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1 Introduction

In a time when the dynamics of the strong interaction in hadron-hadron collisions is moving

towards the domain of precision physics, there are still aspects that are under poor theo-

retical and experimental control. One of these aspects is double parton scattering, where

two partons from each proton have a hard interaction in a single proton-proton collision.

Correlations between the two hard interactions have been the subject of several recent

studies [1–8]. The relevance of spin correlations in double parton scattering was pointed

out long ago [9, 10] and recently followed up in [11, 12]. The studies in [13] and [14] have

shown that spin correlations in the production of two vector bosons by double hard scat-

tering have observable effects both on the interaction rate and on kinematic distributions.

Spin correlations between the two partons are quantified by polarized double parton distri-

butions (DPDs), which describe for instance the difference of the probability densities for

finding two quarks with equal or with opposite helicities. It was argued in [12] that such

correlations need not be small, and a recent study in the MIT bag model [15] indeed found

large spin correlations between quarks in the valence region. However, our knowledge of

polarized DPDs is still poor at best, and any information about them is of value.

In the present work, we derive model independent constraints on DPDs that follow

from their interpretation as probability densities for finding two partons in a specified po-

larization state. Similar positivity bounds have been derived for single-parton distributions

in the form of the Soffer bound [16] and of inequalities for transverse-momentum dependent

distributions [17] and generalized parton distributions [18].
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The structure of this paper is as follows. In the next section we set the stage by

introducing the DPDs for different polarizations and parton species. In section 3 we derive

the spin density matrices for two partons inside an unpolarized proton, and in section 4

we use these matrices to derive bounds on polarized DPDs. In section 5 we show that

the homogeneous leading-order evolution equations preserve these bounds when going to

higher scales. We conclude in section 6 and give some technical details in two appendices.

2 Double parton distributions

Double parton distributions for quarks and antiquarks have been extensively studied in [12],

and we only review the properties important for our purpose. Since we will need a prob-

ability interpretation, we restrict ourselves to distributions that are integrated over the

transverse parton momenta and that have a trivial color structure. In the parlance of [12]

these are collinear color-singlet distributions.

Collinear DPDs depend on the longitudinal momentum fractions x1 and x2 of the two

partons and on the transverse distance y between them. For two partons a1 and a2 in an

unpolarized right-moving proton we write

Fa1a2(x1, x2,y) = 2p+(x1p
+)−n1 (x2p

+)−n2

∫

dz−1
2π

dz−2
2π

dy− ei(x1
z−
1
+x

2
z−
2
)p+

× 〈p| Oa2(0, z2)Oa1(y, z1) |p〉 , (2.1)

where ni = 1 if parton number i is a gluon and ni = 0 otherwise. We use light-cone coor-

dinates v± = (v0 ± v3)/
√
2 and the transverse component v = (v1, v2) for any four-vector

v. The operators for quarks read

Oai(y, zi) = q̄i

(

y − 1

2
zi

)

Γai qi

(

y +
1

2
zi

)∣

∣

∣

∣

z+i =y+=0, zi=0

(2.2)

with projections

Γq =
1

2
γ+ , Γ∆q =

1

2
γ+γ5 , Γj

δq =
1

2
iσj+γ5 (j = 1, 2) (2.3)

onto unpolarized quarks (q), longitudinally polarized quarks (∆q) and transversely polar-

ized quarks (δq). The field with argument y + 1
2zi in Oai(y, zi) is associated with a quark

in the amplitude of a double scattering process and the field with argument y − 1
2zi with

a quark in the complex conjugate amplitude. The operators for gluons are

Oai(y, zi) = Πjj′

ai
G+j′

(

y − 1

2
zi

)

G+j

(

y +
1

2
zi

)∣

∣

∣

∣

z+i =y+=0, zi=0

(2.4)

with projections

Πjj′

g = δjj
′

, Πjj′

∆g = iǫjj
′

, [Πkk′

δg ]jj
′

= τ jj
′,kk′ (2.5)

onto unpolarized gluons (g), longitudinally polarized gluons (∆g) and linearly polarized

gluons (δg). The tensor

τ jj
′,kk′ =

1

2

(

δjkδj
′k′ + δjk

′

δj
′k − δjj

′

δkk
′)

(2.6)
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satisfies τ jj
′,kk′τkk

′, ll′ = τ jj
′, ll′ and is symmetric and traceless in each of the index pairs (jj′)

and (kk′). Note that for gluons δg denotes linear polarization, i.e. the interference between

gluons whose helicities differ by two units in the scattering amplitude and its conjugate,

while for quarks δq symbolizes transverse polarization, where the interference is between

quarks with a helicity difference of one unit. Since we limit ourselves to color-singlet distri-

butions, a sum over the color indices of the quark fields in (2.2) and the gluon fields in (2.4)

is implied. We do not write out the Wilson lines that make the operators gauge invariant.

