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ABSTRACT: We study solvable deformations of two-dimensional quantum field theories driven
by a bilinear operator constructed from a pair of conserved U(1) currents J*. We propose
a quantum formulation of these deformations, based on the gauging of the corresponding
symmetries in a path integral. This formalism leads to an exact dressing of the S-matrix
of the system, similarly as what happens in the case of a TT deformation. For conformal
theories the deformations under study are expected to be exactly marginal. Still, a peculiar
situation might arise when the conserved currents J¢ are not well-defined local operators in
the original theory. A simple example of this kind of system is provided by rotation currents
in a theory of multiple free, massless, non-compact bosons. We verify that, somewhat
unexpectedly, such a theory is indeed still conformal after deformation and that it coincides
with a TST transformation of the original system. We then extend our formalism to the
case in which the conserved currents are non-Abelian and point out its connection with
Deformed T-dual Models and homogeneous Yang-Baxter deformations. In this case as
well the deformation is based on a gauging of the symmetries involved and it turns out to
be non-trivial only if the symmetry group admits a non-trivial central extension. Finally
we apply what we learned by relating the TT deformation to the central extension of the
two-dimensional Poincaré algebra.
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1 Introduction

A solvable irrelevant deformation of two-dimensional quantum field theories based on the
so-called TT operator [1], has attracted a lot of interest recently (see [2] for a review and for
an extended set of references). Initially, this family of theories was constructed at the level of
scattering amplitudes [3]. An independent operator construction, which also leads to exact
results for the deformed finite volume spectrum, has been presented in [4, 5]. An intriguing
property of the TT deformation is that in spite of describing a UV complete quantum
theory (at least in the sense that the scattering amplitudes are defined at all energies) the
corresponding high energy behavior is not governed by a conformal invariant UV fixed



point. This raises the interesting challenge to identify and explore a larger class of quantum
theories exhibiting a TT-like UV behavior. Examples of such theories were considered
in [6-9], where two-dimensional integrable quantum field theories were deformed by TT-like
operators, constructed from higher spin conserved currents. More generally, however, we do
not expect the presence of integrability or solvability of the deformation to be necessary
conditions for the definition of these kind of theories. A further indication that such a larger
family should indeed exist comes from the observation that worldsheet theories of large N
confining strings are expected to exhibit a UV behavior similar to TT-deformed theories [10].

A natural language to identify this larger family of theories is provided by a path
integral formulation. In the TT case, the deformation arises as a consequence of coupling
the original quantum field theory to a certain model of topological gravity [11-13]. The
net effect of this coupling is to introduce a dynamical system of clocks and rods into the
system and implementing these as physical coordinates yields naturally the dressing formula
for the S-matrix. At the classical level this fact corresponds to the statement that a TT
deformation can be eliminated to an appropriate, field-dependent change of coordinates [14]
coupling the geometry of the system to its energy-momentum. In the current paper we will
further develop this formalism. In fact, our main focus will not be the TT deformation itself,
but rather a generalization, which can be called a double current deformation, where the
energy-momentum tensor components are replaced by general conserved currents J¢. In the
case when J are conventional spin 1 currents corresponding to internal global symmetries,
the deformation shares many properties with the TT one. In particular, the net effect of this
double current deformation consists in a dressing of all the operators by the “Wilson lines”
corresponding to the currents J¢. This dressing is the translation to the present case of the
dynamical clocks and rods for the TT case and it is what makes the deformation exactly
solvable at the S-matrix level. Classically it amounts to a field-dependent redefinition of the
field variables themselves. On the other hand, the double current deformation is somewhat
less mysterious than the TT one, as the resulting deformed theory is a conventional quantum
field theory whose UV behavior is governed by a conformal fixed point. In [15, 16] a gauge
theory description has been proposed for deformations involving both U(1) currents and
the energy-momentum tensor. Here we follow the same route, considering the case of a
deforming operator constructed from two spin 1 currents. We extend the formalism to the
situation when the global symmetries of the undeformed theory are anomalous and derive
the deformed S-matrix.

In the special case when the original theory is conformal, a double current deformation
is expected to be exactly marginal for spin 1 currents and the resulting theory should again
be conformal. The concrete technical question which is the main focus of the present paper
is to study a peculiar version of this situation, when the currents J¢ are not well-defined
local operators in the original theory. The simplest example of a situation like this is
provided by currents describing the O(N) rotation symmetry of a system of N non-compact
massless bosons. A priori, one might suspect that some subtlety may invalidate the exact
marginality of the double current deformation in this case. Indeed, it would be somewhat
surprising if there were a prescription to build new conformal theories starting from an
original one, which was not based on a conventional set of conformal data — i.e., the set of
conformal primaries and of the corresponding OPE coefficients.



To study this issue we consider a specific example, which is a theory of four massless
scalar fields, where the two currents used to define a deformation correspond to rotations
in two orthogonal planes. Somewhat surprisingly, our study does not reveal any subtlety
with the double current deformation in this setup. Moreover we show that the family of
conformal theories obtained with a double current deformation coincides with an earlier
construction using the TsT transformation [17] (see also [18] for an earlier discussion of the
relation between the TsT and .J.J). We explain then that this result becomes less surprising
if one treats the theory of free, massless, non-compact bosons as the infinite-level limit of a
WZW model. Then, before the limit is taken the current involved in the deformation are
well-defined spin 1 primaries, making the absence of subtleties in the decompactification
limit less surprising.

Finally, we comment on possible non-Abelian generalizations of the double current
deformations. As we will see, a necessary condition for the existence of a consistent
deformation is the existence of a non-trivial central extension of the symmetry algebra to
which the two currents belong. As is well known, internal global symmetries described by
conventional semisimple, non-Abelian algebras allow no such central extension. Consequently
they do not admit a direct generalization of our definition of double current deformation.
However, for those algebras possessing non-trivial central extension, our definition of
double current deformation can be applied to yield a class of models that have appeared
earlier in the literature under the name of Deformed T-dual Models [19, 20] and were
shown to be equivalent to homogeneous Yang-Baxter deformations [21-24]. A particularly
appealing choice of symmetry is the two-dimensional Poincaré algebra. The corresponding
double current deformation is nothing else but the TT and our perspective put it in
direct correspondence with the existence of a central extension of the two-dimensional
Poincaré algebra.

