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1 Introduction

More and more frequently integrability has been found to make its appearance in mod-
ern theoretical and mathematical physics in a wide range of problems, sometimes very
unexpectedly (see the ongoing seminar series [1]). To a large extent this is because these
models hide beautiful and very rich mathematical structures. They are universal enough
to accommodate the complicated combinatorics of Feynman diagrams in 4D and 3D gauge
theories and at the same time describe the motion of classically extended objects in curved
spaces making the AdS/CFT correspondence almost manifest in many cases [2].

One of the main features of integrable models is separability of variables: the possibil-
ity of choosing a rather non-trivial coordinate system where the dynamics of the system
simplifies dramatically and often can be solved exactly. At the quantum level this fre-
quently implies the existence of a separation of variables (SoV) basis in the Hilbert space
in which the wave function factorises into simple universal blocks. Ultimately, this factori-
sation should allow one to compute non-trivial expectation values of various observables
with qualitatively much less computational effort than solving the same problem in a direct
brute-force way.

SoV methods for quantum spin chains were pioneered by Sklyanin in [3–7]. The gener-
alisation to higher rank was also initiated by Sklyanin [8] and later extended by Smirnov [9],
but its explicit realization for models such as the Heisenberg XXX spin chain took more time
and required new tricks to be developed. One of the crucial steps was done in [10] where
the basis factorizing the stationary wave functions of the spin chain was built explicitly
and it was also understood into which blocks the wave function factorises. These findings
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started a new wave of results in the subject [11–19] which remains very active. Since a
large class of integrable models can be related in one way or another to a generalisation or
deformation of the Heisenberg spin chain — even a complicated and powerful model such as
planar N = 4 SYM which is essentially a version of the XXX spin chain with PSU(2, 2|4)
symmetry [20] — this makes the problem of understanding how separation of variables
works in models with high rank symmetry pivotal for progress in a number of directions.

In order to compute non-trivial expectation values between two stationary spin chain
states one needs an additional ingredient — the measure or, equivalently, the scalar product
in the SoV basis. For gl(2) (rank 1) models it was found in numerous examples, but for
higher rank cases it has remained unknown for a long time. Only recently it was obtained for
spin chains at any rank, in a series of papers [21] and [22]. The result for the scalar product
was shown to take a very compact determinant form, and is also in perfect agreement
with the general structure anticipated earlier from a semiclassical picture [23, 24]. This
finding also encouraged development of an alternative approach to obtaining the measure
via recursion relations for its elements in [25], which to a large extent was shown to be
equivalent. In this paper we extend the results of [21, 22] to non-compact spin chains with
spin s, and also show how to use the measure to compute some very non-trivial overlaps
and expectation values.

The SoV program has a strong motivation from the perspective of the AdS/CFT
correspondence. At the moment it is well understood how to compute, using integrability,
the exact non-perturbative spectrum of anomalous dimensions in planar N = 4 super
Yang-Mills theory in 4D [26], and there are more examples of non-trivial QFTs which
can be studied [27].1 At the same time much less is known about correlation functions
— for very long operators there is the powerful hexagon approach [31], which, however,
fails at a certain loop order. There are strong indications that in order to access truly
non-perturbative correlation functions one should apply SoV methods [32–35] and in this
paper we show how very similar objects can be efficiently computed in the SoV framework.
Related overlaps were studied for spin chains in [36–39], and determinant representations for
them are not known beyond the rank-2 sl(3) case. Here we derive a (different) determinant
form for the overlaps at any rank of the symmetry group.

The paper is organised as follows. In section 2 we discuss some generalities of the
Heisenberg spin chain which will be used throughout the main text and explain how to im-
plement the SoV procedure for sl(2) spin chains. In section 3 we extend the previous sl(2)
results to the case of sl(3) case and discuss the details and subtleties which appear beyond
the rank 1 case in depth with the main focus being the construction of the SoV bases and
the corresponding wave functions. In section 4 we explain the functional approach to scalar
products and demonstrate that this formalism matches what is expected from the operato-
rial construction of the wave functions in the SoV bases. In section 4 we explain how to ex-
tract the measure in the SoV bases directly from the integral formalism and give an explicit
formula for its matrix elements. In section 6 we extend the previous construction of SoV

1As a result one can e.g. obtain very precise numerics for the spectrum at finite coupling [28, 29], analytic
results to very high loop order [30], and much more.
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states and wave functions to the sl(N) case and explain the technical aspects omitted from
previous sections. In section 7 we apply our new techniques to the computation of various
observables such as overlaps and correlation functions and show that they take a simple de-
terminant form. Afterwards, in the Outlook section, we present various interesting avenues
for future research. We also include various appendices to supplement the main text.

2 Warm up: notations and sl(2) example

In this section we collect our main definitions which we will be using in the remainder of
the text.

2.1 Heisenberg spin chain generalities

We begin by introducing the Heisenberg spin chain. Throughout the text we will assume
that the spin chain is built out of spins in some highest-weight (HW) representation of
sl(N) with the same spin2 s which we define below in terms of the highest-weight of the
representation. Let Ea,b be the generators of sl(N), satisfying

[Eab,Ecd] = δcbEad − δadEcb . (2.1)

We use the HW representation where Eab|0〉 = 0 for b > a, E11|0〉 = −s and Ebb|0〉 = +s for
b > 1, which we refer to as the spin s representations (explicit form of the generators can
be found in appendix F). This class of representations is a generalisation of the symmetric
powers of the defining representation which are labelled by Young diagrams with a single
row. Such finite-dimensional representations are obtained by setting s = 0,−1

2 ,−1, . . . .
Highest-weight representations of sl(N) can be constructed on the space of polynomials in
some number of variables. In general it is N

2 (N−1) [40] but for the class of representations
we consider it reduces to N − 1. Hence, our spin chain of length L has L(N − 1) degrees
of freedom.

In terms of the Lax operator

La,b(u) = u δab + iEb,a , (2.2)

and a constant twist matrix Λab we define the monodromy matrix

Tcb(u) =
∑
bi

L(1)
cb1

(u− θ1)L(2)
b1b2

(u− θ2) . . .L(L)
bL−1bL

(u− θL)ΛbLb . (2.3)

The transfer matrix is then the following operator acting on the spin chain

T(u) =
∑
c

Tcc(u) . (2.4)

The key property leading to the integrability of the model is that [T(u),T(v)] = 0 and so the
coefficients of the operator T(u) in the u expansion are integrals of motion. However, T(u),

2Actually it is −s which corresponds to the physical notion of spin — the defining representation of sl(2)
corresponds to s = − 1

2 .
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which is the transfer-matrix in fundamental representation,3 is a polynomial of degree L
and does not contain the complete set of mutually commuting operators. To complete the
set of the mutually commuting integrals of motion we have to additionally introduce the
transfer matrices in all anti-symmetric representations, which we denote as Ta,1. We define4

La,1
b̄,c̄

= Lb1 [c1

(
u+ i

a− 1
2

)
Lb2 c2

(
u+ i

a− 3
2

)
. . .Lba ca]

(
u− ia− 1

2

)
(2.5)

where b̄ := {b1, b2, . . . , ba} and similarly for c̄,5 and in the same way define the twist matrix
in the anti-symmetric representation Λa,1

Λa,1
b̄,c̄

= Λb1 [c1Λb2 c2 . . .Λ
ba
ca] . (2.6)

We then define the transfer matrix in the antisymmetric representation Ta,1 by using the
corresponding La,1 and Λa,1 in place of the original fundamental representation building
blocks in (2.3)

Ta,1(u) =
∑
b̄,b̄i

La,1(1)
b̄b̄1

(u− θ1)La,1(2)
b̄1b̄2

(u− θ2) . . .La,1(L)
b̄L−1b̄L

(u− θL)Λa,1
b̄Lb̄

. (2.7)

Defined in this way Ta,1(u) is a polynomial of degree a×L. However, for a > 1 one usually
finds that Ta,1(u) contains trivial factors, see appendix F. In particular TN,1(u) is just pro-
portional to the unit operator and is called quantum determinant. After removing trivial
factors, each Ta,1 for a = 1, . . . , N − 1 can be reduced to a polynomial of degree L and
hence the total number of non-trivial conserved charges is L(N − 1) — precisely matching
the number of degrees of freedom of the system and implying complete integrability.

Twist matrix. The purpose of twisting is to remove degeneracies in the spectrum of the
integrals of motion. For this a sufficient condition is that the twist matrix Λ has pairwise
distinct eigenvalues λ1, . . . , λN . In principle the twist matrix could be any diagonalisable
matrix with these eigenvalues, but for the purpose of this paper we assume a particular
form of it and take

Λij = (−1)j−1χjδi1 + δi,j+1 (2.8)

where χj denote the elementary symmetric polynomials in λ
n∏
j=1

(t+ λj) =
n∑
j=0

χj t
n−j (2.9)

and we further constrain the eigenvalues with λ1 . . . λn = 1. One can perform a similarity
transformation, simultaneously in the physical and auxiliary spaces, to bring the twist to
diagonal form and the matrix which diagonalises Λ is given by a simple Vandermonde-type
matrix

Sij = λN−j+1
i . (2.10)

However, for the purpose of separation of variables (2.8) is the most convenient as we will
see (see also [13, 19]).

3Of the auxiliary space.
4We define antisymmetrization as A[i1...ik] = 1

k!
∑

σ∈Sk
(−1)σAiσ(1)...iσ(k) .

5The r.h.s. of (2.5) is antisymmetric in both b1, . . . , ba and c1, . . . , ca.
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Wave functions. We will frequently refer to the eivenvectors of the transfer matrices
simply as wave functions, and denote them as |Ψ〉 for the right eigenvectors and 〈Ψ| for
the left eigenvectors. We denote the corresponding eigenvalues as Ta,1(u)

Ta,1|Ψ〉 = Ta,1|Ψ〉 , 〈Ψ|Ta,1 = 〈Ψ|Ta,1 . (2.11)

Spectrum and Q-functions. The expressions for the transfer matrix eigenvalues can
be conveniently written in terms of the so-called Q-functions or Q-polynomials. We define
the Q-functions to be “twisted” polynomials

Qi1,...,im(u) = (λi1 . . . λim)iu
Mi1,...,im∏
k=1

(u− ui1,...,imk ) . (2.12)

The numbers ui1,...,imk are the Bethe roots and they can be found, for example, from the
Bethe ansatz (BA) equations which follow the following pattern

Qθ(u1
k − is)

Qθ(u1
k + is)

= −Q1(u1
k + i)

Q1(u1
k − i)

Q12(u1
k −

i
2)

Q12(u1
k + i

2)
, k = 1, . . . ,M1 (2.13)

1 = −
Q1(u12

k −
i
2)

Q1(u12
k + i

2)
Q12(u12

k + i)
Q12(u12

k − i)
Q123(u123

k − i
2)

Q123(u123
k + i

2)
, k = 1, . . . ,M12

...

and we have introduced the Baxter polynomial Qθ(u) =
∏L
α=1(u − θα). As the above BA

equations originate from a nesting procedure, they contain some arbitrariness. Namely, at
the mth step of nesting one can choose one of N −m “vacua”. This arbitrariness results in
the existence of a large number of equivalent BAs related by the duality relations

QI,i(u+ i
2)QI,j(u− i

2)−QI,j(u+ i
2)QI,i(u− i

2) ∝ QI(u)QI,i,j(u) (2.14)

where I is a multi-index containing 1. We also assume the boundary condition Q12...N = 1
in the recursion relation (2.14). By evaluating (2.14) at u = uI,i + i

2 and u = uI,i − i
2 and

then dividing the results by each other we obtain the general form of the BA for auxiliary
Bethe roots6

1 = − Q−I
Q+
I

Q++
I,i

Q−−I,i

Q−I,i,j

Q+
I,i,j

∣∣∣∣∣
u=uI,i

k

, k = 1, . . . ,MI,i . (2.15)

Above we introduced the standard notation

f± = f(u± i
2) , f±± = f(u± i) , f [a] = f(u+ ia

2 ) . (2.16)

Having the Q-functions defined one can express all eigenvalues Ta,1(u) in terms of Q’s. In
particular

T1,1(u) = Q
[−2s]
θ

Q−−1
Q1

+Q
[+2s]
θ

Q++
1
Q1

Q−12
Q+

12
+ · · ·+Q

[+2s]
θ

Q
[+i]
1...,i−1

Q
[−2+i]
1...,i−1

Q
[−3+i]
1...i

Q
[−1+i]
1...i

+ . . . . (2.17)

The above expression is indeed a polynomial of degree L when the BA equations (2.13)
and (2.15) are satisfied. General expressions for Ta,1(u) can be found in appendix C.

6In some degenerate cases the set of (2.13) may not produce one solution for each state. In this case one
could either consider the full set (2.15) or use the Baxter equation instead.
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2.2 Warm up example — sl(2) case

To give a simple example of the known construction we described above and to set the stage
for the more complicated and original sl(3) and sl(N) cases in this section we consider the
simplest sl(2) case, very well known in the existing literature, see for example [41, 42].

Representation. We are considering general non-compact HW representations, where
each site carries the spin s representation. The sl(2) raising and lowering operators are
given respectively by

E12 = ∂x, E21 = −x2∂x − 2s x (2.18)

and the Cartan generators are

E11 = −x∂x − s, E22 = x∂x + s . (2.19)

The representation space is then the space C[x] of polynomials in x which is spanned by
monomials xn, n ≥ 0 (for L sites we have polynomials in the variables xα, α = 1, . . . , L). For
generic s this space is irreducible and infinite-dimensional. However, for special values of s,
in particular when s ∈ {0,−1

2 ,−1, . . . } the representation becomes reducible with a finite-
dimensional irreducible part. It is obvious that the raising operator annihilates the state
given by a constant and so the highest-weight state is simply given by the polynomial 1.

Scalar product. We define the scalar product 〈·|·〉 on our Hilbert space by introducing
an orthonormal basis en, n = 0, 1, 2, . . . and imposing 〈en|em〉 = δnm. Naively, one would
take en = xn as a normalised basis, however, this will not result in correct conjugation
properties for the generators. Instead one can define en = cnx

n and require the matrix of
the operator E12 to be minus transposed7 of the matrix of the operator E21, i.e. E21 = −ET12,
where transposition is defined in the usual way 〈Ψ1|OΨ2〉 = 〈OTΨ1|Ψ2〉. Together with
the requirement e0 = 1 this fixes cn and we find8

en = xn

√
Γ(n+ 2s)

Γ(n+ 1)Γ(2s) . (2.20)

At this point we should mention that our scalar product does not involve any complex
conjugation and the scalar product is linear in both arguments. To promote it to Hermi-
tian conjugation we need to impose that s is real. Furthermore, in order for Hermitian
conjugation to lift to the spin chain Hilbert space one should make certain choices on the
reality of the parameters of the model such as inhomogeneities θα and twists λi. Instead
we will view our scalar product as simply defining the action of a dual vector on a vector.

