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1 Introduction

In this paper we set out a way to define conformal field theories with fermions and analyse

their conformal boundary conditions, defects and interfaces. Conformal field theories with

fermions have been studied for a very long time, as have their boundary conditions, but in

this paper we take an algebraic approach to the description of fermionic theories and spin

structures. This makes an algebraic analysis of boundary conditions and defects tractable

and has revealed new relations between models that had not been understood before.

The first objective is to define correlation functions of fields in fermionic conformal

field theories unambiguously on surfaces with spin structures; we do this using defects as

proposed in [1]. In this paper we outline this method and state our results; we will give

more details and proofs in [2].

Our description of fermionic CFTs has two immediate implications. Firstly, the state

space is a super-vector space, divided by the grading into fields of even and odd parity.

Secondly, we need to consider the different spin structures separately as each spin structure

defines a different way to put fermions on a surface consistently, so that each circular

boundary, defect, and interface will have a separate description for the two possible spin

structures in its neighbourhood. We obtain a consistent set of sewing constraints for

theories including fermions, which incorporates the signs that arise from re-ordering of

products of fermionic fields and — importantly — extra signs that arise from putting the

spin structure back in a standard form in different limits. We describe this in detail in

section 2. One particularly interesting result is that given a fermionic CFT, it is possible to

define another fermionic CFT in which the parities (odd/even) are swapped in the Ramond

sector. This can either result in the original CFT again or in a new CFT.

Having defined the bulk theories, we are able to consider their conformal boundary

conditions, defects and interfaces. We show in section 3 how the bulk-boundary, bulk-

defect and bulk-interface structure constants define super-algebras, which we refer to as

fermionic classifying algebras, and which then allow one to identify the fundamental bound-

ary conditions, etc., algebraically from these algebras alone. For purely bosonic theories

the corresponding classifying algebras were introduced in [3, 4]. One consequence is the

natural occurrence of fermionic weight zero fields on boundaries, defects and interfaces,

which are required for their consistent description. These have been known for a long time,
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for example they have been used in the coupling of the Ising model to boundary magnetic

fields [5, 6], see also [7, 8] for more recent applications to boundary renormalisation group

flows. Our analysis shows they are a necessary and integral part of the description of

fermionic CFTs with boundaries, defects and interfaces.

We illustrate these ideas in the concrete cases of fermionic extensions of Virasoro

minimal models which we define in section 4, and for which we give an explicit solution for

the bulk structure constants. As is well known, for some values of the central charge there

are two or more different Virasoro minimal models labelled by pairs of Lie algebras [9].

We show that, remarkably, the fermionic extensions of the (Am, A4n−1) and (Am, D2n+1)

bosonic minimal models — and in particular their bulk structure constants [10, 11] — are

related by the parity-shift operation.

The fermionic extensions of the Virasoro minimal models include such important ex-

amples as the fermionic Ising model, i.e. the free fermion, and the fermionic tri-critical

Ising model, i.e. the first unitary N = 1 superconformal minimal model, as well as many

other theories with extended symmetries. Sections 5 and 6 of the paper are taken up with

exploring our results in these situations and comparing our findings with the discussions

already in the literature, in particular [12–14].

2 Bulk fields in fermionic CFT

In this section we explain how to describe fields of a fermionic CFT. In order to include

the effects of the spin structure and the bosonic/fermionic nature of fields, we introduce

a special type of topological line defect; all bulk fields are then connected to one of these

defects, so that we think of them as disorder fields which sit at the starting point of the

specific topological defect.

We start by describing the relevant properties of the topological defect and then use

these to define OPE coefficients and to obtain the crossing constraint they have to satisfy.

We show that, given one solution to the crossing constraint, one can obtain another solution

by shifting the Ramond sector parity and modifying the given solution by signs.

2.1 The topological defect F

The spin structure on the worldsheet of a fermionic CFT is encoded by a topological defect

which we call F . The technical details of this procedure are given in [1, 15]. Here we do

not need the full formalism and just state the properties we will use below.

We denote by HF the space of disorder fields that sit at the start of the topological

defect F (figure 1a). Since F is topological, HF carries a representation of the holomorphic

and anti-holomorphic copy of the Virasoro algebra.

The space HF is a super-vector space, that is, it is Z2-graded into an even and an odd

component,

HF = Hev
F ⊕Hodd

F . (2.1)

We refer to this grading as parity, and for a homogeneous element φ ∈ HF we write

|φ| ∈ {0, 1} — or just φ if no confusion can arise — for its parity. There is a second Z2-

– 2 –
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F φ

(a)

φπ
=

(−1)φφ

(b)

(c)

π =

π

π

(d)

=

(e)

φ =

πνφ

φ

(f)

e2πi(L0−L̄0)φ = φ =
φπνφ+1

= (−1)φ(νφ+1) φ

(g)

Figure 1. Properties of the topological line defect F . a) A field φ ∈ HF sits at the start of F .

b) The OPE of the weight zero defect field π and a field φ multiplies φ by ±1, depending on its

parity. c) The weight zero junction joining two T defects into one. d) Pushing the defect field

π through the defect junction. e) Associativity relation for the junction field. f) Dragging the F

defect through a field φ of spin grade νφ inserts πνφ . g) Rotating φ ∈ HνφF by 2π can be traded

for an insertion of πνφ+1. In particular, one cannot just unwind an F -defect around φ, instead the

tangent at the insertion point of φ has to remain fixed.

grading on HF whose components are called the Neveu-Schwarz and the Ramond sector,

HF = HNS
F ⊕HR

F . (2.2)

We will refer to this as the spin grading. It will be convenient to abbreviate H0
F = HNS

F

and H1
F = HR

F . Each HνF is still parity graded, HνF = Hν,ev
F ⊕ Hν,odd

F , so that altogether,

HF is Z2 × Z2-graded. For a field φ ∈ HF that is homogeneous with respect to the spin

grading we write νφ ∈ {0, 1} for its degree.

– 3 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
5

We will refer to fields in HF as bulk fields of the fermionic CFT.

The defect F has the following properties:

1. There is a parity even weight zero1 defect field π on F which implements parity on

F in the sense that the OPE of π with a bulk field φ is (−1)φφ (figure 1b). It will

be convenient to write π0 = 1 for the identity defect field and π1 = π.

2. There is a parity even weight zero defect junction joining two in-coming F -defects

into an out-going F -defect (figure 1c). This junction commutes with π in the sense

shown in figure 1d, and it is associative as shown in figure 1e.

3. Taking a bulk field φ of spin grade νφ past an F -defect results in the insertion of πνφ

as shown in figure 1f.

One can verify that the effect of a 2π-rotation of a bulk field φ can be replaced by an

insertion of πνφ+1 on the F -defect (figure 1g), see [1, lemma 4.7]. Thus we get

e2πi(L0−L̄0)φ = (−1)φ(νφ+1) φ . (2.3)

Denote the conformal spin of a field by Sφ := hφ − h̄φ. The above relation implies that

Sφ ∈

Z + 1
2 ; φ is a parity-odd NS-field ,

Z; otherwise .
(2.4)

2.2 Bulk structure constants

To define the OPE of bulk fields, we need to fix a convention for the spin structure in a

neighbourhood of the fields. In the present formalism, this is done by requiring a particular

pattern of defect lines. The convention we will use is that for x > y real,

φi(x)φj(y) =
φj(y) φi(x)

=
∑
k

Ĉ k
ij (x−y)∆k−∆i−∆j φk(y)+(descendants) ,

(2.5)

where the φi are a basis of primary fields in HF , and ∆i = hi + h̄i denotes the scaling

dimension of φi.

One could alternatively have chosen the convention that the F -defect starting at φi
passes below φj . According to figure 1f, the two choices are related by

φj(y) φi(x)
=

φj(y) φi(x)

πνj

. (2.6)

If we denote the structure constants computed in the F -defect-passes-below convention by

Č k
ij , then the resulting relation is

Č k
ij = (−1)φiνj Ĉ k

ij . (2.7)

In the following we will stick to the convention in (2.5).

1We use “weight zero” to mean that it behaves like a vacuum field, i.e. that it is annihilated by the

translation operators L−1 and L̄−1.
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a

b

k`

ij

(a)

k`

ij

(b)

Figure 2. a) The arrangement of F -defects needed to substitute the OPE in the a → 0 limit. b)

The corresponding configuration required in the b→ 0 limit.

2.3 Crossing symmetry constraint

Consider a correlator f(a, b) of four primary bulk fields φi, φj , φk, φ`, inserted at positions

a+ ib, ib, a, 0 for some a, b > 0,

f(a, b) =
〈
φi(a+ ib)φj(ib)φk(a)φ`(0)

〉
. (2.8)

Here it is understood that the F -defects are placed as in figure 2a, and that the ordering

relevant for the parity signs is radial ordering.

For simplicity, in the derivation of the crossing constraint (and in that of similar

constraints below) we restrict ourselves to theories which are rational with respect to the

Virasoro symmetry. Extended chiral algebras can be treated in the same way, but one

has to account for two complications. Firstly, the fusing matrices will in general carry

multiplicity labels. Secondly, the leading contribution in the OPE of two primary fields

(with respect to the extended symmetry) may be a descendent field, which makes the

definition of the OPE coefficients more involved.

The defect arrangement in figure 2a is such that in the a→ 0 limit, we can substitute

the bulk OPE right away. Hence in this limit we simply have

f(a, b) ∼
a→0

∑
p

Ĉ p
ij Ĉ

p
k`Ĉ

1
pp e
−πiSp b−2∆p · a2∆p−∆i−∆j−∆k−∆` . (2.9)

The phase e−πiSp = e−πi(hp−h̄p) in (2.9) is determined by our convention on how to continue

the OPE (2.5) to the configuration in figure 2 where the result of the OPE of fields φi with

φj and φl with φk results in fields at positions 0 and ib. We choose to continue the OPE

so that the defect lines stay in the same topological arrangement and do not cross through

the field insertion points which determines the phase uniquely.

In the b→ 0 limit we have to rearrange the F -defect before we are allowed to substitute

the OPE. The relevant configuration is shown in figure 2b. We have

k`

ij

=

k`

ij

πνj

.

(2.10)
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Here we used the associativity of the junction field and the effect of dragging an F -defect

through a field, see figure 1e, 1f. The π-insertion contributes the sign factor (−1)νjφk .

The resulting graph of F -defects can be brought to the form in figure 2b by using the

associativity relation once more.

We see that bringing the spin structure to the form required for the OPE contributes

a sign factor (−1)νjφk . Another sign arises from parity as the order of φj and φk changes.

Altogether we get

f(a, b) ∼
b→0

(−1)(φj+νj)φk
∑
q

Ĉ q
ik Ĉ

q
j` Ĉ

1
qq e

πi
2

(2Sq−Si−Sj−Sk−S`) a−2∆q · b2∆q−∆i−∆j−∆k−∆` .

(2.11)

The rest of the computation is a standard manipulation of conformal blocks. The overall

result is

Ĉ q
ik Ĉ

q
j` Ĉ

1
qq = (−1)(φj+νj)φk

∑
p

eπi(Si+S`−Sp−Sq) Fpq
[
j `
i k

]
Fp̄q̄

[
̄ ¯̀

ı̄ k̄

]
Ĉ p
ij Ĉ

p
k` Ĉ

1
pp .

(2.12)

Here, the entries “i” and “ı̄” in the two F-matrices refer to the holomorphic and antiholo-

morphic conformal weight (hi, h̄i) of φi, etc.

2.4 Symmetry properties of structure constants

The four-point crossing relation determines how the structure constants behave under

permutation of indices. Define

Ĉijk = Ĉ k
ij Ĉ

1
kk . (2.13)

We obtain the following two relations by setting φj = 1 and φ` = 1 in (2.12), respectively:

Ĉk`i = Ĉik` , Ĉijk = (−1)(φj+νj)φk eπi(Sk+Sj−Si) Ĉikj . (2.14)

In particular, the Ĉijk are cyclically symmetric. Using this we can rewrite the second

equality above as a relation between Ĉjki and Ĉkji. After relabelling and dividing by Ĉ 1
kk

this implies

Ĉ k
ji = (−1)φi (φj+νj) eπi(Si+Sj−Sk) Ĉ k

ij
(∗)
= (−1)(φi+νi)φj eπi(Sk−Si−Sj) Ĉ k

ij . (2.15)

In step (∗) we used that e2πiSi = (−1)φi (νi+1), etc., from (2.3) and the fact that the OPE

preserves the parity and spin gradings.