2 Gauge representation of double current deformations

2.1 Initial data

Let us consider a generic 2-dimensional Euclidean Quantum Field Theory, associated with
some action Ag [®], where ® denotes a collection of arbitrary fundamental fields. The
local observables of this theory are expectation values of local operators O (z) = O [® (z)].
We can extract information on the theory Ag [®] by looking at the correlators of these
local fields

N 1 N
<H 0; (%’j)> = ZO/[D‘P] [T 0; (z)) el (2.1)
Jj=1 0 7j=1

where Z is the partition function of the theory. The only specification we will ask of
our theory is that it possesses a U (1) x U (1) symmetry, that is to say, we require the
existence of two independent commuting U (1) currents J* (z) with a = 1,2. Equivalently,
we demand that the action A4 [®] can be minimally coupled to a pair of background gauge



fields B® (x) in a gauge invariant way,' so that
Ao [ 0| B — da| = Aq [@]B] (2.2)

where ¢, [®] are the charges of the fundamental fields ® with respect to the U (1) x U (1)
symmetry with currents J*. From the minimally coupled action A [®|B] the currents can
be defined as the response under small variation of the background fields

S () = ——2 (@B

It SBF (1) —0. (2.3)

on—shell

, 0N ()

Ba=0

Each of the local operators O; (x) is charged under the symmetry with, possibly vanishing,
charges ¢j and transforms as usual

0, (x) — U,0; () Ul = 0 (z) e %% U = e ] a5 (2.4)

The presence of this symmetry in our theory imposes the charge-neutrality condition on all
non-vanishing correlators

<1:[ 0, (xj)>

2.2 Definition of the deformed theory

N
#0 < > ¢f=0, a=12. (2.5)
0 J=1

Starting from the data presented above, we introduce a one-parameter family of theories by
deforming the correlators (2.1) as follows
al 1 A Ao[®|B]— 2 (dX*—B*)A(dX®—B®
[[O;@)) = A / [DEDXDB] [ O (w;) e olIBl-axza [ (X =BIA(X"=5")
j=1 j=1

A
(2.6)

Here we promote B%’s into dynamical gauge fields and the last term in the exponent can be
thought of as a specific mass term for these fields, which is made gauge invariant by intro-
ducing the Stueckelberg fields X*’s. The latter allows us to build gauge invariant operators

0j () = ' taX" ) 0; () (2.7)

corresponding to local operators of the original A = 0 theory, dressed by Wilson lines. The
partition function is now given by

2= / [DEDXDB] ¢ AolPIB)=dxean [ (X —BINAX*=5") (2.8)

Note that, in the absence of charged operator insertions, the integral over the Stueckelberg
fields takes the form of a §-function imposing the flatness condition of the one-forms B®

dB® = "9, B = 0, (2.9)

so that the path integral is localized on flat gauge configurations.

'Here we are supposing, for simplicity, that both symmetries do not exhibit external anomalies and so
can be gauged. Later we will see that the construction can be extended to the case in which these anomalies
are present.



Given that the gauge sector (B, X) does not carry any local propagating degrees of
freedom, in principle one may integrate it out, which results in a deformed local A-dependent
action, defined via the path-integral transform

e~ = / [DXDB] ¢~ A0®IB)=gxew [(aX°=B")A(dX*~B") (2.10)

Notice that we are taking the deformation parameter to be real A € R. The imaginary unit
in (2.6) guarantees that the deformed action A is real when Wick-rotated to Minkowski
space. The expression (2.10) is similar to the one considered in [13] for the TT deformation
and in [16] for joint JT, TJ and TT deformations. As we are going to see, this is not just
a similarity.

In order to gain an understanding of what kind of theory we are dealing with, let us
consider the semi-classical limit of (2.10). First, we can consistently set X to zero by
choosing the unitary gauge. So our A-dependent action is now given by

—AN®] _ / [DB] e~A®IB)=gxea [ BIAB" (2.11)

In the leading semi-classical approximation the integral over B® is computed simply by
fixing the saddle point
B*=2ixxJ*(\),  J'(\)=e%J°()\), (2.12)

where we introduced the deformed currents, which are implicitly defined by the follow-

ing equation

7% (2]) = —535(@/10 L[ - (2.13)
The deformed action takes the following form
Ax[®] = Ao [@[2id 5 ] (V)] — idew / TEO) AT () (2.14)
from which it is straightforward to derive the flow equation
%AA [B] = icw / TEO)AJE(N) (2.15)

that first appeared in [25] where it was used as a definition of the so called J' A J?
deformations. We see that the action defined by the path integral transform (2.10) provides
a fully quantum definition of these deformations. As we are going to see in section 6,
this setting can be extended beyond the J A J? of [25] to include deformations generated
by non-Abelian currents and the TT deformation. We are going to call double-current
deformations the class of theories defined by the path-integral transform (2.10). We will
also refer to the whole procedure described in this section as the topological gauging of the
U(1) x U(1) symmetry.

Before moving on, let us note a simple fact about the partition function (2.8) on a plane.
In this geometry, the flatness condition imposed by the integration over the Stueckelberg

fields means that B® is exact, which further implies that we can set

B*=0, (2.16)



from which it immediately follows that
Zy=2. (2.17)

2.3 The S-matrix

In order to obtain the S-matrix for the double-current deformation, we will follow closely
the procedure employed in [11, 13] for the T T deformation. Now, let us consider a typical

scattering setting in (1+ 1)D Minkowski space-time, in which we have N incoming particles
in,a

with momenta pijn and charges 4, and M outgoing particles with momenta p;?‘“ and
charges q;-m’a. From the definition of the theory, we derive the operator equations
dB* =0,  dX*=2X\%xJ,. (2.18)

Note that unlike in the derivation of the flow equation for the action described in the
previous section, we are not using the saddle point approximation here. Instead, we are
working in the operator formalism now, and (2.18) are exact operator equations in the
Heisenberg picture. In this case, instead of a static gauge it is convenient to work in a
gauge in which B* = 0. Then we see that the net effect of the double current deformation
is simply to dress each operator in the theory with a Wilson line operator