7It may be tempting to instead require that the operators are related by transposition instead of minus
transposition. However this is not compatible with the normalisation of our generators — our choice
corresponds to conjugating the usual defining representation generators with a simple diagonal matrix.

8With this definition our representation is equivalent to the well known harmonic oscillator construction.
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Bethe ansatz and Baxter equation. There is only one non-trivial transfer matrix
in anti-symmetric representations, the fundamental representation, whose eigenvalue is
given by

T1,1(u) = Q
[−2s]
θ

Q−−1
Q1

+Q
[+2s]
θ

Q++
1
Q1

. (2.21)

The above expression becomes polynomial when the BA equations are satisfied
Qθ(u1

k − is)
Qθ(u1

k + is)
= −Q1(u1

k + i)
Q1(u1

k − i)
, k = 1, . . . ,M1 . (2.22)

Twist and the ground state. For the sl(2) case the expression (2.8) is simply given by

Λ =
(
λ1 + λ−1

1 −1
1 0

)
. (2.23)

For diagonal twist the ground state, corresponding to Q1(u) = λiu1 , would be just a con-
stant polynomial. However, since our twist is non-trivial the constant polynomial gets
transformed into the following expression

|Ω〉 =
L∏
α=1

λiθα−s
1

(
1 + 1

λ1
xα

)−2s
, 〈Ω| =

L∏
α=1

λiθα−s
1

(
1 + 1

λ1
xα

)−2s
. (2.24)

The normalisation here is chosen for later convenience as we will see soon. Whereas these
states are clearly not polynomial, they can be expanded into an infinite series. The Hilbert
space should be understood as a completed space of polynomials, where such analytic
functions which are regular at the origin are included. The scalar products of such states
are computed as a limit of a scalar product of the truncated series, which additionally
imposes (for s > 0) that the convergence radius of the series should be ≥ 1. In our
particular case convergence is guaranteed for |λ1| > 1 which we assume to be satisfied.9

Then the overlap of 〈Ω| with |Ω〉 is

〈Ω|Ω〉 =
(

1− 1
λ2

1

)−2s
×

L∏
α=1

λ2iθα−2s
1 . (2.25)

Excited states. The excited states (those with non-trivial Bethe roots) can be obtained
by consecutive action of the B(u) = T12(u) operator

|Ψ〉 ∝
M1∏
k=1

B(u1
k)|Ω〉 . (2.26)

In the case of sl(2) the left eigenvectors of the transfer matrix can be built in the same
way10

〈Ψ| ∝ 〈Ω|
M1∏
k=1

B(u1
k) . (2.27)

9Typically our results are analytic in the twist so one may be able to go to other regimes by a careful
analytic continuation.

10In the earlier literature operator C(u) = T21(u) was used to create the left eigenstates. The reason
for this was that in the case of diagonal twist B(u) would annihilate the left ground state. One of course
can start from our current construction and diagonalise the twist by a global rotation, then, however, one
will get a Bgood(u) operator, which is a linear combination of all 4 matrix elements Tab, like described
in [10, 43].
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SoV basis. Another advantage of the non-diagonal twist (2.8) is that B(u) is diagonal-
isable. Furthermore, an important property of our twist, which we will use below, is that
the B(u) operator does not actually depend on λ — indeed if we denote the untwisted11

monodromy matrix elements by Tij then the twisted monodromy matrix is given by(
T11 T12
T21 T22

)
=
(
T11 T12
T21 T22

)(
λ1 + λ−1

1 −1
1 0

)
(2.28)

and hence we see that T12 = −T11. In fact this is how this twist was initially introduced
in [13]. The eigenvectors of B(u) form left and right SoV bases, which we denote it as 〈x|
and |x〉. The B(u) operator has a very simple spectrum

B(u)|x〉 = −
L∏
α=1

(u− θα − inα − is)|x〉 ≡ −
L∏
α=1

(u− xα)|x〉, nα = 0, 1, 2, . . . (2.29)

so that xα take values

xα = θα + is + inα , nα = 0, 1, 2, . . . . (2.30)

The SoV states can be uniquely labelled by the non-negative integers nα so one can also
denote |x〉 = |n1, . . . , nL〉. The SoV states |x〉 are the homogeneous polynomials of degree∑
α nα —we will also refer to this number as SoV charge. There is only one SoV charge zero

state, which we call the SoV vacuum and denote as |0〉. Finally, we define b(u) = −B(u)
in order to make this operator a monic polynomial.

Normalisation of the wavefunctions and SoV states. The reason we mainly use
the non-diagonal twist (2.8) in this paper is to make the SoV basis simple. In particular
the SoV states are simply polynomials and the SoV vacuum is a constant. To fix the
normalisation we define

|0〉 = 1 , 〈0| = 1 . (2.31)

The transfer matrix ground states (2.24) are already normalised so that

〈Ω|0〉 = 〈0|Ω〉 =
L∏
α=1

λ
ixα,0
1 , xα,0 ≡ θα + is . (2.32)

We fix the normalisation of the excited states by

|Ψ〉 = (−1)M1L
M1∏
k=1

b(u1
k)|Ω〉 , 〈Ψ| = 〈Ω|(−1)M1L

M1∏
k=1

b(u1
k) . (2.33)

It remains to fix the normalisation of the excited SoV states 〈x| and |x〉. We notice that as
a consequence of (2.33) and (2.29) we have

〈x|Ψ〉 = 〈x|Ω〉
L∏
α=1

M1∏
k=1

(xα − u1
k) (2.34)

11Corresponding to the case where the twist matrix is the identity operator.
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and similar for the 〈Ψ|x〉. We fix the remaining scale of the SoV states by requiring

〈x|Ω〉 = 〈Ω|x〉 =
L∏
α=1

λixα1 . (2.35)

Even though this normalisation of the SoV basis does not look very natural, it actually
makes the SoV states independent of λ1 as was initially shown in [13]. For example for the
case L = 1 the SoV states have to be proportional to xnα1 , fixing the coefficient according
to (2.35) we get

〈x|L=1 = (−x1)nα , (2.36)

which indeed does not depend on the twist. For the most general proof of this see [13] and
some details also in appendix A.

Finally, in this normalisation we get

〈x|Ψ〉 = 〈Ψ|x〉 =
L∏
α=1

Q1(xα) , (2.37)

which indeed shows that in the SoV basis the wave functions factorize into a product
of Q-functions. For the general sl(n) case we will be using analogous conventions for
normalisations.

Measure and scalar products in SoV basis. Since the normalisation of the SoV
states is completely fixed, their overlap could be a non-trivial number. As they are left and
right eigenstates of the same operator B(u) they are orthogonal. The overlap 〈x|x〉 ≡M−1

x
is nontrivial and is given by

Mn1,...,nL = ∆({xα})
∆({θα})

L∏
α=1

rα,nα
rα,0

(2.38)

where we defined12

rα,n = − 1
2π

L∏
β=1

(n+ 1− iθα + iθβ)2s−1 (2.39)

and (f)s is the Pochhammer function13 while ∆ is the Vandermonde determinant,

∆(z1, . . . , zn) =
∏
i<j

(zi − zj) . (2.40)

This result will be derived in section 4.1 using an integral representation of the scalar
product. At the same time, we expect it to match the overlaps 〈x|x〉 and we have checked
this directly for all states for L = 1 and also for states with SoV charge ≤ 2 for L = 2. For

12The factor − 1
2π in (2.39) is chosen for future convenience in section 5.

13For general values it is defined as (f)s = Γ(f+s)
Γ(f) , in addition for a particular case when the arguments

are integers and their sum is zero we define (−n)n = (−1)nΓ(n+1). This is how it is defined in Mathematica
in particular.
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example, by explicitly diagonalizing the B(u) operator for the L = 2 case and considering
the states with n1 = 1, n2 = 0, we find that the right eigenstate (i.e. the |x〉 state) reads

|1, 0〉 = c1x1 , (2.41)

while the left one (i.e. the 〈x| state) is

〈1, 0| = c2

(
x1 + 2is

θ12
x2

)
, (2.42)

where θ12 ≡ θ1 − θ2. The normalisations c1, c2 are fixed by requiring (2.35) which gives
c1 = −1, c2 = iθ12

2s−iθ12
. Finally, computing the inverse of their overlap we find

M1,0 = 1
〈1, 0|1, 0〉 = 2s(θ12 + 2is)

θ12
, (2.43)

in full agreement with (2.38).
Knowing the measure (2.38), we can write the resolution of identity as∑

x
Mx|x〉〈x| = 1 , (2.44)

which is the key completeness relation crucial for the computation of various scalar products
as we will see below. As an example, we can write the overlap of left and right transfer
matrix eigenstates 〈ΨA| and |ΨB〉 corresponding to Q-functions QA1 and QB1 as

〈ΨA|ΨB〉 =
∑

x
Mx〈ΨA|x〉〈x|ΨB〉 (2.45)

=
∑

x
Mx

(
L∏
α=1

QA1 (xα)
)(

L∏
α=1

QB1 (xα)
)
,

where we used the SoV wavefunctions (2.37).

Overlaps of off-shell states. Another representation for the measure (2.38) is

Mn1,...,nL = d(n1, . . . , nL)
d(0, . . . , 0) , d(n1, . . . , nL) = det

α,β

(θα + inα) β−1 (nα + 1)2s−1∏
γ 6=α

(−nα + iθα − iθγ)1−2s
, (2.46)

which is equivalent to (2.38). The fact that it can be written as a determinant is quite
significant, as this implies that some overlaps can be also written as determinants as well.
For example, let us demonstrate that the overlap of any two states 〈Φ| and |Θ〉, which
satisfy the separability condition i.e.

〈Φ|x〉 =
L∏
α=1

F (xα) , 〈x|Θ〉 =
L∏
α=1

G(xα) (2.47)

can be written in the form of determinant. Indeed

〈Φ|Θ〉=
∑

x
Mx〈Φ|x〉〈x|Θ〉=

1
d0

det
α,β

∞∑
nα=0

F (xα)G(xα)(θα+inα)β−1 (nα+1)2s−1∏
γ 6=α

(−nα+iθα−iθγ)1−2s
, (2.48)
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where d0 ≡ d(0, . . . , 0). Examples of such states are off-shell algebraic Bethe states with
two different twists

|Θ〉 = (−1)K1L
K1∏
i

b(vi)|Ωλ1〉 , 〈Φ| = (−1)K2L〈Ωλ̃1
|
K2∏
i

b(wi) (2.49)

with G(xα) = λixα1
∏K1
i=1(xα − vi) and F (xα) = λ̃ixα1

∏K2
i=1(xα − wi). In particular, for the

simplest case K1 = K2 = 0 and L = 1 we get

〈Ωλ̃1
|Ωλ1〉=

1
d0

L∏
α=1

(λ1λ̃1)ixα,0
∞∑
n=0

(n+1)2s−1

(λ1λ̃1)n
=
(

1− 1
λ1λ̃1

)−2s L∏
α=1

(λ1λ̃1)ixα,0 , (2.50)

which correctly extends the relation (2.25).
The main goal of this paper is to show how to generalise these types of results to the

sl(N) case. In the next section we will extend our consideration to sl(3), mostly following
the same steps as in this section.

3 sl(3) spin chain

In this section we describe our general construction for the case of sl(3). For brevity we
will leave the proof of certain technical details until we describe the general sl(N) case.
The main purpose of this section is to demonstrate the main ideas and our techniques.
In comparison to the sl(2) case there will be new ingredients involved, such as the C(u)
operator. Also, unlike in the sl(2) case the SoV measure is unavoidably non-diagonal14 for
the general case, but it nevertheless leads to simple determinant expressions for various
correlators and overlaps as we will see.

3.1 Representation

As we explained in the previous section in this paper we consider HW representations on
the space of polynomials. More specifically we consider the representation of spin s, which
we define in terms of the operators acting on a space of polynomials C[x, y] in two variables
as follows:

Raising operators
E12 = ∂x, E13 = ∂y, E23 = x∂y (3.1)

Lowering operators

E21 = −x2∂x − xy∂y − 2sx (3.2)
E31 = −y2∂y − yx∂x − 2s y (3.3)
E32 = +y∂x (3.4)

14Different SoV bases which lead to a diagonal measure were constructed in [25] but to our knowledge
these bases do not diagonalise any well-defined operators such as B and C, nor can the measure be efficiently
extracted from the Baxter equation.
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Cartan generators

H1 = −2x∂x − y∂y − 2s
H2 = −y∂y + x∂x .

(3.5)

It is also convenient to repackage the sl(3) Cartan generators into gl(3) Cartan generators

E11 = 2
3H1 + 1

3H2 + s
3 (3.6)

E22 = −1
3H1 + 1

3H2 + s
3 (3.7)

E33 = −1
3H1 −

2
3H2 + s

3 . (3.8)

In this way the generators satisfy the commutation relations (2.1). The HW state is
simply a constant polynomial |0〉 = 1 and the diagonal generators Eaa have the eigenvalues
{−s,+s,+s} on the HW state. The eigenstates of the Cartan generators are homogeneous
polynomials in x and y and the lowering generators increase the degree by 1.

Lax operators. For sl(3) there are two non-trivial Lax operators La,1 in anti-symmetric
representations. Denoting L1,1 as simply L, it is an easy calculation to show directly from
the definition of La,1 (2.5) that

L2,1(u) =
(
u+ i s− i

2

)[
−L

(
−u− i

2

)]t
, (3.9)

where t denotes the transpose of L written as a 3× 3 matrix.

3.1.1 Scalar product

Like in the sl(2) case we define the scalar product by introducing an orthonormal basis

en,k ≡ xnyk
√

Γ (n+ k + 2s)
Γ(n+ 1)Γ(k + 1)Γ(2s) (3.10)

and define the bracket 〈·|·〉 by

〈enk, en′k′〉 ≡ δnn′δkk′ . (3.11)

As any polynomial can be expressed as a finite linear combination of enk, this defines the
scalar product on the space of all polynomials of x and y. It also defines the scalar product
between a polynomial and any function analytic at the origin. In order to have the scalar
product between two analytic functions finite one should impose some constraints on the
convergence radius. More precisely we need to require the limit of the scalar products
between two truncated expansions to have a finite limit.

Like in the case of sl(2), the factor of gamma functions in (3.11) is needed to ensure that
the generators Eab are either self-conjugate or anti-self-conjugate to Eba. This requirement
fixes (3.10) completely (up to an overall real factor). Similar to the sl(2) case we find the
following conjugation properties of the generators ET12 =−E21, ET13 =−E31 and ET23 = +E32.
Finally, since the Cartan generators act diagonally we also have ETaa = +Eaa for a= 1,2,3.
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3.2 Transfer matrix and integrability

Having the representation defined we follow the general steps outlined in section 2.1. In
this section we explicitly write some of the expressions from section 2.1 and give a few
more details specific to the sl(3) case.