For the description of the classifying algebra below it will be important that structure

constants involving only spinless fields are symmetric:

If Si = Sj = Sk = 0 then Ĉ k
ij = Ĉ k

ji . (2.16)

To see this, note that the only situation in which both expressions in (2.15) produce a sign

is φi = φj = 1 and νi = νj = 0. But then (2.4) imposes Si, Sj ∈ Z + 1
2 , which we excluded.
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2.5 Parity shift of the Ramond sector

As we have seen in section 2.1, the state space HF of a fermionic CFT carries two Z2-

gradings, namely even/odd and NS/R. Accordingly it splits into four direct summands,

HNS,ev
F HR,ev

F

HNS,odd
F HR,odd

F (2.17)

As before, for a primary bulk field φi, its parity is |φi| ∈ {0, 1} (with 0 being even) and

its spin grade is νi ∈ {0, 1} (with 0 being NS). Let Ĉ k
ij be a solution of the bulk crossing

relation (2.12).

Given such a solution, we can construct a new fermionic CFT as follows. The new

state space H̃F agrees with the old one, except for a parity shift in the Ramond sector:

H̃NS,ev
F := HNS,ev

F H̃R,ev
F := HR,odd

F

H̃NS,odd
F := HNS,odd

F H̃R,odd
F := HR,ev

F (2.18)

That is, the old and new gradings are related by

|φ̃i| = |φi|+ νi , ν̃i = νi . (2.19)

The new structure constants are related to the old ones by signs,

C̃ k
ij := (−1)νiφj Ĉ k

ij . (2.20)

It is a straightforward computation to see that C̃ k
ij again solves the crossing relation (2.12)

(and hence also has the symmetry properties stated in section 2.4).

Applying the shift operation twice produces the structure constants (−1)νiνj Ĉ k
ij . The

extra sign can be absorbed into the normalisation of the fields (e.g. multiply all Ramond

fields by i), so that this reproduces the theory one started from.2

The parity shifted theory may or may not be isomorphic to the unshifted theory. For

example, parity shifting the fermionic Ising model produces an equivalent theory, while

parity shifting the fermionic minimal model FM (3, 8) produces an inequivalent theory, see

sections 5.1 and 6.2.

3 Classifying algebras

In this section we use the bulk structure constants of a fermionic CFT to define several types

of fermionic classifying algebras. These are semisimple super-algebras, graded by parity,

whose direct summands are in 1–1 correspondence to boundary conditions (section 3.1),

defects, or interfaces (section 3.2), depending on the algebra under consideration. In sec-

tion 3.3 we observe that either one of these classifying algebras in a fermionic CFT is

isomorphic to the corresponding algebra in the parity shifted CFT as an ungraded algebra,

but typically not as a super-algebra.

2It is possible to modify (2.20) so that applying the parity shift twice gives back precisely the structure

constants one started from. For example, with γa = e−πi(Sa+φa/2) one can set C̃ k
ij = (−1)νiφj γiγj/γk Ĉ

k
ij =

(−1)(νi+φi)φj eπi(Sk−Si−Sj) Ĉ k
ij = Ĉ k

ji , where in the last step we used (2.15).

– 7 –
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3.1 Bulk-boundary OPE and boundary classifying algebra

3.1.1 Conventions for bulk-boundary OPE and boundary OPE

We now consider the theory on the upper half plane with some conformally invariant

boundary condition α placed on the real line. As for bulk fields, boundary fields will also

serve as starting point for an F -defect. We denote the space of boundary fields by H(α)
F .

It is again Z2-graded by parity,3

H(α)
F = H(α),ev

F ⊕ H(α),odd
F . (3.1)

Our convention for the defect arrangement near an insertion of a boundary field ψ ∈ H(α)
F is:

F

ψ(x)
α

(3.2)

The bulk-boundary structure constants Bφ
ψ are defined as, for a primary bulk field

φ ∈ HF ,

φ(x+ iy) =
∑
ψ

Bφ
ψ (2y)hψ−∆φ ψ(x) + (desc.) , (3.3)

where the sum runs over a basis of primary fields ψ in H(α)
F . In pictures the above relation

looks as follows,

F

φ(x+ iy)
α

∼
∑
ψ

Bφ
ψ (2y)hψ−∆φ

F

ψ(x)
α

. (3.4)

We will also use the OPE of boundary fields, for which our convention is, for x > y,

F

ψ1(x)ψ2(y)α

∼
∑
r

c r
12 (x− y)hr−h1−h2

F

ψr(y)
α

(3.5)

where the sum runs over a basis of primary fields ψr in H(α)
F .

We will only consider boundary conditions for which the bulk-boundary OPE and the

boundary OPE preserve parity.

3.1.2 Bulk-boundary crossing relation

Let g(a, b) stand for the correlator of two bulk fields and one boundary field shown in

figure 3. The crossing relation is obtained by comparing the a → 0 and b → 0 limit.

3If there are holomorphic and antiholomorphic fermions, one can define a monodromy for fermion fields

around boundary (changing) fields. In this sense the space of boundary fields may also split into NS- and

R-sectors. But this split does not have a geometric counterpart in the present setting: we consider a surface

with a single spin structure, and near a boundary point a spin structure is unique up to isomorphism.

– 8 –
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a

b

φj φi

α ψz(L)

Figure 3. Two bulk fields and one boundary field together with their defect lines as used in

computing the crossing constraint linking bulk-boundary couplings and bulk structure constants.

In the correlator g(a, b), the boundary field ψz inserted at L is moved off to ∞.

It turns out that this relation does not involve parity signs or spin structure signs. The

computation is thus standard and we will be very brief. The asymptotic behaviour of

g(a, b) in the two limits is

g(a, b) ∼
a→0

∑
k

Ĉ k
ij B

k
z c

1
zz (2b)hz−∆k · a∆k−∆i−∆j ,

g(a, b) ∼
b→0

∑
x,y

Bi
xB

j
y c

z
xy c

1
zz a

hz−hx−hy · (2b)hx+hy−∆i−∆j . (3.6)

The crossing relation now follows from a computation with five-point Virasoro conformal

blocks similar to those in [16], and the result is

Bi
x B

j
y c

z
xy =

∑
k,r

Ĉ k
ij Bk

z e
iπ
2

(Sk−Si−Sj) e
iπ
2

(hx−hy−hz)

× eiπ(hr−hi)Fkr

[
k̄ j
z i

]
Fk̄,y

[
j ̄
r ı̄

]
Frx

[
i ı̄
z y

]
. (3.7)

If the boundary field ψz has weight zero (but could still be of either parity, see next

subsection), this relation simplifies to

Bi
x B

j
y c

z
xy =

∑
k

(
Ĉ k
ij e

iπ
2

(Si−Sj) Fky
[
j ̄
i ı̄

])
Bk
z , (3.8)

where we used that Bk
z 6= 0 requires hk = hk. If the boundary fields ψx, ψy, ψz all have

weight zero (but could again be of either parity), this relation simplifies further to

Bi
x B

j
y c

z
xy =

∑
k

(
Ĉ k
ij Fk0

[
j j
i i

])
Bk
z . (3.9)

The corresponding relation for bosonic theories was derived in [17].

3.1.3 Boundary classifying algebra: bosonic case

Let us first recall the situation when there are just bosonic (i.e. parity even) fields and

consider the space of weight zero boundary fields which can arise in the bulk-boundary

OPE. Looking at the right hand side of the crossing constraint (3.9), this is symmetric

under i↔ j and as a consequence c z
xy must be symmetric under x↔ y. This means that

– 9 –
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the weight zero boundary fields which arise in the bulk-boundary OPE form a commutative,

associative algebra. If one restricts one’s attention to situations where this algebra is

semisimple, by the Wedderburn theorem it must be equal to a direct sum of copies of

C, each of which can be considered as the identity operator on an elementary boundary

condition.

Due to this observation, it is enough to consider elementary boundary conditions, i.e.

boundary conditions on which there is a single boundary field of weight 0 (the identity

field). The bosonic version of (3.9) reduces to

Bi Bj =
∑
k

(
C k
ij Fk0

[
j j
i i

])
Bk . (3.10)

This equation can be simply seen as a set of equations for the constants Bi, but as shown

in [3, 18] this is also the defining relation for a commutative associative algebra with

generators Bk, the (bosonic) boundary classifying algebra. From this point of view, the

elementary boundary conditions correspond to the one-dimensional representations of this

algebra, or, equivalently, to the number of summands C in the direct sum decomposition

of (3.10).

3.1.4 Boundary classifying algebra: fermionic case

In the fermionic case, we equally take the coefficients Ĉ k
ij Fk0

[
j j
i i

]
in (3.9) as the structure

constants of an algebra with generators Bi,

Bi Bj =
∑
k

(
Ĉ k
ij Fk0

[
j j
i i

])
Bk , (3.11)

where the indices i, j, k now run over all spinless fields of either parity. We denote this

algebra by B̂ and call it the fermionic boundary classifying algebra. In the examples we

consider in sections 5 and 6, this is indeed an associative algebra which is in addition

semisimple. In [2] we will show that (3.11) defines a semisimple associative algebra for

fermionic rational CFTs in general.

While the Ĉij
k are not necessarily symmetric under i ↔ j, we saw in (2.16) that

they are symmetric for all i, j and k which have spin 0 and which can therefore couple to

boundary fields of weight 0. It follows that the algebra B̂ is commutative, BiBj = BjBi.

Since the bulk fields are graded by their parity, we can also view B̂ as a super-algebra

with the parity of the generator Bi being the same as that of the field φi. As the above

commutativity relation does not involve parity signs, B̂ is in general not super-commutative.

Note that B̂ is in fact bi-graded, by parity and by spin, since the bulk structure constants

Ĉij
k preserve both these gradings.

Let us assume that B̂ is semisimple. Since B̂ is commutative (rather than super-

commutative), the super-Wedderburn theorem [19, corollary 2.12] states that the algebra

splits into a sum of copies of C1|0 = C and the Clifford algebra Q(2) ≡ C`1 which is two-

dimensional with one odd generator, a, satisfying a2 = 1. In other words, B̂ is equal to a

sum of m copies of C with generators eα (where α labels the copy) and n copies of C`1
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with even generator fβ and odd generator aβ ,

B̂ =

(
m⊕

Ceα

)
⊕

(
n⊕

(Cfβ ⊕ Caβ)

)
. (3.12)

These generators satisfy the relations

e2
α = eα , f2

β = fβ , fβaβ = aβ , a2
β = fβ , xγyδ = 0 , γ 6= δ . (3.13)

After analysing B̂ in some detail, let us return to the bulk-boundary crossing con-

straint (3.9). Analogous to the bosonic case, we conclude that the weight zero boundary

fields which arise in the bulk-boundary OPE form an associative super-algebra which is

commutative but not necessarily super-commutative, and which is in addition semisimple.4

Again by the super-Wedderburn theorem, this algebra of boundary fields decomposes into

a direct sum of C’s and C`1’s. We will call a boundary condition of the fermionic CFT

elementary if its weight zero boundary fields consist of either exactly C or exactly C`1.

Note that in the standard basis of C and C`1, the boundary structure constants c z
xy in (3.9)

are either 0 or 1.

In the case of C`1 there is a weight zero boundary fermion a which satisfies a2 = 1.

Such weight-zero fermions are well-known and appear in treatments of the boundary Ising

model, for example in [5–8].

We note that as an ungraded algebra, C`1 is isomorphic to C⊕C, but the corresponding

generators would not have a fixed parity. Consequently, it is not possible to split a boundary

condition with weight zero field content C`1 into two more elementary boundaries without

breaking parity-preservation of the bulk-boundary OPE.

We conclude that the indices α in (3.12) label the different elementary boundary con-

ditions: Each pair {fβ , aβ} corresponds to a boundary condition which supports an odd

weight 0 field, while each generator eα corresponds to a boundary condition which does

not. The bulk-boundary structure constants are given by the action of the algebra elements

Bi on the generators,

Bieα = B
(α) i
1 eα , Bifβ = B

(β) i
1 fβ +B(β) i

a aβ , Biaβ = B
(β) i
1 aβ +B(β) i

a fβ . (3.14)

Here, we added the superscripts (α), (β) to distinguish different solutions to (3.9).

Analogous to the bosonic case, there is a relation between elementary boundary con-

ditions and representations of the fermionic boundary classifying algebra. Namely,

{elementary boundary conditions}
∼= {irreducible Z2-graded B̂-modules that are submodules of B̂}
∼= {irreducible Z2-graded B̂-modules up to even or odd isomorphisms} . (3.15)

Both equivalences follow from the description of elementary boundary conditions in terms

of direct summands in (3.12). Note, however, that elementary boundary conditions do not

4Semisimplicity follows from that of B̂. Indeed, the coefficients Bix in (3.9) can be understood as the

coefficients of a homomorphism of super-algebras from B̂ to the algebra of weight zero boundary fields.