O (z;) — O, (z;) = GX WD (z;) ) X4 (y,2) = 2Xew / «J'+Cy,  (2.19)

Yy—zx

where 7,_,, is a curve connecting some fixed base point y to x, and Cp is some constant
operator. As a consequence of current conservation *J% is a closed 1-form and the shape of
the curve can be deformed at will. All the creation operators will likewise be dressed by the
corresponding Wilson line. This, as we proceed to show, will produce a charge-dependent
phase in front of the S-matrix. Let us introduce the following notation, that will be useful

momentarily
(2%.21) (2%,00)
QL (z) = / xJ, QL (z) = / xJ (2.20)
(20,—00) (z0,21)
and
Q" (z) = QL (x) + Q% (z) . (2.21)

0= yo = const

To define X operators we choose 7, to lie on a constant time slice, =
and send y! — —oo, while fixing the integration constant symmetrically with respect to z!.

This prescription results in the following expression

X (z) = 2" [QL (2) — Q% (@)] - (2.22)

Intuitively, the operator Q% (z) (resp. Q% (z)) measures the total a-charge lying to the left
(resp. right) of the point z along a constant z%-line. However, at intermediate times there is
no simple expression for how these operators act on a general scattering state. Nevertheless,
the intuitive meaning of Q)< becomes precise in the asymptotic regions 20 — +o0, where all



scattering states turn into collections of freely propagating and far separated particles. Let
us concentrate on the far past z° — —oo. We label the corresponding in-states according
to the rapidities of colliding particles, 3; > 3;41. Particle positions for in-states are also
ordered z; < z;41. According to (2.19), the creation operator AijnJr (Bj) of each incoming
particle will be dressed as

AT () = exp [ixeana) (QL (25) — Q2 (23)) | @ (8)) (2.23)

where aijnJf (B;) are the creation operators for the in particles in the undeformed theory. The
successive, ordered action of the operators AijnJr on the vacuum produces the in-state of the
deformed theory. From the above expression we derive the dressing relation?

in,a in,b

{85} ,in), = ™50 i<t % {8} in), . (2.24)

The same steps can be carried on verbatim to obtain the dressed out state. Taking the
overlap of these states, finally, yields the S-matrix for the deformed model,

S’)\ ({B;n} ’ {ﬂ?ut}) _ ei/\Eab (Zj<kq;.“’aqg‘vb-i-szq;.’ut,aqzut,b) S’O ({B;H} , {,B;Nt}) . (2.25)

As we said in the beginning, this derivation is a straightforward extension of the one pre-
sented in [11, 13] for the TT deformed S-matrix. A peculiar property of the TT case is that
the corresponding charges generate space-time translations. Then as a result of the dressing
procedure Stueckelberg fields acquire the meaning of dynamical (relational) space-time coor-
dinates, which in turn leads to a non-locality of the TT deformed theories. For conventional
internal symmetries the dressing procedure does not affect the locality properties.

2.4 A few words on anomalies

Strictly speaking, everything we have said up to here holds only if the U(1) symmetries
under consideration do not exhibit external anomalies. If this is not the case, however, we
can modify the minimally coupled action A [®|B] by adding an appropriate quadratic
term that cancels the anomaly. Let us be more precise. Suppose that our theory is such that
under a gauge transformation (®, B%) — (eiqa [®le*p pa — daa> the path integral measure
transforms anomalously

[D®] e Al®IBl _y [DP) eA(®IBlCas [a®dB" (2.26)
Then we can simply modify the definition (2.10) of the action Ay [®] as follows

AN / [DXDB] 67A0[<I>|B]+Cabeadefﬁsab J(dxe—B*)A(dX"—B) 7 (2.27)

2Naively, a factor 2 in the exponent might be expected. However one needs to be careful not to double
count the charges. In fact, the dressed operators act on the vacuum by creating an incoming particle with
rapidity 3; and, contextually, measuring — in the exponent — the charges of the particles that have already
been created.



so that the integrand is properly gauge invariant. We can then proceed with the manipula-
tions we presented above just as in the anomaly-free case. The only difference arises in the
equation for the Stueckelberg fields, which now reads

b
|:Cab 2/\6(15} dB’ =0. (2.28)

The flatness condition dB* = 0 is correctly imposed by this equation, except for the isolated
points solving the quadratic equation

4dN* +2ithA—1=0, t=Tr(eC), d=DetC. (2.29)

Similarly, at these points the B® equations become degenerate and do not allow to solve for
the Stueckelberg fields.

So we see that in the case of anomalous symmetries there might exist values of A for
which the double-current deformation cannot be defined. These points should have some
physical significance. In order to understand this, let us study a simple example: a free
compact boson? with action

62
Ao [p] = /dQ:v S Ooupde, o~ pt2m. (2.30)
This theory possesses two U(1) conserved currents, the shift and the winding currents

1
Js = B2dey, Jw = — xdp. (2.31)
27
The minimal coupling with the background fields corresponding to these currents has the

following form

S s\, € S
Ao [¢|B] = /d2 [ 5#1’ 3;#’ — Bu) (&,90 - B,,) + 5 ((%gp — Bu) BIYV] . (2.32)
This expression can be confirmed by checking that the response under a variation of the
background fields correctly yields the currents,

d

= "5ps

AolelBl| . dw=o

e = ——wAolelBl| . (2.33)

However, as it is well known, this system exhibits a mixed anomaly, namely*

0 0

C’ab:( ; ) ) a,b=S,W. (2.34)
T or 0 ab

Consequently, the deformed model can be defined correctly for all values of A safe for

the isolated point A = 7. Importantly, this special value appears as a singularity in the

compactification radius of the deformed theory. In fact, if we fix the saddle point in (2.27)

3We thank Yifan Wang for suggesting us to look at this example.
4This is easily obtained by shifting BY — BY 4 da*¥ in (2.32).



with (2.32) and (2.34), we find that the double-current deformation amounts to a simple
redefinition of the compactification radius 3

by 2
Ax[e] = / d*x 5(2)%@8“% B(A) = Miiﬂl

B. (2.35)
The isolated point A = 7 at which the equations (2.28) become singular coincides precisely
with the singularity of 3 ()).