For the case N = 3 the twist matrix (2.8) becomes

Λ =

 λ1 + λ2 + λ3 − 1
λ1
− 1

λ2
− 1

λ3
1

1 0 0
0 1 0

 . (3.12)

As before it can be brought to diagonal form and has eigenvalues λ1, λ2 and λ3 ≡ 1
λ1λ2

.
The transfer matrix (2.3) is a differential operator in 2L variables xα, yα, α = 1, . . . , L.

The complete set of conserved quantities is contained in the two non-trivial transfer ma-
trices in fundamental T1,1(u) and anti-fundamental T2,1(u) representations. The transfer
matrix T3,1(u) correspnding to the totally antisymmetric representatio does not contain
any new conserved quantities, but is a non-trivial function of u

T3,1(u) = Qθ(u− is + i)Qθ(u+ is− i)Qθ(u+ is) I , (3.13)

where I denotes the identity operator.

Bethe Ansatz and the transfer matrix eigenvalues. The set of Bethe Ansatz equa-
tions (BAE), relevant for our discussion, is the following

Qθ(uk − is)
Qθ(uk + is) = −Q1(u1

k + i)
Q1(u1

k − i)
Q12(u1

k −
i
2)

Q12(u1
k + i

2)
, k = 1, . . . ,M1 (3.14)

1 = −Q12(u12
k + i)

Q12(u12
k − i)

Q1(u12
k −

i
2)

Q1(u12
k + i

2)
, k = 1, . . . ,M12 (3.15)

1 = −Q13(u13
k + i)

Q12(u13
k − i)

Q1(u13
k −

i
2)

Q1(u13
k + i

2)
, k = 1, . . . ,M13 (3.16)

where the twisted Baxter polynomials are Q1 = λiu1
∏M1
i=1(u−u1

k), Q12 = (λ1λ2)iu
∏M12
i=1 (u−

u12
k ) and Q13 = (λ1λ3)iu

∏M13
i=1 (u − u13

k ) (from (2.14) one should have M1 = M12 + M13).
Note that for the purposes of finding the spectrum the first two equations are usually
sufficient. However, for the SoV construction we describe below one also needs to find Q13,
which is a dualised Baxter polynomial, corresponding to an alternative nesting path in the
nested BAE terminology.

Once the Q-functions are known, the eigenvalues of the transfer matrices are given by
simple expressions (e.g. (2.17)). It will be convenient to introduce the notation

τ1 = Qθ(u− is)Q
−−
1
Q1

+Qθ(u+ is)Q
++
1
Q1

Q−12
Q+

12
+Qθ(u+ is)Q

[+3]
12
Q+

12
, (3.17)

τ2 = Qθ(u− is)Q
[−3]
12
Q−12

+Qθ(u− is)Q
−−
1
Q1

Q+
12

Q−12
+Qθ(u+ is)Q

++
1
Q1

. (3.18)
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In terms of these functions the eigenvalues of the transfer matrices become

T1,1(u)|Ψ〉 = τ1(u)|Ψ〉 , (3.19)
T2,1(u)|Ψ〉 = Qθ(u+ is− i

2) τ2(u+ i
2)|Ψ〉 . (3.20)

Baxter TQ-relations. As there is certain confusion in the literature about the com-
pleteness of the Bethe ansatz,15 one may like to have an alternative way to define the
Baxter polynomials which can be done by means of the Baxter TQ-relations.

The Baxter polynomials Q1, Q12, Q13 and simultaneously τ1 and τ2 can be determined
by requiring their polynomiality (up to the twist factor λiu1 in Q1 and (λ1λa)iu in Q1a for
a = 2, 3) and that they satisfy the following finite-difference equations

Q
[+2s+1]
θ Q

[+2s−1]
θ Q

[+3]
1 − τ+

2 Q
[+2s−1]
θ Q+

1 +Q
[−2s+1]
θ τ−1 Q

−
1 −Q

[−2s+1]
θ Q

[−2s−1]
θ Q

[−3]
1 = 0

(3.21)
and

Q
[−2s]
θ Q

[−3]
1α − τ2Q

−
1α + τ1Q

+
1α −Q

[+2s]
θ Q

[+3]
1α = 0 , α = 2, 3 . (3.22)

This set of requirements is a way to define the Bethe roots, alternative to the Bethe ansatz,
by first finding the Baxter polynomials satisfying the above equations and the analyticity
requirements.

Ground state wave function. The ground state of the transfer matrix — the state
corresponding to the trivial Baxter polynomials M1 = M12 = M13 = 0 is particularly
simple. If we were considering a diagonal twist, it would simply be a constant polynomial.
As our twist is non-diagonal, but diagonalisable, the ground state can be obtained as a
result of rotation of the constant function with a GL(3) group element and is a non-trivial
function like in the case of sl(2) — (2.24). Instead of diagonalising the twist and rotating
the ground state it is simpler to construct T1,1(u) explicitly for the length L = 1 case first.
Then requiring

T1,1(0)|ΩL=1〉 = τ1(0)|ΩL=1〉 , T2,1(0)|ΩL=1〉 = Qθ(is− i
2) τ2( i2)|ΩL=1〉 , (3.23)

we obtain two first order PDE’s on |ΩL=1〉, fixing it uniquely up to a constant factor to

|ΩL=1〉 =
(

1 + x

λ1
+ y

λ2
1

)−2s
× λ2i(θ1+is)

1 . (3.24)

Similarly, one can find the left ground state16

〈ΩL=1|=
(

1+x(λ2+λ3)− y

λ1

)−2s
×
[
λ
−i(θ1+is)+1/2
3 λ

−i(θ1+is)−1/2
2 −(λ2↔λ3)

]
. (3.25)

Here the nontrivial overall normalisation is chosen so as to simplify the main results later on.
These functions are analytic near the origin and can be expanded into a series in x and y.

15Recently completelness has been proven for supersymmetric spin chains in the defining representa-
tion [44].

16I.e. eigenvector of the transposed transfer matrix w.r.t. the quadratic form (3.11).
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Note that their scalar product, obtained as a limit of the product of the truncated
series expansions, is a nontrivial number, which we denote as N1,17

〈ΩL=1|ΩL=1〉 = N1 , (3.26)

N1 =
(
1− λ2

2λ3 − λ2λ
2
3 + λ3

2λ
3
3

)−2s
λ

2i(θ1+is)
1

[
λ
−i(θ1+is)+1/2
3 λ

−i(θ1+is)−1/2
2 − (λ2 ↔ λ3)

]
.

For general L the ground state is simply a tensor product of L copies of |ΩL=1〉 (or
〈ΩL=1|, for the left eigenvector).18

Having the ground state explicitly will allow us to build the excited states by means
of the creation operator B(u) [8, 10], as we describe in the next section.

3.3 Wave functions and SoV

In this section we explain how to construct excited states of the transfer matrices by action
of a creation operator B(u) on the ground state, in analogy with the sl(2) case (2.26).
The B(u) operator was first proposed in the context of SoV by Sklyanin in the seminal
paper [8]. It was much later in [10] when it was realised that the same operator can be
used to diagonalise the transfer matrix and explicitly build its eigenstates. We will review
this construction in this section and explain how it leads to the separation of variables.

Another operator, which was recently shown in [22] to also play a key role in the SoV
construction, is the C(u) operator which will be used to produce the dual SoV basis in the
next section. Both of these operators have a similar structure in terms of the monodromy
matrix elements19

B(u) = T23(u)T12(u− i)T23(u)−T23(u)T22(u− i)T13(u)
+ T13(u)T11(u− i)T23(u)−T13(u)T21(u− i)T13(u) , (3.27)

and

C(u) = T23(u)T12(u)T23(u+ i)−T23(u)T22(u)T13(u+ i)
+ T13(u)T11(u)T23(u+ i)−T13(u)T21(u)T13(u+ i) . (3.28)

A simple observation, which one can immediately make from the form of the B and C
operators, is that due to the particular choice of the twist matrix (3.12) both of them
do not depend on the twist eigenvalues λa which can be checked by a direct calculation
similarly to the sl(2) case [13].

Creating excited states with B(u). The key formula,

|Ψ〉 ∝
M1∏
k=1

B(u1
k)|Ω〉 (3.29)

17The series is convergent for large enough |λ1| (and λ2 fixed).
18With the replacement θ1 → θα in the overall normalisation.
19For the finite dimensional case and with diagonal twist matrix the B(u)-operator defined in [8] is

nilpotent and cannot be used for construction of the SoV basis. In [10] it was shown that there is a
family of operators Bgood(u) which can create eigenstates of the transfer matrix and at the same time are
diagonalisable.
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where |Ψ〉 is the transfer matrix eigenvector with eigenvalues as in (3.19) and u1
k are the

(momentum carrying) Bethe roots corresponding to this state, first found in [10] for the
fundamental representation s = −1/2 is valid for general s. Note that B(u) is built
out of Tab(u) and thus is a differential operator. Hence (3.29) implies that once the
momentum-carrying Bethe roots uk are found (from the TQ-relations or from the Bethe
ansatz equations), one can immediately build the corresponding eigenvector in terms of
partial derivatives of the ground state in full analogy with the sl(2) algebraic Bethe ansatz
construction. This is a huge simplification in comparison with the old nested Bethe ansatz
construction [45], which involves all the auxiliary roots and is a hybrid between the algebraic
and coordinate Bethe ansatz construction for sl(2).

In order to fix the normalisation of |Ψ〉 it is convenient to extract a trivial scalar
factor20 from the B(u) operator

B(u) = −Qθ(u+ is− i)b(u) . (3.30)

The remaining operator b(u) is a polynomial of degree 2L. After that we define

|Ψ〉 =
M1∏
k=1

b(uk)|Ω〉 (3.31)

exactly like in the sl(2) case.

Eigenvalues of B(u). Another key observation of [10] which generalises to our case
is that the eigenvalues of the operator B(u) are very simple. Because B(u) and thus
b(u) (3.30) commute with themselves for different u their eigenvalues are also polynomials

〈x|b(u) =
L∏
α=1

(u− xα,1)(u− xα,2) 〈x| (3.32)

where
xα,a = θα + is + inα,a , a = 1, 2 (3.33)

and nαa are integers such that
0 ≤ nα.2 ≤ nα,1 . (3.34)

For convenience we also introduce

xα,0 ≡ θα + is . (3.35)

The spectrum of b is non-degenerate so the eigenstates 〈x| are well defined. As we will
explain below n’s could take any integer values as long as the constraint (3.34) is satisfied.21

20The presence of this trivial factor stems from the fact that we consider a special class of representations
of sl(3) on 2 variables instead of the 3 needed for generic representations, see [13, 19].

21In order to find the eigenvectors one needs to know how various operators acts on the right states. As
B(u) or C(u) are built out of elements of monodromy matrix, which is built out of generators of sl(3) we
can easily transpose those operators by flipping signs of some of the generators accordingly. As a result
the action of these operators to the right is also by a partial derivatives. Equation (3.32) is simply a set of
PDE on the function 〈x|. We will give some explicit examples below in section 3.5.1.
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Separation of variables. Combining (3.29), (3.30) and (3.32) we obtain

Ψ(x) ≡ 〈x|Ψ〉 = 〈x|Ω〉
L∏
α=1

M1∏
k=1

(uk − θα − is− inα,1)(uk − θα − is− inα,2) . (3.36)

As we still have not defined the normalisation of the SoV states 〈x| we fix it by requiring

〈x|Ω〉 =
L∏
α=1

λ
ixα,1+ixα,2
1 , (3.37)

which then results in22

Ψ(x) ≡ 〈x|Ψ〉 =
L∏
α=1

Q1(xα,1)Q1(xα,2) , (3.38)

which is the very essence of separation of variables as our wave function is now explicitly
a product of one-dimensional factors.

Let us again emphasise the importance of the normalisation (3.37). It was shown in [13]
that this normalisation ensures that there is no dependence on the twist eigenvalues λ1, λ2
in the SoV states 〈x|. We will demonstrate this later on an explicit example for L = 2.

SoV charge operator. While B(u) and C(u) commute with themselves for different
arguments u they do not commute with each other and it is this property which leads to a
non-diagonal measure for sl(3). However, as we see from the definitions (3.27) and (3.28)
they only differ by shifts in u and thus commute at large u. Whereas the leading coefficient
is simply a constant the subleading coefficients in B(u) and C(u) contain the same non-
trivial operator N which thus commutes with both B(u) and C(u) at any u. We refer to
this non-trivial operator as SoV charge [22] and in proper normalisation it is given by

b(u) = u2L + u2L−1
[
iN + 2

L∑
α=1

(θα + is)
]

+O(u2L−2) . (3.39)

The SoV charge operator N defined in this way satisfies

[N,B(u)] = 0 , [N,C(u)] = 0 . (3.40)

When acting on the left SoV state 〈x| it gives a non-negative integer number

〈x|N =
∑
α,a

nα,a〈x| (3.41)

and so counts the excitations above the SoV vacuum. It is straightforward to find the
explicit form of the operator N straight from its definition

N = NT =
L∑
α=1

(xα∂xα + 2yα∂yα) . (3.42)

We can deduce from this that the SoV states have to be homogeneous polynomials in
xα, yα, with xα contributing one unit of SoV charge whereas each yα adds two units.

22We recall that we define the Baxter polynomials with the twist factors as Q1(u) = λiu1
∏M1
k=1(u− uk).
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Eigenstates of B(u) operator. As it was shown above the SoV states are polynomials.
As the ground state 〈0| (i.e. the left eigenstate of B(u) with all nα,a = 0) according to (3.41)
has SoV charge 0 it must be a constant function. Furthermore, its normalisation is fixed
by (3.37), which implies

〈0| = 1 . (3.43)

All the other SoV states 〈x| can be obtained by consecutive action of transfer matrices
on the SoV ground state 〈0|. One way to see this is by observing that the eigenvalue of
T2,1(u) at a special values of the spectral parameter u = θα+is− i

2 simplifies to (see (3.19))

T2,1(θα + is− i
2)|Ψ〉 = Qθ(θα + 2is− i)Qθ(θα + 2is)Q1(θα + is + i)

Q1(θα + is) |Ψ〉 . (3.44)

Similar relations hold true for the transfer matrices operators in higher representations.
Denoting by Ta,s the transfer matrix corresponding to the rectangular a×s Young diagram
and introducing the SoV creation operator Aα,s defined by

Aα,s ≡
T2,s(θα + is + is

2 − i)
s∏

k=1
Qθ(θα + 2is + ik − i)Qθ(θα + 2is + ik − 2i)

, (3.45)

we have23

Aα,s|Ψ〉 = Q1(θα + is + is)
Q1(θα + is) |Ψ〉 . (3.46)

From this we obtain that

〈0|
L∏
α=1

2∏
a=1

Aα,nα,a |Ψ〉 = 〈0|Ψ〉
L∏
α=1

2∏
a=1

Q1(xα,a)
Q1(xα,0) = 〈x|Ψ〉 (3.47)

where we used (3.38) to get the last equality. So we conclude that the state 〈0|
∏
α,a Aα,nα,a

has the same overlap as 〈x| with all eigenstates of the transfer matrix |Ψ〉, which of course
means that they are equal:24

〈x| = 〈0|
L∏
α=1

2∏
a=1

Aα,nα,a . (3.48)

As Aα,s are obtained from the transfer matrix in the representation 2×s, which themselves
can be built out of s copies of L2,1

a,b(u) at each site, we conclude that Aα,s is an s×L order
partial differential operator with polynomial coefficients, which makes the equation (3.48)
very convenient for the building of the SoV states.