Since B̂ is by assumption semisimple, so is its image under a homomorphism.
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correspond to irreducible Z2-graded B̂-modules up to only even isomorphism (this would

count summands C with a factor of two and summands C`1 with a factor of one).5

As can be seen from the structure of the boundary classifying algebra of fermionic

theories, restricting to the bosonic generators and removing the fermionic generators re-

duces each copy of C`1 = C1|1 to just C. In this way we see that the elementary boundary

conditions of a fermionic theory are in 1–1 correspondence with the elementary bound-

ary conditions of its bosonic projection (the related “spin theory”); consideration of the

fermionic generators allows one to see which boundary conditions support a fermionic

weight zero field and are hence “supersymmetric” as we discuss below.

3.2 Bulk-defect OPE and defect classifying algebra

Topological defects in a conformal field theory C have been long known to be equivalent to

a particular class of conformal boundary conditions (a special case of so-called permutation

boundary conditions [20]) on the doubled model C × C, and so can be studied from that

perspective. It can, however, also be useful to consider them in their own right and that is

what we do here.

A topological defect will always have a non-trivial set of defect fields, as it will always

support the full set of bulk fields; in the case of the trivial identity defect this is exactly

the space of defect fields, but in general it will be larger.

It does not add any difficulty to generalise the situation slightly to topological interfaces

with a CFT C above the interface and a CFT C′ below the interface. Below we will

sometimes use the term defect to include both situations, with C and C′ being equal or

different.

The sewing constraint for topological defects is almost identical to the bulk crossing

symmetry constraint (2.12), with the replacement of some bulk structure constants by

bulk-defect structure constants and defect-defect structure constants. We shall here focus

only on weight zero fields on the defect as this is sufficient to derive the defect classifying

algebra. The bulk-defect structure constants in the OPE of two bulk fields φi (above the

defect) and φ′k (below the defect) to a weight zero defect field ϑz will be denoted by Dik
z

and the OPE of weight-zero defect fields will be taken to have structure constants cxy
z:

φi(a+ ib)φ′k(a− ib) = δhi,hkδhi,hk
Dik
z

|b|2∆i
ϑz(a) + . . . ,

ϑxϑy = cxy
zϑz . (3.16)

The result is the defect sewing constraint

Dik
xD

j`
y cxy

z = (−1)(φj+νj)φk
∑
p,q

eπi(Si+S`−Sp) Fp0
[
j `
i k

]
Fp̄0

[
̄ ¯̀

ı̄ k̄

]
Ĉ p
ij Ĉ

′ q
k` D

pq
z . (3.17)

5Nonetheless, we will see in [2] that it is in fact natural to say that each elementary boundary condition

comes in two varieties, which differ by an overall sign in the boundary state (this then counts each elementary

boundary condition with a factor of two).
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As in the boundary case, we can consider the couplings to the weight zero fields as genera-

tors Dik of an algebra D̂ — the fermionic defect classifying algebra — defined in terms of

the constants on the right hand side of (3.17),

DikDj` = (−1)(φj+νj)φk
∑
p,q

eπi(Si+S`−Sp) Fp0
[
j `
i k

]
Fp̄0

[
̄ ¯̀

ı̄ k̄

]
Ĉ p
ij Ĉ

′ q
k` D

pq . (3.18)

Here, the pairs ik, j` and pq have to satisfy the condition that for each pair xy the bulk

fields φx and φ′y have the same left conformal weight and the same right conformal weight.

This implies, for example, that Fp0
[
j `
i k

]
= Fp0

[
j j
i i

]
.

The algebra D̂ is commutative and associative (at least in fermionic rational CFTs [2]).

We take the generators Dij to inherit the parity of the product of fields φiφ
′
j , so that D̂ is

also a super-algebra (not necessarily super-commutative). As in the boundary situation,

we assume that D̂ is semisimple, in which case it decomposes into a direct sum of copies

of C and C`1 which are in 1–1 correspondence with the solutions of the defect sewing

constraints and hence in correspondence with the defect operators (up to an overall sign)

and elementary defect conditions.

In the case C = C′, one generic solution for the Dik
z is provided by the trivial defect.

The only weight zero field on the trivial defect is the identity bulk field 1, and we can set

Dik
1 = Ĉ 1

ik . The bulk-defect crossing relation (3.17) then turns into a special case of the

bulk crossing relation (2.12).

Interfaces between fermionic and bosonic theories can also be treated by the above

classifying algebra by simply choosing one of the two CFTs to be purely even.

In the purely bosonic case, classifying algebras for topological defects were studied

in [4].

As opposed to case of boundary conditions, the number of defects of a fermionic theory

is larger than the number of defects of its bosonic projection since there is a bosonic

generator Dφφ of D for each field φ, whether it is bosonic or fermionic. Each defect of

the bosonic theory can be associated with one or more defects in the fermionic theory (as

it happens, in the examples we have looked at, each bosonic defect is associated to two

defects in the fermionic theory).

3.3 Classifying algebras in the parity shifted theory

When comparing the various classifying algebras between a fermionic theory and its parity-

shifted version, one finds that they are isomorphic as ungraded algebras, and that one can

give an isomorphism by a simple rescaling of the generators.

However, we stress that the fermionic classifying algebras will in general not be iso-

morphic as super-algebras (with Z2-grading given by parity). We will see this explicitly in

the example of FM (3, 8) in section 6.2.

3.3.1 Fermionic boundary classifying algebra

Let us write Bi for the generators in the unshifted theory as in section 3.1.4 and denote the

structure constants of the fermionic boundary classifying algebra by β k
ij , such that (3.11)

becomes BiBj =
∑

k β
k
ij B

k. The bulk structure constants in the parity-shifted theory

– 13 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
5

are given in (2.20). If we denote the generators and structure constants of the classifying

algebra of the parity shifted theory by B̃i and β̃ k
ij , we get

B̃i B̃j =
∑
k

β̃ k
ij B̃

k with β̃ k
ij = (−1)νiφjβ k

ij . (3.19)

In general, the factor (−1)νiφj cannot be absorbed into a rescaling,6 but since certain of

the β k
ij are zero, here this will be possible. Explicitly, we may identify B̃i = λiB

i to get

β̃ k
ij =

λi λj
λk

β k
ij with λx = e

πi
2
φx . (3.20)

The scalar coefficients λ are not unique, and we just exhibit one possible solution. To

verify the above equality, first note that λiλj/λk = (−1)φiφj . One thus needs to check that

(−1)νiφj = (−1)φiφj whenever β k
ij 6= 0. Since all NS-sector generators in the boundary

classifying algebra are parity-even, we only need to consider the case that Bi and Bj are

from the R-sector, and that Bi is even and Bj is odd. But then β k
ij = 0, as Bk would then

need to be odd and in the NS-sector.

3.3.2 Fermionic defect classifying algebra

Let us use the letter “U” for the unshifted theory and “P” for the parity shifted theory.

Here we will give the relation between the defect classifying algebras of types U–U , U–P ,

P–U and P–P , where the first letter refers to the theory in the upper half plane. The

U–U -case is as given in section 3.2 and will be our reference case:

DikDj` =
∑
p,q

β
(UU) pq
ik,j` Dpq , (3.21)

with β
(UU) pq
ik,j` determined by (3.18). A computation similar to the boundary classifying

algebra gives (all parities are stated with respect to the unshifted theory)

β
(UP ) pq
ik,j` = (−1)νk(φj+φ`+ν`)β

(UU) pq
ik,j` =

λik λj`
λpq

β
(UU) pq
ik,j` , λxy = e

πi
2

(φx+φy−2φxφy+νy) ,

β
(PU) pq
ik,j` = (−1)νiφj+ν`φkβ

(UU) pq
ik,j` =

λ′ik λ
′
j`

λ′pq
β

(UU) pq
ik,j` , λ′xy = e

πi
2

(φx+φy−2φxφy) e2πiSy ,

β
(PP ) pq
ik,j` = (−1)ν`φk+νkφ`β

(UU) pq
ik,j` =

λ′′ik λ
′′
j`

λ′′pq
β

(UU) pq
ik,j` , λ′′xy = e2πiSy . (3.22)

To verify these equations one needs to use that for a generator Dxy one always has νx = νy
(but not necessarily φx = φy) as otherwise the bulk-defect OPE does not contain 1 or a.

6The reason for this is that ci,j = (−1)νiφj is a non-exact two-cocycle on Z2 × Z2 as witnessed by the

fact that it is not symmetric in i, j.
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hG
1
2

3
2

5
2

7
2

9
2 . . .

(p, q) (3, 4) (3, 8), (4, 5) (4, 7) (3, 16), (4, 9) (3, 20), (4, 11), (5, 8) . . .

c(p, q) 1
2 −21

4 ,
7
10 −13

14 −161
8 , − 19

6 −279
10 , −

125
22 , −

7
20 . . .

Table 1. Virasoro minimal models admitting a fermionic generator G listed by increasing hG.

4 Fermionic Virasoro minimal models

The examples we shall consider are all Virasoro minimal, i.e. the Hilbert space is formed

from a finite set of Virasoro representations. This might seem odd, as it might be more

natural to start with a super-algebra for which there is naturally a fermionic interpreta-

tion, but as we shall see it provides ample examples, not only infinite series which extend

the bosonic Virasoro minimal models but also the simplest example, a free fermion, as

well as examples with super-Virasoro symmetry and extended (W-algebra type) fermionic

algebras.

In this section we give the bulk structure constants for fermionic A- and D-type minimal

models, in section 5 we treat the free fermion in detail, and in section 6 we give further

Virasoro examples.

Consider the Virasoro algebra at the minimal model central charge c(p, q) = 1− 6(p−
q)2/(pq) with p, q coprime integers greater than 1. We recall that the possible Virasoro

representations are labelled by two integers (r, s) where 1 ≤ r < p and 1 ≤ s < q with the

identification (r, s) ' (p− r, q − s); for more details see [21].

The fermionic generator G we consider has Kac-labels (1, q − 1) ∼ (p − 1, 1) and is

the unique non-trivial simple current at that central charge. Note that for G to indeed be

different from the vacuum representation we actually need p, q > 2. The conformal weight

of G is hG = 1
4(p− 2)(q − 2). The condition that hG ∈ Z + 1

2 amounts to

p = 2n+ 1 , q = 4k , or equivalently p = 4k , q = 2n+ 1 , (4.1)

k, n ≥ 1, in which case hG = 1
2(2n − 1)(2k − 1). The first few values of hG are realised

in the models in table 1. The next value of hG realised in a unitary model is hG = 15
2 at

central charge c(7, 8) = 25
28 .

Recall that the possible different bosonic field theories with this central charge are

labelled by a pair of simply-laced Lie algebras with Coxeter numbers p, q [9]. We will give

two explicit solutions to the fermionic crossing relation (2.12). One is an extension of the

minimal model of type M(Ap−1, Aq−1) which we will call the fermionic Virasoro minimal

model FM (Ap−1, Aq−1) or FM (p, q) for short. The other is an extension of the minimal

model M(Ap−1, Dq/2+1) which we will call FM (Ap−1, Dq/2+1) or F̃M (p, q) for short. By

an extension we mean that the fermionic model contains the full bosonic field theory as

a sub-theory. The two models FM (p, q) and F̃M (p, q) are obtained from each other by

shifting the Ramond sector parity as in section 2.5.
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4.1 A-type fermionic models

Let I be an indexing set for the Kac-table modulo its Z2-identification (r, s) ∼ (p−r, q−s),
and let Ma, a ∈ I be the corresponding irreducible Virasoro representation. In the setting

of [1, section 5], the defect F relevant for A-type fermionic models is the superposition of

the identity defect and a parity shifted version of the topological defect labelled by the

representation G = M(1,q−1). (What we call F here is called A in [1].) The splitting

into NS- and R-sector depends on the sign of the ratio of S-matrices SG,a/SG,0 ∈ {±1},
with +1 being the NS-sector and −1 the R-sector. Explicitly, for a = (r, s) we have

SG,a/SG,0 = (−1)qr+ps+1 so that the set I splits as

INS =
{

(r, s) ∈ I
∣∣ qr + ps odd

}
, IR =

{
(r, s) ∈ I

∣∣ qr + ps even
}
. (4.2)

The state space HF of FM (Ap−1, Aq−1) splits into the four sectors in (2.17) as follows:

HNS,ev
F :=

⊕
a∈INS

Ma ⊗Ma , HR,ev
F :=

⊕
a∈IR

Ma ⊗Ma ,

HNS,odd
F :=

⊕
a∈INS

Ma ⊗MGa , HR,odd
F :=

⊕
a∈IR

Ma ⊗MGa , (4.3)

where Ga is the result of the fusion product of G and a. That is, for a = (r, s) we have

Ga = (r, q − s) ∼ (p − r, s). Note that HNS,odd
F contains a holomorphic field of weight

(hG, 0) and an anti-holomorphic one of weight (0, hG).