Another thing worth noting at this point is that the Stueckelberg field X to be
introduced as in (2.27) plays the role of the dual boson ¢ [26]. From this perspective, the
whole deformation procedure described in section 2.2 looks very similar to a deformation
of the T-duality [27]. In fact, it turns out that double-current deformations, in the case
of Abelian currents, are nothing else but TsT transformations [17]. We will return to this
point in section 3.4.

3 Double current deformation of the free complex scalar theory: classical
considerations

For conventional internal symmetries, physical effects associated with the dressing phase
in the deformed S-matrix (2.25) are very mild. Indeed, the dressing phase shifts are
independent of all kinematical variables, so unlike in the TT case, there are no scattering
time delays associated with this dressing. Of course, the double current deformation still
changes some of the physical observables, such as the finite volume spectrum. However,
given that there is no dimensionful scale associated with these phase shifts, one expects
that the deformation should lead to a conformal symmetry if the initial symmetry is itself
conformal. Indeed, the operators of the JJ type are well known to be exactly marginal [28]
if the corresponding conserved currents are spin one primary operators.

However, one may worry that something might go wrong when the latter condition is
not satisfied for the currents which are used to define the deformation. A simple example of
a conserved current which is not a spin one primary (and, in fact, is not a well-defined local
CFT operator at all) is provided by the Noether current associated with the phase rotation
symmetry of a massless complex scalar boson ¢. This current depends on the field ¢ itself
without any derivatives acting on it. This leads to the presence of logs in the correlation
functions involving this current, and as a result the current does not belong to the set of
well-defined local operators in the free boson CFT.

It will be somewhat surprising if the corresponding double current deformations are
still exactly marginal. Indeed, this will mean that it is possible to build new CFTs using
ingredients which are not a part of the conventional CFT data. In particular, there are
known examples of non-compact o-models which are scale invariant, but not conformal
invariant [29]. So one might suspect that the double current deformation will lead to
theories like this rather than to proper CFTs in this case.

To test whether these worries are warranted let us study in detail a simple setup of
this kind. Namely, in the next few sections we will focus on a theory of two free, massless



complex scalars ¢%, with a = 1,2, living in 2-dimensional Euclidean space. Such a theory is
described by the action

Aolo) = [ (.0 @) 96" (@) = [ o] 19", (31)
and possesses a U (1) x U (1) symmetry
¢t — @te e, (3:2)
with associated conserved currents
Tt (@) =i ([¢° (@)] 00" () — 6" (2) [Bue” (2)]T) - (3:3)

We are going to use these two currents to derive the double-current deformed model. To
implement the procedure presented in section 2, we will need the minimally coupled action

A1) = [ @a [(9u+id5 () 0* ()] (0% + 4% () 6 () (34)

from which the currents can be derived by infinitesimally varying the fields A*. The
deformed classical action we are looking for can be obtained from

Ay [6]4] = Ao [6]4] + ﬁeabs’“’ / @ A% () 4D (x) | (3.5)

after imposing field equations for A®. As we have proven above, this will be equivalent to
the action Aj [¢] determined by the flow

%AA (6] = iape™” / 2z T (2) JY () (3.6)

3.1 The deformed action

The form (3.5) for the deformed action can be used to easily derive an explicit expression
in terms of scalar fields only. All that is needed is the solution to the equation

i ,uzxAb - _ d
Y T)

o Ao [614] = Ji = 24 |9l (37)

where |¢.|> = ¢! ¢, and Jiy is as in (3.3). It is straightforward to find

2\ 2
1 _ sV T2 2 1
e TR vIPT: {zsu J2+ 47 [¢? Ju} ,
o , (3.8)
A2 =_ . {iguw; —axlg!| Jg] ,
1+ 16)2 [¢162]

from which we derive the action

) 2 2

ienr JLI2 = 2X (|¢2* LI+ ot J2 )
1+ 1602|9192

Ay [¢] = / d’x {amga%um ] . (3.9

~10 -



By rearranging this expression, we see that this is a non-linear o-model with a non-vanishing
B-field

Ay [¢] = /d%; (0" G ap (®) + ic" Bag (®)] 9,249,07 , (3.10)
where now A, B =1,2,3,4,
P = ¢°, Pat? = pof | a=1,2, (3.11)
and
¢@= (ig; }(3) ’ p®= (bﬂ% 5%) S
ANl (plig2 0 114832 |¢l¢??
A e T ( 0 ¢2*¢1> ’ (TS
A 0 ¢! ealal )
p(®)= 14 16A2 |plg2[? <_¢1T¢2 0 ) ’ b(®) = _1+16)\2|¢1gb2|26
We can conveniently use polar coordinates on the target space
o' = preidn ¢ = poei®? | (3.14)
in terms of which the action simplifies greatly
2
Al 0] = / T [(a”p“)Z 1 i—p ﬁ&zﬁ%pg 1 +81Aﬁp§2p§%p§ SO0 - (B15)

3.2 Comnserved currents

Let us return to the expression (3.5) of our action, as it turns out to be more convenient.

The equations of motion are easily found

VZV“’“@Z)“ =0, VZ =0, + iAZ (),

1 a . v b atyva ra axvat rat (316)
55175“14”:(;5 V359t = "V ot

As expected from the general arguments, it is not difficult to see that these equations imply

flatness of the connections A

e"o, Ay =0. (3.17)
As usual, it is convenient to adopt complex coordinates
1 1 1 1
z=x+1y, 0= -0, + =0y, A= AT+ — A7,
2 2i 2 20 Y 3.18
_ . = 1 1 e 1Aa 1 " (3.18)
Z2=T =y, 8:5817_%6217 :i x_z Y

in terms of which we have

@avaqﬁa — 0, i€abAb — ¢aTva¢a . ¢avaT¢aT ,
20 ) ) (3.19)
7€abAb _ ¢GTVG¢G o ¢‘IV¢IT¢GT 7

