composes W [n] from Wilson lines running via plus or via minus infinity,

and also the direction n is in fact irrelevant. It is just the direction of the straight line

connecting 0 and ξ. We recall that the argument p1 or x1, given to the Wilson lines, is

simply needed to indicate that the fields in that Wilson line belong to the correlator Φ(x1),

which is the Fourier transform of the matrix element 〈ψ(0)ψ(ξ)〉. Thus in coordinate space

one just has the Wilson line in eq. (2.17), which connects the points 0 and ξ in Φ(x1)

composed of W
[n]
[0,ξ] = U

[n]
[0,∞]U

[n]
[∞,ξ]. As far as relevant for Φ(x1), the Wilson lines in the

first trace form a gauge link, those in the second trace form a closed loop, which in the

collinear situation (when 0T = ξT ) becomes a unit operator in color space. One is left with

σ ∼ Trc
[
U

[n]†
− [k1] Φ(x1)U

[n]
− [k1] Γ

∗
1 U

[n]†
− [p1]∆(z1)U

[n]
− [p1]

]

× Trc

[
U

[n]†
− [k2] Φ(x2)U

[n]
− [k2] Γ

∗
2 U

[n]†
− [p2]∆(z2)U

[n]
− [p2] Γ2

]
. (3.15)
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The way of turning the gauge connections into gauge links at the collinear stage is actually

just applying gauge transformations U
[n]
[a,ξ] (with a fixed point a) to all fields. This can

actually directly be applied to eq. (3.14). One obtains

σ ∼ Φ[W ](x1)Φ
[W ](x2) Γ1 Γ∗

1 Γ2 Γ∗
2︸ ︷︷ ︸

Σ̂

∆[W ](z1)∆[W ](z2), (3.16)

where

Φ[W ](x) = Trc

[
U

[n]
± [p]Φ(x)U

[n]†
± [p]

]
=

∫
d ξ·P

2π
ei p·ξ 〈P |ψ(0)U

[n]
[0,±∞] U

[n]
[±∞,ξ] ψ(ξ)|P 〉

∣∣∣∣
LC

= Trc

[
W [n][p] Φ(x)

]
=

∫
d ξ·P

2π
ei p·ξ 〈P |ψ(0)W

[n]
[0,ξ] ψ(ξ)|P 〉

∣∣∣∣
LC

(3.17)

and

∆[W ](z) =
1

Nc
Trc

[
U

[n]
± [k]∆(z)U

[n]†
± [k]

]
=

1

Nc
Trc

[
∆(z)W [n]†[k]

]

=

∫
d ξ·Kh

2π
e−ik·ξ 1

Nc
Trc〈0|U

[n]
[±∞,0]ψ(0)a†hahψ(ξ)U

[n]
[ξ,±∞]|0〉

∣∣∣∣
LC

(3.18)

are the color gauge-invariant collinear correlators, including unique gauge links W along

the light-like separation. The gauge link being unique, it is usually omitted. These (color

gauge-invariant) correlators can be expanded in terms of the standard parton distribution

functions and fragmentation functions, respectively.

For the correlator Φ(x) it is also possible to circumvent manipulating with Wilson lines

by taking moments in x1 = p1·n, x2 = p2·n, 1/z1 = k1·n and 1/z2 = k2·n. Using

i ∂n
ξ W

[n]
[η,ξ] = W

[n]
[η,ξ] iD

n(ξ), (3.19)

one easily verifies the factorized expression in eq. (3.16). In the process of taking moments

one then encounters xN Φ[W ](x) involving matrix elements with covariant derivatives Dn,

xNΦ[W ](x) =

∫
d ξ·P

2π
ei p·ξ 〈P |ψ(0)W

[n]
[0,ξ](iD

n)Nψ(ξ)|P 〉

∣∣∣∣
LC

. (3.20)

We have shown everything for one correlator, but one has similar expressions for the other

correlators. Since the gauge link is unique for the collinear correlators, we will just write

Φ(x1), Φ(x2), ∆(z1) and ∆(z2).

3.3 Including transverse gauge connections

To see how transverse gauge connections arise, we jump back to eq. (3.12) and note that not

only the 〈. . . ψ(0)ψ(ξ) . . .〉 correlator has acquired gauge connections along the n-direction,

but also other matrix elements involving the other gluon components in eq. (3.3), e.g. the

operator combination

〈. . . i ∂n(η)U
[n]
[∞,η]A

α
T
(η)U

[n]
[η,∞] − i ∂α

T
(η)U

[n]
[∞,η]A

n(η)U
[n]
[η,∞] . . .〉,

– 13 –



J
H
E
P
0
7
(
2
0
1
1
)
0
6
5

∆ (k1)

∆ (k2)

Φ (p2)

Φ (p1)

Γ1

Γ2

Γ∗
1

Γ∗
2

U†
−

U†
−

U−

U−

U†
+

U†
+

U+

U+

∆ (k1)

∆ (k2)

Φ (p2)

Φ (p1)

U†
−

U†
−

U−

U−

U†
+

U†
+

U+

U+

[−∞, 01]

[−∞, 02]

[ξ1,−∞]

[ξ2,−∞]

[+∞, ξ1][+∞, ξ2] [01,+∞][02,+∞]

ψ (ξ2) ψ (02)

ψ (ξ1) ψ (01)

(a) (b)

Figure 5. (a) The gauge connections from all collinear gluons from the various soft correlators

produce (entangled) gauge connections with color charges located on the external legs of the hard

part. (b) We have indicated for the correlators and gauge connections also the actual space-time

points they are bridging limiting ourselves for simplicity to the coordinates conjugate to p1 (points

01 and ξ1; see also the discussion following eq. (3.10)) and p2 (points 02 and ξ2), leaving out the

space-time structure for the fragmentation correlators for which we would have to include also the

coordinates conjugate to k1 and k2.

for which we can use the non-abelian relation (directly based on eq. (3.19)),

U
[n]
[∞,η]A

α
T
(η)U

[n]
[η,∞] −Aα

T
(η)
∣∣
ηP =∞

=

∫ ηP

∞
dζP U

[n]
[∞,ζ]

(
Gnα(ζ) + [∂α

T
, An(ζ)]

)
U

[n]
[ζ,∞]

∣∣∣∣∣
ζn=ηn,ζT =ηT

. (3.21)

Differentiation with respect to ∂n
η = ∂/∂ηP gives

〈. . . i ∂n(η)U
[n]
[∞,η]A

α
T
(η)U

[n]
[η,∞] − i ∂α

T
(η)U

[n]
[∞,η]A

n(η)U
[n]
[η,∞] . . .〉

= 〈. . . i U
[n]
[∞,η]G

nα
T

(η)U
[n]
[η,∞] . . .〉,

showing that the transition of eq. (3.3) to eq. (3.4) also works in the non-abelian case, if

the appropriate Wilson lines are included. Similarly, one has

U
[n]
[∞,η]A

P (η)U
[n]
[η,∞] −AP (η)

∣∣
ηP =∞

=

∫ ηP

∞
dζP U

[n]
[∞,ζ]

(
GnP (ζ) + [∂P , An(ζ)]

)
U

[n]
[ζ,∞]

∣∣∣∣∣
ζn=ηn,ζT =ηT

. (3.22)

The subtractions at light-cone infinity are important to produce the missing transverse

Wilson lines. It is shown in detail in ref. [9] how these subtractions Aα
T
(η)|ηP =∞ from

the ‘higher twist’ matrix elements with AT (and AP ) fields provide the missing transverse

gauge connections UT

[0T ,ξT ] = UT

[0T ,∞T ] U
T

[∞T ,ξT ], which we will indicate as UT [p] with the ar-

gument p again just indicating that the link connection involves the (transverse) endpoints
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ξT

ξ−

ξT

ξ−

ξT

ξ−

(a) (b) (c)

Figure 6. The gauge connections present in the expression for the unintegrated cross sec-

tion in eq. (3.24), (a) U †
+ U+ ⇒ W

[n]
+ = U

[n]
[0,∞] U

T

[0T ,ξT ] U
[n]
[∞,ξ], (b) U †

− U− ⇒ W
[n]†
− =

U
[n]
[ξ,−∞] U

T

[ξT ,0T ] U
[n]
[−∞,0], and (c) W

[n]
�

= W
[n]
+ W

[n]†
− .

