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1 Introduction and summary

1.1 Motivation

We continue exploring transport phenomena induced by chiral anomaly in a chiral

plasma with both left- and right-handed U(1) (electrically) charged fermions. The mi-

croscopic theory is defined holographically: U(1)V ×U(1)A Maxwell-Chern-Simons theory

in Schwarzschild-AdS5 [1, 2] to be introduced in section 2. Transport phenomena for this

theory have already been extensively studied by us [3–6], and by other authors [1, 2, 7]. Here

we primarily focus on some new results related to strong external e/m fields ( ~E and ~B).

Realistic plasmas such as quark-gluon plasma produced in heavy ion collisions or pri-

mordial plasma in the early universe are exposed to strong external e/m fields. Further-

more, the dynamics of these plasmas is governed by magneto-hydrodynamics (MHD) which

generates the fields dynamically, frequently resulting in even stronger fields [8–13]. Chiral

anomaly is known to modify the MHD equations, turning them into chiral MHD. An es-

sential ingredient of any hydrodynamics is constitutive relations describing plasma medium
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effects. The constitutive relations for the vector current Jµ and axial current Jµ5 are of

the form

~J = ~J [ρ, ρ5, T, ~E, ~B]; ~J5 = ~J5 [ρ, ρ5, T, ~E, ~B], (1.1)

where ρ, ρ5 are vector and axial charge densities, and T is temperature. The dynamics of

the plasma is governed by the “conservation laws” (continuity equations)

∂µJ
µ = 0, ∂µJ

µ
5 = 12κ~E · ~B. (1.2)

Note that as a result of the chiral anomaly, the global U(1)A current is no longer conserved.

κ is the chiral anomaly coefficient (κ = eNc/(24π2) for SU(Nc) gauge theory with a massless

Dirac fermion in the fundamental representation and e is the electric charge).

The constitutive relations (1.1) should be derived from the underlying microscopic

theory. Yet, it is almost never feasible, even approximately. A great deal of modelling

is inevitably employed in practice, frequently based on (truncated) gradient expansion

and/or weak field approximations. Both approximations, and especially the latter one, can

be inadequate. This can happen in an experimental setup, say, in chiral materials such as

Weyl semimetals, in which e/m fields ~E and ~B can be controlled externally. Alternatively,

plasma instabilities could generate strong fields dynamically and thus drive the system

outside the applicability range of the constitutive relations. In all such cases the constitutive

relations must be revised. The necessity to properly define chiral MHD in presence of strong

external e/m fields motivates our study.

In the hydrodynamic limit, the gradient expansion at each order is fixed by thermo-

dynamics and symmetries, up to a finite number of transport coefficients (TCs). Diffusion

constant, DC conductivity and shear viscosity are the most familiar examples of the low-

est order TCs. However, “naive” truncation of the gradient expansion explicitly breaks

relativistic invariance and thus leads to serious conceptual problems such as causality vio-

lation. Beyond conceptual issues, truncation of the gradient expansion results in numerical

instabilities rendering the entire framework unreliable. Causality is restored when all order

gradient terms are included, in a way providing a UV completion to the “old” hydro-

dynamic effective theory. The resummation generalises the concept of TC to transport

coefficient functions (TCFs), which are functionals of ∂t and ~∇2 (or equivalently functions

of frequency ω and three-momentum squared ~q 2 in Fourier space). Therefore, TCFs con-

tain information about infinitely many gradients and they extend the applicability of the

effective theory beyond hydrodynamic limit of small frequency and momenta. When in-

verse Fourier transformed, the TCFs correspond to memory functions [14, 15]. Below, an

effective theory based on TCFs will be referred to as the all order resummed hydrodynam-

ics [14, 16–20].

The goal of the present work is to explore the generic structure of the currents (1.1),

beyond the weak field limit explored by us in [3–6]. Our study will be split into two

complementary directions. In the first one, we compute various TCs as functions of constant

e/m fields, denoted as ~E, ~B, up to first order in the gradient expansion. In the second part,

we consider gradient resummation in the presence of a constant external magnetic field
~B only.
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1.2 Summary of the results: part I

First we consider the constitutive relations (1.1) at fixed order in the gradient expansion

~J =

∞∑
n=0

λn ~J [n], ~J5 =

∞∑
n=0

λn ~J
[n]

5 , (1.3)

where λ is introduced via the replacement ∂µ → λ∂µ, and it counts the order in the gradient

expansion.

Zeroth order (n = 0). The most general constitutive relations are

~J [0] = σ0
e
~E + σ0

χκρ5
~B + δσ0

χκ
2(~E · ~B)~B + σ0

χHκ
2ρ~B× ~E + σ0

χeκ
3ρ5(~B · ~E)~E, (1.4)

~J
[0]

5 = σ0
χκρ

~B + σ0
χHκ

2ρ5
~B× ~E + σ0

χeκ
3ρ(~B · ~E)~E + σ0

sκ
3(~E · ~B)~B× ~E. (1.5)

Here one recognises some familiar terms. In the vector current: the Ohmic conductivity

( ~J ∼ ~E), the chiral magnetic effect (CME) ( ~J ∼ ρ5
~B) [21–23], the chiral Hall effect

( ~J ∼ ~B × ~E) [24]. In the axial current one notices the chiral separation effect (CSE)

( ~J5 ∼ ρ~B) [25, 26] and the chiral electric separation effect (CESE) ( ~J5 ∼ ρ~E) [27].

Apart of the last term in ~J
[0]

5 , which predicts separation of chiral charge along the

Poynting vector ~S = ~E × ~B, all the terms in (1.4), (1.5) have already appeared in the

literature, particularly in our previous publications [3, 5]. The main novelty of the present

work is that we consider all the TCs in (1.4), (1.5) as scalar functions of external e/m fields

σ0
e = σ0

e [E
2, B2, (~B · ~E)2]; σ0

χ = σ0
χ[E2, B2, (~B · ~E)2]; etc, (1.6)

without assuming any weak field approximation, in contrast to what has been done in

the past.

One might prefer an alternative representation of (1.4), (1.5) reflecting apparent

anisotropy induced by the external fields.

J
[0]
i = σ0

e

(
δij −

BiBj

B2

)
Ej + σ0L

e

BiBj

B2
Ej + σ0

χκρ5

(
δij −

EiEj

E2

)
Bj

+ σ0L
χ κρ5

EiEj

E2
Bj + σ0

χHκ
2ρ(~B× ~E)i, (1.7)

J
[0]

5i = σ0
χκρ

(
δij −

EiEj

E2

)
Bj + σ0L

χ κρ
EiEj

E2
Bj + σ0

χHκ
2ρ5(~B× ~E)i

+ σ0
sκ

3(~E · ~B)(~B× ~E)i, (1.8)

with the longitudinal Ohmic and CME conductivities

σ0L
e = σ0

e + κ2B2δσ0
χ, σ0L

χ = σ0
χ + κ2E2σ0

χe. (1.9)

The constitutive relations (1.4), (1.5) are in a sense “off-shell” since the charge densities

ρ and ρ5 are treated as independent of the three-currents ~J and ~J5. Imposing the continuity

equations (1.2), the constitutive relations (1.1) are put “on-shell”. To the leading order in

spatial momentum, (1.4), (1.5) result in a dispersion relation for the chiral plasma,

ω = ±σ0
χκ~q · ~B± σ0

χeκ
3(~B · ~E)~q · ~E + σ0

χHκ
2~q · (~B× ~E) +O(q2). (1.10)
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There are three types of gapless modes propagating in the chiral plasma: the chiral mag-

netic wave (CMW)1 [30], the chiral electric wave (CEW) [24] and the chiral Hall density

wave (CHDW) [5, 6]. The external field dependent TCs σ0
χ, σ0

χe, σ
0
χH reflect speeds of

these modes. Note that, in contrast to CMW and CEW both propagating in two opposite

directions, CHDW is directed along the Poynting vector only.