DA* = HA®
’ 2\

- 11 -



Note that

Ve =0 +iA%, V=9 — A%,
- N _ (3.20)
Ve =0+iA%, VT =§-iA",

and by definition the flatness of A® implies [V“, ?“} = 0. It is now a matter of elementary
algebra to verify that the following quantities

a _ aTma‘[ a\n ja T a _7aTmaT7ana
Gy = (V) et (v, W, = (V) g0t (V)" g0, (3.21)
for m,n =1,2,... are not just conserved, but (anti-)chiral
oW, =0, 9Vl =0  VYmn=12.... (3.22)

Limiting to the indices (m,n) = (1,1), we see that the following two objects

T = \1/%171) + \pgm) , T = \If%m) + ‘If?m , (3.23)

can be identified with the total energy-momentum tensor components of our deformed
model. Indeed the same expressions (3.23) are obtained by Noether procedure from the
action (3.5). As each of the summands in (3.23) is independently conserved and (anti)-chiral,
we conclude that our model is classically conformal:

or =0, 0T =0. (3.24)

3.3 Equations of motion and deformation map

The equations of motion can also be extracted from the action (3.5):
o (O +iA%) (9, +iA5) 6" = 0. (3.25)

It will not serve our purposes to derive explicitly the equations only in terms of the fields ¢.
What we wish to note is that the above equation can be rewritten as

9,0M¢" =0, P = V" 9, d® = A®. (3.26)

In terms of the fields ¢, the stationary point equations for the gauge field take the form

Ar = —2idee M, T =i (870,67 — 670,0%T) (3.27)
so that
U () = =207 [ dye, T ) (329)
Yeg—x

where g is an arbitrarily chosen point. This is precisely what we expected from the
discussion in section 2.
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3.4 The double current deformation as a TsT transformation

In section 2.4 we have noticed how the double current deformation procedure described in
section 2 resembles a deformation of the T-duality for the case of a compact boson. In fact,
it corresponds exactly to the TsT transformation first introduced in [17]. The particular
case we are studying, the pair of complex scalars, is actually the example presented in
section 2 of [17]. Indeed, the action of two free complex scalars (3.1), can be interpreted as
a o-model on a flat, torsionless 4-dimensional target space

Ay = / e G0, X 0 X7 (3.29)
where
1000 X =p
2 X2 -0
G| 000 , (3.30)
0010 X3 =p,
00 0p3 X4 =0,

and ¢! = p1e', ¢ = pre’2. The target space metric of this model
ds? = dp? + dp3 + pidoF + p3dbs (3.31)

possesses two Abelian isometries 6; — 60; + ¢; with ¢; constants. The TsT transformation
considered in [17] (see also [30]) consists of a T-duality transformation §; — 6y, then a
shift 69 — 05 + ’y0~1 and finally a second T-duality 6, — 61. The resulting background is
the following

1 0 0 0 0 0 0 0
_ _pies
G = O im0 0 B = 00 Vi (3.32)
0 0 1 0 ’ 0 0 0 0 ’
r3 —0303
0 0 0 0 25850 0
1 2 2 9
=~ log [L+7°pip3] . (3.33)
on which the o-model action
1
A= ﬁ/d% V9 [(GIJQ#V +iBrye) 0,X'0,X7 + 53(2@} ; (3.34)
0

corresponds exactly to (3.15) in the flat space-time limit ¢ — J, at order O (1/h) and
provided one fixes v = —4A\.

The fact that the model (3.15) is equivalent to a free theory (3.1) under a TsT
transformation, indicates that its invariance under conformal transformations should survive
quantization, without suffering from any anomaly. Indeed it was shown in a number of
works [31-37] that appropriate quantum corrections to the T-duality exist, up to three
loops, that preserve the conformal invariance of the model. In the next section we are going
to support this assertion by computing the Weyl anomaly coefficient of the model (3.15)
up to 2-loops. We will see that these can be made to vanish by an appropriate choice of
quantum corrections to the classical metric G, flux B and dilaton .
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4 Double current deformation of the free complex scalar theory: the
Weyl anomaly

We have seen that our model is classically conformal. Here we wish to verify that this
statement survives at the quantum level. Let us then consider the general bosonic o-model
action in curved space

1
A= m/d% [(\/ﬁg‘“’GzJ +ie" By y) 0,X'0,X7 + h\@R(z)@] ’ (4.1)

where g,,,, is the world-sheet metric and R® the corresponding Ricci scalar curvature. For
convenience, we introduced here the loop counting parameter h. Flat space conformal

invariance of the o-model is equivalent to the invariance of (4.1) under Weyl transformations
G (2) — e2@g (z) . (4.2)

This invariance holds up to a trace anomaly. Under this Weyl transformation, the various
quantities contributing to the action vary as follows

6.Gry = —wfB% + 0 Gr0,XK 6,® = w(c— %) + O o, XK,

4.3
0uBry = —wBP, + 0k Br j6, XK, S, X1 = whF!. (4.3)

Here ,BIGJ, BIBJ and B2 are, respectively, the 3 functions for the target space metric, B-field
and dilaton. Note that we explicitly separated the central charge contribution ¢ in the
dilaton variation, which describes the trace anomaly. All variations expand in /i as

498 (G B) =S HAYSE (G B) . g (G.B.a) =S WA (C.B.D) . (44)
k=1 k=1

After some simple manipulation and integration by parts, the variation of the action can be
brought to the following form

_ 1 2 N2 G
A= / d*x [w <\/§g (-5H + 2hv1FJ) +
+ e (=P + hH ;" Fi) >8HX18,,X‘] +
+ wg\@R(z) (e 8%+ hoKF) +
+ 2h<\fgg‘“’FK8uXK8Vw - \/gAu@ﬂ :

where V; denotes the standard covariant derivative on the target space with metric Gy,
acting on vector fields as

1
V[UK = 8[vK + FKIJUJ , FKIJ = QGKL (8[GLJ + 005G, — aLGU) (4.6)
and Hjj is the torsion

Hrjx = 0rBjk +05Bkr + Ok Bry - (4.7)
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For scale transformations w = constant so the last two terms in eq. (4.5) cancel, hence the
condition for scale invariance generalizes to all loops and nonzero antisymmetric tensor Brj
the results of [38, 39] and [29].