0T and ξT conjugate to parton momentum p and fields belonging to Φ(p). Incorporating

all transverse gauge connections, we obtain (symmetrized) pieces

UT [p1, p2, k1] = S{UT [p1]U
T [p2]U

T [k1]}, (3.23)

with irrelevant ordering among themselves. In the ordering of these pieces and the combina-
tion with collinear pieces of the gauge link, we will neglect contributions from commutators
involving Aµ(p1) and Aν(p2) since (p1 − p2)

2 ∼ Q2. It is clear that in kinematic regions
where all parton momenta are small this cannot be used, complicating the full QCD anal-
ysis. Combined with the connections along the light-like direction, we now have for our
tree-level analysis a set of entangled Wilson lines that bridge the non-locality of parton
fields in the various correlators (see figure 5(b)). The resulting expression for the cross
section is again of the form in equation eq. (3.12), but including transverse pieces, denoted
U+[p, . . .] = UT [p, . . .]U [n][p, . . .], etc. One gets for the cross section an expression in terms
of unintegrated correlators, which are only integrated over p·P ,

dσ∼Trc

[
U †
−[p2, k1, k2] Φ(x1, p1T )U−[p2, k1, k2] Γ

∗
1 U

†
+[p1, p2, k2]∆(z1, k1T )U+[p1, p2, k2] Γ1

]

×Trc

[
U †
−[p1, k1, k2] Φ(x2, p2T )U−[p1, k1, k2] Γ

∗
2 U

†
+[p1, p2, k1] ∆(z2, k2T )U+[p1, p2, k1] Γ2

]
. (3.24)

This resulting expression is now color gauge-invariant. The Wilson lines can be taken along

a generic n-direction, which even could be chosen different for each of the gauge connections

in eq. (3.24), but its color structure is fully entangled and it does not allow for a factor-

ized expression with universal correlators that have their own gauge links. Viewing it as a

factorized expression it contains hard amplitudes, soft correlators and gauge connections,

where the gauge connections take care of a ‘color resetting’ which feels all hadrons that are

involved.

4 Disentangling the color flow dependence

Starting with the expression of eq. (3.24) for the cross section, we first look at the case

that the hard process doesn’t affect the color flow as in figure 2(a). This means that the

vertices Γ1 and Γ2 are color independent. In our expression we have floating around in the

full expression pieces, like UT [p]U
[n]
+ [p] . . .Φ(x, pT ) . . . U

[n]†
+ [p]UT†[p] . . ., which only when

they are combined in a single trace would yield gauge links appropriate for TMDs,

Φ[±](x, pT ) = Trc

[
UT [p]U

[n]
+ [p] Φ(x, pT )U

[n]†
+ [p]UT†[p]

]

– 15 –
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=

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)U

[n]
[0,∞] U

T

[0T ,ξT ] U
[n]
[∞,ξ]ψ(ξ)|P 〉

∣∣∣∣
LF

(4.1)

=

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)W

[n]
±[0,ξ] ψ(ξ)|P 〉

∣∣∣∣
LF

=Trc
[
W

[n]
± [p] Φ(x, pT )

]
, (4.2)

or

∆[±](z, kT )=
1

Nc
Trc

[
UT [k]U

[n]
± [k]∆(z, kT )U

[n]†
± [k]UT †[k]

]
=

1

Nc
Trc

[
∆(z, kT )W

[n]†
± [k]

]

=

∫
d ξ·Kh d

2ξT

(2π)3
e−ik·ξ 1

Nc
Trc〈0|U

T

[∞T ,0T ] U
[n]
[±∞,0]ψ(ξ)a†hahψ(0)U

[n]
[ξ,±∞] U

T

[ξT ,∞T ]|0〉

∣∣∣∣
LF

,

(4.3)

with the coordinate space structure of W
[n]
±[0,ξ] shown in figures 6(a) and (b). Even if

one is in the lucky situation that one can combine the relevant Wilson lines in a single

trace, there still would be combinations left in other color traces which form Wilson loops

W
[n]
�

= W
[n]
+ W

[n]†
− as illustrated in figure 6(c).

4.1 TMDs in ‘elementary’ processes

Considering, as a reference, first the ‘elementary’ Drell-Yan (DY) process, which like other

electroweak processes such as leptoproduction, or electron-positron annihilation is relatively

simple, because the color flow through initial and final states consists of a single color loop.

In that case, taking the DY process as an example (figure 7), the cross section is given by

dσDY ∼ Trc

[
U

[n]†
− [p2] Φ(x1, p1T )U

[n]
− [p2] Γ

∗ U
[n]†
− [p1] Φ(x2, p2T )U

[n]
− [p1] Γ

]

= Trc

[
W

[n]†
− [p2] Φ(x1, p1T ) Γ∗Φ(x2, p2T )W

[n]
− [p1] Γ

]
. (4.4)

The gauge connections contain collinear and transverse fields and one has to be careful in

disentangling. We note in particular that in general

dσDY 6= Trc

[
W

[n]
− [p1] Φ(x1, p1T )

]
Trc

[
Φ(x2, p2T )W

[n]†
− [p2]

] 1

Nc
Γ Γ∗. (4.5)

However, if one of the hadrons can be treated collinear, i.e. integrating over one of the

transverse momenta, say p2T , we can disentangle the traces and obtain

dσDY

d2p1T

∼ Trc

[
W

[n]
− [p1] Φ(x1, p1T )

]
Φ[W ](x2)

1

Nc
Γ Γ∗

︸ ︷︷ ︸
Σ̂DY

= Φ[−](x1, p1T )Φ(x2) Σ̂DY , (4.6)

where Φ[−](p1) = Trc

[
W

[n]
− [p1] Φ(p1)

]
. This illustrates the TMD factorization at tree-level

and the relevant gauge links to be used, which was considered in detail in ref. [35]. Beyond

tree-level one has the factorization formalism of Collins, Soper and Sterman [36], which

has proven to be very successful for many applications, but does not catch all subtleties at

small transverse momenta [18]. We will return to the problems with finding a full tree-level

factorization in two TMDs in section 5.
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γ∗

Φ (p2)

Φ (p1)

Γ Γ∗ γ∗

Φ (p2)

Φ (p1)

[−∞, ξ1] [01,−∞]U−

U†
−

U†
−

U− [−∞, 02][ξ2,−∞]

ψ (ξ2) ψ (02)

ψ (ξ1) ψ (01)

(a) (b)

Figure 7. (a) The color-flow in the Drell-Yan process and (b) the gauge connections including

their coordinate space structure.

4.2 TMDs in 1-parton unintegrated processes

In this subsection, we will turn to the situation of a more complicated color flow and

we will show that TMDs with non-trivial gauge links appear in 1-parton unintegrated

(1PU) contributions to the cross section, by which we mean contributions in which one has

integrated over the parton transverse momenta in all but one of the hadrons. At this point

we do not worry about experimental feasibility of measuring such a cross section. First

assume as an intermediate step that only the transverse momentum of correlators Φ(p1)

and Φ(p2) are left unintegrated, i.e. we look at jet production or non-hadronic final states.

In that case one integrates over k1T and k2T and the collinear correlators ∆(z1) and ∆(z2)

just involve unique collinear gauge links, while W�[k1] and W�[k2] become unity (in color

space). The result is an expression of the form

dσ1 ∼ Trc
[
U †
−[p2] Φ(x1, p1T )U−[p2] Γ

∗
1 U

†
+[p1, p2]∆

[W ](z1)U+[p1, p2] Γ1

]

× Trc
[
U †
−[p1] Φ(x2, p2T )U−[p1] Γ

∗
2 U

†
+[p1, p2]∆

[W ](z2)U+[p1, p2] Γ2

]
, (4.7)

which is still entangled. This was the example discussed in ref. [37].

Integrating over p2T , the result reduces to

dσ1 ∼ Trc
[
Φ(x1, p1T ) Γ∗

1 U
†
+[p1]∆

[W ](z1)U+[p1] Γ1

]

× Trc
[
U †
−[p1] Φ

[W ](x2)U−[p1] Γ
∗
2 U

†
+[p1]∆

[W ](z2)U+[p1] Γ2

]
.

∼ Trc
[
Φ(x1, p1T ) Γ∗

1 ∆[W ](z1)W+[p1] Γ1

]
Trc

[
W †

−[p1] Φ
[W ](x2) Γ∗

2 ∆[W ](z2)W+[p1] Γ2

]
.