We will use the notation φea for the primary field in Hev
F of conformal weights (ha, ha),

and φoa for the primary field in Hodd
F of conformal weights (ha, hGa). This notation is

slightly asymmetric in that φoG is the field of weight (hG, 0) while φo1 is that of weight

(0, hG). Suppose we take q = 4k in (4.1). Then Ga = a if and only if a = (r, q2) = (r, 2k),

so that for Kac labels of this form we have a ∈ IR and fields with conformal weights (ha, ha)

occur with multiplicity two, once as φea ∈ H
R,ev
F and once as φoa ∈ H

R,odd
F .

For the structure constants we use the notation

φαa (x)φβb (y) ∼
∑
c∈I

Ĉ
(αβ) c
ab (x− y)∆c−∆a−∆b φα+β

c , (4.4)

where α, β ∈ {e, o} and α + β stands for the parity of the product. One solution to the

bulk crossing relation (2.12) is given by

Ĉ
(ee) c
ab =

λea λ
e
b

λec
F0 c

[
a b
a b

]
, Ĉ

(oo) c
ab =

λoa λ
o
b

λec
eπi(hGa−ha−hG)FGc

[
a b
Ga Gb

]
,

Ĉ
(oe) c
ab =

λoa λ
e
b

λoc
F0 c

[
a b
a b

]
FaGc

[
Ga b
G c

]
, Ĉ

(eo) c
ab = eπi((hc−hGc)−(hb−hGb)) Ĉ

(oe) c
ba . (4.5)

The λ
e/o
i ∈ C× are normalisation constants which can be chosen at will. The proof that

these constants indeed solve the crossing constraint will be given in [2]. There it will also

be shown that one can find a topological defect F with the required properties.

One standard normalisation is to make a choice of square roots

λea =
(
Ĉ(ee) 1
aa

∣∣
λ=1

)− 1
2
, λoa =

(
Ĉ(oo) 1
aa

∣∣
λ=1

)− 1
2
. (4.6)

With this choice one has Ĉ
(ee) 1
aa = Ĉ

(oo) 1
aa = 1.
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This concludes the definition of the fermionic minimal model FM (Ap−1, Aq−1) =

FM (p, q), where p, q are as in (4.1).

Bosonic subtheory. The bosonic subtheory of FM (p, q) is the restriction to the parity

even subspace of HF . This can alternatively be understood as the result of summing over

spin structures. Explicitly we have

Hev
F =

⊕
a∈I

Ma ⊗Ma , (4.7)

which agrees with the state space of the A-type (bosonic) minimal model M(Ap−1, Aq−1).

Restricting the structure constants to the even subsector and choosing the normalisation

λea = S0a/S00, the solution (4.5) precisely recovers the bulk structure constants for the

A-type models in terms of F -matrices as given in [10],

Cab
c =

S0aS0b

S00S0c
F0c

[
a b
a b

]
. (4.8)

Note that with these conventions, the coupling to the identity field is not normalised to 1.

4.2 D-type fermionic models

We now consider the theory F̃M (p, q) obtained from FM (p, q) by shifting parity in the

Ramond sector as in section 2.5. We will assume that p is odd and q is even, which

according to (4.1) implies that q ∈ 4Z. We will also denote F̃M (p, q) as FM (Ap−1, Dq/2+1)

which will be justified later by the restriction to the bosonic subtheory. The state space

H̃F of F̃M (p, q) splits as

H̃NS,ev
F :=

⊕
a∈INS

Ma ⊗Ma , H̃R,ev
F :=

⊕
a∈IR

Ma ⊗MGa ,

H̃NS,odd
F :=

⊕
a∈INS

Ma ⊗MGa , H̃R,odd
F :=

⊕
a∈IR

Ma ⊗Ma . (4.9)

As opposed to FM(p, q), shifting the antiholomorphic label by G or not no longer corre-

sponds to the field being odd. We therefore label the fields as, for a ∈ I,

φ̃ua : weight (ha, ha) φ̃sa : weight (ha, hGa) (4.10)

where u stands for “unshifted” and s for “shifted” (referring to the shift by G). The spin

grading of φ̃
u/s
a is νa as before, but the parity has changed,

|φ̃ua| = νa , |φ̃sa| = νa + 1 . (4.11)

As in the A-type case, for a = (r, q2) we have a ∈ IR, Ga = a, and both φ̃ua ∈ H̃
R,odd
F and

φ̃sa ∈ H̃
R,ev
F have conformal weights (ha, ha), so that these weights occur with multiplic-

ity two.
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The structure constants of F̃M (p, q) are obtained from (4.5) by the transforma-

tion (2.20):

C̃
(uu) c
ab =

λua λ
u
b

λuc
F0 c

[
a b
a b

]
, C̃

(ss) c
ab =

λsa λ
s
b

λuc
(−1)νa eπi(hGa−ha−hG)FGc

[
a b
Ga Gb

]
,

C̃
(su) c
ab =

λsa λ
u
b

λsc
F0 c

[
a b
a b

]
FaGc

[
Ga b
G c

]
, C̃

(us) c
ab = (−1)νa eπi((hc−hGc)−(hb−hGb)) C̃

(su) c
ba .

(4.12)

Bosonic subtheory. The even subspace of H̃F is

H̃ev
F =

⊕
a∈INS

Ma ⊗Ma ⊕
⊕
a∈IR

Ma ⊗MGa , (4.13)

which is the state space of the D-type minimal model M(Ap−1, Dq/2+1). Note that since

q ∈ 4Z, this model is always of Dodd-type (a permutation modular invariant). When

restricting the structure constants to the even subsector, i.e. to φua, a ∈ INS and φsa,

a ∈ IR, the expression (4.12) reproduces the structure constants of the D-series bosonic

Virasoro minimal model found in [11].

Since the comparison requires a bit of calculation, we give some details. The expression

in [11] is

C
mγ

iα jβ
= exp

(
i
π

2
(hωγ+hωα−hωβ+2(hj−hr)+hm−h̄m−hi+h̄i−hj+h̄j)

)
×

(ω)B ωα
iα

(ω)B
ωβ
jβ

(ω)B
ωγ
mγ

Fµu ωγ
[ µu µu
ωα ωβ

]
Fωβ r

[
ωγ j̄
ωα j

]
Fωαm

[
ī r
i j

]
Frm̄

[
ī j̄
m ωγ

]
.

(4.14)

The notation is as follows. The indices α, β, γ take values in {e, o}. The index ie corresponds

to the field φui and io to φsi . Furthermore, ωe = (1, 1) and ωo = G. For ie we have h̄i = hi
and for io we have h̄i = hGi. The label r is given by r = j if α = e and r = Gj if α=o.

The constants (ω)B ωα
iα

, etc., are certain bulk-boundary structure constants which will be

absorbed into the normalisation coefficients (together with a phase for the G-shifted fields),

λua = (ω)B ωe
ae , λsa = (ω)B ωo

ao ei
π
2

(ha−hGa−hG) . (4.15)

The label µu is the Kac-label (1, q2), which is a fixed point for G. The F -matrix entry

Fµu ωγ
[ µu µu
ωα ωβ

]
is either 0 or 1, depending on whether the Z2 fusion rules in the OPE are

obeyed. This grading rule holds by construction for (4.12), so that this F -matrix coefficient

can be dropped. One can now check sector by sector that the restriction of (4.12) to the

even subsector agrees with (4.14). In sector “su”, i.e. for α = o, β = e, this requires an

F -matrix identity:

F0Gb

[
G b
G b

]
FGc

[
Ga Gb
a b

]
FGbGc

[
Ga b
c G

]
eπi(hG+hb−hGb)

= F0 c

[
a b
a b

]
FaGc

[
Ga b
G c

]
eπi((hG+ha−hGa)−(hG+hc−hGc)) . (4.16)
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spinless even odd

fields NS R R

1 ε σ µ

h = h̄ 0 1
2

1
16

1
16

fields odd & NS

w. spin ψ ψ̄

(h, h̄)
(

1
2 , 0
) (

0, 1
2

)
Table 2. Virasoro primary fields in the fermionic Ising model.

Finally, note that since we restrict to the even subsector, for φua we have νa = 0 while for

φsa we have νa = 1. Accordingly, the factor (−1)νa is equal to 1 in C̃
(su) c
ab and equal to −1

in C̃
(ss) c
ab . In the latter case, the minus sign cancels against e−2πihG .

Finally, let us note that fermionic minimal model FM (p, q) and its parity shifted

cousin F̃M (p, q) are non-isomorphic (as graded theories) whenever the corresponding Dodd-

diagram differs from an A-diagram. Since q ∈ 4Z, this happens for q ≥ 8. On the other

hand, the fermionic Ising model FM (3, 4), which we will treat in detail in the next section,

is isomorphic to F̃M (3, 4).

5 The Ising model and the free fermion

The Ising model is the Virasoro minimal model M(3, 4) and the relevant data is given in

appendix A.1. The fermionic Ising model FM (3, 4) is really the theory of the free fermion

— the field φoε = ψ is a free holomorphic fermion and φo1 = ψ̄ is a free anti-holomorphic

fermion. Altogether, the Virasoro primary fields in the fermionic model are given in table 2.

5.1 Bulk structure constants

The structure constants of the free fermion can be read off from (4.5), but in this simple

model it is easy to compute them directly from the crossing constraint (2.12), and this is

what we will do.

For all fields we set C 1
φφ = 1, which fixes all normalisations up to signs. The structure

constants of the even fields are those of the Ising model and are of course well-known: up

to the symmetry properties (2.14) the only remaining structure constant is

C ε
σσ =

1

2
, (5.1)

which also fixes the sign-freedom in the normalisation of ε. The structure constants involv-

ing even and odd fields in the fermionic model have been considered before and some are

given in [6] and [21, section 12.3.3], but these are only partial results and it is not clear

how the various signs were chosen nor how the full consistency could be checked. Using our

formalism, we state and solve the sewing constraints, and taking the same normalisation

of the primaries as [21] we agree with the partial results stated there.

The odd fields in the fermionic model are ψ, ψ̄ and µ. Setting i = j = ψ, k = l = ψ̄ in

bulk crossing relation (2.12) results in (Ĉ ε
ψψ̄

)2 = −Ĉ 1
ψψ Ĉ

1
ψ̄ψ̄

= −1. We link the remaining
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free signs in the normalisation of ψ and ψ̄ by setting ε = iψψ̄, or, in other words,

Ĉ ε
ψψ̄ = −i . (5.2)

The symmetry properties (2.14) relate any two permutations of the three primaries in a

structure constants. Up to such permutations, the remaining structure constants involving

two odd fields (and no identity field) are

Ĉµµε , Ĉµψσ , Ĉµψ̄σ . (5.3)

To fix their value, we consider the crossing constraint (2.12) for the following four choices

of parameters: a) i = ψ, k = ψ̄, j = ` = σ and q = ε; b) the same with j = ` = µ; c)

i = j = σ, k = l = µ, q = ψ; and finally d) the same with q = ψ̄,

Ĉ ε
ψψ̄ Ĉ

ε
σσ = −eπi/2 Ĉ µ

ψσ Ĉ
µ

ψ̄σ
, (5.4a)

Ĉ ε
ψψ̄ Ĉ

ε
µµ = eπi/2 Ĉ σ

ψµ Ĉ
σ

ψ̄µ , (5.4b)(
Ĉ ψ
σµ

)2
= −e−πi/2

(
Ĉ 1
σσ Ĉ

1
µµ F0ε [ σ σσ σ ]F00 [ σ σσ σ ] + Ĉ ε

σσ Ĉ
ε

µµ Fεε [ σ σσ σ ]Fε0 [ σ σσ σ ]
)
, (5.4c)(

Ĉ ψ̄
σµ

)2
= −eπi/2

(
Ĉ 1
σσ Ĉ

1
µµ F0ε [ σ σσ σ ]F00 [ σ σσ σ ] + Ĉ ε

σσ Ĉ
ε

µµ Fεε [ σ σσ σ ]Fε0 [ σ σσ σ ]
)
. (5.4d)

Using (2.14) we get the following relations between the structure constants appearing in

the above constraints and those listed in (5.3),

Ĉ ε
µµ = Ĉµµε , Ĉ µ

ψσ = Ĉ ψ
σµ = Ĉµψσ , Ĉ σ

ψµ = e−πi/2 Ĉµψσ ,

Ĉ µ

ψ̄σ
= Ĉ ψ̄

σµ = Ĉµψ̄σ , Ĉ σ
ψ̄µ = eπi/2 Ĉµψ̄σ . (5.5)

Then, combining this with (5.4a), (5.4b) and (5.2) shows (in agreement with (5.1))

Ĉ ε
µµ = − Ĉ ε

σσ = −1

2
. (5.6)

Substituting this into (5.4c) and (5.4d) gives
(
Ĉ ψ
σµ

)2
= i

2 and
(
Ĉ ψ̄
σµ

)2
= − i

2 . Condi-

tions (5.4a)–(5.4d) leave an overall sign in the normalisation of ψ and ψ̄ undetermined,

and we choose

Ĉµψσ =
eπi/4√

2
, Ĉµψ̄σ =

e−πi/4√
2

. (5.7)

This agrees with the constants Ĉ µ
ψσ , Ĉ µ

ψ̄σ
, Ĉ σ

ψµ and Ĉ σ
ψ̄µ

given in [6, eq. (4)] and [21,

eq. (12.68)], as well as with (4.5) (the normalisation constants λ
e/o
a are given in ap-

pendix A.1).