For general conformal transformations, however, w is not a constant. Then, in order
for the last two terms in (4.5) to cancel, one has to choose the vector Fj controlling the
transformation law of the world-sheet scalars to be a gradient [40)]

Fj=-V®. (4.8)

Finally, requiring that all variations vanish — apart from the central charge contribution
which reproduces the Weyl anomaly — we arrive at the following equations determining
the conformal invariance of the action (4.1)

B, + 2RV V0 =0,
BE; +hH 5 VK® =0, (4.9)
B® + WV dVED = 0.

4.1 1-loop computations

The $ functions for a o model with B-field were computed at one loop long ago [41-43] and
can be expressed in terms of geometrical quantities on the target space. Let us introduce
the generalized connection FX,; defined as

Fl,=T8, - %HKIJ7 (4.10)
and the associated covariant derivative &7, acting on vector fields as
I = o™ + FB w7 = vl — %HKUUJ. (4.11)
Then we can define the generalized Riemann tensor as the curvature of this connection
@IQJwK—.@J.QIwK—i—HUL@LwK :%’UKLwL. (4.12)

Some elementary algebra shows that
1 1
4 4

with R;jir being the usual Riemann tensor. Contracting one or two pairs of indices we

1 1
Zrjxr = Rrjkr + §VLH1JK - §VKHIJL + - Hy MHypg — ~H MHygy,  (4.13)

obtain, respectively, the generalized Ricci tensor and generalized Ricci scalar

1 1
Ry =R 15 = Ry — §VKHKIJ - ZHIKLHJKLa
) (4.14)
R=%R"=R- ZHIJKHIJKa

where R;; and R are the usual Ricci tensor and scalar. These two quantities satisfy
a modified version of the twice contracted Bianchi identity, which will be of use to us
momentarily. Let us recall it here

1 1
@J%IJ—§91%+H[JK%JK—EVIHJKLHJKL:O. (4.15)
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The 1-loop 8 functions for G and B are the symmetric and anti-symmetric parts® of
the Ricci tensor [42]

na 1 ng 1
B1° = S2(1) BYY = = 521 - (4.16)
The 1-loop B function for the dilaton is instead given by the following expression
BT — —*VQ(I’ - ﬂHIJKHIJK (4.17)

Thus the equations (4.9) for G and B, taken at 1 loop, combine into
RHrjg+2912;P =0. (4.18)

Applying the identity (4.15) and after some massaging of the expression, we find

29, 9,69’ & — 791@%1» o H'KL  H e =

2 (4.19)
=9 (vmvhp _lyrg MHJKLHJKL> =0.
which is consistent with the third equation in (4.9) at 1-loop
Viovie - v2<1> - —HIJKH”K 0. (4.20)

24

In summary we see that the request of conformal invariance at 1-loop can be compactly
expressed as
K1y +2919;9 =0, (4.21)

since the equation for ® automatically follows from this thanks to the Bianchi identity (4.15).

Let us now verify that a function @ exists for our double current deformed scalar model
such that (4.21) is satisfied. We will use the polar-coordinates description (3.15) of the
target space, due to its simplicity. The classical metric and B-field look as follows

1 0 0 0
ao 0 W 0 0
0 0 1 0 ’
Pa
0 0 0 1+16A2p2 p2 (422)
0 0 0 0
4)\/7292
B(o) o 0 0 0 1+16)\12p2%p§
0 0 0 0
0— 4*"192 ;00

1+16)\2

It is then a matter of simple computations — easily implemented in Mathematica® — to
find the generalized Ricci tensor, whose explicit expression is given in appendix A. More
importantly one can verify that the following profile

1
2 =~ log [1+16X2p303] , (4.23)

50ur convention for the (anti-)symmetrization of the indices is not normalized, i.e. Ay = Aab + Apa.
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satisfies (4.21). Note that this expression coincides exactly with the one in (3.33), which was
obtained from the TsT transformation of the free theory. We conclude that our deformed
model is indeed conformally invariant at 1-loop, thanks to quantum corrections to the

transformation law of the world-sheet scalars. In particular we see that
2

Py
1+ 16X2p2p2 "

p3 5 (4.24)
1+ 16X2p2p2

Jup1 = —16M%wp,

Jup2 = —16M\%wpy

0,0, =0.
4.2 2 loops
The S-functions at 2 loops can be written in terms of the generalized Riemann tensor and
the torsion as [42, 44-47]
1 1 1
f]) = 5 ,@]KLM%KLMJ — 5,@]KLM.@LMKJ + 2,@K]JLHKMNHLMN:| . (4.25)

This expression corresponds to a particular “minimal subtraction scheme” [44, 45]. Alter-
native schemes are related to the one above by a redefinition of the metric and B-field at
1 loop

(G+B)IJ — (G+B)IJ+h{OQR]J—FOCQH]KLHJKL—&-CV;;%]J} . (4.26)

To verify the 2-loop conformal invariance of our model, we are allowed to introduce 1-loop
corrections to the classical quantities, i.e.

G =G +nG"), By =BY")+nBY, &= 4pe0, (4.27)

with G0, BO) and ®©) given in (4.22) and (4.23). Using Mathematica® and the expres-
sion (4.25), it is then not too difficult to verify that the identity

Bry + 20719, (80 + hoW) = 0 (r*) | (4.28)
is satisfied for the following 1-loop corrections

16X 201p30 —1 0

S S -
(14 16X2p3p3) =1 016A%p1p2 0
0 0 0 0 (4.29)
5 -0,

o) — —8)\2M
1+ 16X\2p2p3 "

The transformation law for the scalars becomes then

2 2 .4
P2 1 —16A%p5 2
Sup1 = —16X2wp; R,
. L+16X0%07p3 (14 16A2p2p2)°
2 1 —16M%pf 4.30
(5(,0/)2 — —16/\2wp2 p12 5 2p12 2h2 , ( )
L+ 16X%0805 (1 + 16A2p2p3)

0,0, =0.
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We have verified that the model (3.15) is conformal up to 2 loops, provided the
appropriate quantum corrections are introduced. This, together with the fact that the
model is a TsT transform of the o-model with target space metric (3.31), is a very strong
indication that the model should indeed be fully conformal at the quantum level. A rigorous
proof of this statement would require an all-loops argument which, for the moment, eludes us.
In the next section we will follow an alternative road: we will consider the two free complex
scalar theory (3.1) as a decompactification limit of a WZW model with compact target
space. In the latter, the double current deformation is an exactly marginal deformation,
implying that the deformed model is conformal invariant at all loops.