= Trc
[
W

[n]
+ [p1] Φ(x1, p1T ) Γ∗

1 ∆(z1) Γ1

]
Trc
[
W

[n]
�

[p1] Φ(x2) Γ∗
2 ∆(z2) Γ2

]
, (4.8)

and gives

dσ1 ∼ Trc
[
Φ(x1, p1T )W

[n]
+ [p1] Γ

∗
1 ∆(z1) Γ1

] 1

Nc
Trc

[
W

[n]
�

[p1]
]
Trc

[
Φ(x2) Γ∗

2 ∆(z2) Γ2

]
(4.9)

= Φ[+(�)](x1, p1T )Φ(x2) Γ1 Γ∗
1 Γ2 Γ∗

2︸ ︷︷ ︸
Σ̂1

∆(z1)∆(z2), (4.10)

where Wilson lines combined with the correlators can be combined into TMD correla-

tors with gauge links, such as Φ[+](p1) = Trc
[
Φ(p1)W

[n]
+ [p1]

]
. In the step from (4.8)
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Figure 8. The squared amplitude for the hard interaction between two quarks coming from a

one-gluon-exchange diagram. We consider for simplicity two quarks with different flavors.

to (4.9) we have split the second trace into two parts containing the trace of W
[n]
�

(ap-

propriately averaged) and the trace of the (n-independent) collinear part. In the last step

the trace of the Wilson loop (non-local in the coordinate ξ conjugate to the parton mo-

mentum p1) has been absorbed into a more complicated gauge link for Φ[+(�)](x1, p1T ) =
1

Nc
Trc
[
W

[n]
�

[p1]
]
Trc

[
Φ(p1)W

[n]
+ [p1]

]
. Note that, in spite of what the notation might sug-

gest, Φ[+(�)] is not a multiplicative factor times Φ[+] because the fields in both factors

belong to the same matrix element (indicated through argument [p1]). These complex

gauge links are the process-dependent gauge links discussed in refs. [10–12, 38, 39].
As a further illustration, we include the color flow possibilities in the case of a hard

process where a gluon is exchanged in the hard part (see figure 8) instead of a colorless
boson as in figure 2. One gets different color flow patterns that contribute giving rise to
two different color contractions

dσ ∼ Trc

[
U

[n]†
− [p2, k1, k2]Φ(p1)U

[n]
− [p2, k1, k2] Γ

∗
1 T

aU
[n]†
+ [p1, p2, k2]∆(k1)U

[n]
+ [p1, p2, k2] Γ2 T

b
]

×Trc

[
U

[n]†
− [p1, k1, k2]Φ(p2)U

[n]
− [p1, k1, k2] Γ

∗
2 T

aU
[n]†
+ [p1, p2, k1]∆(k2)U

[n]
+ [p1, p2, k1] Γ1 T

b
]

=
N2

c + 1

N2
c − 1

Trc

[
U

[n]†
− [p2, k1, k2]Φ(p1)U

[n]
− [p2, k1, k2] Γ

∗
1 U

[n]†
+ [p1, p2, k2]∆(k1)U

[n]
+ [p1, p2, k2] Γ2

]

× Trc

[
U

[n]†
− [p1, k1, k2]Φ(p2)U

[n]
− [p1, k1, k2] Γ

∗
2 U

[n]†
+ [p1, p2, k1]∆(k2)U

[n]
+ [p1, p2, k1] Γ1

]

−
2

N2
c − 1

Trc

[
U

[n]†
− [p2, k1, k2]Φ(p1)U

[n]
− [p2, k1, k2] Γ

∗
1 U

[n]†
+ [p1, p2, k2]∆(k1)U

[n]
+ [p1, p2, k2]

× U
[n]†
− [p1, k1, k2]Φ(p2)U

[n]
− [p1, k1, k2] Γ

∗
2 U

[n]†
+ [p1, p2, k1]∆(k2)U

[n]
+ [p1, p2, k1] Γ1

]

=
N2

c + 1

N2
c − 1

dσ1 −
2

N2
c − 1

dσ2, (4.11)

normalized by the usual color factor, such that the coefficients in front of these terms add

to one. The first part is the one considered above. For the second part, one gets upon

integration over k1T and k2T

dσ2 ∼ Trc
[
U

[n]†
− [p2] Φ(x1, p1T )U

[n]
− [p2] Γ

∗
1 U

[n]†
+ [p1, p2]∆(z1)U

[n]
+ [p1, p2] Γ2

× U
[n]†
− [p1] Φ(x2, p2T )U

[n]
− [p1] Γ

∗
2 U

[n]†
+ [p1, p2]∆(z2)U

[n]
+ [p1, p2] Γ1

]
, (4.12)

leaving an entangled situation. If only one transverse momentum remains unintegrated,

one again can combine the result into a single complicated gauge link,

dσ2 ∼ Trc

[
Φ(x1, p1T ) Γ∗

1 U
[n]†
+ [p1]∆(z1)U

[n]
+ [p1] Γ2 U

[n]†
− [p1]

× Φ(x2)U
[n]
− [p1] Γ

∗
2 U

[n]†
+ [p1]∆(z2)U

[n]
+ [p1] Γ1

]
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= Trc

[
Φ(x1, p1T )W

[n]
+ [p1] Γ

∗
1 ∆(z1) Γ2 Φ(x2)W

[n]
�

[p1] Γ
∗
2 ∆(z2) Γ1

]
(4.13)

= Φ[+�](x1, p1T )Φ(x2) Γ1 Γ∗
1 Γ2 Γ∗

2︸ ︷︷ ︸
Σ̂2

∆(z1)∆(z2), (4.14)

where Φ[+�](p1) = Trc

[
Φ(p1)W

[n]
+ [p1]W

[n]
�

[p1]
]
. Combining both contributions one gets

the result [11],

dσ ∼

(
N2

c + 1

N2
c − 1

Φ[+(�)](x1, p1T )Φ(x2) Σ̂1 −
2

N2
c − 1

Φ[+�](x1, p1T )Φ(x2) Σ̂2

)
∆(z1)∆(z2).

(4.15)

In this particular case Σ̂1 and Σ̂2 are the same, but in general one has more diagrams con-

tributing to the hard process, each contribution gets split up into its own color patterns.

The results for such 1PU processes have been tabulated in ref. [11].

5 Analysis in terms of transverse moments

In this section, we will start with the unintegrated result in eq. (3.24) and take transverse

moments, which will give collinear results, which include correlators with covariant deriva-

tives iDα
T

and Aα
T

or in gauge-invariant form integrals over Gnα. The transverse moments

are obtained by looking at weighted cross sections of the form

〈pα1

T
. . . pαN

T
σ〉 =

∫
d2pT p

α1

T
. . . pαN

T

dσ

d2pT

. (5.1)

We will apply this to the cross section σ, built from the two pieces σ1 and σ2, discussed in

the previous paragraph. The simplest, lowest, transverse moment is the integrated cross

section,

〈σ〉 =

∫
d2pT

dσ

d2pT

= Φ(x1)Φ(x2)

(
N2

c + 1

N2
c − 1

Σ̂1 −
2

N2
c − 1

Σ̂2

)

︸ ︷︷ ︸
Σ̂

∆(z1)∆(z2), (5.2)

which has between brackets the standard partonic cross section Σ̂.

5.1 Single weighted asymmetries

To see what happens with the first transverse moment, we need to investigate at the level

of correlators what happens when one applies i∂α
ξ to the matrix elements. To clarify the

role of the gauge link in a correlator, in particular the contribution at infinity, we consider

i∂α
T

[
. . . U

[n]
[0,∞]U

T

[0T ,ξT ] U
[n]
[∞,ξ] . . . ψ(ξ)

]
=
[
. . . U

[n]
[0,∞]U

T

[0T ,ξT ] iD
α
T
U

[n]
[∞,ξ] . . . ψ(ξ)

]
. (5.3)

We can evaluate explicitly

iDα
T
U

[n]
[∞,ξ] . . . ψ(ξ) = U

[n]
[∞,ξ] iD

α
T
(ξ) . . . ψ(ξ) −

∫ ξ

∞
d η·P U

[n]
[∞,η]G

nα
T

(η)U
[n]
[η,ξ] . . . ψ(ξ), (5.4)

noting that the second term depends through the integration limits on the structure of the

Wilson line, in particular on the transverse piece being at plus or minus infinity. We could
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simply use the second term as a definition of the Aα
T

field but such a definition would for

instance not have the correct time-reversal property. We will use a time-reversal-definite

expression for Aα(ξ),

Aα(ξ) ≡

∫ ∞

−∞
d η·P ǫ(ξP − ηP )U

[n]
[ξ,η]G

nα(η)U
[n]
[η,ξ], (5.5)

which is gauge-equivalent to the expressions in eqs. (3.21) and (3.22). The form in eq. (5.5)

implicitly implies An = 0 and antisymmetric boundary conditions at ξP = ±∞ for Aα
T
(ξ)

and AP (ξ),

U
[n]
[ξ,∞]A

α(∞, ξT , ξ
n)U

[n]
[∞,ξ] + U

[n]
[ξ,−∞]A

α(−∞, ξT , ξ
n)U

[n]
[−∞,ξ] = 0, (5.6)

while

U
[n]
[ξ,∞]A

α(∞, ξT , ξ
n)U

[n]
[∞,ξ] − U

[n]
[ξ,−∞]A

α(−∞, ξT , ξ
n)U

[n]
[−∞,ξ]