23A simple way to verify this relation is by using the Hirota identity, which states that the eigenvalues of
the transfer matrices in rectangular representations Ta,s satisfy Ta,s(u+ i

2 )Ta,s(u− i
2 ) = Ta+1,s(u)Ta−1,s(u)+

Ta,s+1(u)Ta,s−1(u) . Using the known eigenvalues Ta,0 = 1, T0,s = 1, T4,s = 0 and T1,1 = T 3, T2,1 =
T 3̄, T3,1 = T 1̄ one can find all Ta,s(u) recursively using the Hirota identity. Alternatively, one can use the
Wronskian solution of the Hirota identity, which gives Ta,s explicitly in terms of 3 Q-functions.

24Note that it is manifest from this construction that the SoV states 〈x| are rational functions of the
spin s since the transfer matricies are polynomial functions of the Lax operators (2.2) which themselves are
polynomial functions of s.

– 18 –



J
H
E
P
0
5
(
2
0
2
1
)
1
6
9

3.4 Dual SoV states

In our construction the left eigenstates 〈Ψ| are not related to the right eigenstates of the
monodromy matrix in an obvious way. Consequently, the basis which separates states 〈Ψ|
has to be built from scratch.

In this section we build the right SoV basis |y〉 as an eigenbasis of the C(u) operator.
Like the original B(u) operator it commutes with itself [C(u),C(v)] = 0. We will again
see that the spectrum of operator C(u) is very simple. For example the right SoV ground
state |0〉, is the only state with the SoV charge N = 0, which again must be a constant.
We fix its normalisation so that |0〉 = 1, or equivalently

〈Ω|0〉 =
L∏
α=1

[
λ
−iyα,0+1/2
3 λ

−iyα,0−1/2
2 − λ−iyα,0+1/2

2 λ
−iyα,0−1/2
3

]
(3.49)

where we defined for future convenience

yα,0 = θα + is . (3.50)

The eigenvectors of C(u) can be constructed in a similar way to B(u) — using the
transfer matrices in anti-symmetric representations as building blocks. Namely, we define
the following combinations

T∗{m1,m2}(u) = det
1≤j,k≤m1

Tµ′j−j+k,1
(
u+ i

2
(
µ′1 − µ′j −m1 + j + k − 1

))
, 0 ≤ m2 ≤ m1

(3.51)
where µ′j = 2, j = 1, . . . ,m2 and is 1 otherwise. The combination (3.51) is reminiscent of
the Cherednik-Bazhanov-Reshetikhin formula [46, 47] for that transfer matrix in an irrep
with a Young diagram µ (and µ′ being the transposed of µ,see figure 3), which states

Tµ(u) = det
1≤j,k≤µ1

Tµ′j−j+k,1
(
u− i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
. (3.52)

In (3.51) we had to replace i by −i in the shift of the argument. The reason for such
replacement will be clear in section 6.

Like in the case with the eigenvalues of the operator B(u) we introduce the “cre-
ation operators”, which are simply properly normalised combinations of the integrals of
motion (3.51)

Dα,m1,m2 ≡
T∗{m1,m2}

(
θα + is + i

m1−µ′1
2

)
m1∏
k=0

Qθ(θα + 2is + ik − i)
m2−1∏
k=1

Qθ(θα + 2is + ik − i)
, (3.53)

where like before µ′1 = 2 for m2 > 0 and 1 otherwise. The C(u)-operator eigenvectors are
then given by

|y〉 =
L∏
α=1

Dα,mα,1,mα,2 |0〉 , 0 ≤ mα,2 ≤ mα,1 (3.54)
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with the eigenvalue

C(u)|y〉 = −Qθ(u+ is)
L∏
α=1

(u− yα1 )(u− yα2 )|y〉 (3.55)

where we introduced the notation25

yα,1 = θα + is + imα,1 , yα,2 = θα + is + imα,2 − i . (3.56)

The SoV charge operator N (3.42) appears in the subleading coefficient of the 1/u
expansion of C(u) and so its eigenvalue is given by the sum of all mα,a,

N|y〉 =
∑
α,a

mα,a|y〉 . (3.57)

Finally, let us state the analogue of the relation (3.38) for the contraction of the
eigenstate of the transfer matrix 〈Ψ| and the eigenstate of the C(u)-operator. For that we
notice that 〈Ψ| also diagonalises Dα,m1,m2 with the following eigenvalue:

〈Ψ|Dα,m1,m2 =
Q12(yα,1 + i

2)Q13(yα,2 + i
2)− (Q13 ↔ Q12)

Q12(yα,0 + i
2)Q13(yα,0 − i

2)− (Q13 ↔ Q12)
〈Ψ| . (3.58)

We normalise 〈Ψ| so that

〈Ψ|0〉 =
L∏
α=1

[
Q12(yα,0 + i

2)Q13(yα,0 − i
2)− (Q13 ↔ Q12)

]
. (3.59)

After that we get a factorised expression for the wave function in the SoV basis

〈Ψ|y〉 =
L∏
α=1

[
Q12(yα,1 + i

2)Q13(yα,2 + i
2)− (Q13 ↔ Q12)

]
. (3.60)

In particular for the ground state we can read off the following normalisation of the right
SoV states

〈Ω|y〉 =
L∏
α=1

[
λ
−iyα,1+1/2
3 λ

−iyα,2+1/2
2 − λ−iyα,1+1/2

2 λ
−iyα,2+1/2
3

]
. (3.61)

Even though the above normalisation looks rather complicated, like in the case with 〈x|
it ensures that there is no λa dependence in the |y〉 state either (for general proof of this
see [13]). We will see some explicit example below in section 3.5.1.

25We see that in these conventions for mα,1 = mα,2 = 0 we have yα,1 = yα,0, yα,2 = yα,0 − i with yα,0
defined in (3.50).
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3.5 Overlap of the SoV states

In order to be able to use the factorised representation of the wave function one also needs
to know the measure in the SoV basis. We will see that unlike in the sl(2) case the left and
right SoV states are not orthogonal to each other. Nevertheless, we can write an analog of
the sl(2) completeness relation (2.44) as

∑
x,y

My,x|y〉〈x| = 1 (3.62)

whereMy,x is an infinite set of nontrivial coefficients that form the SoV measure, a key part
of the whole construction. As a matrix it is the inverse of the infinite matrix of overlaps
〈x|y〉. Knowledge of the matrix My,x in particular would allow the calculation of overlaps
between two Bethe states ΨA and ΨB

〈ΨA|ΨB〉 =
∑
x,y

My,x〈ΨA|y〉〈x|ΨB〉 = (3.63)

∑
x,y

My,x

L∏
α=1

[
QA12(yα,1 + i

2)QA13(yα,2 + i
2)− (QA13 ↔ QA12)

]
QB1 (xα,1)QB1 (xα,2) .

The overlaps matrix has in fact a nice and simple structure. First, due to the existence of
the SoV charge operator it is block-diagonal. Second, each block is a triangular matrix for
a particular ordering of the states 〈x| and |y〉. More precisely the left and right SoV states
are in one-to-one correspondence as both are labelled by a set of 2L integers constrained
by 0 ≤ nα,2 ≤ nα,1 and 0 ≤ mα,2 ≤ mα,1. In section 5.2, we show that the overlap matrix
becomes upper triangular when we order both SoV states lexicographically with words
(n1,1, n2,1, . . . , nL,1, n1,2, . . . , nL,N−1) and same for m’s. We will see that in general it is
a rather sparse matrix with elements accumulating near the diagonal. In section 5.2 we
derive the general form of this matrix giving an explicit relation for its matrix elements,
using an integral representation, generalising the results of [21, 22].

In the next section we report on some experimental observations coming from length
two spin chains.

3.5.1 Length-two data

We explicitly realised the above construction for a spin chain of length L = 2. In particular
we computed all SoV states 〈x| and |y〉 up to the charge N = 6 analytically.

The eigenstates of B(u) are labelled by 4 integer numbers nα,a, such that 0 ≤ nα,2 ≤
nα,1. Correspondingly we denote the eigenstates

〈n1,1, n1,2;n2,1, n2,2| = 〈x| . (3.64)

The SoV vacuum in our normalisation is just 1

〈0, 0; 0, 0| = 1 . (3.65)
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The first two excited states with SoV charge 1 are

〈0, 0; 1, 0| = −x2 (3.66)

〈1, 0; 0, 0| = − 2isx2
(θ12 + 2is) −

θ12x1
(θ12 + 2is) (3.67)

where θ12 = θ1 − θ2.
At charge 2 the states become more complicated

〈0, 0; 1, 1| = − ix1x2
2is− θ12

+ (2s + 1)x2
2

2s + θ12y2
2s (θ12 − 2is) (3.68)

〈1, 1; 0, 0| = 1
(θ12 + 2is)2

(
x1x2 (iθ12(4s + 1) + 2s) + θ2

12(2s + 1)x2
1

2s

−2s(2s + 1)x2
2 + θ2

12y1
2s + iθ12y2

)
〈0, 0; 2, 0| = x2

2

〈1, 0; 1, 0| = 1
θ12 + 2is

(
i(2s + 1)x2

2 + (θ12 − i)x1x2
)

〈2, 0; 0, 0| = i(2s + 1)x2
2 + (θ12 − i)x1x2 .

We see that if we assign to xα a homogeneity weight 1 and weight 2 to yα, the eigenstates
are homogeneous polynomials of weight equal to the SoV charge. We also note that the SoV
basis does not have any dependence on the twist eigenvalues λi, as anticipated previously.

In a similar way the eigenstates of C(u) are labelled by the 4 integers mα,a. We denote

|y〉 = |m1,1,m1,2;m2,1,m2,2〉 . (3.69)

For the right SoV vacuum we have

|0, 0; 0, 0〉 = 1 . (3.70)

At SoV charge 1 we get

|0, 0; 1, 0〉 = 2isx1 − θ12x2
θ12 − 2is (3.71)

|1, 0; 0, 0〉 = −x1 (3.72)

At the level 2 the states again become more complicated

|0, 0; 1, 1〉 = θ12y2 − 2is y1
θ12 − 2is (3.73)

|1, 1; 0, 0〉 = y1

|0, 0; 2, 0〉 = 1
θ12 − 2is

(
θ12 (θ12 − i)x2

2
θ12 − i(2s + 1) + 4θ12sx1x2

iθ12 + 2s + 1

+2s(2s + 1)x2
1

2is + i− θ12
+ 2is y1 − θ12y2

)

|1, 0; 1, 0〉 = −i(2s + 1)x2
1 + (θ12 + i)x1x2 + iy1 − iy2

θ12 − 2is
|2, 0; 0, 0〉 = x2

1 − y1 .
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We notice once again that both left and right SoV states are homogeneous polynomials of
degree equal to the SoV charge.

Let us give some examples of the overlaps for SoV charge 0 and 1. We get a very
simple expression

〈x|y〉|N≤1 =


1 0 0
0 θ12

2s(θ12−2is) 0
0 0 θ12

2s(θ12+2is)

 . (3.74)

For charge 2 it is similarly simple, but we also get non-diagonal elements

〈x|y〉|N=2 = (3.75)

−θ2
12

4s2(iθ12+2s)2 0 −θ2
12

4s2(iθ12+2s)2
1

4s2(iθ12+2s)2 0
0 −θ2

12
4s2(−iθ12+2s)2 0 1

4s2(−iθ12+2s)2
−θ2

12
4s2(−iθ12+2s)2

0 0 −θ12(θ12−i)
s(2s+1)(iθ12+2s)(iθ12+2s+1) 0 0

0 0 0 θ2
12+1

4s2(θ2
12+4s2) 0

0 0 0 0 −θ12(θ12+i)
s(2s+1)(−iθ12+2s)(−iθ12+2s+1)


.

In order to be able to compare with section 5.2, where we found an analytic expression for
the measure elements we need the inverse of the matrix (3.75)

My,x|N=2 = (3.76)

−4s2(2s+iθ12)2

θ2
12

0 s(2s+1)(2s+iθ12)(iθ12+2s+1)
θ12(θ12−i)

4s2(θ2
12+4s2)

θ2
12(θ2

12+1) 0

0 −4s2(2s−iθ12)2

θ2
12

0 4s2(θ2
12+4s2)

θ2
12(θ2

12+1)
s(2s+1)(2s−iθ12)(−iθ12+2s+1)

θ12(θ12+i)

0 0 − s(2s+1)(2s+iθ12)(iθ12+2s+1)
θ12(θ12−i) 0 0

0 0 0 4s2(θ2
12+4s2)

θ2
12+1 0

0 0 0 0 − s(2s+1)(2s−iθ12)(−iθ12+2s+1)
θ12(θ12+i)


.

The overlaps of the SoV states do not depend on twist eigenvalues λa. This shows uni-
versality of these coefficients. As it was advertised previously the matrix My,x has upper
triangular form, i.e. all elements with mα,1 > nα,1 (for at least one α) are zero, furthermore
if mα,1 = nα,1 then one still gets zero if mα,2 > nα,2. We computed explicitly the overlaps
between the SoV states up to SoV charge 6. On the figure 1 we indicate with squares the
non-zero elements.

In the section 5 we will explain how to obtain the overlap coefficients bypassing explicit
construction of the SoV states.

4 Integral orthogonality relations

In this section we will describe the method of [21, 32] for finding the SoV measure factor
My,x bypassing explicit calculation of the overlaps of the SoV states and then inverting the
matrix. We derive the so-called orthogonality relation and then use it to find the matrix
elements of the SoV measure explicitly in the next section.
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x

y

y

x

Figure 1. Non-zero elements of the matrix 〈x|y〉 (Left) and its inverse (Right) up to SoV charge
6. Blocks indicate fixed SoV charges.

The idea of the method of [21, 32] is the following: imagine we knew the measure,
then we would be able to compute the scalar products between left and right eigenvectors
of the transfer matrix in terms of the Q-functions corresponding to the states. Due to
the orthogonality of the eigenstates corresponding to different eigenvalues we then have
that a combination of Q-functions, corresponding to any two different states, vanishes. At
the same time the same combination where we only use the Q-functions of the same state
should be non-zero. Firstly, without knowing about the SoV framework it may be even
surprising that such combinations exist. At the same time if we find a combination of
the Q-functions which can be interpreted as an SoV product with some state-independent
measure, which has the above properties, it will most likely be unique and thus should
produce the SoV measure up to an overall factor.