The different spin projections lead to a large number of DPDs. For collinear color-

singlet distributions, several polarization combinations are zero due to time reversal and

parity invariance. This concerns the DPDs with one longitudinally polarized and one un-

polarized parton, as well as those with one longitudinally polarized parton and one trans-

versely polarized (anti)quark or linearly polarized gluon. A decomposition of the nonzero

distributions for two quarks in terms of real-valued scalar functions has already been given

in [12]:

Fqq(x1, x2,y) = fqq(x1, x2, y) ,

F∆q∆q(x1, x2,y) = f∆q∆q(x1, x2, y) ,

F j
qδq(x1, x2,y) = ỹ

jMfqδq(x1, x2, y) ,

F j
δqq(x1, x2,y) = ỹ

jMfδqq(x1, x2, y) ,

F jj′

δqδq(x1, x2,y) = δjj
′

fδqδq(x1, x2, y) + 2τ jj
′,yyM2f t

δqδq(x1, x2, y) , (2.7)

whereM is the proton mass, ỹj = ǫjj
′

y
j′ and y =

√

y2. We use a shorthand notation where

vectors y or ỹ appearing as an index of τ denote contraction, i.e. τ jj
′,yy = τ jj

′,kk′
y
k
y
k′

etc. Decompositions analogous to (2.7) hold for quark-antiquark distributions and for the

distributions of two antiquarks.

Since quarks and gluons mix under evolution, we also need to consider DPDs involving

gluons. We define

Fqg(x1, x2,y) = fqg(x1, x2, y) ,

F∆q∆g(x1, x2,y) = f∆q∆g(x1, x2, y) ,

F jj′

qδg(x1, x2,y) = τ jj
′,yyM2fqδg(x1, x2, y) ,

F j
δqg(x1, x2,y) = ỹ

jMfδqg(x1, x2, y) ,

F j,kk′

δqδg (x1, x2,y) =− τ ỹj,kk
′

Mfδqδg(x1, x2, y)

−
(

ỹ
jτkk

′,yy + y
jτkk

′,yỹ
)

M3f t
δqδg(x1, x2, y) (2.8)

for quark-gluon distributions, with analogous expressions for gluon-quark distributions and

distributions where the quark is replaced by an antiquark. For two-gluon distributions we

write

Fgg(x1, x2,y) = fgg(x1, x2, y) ,

F∆g∆g(x1, x2,y) = f∆g∆g(x1, x2, y) ,

F jj′

gδg(x1, x2,y) = τ jj
′,yyM2fgδg(x1, x2, y) ,
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F jj′

δgg(x1, x2,y) = τ jj
′,yyM2fδgg(x1, x2, y) ,

F jj′,kk′

δgδg (x1, x2,y) =
1

2
τ jj

′, kk′fδgδg(x1, x2, y) ,

+
(

τ jj
′,yỹτkk

′,yỹ − τ jj
′,yyτkk

′,yy
)

M4f t
δgδg(x1, x2, y) . (2.9)

We remark that, although linear gluon polarization is described by a tensor with two in-

dices, the restriction that this tensor is symmetric and traceless gives rise to the same

number of distributions as for transverse quark polarization, which is described by a vec-

tor. The prefactors in (2.8) and (2.9) have been chosen such that we will obtain a simple

correspondence between quark and gluon distributions in the spin density matrices to be

derived in the next section.

Note that DPDs involving gluons are not only relevant in the context of evolution but

also enter directly in important double scattering processes such as the production of jets.

Their properties are hence of considerable practical interest.

In complete analogy to the case of collinear single-parton distributions, the DPDs we

have introduced can be interpreted as probability densities for finding two partons inside

an unpolarized proton, with a relative transverse distance y and with longitudinal momen-

tum fractions x1 and x2. This becomes evident from their appearance in the cross section

formulae for double parton scattering [12]. It can also be seen from a representation in

terms of parton creation and annihilation operators or from a representation in terms of

the light-cone wave functions of the proton, which are straightforward extensions of the

corresponding representations for single-parton distributions (given for instance in sections

3.4 and 3.11 of [19]).

As in the case of single-parton densities, this interpretation does however not strictly

hold in QCD, because the distributions are defined with subtractions from the ultraviolet

region of parton momenta. The subtraction terms can in principle invalidate the positivity

of the distributions. Nevertheless, it is useful to explore the consequences of the probabil-

ity interpretation as a guide for developing physically intuitive models of the distributions.

This holds in particular if one works in leading order of αs, where the connection be-

tween parton distributions and physical cross sections (which must of course be positive

semi-definite) is most direct.

3 Two-parton spin density matrices

The polarization state of two partons in an unpolarized proton is described by a spin den-

sity matrix that can be written in terms of the DPDs we introduced in the previous section.