Consider for a moment the parity shifted theory F̃M (3, 4). Its structure constants are

related to the ones given above as in (2.20). This turns out to be an equivalent theory, and

a choice of parity-grading preserving isomorphism from F̃M (3, 4) (whose fields we denote

by σ̃, ψ̃, etc.) to FM (3, 4) is

NS-sector: R-sector:

ε̃ 7→ −ε , ψ̃ 7→ ψ , ˜̄ψ 7→ −ψ̄ σ̃ 7→ µ , µ̃ 7→ −i σ . (5.8)

This can be interpreted as the action of an invertible interface and agrees with the solution

to the (ungraded) fermionic defect classifying algebra called “duality2” in table 8 below.
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Bε
1 Bσ

1 Bµ
a

fixed up 1 21/4 0

fixed down 1 −21/4 0

free −1 0 21/4

free −1 0 −21/4

Table 3. Solutions to the bulk-boundary sewing constraints for the fermionic Ising model.

5.2 Boundary classifying algebra and boundary conditions

In the fermionic Ising model case, only the three spinless fields (ε, σ, µ) can couple to a

weight zero field on the boundary and of these, the two even fields (ε, σ) can only couple

to a bosonic field of weight zero while the odd field (µ) can only couple to a fermionic field

of weight zero.

We shall denote a possible fermionic weight zero field by a and normalise its two point

function to 〈aa〉 = 1, so that c 1
aa = 1. As a consequence, we would like to find the sewing

constraints on the following set of bulk-boundary structure constants:

Bε
1 , Bσ

1 , Bµ
a , (5.9)

and we have six sewing constraints of the form (3.9), namely

Bε
1B

ε
1 = Ĉ 1

εε F00 [ ε εε ε ] = 1 ,

Bε
1B

σ
1 = Ĉ σ

εσ Fσ0 [ σ σε ε ]Bσ
1 = Bσ

1 ,

Bε
1B

µ
a = Ĉ µ

εµ Fσ0 [ σ σε ε ]Bµ
1 = −Bµ

a ,

Bσ
1 B

σ
1 = Ĉ 1

σσ F00 [ σ σσ σ ] + Ĉ ε
σσ Fε0 [ σ σσ σ ]Bε

1 =
1√
2

(1 +Bε
1) ,

Bσ
1 B

µ
a = 0 ,

Bµ
a B

µ
a = Ĉ 1

µµ F00 [ σ σσ σ ] + Ĉ ε
µµ Fε0 [ σ σσ σ ]Bε

1 =
1√
2

(1−Bε
1) . (5.10)

These equations have four solutions, given in table 3, but the last two can be identified

by the change of normalisation a → −a, and so there are three inequivalent solutions to

the boundary sewing constraints, two fixed boundary conditions which do not require a

fermionic weight zero field, and one free boundary condition which does require a fermionic

weight zero field.

From (5.10) we can also read off the fermionic boundary classifying algebra B̂ in (3.11)

for the free fermion:

BεBε = 1 , Bσ Bσ =
1√
2

(1 +Bε) , BµBµ =
1√
2

(1−Bε) ,

BεBσ = Bσ , BεBµ = −Bµ , Bσ Bµ = 0 . (5.11)

– 21 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
5

This is a super-algebra and the parity of each generator agrees with that of the corre-

sponding bulk field: Bε, Bσ are even and Bµ is odd. Now we can more easily identify

the elementary boundary conditions by expressing B̂ as a direct sum of copies of C and

the Clifford algebra C`1 which correspond directly to the elementary boundary conditions

without overcounting the free boundary condition (cf. the discussion in section 3.1.4),

B̂ = Ce+ ⊕ Ce− ⊕
(
Cff ⊕ Caf

)
, (5.12)

where the indices +, −, f correspond to fixed up, fixed down and free. Explicitly,

e+ =
1

4
(1 +Bε) + 2−3/4Bσ , e− =

1

4
(1 +Bε)− 2−3/4Bσ ,

ff =
1

2
(1−Bε) , af = 2−1/4Bµ . (5.13)

One can check that these satisfy the algebra (3.13) and from the action of the generators

Bε, Bσ and Bµ, we can read off the representations:

Bε Bσ Bµ

fixed up 1 21/4 0

fixed down 1 −21/4 0

free −1 0 21/4 ·A

(5.14)

where the 2× 2 matrices 1 and A are

1 =

(
1 0

0 1

)
, A =

(
0 1

1 0

)
. (5.15)

It is easy to see that the matrix representation of the free boundary condition is reducible

and (by diagonalising A) splits into exactly the two solution in table 3 but this does not

respect the even-odd nature of the generators and leads to the over-counting of the free

boundary condition in table 3; only when ensuring that the representation of B̂ respects

the even-odd grading do we get the correct counting (cf. (3.15) for the precise statement).

5.3 Boundary field content and boundary states

It is also instructive to consider the contribution of non-zero weight boundary fields as this

will determine the full boundary field content of each boundary condition as well as give

the gluing conditions for the fermion fields on the boundaries.

5.3.1 Boundary field content

Given the bulk field content in the fermionic Ising model, one only has to consider h = 1
2

boundary fields as no other couplings are possible.

The first result is that there must always exist a fermionic weight 1
2 field, which we

denote µB and which could be identified with the boundary disorder field. The reason is

that the bulk fermionic fields can only couple to a weight 1
2 field on the boundary. If we
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Bε
1 Bσ

1 Bσ
σB

Bµ
a Bµ

µB
Bψ
µB

Bψ̄
µB

Bε
1 1

Bσ
1 Bσ

1
1√
2
(1 +Bε

1)

Bσ
σB

−Bσ
σB

0 1
2
√

2
(1−Bε

1)

Bµ
a −Bµ

a 0 1
2(Bψ̄

µB
−Bψ

µB
) 1√

2
(1−Bε

1)

Bµ
µB

Bµ
µB

1
2(Bψ

µB
+Bψ̄

µB
) 0 0 1

2
√

2
(1 +Bε

1)

Bψ
µB

Bψ̄
µB

√
2Bµ

µB
− 1√

2
Bµ
a −

√
2Bσ

σB
1√
2
Bσ

1 1

Bψ̄
µB

Bψ
µB

√
2Bµ

µB
1√
2
Bµ
a

√
2Bσ

σB
1√
2
Bσ

1 Bε
1 1

Table 4. The sewing constraints from (3.7), rewritten in the from Bαa B
β
b =

∑
γ,c Cαa,βb

γcBγc and

stated explicitly as a multiplication table; the sewing constraints for the standard Ising model are

in the top left 3× 3 sub-table.

denote the bulk-boundary coupling of ψ as Bψ
µB

and if the boundary field two point function

normalisation is cµBµB
1, then the sewing constraint (3.7) requires (Bψ

µB
)2 cµBµB

1 = 1 and

hence we see that not only must such a field exist but that the bulk fermions must couple

to it. We shall not consider the possibility of two distinct boundary fermions but instead

suppose that both bulk fields ψ and ψ̄ couple to the same boundary field.

The next question is whether there is also an even (bosonic) weight 1
2 boundary field

σB (which could be identified with the boundary spin). If there is such a field then its OPE

with µB must necessarily be to an odd weight 0 field and conversely the OPE of an odd

weight zero field with µB must be an even weight 1
2 field σB. If we normalise a2 = cσBσB

1 =

cµBµB
1 = 1 then the OPE algebra is forced by the boundary sewing constraints to have

the form

aσB = λµB , aµB = (1/λ)σB , σBa = (1/λ)µB , µBa = λσB , (5.16)

where λ4 = 1. The values λ = ±1 turn out to be inconsistent with the bulk-boundary

sewing constraints and λ = ±i are equivalent under a field redefinition, hence we make

the choice λ = i from here on. With this boundary field algebra and the seven structure

constants

Bε
1 , Bσ

1 , Bµ
a , Bσ

σB
, Bµ

µB
, Bψ

µB
, Bψ̄

µB
, (5.17)

there are 28 sewing constraints coming from (3.7). These amount to 28 multiplication rules

for the structure constants, which are given in table 4.

Viewed as equations, the sewing constraints have 8 solutions, four fixed with Bε
1 = 1

and four free with Bε
1 = −1. The eight solutions are given in table 5. In the four fixed
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Bε
1 Bσ

1 Bσ
σB

Bµ
a Bµ

µB
Bψ
µB

Bψ̄
µB

fixed up 1 21/4 0 0 2−1/4 1 1

fixed up 1 21/4 0 0 −2−1/4 −1 −1

fixed down 1 −21/4 0 0 −2−1/4 1 1

fixed down 1 −21/4 0 0 2−1/4 −1 −1

free −1 0 2−1/4 21/4 0 −1 1

free −1 0 2−1/4 −21/4 0 1 −1

free −1 0 −2−1/4 21/4 0 1 −1

free −1 0 −2−1/4 −21/4 0 −1 1

Table 5. The eight solutions to the full sewing constraints with λ = i; the three solutions to the

sewing constraints for the standard Ising model are given by the first three columns of the table.

Bε
1 Bσ

1 Bσ
σB

Bµ
a Bµ

µB
Bψ
µB

Bψ̄
µB

fixed up 1 21/4 · 1 0 0 2−1/4 ·A A A

fixed down 1 −21/4 · 1 0 0 2−1/4 ·A −A −A

free −1 0 2−1/4 · 1 21/4 ·A 0 −A A

free −1 0 −2−1/4 · 1 21/4 ·A 0 A −A

Table 6. Representations of the boundary classifying super-algebra of the fermionic Ising model.

solutions, there are no couplings to the fields a and σB and so these fields can be consistently

excluded from the set of boundary fields, as expected.

Only three of the eight solutions are physically distinct. Namely, for each of the sign

choices ζ, ξ ∈ {±1} we can redefine the boundary fields as a 7→ ζ a, σB → ξ σB, µB → ζξ µB.

This agrees with the three physically distinct solutions found in table 3.

What is perhaps surprising is that the full set of sewing constraints in table 4 also

defines a commutative algebra [with identity] with generators {1, Bε
1, B

σ
1 , B

µ
a , Bσ

σB
, Bµ

µB
,

Bψ
µB
, Bψ̄

µB
}, with the boundary classifying algebra as a sub-algebra, and the solutions in

table 5 are the eight one-dimensional representations of this algebra.

As with the classifying algebra, this commutative algebra can also be viewed as a super-

algebra with even generators {1, Bε
1, B

σ
1 , B

σ
σB
}, and odd generators {Bµ

a , B
µ
µB
, Bψ

µB
, Bψ̄

µB
},

and the eight one-dimensional representations in table 5 combine into four representations

of this super-algebra on C1|1, of which the final two are again related by σB → −σB, µB →
−µB and so are equivalent physically; these are given in table 6.

This table also shows that the fermions have opposite gluing conditions on fixed and

free boundary conditions. On the free boundary condition with Bε = −1, the bulk fermions

obey ψ = −ψ̄ on the boundary; on the fixed boundary conditions they obey ψ = ψ̄.
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5.3.2 Boundary states

Since we are working with theories on a fixed spin structure, each boundary condition b

will be associated to two boundary states, one state |b〉NS entirely in the NS sector and

one state |b〉R entirely in the R sector. In our approach, correlators are overall even linear

forms, so that a one-point correlator on a disc is an even linear map HF → C. This implies

that boundary states are purely even.

The bulk-boundary couplings to the identity field (cf. table 3) determine the overlap

of the boundary states with each primary bulk field, normalised by the overlap with the

vacuum. Namely, for primary bulk fields φi in the NS sector and φj in the R sector we have

NS〈b|φi〉
NS〈b|0〉

= Bi
1 ,

R〈b|φj〉
NS〈b|0〉

= Bj
1 . (5.18)

This fixes the expansion of |b〉NS,R in terms of Virasoro-Ishibashi states |1〉〉, |σ〉〉, |ε〉〉 up to

the overall constant 〈0|b〉NS .