In [22] it was shown for a finite dimensional case how to build such combinations of
Q-functions with the orthogonality properties satisfied. In [22] the orthogonality relations
were then interpreted as a system of linear equations for the measure matrix elements My,x
and from the counting of the equations it was argued that they fix the measure factors
uniquely up to an overall factor. In the infinite dimensional case, it is harder to make a
totally rigorous argument as the system of equations becomes infinite. However, we will
see that the dependence on the spin can be factorised and thus it is sufficient to prove this
statement for a finite dimensional case only. Furthermore, the existence of the SoV charge
implies that the measure factor is block diagonal with each block being of a finite size,
which indeed helps to extend the previous proof to the general spin s case. Furthermore,
we explicitly verified our result for short lengths.

In this section we will generalize the results of [21] for sl(N) spin chains in the simplest
infinite-dimensional representation (i.e. s = 1/2 in our notations) to general values of s.
We will first discuss the sl(2) case, and then move on to sl(3). Finally, in appendix C we
give the generalization to any sl(N).26

26The notation we use in this paper differs by i→ −i from [21]. The notation we choose here is consistent
with the more recent paper [22].
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4.1 The sl(2) case

Before considering the non-trivial sl(3) case, we first re-derive the known sl(2) results in
a way suitable for the generalisation in the next section. We are following the derivation
of [21], which we generalise to the general s > 0 case.

4.1.1 Integral form of the scalar product

In the sl(2) case the only nontrivial polynomial Q-function (with a twist factor) is Q1 which
satisfies the Baxter equation which follows from (2.21) or (2.17),

Q
[+2s]
θ Q++

a − τ1Qa +Q
[−2s]
θ Q−−a = 0 . (4.1)

Here τ1(u) ≡ T1,1(u) is the eigenvalue of the transfer matrix with fundamental representa-
tion in the auxiliary space. Let us note that for general s only one of the two solutions of
this equation will be regular and that is the one corresponding to Q1 = λiu1

∏M1
k=1(u− u1

k).
The main idea of our approach is to introduce a scalar product on functions of one

variable with respect to which the difference operator Ô defining the Baxter equation (4.1),

Ô = Q
[+2s]
θ D+2 − τ1 +Q

[−2s]
θ D−2 , ÔQa = 0 (4.2)

will be “self-adjoint”. Here D is the shift operator,

Df(u) = f(u+ i/2) . (4.3)

We write this scalar product as

(( gf ))α ≡
1

2πi

∫ +∞

−∞
du µα(u)g(u)f(u) (4.4)

and the self-adjoint property is ((
fÔg

))
α

=
((
gÔf

))
α

(4.5)

where f and g are arbitrary twisted polynomials.27 This requirement constrains the in-
tegration measure µα. In fact we will find several such measure factors and the index α

labels different possible choices. Let us write more explicitly the l.h.s. of (4.5),

((
fÔg

))
α

=
∫ +∞

−∞
duµαf

(
Q

[+2s]
θ g++ − τ1g +Q

[−2s]
θ g−−

)
. (4.6)

For the s = 1/2 case studied in [21] it was sufficient to assume that µα is i-periodic. Then
we can shift the integration contour (assuming there are no poles, which could give an
additional contribution) in each of the terms in (4.6) up or down by i so as to remove the
shifts of the argument in g. As a result we find precisely the same operator Ô acting now
on f , thus proving the self-adjointness property (4.5).

27With asymptotics such that the integral converges at infinity. We will specify the convergence condition
later on.
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For generic s the i-periodicity of µα is obviously not sufficient. Assuming that we can
shift the contour by ±i, without getting any extra pole contributions we find that µα has
to satisfy

µ++
α

µα
= Q

[+2s]
θ

Q
[−2s+2]
θ

. (4.7)

The general solution to this first order difference equation is

µα = ε× pα , ε =
L∏
β=1

Γ(s− i(u− θβ))
Γ(1− s− i(u− θβ)) , p++

α = pα . (4.8)

The factor ε is chosen so that it is analytic for all Im u > −s (assuming θβ ’s are real), it
has poles at u = θβ − is− in, n ≥ 0 and zeros at u = θβ + is− in, n ≥ 1 and behaves at
infinity as a power ∼ u1−2s. It remains to determine the i-periodic factors pα.

The functions pα have to be chosen such that 1) the integral is convergent 2) there are
no extra poles contributing to the integral when we shift the contour.

For simplicity let’s assume s > 0 to ensure that poles of ε are below the real axis. Let’s
first look at the factor pα ε Q[−2s]

θ g−− and we need to make sure there are no poles in the
strip 0 ≤ Im u ≤ 1. The only pole can come from the pα factor, however, since there is
always one zero u = θβ + is− in for some n ≥ 0 inside this strip, coming from ε×Q[−2s]

θ we
still can allow for the pα to have poles at u = θβ + is− im, m ∈ Z. Similarly for the term
µαQ

[+2s]
θ g++ there should not be poles at −1 ≤ Im u ≤ 0, this time ε has a dangerous pole

at θβ − is, however, this one is luckily cancelled by the factor Q[+2s]
θ ; and similarly to the

previous term we still can allow for pα to have poles at u = θβ + is− im.
Further constraints on pα are coming from the convergence requirement. Assuming

that both f and g behave as λiu1 ut at infinity, and assuming that −π < arg λ1 < 0 for
definiteness, we see that in order for the integral to converge, pα has to decay exponentially
and faster than λiu1 at u→ +∞ and at the same time not grow faster than λ−iu1 at u→ −∞.
Since, furthermore, we are only allowed to have simple poles at θβ+is−im the most general
i-periodic function with these properties should have the form

L∑
β=1

Cβ

1− e2π(u−θβ−is) . (4.9)

Thus we conclude there are L linearly independent measures with the specified properties,
which we denote as

µα = ε

1− e2π(u−θα−is) , α = 1, . . . , L . (4.10)

Note that for this choice of the basis, for any given α the poles of the measure µα in the
upper half plane are at u = +is + in + θα with n = 0, 1, . . . . For the case s = 1/2 the
expression (4.10) reproduces the result of [21].

Finally, let us point out that for the case 0 < arg λ1 < π we would have to simply
replace the sign in the exponent in denominator of (4.10) to ensure the convergence.
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Orthogonality. Having the self-adjoint property (4.5), we can now use standard argu-
ments from linear algebra in order to deduce orthogonality relations for Q-functions corre-
sponding to different states.28 Consider two different transfer matrix eigenstates labelled
as A and B, so that

ÔAQA1 = 0 , ÔBQB1 = 0 , (4.11)

then as a consequence of (4.5) we have((
QB1 (ÔA − ÔB)QA1

))
α

= 0 . (4.12)

The only difference between operators ÔA and ÔB comes from the transfer matrices which
have the form

τA1 = 2 cosφ uL +
L−1∑
α=0

IAα u
α (4.13)

where IAα are eigenvalues of the integrals of motion. Thus (4.12) gives a linear system of
equations on the differences IAα − IBα ,

L−1∑
β=0

((
QA1 Q

B
1 u

β
))
α

(IAβ − IBβ ) = 0 , α = 1, . . . , L . (4.14)

As the set of coefficients of τ1 distinguishes the spin chain state uniquely, at least one of
the differences IAα − IBα has to be nonzero. This means that for A 6= B the determinant of
the linear system (4.14) should vanish

det
∣∣∣∣((QA1 QB1 uα−1

))
β

∣∣∣∣
α,β=1,...L

∝ δAB . (4.15)

One can consider this identity as an orthogonality relation between the SoV wave functions,
since the above determinant has the correct form! In the next section we clarify more
precisely the link with the explicit construction of the SoV basis from section 2.2.

4.1.2 Comparison to the SoV basis construction

Let us demonstrate that the orthogonality property (4.15) is directly related to the SoV
basis we constructed in section 2.2. Since the determinant (4.15) vanishes when A and B
label different transfer matrix eigenstates, we expect to identify it with the scalar product

〈ΨA|ΨB〉 = N × det
∣∣∣∣((QA1 QB1 uα−1

))
β

∣∣∣∣
α,β=1,...L

(4.16)

up to an overall state-independent constant factor N (which we can always introduce
by rescaling the integration measure (4.10)). Let us relate the determinant to the SoV
basis representation of this scalar product given in (2.45). We see that each of the brackets
in (4.15) is an integral over the real line, where the integrands have asymptotics dictated by
the measure and by the Q-functions which have the form λiu1 × [polynomial]. In section 2.2

28Tricks of this type were used earlier in [32] by two of the authors and A. Cavaglia in the AdS/CFT
context.
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we assumed that |λ1| > 1 in order to ensure that the states we constructed are actually
inside our Hilbert space (see the discussion after (2.24)), and here this condition also plays
a key role as it allows us to close the integration contour in the upper half-plane. This
means that the integral reduces to a sum over poles of the measure at u = θα + is + in,
n = 0, 1, 2, . . . . As a result, we find

N × det
∣∣∣∣((QA1 QB1 uα−1

))
β

∣∣∣∣
α,β=1,...L

= (4.17)

∑
n1,...,nL

N ×M ′n1,n2,...,nL

(
L∏
α=1

QA1 (xα)
) L∏

β=1
QB1 (xβ)


where the sum is over integers nα ≥ 0 with xα = θα + is + inα, and the M ′n1,...,nL co-
efficients are some combination of residues of the integration measure. We see that the
arguments of Q-functions in (4.17) are precisely the eigenvalues of the separated variables
given by (2.30) from section 2.2. We also see that the expressions in the brackets match
the SoV wavefunctions (2.37). It is clear now that (4.17) indeed has exactly the same form
as the scalar product between two transfer matrix eigenstates 〈ΨA|ΨB〉 we gave in (2.45)
above, with N ×M ′n1,...nL appearing in the place of the measure Mn1,...,nL in (2.45). Thus
we identify the coefficients in (4.17), following from the evaluation of integrals, with the
(inverse) overlaps of the SoV basis elements given by Mn1,...,nL ,

Mn1,...,nL = N ×M ′n1,...nL . (4.18)

In fact, when we consider all different eigenstates A,B of the transfer matrix, (4.17) has to
vanish and thus we get a (infinite) system of linear equations that should be satisfied both
by N ×M ′n1,...,nL and by the inverse overlaps Mn1,...,nL . One can expect that its solution
is unique up to an overall normalisation, which leads to (4.18). Since the overlap of two
SoV vacua is 〈0|0〉 = 1 in our conventions, we must have M0,...,0 = 1 and this fixes the
coefficient N in terms of a combination of residues,

N = 1
M ′0,...,0

. (4.19)

Now we can compute M ′n1,...,nL quite directly again in terms of residues, leading to the
correct result (2.38) presented in section 2.2.

4.2 The sl(3) case

In this section we generalise the derivation of the integral form for the scalar product and
orthogonality relations for the Q-functions to the sl(3) case.

For sl(3) we have two Baxter equations, (3.21) and (3.22) that were discussed in sec-
tion 3.2. Like in the previous section we rewrite them in terms of two difference operators,

ÔQ1 ≡
Q

[+2s+1]
θ Q

[+2s−1]
θ

Q
[−2s+1]
θ

Q
[+3]
1 − τ+

2
Q

[+2s−1]
θ

Q
[−2s+1]
θ

Q+
1 + τ−1 Q

−
1 −Q

[−2s−1]
θ Q

[−3]
1 = 0 (4.20)
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and
Ô†Q12 = Q

[−2s]
θ Q

[−3]
12 − τ2Q

−
12 + τ1Q

+
12 −Q

[+2s]
θ Q

[+3]
12 = 0 . (4.21)

We recall that τ1 and τ2 are related to the eigenvalues of the transfer matrices in the
fundamental and twice antisymmetric representations defined in (3.17), (3.18).

The difference with the sl(2) case is that like in [21] we now have two operators Ô and
Ô†, which become related to each other under a scalar product of the form (4.4). More
precisely we will require that the measure µα is such that((

Q1Ô
†f
))
α

= 0 (4.22)

where f has the large-u asymptotics similar to Q12 or Q13, i.e. ∼ (λ1λ2)iuut or ∼ (λ1λ3)iuut

for some powers t. In this section we will show that the measure factors µα are in fact the
same as in the sl(2) case i.e. (4.8) and (4.10), in analogy with the case s = 1/2 [21]. To
verify that we have to move the contours of integration so that there are no shifts in the
argument of f in the l.h.s. of (4.22),

((
Q1Ô

†f
))
α

=
∫ +∞

−∞
µα(u)Q1(u)

(
Q

[−2s]
θ f [−3]−τ2f

−+τ1f
+−Q[+2s]

θ f [+3]
) du

2πi (4.23)

=
∫ +∞

−∞

[
µ[+3]
α Q

[−2s+3]
θ Q

[+3]
1 −µ+

α τ
+
2 Q

+
1 +µ−α τ−1 Q

−
1 −µ

[−3]
α Q

[+2s−3]
θ Q

[−3]
1

]
f
du

2πi
+residues from poles ,

where we indicate that there may be extra terms coming from poles of µα which we will
consider later. We would like the expression in square brackets in the second line to be
proportional to ÔQ1 as then the result will simply be zero. Notice that we have to match
several terms in the operator Ô (defined in (4.20)) with only one function µα, so it is not
trivial that a way to do this exists at all. However, from (4.10) we get

µ[+3]
α = Q

[+2s+1]
θ

Q
[−2s+3]
θ

Q
[+2s−1]
θ

Q
[−2s+1]
θ

µ−α , µ+
α = Q

[+2s−1]
θ

Q
[−2s+1]
θ

µ−α , µ[−3]
α = Q

[−2s−1]
θ

Q
[+2s−3]
θ

µ−α (4.24)

which indeed gives µ−α ÔQ1 = 0 for the expression in the square brackets in (4.24).
We now have to verify that there are no additional contributions from the poles, which

one could potentially pick up when moving the integration contours around. Let us remind
that µα has simple poles at u = θβ − is − in, n ≥ 0 for all β = 1, . . . , L and in addition
has poles at u = θα + is + in, n ≥ 0 (with α fixed). Since µα is the only source of poles
here, we see that for large enough s there will be no poles at all to pick and thus the l.h.s.
of (4.24) is indeed zero. At the same time, as all terms under the integral are analytic
functions of s, so should be the integral. Thus we conclude that the poles should cancel
when they are present. In particular, for the case s = 1/2 the cancellation of the poles was
explicitly verified in [21]. We extended this consideration to the case s > 0 in appendix E.

Lastly, let us comment on convergence of the integrals in (4.24) at large u. As we
already mentioned, below we will use this equation for the case when f can have one of
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the two types29 of large u behavior: either ∼ (λ1λ2)iuut or ∼ (λ1λ3)iuut. Similarly to the
sl(2) case (see the discussion above (4.10)) we will assume for definiteness that

0 < arg λ2 − arg λ1 < π , 0 < arg λ3 − arg λ1 < π . (4.25)

These conditions ensure that the integral in (4.24) will be convergent for both choices of
asymptotics of f . Also, like for sl(2), if e.g. the first inequality in (4.25) is violated, we
should redefine µα for the case when f has asymptotics f ∼ (λ1λ2)iuut, by flipping the sign
in the exponent in the denominator of (4.10). Similarly, when f ∼ (λ1λ3)iuut we redefine
the measure in the same way when the second inequality in (4.25) is violated.