We start by trading the projection operators (2.3) and (2.5) for operators that project onto

quarks or gluons of definite helicity. We can then easily write down the spin density matrix

for two partons in the helicity basis.

The projection operators Γλ′λ for quarks, where λ (λ′) refers to the quark helicity in

the amplitude (conjugate amplitude), are given by

Γ++ =
γ+

4
(1 + γ5) =

Γq + Γ∆q

2
, Γ+− =

iσ+1

4
(1− γ5) =

Γ1
δq + iΓ2

δq

2
,
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Γ−− =
γ+

4
(1− γ5) =

Γq − Γ∆q

2
, Γ−+ = − iσ+1

4
(1 + γ5) =

Γ1
δq − iΓ2

δq

2
. (3.1)

Here we use the phase conventions for spin-half fields specified in [20]. The projection

operators Πjj′

λ′λ for gluons, where λ and j (λ′ and j′) refer to the amplitude (conjugate

amplitude), can be constructed from the polarization vectors

ǫ+ = − 1√
2

(

1, i
)

, ǫ− =
1√
2

(

1,−i
)

(3.2)

and read

Πjj′

++ =
(

ǫj+
)∗

ǫj
′

+ =
1

2

(

Πjj′

g +Πjj′

∆g

)

,

Πjj′

−− =
(

ǫj−
)∗

ǫj
′

− =
1

2

(

Πjj′

g −Πjj′

∆g

)

,

Πjj′

+− =
(

ǫj−
)∗

ǫj
′

+ = −
[

Π11
δg

]jj′ − i
[

Π12
δg

]jj′
,

Πjj′

−+ =
(

ǫj+
)∗

ǫj
′

− = −
[

Π11
δg

]jj′
+ i
[

Π12
δg

]jj′
. (3.3)

We can now organize the distributions in matrices where the columns (rows) correspond to

helicity states ++,−+,+−,−− of the two partons in the amplitude (conjugate amplitude).

The spin density matrix for two quarks reads

ρ =
1

4











fqq + f∆q∆q −ieiϕyyMfδqq −ieiϕyyMfqδq 2e2iϕyy2M2f t
δqδq

ie−iϕyyMfδqq fqq − f∆q∆q 2fδqδq −ieiϕyyMfqδq
ie−iϕyyMfqδq 2fδqδq fqq − f∆q∆q −ieiϕyyMfδqq

2e−2iϕyy2M2f t
δqδq ie−iϕyyMfqδq ie−iϕyyMfδqq fqq + f∆q∆q











, (3.4)

where the angle ϕy describes the orientation of the vector y = y (cosϕy, sinϕy) in the

transverse plane. With the caveat spelled out at the end of the previous section, the diago-

nal matrix elements can be interpreted as the probability densities for finding two partons

in definite helicity states inside an unpolarized proton. Specifically, fqq + f∆q∆q is the

probability density for finding two quarks with positive helicities, which in an unpolarized

proton is equal to the probability density for finding two quarks with negative helicities.

The probability density for finding two quarks with opposite helicities is fqq − f∆q∆q. The

off-diagonal elements of ρ describe helicity interference, with f t
δqδq in the right upper corner

corresponding for instance to the case where both quarks have negative helicity in the am-

plitude and positive helicity in the conjugate amplitude. This leads to a helicity difference

between the amplitude and its conjugate, which is balanced by two units of orbital angular

momentum indicated by an exponential e2iϕy and an associated factor y2. By contrast,

fδqδq describes the case when the helicity difference is +1 for one quark and −1 for the

other, so that the overall helicity is balanced.

Turning now to gluons, we have a spin density matrix

1

4











fqg + f∆q∆g −ieiϕyyMfδqg −e2iϕyy2M2fqδg −2ie3iϕyy3M3f t
δqδg

ie−iϕyyMfδqg fqg − f∆q∆g −2ieiϕyyMfδqδg −e2iϕyy2M2fqδg
−e−2iϕyy2M2fqδg 2ie−iϕyyMfδqδg fqg − f∆q∆g −ieiϕyyMfδqg
2ie−3iϕyy3M3f t

δqδg −e−2iϕyy2M2fqδg ie−iϕyyMfδqg fqg + f∆q∆g











(3.5)
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for quark-gluon distributions and an analogous matrix for gluon-quark distributions. For

two-gluon distributions we find

1

4











fgg + f∆g∆g −e2iϕyy2M2fδgg −e2iϕyy2M2fgδg −2e4iϕyy4M4f t
δgδg

−e−2iϕyy2M2fδgg fgg − f∆g∆g 2fδgδg −e2iϕyy2M2fgδg
−e−2iϕyy2M2fgδg 2fδgδg fgg − f∆g∆g −e2iϕyy2M2fδgg
−2e−4iϕyy4M4f t

δgδg −e−2iϕyy2M2fgδg −e−2iϕyy2M2fδgg fgg + f∆g∆g











. (3.6)

The matrices for distributions where quarks are replaced by antiquarks are analogous

to (3.4) and (3.5). We see that the parameterization of DPDs in the previous section

gives simple expressions for the spin density matrices and similar structures for all types

of partons.