=

∫ ∞

−∞
d ξ·P Gnα(ξ) = 2πG̃nα(ξT , ξ

n), (5.7)

or combining these two equations,

U
[n]
[ξ,∞]A

α(∞, ξT , ξ
n)U

[n]
[∞,ξ] = −U

[n]
[ξ,−∞]A

α(−∞, ξT , ξ
n)U

[n]
[−∞,ξ] = πG̃nα(ξT , ξ

n). (5.8)

The integral expression for πG̃nα represents actually the Fourier transform of the field

strength tensor at zero momentum in the n-component (which is indicated by including a

tilde over the G and omitting ξP from the argument list). Eq. (5.4) becomes

iDα
T
U

[n]
[∞,ξ] . . . ψ(ξ) = U

[n]
[∞,ξ]

(
iDα

T
(ξ) −Aα

T
(ξ) + πG̃nα(ξ)

)
. . . ψ(ξ). (5.9)

To implement this in correlators, we consider besides the TMD correlator Φ(x, pT ) in

eq. (4.1) the collinear matrix elements Φα
A(x, x1), which are the integrated quark-quark-

gluon correlators starting with eq. (2.2). Including Wilson lines, this collinear correlator is

of the form

Φα
A(x, x1) =

∫
d ξ·P

2π

d η·P

2π
ei (p−p1)·ξ ei p1·η 〈P |ψ(0)U

[n]
[0,η] A

α(η)U
[n]
[η,ξ] ψ(ξ)|P 〉

∣∣∣∣
LC

, (5.10)

or integrated over x1,

Φα
A(x) =

∫
dx1 Φα

A(x, x1) =

∫
d ξ·P

2π
ei p·ξ 〈P |ψ(0)U

[n]
[0,ξ]A

α(ξ)ψ(ξ)|P 〉

∣∣∣∣
LC

. (5.11)

Similarly we define Φα
D(x, x1) and Φα

G(x, x1) using iDα(η) and Gnα(η), respectively. The

latter is given by

Φα
G(x, x1) =

∫
d ξ·P

2π

d η·P

2π
ei (p−p1)·ξ ei p1·η 〈P |ψ(0)U

[n]
[0,η] G

nα(η)U
[n]
[η,ξ] ψ(ξ)|P 〉

∣∣∣∣
LC

.

(5.12)
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The relation in eq. (5.5) implies for these correlators

Φα
A(x)=PV

∫
dx1

i

x− x1
Φα

G(x, x1). (5.13)

The operator G̃nα(ξT , ξ
n) in eq. (5.7) appears in the correlator with a gluon field strength,

but at zero n-component of the momentum, i.e. at x1 = 0. The other (among them trans-

verse) components of the gluon momentum are also integrated over in eq. (5.12). This

particular correlator, referred to as a gluonic pole matrix element,

Φα
G(x, x) =

∫
d ξ·P

2π
ei p·ξ 〈P |ψ(0)U

[n]
[0,ξ] G̃

nα ψ(ξ)|P 〉

∣∣∣∣
LC

, (5.14)

will play an important role for transverse moments. Note that we have not included any

argument for the field strenght in G̃nα ψ(x)
∣∣∣
LC

, because all arguments become zero after

integration over p1T , p1·P (implying ξT=ηT and ξn=ηn) followed by the integration over

pT and p·P (putting ξ on the light-cone, i.e. ξT =0T and ξn=0).

Using the expressions in eqs. (5.3) and (5.4), we consider the following unintegrated

TMD functions starting with Φ[±](x, pT ),

Φ
α [±]
∂ (x, pT ) ≡ pα

T
Φ[±](x, pT )

=

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)U

[n]
[0,±∞]U

T

[0T ,ξT ] iD
α
T
U

[n]
[±∞,ξ]ψ(ξ)|P 〉

∣∣∣∣
LF

.(5.15)

Using the result in eq. (5.9) one gets

Φ
α [±]
∂ (x, pT ) = Φ̃

α [±]
∂ (x, pT ) ± πΦ

α [±]
G (x, pT ), (5.16)

where

πΦ
α [±]
G (x, pT ) = ±

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)U

[n]
[0,±∞]U

T

[0T ,ξT ]A
α
T
(±∞, ξT )U

[n]
[±∞,ξ]ψ(ξ)|P 〉

∣∣∣∣
LF

=

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)W

[n]
±[0,ξ] πG̃

nα
T

(ξT )ψ(ξ)|P 〉

∣∣∣∣
LF

, (5.17)

Φ̃
α [±]
∂ (x, pT ) =

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)W

[n]
±[0,ξ] i∂

α
T
ψ(ξ)|P 〉

∣∣∣∣
LF

=

∫
d ξ·P d2ξT

(2π)3
ei p·ξ 〈P |ψ(0)W

[n]
±[0,ξ] (iD

α
T
(ξ) −Aα

T
(ξ)) ψ(ξ)|P 〉

∣∣∣∣
LF

, (5.18)

or after integration over pT ,

Φ
α [±]
∂ (x) ≡

∫
d2pT pα

T
Φ[±](x, pT ) = Φα

D(x) −

∫
dx1

i

x− x1 ∓ iǫ
Φα

G(x, x1) (5.19)

= Φα
D(x) − Φα

A(x)︸ ︷︷ ︸
eΦα

∂
(x)

±πΦα
G(x, x). (5.20)

We note that the sole dependence on the direction of the gauge link is in the sign in front

of the gluonic pole correlator.
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In the analysis presented here, we have tacitly assumed that the Wilson line in combina-

tion with the quark fields could be combined into a correlator with a gauge link and we only

considered the cases of the simplest TMDs Φ[±] (without Wilson loops). To see what is hap-

pening in general we must realize that the complications arise from differentiating the Wil-

son line and obtaining covariant derivatives (in the above expressions the iDα
T
) in Φα

∂ . This

result is then separated into two parts, the parts Φ̃α
∂ , which has the same color structure as

Φ itself and a gluonic pole part of which the color structure is Φα
G(x, x) = Trc[Φ8(x)G̃

nα[p]],

where the argument [p] of G̃nα (see eq. (5.14)) just indicates its (spatial) connection to the

coordinates in quark-quark correlator Φ(p), similarly as has been used for the Wilson lines

U [p]. In the entangled expressions for the cross sections we have to use

i∂α
1T

(
Φ(p1) . . . U

[n]†
− [p1] Φ(p2)U

[n]
− [p1] . . .

)∣∣∣
LC

=
(
Φ̃α

∂ (p1) . . .Φ(p2) . . .
)

+
(
Φ8(x1) . . . πG̃

nα[p1] Φ(p2) . . .
)
. (5.21)

After further color disentangling of the right-hand-side, where one must be careful because

Φ(p2) and possible other entries can have an octet structure, one then can recombine parts

into πΦα
G(x, x) = Trc[Φ8(x)πG̃

nα[p]], as explained for a full quark-quark-gluon correlator

following eq. (2.2). For an antiquark correlator Φ(p2) one obtains

i∂α
1T

(
Φ(p1) . . . U

[n]†
− [p1] Φ1(p2)U

[n]
− [p1] . . .