To determine 〈0|b〉NS (up to a sign) we will make use of the fact that we know the

boundary field content for each boundary condition:

fixed : 1, µB , free : 1, a, µB, σB . (5.19)

This means that the NS boundary states have to satisfy

NS〈fixed| qL0+L̄0−1/24 |fixed〉NS = χ0(q̃) + χ1/2(q̃) ,

NS〈free| qL0+L̄0−1/24 |free〉NS = 2χ0(q̃) + 2χ1/2(q̃) , (5.20)

where as usual q = exp(2πiτ), q̃ = exp(−2πi/τ) and χh are the characters of the Virasoro

highest weight representations of weight h.

Putting all this together, we arrive at (up to an overall undetermined sign for each

boundary condition)

|fixed+〉NS = |0〉〉+ |ε〉〉 , |fixed+〉R = 21/4|σ〉〉 ,

|fixed−〉NS = |0〉〉+ |ε〉〉 , |fixed−〉R = −21/4|σ〉〉 ,
|free〉NS =

√
2 (|0〉〉 − |ε〉〉) , |free〉R = 0 . (5.21)

The overlaps between the R-sector boundary states must give the supertrace over the field

contents, and the above states correctly give these supertraces,

R〈fixed| qL0+L̄0−1/24 |fixed〉R = χ0(q̃)− χ1/2(q̃) ,

R〈free| qL0+L̄0−1/24 |free〉R = 0 . (5.22)

As briefly mentioned in the end of section 3.1.4, one can think of boundary states as

coming in pairs which differ by an overall sign; the three boundary states presented above

are then characterised by the condition 〈0|b〉NS > 0.

Note that the NS components in (5.21) agree with the conjectures in [12] for the

NS-sector of the boundary states, although that paper does not correctly account for the

fermionic fields in this model nor the Ramond sectors.
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Dεε
1 Dσσ

1 Dµµ
1 Dσµ

a Dµσ
a Dψψ

1 Dψ̄ψ̄
1

Dεε
1 1

Dσσ
1 Dσσ

1
1
2(1+Dεε

1)

Dµµ
1 Dµµ

1
1
2(Dψψ

1 +Dψ̄ψ̄
1 ) 1

2(1+Dεε
1 )

Dσµ
a −Dσµ

a 0 0 1
2(−1+Dεε

1 )

Dµσ
a −Dµσ

a 0 0 − i
2(Dψψ

1 −D
ψ̄ψ̄
1 ) 1

2(1−Dεε
1 )

Dψψ
1 Dψ̄ψ̄

1 Dµµ
1 Dσσ

1 −iDµσ
a iDσµ

a 1

Dψ̄ψ̄
1 Dψψ

1 Dµµ
1 Dσσ

1 iDµσ
a −iDσµ

a Dεε
1 1

Table 7. The defect classifying algebra for the fermionic Ising model.

Boundary states in the NS-sector of free fermions are also considered in [22], and the

boundary states for a single Majorana fermion given in appendix D there agree with the

NS-component in (5.21) up to normalisation.

Finally, we note that our boundary states are related to the boundary states for the

purely bosonic Ising model by taking a superposition of the NS- and R-sector boundary

states,

|a〉Ising =
1√
2

(
|a〉NS + |a〉R

)
. (5.23)

5.4 Defect classifying algebra and defect operators

5.4.1 Classifying algebra and defect conditions

We consider now the defect classifying algebra of the standard Ising model and the fermionic

version, assuming that there is a single bosonic field of weight zero (denoted 1) on the defect

and at most one fermionic defect field of weight zero denoted a which satisfies a2 = 1.

The bulk-defect structure constants for the non-identity bulk fields in the Ising case are

{Dεε
1, D

σσ
1 }, and for the fermionic case they are {Dεε

1, D
σσ
1 , D

µµ
1 , D

σµ
a , D

µσ
a , D

ψψ
1 , D

ψ̄ψ̄
1 }. The

sewing constraints are given by the multiplication table 7.

Viewed as equations, there are eight solutions to the defect sewing constraints, given

in table 8.

We can view the bulk-defect structure constants as algebra generators of a super-

algebra D̂, the fermionic defect classifying algebra, with odd generators {Dσµ
a , D

µσ
a } and

the rest being even. As an ungraded algebra D̂ is commutative, and the solutions in table 8

are its eight one-dimensional representations. When viewed as representations of the super-

algebra, the first four are one-dimensional representations on C1|0 while the second four

combine to form two two-dimensional representations on C1|1. Accordingly, D̂ decomposes

into four copies of C (with generators eα) and two copies of C`1 (with generators {fα, aα})
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Dεε
1 Dσσ

1 Dµµ
1 Dψψ

1 Dψ̄ψ̄
1 Dσµ

a Dµσ
a

identity 1 1 1 1 1 0 0

identity′ 1 1 −1 −1 −1 0 0

spin reversal 1 −1 −1 1 1 0 0

spin reversal′ 1 −1 1 −1 −1 0 0

duality1 −1 0 0 1 −1 i −1

duality2 −1 0 0 1 −1 −i 1

duality3 −1 0 0 −1 1 −i −1

duality4 −1 0 0 −1 1 i 1

Table 8. Solutions for the bulk-defect structure constants in the fermionic Ising model.

satisfying the same algebra (3.13). The explicit forms are:

eid =
1

8
(1 +Dεε

1 + 2Dµµ
1 + 2Dσσ

1 +Dψ̄ψ̄
1 +Dψψ

1 ) ,

eid′ =
1

8
(1 +Dεε

1 − 2Dµµ
1 + 2Dσσ

1 −D
ψ̄ψ̄
1 −Dψψ

1 ) ,

es =
1

8
(1 +Dεε

1 − 2Dµµ
1 − 2Dσσ

1 +Dψ̄ψ̄
1 +Dψψ

1 ) ,

es′ =
1

8
(1 +Dεε

1 + 2Dµµ
1 − 2Dσσ

1 −D
ψ̄ψ̄
1 −Dψψ

1 ) ,

fd12 =
1

4
(1−Dεε

1 −D
ψ̄ψ̄
1 +Dψψ

1 ) , ad12 =
1

2
(Dµσ

a + iDσµ
a ) ,

fd34 =
1

4
(1−Dεε

1 +Dψ̄ψ̄
1 −Dψψ

1 ) , ad34 =
1

2
(Dµσ

a − iDσµ
a ) . (5.24)

5.4.2 Defect field content and defect operators

Topological defects can also be described by operators on the Hilbert space of the theory

which commute with the Virasoro algebra, and hence are sums of intertwiners between

equivalent Virasoro representations. The bulk-defect structure constants are proportional

to the coefficients of these intertwiners and hence the defect operator is defined, up to

an overall scalar multiple, by the bulk-defect structure constants. This overall multiple

can itself be fixed (up to a sign) by the requirement that it correctly determines the field

content on the defect, and in particular that it correctly determines the dimension of the

space of zero-weight fields on the defect.

We illustrate this in the case of the bosonic and fermionic Ising defects. The bosonic

Hilbert space is

HIsing = (M0 ⊗M0)⊕ (Mε ⊗M ε)⊕ (Mσ ⊗Mσ) , (5.25)
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where Ma denotes the corresponding irreducible Virasoro representation. This means a

topological defect operator takes the form

D̂ = αP00 + βPεε + γPσσ . (5.26)

The constants Dij
1 are given by

Dij
1 =

〈j| D̂ |i〉
〈0| D̂ |0〉

, (5.27)

and hence the defect is fixed up to a scalar,

D̂ = λ(P00 +Dεε
1 Pεε +Dσσ

1 Pσσ) , (5.28)

The field content on the defect is then given by the modular transform of the trace on the

cylinder,

Z(q, q̄) = Tr
(
qL0+L̄0−c/12D ·D†

)
= λ2

(
|χ0(q)|2 + (Dεε

1 )2|χ1/2(q)|2 + (Dσσ
1 )2|χ1/16(q)|2

)
.

(5.29)

The upshot is that λ = ±1 for the identity and spin defects and ±
√

2 for the duality defect,

cf. [23, 24].

The same ideas can be applied to the defects in the fermionic model, with the ob-

servation that the defects come in two versions, depending on the spin structure, so that

there are separate defect operators acting on the Neveu-Schwarz and Ramond sectors of

the Hilbert space. In the fermionic model the Hilbert space is

HF = HNS
F +HRF , (5.30)

HNS
F = (M0 +M1/2)⊗ (M0 +M1/2) , HRF = M1/16 ⊗M1/16

∣∣
σ
⊕ M1/16 ⊗M1/16

∣∣
µ
.

(5.31)

The defect operators in the two sectors are then given by the bulk-defect structure constants

up to an overall constant

D̂NS = λ
(
P0 +Dψψ

1 Pψ +Dψ̄ψ̄
1 Pψ̄ +Dεε

1 Pε

)
, D̂R = λ (Dσσ

1 Pσ +Dµµ
1 Pµ) . (5.32)

The main difference is that the space of weight zero fields on the defects can now be either

one or two, depending on whether the defect supports the fermionic weight zero field a

or not.

When we perform the calculations we find that D̂NS are in fact identical with the

defect operators proposed in [12]. We give the explicit forms in table 9.

We note that the defects of the bosonic Ising model are given by the combinations

DIsing
id =

1

2

(
Did +Did′

)
, DIsing

spin =
1

2

(
Ds +Ds′

)
, DIsing

duality =
1

2

(
Dd12 +Dd34

)
. (5.33)
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NS R

id P0 + Pψ + Pψ̄ + Pε Pσ + Pµ

id′ P0 − Pψ − Pψ̄ + Pε Pσ − Pµ

s P0 + Pψ + Pψ̄ + Pε −Pσ − Pµ

s′ P0 − Pψ − Pψ̄ + Pε −Pσ + Pµ

d12
√

2
(
P0 + Pψ − Pψ̄ − Pε

)
0

d34
√

2
(
P0 − Pψ + Pψ̄ − Pε

)
0

Table 9. Explicit forms of the defect operators in the fermionic Ising model.

Dεε
1 Dσσ

1 Dσµ
a

Dεε
1 1

Dσσ
1 Dσσ

1
1
2(1 +Dεε

1 )

Dσµ
a −Dσµ

a 0 1
2(−1 +Dεε

1 )

Table 10. Interface sewing constraints for an interface between the standard and fermionic Ising

models.

5.5 Interfaces between Ising and fermionic Ising

As an example, consider interfaces between the bosonic Ising model and the fermionic

version. Let us assume that the Ising model is in the upper half plane and the fermionic

model in the lower half plane. This means that the possible bulk-defect structure constants

are Dij
x where i takes values in {ε, σ}, j takes values in {ε, σ, µ} and x ∈ {1, a}.

The interface sewing constraints are exactly the appropriate subset of the fermionic

defect sewing constraints in table 7, as given in table 10. There are four solutions to the

sewing constraints, which constitute the four one-dimensional representations of the com-

mutative interface classifying algebra and which also form two one-dimensional represen-

tations on C1|0 and one two-dimensional representation on C1|1 of the interface classifying

super-algebra, as in table 11.

6 Further Virasoro examples

In this section we will consider a few examples of fermionic minimal models by increasing

weight of the generator G as listed in table 1. The smallest value is hG = 1/2 in the single

model FM (4, 3) = F̃M (4, 3) which is the free fermion and was already treated in section 5.

The next value is hG = 3/2, so that the fermionic theory has super-Virasoro symmetry.

There are two such examples, FM (4, 5) which is the fermionic tri-critical Ising model

(section 6.1) and the non-unitary models FM (3, 8)/F̃M (3, 8) (section 6.2).
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Dεε Dσσ Dσµ

1 1 0

1 −1 0

−1 0 A

Table 11. Solutions to the interface sewing constraints for an interface between the standard and

fermionic Ising models.

The N = 1 superconformal minimal model values of c are c(p, q) = 15/2−3p/q−3q/p,

parametrised by two integers p, q with p−q even and p, q ≥ 2 [25, 26]; we shall denote them

generically by SM(p, q). The possible modular invariant partition functions for the unitary

models |p− q| = 2 have been classified in [27] but, as noted there, modular invariance does

not fix the partition function uniquely and it is determined only up to a constant which is

fixed by the parities of the states with h = c/24.

The final value we consider in any detail is hG = 5/2 in FM (4, 7) in section 6.3. This

final case was first noted in [28] and a longer list is given in [29] where chiral algebras

which extend the Virasoro algebra by a single fermionic field are considered. FM (4, 7) is a

reduction the WB(0, 2) algebra (a.k.a. the fermionic WB2 algebra) at a value of c at which

the spin 4 field decouples.