Our goal is to compute the dependence of the TCs above on the external fields. The

only analytic result that has already been known in the literature is for σ0
χ[~E = 0] [4, 31, 32]

vχ ≡ κBσ0
χ =

Γ
[(

3−
√

1− 144κ2B2
)
/4
]

Γ
[(

3 +
√

1− 144κ2B2
)
/4
]

3κBΓ
[(

1−
√

1− 144κ2B2
)
/4
]

Γ
[(

1 +
√

1− 144κ2B2
)
/4
] , (1.11)

where Γ[x] is the Gamma function and all the units are rescaled by the temperature,

πT = 1. Small and large field limits are

σ0
χ → 6 + 216(1− 2 log 2)κ2B2 +O(B4), as κB→ 0,

σ0
χ →

1

κB
as κB→∞. (1.12)

Thus, in the strong magnetic field limit, the speed of CMW vχ goes to that of light [30].

While we were not able to obtain any new analytical insights, all the TCs in (1.4), (1.5)

were computed numerically and the results are presented in section 3.1. Here we quote

some asymptotic behaviours for large-κB and large-κE

δσ0
χ[κB→∞, κE = 0]→ 3.349

(κB)3/2
, σ0

χH [κB→∞, κE = 0]→ − 1

(κB)2
,

σ0
χe[κB→∞, κE = 0]→ 0.977

(κB)3
, σ0

s [κB→∞, κE = 0]→ − 6.751

(κB)2
, (1.13)

δσ0
χ[κB = 0, κE→∞]→ − 2.243

(κE)3/2
, σ0

χH [κB = 0, κE→∞]→ − 1

(κE)2
,

σ0
χe[κB = 0, κE→∞]→ 6.04

(κE)2
, σ0

s [κB = 0, κE→∞]→ − 3.069

(κE)5/2
. (1.14)

At large κE, σ0
χ[κB = 0] decays much faster than any other TCs, and asymptotically does

not scale as a power function of κE. σ0
e has certain asymptotic behaviour at large values

of e/m fields only when κE = κB

σ0
e [κB = κE→∞] ' 1 + 3.09(κE · κB)0.27. (1.15)

First order (n = 1). We consider the cases of either E = 0 or B = 0 separately:

E = 0 : ~J [1] = −D0
~∇ρ+ τχ̄κ∂tρ5

~B +D0
Bκ

2(~B · ~∇ρ)~B, (1.16)

~J
[1]

5 = −D0
~∇ρ5 + τχ̄κ∂tρ~B +D0

Bκ
2(~B · ~∇ρ5)~B. (1.17)

B = 0 : ~J [1] = −D0
~∇ρ+ σ0

aχHκ
~E× ~∇ρ5 +D0

Eκ
2(~E · ~∇ρ)~E, (1.18)

~J
[1]

5 = −D0
~∇ρ5 + σ0

aχHκ
~E× ~∇ρ+D0

Eκ
2(~E · ~∇ρ5)~E. (1.19)

1Recently, it was claimed that [28, 29] if the external e/m fields are promoted into dynamical, the CMW

turns into a damped diffusive mode.
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In [4, 5], the diffusion constant D0 was shown to receive negative (perturbatively small)

E2- and B2-corrections induced by the chiral anomaly. Now, we are able to study this effect

for arbitrary E and B fields. Particularly, we find that D0 vanishes at asymptotically large

e/m fields, see figures 5 and 6.

The TC τχ̄ is the relaxation time for CME/CSE conductivity σ0
χ, see (1.4), (1.5). The

anomalous chiral Hall conductivity σaχH [5, 33] depends on the external electric field E.

D0
B and DE are new TCs. Both contribute to the longitudinal parts of the diffusion tensor,

see (3.32), (3.44).

The first order TCs give rise to the decay rates of the chiral plasma modes (1.10):

ω = ±σ0
χκ
~B · ~q − iD0q

2 − i(τχ̄σ0
χ −D0

B)κ2(~B · ~q)2 +O(q3), as E = 0. (1.20)

ω = −iD0q
2 + iD0

Eκ
2(~E · ~q)2 +O(q3), as B = 0. (1.21)

When B = 0 there is no propagating mode. At E = 0, CMW is a propagating dissipative

density wave. One may ask the question whether at some external magnetic field this

mode becomes fully non-dissipative (real ω). In our previous publication [6], we were able

to find such a mode in a weak external magnetic field limit and for finite momenta (beyond

n = 1 approximation). It is obviously interesting to explore the effect more rigorously, and

confirm the finding of [6] beyond the weak field approximation. This is one of the subjects

of our second study.

All TCs in (1.16), (1.17), (1.18), (1.19) are computed numerically, see section 3.2

and 3.3. Here, we present their large-κB and large-κE behavior:

D0[κB→∞, κE = 0]→ 0.083

(κB)
, τχ̄[κB→∞, κE = 0]→ − 0.36

(κB)3/2
,

D0
B[κB→∞, κE = 0]→ − 0.269

(κB)5/2
. (1.22)

σ0
aχH [κB = 0, κE→∞]→ − 0.141

(κE)2
, D0

E [κB = 0, κE→∞]→ − 0.298

(κE)2
. (1.23)

Just like σ0
χ[κB = 0], at large-κE, D0[κB = 0] decays much faster than other TCs and

asymptotically does not scale as a power function of κE.

1.3 Summary of the results: part II

In this part, we perform the gradient resummation taking into account inhomogeneity and

time-dependence of the charge densities ρ, ρ5. That is, the constitutive relations will be

constructed to all orders in λ. The resummation technique was developed in [14, 16–20].

To this goal we neglect the terms nonlinear in ρ, ρ5. Consequently, the currents are pa-

rameterised by four TCFs (only the case ~E = 0 will be considered here),

~J = −D~∇ρ+DBκ2~B(~B · ~∇ρ) + σ̄χ̄κ~Bρ5 +Dχκ(~B · ~∇)~∇ρ5, (1.24)

~J5 = −D~∇ρ5 +DBκ2~B(~B · ~∇ρ5) + σ̄χ̄κ~Bρ+Dχκ(~B · ~∇)~∇ρ. (1.25)

The TCFs D[ω, q2], σ̄χ̄[ω, q2] and Dχ[ω, q2] were introduced in [3, 6, 15]. Here they are

promoted into ~B-dependent, D[ω, q2; B2, (~q · ~B)2], etc. DB is a new TCF, and the relevant

– 5 –
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TC appeared in [5] at finite (third) order only. In section 4, these TCFs are calculated

numerically for generic values of frequency/momenta and magnetic field.