)∣∣∣
LC

=
(
Φ̃α

∂ (p1) . . .Φ(p2) . . .
)
−
(
Φ8(x1) . . .Φ(p2)πG̃

nα[p1] . . .
)
. (5.22)

Starting with the cross section σ1 in eq. (4.8) we find that weighting with transverse mo-

mentum gives

〈pα
1T
σ1〉 ∼ Trc

[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ1

]
Trc

[
Φ(x2) Γ∗

2 ∆(z2) Γ2

]

+ Trc

[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ1

]
Trc
[
Φ(x2) Γ∗

2 ∆(z2) Γ2

]

+ Trc

[
Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc

[
Φ(x2) 2πG̃nα[p1] Γ

∗
2 ∆(z2) Γ2

]
. (5.23)

The traces in the last term are zero and we are left with

〈pα
1T
σ1〉 ∼

(
Φ̃α

∂ (x1) + πΦα
G(x1, x1)

)
Φ(x2) Σ̂1 ∆(z1)∆(z2). (5.24)

The weighted cross section of eq. (4.13) gives

〈pα
1T
σ2〉 ∼ Trc

[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ2 Φ(x2) Γ∗

2 ∆(z2) Γ1

]

+ Trc

[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ2 Φ(x2) Γ∗

2 ∆(z2) Γ1

]

+ Trc

[
Φ8(x1) Γ∗

1 ∆(z1) Γ2 Φ(x2) 2πG̃nα[p1] Γ
∗
2 ∆(z2) Γ1

]
. (5.25)

All terms survive and we are left with

〈pα
1T
σ2〉 ∼

(
Φ̃α

∂ (x1) + 3πΦα
G(x1, x1)

)
Φ(x2) Σ̂2 ∆(z1)∆(z2). (5.26)

Combining both contributions in the same way as in eq. (4.15), one obtains the result [11],

〈pα
1T
σ〉 ∼

(
N2

c + 1

N2
c − 1

Φ
α[+(�)]
∂ (x1)Φ(x2) Σ̂1 −

2

N2
c − 1

Φ
α[+�]
∂ (x1)Φ(x2) Σ̂2

)
∆(z1)∆(z2)
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= Φ̃α
∂ (x1)Φ(x2)

(
N2

c + 1

N2
c − 1

Σ̂1 −
2

N2
c − 1

Σ̂2

)

︸ ︷︷ ︸
Σ̂

∆(z1)∆(z2)

+ πΦα
G(x1, x1)Φ(x2)

(
N2

c + 1

N2
c − 1

Σ̂1 −
6

N2
c − 1

Σ̂2

)

︸ ︷︷ ︸
Σ̂GP

∆(z1)∆(z2), (5.27)

where the combination of hard squared amplitudes in the second term of eq. (5.27) is

referred to as the gluonic pole cross section. In the case of quark-quark scattering with

distinguishable quarks (Σ̂1 = Σ̂2) one thus has Σ̂GP = N2
c −5

N2
c −1

Σ̂, and for Nc = 3 we get

〈pα
1T
σ〉 ∼

(
Φ̃α

∂ (x1)Φ(x2) Σ̂ + πΦα
G(x1, x1)Φ(x2)

1

2
Σ̂

)
∆(z1)∆(z2). (5.28)

In this result the two pieces in the cross section experimentally can be distinguished because

of their time-reversal behavior. For instance single spin asymmetries have opposite time

reversal behavior as compared to spin-averaged or double spin asymmetries. This time re-

versal behavior affects the parametrization of the gluonic pole matrix element (containing

T-odd distribution functions such as Sivers and Boer-Mulders functions). These functions

appear convoluted with the gluonic pole cross section rather than the standard partonic

cross section. For hadron-hadron scattering the partonic cross sections and gluonic pole

cross sections have been tabulated in ref. [39].

At this point we want to comment on the usefulness of our diagrammatic approach

starting with an assumed convolution of soft correlators Φ(x, pT ) (integrated over p ·P ) and

hard amplitudes. For this we have to realize that the operators involved have particular

canonical dimensions d and twist t. Assignment of definite twist is only possible for local

matrix elements or collinear correlators, e.g. the quark-quark (or gluon-gluon) correlators

Φ[t=2](x), Φ[t=3](x), . . . or quark-quark-gluon correlators Φ
[t=3]
D (x) and Φ

[t=3]
A (x). We have

schematically

Φ[d=2](x, pT ) = Φ[t≥2](x, pT ),

indicating on the right-hand-side that operators are involved of arbitrary twist with the

minimal twist being the canonical dimension.

Now, let us look at an observable at a high-energy scale Q including its dependence

on collinear fractions and transverse momenta assuming appropriate identification of par-

ton variables with kinematical variables, which for transverse momenta in hadron-hadron

scattering would be qT = p1T + p2T . We have

dσ(x1, x2, qT ;Q) = Φ[d=2](x1, p1T ) ⊗ Φ[d=2](x2, p2T ) ⊗ Σ̂

+
M

Q

[
Φ[d=2](x1, p1T ) ⊗ Φ[d=2](x2, p2T ) ⊗ Σ̂

]

+
1

Q

[
Φ[d=3](x1, p1T ) ⊗ Φ[d=2](x2, p2T ) ⊗ Σ̂

]

+
1

Q

[
Φ[d=2](x1, p1T ) ⊗ Φ[d=3](x2, p2T ) ⊗ Σ̂

]

+ . . . , (5.29)
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of which only the first term survives atQ→ ∞. Looking at the qT -averaged (i.e. integrated)

cross section, we have as leading contribution

〈σ〉(x1, x2;Q)
Q→∞
−→ Φ[t=2](x1) ⊗ Φ[t=2](x2) ⊗ Σ̂, (5.30)

which summarizes the collinear approach. The leading contribution in the qT -weighted

cross section is given by

〈qT σ〉(x1, x2;Q)
Q→∞
−→ 〈p1T Φ[d=2]〉(x1) ⊗ Φ[t=2](x2) ⊗ Σ̂

+Φ[t=2](x1) ⊗ 〈p2T Φ[d=2]〉(x2) ⊗ Σ̂, (5.31)

where the weighted TMD correlators contain actually twist-three and higher twist opera-

tors, schematically

〈pT Φ[d=2]〉(x) = Φ[t≥3](x).

Among the twist three correlators we have T-even correlators Φ
[t=3]
D , Φ

[t=3]
A in the com-

bination Φ̃
[t=3]
∂ and the T-odd gluonic pole correlator Φ

[t=3]
G (x, x). The usefulness of the

diagrammatic approach starting with eq. (5.29) is in its ability to provide us in a straight-

forward way with the tree-level coefficients of the relevant (combinations of) twist-three

collinear correlators through the intermediate step of TMD correlators with a complex

(process-dependent) gauge link. Similar results for the weighted asymmetries can also be

obtained using collinear functions including the gluonic pole or ETQS functions directly

from the start [40, 41]. The tree-level results of the diagrammatic approach, of course,

need to be improved upon by including NLO QCD contributions. In line with our proof

of absorbing all gauge connections into a gauge link in 1PU processes, the diagrammatic

approach also provides the tree-level results for higher transverse moments as long as only

one initial state hadron is involved. This is useful first of all for leptoproduction pro-

cesses involving a single incoming hadron and, furthermore, for selected asymmetries in

hadron-hadron scattering.

5.2 Double weighted asymmetries

We want to use the analysis in terms of transverse moments to indicate what is happening

when the transverse momentum of two hadrons is involved, e.g. a double Sivers or double

Boer-Mulders effect. The weightings with pα
1T
pβ
1T

or with pα
2T
pβ
2T

can straightforwardly be

obtained from eq. (4.15), although the splitting of TMDs with more complicated gauge

links in T-even and T-odd parts is certainly not trivial. We will investigate the weighting

with pα
1T
pβ
2T

following the same steps as done in the above for the single moments.

We will first turn to an ‘elementary’ process, namely DY scattering. Having one color

loop, one finds that in single and double weighting one needs

Trc[I] =
1

Nc
Trc[I] Trc[I],

Trc[T
aT a] =

1

Nc
Trc[T

aT a] Trc[I],

Trc[T
aT bT aT b] = −

1

Nc(N2
c − 1)

Trc[T
aT a] Trc[T

bT b],
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yielding

〈pα
1T
pβ
2T
σDY 〉 =

(
Φ̃α

∂ (x1) Φ̃β
∂ (x2) − πΦα

G(x1, x1) Φ̃β
∂ (x2) − Φ̃α

∂ (x1)πΦβ
G(x2, x2)

−
1

N2
c − 1

πΦα
G(x1, x1)πΦβ

G(x2, x2)

)
σ̂DY . (5.32)

This indicates a breaking of universality for the double gluonic pole contribution. This

breaking is consistent with non-factorizability of DY at twist four (actually double twist-

three), which would be the level needed to consider similar asymmetries in a collinear

treatment that employs gluonic pole matrix elements and where one ought to find the

same breaking. It also shows that TMD factorization of DY does not hold for the T-odd

parts in the quark-quark correlators. The actual outcome is a strong suppression of the

double T-odd contributions and a sign change (-1/8 as compared to 1).