These examples in fact all fit into two infinite series of fermionic models with a current

of spin (2k− 1)/2, and these are FM (4, 2k+ 1) and FM (3, 4k). For k ≥ 3, these two series

are all special cases of the fermionic W-algebra WB(0, k− 1) (a.k.a. the fermionic WBk−1

algebra first introduced in [30]) in which all but the fermionic W-algebra field decouple.

6.1 Fermionic tri-critical Ising model

The fermionic tri-critical Ising model is the second in the series of fermionic extensions of

the minimal models and some essential data is given in appendix A.2.

6.1.1 Fermionic TCIM boundary classifying algebra

The boundary conditions of the tri-critical Ising model in both bosonic and fermionic

models have been studied before. For the bosonic case see [31], and for the fermionic case

see for example [13, 14]. Here we will study boundary conditions of the fermionic model

via the fermionic classifying algebra.

In the fermionic tri-critical Ising model, there are eight spinless bulk fields which can

hence couple to a weight zero boundary field, as in table 12.

As before, we assume that the only possible weight zero boundary fields are the identity

1 and an odd field a, and so the bulk-boundary couplings fields are

B1
1 ≡ 1 , Bε

1 , B
ε′
1 , B

ε′′
1 , Bσ

1 , B
σ′
1 , Bµ

a , B
µ′
a . (6.1)

The sewing constraints can again be considered as the relations in an 8 dimensional com-

mutative algebra which also has the form of a non-supercommutative super-algebra with

even generators { 1, Bε, Bε′ , Bε′′ , Bσ, Bσ′} and odd generators {Bµ, Bµ′}. It is also a graded
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spinless even odd

fields NS R R

1 ε ε′ ε′′ σ σ′ µ µ′

label (1, 1) (3, 3) (1, 3) (3, 1) (2, 3) (2, 1) (2, 3) (2, 1)

h = h̄ 0 1
10

3
5

3
2

3
80

7
16

3
80

7
16

Table 12. Spinless bulk fields in the fermionic tri-critical Ising model.

φ = 0 φ = 1

φ̃ = 0 B1 ≡ 1, Bε, Bε′ , Bε′′ Bµ, Bµ′

φ̃ = 1 Bσ, Bσ′ —

Table 13. The bi-grading of the generators of the tri-critical Ising model boundary classifying

algebra.

algebra with respect to the spin grading, so it is in fact a bi-graded algebra. The generators

are shown along with their gradings φ and φ̃ = φ+ ν in table 13.

There are 28 sewing constraints for these structure constants which have eight solutions

corresponding to the eight one-dimensional representations of the commutative algebra with

generators (6.1).

When viewed as super-algebra, the boundary classifying algebra decomposes into four

copies of C and two copies of C`1, giving six boundary conditions in all. This means the

eight one-dimensional representations combine to form 4 one-dimensional representations

on C1|0 and two two-dimensional representations on C1|1, as shown in table 14.

The boundary states in the NS and R sectors are given by taking linear combinations

determined by table 14 with an overall normalisation,

|a〉NS = λa(|0〉+Bε
1 |ε〉+Bε′

1 |ε′〉+Bε′′
1 |ε′′〉) , |a〉R = λa(B

σ
1 |σ〉+Bσ′

1 |σ′〉) . (6.2)

The normalisation is fixed (up to a sign) by the requirement that the number of weight-zero

fields is 1 on the boundaries corresponding to one-dimensional representations and 2 on

the boundaries corresponding to two-dimensional representations.

6.1.2 Comparison to [13, 14]

There has been a considerable amount of work on boundary conditions of superconfor-

mal field theories. Here we compare our results with those of Nepomechie in [14] which

discusses boundary states in the tri-critical Ising model M(4, 5) and which of these are

“supersymmetric”. The boundary states discussed in that paper include both NS- and

R-sectors and a boundary condition is said to be supersymmetric if the partition function
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boundary Bε Bε′ Bε′′ Bσ Bσ′ Bµ Bµ′

(1, 1) ≡ (−) 1 1 1 1 1 0 0

(3, 1) ≡ (+) 1 1 1 −1 −1 0 0

(1, 2) ≡ (−0) −α −α 1 α −1 0 0

(1, 3) ≡ (0+) −α −α 1 −α 1 0 0

(2, 1) ≡ (0) −1 1 −1 0 0 δA −βA

(2, 2) ≡ (d) α1 −α1 −1 0 0 −γA βA

Table 14. The boundary conditions of FM (4, 5) at c = 7/10; α = (3−
√

5)/2, β = (2/
√

7)(1 + i),

γ =
√

7(3−
√

5)(1 + i), δ = 2
√

7(1 + i).

on a cylinder is a sum of characters of the super Virasoro algebra, rather than simply a

sum of characters of the Virasoro algebra.

Since the fermionic theory FM (4, 5) we consider includes the generators of the super-

Virasoro algebra, the partition function calculated using the overlaps of the boundary states

in the NS-sector will always be sums of characters of the super-Virasoro algebra. However,

these are not the partition functions discussed in [13] which are instead the average over

the two spin structures, that is the average of the overlaps between the NS-sectors and

the R-sectors. Since the R-sectors will contribute the supertrace over a super-Virasoro

representation, not a trace, any contribution from the R-sector will stop the partition

function being a sum of super-Virasoro characters. Hence we see that “supersymmetric”

boundary conditions in the sense of [14] correspond to boundary conditions with zero R-

sector boundary state, that is boundary conditions for which the algebra of weight zero

boundary fields is C`1; if the weight zero boundary fields are simply C then the boundary

condition is “non-supersymmetric”. The latter boundary conditions fall into pairs related

by the spin symmetry and which give “supersymmetric” boundary conditions when taken

as a superposition.

In this sense we find, as in [14], two “supersymmetric” boundary conditions and four

“non-supersymmetric” ones.

6.1.3 Fermionic TCIM defect classifying algebra

The defect classifying algebra of FM (4, 5) has one generator Dij for each pair of fields

φi, φj whose operator product on the defect includes a field of weight zero. There are 6

such pairs where i and j are both even which generate the defect classifying algebra of the

bosonic M(4, 5). There are 6 more pairs for which i and j are both odd, but for which

Dij is again therefore even. Together these generate the 12 dimensional even subalgebra

of D̂. There are further 4 pairs where one of i and j is even and the other odd and these

span the four dimensional odd part of D̂, see table 15. As a vector space, D̂ is equivalent

to C12|4. As a super-algebra, D̂ splits into 8 copies of C and four copies of C`1 giving 12

defects in total, twice as many as the purely bosonic defects of M(4, 5), with the differences

occurring in sectors that are not in M(4, 5).
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Even generators D11
1 ≡ 1, Dεε

1 , D
ε′ε′
1 , Dε′′ε′′

1 , Dσσ
1 , Dσ′σ′

1 , Dµµ
1 , Dµ′µ′

1 , DGG
1 , DḠḠ

1 , Dψψ
1 , Dψ̄ψ̄

1

Odd generators Dσµ
a , Dµσ

a , Dσ′µ′
a , Dµ′σ′

a

Table 15. The generators of the defect classifying algebra of FM(4, 5).

2 3
2

25
32

1
4 − 3

32 −1
4 − 7

32 0

1 0 − 7
32 −1

4 − 3
32

1
4

25
32

3
2

r/s 1 2 3 4 5 6 7

Table 16. The representations of the Virasoro algebra at c = −21/4.

If we restrict i and j to the NS sector alone, the algebra is instead equivalent to C8|0,

i.e. it is purely even and the corresponding eight solutions are formally the same as those

found in [12].

Up to now, the question has been entirely one of calculating the bulk-defect structure

constants. The final step is to fix the normalisation of the defect operators (up to a sign)

to reproduce the correct counting of weight zero fields from the torus expectation value of

the defect operator which is easily done.

6.1.4 Fermionic TCIM interface classifying algebra

The only interface we can consider is that between M(4, 5) and FM(4, 5). Since the fields

in M(4, 5) form a subalgebra of the fields in FM(4, 5), the interface classifying algebra

is a subalgebra of the defect classifying algebra of FM(4, 5). From table 15, there are

6 surviving even generators and 2 surviving odd generators. This means the interface

classifying algebra is C6|2 as a super-vector space, splitting into four copies of C and two

copies of C`1 as a graded algebra, giving 6 interfaces in total.

6.2 FM (3, 8)/F̃M (3, 8), the supersymmetric Lee-Yang model

The case of c = −21/4 is the first where there is a half-integer spin simple current al-

lowing the extension of a bosonic Virasoro minimal model to a fermionic model and

there are also two bulk invariants. There is the diagonal model M(A2, A7) and the D-

invariant M(A2, D5).

The representations and their weights are given in table 16. As usual the Kac-table

includes two copies of each representation and in this case we remove the degeneracy by

considering only the representations of type (1, s).

The value c = −21/4 corresponds to SM(2, 8) and has been looked at before, see

e.g. [32–34]. It has been identified as the supersymmetric Lee-Yang model. The issue of

different models at the same central charge does not seem to have been considered in these

works — they assume that the bosonic projection is the diagonal invariant M(3, 8), and

hence in our language identify the superconformal theory as FM (3, 8).
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(r, s) hr,s NS/R M̂r,s

(1, 1) 0 NS M̂1,1 = M1,1 ⊕M1,7

(1, 2) − 7
32 R M̂1,2 = M1,2 ⊕M1,6

(1, 3) −1
4 NS M̂1,3 = M1,3 ⊕M1,5

(1, 4) − 3
32 R M̂1,4 = M1,4

Table 17. The representations of the super-Virasoro algebra at c = −21/4.

A invariant

even, NS even, R odd, NS odd, R

φe(1,a) φe(1,a) φo(1,a) φo(1,a)

(1,1) (1,1) (1,2) (1,2) (1,1) (1,7) (1,2) (1,6)

(1,3) (1,3) (1,4) (1,4) (1,7) (1,1) (1,4) (1,4)

(1,5) (1,5) (1,6) (1,6) (1,3) (1,5) (1,6) (1,2)

(1,7) (1,7) (1,5) (1,3)

D invariant

even, NS even, R odd, NS odd, R

φu(1,a) φs(1,a) φs(1,a) φu(1,a)

(1,1) (1,1) (1,2) (1,6) (1,1) (1,7) (1,2) (1,2)

(1,3) (1,3) (1,4) (1,4) (1,7) (1,1) (1,4) (1,4)

(1,5) (1,5) (1,6) (1,2) (1,3) (1,5) (1,6) (1,6)

(1,7) (1,7) (1,5) (1,3)

Table 18. The field content of the A and D invariants of M3,8 (even part of the table) and their

fermionic extensions (even and odd part). The fermionic extensions differ only in their Ramond

sector parity. Listed are the parity and spin grade, the notation of the primary bulk field used in

section 4, and the Kac-label of the left/right representation of that field.

At c = −21/4, there are 4 relevant representations of the super-Virasoro algebra with

labels (r, s), shown in table 17. Since the Virasoro algebra is a subalgebra, each represen-

tation M̂r,s of SVir decomposes into a sum of one or more representations Mr,s of Vir and

this information is included in this table along with their sector.

As there are two different invariants of the Virasoro algebra, there are two different

fermionic extensions. These are related by parity shift in the Ramond sector and are the

fermionic models FM (3, 8) and F̃M (3, 8) from section 4. Their field content is given in

table 18.

The representation content in the even and odd Ramond sector of FM (3, 8) and

F̃M (3, 8) now differs, and so these models cannot be graded-isomorphic. From the point

of view of the super-Virasoro algebra, the parity of the Ramond sector ground state has

changed between these two models, cf. table 17, where the R-ground state has label (1, 2).

The structure of the boundary classifying algebras also differs in the two models.

According to the general theory in section 3.3, there are equal numbers of bulk-boundary

structure constants in the two models, but the parities are different. In FM (3, 8), where

the Ramond ground state is even, there are 7 even and 1 odd generators. This leads to a

classifying algebra which is C7|1 as a super-vector space and which decomposes into 6 copies
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φ = 0 φ = 1

φ̃ = 0 B(1,1),e, B(1,3),e, B(1,5),e, B(1,7),e B(1,4),o

φ̃ = 1 B(1,2),e, B(1,4),e, B(1,6),e —

Table 19. The bi-grading of the generators of the boundary classifying algebras of FM (3, 8) (parity

φ) and F̃M (3, 8) (parity φ̃), with the identification B(1,a),u = B(1,a),e, B(1,4),s = iB(1,4),o, cf. (3.20).

of C and 1 copy of C`1 giving seven fundamental boundary conditions. From the point

of view of the superconformal algebra, this means there is 1 “supersymmetric” boundary

condition in the sense of [13] and 6 “non-supersymmetric” ones.