5 An explanation from the WZW model

Let us consider the g WZW model with action

k ~
Ailg] = ﬁ/d% Tr [0'g0ug] +T's 9] ,
5 (5.1)
elg) = —it [ Tr |5~ '0%997'0%997 107§
2= T TEapyll |9 0799 0799 0°9]-
>

Here ¥ is a 3-dimensional space, with boundary 0%. The fundamental field g : do — & is
an element of the Lie group &, whose Lie algebra is denoted by g. k is the level of g and §
denotes the extension of the fundamental field g to the 3-dimensional space . As is well
known, this theory enjoys a Ka¢-Moody symmetry & (z) x & (2) with local, conserved and
chiral currents

J(2) =kdg(z,2) g " (2,2),  0J(2)=0, 52)
J(2) = —kg ' (2,2) 09 (2,2), 0J(2)=0, '
where z = 2! + 20 and z = 2! — i20.

In this theory there is no conceptual issue in performing a double current deformation.
Indeed, owing to the compactness of the target space, the conserved currents J(z) and J(2)
are well-defined operators of the theory of dimension 1. For our purposes, we suppose that
g contains two commuting generators ¢g; and go, with corresponding currents Jy, Ji, Jo and
Jy. Then the deforming operator will be

21 12 = ieqy J*J" (5.3)

which is a well defined marginal operator, leading to an exactly marginal deformation and,
hence, a 1-parameter family of conformal theories. We argue that the conformality of the
deformed theory survives in the decompactification limit. As we proceed to show, in this
limit the double-current deformed WZW model coincides with (3.15) plus a number of
spectator free fields.

Let t4 denote a matrix representation of the algebra g. Then we can parametrize the
group element ¢ with target space coordinates X4 as

g(z,7) = evi X B, (5.4)
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The decompactification limit of the WZW model corresponds to the large level £k — oo
limit. We see that

» | i
— 9 XAt - — _r
909, 5 X Aoy 6k3/2

Using this limiting behavior, we can write down the large k£ expansion of the conserved

OuXAXE [ta, ]~ — = XAXPXC [[ta,tp] 10]+0 (K72).

currents
)
6vVk

_ _ 1 5 ' 5
JA = —iVROXA 4 3 X PXC GZWf S pedXPXOXP 10 (k)

where J = J4% 4 and J = JAt4 and fapc are the structure constants of g. These expressions

1
JA = iVkoXA + 3 fAc0XBXC 4

k—oo

FAopfErcdXBXCXP 40 (k*l) :
(5.5)

provide the following perspective on the origin of the “non-conformal” conserved currents
Jne in a free boson CFT. To be specific, let us consider the simplest case of the SU(2) group,
when A =1,2,3 and fapc = ieapc. At the leading order in the large k limit each of the
currents J4/ VE, Ik approaches a well-defined conserved spin 1 primary current. This
way one gets (anti)holomorphic shift currents of free bosons. However, the sum J4 + J4,
which in components is equal to

JA+ T =ivhe 0, X+ .., (5.6)

at the leading order at £ — oo reduces to a trivially conserved current. For a compact
boson this is the winding current discussed in section 2.4; in a non-compact case there are
no states which carry charge under this current. The “non-conformal” conserved rotation
currents arise then as the next-to-leading terms in (5.6).

Let us now consider an SU(2) x SU(2) WZW model and its double current deformation
of the form A(J3 + J3) A (J3 + J3) where J4 and JA refer to currents corresponding to two
different SU(2) subgroups. This deformation is exactly marginal so the deformed theory is
conformal. Formally, the J4, J A currents diverge at large k, so one may expect that it is
necessary to take A ~ 1/k in order to obtain a well-defined deformation in the & — oo limit.
However, in view of (5.6), the charges of all states corresponding to J4 + J4 stay finite at
k — oo. Hence, one may take the k — oo limit of this deformation at constant A\, which
reduces to the model considered in the previous section (with a couple of extra decoupled
free scalars).

We believe that this construction makes it less surprising that double current defor-
mation allows to build new CFTs using ingredients which are not a part of the standard
conformal data. At least in the free boson example considered here this deformation can
be thought of as a limiting case of a proper CFT construction. It will be interesting to
understand whether this viewpoint applies more generally.

6 Non-Abelian symmetries, central extensions, Yang-Baxter deforma-
tions and TT

In this work we have considered 2-dimensional theories deformed by an antisymmetric
bilinear operator constructed from a pair of U(1) conserved currents. We have seen that
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such deformations are obtained by a “topological gauging” of the U(1) x U(1) symmetry.
It is natural to ask if it is possible to generalize the procedure to the situation in which
we consider a non-Abelian group G. Naively adapting the steps as in section 2 leads us to
consider actions of the following type

A [014) = Ao [@14] + 7 [ (Ao, A5) (6.1)
where w is an antisymmetric 2-form on the Lie algebra g of G,
w(Aa, Ag) = —w(Ag, Aa) . (6.2)

Not surprisingly, for an arbitrary choice of w this deformation does not seem to exhibit any
nice properties. In particular, an attempt to integrate out A and to interpret the deformation
in terms of a JJ flow equation in general fails, because the original symmetries are broken
at a non-zero value of the deformation parameter. Note that this type of deformations
was first considered in [19, 20] (for non-linear o models and at the classical level), where
they were called Deformed T-Dual Models and shown to be equivalent to homogeneous
Yang-Bazter deformations [21-24]. There it was pointed out that these deformations acquire
nice properties, and in particular preserve classical integrability, when the 2-form w satisfies
the cocycle condition,

W([A, B, C) +w([C, Al, B) + w([B, A],C) = 0.

It was argued there that in this case the gauge invariant form of the action (6.1), which is
obtained by introducing the Stueckelberg field X € g, takes the following form

AN [01A] = Ao [014] + o5 [ w(X,F) + /&%(Aa,Aﬁ) , (6.3)
where F' is the field strength corresponding to A. As is well known, non-trivial 2-cocycles
are in 1-to-1 correspondence with the non-trivial central extensions of the algebra g. In
particular there exist none for semi-simple algebras.