In the same way as for DY, we can analyze higher moments in other processes for which

we will consider the example of quark-quark scattering. From the unintegrated result in

eq. (4.7) one gets the double-weighted result,

〈pα
1T
pβ
2T
σ1〉 ∼ Trc

[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ1

]
Trc
[
Φ̃β

∂(x2) Γ∗
2 ∆(z2) Γ2

]

+Trc
[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ1

]
Trc

[
Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ1

]
Trc

[
Φ̃β

∂(x2) Γ∗
2 ∆(z2) Γ2

]

+Trc
[
Φ̃α

∂ (x1) 2πG̃nβ [p2] Γ
∗
1 ∆(z1) Γ1

]
Trc

[
Φ8(x2) Γ∗

2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc

[
Φ̃β

∂(x2) 2πG̃nα[p1] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1)

1

2
{πG̃nα[p1], πG̃

nβ [p2]}Γ∗
1 ∆(z1) Γ1

]
Trc

[
Φ8(x2) Γ∗

2 ∆(z2) Γ2

]

+Trc
[
πG̃nβ [p2] Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ1

]
Trc

[
Φ8(x2) Γ∗

2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc

[
Φ8(x2)

1

2
{πG̃nβ [p2], πG̃

nα[p1]}Γ∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc

[
πG̃nα[p1] Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ1

]
Trc

[
Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1)πG̃

nβ [p2] Γ
∗
1 ∆(z1) Γ1

]
Trc
[
Φ8(x2)πG̃

nα[p1] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
Φ8(x1)πG̃

nβ [p2] Γ
∗
1 ∆(z1) Γ1

]
Trc
[
πG̃nα[p1] Φ8(x2) Γ∗

2 ∆(z2) Γ2

]

+Trc
[
πG̃nβ [p2] Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc
[
Φ8(x2)πG̃

nα[p1] Γ
∗
2 ∆(z2) Γ2

]

+Trc
[
πG̃nβ[p2] Φ8(x1) Γ∗

1 ∆(z1) Γ1

]
Trc
[
πG̃nα[p1] Φ8(x2) Γ∗

2 ∆(z2) Γ2

]
.(5.33)

Several terms are trivially zero after color tracing (four through nine). The others give

particular transverse moments, where in particular for the last terms one must evaluate

the extra color factor because of the specific color flow. To be specific for terms eleven

through fourteen one needs

Trc[T
aT b] Trc[T

bT a]

Trc[T aT a] Trc[T bT b]
=

1

N2
c − 1

,
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as compared to term ten. The result then is

〈pα
1T
pβ
2T
σ1〉 ∼

(
Φ̃α

∂ (x1) Φ̃β
∂ (x2) + Φ̃α

∂ (x1)πΦβ
G(x2, x2) + πΦα

G(x1, x1) Φ̃β
∂(x2)

+
N2

c + 3

N2
c − 1

πΦα
G(x1, x1)πΦβ

G(x2, x2)

)
Σ̂1 ∆(z1)∆(z2). (5.34)

From the unintegrated result in eq. (4.12) one gets

〈pα
1T
pβ
2T
σ2〉 ∼ Trc

[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ2 Φ̃β

∂(x2) Γ∗
2 ∆(z2) Γ1

]

+Trc
[
Φ̃α

∂ (x1) Γ∗
1 ∆(z1) Γ2 Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ2 Φ̃β

∂(x2) Γ∗
2 ∆(z2) Γ1

]

+Trc
[
Φ̃α

∂ (x1) 2πG̃nβ [p2] Γ
∗
1 ∆(z1) Γ2 Φ8(x2) Γ∗

2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ2 Φ̃β
∂(x2) 2πG̃nα[p1] Γ

∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1)

1

2
{πG̃nα[p1], πG̃

nβ [p2]}Γ∗
1 ∆(z1) Γ2 Φ8(x2) Γ∗

2 ∆(z2) Γ1

]

+Trc
[
πG̃nβ [p2] Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ2 Φ8(x2) Γ∗

2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ2 Φ8(x2)
1

2
{πG̃nβ [p2], πG̃

nα[p1]}Γ∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1) Γ∗

1 ∆(z1) Γ2 πG̃
nα[p1] Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1)πG̃

nα[p1] Γ
∗
1 ∆(z1) Γ2 Φ8(x2)πG̃

nβ [p2] Γ
∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1)πG̃

nβ [p2] Γ
∗
1 ∆(z1) Γ2 Φ8(x2)πG̃

nα[p1] Γ
∗
2 ∆(z2) Γ1

]

+Trc
[
Φ8(x1)πG̃

nβ [p2] Γ
∗
1 ∆(z1) Γ2 πG̃

nα[p1] Φ8(x2) Γ∗
2 ∆(z2) Γ1

]

+Trc
[
πG̃nβ [p2] Φ8(x1) Γ∗

1 ∆(z1) Γ2 Φ8(x2)πG̃
nα[p1] Γ

∗
2 ∆(z2) Γ1

]

+Trc
[
πG̃nβ [p2] Φ8(x1) Γ∗

1 ∆(z1) Γ2 πG̃
nα[p1] Φ8(x2) Γ∗

2 ∆(z2) Γ1

]
. (5.35)

To rewrite everything in terms of standard transverse moments Φα
G we have to compare

the color structure of the terms with two gluonic poles with the standard color structure

for σ2. We need the ratio
Trc[T

aT bT aT b]

Trc[T aT aT bT b]
= −

1

N2
c − 1

.

We note that the factor Trc[T
aT aT bT b]/Trc[T

aT a] Trc[T
bT b] = 1/Nc is already incorpo-

rated in the factors multiplying Σ̂1 and Σ̂2. The result is

〈pα
1T
pβ
2T
σ2〉 ∼

(
Φ̃α

∂ (x1) Φ̃β
∂(x2) + 3 Φ̃α

∂ (x1)πΦβ
G(x2, x2) + 3πΦα

G(x1, x1) Φ̃β
∂(x2)

+
6N2

c − 9

N2
c − 1

πΦα
G(x1, x1)πΦβ

G(x2, x2)

)
Σ̂2 ∆(z1)∆(z2). (5.36)

Combining the terms we get

〈pα
1T
pβ
2T
σ〉 ∼ Φ̃α

∂ (x1) Φ̃β
∂(x2)

(
N2

c + 1

N2
c − 1

Σ̂1 −
2

N2
c − 1

Σ̂2

)

︸ ︷︷ ︸
Σ̂

∆(z1)∆(z2)
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+

(
Φ̃α

∂ (x1)πΦβ
G(x2, x2)+πΦβ

G(x1, x1)Φ̃
α
∂ (x2)

)(
N2

c +1

N2
c −1

Σ̂1−
6

N2
c −1

Σ̂2

)

︸ ︷︷ ︸
Σ̂GP

∆(z1)∆(z2)

+πΦα
G(x1, x1)πΦβ

G(x2, x2)

(
(N2

c +1)(N2
c +3)

(N2
c −1)2

Σ̂1−
12N2

c −18

(N2
c −1)2

Σ̂2

)
∆(z1)∆(z2),(5.37)

which in our example of distinguishable quarks (Σ̂1 = Σ̂2) gives

〈pα
1T
pβ
2T
σ〉 ∼ Φ̃α

∂ (x1) Φ̃β
∂(x2) Σ̂ ∆(z1)∆(z2)

+

(
Φ̃α

∂ (x1)πΦβ
G(x2, x2)+πΦα

G(x1, x1) Φ̃β
∂ (x2)

)
N2

c − 5

N2
c − 1

Σ̂ ∆(z1)∆(z2)

+ πΦα
G(x1, x1)πΦβ

G(x2, x2)
(N4

c − 8N2
c + 21)

(N2
c − 1)2

Σ̂ ∆(z1)∆(z2) (5.38)

=

(
Φ̃α

∂ (x1) Φ̃β
∂(x2) Σ̂ +

(
Φ̃α

∂ (x1)πΦβ
G(x2, x2) + πΦα

G(x1, x1) Φ̃β
∂(x2)

)
1

2
Σ̂

+ πΦα
G(x1, x1)πΦβ

G(x2, x2)
15

32
Σ̂

)
∆(z1)∆(z2). (5.39)

The result shows that while the effect of a single gluonic pole is suppressed (factor 1/2)

as compared to the naive TMD factorization, the effect of the double gluonic pole (double

Sivers or double Boer-Mulders) is suppressed less than the naive expectation expected on

the basis of single gluonic pole effects that are expected to show up in single spin asym-

metries (factor 15/32 versus 1/4).

Although these examples for DY and hadron-hadron scattering show that TMD factor-

ization fails, we think that the starting point eq. (3.24) at the end of section 3 appears to be

useful, incorporating all leading matrix elements based on a counting of canonical dimen-

sions. From that expression, one can proceed and calculate higher weighted asymmetries.