The difference in spin between quarks and gluons causes the different dependence on

the azimuthal angle ϕy in (3.4), (3.5) and (3.6). A mismatch of n units between the sum of

parton helicities in the amplitude and its conjugate goes along with an exponential e±niϕy

and an associated factor yn.

4 Positivity bounds

We now show how the probability interpretation of DPDs constrains the size of the po-

larized distributions. Since the probability density for finding two partons in a general

polarization state is positive semi-definite, we have

∑

λ′

1
λ′

2
λ
1
λ
2

v∗λ′

1
λ′

2
ρ(λ′

1
λ′

2
)(λ

1
λ
2
) vλ

1
λ
2
≥ 0 (4.1)

with arbitrary complex coefficients vλ1λ2
normalized as

∑

λ1λ2
|vλ1λ2

|2 = 1. The helicity

matrices are therefore positive semi-definite. The same property has been derived for the

spin density matrices associated with transverse-momentum dependent distributions [17]

or generalized parton distributions [18].

To simplify the algebra, we first cast all helicity matrices into a common form that is

independent of the angle ϕy. This is achieved by unitary transformations, multiplying by

a matrix U from the right and by U † from the left. The transformation matrices for the

parton combinations in (3.4) to (3.6) are

Uqq = diag
(

−e2iϕy ,−ieiϕy ,−ieiϕy , 1
)

,

Uqg = diag
(

ie3iϕy ,−e2iϕy ,−ieiϕy , 1
)

,

Ugg = diag
(

e4iϕy ,−e2iϕy ,−e2iϕy , 1
)

. (4.2)

After these transformations and their analog for gluon-quark distributions, the spin density

matrices can be written as

ρ =
1

4











fab + f∆a∆b hδab haδb −2htδaδb
hδab fab − f∆a∆b 2hδaδb haδb
haδb 2hδaδb fab − f∆a∆b hδab

−2htδaδb haδb hδab fab + f∆a∆b











(4.3)
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with the following identification of distributions for different parton combinations:

fab = fqq , fqg , fgq , fgg ,

f∆a∆b = f∆q∆q , f∆q∆g , f∆g∆q , f∆g∆g ,

hδab = yMfδqq , yMfδqg , y
2M2fδgq , y

2M2fδgg ,

haδb = yMfqδq , y
2M2fqδg , yMfgδq , y

2M2fgδg ,

hδaδb = fδqδq , yMfδqδg , yMfδgδq , fδgδg ,

htδaδb = y2M2f t
δqδq , y

3M3f t
δqδg , y

3M3f t
δgδq , y

4M4f t
δgδg . (4.4)

Analogous expressions hold if quarks are replaced by antiquarks. Positivity1 of the diagonal

elements of ρ yields the trivial bounds

fab ≥
∣

∣f∆a∆b

∣

∣ . (4.5)

The principal minors of the two-dimensional sub-spaces must be positive semi-definite as

well, which gives upper bounds on the distributions for one or two transversely or linearly

polarized partons:

fab + f∆a∆b ≥ 2
∣

∣htδaδb
∣

∣ ,

fab − f∆a∆b ≥ 2
∣

∣hδaδb
∣

∣ ,

f2
ab ≥ (fab + f∆a∆b)(fab − f∆a∆b) ≥ h2δab ,

f2
ab ≥ (fab + f∆a∆b)(fab − f∆a∆b) ≥ h2aδb . (4.6)

The principal minors of dimension three, as well as det(ρ) provide further bounds, which

are rather cumbersome and will not be given here. The strongest bounds can be obtained

from the positivity of the eigenvalues of ρ, which is a sufficient and necessary condition for

the positivity of ρ. Calculating the eigenvalues we obtain

fab + hδaδb − htδaδb ±
√

(hδab + haδb)2 + (f∆a∆b − hδaδb − htδaδb)
2 ≥ 0 ,

fab − hδaδb + htδaδb ±
√

(hδab − haδb)2 + (f∆a∆b + hδaδb + htδaδb)
2 ≥ 0 . (4.7)

These inequalities set upper limits on the size of spin correlations between two partons in

an unpolarized proton. They can be used either to construct double parton distributions

or to put limits on polarization effects in double hard scattering processes.

We note that positive semidefinite combinations of DPDs were discussed already in

the pioneering studies [9, 10]. Distributions that involve a helicity mismatch between the

amplitude and its conjugate (see section 3) were however not considered in that work.

The derivation in [9, 10] thus corresponds to our results (4.5) and (4.6) if all distributions

multiplied with a power of y in (4.4) are set to zero.