In F̃M (3, 8), where the Ramond ground state is odd, there are 5 even and 3 odd

generators, leading to a classifying algebra which is C5|3 as a super-vector space and which

decomposes into 2 copies of C and 3 copies of C`1 giving five fundamental boundary

conditions, 3 of which are “supersymmetric” and 2 are not.

As expected, the boundary conditions of FM (3, 8) are in 1–1 correspondence with the

7 boundary conditions of M(A2, A7), and those of F̃M (3, 8) are in 1–1 correspondence with

the 5 boundary conditions of M(A2, D5) (see [35] for the boundary conditions of minimal

models).

The two boundary classifying algebras can be made identical [as ungraded algebras]

by a suitable rescaling of the fields in F̃M (3, 8) (or equivalently of the generators of the

algebra). The generators and their gradings are shown in table 19 together with the

rescaling of the generators that makes the algebras identical.

There are now three different fermionic defect classifying algebras, classifying the de-

fects in FM (3, 8), defects in F̃M (3, 8) and interfaces between FM (3, 8) and F̃M (3, 8).

Again, according to the general theory in section 3.3, these can be made equal as ungraded

algebras by a simple rescaling of the generators by phases, but they are not all equivalent

as graded algebras. The two defect classifying algebras have the same gradings, but the

interface algebra has a different grading. These are shown in table 20. The two defect clas-

sifying algebras are C14|2 as vector spaces, decomposing into 12 copies of C and two copies

of C`1 as graded algebras, giving 14 defects in each of these two theories. The interface

algebra is C10|6 as a vector space and 4 copies C and 6 copies of C`1 as an algebra giving

10 interfaces between the two theories. When we descend to the bosonic A and D theories,

the defects/interfaces in the fermionic theories are identified in pairs (as in subsection 6.1.3,

the pairs only differ in sectors that are not in the bosonic theories) and give 7 defects in the

each of the A and D theories and 5 interfaces between the A and D theories, in agreement

with the computation in terms of traces of products of bulk modular invariant matrices,

see [24] and [36, remark 5.19].

6.3 The FM (4, 7) = WB(0, 2)5,7 example

Finally, the only fermionic minimal model to have a weight 5/2 current is FM (4, 7) with

central charge c = −13/14. This turns out to be a restriction of the “fermionic” W-

algebra WB(0, 2). This algebra, also known as the “fermionic” WB2 algebra, extends

– 35 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
5

φ = 0 φ = 1

φ̃ = 0
D[(1,1),e][(1,1),e], D[(1,3),e][(1,3),e], D[(1,5),e][(1,5),e], D[(1,7),e][(1,7),e], D[(1,4),e][(1,4),o],

D[(1,1),o][(1,1),o], D[(1,3),o][(1,3),o], D[(1,5),o][(1,5),o], D[(1,7),o][(1,7),o] D[(1,4),o][(1,4),e]

φ̃ = 1
D[(1,2),e][(1,2),e], D[(1,4),e][(1,4),e], D[(1,6),e][(1,6),e],

—
D[(1,2),o][(1,2),o], D[(1,4),o][(1,4),o], D[(1,6),o][(1,6),o]

Table 20. The bi-grading of the generators of the defect and interface classifying algebras of

FM (3, 8) and F̃M (3, 8). The parity of a given generator in either of the two defect algebras is

called φ, and in the interface algebra it is called φ̃, with the identifications used in (3.22).

the Virasoro algebra by primary fields of weights 4 and 5/2. Its structure constants were

worked out explicitly in [37] and it can be seen that the field of weight 4 decouples from

the algebra at this value of c. The minimal model of this algebra has 6 representations

labelled by [rs; r′s′] where r, s, r′, s′ ≥ 1, 2r + s ≤ 3 and 2r′ + s′ ≤ 5. Three of these

are irreducible as Virasoro algebra representations and in the Ramond sector and give the

three R sector representations of FM (4, 7); three are reducible, splitting each into two

Virasoro algebra representations and these together are the six NS sector representations

of FM (4, 7). The rest of the analysis is straightforward — there are 9 boundary conditions

of FM (4, 7) of which three are invariant under the W-algebra automorphism W → −W
and three are related in pairs. This is exactly as in the fermionic TCIM, where there are

two “supersymmetric” boundary conditions and two pairs which are related by G→ −G.

7 Conclusions

We have defined fermionic conformal field theories and their classifying algebras, defined

fermionic extensions of the Virasoro minimal models, found explicit expressions for all the

bulk structure constants (of both Neveu-Schwarz and Ramond fields) of these models, and

have given numerous examples in these cases.

We have found that it is natural for certain boundary conditions and defects to support

a weight zero fermionic field which has up to now been introduced in an ad hoc manner.

We have also found that there is a natural parity-shift operation which can relate

different theories. On the one hand, this relates bosonic theories as the projections of

parity-shifted fermionic theories, and on the other hand this means that there are hitherto

unconsidered fermionic theories to be looked at.

There are quite a few questions that are unresolved and which suggest new lines of

enquiry.

Firstly, we showed that the full set of bulk-boundary structure constants in the Ising

model defined an algebra, not just the couplings to boundary fields of weight zero. This

seems to merit further investigation, even in the purely bosonic case.
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Secondly, we showed that the fermionic extensions of the A- and D- invariant min-

imal models are related by a parity-shift operation. This leads one to wonder if one

can define extensions in other cases in which the extended algebra would be bosonic,

such as the A- and D- invariants of M(5, 6), namely the tetra-critical Ising model and

the 3-state Potts model respectively. It would also be interesting to investigate possible

fermionic extensions of the exceptional invariants; one of these, M(A4, E6), is a product

theory M(A1, A4) ×M(A2, A3) = M(2, 5) ×M(3, 4) [38], with the obvious proposal that

FM(A4, E6) = M(2, 5)× FM(3, 4). It would be good to have a general understanding of

these models.

It would also be good to give the structure constants for the field theories on the

boundaries, defects and interfaces that we have found which would be a necessary first

step to discuss their perturbations and the resulting renormalisation group flows.

In [39], the moduli space of c = 1 CFTs with fermions was investigated (see figure 2

there), it would be interesting to look at this problem from our perspective.

Finally, one consequence of our construction relating FM(p, q) to F̃M (p, q) is that when

these are also superconformal field theories, their partition functions differ in the sign of the

“bottom component” of the super-partition function, that is ZRR = TRR( (−1)F ) which is

the trace of (−1)F on the highest weight space of the Ramond fields [40]. This cannot be

determined on the grounds of modular invariance. We have found that in our construction,

ZRR = +1 for FM (3, 8) and ZRR = −1 for F̃M (3, 8) which are hence two inequivalent

superconformal field theories at c = −21/4. It is a curious fact that this implies that in

this model the Virasoro characters satisfy χ1,2 = χ1,6 + 1, as is easily checked from the

character formulae in [21]. The value ZRR = 0 for the TCIM was already observed in [40].

This leaves open now the question of investigating the superconformal models in which

this parity-shift relates two inequivalent field theories, and how this might affect previous

results on boundary conditions, boundary perturbations, etc.
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A Data for the Ising and tri-critical Ising models

A.1 Ising data

We list here the data for the Ising model that is used in section 5. The representations

(1, 1), (1, 2), (1, 3) with conformal weights 0, 1
16 and 1

2 are denoted 1, σ and ε.
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The bulk field content is as follows, giving both the conventional name from the free-

fermionic extension of the Ising model and the names following the conventions of sec-

tion 4.1:

Even (r, s);h

(r̄, s̄); h̄ (1, 1); 0 (1, 2); 1
16 (1, 3); 1

2

(1, 1); 0 1 ≡ φe1 — —

(1, 2); 1
16 — σ ≡ φeσ —

(1, 3); 1
2 — — ε ≡ φeε

Odd (r, s);h

(r̄, s̄); h̄ (1, 1); 0 (1, 2); 1
16 (1, 3); 1

2

(1, 1); 0 — — ψ ≡ φoε
(1, 2); 1

16 — µ ≡ φoσ —

(1, 3); 1
2 ψ̄ ≡ φo1 — —

(A.1)

The values for the normalisation constants chosen in (4.5) to get the structure constants

in section 5.1 are

λe1 = 1 , λeε = 1 , λeσ = 21/4 , λo1 = 1 , λoε = i , λoσ = eπi/4 2−1/4 . (A.2)

The F-matrix entries we need are:

F00 [ σ σσ σ ] =
1√
2

F0ε [ σ σσ σ ] =
1

2
√

2
Fε0 [ σ σσ σ ] =

√
2 Fεε [ σ σσ σ ] =

−1√
2

F0σ [ σ εσ ε ] =
1

2
Fσ0 [ ε εσ σ ] = 2 Fσσ [ ε σσ ε ] = −1 F00 [ ε εε ε ] = 1 . (A.3)

In the discussion of boundary states and defects we make use of the modular transforma-

tions of Virasoro characters, with q = exp(2πiτ) and q̃ = exp(−2πi/τ),

χ0(q̃) =
1

2
χ0(q) +

1√
2
χσ(q) +

1

2
χε(q) ,

χσ(q̃) =
1√
2
χ0(q)− 1√

2
χε(q) ,

χε(q̃) =
1

2
χ0(q)− 1√

2
χσ(q) +

1

2
χε(q) . (A.4)

A.2 Tri-critical Ising data

The tri-critical Ising model is the Virasoro minimal model M(4, 5). The bulk model is

described in [41] and the conformal boundary conditions in [31].

In table 21 we list the even and odd sectors in the same manner as for the Ising model,

using mostly the naming conventions of [41] and [42] ([43] use t instead of ε′). The even

sector is the field content of the bosonic tri-critical Ising model. Note that the field G is

conventionally normalised to 〈G|G〉 = 3c/2 = 21/20 (as opposed to our 〈G|G〉 = 1) and so

we only have G ∝ φo1. Likewise, ε′′ ∝ iGḠ.

As pointed out in [43], the tri-critical Ising model is related to the first non-trivial

unitary superconformal minimal model SM (3, 5) which is the associated fermionic model.

There are four unitary highest weight representations M̂r,s of the superconformal algebra

at c = 7/10. These each decompose as a finite sum of Virasoro representations Mr,s as

shown in table 22.
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Even (r, s);h

(r̄, s̄); h̄ (1, 1); 0 (3, 1); 3
2 (2, 1); 7

16 (2, 3); 3
80 (1, 3); 3

5 (3, 3); 1
10

(1, 1); 0 1 ≡ φe1 — — — — —

(3, 1); 3
2 — ε′′ ≡ φeε′′ — — — —

(2, 1); 7
16 — — σ′ ≡ φeσ′ — — —

(2, 3); 3
80 — — — σ ≡ φeσ — —

(1, 3); 3
5 — — — — ε′ ≡ φeε′ —

(3, 3); 1
10 — — — — — ε ≡ φeε

Odd (r, s);h

(r̄, s̄); h̄ (1, 1); 0 (3, 1); 3
2 (2, 1); 7

16 (2, 3); 3
80 (1, 3); 3

5 (3, 3); 1
10

(1, 1); 0 — G ∝ φoε′′ — — — —

(3, 1); 3
2 Ḡ ∝ φo1 — — — —

(2, 1); 7
16 — — µ′ ≡ φoσ′ — — —

(2, 3); 3
80 — — — µ ≡ φoσ — —

(1, 3); 3
5 — — — — — ψ̄ ≡ φoε

(3, 3); 1
10 — — — — ψ ≡ φoε′ —

Table 21. The odd and even sectors of the bulk tri-critical Ising model.

(r, s) hr,s NS/R M̂r,s

(1, 1) 0 NS M̂1,1 = M1,1 ⊕M3,1

(1, 2) 7
16 R M̂1,2 = M1,2

(1, 3) 1
10 NS M̂1,3 = M1,3 ⊕M3,3

(1, 4) 3
80 R M̂1,4 = M1,4

Table 22. The representations of the super-Virasoro algebra at c = 7/10.

– 39 –



J
H
E
P
0
6
(
2
0
2
0
)
0
2
5

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Novak and I. Runkel, Spin from defects in two-dimensional quantum field theory,

arXiv:1506.07547 [INSPIRE].

[2] I. Runkel, L. Szegedy and G.M.T. Watts, in preparation.

[3] J. Fuchs and C. Schweigert, A Classifying algebra for boundary conditions, Phys. Lett. B 414

(1997) 251 [hep-th/9708141] [INSPIRE].

[4] J. Fuchs, C. Schweigert and C. Stigner, The Classifying algebra for defects, Nucl. Phys. B

843 (2011) 673 [arXiv:1007.0401] [INSPIRE].

[5] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in

two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841

[Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].

[6] R. Chatterjee and A.B. Zamolodchikov, Local magnetization in critical Ising model with

boundary magnetic field, Mod. Phys. Lett. A 9 (1994) 2227 [hep-th/9311165] [INSPIRE].
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