Integral orthogonality relation for the Q-functions. Now we are ready to derive
the orthogonality relations for Q-functions following in analogy with what was done for
sl(2) in section 4.1. Let us consider again two different spin chain states labelled by A and
B and take the combination((

QA1

(
Ô†B − Ô†A

)
QB1,a+1

))
α

= 0 , a = 1, 2 (4.26)

where we use the Q-functions Q12 and Q13 for the state B and Q1 for the state A. This
expression is equal to zero due to (4.21) and (4.22). The operators ˆ̄OA and ˆ̄OB differ only
due to the different values of the transfer matrices τAa and τBa in their definition (4.20), (4.21)
which encode the integrals of motion,

τa(u) = uLχa(λ) +
L∑
α=1

uα−1 Ia,α−1, a = 1, 2 , (4.27)

where χa(λ) is the state-independent coefficient that is simply the character of sl(3) in the
a-th antisymmetric representation with eigenvalues given by the twists λ1, λ2, λ3. With
this notation, (4.26) gives

(2,L)∑
(b,β)=(1,1)

((
QA1 uβ−1 D3−2bQB1,a+1

))
α
× (−1)b

(
IAb,β−1 − IBb,β−1

)
= 0 , (4.28)

with a = 1, 2 and we introduced the multi-index (b, β), which takes 2L different values.
Since for two different states at least one of the differences IAb,β−1−IBb,β−1 has to be zero, we
find that the determinant of the linear system for these quantities in (4.28) should vanish,

det
(a,α),(b,β)

((
QA1 uβ−1 D3−2bQB1(a+1)

))
α

= 0 . (4.29)

This is the key orthogonality relation, which generalizes the sl(2) relation (4.15) to the
sl(3) case.

This time, however, it is less obvious that (4.29) has the form of the SoV product with
some measure factor. In section 5 we show that indeed (4.29) takes the exact form one gets
for the scalar product of two wavefunctions in the SoV basis we built above in section 3.

29We also remind that in our conventions λ3 = 1/(λ1λ2).
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Like in the sl(2) case, one can also argue that the number of the orthogonality relations
in (4.29) is large enough to guarantee that we can actually deduce from it any element of
the SoV overlap matrix 〈y|x〉. Indeed, since the entries of the matrix 〈y|x〉−1 are rational
functions30 of the spin s we can explicitly solve for each block of fixed SoV charge 〈y|x〉−1

by considering the finite-dimensional case s ∈ {0,−1
2 ,−1, . . . } with −s large enough. Then

we can simply analytically continue the result for that block to general values of s. We will
do this calculation in section 5.

4.3 General sl(N) case

The integral form of the scalar product we obtained above for sl(2) and sl(3) spin chains
can be generalized quite directly to any sl(N). In this section we will just present the result
for the orthogonality relation, while the details of the derivation are given in appendix C.
The result is almost identical to that obtained for the s = 1/2 case in [21] and reads

det
(a,α),(b,β)

((
QA1 uβ−1 D−2b+N ◦QB,a+1

))
α
∝ δAB . (4.30)

Here the indices take values a, b = 1, . . . , N and α, β = 1, . . . , L. We remind that here
D is the shift operator defined in (4.3). The only place where the s-dependence enters
into this expression is through the definition of the double-brackets (4.4), which contains
the s-dependent factor µα given in (4.10). In (4.30) we also introduced the notation for
Q-functions with upper indices,

Qa = εb1...bN−1aQb1...bN−1 (no summation over repeated indices) , (4.31)

where ε is the fully antisymmetric tensor and ε12...N = 1, while the indices are chosen as
{b1, . . . , bN−1} = {1, . . . , N}\{a}. For example in the sl(3) case the functions Qa appearing
in (4.30) are Q2 = −Q13 and Q3 = Q12, so that it reduces to the sl(3) result we gave above
in (4.28).

In the next section we show how the relation (4.30) leads to an explicit expression for
the SoV measure My,x.

5 Explicit formula for the SoV measure

In this section we establish the relation between the operatorial SoV approach, discussed
in section 3 on the example of sl(3), and the integral orthogonality relation we derived in
the previous section 4. As a result we will derive an explicit31 formula for the SoV measure
for general sl(N).

5.1 Comparison with the SoV construction for L = 2 case

In order to see how the relation with the SoV approach works, we first study the case of
short length L = 2 for the sl(3) spin chain explicitly in detail. In the next section we
discuss arbitrary length spin chains and then consider the general sl(N) case.

30This follows from the fact that both 〈x| and |y〉 are rational functions of s which was demonstrated for
example in (3.48).

31The measure has implicitly been obtained in [21, 22] and then later in [25].
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We start from the integral orthogonality relation given by the determinant (4.29) which
for L = 2 reads

d2 ≡

∣∣∣∣∣∣∣∣∣∣∣∣

((
Q1Q

−
12

))
1

((
Q1Q

−
12u

))
1

((
Q1Q

+
12

))
1

((
Q1Q

+
12u

))
1((

Q1Q
−
12

))
2

((
Q1Q

−
12u

))
2

((
Q1Q

+
12

))
2

((
Q1Q

+
12u

))
2((

Q1Q
−
13

))
1

((
Q1Q

−
13u

))
1

((
Q1Q

+
13

))
1

((
Q1Q

+
13u

))
1((

Q1Q
−
13

))
2

((
Q1Q

−
13u

))
2

((
Q1Q

+
13

))
2

((
Q1Q

+
13u

))
2

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1)

Here as well as below we omitted the indices A and B, indicating the state, for clar-
ity. In order to make the connection with the operatorial SoV approach we rewrite the
determinant as

d2 =
∫
t2({uα,a})

L∏
α=1

2∏
a=1

duα,a
2πi Q1(uα,a)µα(uα,a) (5.2)

where

t2({uα,a}) =

∣∣∣∣∣∣∣∣∣∣
Q−12(u11) u11Q

−
12(u11) Q+

12(u11) u11Q
+
12(u11)

Q−12(u21) u21Q
−
12(u21) Q+

12(u21) u21Q
+
12(u21)

Q−13(u12) u12Q
−
13(u12) Q+

13(u12) u12Q
+
13(u12)

Q−13(u22) u22Q
−
13(u22) Q+

13(u22) u22Q
+
13(u22)

∣∣∣∣∣∣∣∣∣∣
. (5.3)

Note that all terms in the integral, except t2({uα,a}), are symmetric under the permutations
of uα,a for each α separately. Computing the determinant explicitly we observe that up to
permutation we have the following equation

t2({uα,a}) ' (u11 − u21)(u12 − u22)F 0,−1
1 F 0,−1

2 (5.4)

− (u11 − u12)(u21 − u22)
4

(
F 0,0

1 F−1,−1
2 + F−1,−1

1 F 0,0
2

)
where ' indicates that the equality holds up to the permutations. We also introduced the
notation

F s1,s2α =Q12(uα1 + is1 + i
2)Q13(uα2 + is2 + i

2)−Q13(uα1 + is1 + i
2)Q12(uα2 + is2 + i

2) . (5.5)

We assume that the twists satisfy

|λ1| > |λ3| , |λ1| > |λ2| , (5.6)

as in section 3 (where this condition ensured that the states we built actually lie in the
Hilbert space). This means that we can close the integration contour in the upper half
plane for all the integrals in (5.2), and evaluate them by picking the poles of µα (defined
in (4.10) and (4.8)) at

u = θα + is + in , n ≥ 0 . (5.7)

At these points the factor µα has simple poles, with residues given by a product of Pochham-
mer functions defined in (2.39). For example, consider the first term in (5.4), which gives
the following contribution to the result in (5.2):

dI2 =
∫

(u11 − u21)(u12 − u22)F 0,−1
1 F 0.−1

2

L∏
α=1

2∏
a=1

duα,a
2πi Q1(uα,a)µα(uα,a) (5.8)
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which we can now write as a sum over residues

dI2 =
∞∑

n11=0

∞∑
n12=0

∞∑
n21=0

∞∑
n22=0

RIn11n12n21n22 (5.9)

where

RIn11n12n21n22 = (x11 − x21)(x12 − x22)
∏
α,a

[rα,nαaQ1(xαa)] (5.10)

×
[
Q12(x11 + i

2)Q13(x12 − i
2)−Q13(x11 + i

2)Q12(x12 − i
2)
]

×
[
Q12(x21 + i

2)Q13(x22 − i
2)−Q13(x21 + i

2)Q12(x22 − i
2)
]

and xαa = θα + is + inα,a. This already has a form familiar from the SoV approach (3.63)
if we identify yα1 = xα1, yα2 = xα2 − i, which gives

My,x|yα1=xα1,yα2=xα2−i = 1
N

(x11 − x21)(x12 − x22)
∏

rα,nα,a . (5.11)

The normalisation factor can be fixed by requiring that for nα,a = 0 the r.h.s. gives identity.
This results in

N = (x10 − x20)2
L∏
α=1

r2
α,0 . (5.12)

This is already highly non-trivial as we should be able to reproduce all diagonal elements
of the matrix of (3.74) and (3.75). For example taking n2,1 = 2 and all other nα,a = 0 we
get from (5.11)

M0020
0020 = θ1 − θ2 − 2i

θ1 − θ2

r2,2
r2,0

= −s(2s + 1) (2s + iθ12) (iθ12 + 2s + 1)
θ12 (θ12 − i)

(5.13)

which perfectly reproduces the (3, 3) element of the matrix (3.75)! We introduced the
notation Mm11m12m21m22

n11 n12 n21 n22 = My,x where y and x are associated to n’s and m’s in the usual
way (3.33) and (3.56).

Now notice that for SoV eigenvalues we have to impose inequalities (3.34) whereas (5.8)
has the sum running over all positive n′s. To account for that let us split the sum in (5.8)
into 4 parts depending on nα1 ≥ nα2 or nα1 < nα2 for α = 1, 2. Then only one of four
parts nα1 ≥ nα2 actually corresponds to (5.11). Now consider the case n11 < n12 and
n21 ≥ n22. As in this case we violate the inequality (3.34) we better replace the names
of the summation labels n12 ↔ n11. After that replacement and slight rearrangements
in (5.10) we get

RIn12n11n21n22 = −(x12 − x21)(x11 − x22)
∏[

rα,nα,aQ1(xαa)
]

(5.14)

×
[
Q12(x11 − i

2)Q13(x12 + i
2)−Q13(x11 − i

2)Q12(x12 + i
2)
]

×
[
Q12(x21 + i

2)Q13(x22 − i
2)−Q13(x21 + i

2)Q12(x22 − i
2)
]
,

which under identification y11 = x11 − i, y12 = x12 and y11 = x11 − i, y12 = x12, which it
terms of n’s and m’s gives m11 = n11 − 1, m12 = n12 + 1 and m2a = n2a leads to

Mn11−1,n12+1,n21n22
n11, n12, n21n22 = − 1

N
(x12 − x21)(x11 − x22)

∏
rα,nα,a . (5.15)
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For example taking nα,a = 2, 0, 0, 0 we obtain from (5.15)

M1100
2000 = θ12 + 2i

θ12

r12
r10

= +s(2s + 1) (2s− iθ12) (−iθ12 + 2s + 1)
θ12 (θ12 + i) (5.16)

in agreement with the element 2, 5 of the matrix (3.76). There are two other orderings in
dI2 producing Mn11n12n21−1,n22+1

n11n12n21, n22 and Mn11−1,n12+1,n21−1,n22+1
n11, n12, n21, n22 in an analogous way.

Finally let us consider a slightly different type of terms in (5.4) with F 0,0
1 F−1,−1

2 . It is
clear that this time each ordering of n’s will contribute in the same way so we can remove
the factor 1/4 and assume that n11 > n12 and n21 > n22 (when n11 = n12 or n21 = n22 we
simply get zero). Repeating the same argument as before we deduce

Mn11n12+1,n21−1,n22
n11n12, n21, n22 = − 1

N
(x12 − x21)(x11 − x22)

∏
rα,nα,a (5.17)

and finally the last term in (5.4) gives

Mn11−1,n12n21,n22+1
n11, n12n21,n22 = − 1

N
(x12 − x21)(x11 − x22)

∏
rα,nα,a . (5.18)

We see that the structure of the result is very suggestive. In the next section we will
generalise the above derivation to general length L.

5.2 General L expression for sl(3) measure

In order to generalize the derivation in the previous section to any L our starting point is
again the determinant in the l.h.s. of (4.29),

dL ≡ det
(a,α),(b,β)

((
Q1 u

β−1 D3−2b Q1,a+1
))
α
. (5.19)

Then we drag out 2L integrations out of the determinant to obtain

dL =
∫
tL({uα,a})

L∏
α=1

2∏
a=1

duα,a
2πi Q1(uα,a)µα(uα,a) (5.20)

where
tL({uα,a}) ≡ det

(a,α),(b,β)

[
uβ−1
α,a Q1,a+1

(
uα,a + i

3− 2b
2

)]
. (5.21)

We use the following relation for the determinants

det
(a,α),(b,β)

Hα,a,βGα,a,b =
∑
σ

(−1)
|
⋃
a

σ−1(a)|∏
a

(
det

(α,b)∈σ−1(a),β
Hα,b,β

∏
α

Gα,a,σα,a

)
(5.22)

where the indices a, b ∈ [1, . . . ,K] and α, β ∈ [1, . . . , L], H and G are two arbitrary tensors
with 3 indices. In the r.h.s. we are summing over all permutations σ of the L copies of ranges
of numbers 1, . . . ,K with σα,b denoting the number at the location b+ (α− 1)K. We also
indicated that in the r.h.s. the determinant is computed for the L×Lmatrix whose columns
are labelled by β, and whose rows are labelled by pairs (α, b) such that σα,b = a (there
are L such pairs). Lastly, the combination |

⋃
a
σ−1(a)| appearing in the sign factor is the
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number of elementary permutations needed to bring the set {σ1,1, . . . , σ1,K , σ2,1, . . . , σL,K}
to the canonical order {1, . . . ,K, . . . , 1, . . . ,K}. The relation (5.22) is easy to verify and
we will use it in the derivation below.

In application to our determinant (5.21) we get

tL({uα,a}) =
∑
σ

(−1)
|
⋃
a

σ−1(a)|
∆1∆2

∏
α

Q1,2
(
uα,1 + isα,1 + i

2

)
Q1,3

(
uα,2 + isα,1 + i

2

)
,

(5.23)
where sα,a = 1−σα,a and ∆b is the Vandermonde determinant, build out of uα,a for which
σα,a = b.