1For ease of language we use “positivity” in the sense of “positive semi-definite” here and in the following.
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5 Stability under evolution

The ultraviolet subtractions mentioned at the end of section 2 induce a scale dependence,

which for collinear single-parton distributions is described by the DGLAP evolution equa-

tions. While the subtractions themselves may invalidate positivity of the distributions and

thus their density interpretation, the evolution equations can be interpreted in a proba-

bilistic manner provided that one takes the leading-order approximation of the evolution

kernels [23, 24]. Specifically, one finds that if parton distributions are positive semi-definite

at a certain scale, this property is preserved by leading-order evolution to higher scales.

This also holds for the Soffer inequality, which expresses positivity in the sector of trans-

verse quark polarization [25, 26]. For evolution at next-to-leading order in αs the situation

is less clear-cut and a discussion of positivity depends in particular on the scheme in which

the distributions are defined. We refer to [27] and [28, 29] for a discussion of the situation

for longitudinal and transverse parton polarization, respectively.

Returning to double parton distributions, we now show that the bounds derived in the

previous section are stable under leading-order evolution to higher scales. The strategy for

the derivation is as follows: we first introduce linear combinations of double parton dis-

tributions whose positivity is necessary and sufficient for the positivity of the spin density

matrices and then show that these linear combinations remain positive semi-definite under

evolution. The positivity of the spin density matrices then guarantees the stability of the

positivity bounds.

5.1 Evolution of double parton distributions

To begin with, let us specify the evolution of collinear DPDs in the color-singlet sector. We

use the homogeneous evolution equations in the transverse position representation, see e.g.

equation (5.93) in [12]. These equations apply at nonzero y if Fa1a2(x1, x2,y) is defined

via (2.1) with the operatorsOa1(y, z1) andOa2(0, z2) renormalized by standard MS subtrac-

tion. The inhomogeneous term for the splitting of one parton into two that has been previ-

ously considered in the literature [30–34] does not appear in this case. As discussed in [11,

12], a consistent formulation of factorization for double parton scattering does not yet exist,

so that it remains unclear how DPDs should best be defined (and how they evolve). For

simplicity we will limit our present investigation to the homogeneous evolution equations.

It is useful for our purpose to take different renormalization scales µ1 and µ2 for the

two partons, corresponding to separate ultraviolet renormalization of Oa1 and Oa2 in (2.1).

The evolution equation for the unpolarized double quark distributions in the first scale

then reads
∂fqq(x1, x2, y;µ1, µ2)

∂τ1
= Pqq ⊗1 fqq + Pqg ⊗1 fgq , (5.1)

where

Pab( . )⊗1 fbc( . , x2, y;µ1, µ2) =

∫ 1−x2

x1

du1
u1

Pab

(

x1
u1

)

fbc(u1, x2, y;µ1, µ2) (5.2)

is a convolution in the first argument of the DPDs with the leading-order splitting functions

Pab known from DGLAP evolution of single-parton distributions. We note that the leading-
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order splitting functions are the same for quarks and antiquarks, i.e. one has Pqq = Pq̄q̄,

Pqg = Pq̄g, Pgq = Pgq̄ and analogous relations for polarized partons. In appendix A we

give the explicit evolution equations for all polarized DPDs and list the associated splitting

functions.

The evolution variable in (5.1) is taken as

τ1 =

∫ µ2
1 dµ2

µ2

αs(µ)

2π
, (5.3)

where the lower limit of integration is irrelevant in the derivative ∂f/∂τ1. The use of τ1
is just a matter of convenience as it removes the running coupling from the leading-order

splitting functions.

The analog of (5.1) for the scale associated with the second parton is

∂fqq(x1, x2, y;µ1, µ2)

∂τ2
= Pqq ⊗2 fqq + Pqg ⊗2 fqg . (5.4)

The evolution equation for equal scales, i.e. for fqq(x1, x2, y;µ, µ), is readily obtained by

adding the right-hand sides of (5.1) and (5.4). We will show that positivity is preserved

for separate evolution in µ1. The same then obviously holds for evolution in µ2 and hence

for the evolution in a single common scale µ1 = µ2.