Beyond some critical value of κB & 0.5, these TCFs display singular behavior at certain

values of real ω, identified with quasi-normal modes (QNMs). These QNMs become real

at large B [32, 34], and their B dependence is that of a Landau level. These real modes

lead to a phenomenon of anomalous resonance [35].

The resummed constitutive relations (1.24), (1.25) give rise to exact dispersion relations

for the CMW, beyond small frequency/momenta approximations of (1.10), (1.20), (1.21),

ω = ±
(
σ̄χ̄ − q2Dχ

)
κ~B · ~q − i

(
q2D −DB(κ~B · ~q)2

)
. (1.26)

Since the TCFs are complex functions of the frequency/momenta, (1.26) is expected to have

infinitely many solutions, including many gapped modes. In section 4, we will demonstrate

that there are purely real, and thus non-dissipative solutions to (1.26), similar to the ones

discovered by us in [6] based on weak magnetic field analysis.

The rest of this paper is structured as follows. Section 2 presents the holographic

setup. Section 3 introduces calculational details for Part I and displays numerical results

for the TCs mentioned above. Section 4 presents the results for Part II. Section 5 contains

concluding remarks.

2 Holographic setup: U(1)V × U(1)A

The holographic model is a Maxwell-Chern-Simons theory with two U(1) fields in the

Schwarzschild-AdS5. A more detailed presentation of the model could be found in [1–6].

The bulk action is

S =

∫
d5x
√
−gL+ Sc.t., (2.1)

where

L =− 1

4
(F V )MN (F V )MN − 1

4
(F a)MN (F a)MN +

κ εMNPQR

2
√
−g

×
[
3AM (F V )NP (F V )QR +AM (F a)NP (F a)QR

]
,

(2.2)

and the counter-term action Sc.t. is

Sc.t. =
1

4
log r

∫
d4x
√
−γ
[
(F V )µν(F V )µν + (F a)µν(F a)µν

]
. (2.3)

Above, (F V )MN and (F a)MN denote the field strengths for the vector V and axial A gauge

fields in the bulk, respectively. κ is Chern-Simons coupling. The terms proportional to κ

mimic chiral anomaly of the boundary field theory.

In the ingoing Eddington-Finkelstein coordinate, the line element of the metric of

Schwarzschild-AdS5 is

ds2 = gMNdx
MdxN = 2dtdr − r2f(r)dt2 + r2δijdx

idxj , (2.4)

– 6 –
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where the blackening factor is f(r) = 1 − 1/r4. The Hawking temperature, identified as

temperature of the boundary theory, is normalised to πT = 1.

The bulk equations of motion are

EVM ≡ ∇N (F V )NM +
3κεMNPQR

√
−g

(F a)NP (F V )QR = 0, (2.5)

EAM ≡ ∇N (F a)NM +
3κεMNPQR

2
√
−g

[
(F V )NP (F V )QR + (F a)NP (F a)QR

]
= 0, (2.6)

where the radial and boundary components of (2.5), (2.6) correspond to dynamical and

constraint equations, respectively. The boundary currents read

Jµ ≡ lim
r→∞

δS

δVµ
, Jµ5 ≡ lim

r→∞

δS

δAµ
. (2.7)

The radial gauge Vr = Ar = 0 is imposed. The boundary currents (2.7) can be determined

by solving the dynamical equations only, leaving the constraints aside. The dynamical

equations are sufficient to fix all the TCs/TCFs while the constraints translate into the

continuity equations for the boundary theory currents (1.2). We use the following ansatz

for the bulk gauge fields [3, 15],

Vµ(r, xα) = Vµ(xα)− ρ(xα)

2r2
δµt + Vµ(r, xα), Aµ(r, xα) = −ρ5(xα)

2r2
δµt + Aµ(r, xα). (2.8)

Here Vµ is a gauge potential of the external e/m fields ~E and ~B,

Ei = FVit = ∂iVt − ∂tVi, Bi =
1

2
εijkFVjk = εijk∂jVk. (2.9)

Both Vµ and ρ, ρ5 are assumed to be known functions of the boundary coordinates, while

the dynamical equations of motion are solved for Vµ,Aµ as functionals of Vµ and ρ, ρ5.

Boundary conditions are classified into three types. First, Vµ and Aµ are regular over the

domain r ∈ [1,∞). Second, at the boundary r =∞, we require

Vµ → 0, Aµ → 0 as r →∞. (2.10)

Additional integration constants will be fixed by employing the Landau frame convention

for the boundary currents

J t = ρ(xα), J t5 = ρ5(xα). (2.11)

According to the holographic dictionary, the boundary currents are determined in

terms of near boundary (r =∞) pre-asymptotic expansion of the bulk gauge fields:

Jµ = ηµν(2V (2)
ν + 2V L

ν + ησt∂σFVtν), Jµ5 = ηµν2A(2)
ν , (2.12)

where 4V L
µ = ∂νFVµν . V

(2)
µ and A

(2)
µ are the coefficients of r−2 terms in the near boundary

expansion of the bulk vector Vµ and axial Aµ gauge fields, respectively.

Thus, our program boils down to integrating the dynamical bulk equations, from the

horizon to the boundary, for the bulk gauge fields and determining their near boundary

asymptotic behaviour encoded in the coefficients V
(2)
µ and A

(2)
µ . This has to be done for

our specific setup of constant e/m fields corresponding to linear potential V of arbitrary

strength.

– 7 –
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3 Part I: gradient expansion in external e/m fields

In this section we study the non-perturbative ~E-, ~B-dependencies of the TCs introduced

in section 1.2, (up to first order in the gradient expansion). The background fields ~E

and ~B are treated as zeroth order in the gradient expansion, as opposed to our previous

studies [3, 6]. Introducing λ as a gradient expansion parameter (by ∂µ → λ∂µ), the bulk

fields Vµ and Aµ are expandable in powers of λ,

Vµ =
∞∑
n=0

λnV[n]
µ , Aµ =

∞∑
n=0

λnA[n]
µ . (3.1)

Hence the currents ~J and ~J5 are expanded in λ too, see (1.3). In what follows, we compute
~J [0], ~J

[0]
5 , ~J [1] and ~J

[1]
5 .