Finally, in order to bring it close to the SoV form we have to use that all terms in (5.20)
(except for the tL) are invariant under uα,1 ↔ uα,2. For tL, interchanging uα,1 ↔ uα,2 is
equivalent to interchanging Q12(uα,1 + . . . ) with Q13(uα,1 + . . . ) and Q13(uα,2 + . . . ) with
Q12(uα,2+. . . ) and changing the overall sign of tL, as it is clear from the initial determinant
form of tL. I.e. that is equivalent to antisymmetrizing Q12 and Q13 in the last term under
the product of (5.23), which will then allow us to rewrite the result in terms of F sα,1,sα,2α

sym
uα,1↔uα,2

tL({uα,a}) = 1
2L
∑
σ

(−1)
|
⋃
a

σ−1(a)|∏
a

∆a

∏
α

F
sα,1,sα,2
α . (5.24)

Now the expression (5.24) is ready to go under the integration (5.20). Closing the
contour in the upper half plane and evaluating the integration by residues we pick up poles
coming from the integration factors µα at uα,a = θα+is+inα,a where nα,a ≥ 0 and otherwise
are unconstrained. By construction the integrand is now invariant under uα,1 ↔ uα,2 for
every value of α = 1, . . . , L and so the residues are also symmetric under nα,1 ↔ nα,2.
Using this symmetry we can remove the factor 1/2L and impose 0 ≤ nα,2 ≤ nα,1. The only
potential problem could be that in this way we take the contributions with nα,2 = nα,1
into account multiple times — we will see in a moment that we do not.

Thus we can read off the following expression for the measure factor My,x = M
{mα,a}
{nα,a}

My,x|mα,a=nα,a−σα,a+σ0
α,a

= (−1)|σ|∆1∆2
∆2

0

∏ rα,nα,1rα,nα,2
r2
α,0

(5.25)

where rα,n is defined in (2.39), σ0
α,a = a+(α−1)(N−1) is a trivial permutation and ∆0 is the

Vandermonde determinant built out of θα, as before it has to be added to ensure our normal-
isation with M0,0 = 1 holds. We also denote |σ| is the number of elementary permutations
needed to bring the set

⋃
a
uσ−1(a) to the canonical order

⋃
a
uσ−1

0 (a) = u11, u12, . . . , uL1, uL2.
It remains to check that we have not over-counted the nα,1 = nα,2 cases. Note that if at

the same time sα,1 = sα,2, then F sα,1,sα,2 = 0 and we do not have to worry about this case.
Thus the dangerous situations are σα,1 = 1, σα,2 = 2 and σα,1 = 2, σα,2 = 1. But in the
latter case we get mα,1 = nα,1−2+1 < mα,2 = nα,2−1+2 which is prohibited due to (3.48)
for example, so there is only one contribution coming from nα,1 = nα,2 = mα,1 = mα,2 and
thus (5.25) is valid as is.
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5.3 General expression for the measure

The general sl(N) case is almost completely clear after the previous two derivations. We
start from the integral orthogonality relation (4.30) and pull out L(N − 1) integrations,
factors of Q1(uα,a) and the measure factors µα(uα,a)

dL =
∫
tL({uα,a})

L∏
α=1

N−1∏
a=1

duα,a
2πi Q1(uα,a)µα(uα,a) . (5.26)

Then we apply the identity (5.22) to the remaining integrand tL({uα,a}) and symmetrise
in permutations of uα,a for each given α, which is equivalent to interchanging indices of
Qa. Similarly to the sl(3) example we arrive to the following result

sym
{uα,1,...,uα,N−1}

tL({uα,a}) =
∑
σ

(−1)|σ|
[∏
a

∆a

]∏
α

F
sα,1,sα,2,...,sα,N−1
α

(N − 1)! (5.27)

where σ is a permutation of (N −1)L numbers 1, 2, . . . , N −1, 1, 2, . . . . We also introduced
the generalisation of (5.5) as a (N − 1)× (N − 1) determinant

F
sα,1,sα,2,...,sα,N−1
α = det

a,b
Q(1+a)

(
uα,b + isα,b + i

N − 2
2

)
(5.28)

where sα,a = 1− σα,a ≤ 0.
Like in the sl(3) case we then have to close the contour in the upper half plane (which

strictly speaking requires |λ1| > |λ2| > · · · > |λN |) and rewrite the integral (5.26) as a sum
over poles at uα,a = θα + is + inα,a for nα,a > 0. At first let us assume that all nα,a are all
different for a given α, then we can restrict ourselves to nα,1 ≥ nα,2 ≥ · · · ≥ nα,N−1 ≥ 0
using the symmetry of the integrand by removing (N−1)!’s from the denominator of (5.27).
If there are some n′αs which are equal among each other, then the number of equivalent
permutations of nα,a is less then N ! and we have to compensate for the overcounting by
dividing for each α by

Mα ≡
N !

#perm{nα,a}N−1
a=1

. (5.29)

Thus up to an overall factor we get

dL ∝
∑

nα,1≥···≥nα,N−1≥0

∏
α

1
Mα

∏
α,a

Q1(xα,a)rα,nα,a (5.30)

×
∑
σ

(−1)|σ|
∏
a

∆a

∏
α

[
det
a,b

Q(1+a)
(

yα,0 + inα,b + isα,b + i
N − 2

2

)]
where xα,a = θα + is + inα,a and yα,0 = θα + is. In analogy with sl(3) we define

yα,a = yα,0 + imα,a − i(a− 1) , mα,1 ≥ . . .mα,N−1 ≥ 0 . (5.31)

We show in section 6 that this in indeed the correct identification for the spectrum of the
roots of the C(u) operator. Note that for every combination of nα,a and sα,a there is a
unique way to find yα,a such that the expression in the brackets in (5.30) matches

det
a,b

Q(1+a)
(

yα,b + i
N − 2

2

)
(5.32)
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up to a sign. For that we have to find a permutation ρα of [1, . . . , N −1] such that for each
fixed α

mα,a + s0
α,a = nα,ραa + sα,ραa , a = 1, . . . , N − 1 (5.33)

where s0
α,a = 1 − a. For that we simply have to order the numbers nα,a + sα,a. Some

observations are in order: firstly, all {nα,a + sα,a}N−1
a=1 must be distinct, as otherwise the

determinant will vanish. This means that their ordering produces a unique permutation
ρa. Secondly, the number in the l.h.s. satisfy strict inequality mα,1 + s0

α,1 > mα,2 + s0
α,2 >

· · · > mα,N−1 + s0
α,N−1 ≥ 2 − N at the same time nα,a + sα,a ≥ 2 − N meaning that we

will always be able to find unique set {mα,a}, satisfying the required inequalities for any
nα,a and sα,a. Explicitly for each α we find mα,a = (sort{nα,b + sα,b})α,a − s

0
α,a where we

introduced the notation sort, for a function which implements the sorting permutation ραa .
We need to keep track of the signature of the permutation ρα, as this would affect the sign
of the result. Thus we conclude that we get the following contribution to the measure

Mσ
y,x

∣∣∣
mα,a=(sort{nα,b−σα,b})α,a+σ0

α,a

= (−1)|σ|
(
N−1∏
a=1

∆a

∆0

)
L∏
α=1

(−1)|θα|

Mα

N−1∏
a=1

rα,nα,a
rα,0

. (5.34)

In practice we will have to determine for given properly ordered sets {nα,a} and {mα,a}
what is the value of the corresponding My,x. For that we have to sum over all possible
permutations σ’s for which the relation between m’s and n’s holds. Finally, we can simplify
our result a bit by noticing that when we have a degeneracy in nα,a we also have several
σ’s which give the same result — and their number is exactly Mα. So instead of summing
over all σ′s it simpler to sum over all inequivalent permutations of nα,a (within each α).
Denoting such permutations by k we then get

My,x =
∑

k=permαn

sign(σ)
(
N−1∏
a=1

∆(xσ−1(a))
∆({θa})

)
N−1∏
a=1

rα,nα,a
rα,0

∣∣∣∣∣
σα,a=kα,a−mα,a+a

. (5.35)

To have all notations summarised in one place let us remind that σα,a should be one of
(N−1)L!
L!N−1 permutations of the numbers 1, 2, 3, . . . , (N − 1) repeated L times, otherwise we

define sign(σ) = 0; we also define xσ−1(a) = {xα,b : σα,b = a}. The signature of the permu-
tation sign(σ) is ±1 depending on the number of elementary permutations needed to bring
the ordered set uσ−1(1)∪uσ−1(2) · · ·∪uσ−1(N−1) to the canonical order u1,1, u1,2, . . . , uL,N−1.
Whereas sign(σ) could be ambiguous due to different possible orderings inside σ−1(a), the
combination with the Vandermonds ∆(xσ−1(a)) it is a well defined. Finally rα,n is the only
s-dependent factor which is defined in (2.39).

In appendix G we give a simpleMathematica code which computes the measure element
for given n’s and m’s, implementing (5.35). As an example, we show the structure of the
measure matrix for the sl(4) length-3 spin chain on figure 2.

6 Extension to sl(N) spin chains

The integral representation give a sharp suggestion on what the spectrum of the SoV
operators in sl(N) case should be and how they should give rise to the measure factor,
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1 1000 2000 3000 3616

1

1000

2000

3000

3616

1 1000 2000 3000 3616

1

1000

2000

3000

3616

Figure 2. Structure of the measure matrix My,x for sl(4) length L = 3 spin chain with all 3616
SoV states up to SoV charge N = 10. All non-zero elements denoted by a yellow pixel. Within
each fixed SoV charge block the states x and y are ordered lexicographically according to the words
(n1,1, n2,1, n1,2, n2,2, n1,3, n2,3). The matrix is upper triangular and has a fractal-like self-repetitive
structure.

for which we produced a prediction in the previous section. Here we extend the results
described in section 4 for sl(3) to sl(N). We will also fill some gaps in the previous
discussions. In particular we demonstrate how to diagonalise the B and C operators
by introducing new commutation relations between them and certain transfer matrices
generalising the relation first obtained in [13].

We begin by reviewing the key tools and relations and then proceed with the
generalisation.

6.1 Quantum minors

A useful tool when dealing with the higher-rank sl(N) case are the so-called quantum mi-
nors which are certain anti-symmetric combinations of monodromy matrices where “quan-
tum” refers to the presence of extra shifts which disappear in the classical limit. The
quantum minors T

[
i1...ia
j1...ja

]
(u), n = 1, 2, . . . , N , are defined as

T
[
i1...ia
j1...ja

]
(u) =

∑
σ

(−1)degσTi1jσ(1)(u+i(a−1))Ti2jσ(2)(u+i(a−2)) . . .Tiajσ(a)(u) (6.1)

=
∑
σ

(−1)degσTiσ(1)j1(u)Tiσ(2)j2(u+i) . . .Tiσ(a)ja(u+i(a−1)) (6.2)
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Figure 3. Transposition of Young diagrams.

where the sum is over all elements σ of the permutation group Sa of a elements. Note that
these objects (6.1) can also be identified as elements of the monodromy matrices in anti-
symmetric representations. In other words in (6.1) the fusion procedure [48] is performed
directly at the level of the monodromy matrix instead of the Lax operators like in (2.5).
The transfer matrices in anti-symmetric representations Ta,1(u) are then obtained as sums
of quantum minors of a given size

Ta,1(u) =
∑

1≤i1<···<ia≤N
T
[
i1...ia
i1...ia

] (
u− i

2 (a− 1)
)
. (6.3)

Transfer matrices in all other representations can be obtained through the recur-
sive use of the Hirota identity if the representation is rectangular or by means of the
CBR formula [46, 47] for a representation corresponding to a generic Young diagram
µ = (µ1, . . . , µN )

Tµ(u) = det
1≤j,k≤µ1

Tµ′j−j+k,1
(
u− i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
(6.4)

where as usual we have the constraints µ1 ≥ µ2 ≥ · · · ≥ µN and we remind the reader that
the transpose Young diagram µ′ is defined as in figure 3.

6.2 Separated variables, B(u) and C(u)

We now turn to the construction of the SoV bases 〈x| and |y〉 obtained by diagonalising
the operators B(u) and C(u) respectively. The B operator is defined as [8–10]

B(u) =
∑
jk

T
[
j1
N

]
T[−2]

[
j2
j1,N

]
T[−4]

[
j3
j2,N

]
. . .T[−2N+4]

[
12...N−1
jN−2,N

]
(6.5)

where jk = {j1
k , . . . , j

k
k}, k = 1, 2, . . . , N − 2 is a multi-index and we sum over all configu-

rations with 1 ≤ j1
k < j2

k < · · · < jkk ≤ N − 1. Similarly, the sl(N) C operator is defined as

C(u) =
∑
jk

T
[

12...N−1
jN−2,N

]
. . .T

[
j3
j2,N

]
T
[
j2
j1,N

]
T
[
j1
N

]
. (6.6)

We see that the only difference between B and C is the order in which the minors appear
and the associated shifts and so the two operators coincide in the classical limit and consti-
tute two different quantisations of the classical separated variables [49]. We will see later
how this definition of the C operator, initially found in [22] for su(3) case, comes about.
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Untwisted operators and lowest-weight state. In order to progress we need to in-
troduce the untwisted monodromy matrix elements Tij(u) i.e.

Tij =
N∑
k=1
TikΛkj . (6.7)

If the representation is finite-dimensional i.e. −2s ∈ N there exists a lowest-weight state
|0̄〉 in addition to the highest-weight state |0〉. The untwisted operators Tij have a simple
action on both of these states, in particular

〈0̄|Tij(v) = 0, i > j, 〈0̄|Tkk(v) = Q
[2s]
θ 〈0̄|, k = 1, . . . , N − 1, (6.8)

〈0̄|TNN (v) = Q
[−2s]
θ 〈0̄|

and

Tij(v)|0〉 = 0, i > j, T11(v)|0〉 = Q
[−2s]
θ |0〉, Tkk(v)|0〉 = Q

[2s]
θ |0〉, k ≥ 2 . (6.9)

In [13] the B operator was shown to have a very simple form in terms of the un-
twisted monodromy matrix elements Tij when we use the companion twist matrix (2.8).
In particular, the quantum minors appearing in (6.5) were shown to have the form

T
[
jn
jn−1,N

]
= (−1)n+N−2 det Λ T

[
jn
1 jn−1+1

]
(6.10)

which is easy to verify by direct calculation. Note that since we have chosen to put det Λ = 1
it follows immediately that B (and also C) are independent of the twist eigenvalues and
hence so are their eigenvectors, in a properly chosen normalisation. Explicitly, in terms of
the untwisted operators Tij(u), B and C read

B(u) =
∑
jk

T
[
j1
1

]
T [−2]

[
j2
1 j1+1

]
T [−4]

[
j3
1 j2+1

]
. . . T [−2N+4]

[
12...N−1
1 jN−2+1

]
(6.11)

and
C(u) =

∑
jk

T
[

12...N−1
1 jN−2+1

]
. . . T

[
j3
1 j2+1

]
T
[
j2
1 j1+1

]
T
[
j1
1

]
. (6.12)

We can also verify that

〈0̄|B(u) = (−1)
1
2 (N−1)(3N−4)

(
Q

[2s]
θ (u)

)N−1
×
N−2∏
k=1

(
Q

[2s−2k]
θ

)N−1−k
〈0̄| (6.13)

and

C(u)|0〉 = (−1)
1
2 (N−1)(3N−4)

N−1∏
k=1

Q
[−2s+2(k−1)]
θ ×

N−2∏
k=1

(
Q

[2s+2(k−1)]
θ

)N−1−k
|0〉 (6.14)

as it follows immediately form (6.8) and (6.9). Like in the sl(3) case we subsequently define
b(u) and c(u) by removing trivial “non-dynamical” factors

B(u) = b(u)× (−1)
1
2 (N−1)(3N−4)

N−2∏
k=1

(
Q

[2s−2k]
θ

)N−1−k
, (6.15)
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and

C(u) = c(u)× (−1)
1
2 (N−1)(3N−4)

N−2∏
k=1

(
Q

[2s+2(k−1)]
θ

)N−1−k
, (6.16)

respectively. Like in sl(3) case the operators c and b are polynomials, as will be also clear
from below.