6 Conclusions

In this paper we have used a diagrammatic approach to analyse the leading contributions

at tree-level in hard processes in which several hadrons are involved. The diagrammatic

approach combines correlators involving hadron states and parton fields with hard partonic

amplitudes. The correlators depend on (on-shell) hadron momenta (initial state hadrons

P , produced hadronsKh) and the parton momenta (p and k). At high energies, momentum

fractions xP or (1/z)Kh and transverse momenta can be used, while the components p·P

and k·Kh are integrated over. At that stage one has correlators that also have a natural

link to light-cone wave functions [42, 43]. In the usual collinear treatment, the transverse

momenta are also integrated over, or one studies the limit in which these momenta become

large, which just is a collinear treatment involving a partonic process with one or more

additional partons. Using TMD correlators one aims at incorporating all features related

to (soft) transverse momenta, including in the parametrization of TMDs the possibility

of T -odd correlators, not forbidden by any symmetry. These incorporate the effects of
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initial and final state interactions [44] and they can explain the existence of single spin

asymmetries at high energies.

The basic tree-level result was presented in section 3. It includes all Wilson lines

originating from collinear gluons in all of the correlators. These contributions are sufficient

to study the collinear correlators (integrating over transverse components of the parton

momenta) and give rise to straight light-like gauge links. For TMD correlators, one has to

include transverse gauge connections, but after accounting for the collinear gluons, this all

works out nice and produces the transverse pieces at the right place [8, 9]. One obtains a

color gauge-invariant expression (eq. (3.24)), which is fully entangled.

In order to disentangle color, one needs to consider for each diagrammatic contri-

bution in the hard amplitude, also its color-flow possibilities. This does not resolve the

entanglement in general. Also, integrating over transverse momenta of final state partons,

e.g. when one considers jet production, does not resolve the problem. Then one remains

with an entangled situation if the initial state involves more than one hadron, as in the

case of hadron-hadron scattering. This was considered as an explicit example of factoriza-

tion breaking in ref. [37]. The full entangled tree-level result for this situation is given in

eq. (4.7). Even in cases in which one just has a single color flow such as in the electroweak

processes of leptoproduction, electron-positron annihilation or the Drell-Yan process, one

gets TMD factorization with correlators having specific process-dependent gauge links run-

ning via ± light-cone infinity. For these cases one then has a starting point with universal

correlators and one can study the full QCD factorization. There are several examples of

similarly simple processes, such as two-photon production in Drell-Yan, which even for

gluons has a simple color flow [45].

The main aim of this paper was to show what happens in the special case of an 1PU

process, in which only the transverse momentum in one specific hadron is considered. In

that situation, one can resolve the entanglement (at least at tree-level). What remains is a

color gauge-invariant expression (eq. (4.15)) with a process-dependent gauge link. All-but-

one collinear processes may seem hard to realize at first sight, since the parton transverse

momentum is an integration variable, rather than an observable. Nevertheless, symmetry

considerations in combination with polarization, in particular transverse polarization of

target hadrons, may help to create the conditions for an 1PU treatment. Furthermore one

has in leptoproduction processes a whole class of such processes. Consideration of TMD

correlators is possible for quark as well as gluon correlators. A recent example of the lat-

ter situation was pointed out in ref. [46] which considered heavy quark production in the

Drell-Yan process.

The simplifications and steps towards a TMD factorizable result become more

transparant if one constructs transverse moments. This analysis has been given in sec-

tion 5 for single and double weighted asymmetries. Single weighted asymmetries can use

the results of the 1PU situation and lead to the results where T -even transverse moments

are convoluted with the standard partonic cross section and T -odd transverse moments are

convoluted with a different (but color gauge-invariant) combination of squared amplitudes,

the so-called gluonic pole cross sections. The T -odd transverse moments are weighted

TMD correlators, involving p2
T
-weighted T -odd distribution functions like the Sivers or
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Boer-Mulders distribution functions of which the operator structure is a gluonic pole ma-

trix element, i.e. a quark-quark-gluon matrix element at vanishing gluon momentum.

While the single weighted asymmetries exhibit factorization at the TMD-level (with

process-dependence through the link in the TMD) and at the collinear level involve gluonic

pole cross sections, rather than the standard partonic cross sections, the explicit evalua-

tion of the double weighted asymmetry shows that such factorizations are not generally

applicable. Additional color factors come in at this level, which provide besides double

weighted TMDs for hadron 1 and hadron 2, products of single weighted functions. The

factors multiplying the final result for the cross terms, however, is not related to the factors

appearing in the single weighted results. It does involve products of the T -even and T -odd

transverse moments, but each of these terms with their own factors.

The analysis in terms of transverse moments, however, also provides us with an

important result for correlators belonging to final state hadrons. In analogy to the analysis

of distribution correlators, the transverse moments for fragmentation correlators involve a

part ∆̃α
∂ with a T -even combination of operators and a part ∆α

G with a T -odd combination

of operators, the latter involving an integration over transverse gluon fields corresponding

to vanishing gluon momentum. Such gluonic pole matrix elements (and also multi-gluonic

pole matrix elements appearing in higher transverse moments) vanish for fragmentation.

This has been shown in models as well using spectral analysis of final states [27, 28]

or studies of analytic properties [29] based on the field theoretical correspondence to

amplitudes mentioned at the end of section 2. Since the color structure of the remaining

∆̃α
∂ part is simple, there are no complications to absorb the appropriate gluons into gauge

links. This implies that the result of eq. (4.7) also applies for unintegrated situations,

where the dependence on transverse momenta in the final state is kept. Thus we can use

in eq. (4.7) TMD correlators ∆(z, kT ) rather than the collinear correlators ∆(z). Instead

of eq. (3.24) one has a tree-level result of the form

dσ ∼ Trc

[
U †
−[p2] Φ(x1, p1T )U−[p2]W

†
+[p1, p2]

]
Trc

[
U †
−[p1] Φ(x2, p2T )U−[p1]W

†
+[p1, p2]

]

× Γ∗
1 ∆(z1, k1T ) Γ1 Γ∗

2 ∆(z2, k2T ) Γ2, (6.1)

with entanglement only involving the initial state TMD correlators, including dependence

on color flow in initial and final state. In spite of having a T -even operator structure, the

universal TMD fragmentation correlators ∆(z, kT ) or its transverse moment ∆̃α
∂ (z) allows

for T -odd fragmentation functions in its parametrization such as the Collins function

because the non-plane-wave nature of the states |Kh,KX〉 in the matrix elements of

eq. (2.5) prevents using time-reversal symmetry constraints.

The formalism in this paper allows a rich phenomenology, including many results on

single transverse momentum weighted cross sections that have already been obtained. It

can be used for quark as well as gluon TMDs, although the latter involve a number of

additional complications. However, we do want to emphasize once more that our results

are strictly tree-level, which does provide insight into the universality of TMDs and which

is a necessary condition to study factorization issues, but it does not provide proof of

factorization in QCD. For a discussion of those aspects we refer to ref. [17], to ref. [16] on
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subtleties with gauge link structures at higher orders and to ref. [18] for attempts to bridge

the gap between the phenomenology and the more formal definitions.
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A Collinear gauge links

In this appendix we incorporate the collinear gluons, i.e. the first term in the Sudakov

expansion of Aµ(p) given in eq. (3.4). This will produce the parts of the gauge link along

light-like directions conjugate to the momentum P and in the collinear situation (when all

transverse momenta are integrated over) it produces the gauge link as given in eq. (2.17)

in the light-cone correlators.

Looking at the Fourier transformed fields with collinear Wilson lines starting at ±∞,

we consider the Fourier transform of the field U
[n]
[±∞,ξ]ψ(ξ). For the field with Wilson line

starting at minus infinity we get,

U
[n]
− ψ(p) =

∫
d4ξ exp (i p · ξ) P exp

(
−ig

∫ ξ·P

−∞
d(η · P ) n · A(η)

)
ψ(x). (A.1)

Looking only at the relevant component p+ = p · n one gets,

U
[n]
− ψ(p) =

∞∑

N=0

(−i)N
∫ ∞

−∞
dξ−

∫ ξ

−∞
dη−N

∫ ξ

η−

N

dη−N−1 . . .

×

∫ ξ

η−

2

dη−1 A+(η−N ) . . . A+(η−1 )ψ(ξ) ei p+ξ− , (A.2)

where the arguments run between −∞ < η−N < η−N−1 < . . . < η−1 < ξ−, implemented

through θ functions θ(η−N−1 − η−N ) . . . θ(η−1 − η−2 )θ(ξ− − η−1 ), which can be rewritten as

momentum-space integrations,

U
[n]
− ψ(p+) =

∞∑

N=0

(−i)N
∫ ∞

−∞
dξ−

∫ ∞

−∞
dη−N

∫ ∞

−∞
dη−N−1 . . .