3.1 Constitutive relations at zeroth order

The dynamical equations for V[0]
t and A[0]

t are

0 = ∂r

(
r3∂rV

[0]
t

)
+ 12κ∂rA

[0]
k Bk =⇒ r3∂rV

[0]
t + 12κA[0]

k Bk = 0, (3.2)

0 = ∂r

(
r3∂rA

[0]
t

)
+ 12κ∂rV

[0]
k Bk =⇒ r3∂rA

[0]
t + 12κV[0]

k Bk = 0, (3.3)

where the Landau frame convention (2.11) has been used to fix one integration constant

in both V[0]
t and A[0]

t . The dynamical equations for the remaining components V[0]
i and

A[0]
i read

0 =(r5 − r)∂2
rV

[0]
i + (3r4 + 1)∂rV

[0]
i − r

2Ei +
12κ

r
Bi

(
ρ5 − 12κV[0]

k Bk

)
+ 12κr2εijk∂rA

[0]
j Ek,

(3.4)

0 = (r5−r)∂2
rA

[0]
i + (3r4+1)∂rA

[0]
i +

12κ

r
Bi

(
ρ− 12κA[0]

k Bk

)
+12κr2εijk∂rV

[0]
j Ek. (3.5)

Solutions for V[0]
i and A[0]

i take the form:

V[0]
i = C

(0)
1 Ei + C

(0)
2 κρ5Bi + C

(0)
3 κ2(~E · ~B)Bi + C

(0)
4 κ2ρ(~B× ~E)i + C

(0)
5 κ3ρ5(~B · ~E)Ei,

(3.6)

A[0]
i = C

(0)
2 κρBi + C

(0)
4 κ2ρ5(~B× ~E)i + C

(0)
5 κ3ρ(~B · ~E)Ei + C

(0)
6 κ3(~B · ~E)(~B× ~E)i, (3.7)

where the decomposition coefficients C
(0)
i (i = 1 − 6) are functions of r only, satisfying a

system of coupled ordinary differential equations (ODEs). These ODEs could be grouped

into two partially decoupled sub-sectors:

{C(0)
1 , C

(0)
3 , C

(0)
6 }:

0 = (r5 − r)∂2
rC

(0)
1 + (3r4 + 1)∂rC

(0)
1 − r2 + 12κ4r2(~E · ~B)2∂rC

(0)
6 , (3.8)

0 = (r5 − r)∂2
rC

(0)
3 + (3r4 + 1)∂rC

(0)
3 − 144

r
(C

(0)
1 + κ2B2C

(0)
3 )− 12r2κ2E2∂rC

(0)
6 , (3.9)

0 = (r5 − r)∂2
rC

(0)
6 + (3r4 + 1)∂rC

(0)
6 + 12r2∂rC

(0)
3 . (3.10)
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{C(0)
2 , C

(0)
4 , C

(0)
5 }:

0 = (r5 − r)∂2
rC

(0)
2 + (3r4 + 1)∂rC

(0)
2 +

12

r
− 144

r

(
κ2B2C

(0)
2 + κ4(~E · ~B)2C

(0)
5

)
− 12r2κ2E2∂rC

(0)
4 , (3.11)

0 = (r5 − r)∂2
rC

(0)
4 + (3r4 + 1)∂rC

(0)
4 + 12r2∂rC

(0)
2 , (3.12)

0 = (r5 − r)∂rC(0)
5 + (3r4 + 1)∂rC

(0)
5 + 12r2∂rC

(0)
4 . (3.13)

When the solutions (3.6), (3.7) are substituted into holographic expression (2.12) for the

currents, one obtains the zeroth order constitutive relations (1.4), (1.5) with the TCs given

by the near boundary expansion of the decomposition coefficients C
(0)
i

σ0
e = 2c

(0)
1 , σ0

χ = 2c
(0)
2 , δσ0

χ = 2c
(0)
3 , σ0

χH = 2c
(0)
4 , σ0

χe = 2c
(0)
5 , σ0

s = 2c
(0)
6 . (3.14)

Here c
(0)
i in (3.14) are the coefficients of 1/r2 behaviour of C

(0)
i near the boundary.

When ~E = 0, C
(0)
2 was found analytically in [4, 31, 32], yielding an analytic expres-

sion (1.11) for σ0
χ. We are able to compute the remaining TCs in (1.4), (1.5) numeri-

cally only.

Prior to demonstrating new results for the field dependent TCs, we quote their values

at vanishing e/m fields (see [5] and the references therein):

σ0
e(E = B = 0) = 1, σ0

χ(E = B = 0) = 6,

δσ0
χ(E = B = 0) = 18(π − 2 log 2), σ0

χH(E = B = 0) = −36 log 2,

σ0
χe(E = B = 0) = 9π2, σ0

s(E = B = 0) = 12

(
3

8
π2 − 18C

)
, (3.15)

where C ≈ 0.915966 is the Catalan’s constant.

In figure 1, 3D plots for all the TCs in (1.4), (1.5) are shown as functions of κE and

κB, first focusing on the case of ~E ‖ ~B. Influence of the relative angle θ between ~E, ~B will

be discussed later (see figure 4). Figure 1a displays κE- and κB-dependence of the Ohmic

conductivity σ0
e . In our previous publications [3–6, 15], due to weak field assumption, the

Ohmic conductivity σ0
e did not depend on external e/m fields at all. Here, we observe

that σ0
e gets enhancement when ~E · ~B 6= 0. While the dependence of Ohmic conductivity

on external electric field was already considered in holography [36–38], to the best of our

knowledge, anomaly-induced corrections to σ0
e found here have not been reported before.

In [36], the nonlinear conductivity emerged from a gravitational back-reaction effect, while

in [37, 38] it emerged from a coupling between the bulk gauge fields and an additional

charged scalar. Overall, the nonlinear conductivities of [36–38] decrease with strengthening

of the electric field, while, as demonstrated in the present work, the anomaly-induced effect

has totally opposite signature.

All the other TCs decrease dramatically with increasing κE, κB, and vanish asymp-

totically. The results are presented normalised with respect to their values at vanishing

κE and κB. The TC δσ0
χ turns negative in a certain region of κE and κB (figure 1c).
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Figure 1. Zeroth order TCs as functions of E and B when ~E ‖ ~B.

Figure 2 helps to extract the asymptotic behaviour of the TCs when either κE or κB is

very large. The TCs are rescaled so that the asymptotic scaling summarised in (1.13), (1.14)

becomes transparent. Figure 3 displays rescaled σ0
e on (κE = κB)-slice of figure 1a.

Finally, in figure 4, we examine the effect of the relative angle θ between ~E and ~B on

the TCs in (1.4), (1.5). In figure 4, the TCs are normalised with respect to their values
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Figure 2. Normalised zeroth order TCs: (a) κE = 0 and (b) κB = 0.
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Figure 4. θ-dependence of the TCs: (a) κB = κE = 0.25 and (b) κB = κE = 0.5.
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when ~E ⊥ ~B, denoted as σ0⊥
e , σ0⊥

χ , δσ0⊥
χ , σ0⊥

χH , σ0⊥
χe and σ0⊥

s . Two values of the e/m fields

are considered: κB = κE = 0.25 (figure 4a) and κB = κE = 0.5 (figure 4b). We observe

that the stronger the fields the more pronounced the dependence of the TCs on cos2 θ. It

is also very clear that while some TCs become weaker others become stronger.