5.2 Linear combinations of DPDs

A key ingredient in our argument is to form suitable linear combinations of double parton

distributions, which we now introduce. Positivity of the spin density matrix ρ means that

v†ρ v ≥ 0 for any complex vector v, as we spelled out in (4.1). Parameterizing the vector as

vT = (a1 + ib1, a2 + ib2, a3 + ib3, a4 + ib4) (5.5)

with real numbers ai, bi and performing the multiplication with the matrix in (4.3) gives

Q+
ab = c1fab + c2haδb + c3f∆a∆b + c4hδab + c5hδaδb + c6h

t
δaδb ≥ 0 , (5.6)

where Q+
ab = 4v†ρ v and the coefficients ci are given by

c1 = a21 + b21 + a22 + b22 + a23 + b23 + a24 + b24 , c2 = 2(a1a3 + b1b3 + a2a4 + b2b4) ,

c3 = a21 + b21 − a22 − b22 − a23 − b23 + a24 + b24 , c4 = 2(a1a2 + b1b2 + a3a4 + b3b4) ,

c5 = 4(a2a3 + b2b3) , c6 = −4(a1a4 + b1b4) . (5.7)

We will prove the stability of the positivity bounds by showing that for arbitrary values of

ai and bi the inequality (5.6) is stable under evolution to higher scales. It will be convenient

to consider further linear combinations of double parton distributions. Changing signs of

the parameters a1 → −a1, b1 → −b1, a3 → −a3, b3 → −b3 we get

Q−
ab = c1fab + c2haδb + c3f∆a∆b − c4hδab − c5hδaδb − c6h

t
δaδb ≥ 0 . (5.8)
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Adding (5.6) and (5.8) gives the simpler inequality

B+
ab = c1fab + c2haδb + c3f∆a∆b ≥ 0 , (5.9)

and interchanging indices (1 ↔ 2 and 3 ↔ 4) in the elements of v gives

B−
ab = c1fab + c2haδb − c3f∆a∆b ≥ 0 . (5.10)

If (5.6) holds at a given scale for arbitrary values of ai and bi, then (5.8) to (5.10) hold at

that scale as well.

We will see that the evolution equations in the scale µ1 can be formulated in terms of

Q+
ab, Q

−
ab and B−

ab alone.
2 This becomes plausible if we note that these three functions are

linear combinations of (c1fab+ c2haδb), f∆a∆b and (c4hδab+ c5hδaδb+ c6h
t
δaδb) and that for

evolution in µ1 only the polarization of the first parton is relevant but not the polarization

of the second parton. The linear combinations Q±
ab may be regarded as generalizations of

the distributions Q± = 1
2(q+ q̄)± δq introduced in [26], where it was shown that the Soffer

bound for the quark transversity distribution δq is stable under leading-order evolution to

higher scales.

5.3 Evolution of the linear combinations

We now show that the distributions Q±
ab and B±

ab remain positive semi-definite under

leading-order evolution to higher scales. This implies the positivity of the spin density

matrices and thereby the validity of the bounds derived in section 4.

The evolution equations for the distributions Q±
ab are

∂

∂τ1

(

Q+
qb

Q−
qb

)

=

(

δP+
qq δP−

qq

δP−
qq δP+

qq

)

⊗1

(

Q+
qb

Q−
qb

)

+

(

P+
qg P−

qg

P+
qg P−

qg

)

⊗1

(

B+
gb

B−
gb

)

+

(

P−
qq P−

qq

P−
qq P−

qq

)

⊗1

(

B+
qb

B−
qb

)

(5.11)

for a quark as first parton and

∂

∂τ1

(

Q+
gb

Q−
gb

)

=

(

δP+
gg δP−

gg

δP−
gg δP+

gg

)

⊗1

(

Q+
gb

Q−
gb

)

+
∑

a=q,q̄

(

P+
ga P−

ga

P+
ga P−

ga

)

⊗1

(

B+
ab

B−
ab

)

+

(

P−
gg P−

gg

P−
gg P−

gg

)

⊗1

(

B+
gb

B−
gb

)

(5.12)

when the first parton is a gluon. The evolution equations for B±
ab read

∂

∂τ1

(

B+
qb

B−
qb

)

=

(

P+
qq P−

qq

P−
qq P+

qq

)

⊗1

(

B+
qb

B−
qb

)

+

(

P+
qg P−

qg

P−
qg P+

qg

)

⊗1

(

B+
gb

B−
gb

)

(5.13)

2The combination B+

ab = (Q+

ab +Q−

ab)/2 is not independent and just used as an abbreviation.
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for a quark and

∂

∂τ1

(

B+
gb

B−
gb

)

=

(

P+
gg P−

gg

P−
gg P+

gg

)

⊗1

(

B+
gb

B−
gb

)

+
∑

a=q,q̄

(

P+
ga P−

ga

P−
ga P+

ga

)

⊗1

(

B+
ab

B−
ab

)

(5.14)

for a gluon. The evolution equations have the same form for antiquarks, i.e. (5.11)

and (5.13) remain valid if we replace q → q̄ everywhere (except in the label b for the

second parton, which always remains fixed when we consider evolution in µ1).