∫ ∞

−∞
dη−1

×

∫
dp+

N

−2π i
. . .

∫
dp+

1

−2π i

e−i p+

N
(η−

N−1
−η−

N
)

p+
N + iǫ

. . .
e−i p+

1
(ξ−−η−

1
)

p+
1 + iǫ

× A+(η−N ) . . . A+(η−1 )ψ(ξ−) ei p+ξ− .
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Including again the dependence on other momenta, we find

U
[n]
− ψ(p) =

∞∑

N=0

∫
d4pN

(2π)4
. . .

∫
d4p1

(2π)4
An(pN )

(xN + iǫ)

An(pN−1 − pN )

(xN−1 + iǫ)
. . .

An(p1 − p2)

(x1 + iǫ)
ψ(p − p1)

=
∞∑

N=0

∫
d4p1

(2π)4
. . .

∫
d4pN

(2π)4
An(p1)

(x1 + iǫ)

An(p2)

(x1 + x2 + iǫ)
. . .

×
An(pN )

(x1 + · · · + xN + iǫ)
ψ

(
p−

N∑

i=1

pi

)
,

where xi = pi · n. We thus find for the gauge link

U
[n]
± ψ(p) =

∞∑

M=0

U
[n](M)
± ψ(p), (A.3)

where U
[n](0)
± = 1. The gauge link and the terms in its expansion not only have a particular

structure in coordinate or momentum space, but they also have a charge structure. In

particular for applications in non-abelian gauge theories one has matrix-valued fields

Aµ = AµaT a.

The gauge link can be written in a nicer symmetric form for the correlators. Commu-

tators [An(p1), A
n(p2)] don’t matter here, neither in color space, where they are ‘contained’

in other matrix elements with less gluons, nor in Hilbert space, where one has commuting

fields, which for fields with the light-cone index n imply vanishing commutators. We can

then use relations

1

(x1 + x2 + iǫ)

[
1

(x1 + iǫ)
+

1

(x2 + iǫ)

]
=

1

(x1 + iǫ)(x2 + iǫ)
, (A.4)

1

(x1 + x2 + x3 + iǫ)

[
1

(x1 + x2 + iǫ)(x1 + iǫ)
+ · · ·

]

︸ ︷︷ ︸
6 permutations

=
1

(x1 + x2 + x3 + iǫ)

[
1

(x1 + iǫ)(x2 + iǫ)
+ · · ·

]

︸ ︷︷ ︸
3 permutations

=
1

(x1 + iǫ)(x2 + iǫ)(x3 + iǫ)
, (A.5)

and its generalization to more terms, to symmetrize the result. This gives

U
[n]
− ψ(p) =

∫
d4ξ exp (i p · ξ) P exp

(
−ig

∫ ξ·P

−∞
d(η · P ) n · A(η)

)
ψ(x)

=

∞∑

N=0

1

N !

∫
d4p1

(2π)4
. . .

∫
d4pN

(2π)4
An(p1)A

n(p2) . . . A
n(pN )

(x1 + iǫ)(x2 + iǫ) . . . (xN + iǫ)
ψ

(
p−

N∑

i=1

pi

)
.

(A.6)

From this expression one sees that the term U
[n](M)
± is the consecutive action of M simple

(commuting) U
[n](1)
± -connections
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Γ

p−p1
p1

p′1

k−p1−p′1

k−p1 k
Γ

p−p1
p1

p′1

k−p1−p′1

k−p′1

k

Γ

p−p1
p1+p′1

p′1

k−p1−p′1 k

p1

(a) (b) (c)

Figure 9. The gluon insertions on an outgoing quark line coming from two different soft pieces,

one from Φ(p) and one from Φ(p′), respectively.

For a link along n coming from +∞ one has

U
[n]
+ ψ(p) =

∫
d4ξ exp (i p · ξ) P exp

(
−ig

∫ ξ·P

∞
d(η · P ) n ·A(η)

)
ψ(x)

=
∞∑

N=0

∫
d4pN

(2π)4
. . .

∫
d4p1

(2π)4
An(pN )

(−xN + iǫ)

An(pN−1 − pN )

(−xN−1 + iǫ)
. . .

An(p1 − p2)

(−x1 + iǫ)
ψ(p−p1)

=
∞∑

N=0

∫
d4p1

(2π)4
. . .

∫
d4pN

(2π)4
An(p1)

(−x1 + iǫ)
. . .

An(pN )

(−x1 − · · · − xN + iǫ)
ψ

(
p−

N∑

i=1

pi

)

=
∞∑

N=0

1

N !

∫
d4p1

(2π)4
. . .

∫
d4pN

(2π)4
An(p1)A

n(p2) . . . A
n(pN )

(−x1 + iǫ)(−x2 + iǫ) . . . (−xN + iǫ)

× ψ

(
p−

N∑

i=1

pi

)
. (A.7)

The notation used in equations with many fields and links will be U
[n]
+ ψ(p) = U

[n]
+ [p]ψ(p).

B Intertwined gauge connections

We consider the situation of gluon insertions on an outgoing quark line coming from two

different soft pieces, one from Φ(p) and one from Φ(p′), respectively. There are three

leading contributions of Ak(p1) p
µ
1 and Ak(p′1) p

′µ
1 gluon components, corresponding to the

diagrams in figure 9, one of them involving a triple gluon vertex. The combined result of

the diagrams actually nicely adds up to

A11 =
[
ψ(k)U

[k](11)
+ [p, p′] Γψ(p)

]
. . . ψ(p′) =

1

2

[
ψ(k)

{
U

[k](1)
+ [p′], U

[k](1)
+ [p]

}
Γψ(p)

]
. . . ψ(p′),

(B.1)

which is a gauge connection which is the (color) symmetrized product of simple connections.

In order to illustrate the recursive procedure, it is instructive to give the result for the

situation of insertions on an outgoing quark line for three gluons coming from two different

soft pieces, two gluons coming from Φ(p) and one coming from Φ(p′), respectively. This is

shown in figure 10 and involves three- and four-gluon couplings. The result becomes

A21 =
[
ψ(k)U

[k](21)
+ [p, p′] Γ . . . ψ(p)

]
. . . ψ(p′) (B.2)
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Γ
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Γ

p−p1−p2 p2

p′1
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(a) (b) (c)

Γ

p−p1−p2
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p′1

k

p1

Γ

p−p1−p2

p1

p′1

k

p2

Γ

p−p1−p2
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p′1

k

p1
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Γ

p−p1−p2

p2

p′1

k

p1

(g)

Figure 10. The gluon insertions on an outgoing quark line for three gluons coming from two

different soft pieces, two gluons coming from Φ(p) and one coming from Φ(p′), respectively. Note

the absence of a three-gluon vertex with gluon legs with momenta p1 and p2 coupling to the same soft

part Φ(p). Note the absence of a three-gluon vertex with gluon legs with momenta p1 and p2 coupling

to the same soft part Φ(p). It is actually already included in the soft part with one gluon leg less.

=

[
ψ(k)

(
1

4
U

[k](2)
+ [p]U

[k](1)
+ [p′] +

1

4
U

[k](1)
+ [p]U

[k](1)
+ [p′]U

[k](1)
+ [p]

+
1

4
U

[k](1)
+ [p′]U

[k](2)
+ [p]

)
Γ . . . ψ(p)

]
. . . ψ(p′) (B.3)

=

[
ψ(k)

(
1

8
U

[k](1)
+ [p]U

[k](1)
+ [p]U

[k](1)
+ [p′] +

1

4
U

[k](1)
+ [p]U

[k](1)
+ [p′]U

[k](1)
+ [p]

+
1

8
U

[k](1)
+ [p′]U

[k](1)
+ [p]U

[k](1)
+ [p]

)
Γ . . . ψ(p)

]
. . . ψ(p′). (B.4)

For a general Aijk-gluon term, with i-, j- and k gluons from three (or more) different

correlators, one finds an expression where the A-fields from these different correlators are

a color symmetrized product of U [k](1) factors containing commuting gauge fields. Thus if

one, as is the case in eq. (3.11), looks at the result from insertions on leg k2 coming from

correlators Φ(p1), Φ(p2) and ∆(k1) it can be broken apart in a symmetrized product of

simple gauge links,

U
[k2]
+ [p1, p2, k1] = S{U

[k2]
+ [p1]U

[k2]
+ [p2]U

[k2]
+ [k1]}, (B.5)

of which the ordering is irrelevant.
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