Constitutive relations for ~J and ~J5 at first order are derived in next two subsections 3.2

and 3.3. To simplify the algebra, two cases are explored separately, either ~E = 0 or ~B = 0.

Furthermore, only the terms linear in both ρ and ρ5 are considered. It is important

to stress that smallness of the charge densities is a self-consistent approximation: when
~E · ~B = 0, there is no pumping of the axial charge into the system through the continuity

equation (1.2).

3.2 Constitutive relations at first order — ~B 6= 0, ~E = 0

When ~E = 0, the dynamical equations for V[1]
µ and A[1]

µ are

0 = r3∂2
rV

[1]
t + 3r2∂rV

[1]
t + r∂rC

(0)
2 κ~B · ~∇ρ5 + 12κBk∂rA

[1]
k , (3.16)

0 = r3∂2
rA

[1]
t + 3r2∂rA

[1]
t + r∂rC

(0)
2 κ~B · ~∇ρ+ 12κBk∂rV

[1]
k , (3.17)

0 = (r5 − r)∂2
rV

[1]
i + (3r4 + 1)∂rV

[1]
i + 2r3∂r∂tV

[0]
i − r

3∂r∂iV
[0]
t + r2(∂tV

[0]
i − ∂iV

[0]
t )

− 1

2
∂iρ+ 12r2κBi∂rA

[1]
t , (3.18)

0 = (r5 − r)∂2
rA

[1]
i + (3r4 + 1)∂rA

[1]
i + 2r3∂r∂tA

[0]
i − r

3∂r∂iA
[0]
t + r2(∂tA

[0]
i − ∂iA

[0]
t )

− 1

2
∂iρ5 + 12r2κBi∂rV

[1]
t . (3.19)

The solutions are

V[1]
t = C

(1)
1 κ~B · ~∇ρ5 + C

(1)
2 ∂tρ, V[1]

i = C
(1)
3 ∂iρ+ C

(1)
4 κ∂tρ5Bi + C

(1)
5 κ2(~B · ~∇)ρBi,

(3.20)

A[1]
t = C

(1)
1 κ~B · ~∇ρ+ C

(1)
2 ∂tρ5, A[1]

i = C
(1)
3 ∂iρ5 + C

(1)
4 κ∂tρBi + C

(1)
5 κ2(~B · ~∇)ρ5Bi.

(3.21)

The decomposition coefficients C
(1)
i obey partially decoupled ODEs, which we group into

two decoupled sub-sectors:

{C(1)
1 , C

(1)
3 , C

(1)
5 }

0 = r3∂2
rC

(1)
1 + 3r2∂rC

(1)
1 + r∂rC

(0)
2 + 12(∂rC

(1)
3 + κ2B2∂rC

(1)
5 ), (3.22)

0 = (r5 − r)∂2
rC

(1)
3 + (3r4 + 1)∂rC

(1)
3 − r3∂rF1 − r2F1 −

1

2
, (3.23)

0 = (r5 − r)∂2
rC

(1)
5 + (3r4 + 1)∂rC

(1)
5 + 12r2∂rC

(1)
1 , (3.24)

where F1 parameterises solutions to V
[0]
t , A

[0]
t (see (3.2), (3.3)):

r3∂rF1 + 12κ2B2C
(0)
2 = 0, F1(r →∞) = 0. (3.25)
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Figure 5. Normalised first order TCs as functions of κB when κE = 0.

{C(1)
2 , C

(1)
4 }

0 = r3∂2
rC

(1)
2 + 3r2∂rC

(1)
2 + 12κ2B2∂rC

(1)
4 , (3.26)

0 = (r5 − r)∂2
rC

(1)
4 + (3r4 + 1)∂rC

(1)
4 + 2r3∂rC

(0)
2 + r2C

(0)
2 + 12r2∂rC

(1)
2 . (3.27)

Near the boundary (r = ∞), the asymptotic expansion of the decomposition coeffi-

cients is

C
(1)
i =

c
(1)
i

r2
+O

(
1

r3

)
, i = 1, 2, · · · , 5. (3.28)

Plugging (3.28) into (2.12), the first order constitutive relations (1.16), (1.17) are obtained

with the TCs related to the boundary data as

D0 = −2c
(1)
3 , τχ̄ = 2c

(1)
4 , D0

B = 2c
(1)
5 . (3.29)

Alternatively, (1.16), (1.17) can be re-expressed by collecting terms involving ~∇ρ, ~∇ρ5 into

transverse and longitudinal parts (with respect to ~B):

J
[1]
i = −DT

0

(
δij −

BiBj

B2

)
∂jρ−DL

0

BiBj

B2
∂jρ+ τχ̄κBi∂tρ5, (3.30)

J
[1]
5i = −DT

0

(
δij −

BiBj

B2

)
∂jρ5 −DL

0

BiBj

B2
∂jρ5 + τχ̄κBi∂tρ, (3.31)

where

DT
0 = D0, DL

0 = D0 − κ2B2D0
B. (3.32)

For generic values of κB, we are able to solve the ODEs (3.22)–(3.27) numerically only.

The results are presented in figure 5. The TCs are normalised to their values at vanishing

e/m fields (see [5]) quoted below and also rescaled by their asymptotic behaviour:

D0[B = 0] =
1

2
, τχ̄[B = 0] = −3

2
(π + 2 log 2) , D0

B[B = 0] = −9 (π − 2 log 2) . (3.33)

Obviously, all the TCs in (1.16), (1.17) decrease when κB becomes stronger, and vanish

asymptotically. Large-κB asymptotic behavior for all the TCs in (1.16), (1.17) is sum-

marised in (1.22).
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3.3 Constitutive relations at first order — ~E 6= 0, ~B = 0

The equations for V[1]
t and A[1]

t are homogeneous, so both V[1]
t and A[1]

t vanish. Consequently,

the equations for V[1]
i and A[1]

i are

0 = (r5 − r)∂2
rV

[1]
i + (3r4 + 1)∂rV

[1]
i −

1

2
∂iρ+ 12κr2εijk∂rA

[1]
j Ek − 6κεijk∂rV

[0]
j ∂kρ5,

(3.34)

0 = (r5 − r)∂2
rA

[1]
i + (3r4 + 1)∂rA

[1]
i −

1

2
∂iρ5 + 12κr2εijk∂rV

[1]
j Ek − 6κεijk∂rV

[0]
j ∂kρ.