The splitting functions appearing in the above equations are defined as

P±
ab =

1

2

(

Pab ± P∆a∆b

)

, δP±
ab =

1

2

(

P∆a∆b ± Pδaδb

)

(5.15)

for all parton indices a and b. We remark that the kernels P+
ab (P

−
ab) correspond to the case

where the parton helicity is conserved (flipped). The only splitting functions that receive

contributions from virtual graphs and hence contain a plus-prescription or an explicit δ

function are

P+
qq =

CF

2

[

2(1 + z2)

(1− z)+
+ 3δ(1− z)

]

,

δP+
qq =

CF

2

[

(1 + z)2

(1− z)+
+ 3δ(1− z)

]

,

P+
gg = 2Nc

[

z

(1− z)+
+

(1− z)(1 + z)2

2z

]

+
β0
2

δ(1− z) ,

δP+
gg = 2Nc

[

z

(1− z)+
+ 1− z

]

+
β0
2

δ(1− z) (5.16)

with Nc = 3, CF = 4/3 and

β0 =
11

3
Nc −

2

3
nf , (5.17)

where nf is the number of active quark flavors. They are all positive for 0 < z < 1 but

have negative contributions at z = 1 that arise from the plus-prescription, whose form is

recalled in (B.3). In appendix B we show explicitly that the virtual contribution to evolu-

tion cannot change the sign of the distributions, which has previously been argued to be

the case based on the probabilistic interpretation of leading-order evolution and its relation

to the Boltzmann equation [23, 24, 26]. The reason for this property is that the virtual

contribution to the evolution of a function is proportional to the function itself. We can

then conclude that the diagonal terms in the evolution equations (5.11) to (5.14) preserve

positivity. The off-diagonal kernels

P−
qq = 0 , P−

gg = Nc (1− z)3
/

z ,

δP−
qq = CF (1− z)

/

2 , δP−
gg = 2Nc (1− z) (5.18)

and

P+
qg = z2

/

2 , P+
gq = CF

/

z ,

P−
qg = (1− z)2

/

2 , P−
gq = CF (1− z)2

/

z . (5.19)
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are all positive or zero for 0 < z < 1 and regular at z = 1. Therefore they only reinforce

positivity. In summary, if we have positive semi-definite initial conditions for all functions

Q±
ab and B±

ab at some scale, then evolution to higher scales preserves this property. A more

explicit derivation is given in appendix B.

6 Conclusions

We have derived spin density matrices for double parton distributions of quarks, anti-quarks

and gluons. These matrices reveal the full polarization structure of two partons in an unpo-

larized proton and show the correspondence between the different polarized double parton

distributions and parton helicities. The probabilistic interpretation of the double parton

distribution for an arbitrary polarization state of the two partons gives upper limits on the

size of spin correlations. These positivity bounds can be useful for modeling the otherwise

poorly constrained double parton distributions and for deriving upper limits on spin effects

in double hard scattering processes. We have shown that the homogeneous leading-order

evolution equations preserve the bounds when going from lower to higher scales.

A Evolution equations and splitting functions

For completeness we give here the leading-order evolution equations for the first parton in

the double parton distributions. When the first parton is a quark, we have

∂fqb
∂τ1

= Pqq ⊗1 fqb + Pqg ⊗1 fgb ,

∂fqδb
∂τ1

= Pqq ⊗1 fqδb + Pqg ⊗1 fgδb ,

∂f∆q∆b

∂τ1
= P∆q∆q ⊗1 f∆q∆b + P∆q∆g ⊗1 f∆g∆b ,

∂fδqb
∂τ1

= Pδqδq ⊗1 fδqb ,
∂fδqδb
∂τ1

= Pδqδq ⊗1 fδqδb ,
∂f t

δqδb

∂τ1
= Pδqδq ⊗1 f

t
δqδb (A.1)

for b = q, q̄, g. The arguments of the distributions are as in (5.1) and (5.2). Analogous

equations hold if the first parton is an antiquark. For gluons we have

∂fgb
∂τ1

= Pgg ⊗1 fgb +
∑

a=q,q̄

Pga ⊗1 fab ,

∂fgδb
∂τ1

= Pgg ⊗1 fgδb +
∑

a=q,q̄

Pga ⊗1 faδb ,

∂f∆g∆b

∂τ1
= P∆g∆g ⊗1 f∆g∆b +

∑

a=q,q̄

P∆g∆a ⊗1 f∆a∆b ,

∂fδgb
∂τ1

= Pδgδg ⊗1 fδgb ,
∂fδgδb
∂τ1

= Pδgδg ⊗1 fδgδb ,
∂f t

δgδb

∂τ1
= Pδgδg ⊗1 f

t
δgδb . (A.2)

The leading-order splitting functions have been derived in [21, 22]. They are given by

Pqq(z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1− z)

]

,
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P∆q∆q(z) = Pqq(z) ,

Pδqδq(z) = Pqq(z)− CF (1− z) (A.3)

for quark-quark transitions and by

Pgg(z) = 2Nc

[

z

(1− z)+
+

(1− z)(1 + z2)

z

]