With appropriate modifications, the manipulations presented in section 2 can be applied
to the action (6.3). In particular, we see that the action A4y [®] obtained by integrating
over X and A, satisfies the flow equation

A 8] = e [Tl ) R (5 )] (6.4)

where we assumed that g has an invariant scalar product (trace), so that the 2-form w can
be dualized to a linear operator @ : g — g, such that

w(A, B) = 2Tr [AG(B) — Ba(A)],

2
and also assumed that @ is invertible so that R = @~! obeys the classical Yang-
Baxter equation
[R(A),R(B)] = R([R(A),B]+ [A,R(B)]) , (6.5)
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as a consequence of the cocycle property. We see then that the class of homogeneous
Yang-Baxter deformations is equivalent to a non-Abelian double-current deformation. It is
in fact straightforward, using e.g. the expressions in [48], to prove that the action of these
models indeed satisfies the flow equation (6.4).

As a note of caution though, let us point out that in the non-Abelian case the action (6.3)
appears to be only a linearization in X of the full gauge-invariant action. Indeed, in the
non-Abelian Stueckelberg procedure one introduces a Stueckelberg field U, which takes
values in the group G, and replaces the gauge field with its gauge transform, A, — AY.
The action (6.3) can be obtained then by writing U = e* and linearizing in X.

While postponing a careful analysis of these models to future works, we wish to conclude
by spending some words on a particularly interesting case. Consider a generic relativistic
invariant theory Ap [®] in (1 + 1)D Minkowski space-time. The generators of the Poincaré
algebra iso(1,1) are { Py, P>, K}, satisfying the usual commutation relations. This algebra
admits a non-trivial central extension iso,(1,1) with non-vanishing commutators

[Pu, P) =neay, K, Pu =¢,Py. (6.6)

According to what we said above, we can deform the action Ay [®] using the currents
associated to the momentum operators P,. These are nothing else but the components of
the energy-momentum tensor, so we expect such a deformation to correspond to the TT
deformation of A [®]. In fact, it is easy to verify that the action (6.3) with the choices
Ay = e Po + kK and w(F,) = nel Py, w(K) = 0, is equivalent to the one considered
in [11, 13]. Here we see it arising from the “topological gauging” of the Poincaré symmetry.
Adapting the discussion in section 2.3, we conclude that the action Ay [®], obtained
from (6.3) by integrating X and A satisfies the TT flow equation

L8] = ey, [FeTE T ), T = Al (6

*  detedef
where A = A/n. Additionally, each creation operator is dressed by the phase
aijnT (8;) — e aijnT (8;) (6.8)
which leads precisely to the usual CDD factor of TT-deformed theories

S, ({p;n} ’ {pgut}) O ZK,C(p}“Ap}erp;ut/\pz““)50 ({p;rl} : {pgut}) (6.9)

The interesting thing to notice here is the direct relation between the TT deformation
and the central extension (6.6) of the 2-dimensional Poincaré algebra. In particular, this
perspective somewhat demystifies an intriguing coincidence between the TT CDD factor
and the additional phase in the multiplication law in the centrally extended Poincaré group,

. . 9 . .
elpépa elpﬁpﬁ = el(p})+p§)Paemp1/\p2 .
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7 Conclusions

To summarize, we studied double current deformation of two dimensional quantum field
theories using the path integral description based on the topological gauging of symmetries.
In the case of conventional internal symmetries this method allows to calculate the deformed
S-matrix. It is quite robust, and works even in situations where one might have expected
that something could go wrong, e.g. in the presence of anomalies and when a conformal
field theory is deformed by a “non-conformal” conserved current. It also allowed us to
shed light on the relation between the TT deformation and the central extension of the
two-dimensional Poincaré algebra. Hence the topological gauging procedure provides a
natural starting point for exploring generalizations of solvable double current deformations.
In particular, this can be achieved by considering more general actions for the gauge fields
and further exploring the non-Abelian case. In particular, it looks natural to study a
deformation of a conformal field theory based on the topological gauging of the Virasoro
symmetry, which is perhaps the best known example of a truly non-Abelian algebra with a
central extension. The latter example is also somewhat different from the ones considered
here, because the CFT vacuum is not invariant under most of the Virasoro generators. We
hope to address these and related questions in the future.
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A B functions

Here we give the explicit expressions for the § functions of the double current deformed
scalar model, at 1 and 2 loops. At one loop we have

1 1
Y (o) 0 b (o) 0
1 1
1) _ 32\ 0 bg2) (p1,p2) 0 554) (p1,p2)
= 1 1
(1+16320203)2 | B5) (pop2) 0 8 (o) 0O
0 ~55 (p1. p2) 0 by (p2, p1)
where
b(l) — 2 (1 -16)2,2,2 b(l) _ 22 1—16)\2[)411
i1 (p1,p2) = p3 ( - P1Pz) ) 9 (P1,P2) = p1p241 T 16)\2/)%,0% )
2 2
+p
pth) —9 pH — _a\2p2 i
13 (p1,p2) pP1P2 , 94 (P1,p2) P1P21+ 16)\2p%p§
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The S function at 2-loops, including the contributions coming from the 1-loop corrections

to the metric G and the scalar f, has a the same form

b (o1, p2) 0 b3 (o1, p2) 0

o 647 0 b (pp) 0 b5 (p1p2)
(1+16020300)" | 03 (p1op2) 0 b () 0

0 —bgi) (p1,p2) 0 béﬁ) (p2,p1)

where the entries are now given by

2
0 (p1,p2) = 1 — 8323 (4p% + p3 ) — 256A" i3 (P — p3) — 2048X%0i145

bglz) (p1,p2) = Pt

o1 = 8X2p5 (4p1 + p3) + 128\ p2p3 (pi + 2pTp3 + 3p5) — 6144X%p¥p)
1+ 16X2p2p3 ’

1
b1y (p1,p2) = —16X2p1p2 (7 + p3) (1 — 16320303

1
b§4) (p1,p2) = —8Apip

1 — 4N (pi + 4p1p3 + p3) +192X*p2p3 (pi + p3)
1+ 1672p3p3
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