(3.35)

The solutions are

V[1]
i = C

(1)
6 ∂iρ+ C

(1)
7 κ(~E× ~∇ρ5)i + C

(1)
8 κ2(~E · ~∇ρ)Ei,

A[1]
i = C

(1)
6 ∂iρ5 + C

(1)
7 κ(~E× ~∇ρ)i + C

(1)
8 κ2(~E · ~∇ρ5)Ei,

(3.36)

where the decomposition coefficients satisfy coupled ODEs:

0 = (r5 − r)∂2
rC

(1)
6 + (3r4 + 1)∂rC

(1)
6 − 1

2
+ 12κ2E2r2∂rC

(1)
7 , (3.37)

0 = (r5 − r)∂2
rC

(1)
7 + (3r4 + 1)∂rC

(1)
7 − 12r2∂rC

(1)
6 − 6∂rC

(0)
1 , (3.38)

0 = (r5 − r)∂2
rC

(1)
8 + (3r4 + 1)∂rC

(1)
8 − 12r2∂rC

(1)
7 . (3.39)

Near r =∞, the asymptotic expansion for C
(1)
i is,

C
(1)
i =

c
(1)
i

r2
+O

(
1

r3

)
, i = 6, 7, 8, (3.40)

which via (2.12) helps to derive the first order constitutive relations (1.18), (1.19) with the

TCs given by

D0 = −2c
(1)
6 , σ0

aχH = 2c
(1)
7 , D0

E = 2c
(1)
8 . (3.41)

As done for (1.16), (1.17), we combine the ~∇ρ, ~∇ρ5-terms in (1.18), (1.19) into longi-

tudinal and transverse parts (with respect to ~E),

J
[1]
i = −DT

0

(
δij −

EiEj

E2

)
∂jρ−DL

0

EiEj

E2
∂jρ+ σ0

aχHε
ijkκEj∂kρ5, (3.42)

J
[1]
5i = −DT

0

(
δij −

EiEj

E2

)
∂jρ5 −DL

0

EiEj

E2
∂jρ5 + σ0

aχHε
ijkκEj∂kρ, (3.43)

where

DT
0 = D0, DL

0 = D0 − κ2E2D0
E , (3.44)

For generic value of κE, the ODEs (3.37)–(3.39) are solved numerically and the results

are displayed in figure 6. Analytical results for each TCs when E = B = 0 are quoted for

completeness (see [5]):

σ0
aχH [E = 0] = −3 log 2, D0

E [E = 0] = −3

4
π2. (3.45)

From figure 6, one can read off the large-κE behavior for the TCs in (1.18), (1.19), as

summarised in (1.23). We note that large-κE behavior of D0 does not scale as a power

function and it decays faster.
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Figure 6. The first order TCs as function of κE when B = 0.

4 Part II: gradient resummation in external magnetic field

In this section, we focus on all-order resummation of gradient terms that are linear in both

ρ and ρ5 when ~B is taken as arbitrary in amplitude. External electric field ~E will be turned

off throughout this section. In order to keep the terms linear in the charge densities only,

we introduce a parameter ε,

ρ→ ερ, ρ5 → ερ5, ~B ∼ O(ε0). (4.1)

We solve the dynamical equations up to O(ε1):

Vµ = V(0)
µ + εV(1)

µ + · · · , Aµ = A(0)
µ + εA(1)

µ + · · · . (4.2)

4.1 Derivation of the all-order resummed constitutive relations

Since the hydrodynamic variables ρ, ρ5 are O(ε1), the zeroth order corrections V(0)
µ and A(0)

µ

can depend on ~B only and are independent of the boundary coordinates xα. Therefore, at

O(ε0) the dynamical equations are

0 = r3∂2
rV

(0)
t + 3r2∂rV

(0)
t + 12κBk∂rA

(0)
k , (4.3)

0 = (r5 − r)∂2
rV

(0)
i + (3r4 + 1)∂rV

(0)
i + 12κr2Bi∂rA

(0)
t , (4.4)

0 = r3∂2
rA

(0)
t + 3r2∂rA

(0)
t + 12κBk∂rV

(0)
k , (4.5)

0 = (r5 − r)∂2
rA

(0)
i + (3r4 + 1)∂rA

(0)
i + 12κr2Bi∂rV

(0)
t . (4.6)

The equations (4.3), (4.5) could be integrated over r:

r3∂rV
(0)
t + 12κBkA

(0)
k = 0, r3∂rA

(0)
t + 12κBkV

(0)
k = 0, (4.7)

where the Landau frame convention (2.11) has been used to fix the integration constants.

Hence, the equations (4.4), (4.6) become homogeneous ODEs. Combined with the boundary

conditions specified in section 2, the equations (4.4), (4.6) do not have any nontrivial

solution. Thus, we conclude that

V(0)
µ = A(0)

µ = 0. (4.8)
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At O(ε1), the dynamical equations become

0 = r3∂2
rV

(1)
t + 3r2∂rV

(1)
t + r∂r∂kV

(1)
k + 12κBk∂rA

(1)
k , (4.9)

0 = (r5 − r)∂2
rV

(1)
i + (3r4 + 1)∂rV

(1)
i + 2r3∂r∂tV

(1)
i − r

3∂r∂iV
(1)
t + r2

(
∂tV

(1)
i − ∂iV

(1)
t

)
+ r(∂2V(1)

i − ∂i∂kV
(1)
k )− 1

2
∂iρ+ 12κr2Bi

(
1

r3
ρ5 + ∂rA

(1)
t

)
, (4.10)

0 = r3∂2
rA

(1)
t + 3r2∂rA

(1)
t + r∂r∂kA

(1)
k + 12κBk∂rV

(1)
k , (4.11)

0 = (r5 − r)∂2
rA

(1)
i + (3r4 + 1)∂rA

(1)
i + 2r3∂r∂tA

(1)
i − r

3∂r∂iA
(1)
t + r2

(
∂tA

(1)
i − ∂iA

(1)
t

)
+ r(∂2A(1)

i − ∂i∂kA
(1)
k )− 1

2
∂iρ5 + 12κr2Bi

(
1

r3
ρ+ ∂rV

(1)
t

)
. (4.12)

The corrections V(1)
µ and A(1)

µ are decomposed in terms of basic structures built from the

external magnetic field ~B and the charge densities ρ, ρ5,

V(1)
t = S1ρ+ S2κBk∂kρ5, (4.13)

V(1)
i = V1∂iρ+ V2κ

2BiBk∂kρ+ V3κBiρ5 + V4κBk∂i∂kρ5

+ V5ε
ijkκBj∂kρ+ V6κ

2εijkBjBl∂l∂kρ5, (4.14)

A(1)
t = S̄1ρ5 + S̄2κBk∂kρ, (4.15)

A(1)
i = V̄1∂iρ5 + V̄2κ

2BiBk∂kρ5 + V̄3κBiρ+ V̄4κBk∂i∂kρ

+ V̄5ε
ijkκBj∂kρ5 + V̄6ε

ijkκ2BjBl∂l∂kρ, (4.16)

where, in contrast to our previous publications [3, 6], the decomposition coefficients Si, S̄i,

Vi and V̄i now depend on ~B non-linearly. Particularly, they are scalar functionals of ∂t,
~∇2 and (κ~B · ~∇)2; and functions of r and (κB)2. In Fourier space via (∂t, ~∇)→ (−iω, i~q),
they turn into scalar functions

Si

(
∂t, ~∇2, (κ~B · ~∇)2; r, (κB)2

)
→ Si

(
ω, q2, (κ~B · ~q )2, r, (κB)2

)
, (4.17)