+
β0
2

δ(1− z) ,

P∆g∆g(z) = Pgg(z)− 2Nc
(1− z)3

z
,

Pδgδg(z) = Pgg(z)− 2Nc
(1− z)(1 + z2)

z
(A.4)

for gluons. The splitting functions that mix quarks and gluons read

Pqg =
z2 + (1− z)2

2
, Pgq = CF

1 + (1− z)2

z
,

P∆q∆g =
z2 − (1− z)2

2
, P∆g∆q = CF

1− (1− z)2

z
. (A.5)

As already mentioned below (5.2), the splitting functions are identical for quarks and

antiquarks, i.e. (A.3) and (A.5) remain valid if we replace q → q̄. At leading order in αs

there are no direct transitions between quarks and antiquarks.

B Elements of a stability proof

In this appendix we show in more detail that the evolution equations in section 5.3 pre-

serve positivity, taking particular care of the negative terms in the splitting functions that

arise from virtual graphs and are implicit in the plus-prescription. We first consider the

evolution of a single distribution and then extend the argument to the full coupled system

of evolution equations.

We examine a function evolving as

∂

∂τ
f(x, τ) =

∫ v

x

du

u
P
(x

u

)

f(u, τ) (B.1)

with 0 < x < v ≤ 1 and separate the splitting function as

P (z) =
Ps(z)

(1− z)+
+ Pr(z) + Pδ δ(1− z) , (B.2)

where Ps(z) and Pr(z) are positive semi-definite for 0 < z < 1 and regular at z = 1. The

constant Pδ may be positive, negative or zero. The plus-prescription is defined as usual by

[s(z)]+ = s(z)− δ(1− z)

∫ 1

0
dz′ s(z′) , (B.3)

where it is understood that the non-integrable singularity in the last term cancels

when (B.3) is integrated over with a smooth test function. The plus-prescription part
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of the convolution in (B.1) can be written as

∫ v

x

du

u

Ps(x/u)

(1− x/u)+
f(u, τ)

=

∫ v

x+ǫ

du
Ps(x/u)

u− x
f(u, τ) +

∫ x−ǫ

0
du

Ps(1)

u− x
f(x, τ) +O(ǫ) , (B.4)

where for the error estimate we have assumed that f(u, τ) is differentiable at u = x.

Defining

gǫ(x, τ ; f) =

∫ v

x+ǫ

du

[

Ps(x/u)

u− x
+

Pr(x/u)

u

]

f(u, τ) ,

hǫ(x) = − Pδ + Ps(1)

∫ x−ǫ

0

du

x− u
(B.5)

we can approximate the evolution of f by

∂

∂τ
f(x, τ) = gǫ(x, τ ; f)− hǫ(x) f(x, τ) (B.6)

with an error that becomes arbitrarily small for ǫ → 0. In a more formal proof, one would re-

place f with fǫ in (B.6) and show that lim
ǫ→0

fǫ is a solution of (B.1) . We now rewrite (B.6) as

∂

∂τ

[

eτhǫ(x)f(x, τ)
]

= eτhǫ(x) gǫ(x, τ ; f) . (B.7)

Since gǫ is the convolution of f(x, τ) with a positive semi-definite integral kernel, the

r.h.s. of this equation is positive semi-definite as long as f(x, τ) is. With initial conditions

f(x, τ0) ≥ 0 for all x at a starting scale τ0, the function eτhǫ(x)f(x, τ) can therefore not

decrease as τ increases, so that f(x, τ) stays positive semi-definite for all τ > τ0. We note

that the sign of hǫ(x) and thus of the constant Pδ is irrelevant for this argument.

We now consider the coupled system of evolution equations given by (5.11) to (5.14).

Using a vector notation f i(x, τ) for the 8nf +4 functions Q+
ab, Q

−
ab, B

+
ab, B

−
ab with a = q, q̄, g

(and b fixed), we can cast their evolution into the form

∂

∂τ
f i(x, τ) = giǫ(x, τ ; f

i)− hiǫ(x) f
i(x, τ) +

∑

i 6=j

∫ v

x

du

u
P ij

(x

u

)

f j(u, τ) (B.8)

with i = 1, . . . , 8nf + 4. Here giǫ and hiǫ are defined as in (B.5) with regular and positive

semi-definite functions P i
s(z) and P i

r(z). The mixing kernels P ij(z) in (B.8) are regular

and positive semi-definite as well. Rewriting the evolution as

∂

∂τ

[

eτhǫ(x)f i(x, τ)
]

= eτhǫ(x)

[

giǫ(x, τ ; f
i) +

∑

i 6=j

∫ v

x

du

u
P ij

(x

u

)

f j(u, τ)

]

(B.9)

we see that if one has initial conditions f j(x, τ0) ≥ 0 for all j then all functions f j(x, τ)

remain positive semi-definite for τ > τ0.
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