Vi

(
∂t, ~∇2, (κ~B · ~∇)2; r, (κB)2

)
→ Vi

(
ω, q2, (κ~B · ~q )2, r, (κB)2

)
, (4.18)

S̄i

(
∂t, ~∇2, (κ~B · ~∇)2; r, (κB)2

)
→ S̄i

(
ω, q2, (κ~B · ~q )2, r, (κB)2

)
, (4.19)

V̄i

(
∂t, ~∇2, (κ~B · ~∇)2; r, (κB)2

)
→ V̄i

(
ω, q2, (κ~B · ~q )2, r, (κB)2

)
. (4.20)

Accordingly, the PDEs (4.9)–(4.12) give rise to a set of partially decoupled ODEs for the

decomposition coefficients in (4.13)–(4.16), which we collect as
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(i):
{
S1, S̄2, V1, V2, V̄3, V̄4

}
0 = r3∂2

rS1 + 3r2∂rS1 − q2r∂rV1 − (κ~B · ~q )2r∂rV2 + 12(κB)2∂rV̄3 − 12(κ~B · ~q )2∂rV̄4,

(4.21)

0 = r3∂2
r S̄2 + 3r2∂rS̄2 + r∂rV̄3 + 12∂rV1 + 12(κB)2∂rV2 − q2r∂rV̄4, (4.22)

0 = (r5 − r)∂2
rV1 + (3r4 + 1− 2iωr3)∂rV1 − iωr2V1 − r2(S1 + r∂rS1)

+ (κ~B · ~q )2rV2 − 1/2, (4.23)

0 = (r5 − r)∂2
rV2 + (3r4 + 1− 2iωr3)∂rV2 − iωr2V2 − q2rV2 + 12r2∂rS̄2, (4.24)

0 = (r5 − r)∂2
r V̄3 + (3r4 + 1− 2iωr3)∂rV̄3 − iωr2V̄3 − q2rV̄3 + 12r2∂rS1 + 12/r, (4.25)

0 = (r5 − r)∂2
r V̄4 + (3r4 + 1− 2iωr3)∂rV̄4 − iωr2V̄4 − r2(S̄2 + r∂rS̄2)− rV̄3. (4.26)

(ii): {V5}
0 = (r5 − r)∂2

rV5 + (3r4 + 1− 2iωr3)∂rV5 − iωr2V5 − q2rV5. (4.27)

The sub-sector
{
S̄1, S2, V̄1, V̄2, V3, V4

}
satisfies the same equations as the sub-sector

(i):
{
S1, S̄2, V1, V2, V̄3, V̄4

}
. Given that they obey the same boundary conditions, we con-

clude that {
S̄1, S2, V̄1, V̄2, V3, V4

}
=
{
S1, S̄2, V1, V2, V̄3, V̄4

}
. (4.28)

The remaining functions V̄5, V6 and V̄6 satisfy the same ODEs as V5. Note that the ODEs

for V5, V6, V̄5, V̄6 are homogeneous, they do not have any non-trivial solutions due to the

regularity requirement (at r = 1) and the vanishing boundary condition (at r =∞):

V5 = V6 = V̄5 = V̄6 = 0. (4.29)

Indeed, the conclusion V5 = V̄5 = 0 is in perfect agreement with [5, 6], where V5, V̄5 were

found to depend on ρ, ρ5 nonlinearly.

Solving (4.21)–(4.26) near the boundary r =∞ gives rise to the currents’ constitutive

relations (1.24), (1.25) with the TCFs related to the near boundary expansion of Vi’s:

D = −2v1, DB = 2v2, σ̄χ̄ = 2v3, Dχ = 2v4, (4.30)

where vi’s denote the coefficients of 1/r2 in the expansion of Vi’s. In contrast to our previous

publications [3, 6], the TCFs D, DB, σ̄χ̄ and Dχ also depend on the external magnetic field
~B non-perturbatively,

D = D(ω, q2, (κ~B · ~q)2; (κB)2), DB = DB(ω, q2, (κ~B · ~q)2; (κB)2), (4.31)

σ̄χ̄ = σ̄χ̄(ω, q2, (κ~B · ~q)2; (κB)2), Dχ = Dχ(ω, q2, (κ~B · ~q)2; (κB)2). (4.32)

Determination of these TCFs is one of the novel results of the present work. Since the

external magnetic field is constant, the TCFs in (1.24) measure a response of the chiral

medium to inhomogeneity and time-dependence of the charge densities ρ, ρ5.
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Figure 7. Diffusion function D and generalised CME/CSE conductivity σ̄χ̄ as functions of ω and

q2 when κB = 0.25 and α = 0.

4.2 The TCFs

We are not able to solve the ODEs (4.21)–(4.26) analytically and thus resort to numerical

techniques. The results are summarised in several plots below. First, we fix the magnetic

field B and its relative angle α with respect to ~q, and study the ω, q2-dependencies of the

TCFs in (1.24), (1.25). Then, we examine the effects due to the magnetic field B and angle

α variations.

In figures 7 and 8, selecting representative values κB = 0.25 and α = 0, we display

3D plots for all the TCFs in (1.24), (1.25) as functions of ω and q2. All the TCFs exhibit

a similar behavior: relatively weak dependence on the spatial momentum squared q2,

reflecting spatial quasi-locality of relevant transport processes; damped oscillations in the

frequency ω, towards asymptotic region where all the TCFs essentially vanish.

Figure 9 reveals the effect of variation of the angle α between ~B and ~q on the TCFs.

The results are normalised with respect to their values at α = π/2 denoted as D⊥, σ̄⊥χ̄ ,
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Figure 8. TCFs DB and Dχ as functions of ω and q2 when κB = 0.25 and α = 0.
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Figure 9. Normalised TCFs as functions of cos2(α) when κB = 0.5 and ω = q2 = 0.1.

D⊥B , D⊥χ . In figure 9, κB = 0.5 and ω = q2 = 0.1. All the TCFs display a relatively mild

dependence on cos2(α).
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Figure 10. Real and imaginary parts of the TCFs as a function of κB for (a), (b) ω = q2 = 0.1

and (c), (d) ω = q2 = 2.

In figure 10 we show the TCFs as functions of κB while fixing all the rest of the

parameters ω, q2 and α. Since the latter effect is weak, we take α = 0 in the subsequent

discussion. Regarding ω and q2, we make two different choices to implement a comparative

study: ω = q2 = 0.1 versus ω = q2 = 2. In figure 10, the TCFs are normalized with

respect to their values when κB = 0 with the same ω and q2 values (which are obtained

from our numerical results). All the TCFs are found to approach zero at large magnetic

field. When ω, q2 are increased (i.e., with more non-hydrodynamic modes included), the

asymptotic regime is shifted towards larger values of κB.

An interesting new phenomenon emerges at finite κB: when the magnetic field is large

enough, say κB & 0.5, the TCFs develop singularity as functions of ω, at real values of

ω depending on κB (see figure 11 as illustration). Moreover, all the TCFs (both real and

imaginary parts) exhibit singularity at the same value of ω. In figure 11, Re[σ̄χ̄] is taken as

an example demonstrating the phenomenon at q = 0. If one continues to increase κB and

considers larger ω, additional singularities emerge at larger values of ω. The locations of

these singularities ωn are symmetric around the origin. These ωn are presumably the quasi-

normal modes (QNM) in the bulk and here we find that they become real at some values

of magnetic field. Within essentially the same holographic model, similar observation was

made recently in [35].
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Figure 11. Re(σ̄χ̄) as a function of ω when q = 0 and (a) κB = 0.1, (b) κB = 0.4, (c) κB = 0.6,

(d) κB = 0.8,(e) κB = 1.2, (f) κB = 2.2.
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Figure 12. Location of the singularity as a function of κB: numerical result (black dots) is best

fitted by ω = −0.155157 + 6.95306
√
κB (blue curve).

To conclude this part, we present the dependence of the lowest QNM mode on κB, see

figure 12. The numerical results (black dots) are best fitted by:

ω = −0.155157 + 6.95306
√
κB, (4.33)

which is plotted as a continuous (blue) curve in figure 12. The mode with Re(ω) ∝
√
κB

while Im(ω) → 0 is a manifestation of the Landau level behavior [32, 34]. Magnetic field

dependence of the QNMs in a holographic model was first studied in [39, 40] but without

any anomaly effects included.

4.3 Non-dissipative CMW modes

The original CMW is a dissipative wave at small momenta [30]. In [6], we asked the

question if it can happen that, beyond the hydrodynamic limit, the dissipative (imaginary)

part of the CMW vanishes. The answer is within the all order dispersion relation. We
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indeed found that the CMW possesses a discrete spectrum of non-dissipative modes when

the magnetic field is larger than a critical value. Yet, the results of [6] were based on a

“weak” magnetic field approximation. Below we reexamine the very same question, but

now without any approximations involved.

The constitutive relations (1.24), (1.25), combined with the continuity equations (1.2),

result in the exact CMW dispersion relation

ω = ±
(
σ̄χ̄ − q2Dχ

)
κ~B · ~q − i

(
q2D −DB(κ~B · ~q)2

)
, (4.34)

The last term is new compared to [6]. Furthermore, all the TCFs in (4.34) are functions

of the magnetic field.

The procedure for finding a purely real solution was devised in [6]. To this goal, we

first split the dispersion relation (1.26) into real and imaginary parts (assuming ~B ‖ ~q)

φR(ω, q2, κB) ≡ −ω ± Re[(σ̄χ̄ − q2Dχ)κqB] + Im[q2D −DB(κqB)2],

φI(ω, q
2, κB) ≡ ±Im[(σ̄χ̄ − q2Dχ)κqB]− Re[q2D −DB(κqB)2].

(4.35)

Then we search for a real ω solution of two equations φR = 0 and φI = 0.

In figure 13, the functions φR and φI (with upper plus sign in (4.35)) are shown as

contour plots in (ω, q2) space for representative values of the magnetic field: (a) κB = 0.25,

(b) κB = 0.30, (c) κB = 0.33, and (d) κB = 0.5. The dashed (blue) and solid (red) curves

denote φR and φI respectively. The numbers indicated on the curves are the values of these

functions along the curves. Therefore, any crossing point of φR = 0 (bold dashed blue

curve) and φI = 0 (bold solid red curve) implies that both functions vanish simultaneously.

This is the desired solution.

In [6], such a crossing occurred at a “single point” in the (ω, q2) space, for each

κB ≥ 0.33, similarly to the case shown in figure 13a. However, beyond the weak field

approximation, new branches emerge as demonstrated in figures 13b), (13c and 13d: the

contours φR = 0 and φI = 0 coincide within a “continuous interval” in the (ω, q2) space,

starting from a large enough κB. This implies a continuum of non-dissipative CMW modes.

In figure 13d, it seems like the contours φR = 0 and φI = 0 coincide completely, though

the figure is somewhat misleading. Indeed, by zooming in (ω, q2) space, we observe that

the solution exists only on piece-wise intervals in the (ω, q2) space. It is also worth adding

that there are additional solution branches at larger ω, which we do not display here.

Finally, the results above were obtained for non-dissipative CMW propagating along

the magnetic field direction. One can ask the question if similar wave could propagate at

an angle α with respect to the magnetic field, or even orthogonal to it. We briefly report

that changing α from ~q ‖ ~B to ~q ⊥ ~B leads to separation of φR = 0 and φI = 0 contours.

Non-dissipative solutions disappear at a critical value of α = αc[κB] (e.g. αc ' π/6 for

κB = 0.33).
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Figure 13. Contour plots for the functions φR (blue dashed) and φI (red solid) at (a) κB = 0.25,

(b) κB = 0.30, (c) κB = 0.33, (d) κB = 0.5.

5 Concluding remarks

In this work we focused on the influence of strong background e/m fields on the chiral

anomaly-induced transport phenomena for a holographically defined thermal plasma. The

constitutive relations for the vector and axial currents ~J, ~J5 were evaluated within two

complementary approximation schemes: fixed order gradient expansion (up to the first

order) and the all-order gradient resummation (linear in the charge densities ρ, ρ5). A

summary of all the results could be found in the introductory section. The main highlights

of our study are:

• There are three types of gapless modes propagating in the chiral plasma: the chiral

magnetic wave (CMW) [30], the chiral electric wave (CEW) [24] and the chiral Hall

density wave (CHDW) [5, 6], which could be searched experimentally in heavy ion

collisions or, more likely, in condensed matter experiments where the external fields

are under better control.

• While most of the transport coefficients are found to be suppressed by the exter-

nal fields and vanish at asymptotically strong fields, the Ohmic conductivity gets
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enhanced in parallel electrical and magnetic fields, which is an experimentally inter-

esting phenomenon to be searched for.

• Some anomaly-induced transport phenomena display noticeable dependence on the

relative angle between the external fields ~E and ~B. This sensitivity could be used in

real experiments to zoom into one or another anomaly-induced phenomena.

• When ~E = 0, the all-order resummed constitutive relations (1.24), (1.25) are param-

eterised by four independent TCFs, which are functions of ω, ~q and ~B. Intriguingly,

these TCFs are found to show a common singularity at certain value of real ω when

κB is strong enough. Moreover, this singularity is identified as QNM frequency and

obey Landau level behavior (4.33) as a function of κB.

• In [6] we discovered a discrete set of entirely non-dissipative and thus long-lived

CMW modes emerging in a weak magnetic field. Present work examined CMW

exactly without the weak field approximation. We found that, depending on the

magnetic field, the discrete set extends into several continuous intervals in the (ω, q2)

space. This effect should have a clear experimental signature worth exploring.

Real experiments involving chiral plasma, such as the one produced in heavy ion col-

lisions or the primordial plasma in early Universe, involve strong dynamical fields with

non-homogeneous profiles. While the study reported above was limited to constant back-

ground fields, it revealed important new anomaly-induced phenomena and serves as a step

towards development of a self-consistent chiral MHD. Any dynamical simulations of the

latter are beyond the scope of this paper.
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