Commutation relation. The key relation derived in [13] allowing us to show that B
indeed generates separated variables is its commutation relation with transfer matrices
Tµ(u),32

Tµ
(
v − i

2
(
µ1 − µ′1

))
B(u) = fµ(u, v)B(u)Tµ

(
v − i

2
(
µ1 − µ′1

))
+R1(u, v) (6.17)

where the function fµ(u, v) and the operator R1(u, v) are given by

fµ(u, v) =
hµ∏
k=1

u− v − i(k − 1− µa)
u− v − i(k − 1) , R1(u, v) =

N∑
j=1
Tj1(v)× . . . (6.18)

where hµ denotes the height (number of non-zero rows) of the Young diagram µ and “. . . ”
in R1(u, v) refers to non-zero terms irrelevant for the rest of our discussion. The key idea
is that if 〈Λ| is an eigenstate of B and 〈Λ|Tj1(v) = 0, j = 1, . . . , N for some v then the
remainder term R1(u, v) in (6.17) vanishes and so 〈Λ|Tµ(v) will be a new eigenstate of B.

As a result of the properties (6.8) the natural state to start with to build up the
eigenvectors of B is the lowest-weight state 〈0̄|. Unfortunately, for generic values of the
spin s we do not have a lowest-weight state meaning the relation (6.17) is not directly
applicable. On the other hand, as we will see, (6.17) can be modified to allow us to
diagonaliseB starting from the highest-weight state instead. In order to gain some intuition
for the required modifications we will first demonstrate how this relation can be used in
the compact case s ∈ {0,−1

2 ,−1, . . . , } to diagonalise B and then extend to general s.

Vanishing of remainder term in the compact case. In this subsection we assume
that s ∈ {0,−1

2 ,−1, . . . , } and hence a lowest-weight state 〈0̄| with the properties (6.8)
exists. As we have just stated, we need a state 〈Λ| and a point v such that 〈Λ|Tj1(v) = 0
and so we can take 〈Λ| = 〈0̄| and v = θα − is. Hence, the commutation relation (6.17)
reduces to

〈0̄|Tµ(θα−i
(
2s+µ1−µ′1

)
)B(u) = fµ(u,θα−is)〈0̄|B(u)Tµ(θα−i

(
2s+µ1−µ′1

)
) (6.19)

We can then replace B with b and use the fact that 〈0̄| is an eigenvector of b with eigenvalue(
Qθ(u)[2s]

)N−1
to conclude that 〈0̄|Tµ(θα− i (2s + µ1 − µ′1)) is a new eigenvector of b with

eigenvalue
fµ(u, θα − is)

(
Q

[2s]
θ (u)

)N−1
. (6.20)

32Strictly speaking this relation as we have written it only holds when applied to states which are anni-
hilated by Tj1(v) for some v. This will not affect any of our arguments as we will only ever use it on such
states. The precise details can be found in [13].
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What is not clear from this construction is if 〈0̄|Tµ(θα − i (2s + µ1 − µ′1)) is actually non-
zero. It was explained in [19] how this requirement places strong constraints on the choice
of Young diagram µ. Specifically, µ must be contained in the Young diagram describing
the physical space [−2s, 0, . . . , 0] in which case it has no vanishing eigenvalues and so we
conclude that 〈0̄|Tµ(θα − i (2s + µ1 − µ′1)) is non-zero. On the other hand, if µ is not
contained in this diagram then Tµ(θα − i (2s + µ1 − µ′1)) vanishes identically. Hence we
conclude that our new eigenstate should be of the form

〈0̄|T1,s(θα − i (2s + s− 1)) for any s ∈ {0, 1, . . . ,−2s} . (6.21)

It was also demonstrated in [13] that we can construct a whole family of states in such a
manner. In particular, the remainder term will continue to vanish as long as a transfer
matrix associated to a given θα is not used more that N − 1 times [13]. The conclusion is
that each vector of the form

〈0̄|
L∏
α=1

N−1∏
j=1

T1,sαj (θα − i
(
2s + sαj − 1

)
) (6.22)

is an eigenstate of b as long as we choose each sαj to satisfy sαj ≤ −2s. Since the transfer
matrices commute we are also free to arrange the order of the product so that sα1 ≤ sα2 ≤
· · · ≤ sαN−1 for each α, and so by (6.20) we conclude that (6.22) is an eigenvector of b with
eigenvalue

L∏
α=1

N−1∏
j=1

(u− θα + i(2s− sαj )) . (6.23)

Finally, we make one more remark regarding the independence of the SoV states on the
twist eigenvalues. Clearly, the state 〈0̄| is independent of twist. Furthermore, it was
demonstrated in [13] that every transfer matrix Tµ(v) with our choice of twist is of the form

Tµ
(
v − i

2
(
µ1 − µ′1

))
= twist independent part +

N∑
j=1
Tj1(v)× twist part , (6.24)

see appendix A for more details. The twist part drops out when we act on states which are
killed by Tj1(v), which is precisely the requirement that Tµ generates a new eigenstate of B,
and hence B eigenstates constructed in this way are independent of the twist eigenvalues.
Of course, we already know that this is the case since B is independent of twist, but also
eigenvectors constructed as in (6.22) does not introduce twist into the normalisation.

In this section we needed the lowest weight state to construct the eigenstates of the
B(u) operator. The existence of this state is only guaranteed for particular values of s.
In the next section we will extend this construction to all values of s, circumventing the
requirement of a lowest-weight state.

6.3 ∗-map

Now that we have reviewed how to diagonalise B in the compact case we turn our atten-
tion to the non-compact case and further explain how similar techniques can be used to
diagonalise C.
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We introduce the following map, which we call ∗-map, which acts33 on monodromy
matrix Tij(u) elements as

Tij(u+ a) 7→ Tij(u− a) (6.25)

and furthermore reverses the order of products

Tij(u+ a)Tkl(u+ b) 7→ Tkl(u− b)Tij(u− a) (6.26)

for any a, b ∈ C.
We will now discuss the key properties of this map, in particular how it acts on B and

the transfer matrices. First we will find how it acts on quantum minors since these are the
building blocks for both of these objects. From the definition (6.1) we find

T
[
i1...ia
j1...ja

]
(u) 7→ T

[
i1...ia
j1...ja

]
(u− i(a− 1)) (6.27)

which implies
T
[
i1...ia
j1...ja

]
(u− i(a− 1)) 7→ T

[
i1...ia
j1...ja

]
(u) , (6.28)

and hence relates B(u) 7→ C(u)! This means that all results for the B(u) operator can be
translated into some new relations for C(u) and will allow us to diagonalise C(u) in the
next seciton.

Next we examine the transfer matrices Tµ(u). Let us denote their image under the
∗-map as T∗µ(u). We first start with transfer matrices in anti-symmetric representations
Ta,1(u). Since these transfer matrices are defined by

Ta,1(u) =
∑

1≤i1<···<ia≤N
T
[
i1...ia
j1...ja

] (
u− i

2 (a− 1)
)

(6.29)

it follows immediately from (6.27), (6.28) that T∗a,1(u) = Ta,1(u), and so the full set of
conserved charges is invariant under the ∗-map. Since transfer matrices in other represen-
tations Tµ(u) can be defined in terms of Ta,1 using the CBR formula

Tµ(u) = det
1≤j,k≤µ1

Tµ′j−j+k,1
(
u− i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
(6.30)

we can immediately read off that T∗µ(u) is given by

T∗µ(u) = det
1≤j,k≤µ1

Tµ′j−j+k,1
(
u+ i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
(6.31)

which explains the origin of the transfer matrices (3.51). The meaning of these transfer
matrices in terms of representation theory is given in appendix B.

Finally, let us recall that the remainder term R1(u, v) appearing in the commutation
relation (6.17) is given by

R1(u, v) =
N∑
j=1
Tj1(v)× . . . (6.32)

33This map is a composition of the Yangian anti-automorphism T(u) 7→ T(−u) together with a relabelling
of the spectral parameter −u 7→ u. Hence, terms such as f(u)T(u) transform to f(−u)T(u).
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and so under the ∗-map it results in R∗1(u, v) =
∑N
j=1 · · ·×Tj1(v). Combining these results

we immediately find that the commutation relation (6.17) transforms under the ∗-map to
produce a new commutation relation which reads

C(u)T∗µ
(
v + i

2
(
µ1 − µ′1

))
= gµ(u, v)T∗µ

(
v + i

2
(
µ1 − µ′1

))
C(u) +R∗1(u, v) (6.33)

where gµ(u, v) is defined as

gµ(u, v) =
hµ∏
k=1

u− v + i(k − 1− µa)
u− v + i(k − 1) . (6.34)

In the next subsection we will explain how to use this relation to construct right SoV states
|y〉, the eigenstates of C(u).

6.4 Constructing the SoV bases

Diagonalising C. We will now explain how to diagonalise C using the commutation
relation (6.33). By (6.9) we have that

Tj1(θα + is)|0〉 = 0 (6.35)

which itself implies that R∗1(u, θα + is)|0〉 = 0. Applying (6.33) to this state then produces
the relation

C(u)T∗µ
(
θα + i

2
(
2s + µ1 − µ′1

))
|0〉 = gµ(u, θα + is)T∗µ

(
θα + i

2
(
2s + µ1 − µ′1

))
C(u)|0〉

(6.36)
where T∗µ is defined in (6.31). Replacing C with c and using the fact that |0〉 is an eigen-
vector of c with eigenvalue

∏N−1
k=1 Q

[−2s+2(k−1)]
θ we find that T∗µ

(
θα + i

2 (2s + µ1 − µ′1)
)
|0〉

is a new eigenvector of c with eigenvalue

N−1∏
k=1

Q
[−2s+2(k−1)]
θ gµ(u, θα + is) . (6.37)

In terms of the different states we can construct the situation can be shown to be identical
to that of diagonalising B for the case where the physical space carries symmetric powers of
the anti-fundamental representation which was discussed in [13] but now using the transfer
matrices T∗. Since the situation is identical we simply state the final result which is that
the set of vectors

L∏
α=1

T∗µα
(
θα + i

2
(
2s + µα1 − µ

α,′
1

))
|0〉 (6.38)

are eigenvectors of C for any choice of the Young diagrams µα = (µα1 , . . . , µαN−1, 0) and
are always non-zero (see appendix B). The eigenvalues of c on these excited states is then
deduced immediately from (6.37) and have the form

L∏
α=1

N−1∏
j=1

(u− yαj ) (6.39)
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where we have defined yα,j = θα + i(s + µαj + 1 − j), where µαj = mα
j in the notation of

section 3.
The operator T∗µα

(
θα + is + i

2

(
µα1 − µ

α,′
1

))
is diagonalised by any eigenvector 〈Ψ| of

the transfer matrix with eigenvalue given by

〈Ψ|T∗µα
(
θα + is + i

2
(
µα1 − µ

α,′
1

))
∝

det
1≤j,k≤N−1

Qj+1
(

yαk + i

2 (N − 2)
)

det
1≤j,k≤N−1

Qj+1
(

yα0 + i

2 (N − 2k)
)〈Ψ| (6.40)

where Qj was defined in (4.31) and we have omitted certain Qθ-dependent factors which
we reabsorb into the definition of the SoV basis, similar to what was done in the sl(3)
case (3.54), and like for sl(3) we define

yα0 = θα + is . (6.41)

We can then choose to normalise 〈Ψ| so that

〈Ψ|0〉 =
L∏
α=1

det
1≤j,k≤N−1

Qj+1
(

yα0 + i

2 (N − 2k)
)

(6.42)

and hence obtain the following SoV wave function for 〈Ψ|

〈Ψ|y〉 =
L∏
α=1

det
1≤j,k≤N−1

Qj+1
(

yαk + i

2 (N − 2)
)

(6.43)

which perfectly matches the wave functions appearing in the integral approach to scalar
products, see section 4.3.

Diagonalising B. We already mentioned we would have some trouble diagonalising B
since our commutation relation (6.17) requires the presence of a lowest-weight state 〈0̄|.
Let us return to the compact case one more time. We already explained that the set of
vectors

〈0̄|
L∏
α=1

N−1∏
j=1

T1,sαj

(
θα −

i

2(2s + sαj − 1)
)
, 0 ≤ sαj ≤ −2s, sαj ≤ sαj+1 (6.44)

diagonalise B. We can gain some further insight by rewriting these transfer matrices using
Q-operators [50–54]. The Q-operators Qi(u) and Qi are defined as the operators which
have the Q-functions Qi(u) and Qi(u) corresponding to the transfer matrix eigenstate |Ψ〉
as their eigenvalues

Qi(u)|Ψ〉 = Qi(u)|Ψ〉, Qi(u)|Ψ〉 = Qi(u)|Ψ〉 . (6.45)

The main relation we will make use of is the following

T1,sαj

(
θα −

i

2(2s + sαj − 1)
)
∝

Q1(θα − i(s + sαj ))
Q1(θα − is) (6.46)
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where ∝ indicates that the equality holds up to non-zero multiples of Qθ [19]. This relation
allows us to rewrite the above set of vectors (6.44) as

〈0̄|
L∏
α=1

N−1∏
j=1

Q1(θα − i(s + sαj ))
Q1(θα − is) . (6.47)

The highest-weight state can then be obtained by choosing all sαj = −2s

〈0| ∝ 〈0̄|
L∏
α=1

N−1∏
j=1

Q1(θα + is)
Q1(θα − is) . (6.48)

This simple rewriting has actually helped us quite a lot — we see that we can start from
the highest-weight state 〈0| and move back down towards the lowest-weight state by acting
with operators of the form

Q1(θα + i(s− sαj ))
Q1(θα + is) , sαj = 0, 1, . . . ,−2s (6.49)

and we will be able to obtain all B eigenvectors in this way. Explicitly, the B eigenvectors
can be written as

〈0|
L∏
α=1

N−1∏
j=1

Q1(θα + i(s− sjα))
Q1(θα + is) (6.50)

where now−2s ≥ sα1 ≥ · · · ≥ sαN−1 ≥ 0. We can now analytically continue in the spin s from
{0,−1

2 , . . . } to general values. Then in (6.50) the constraint −2s ≥ sα1 ≥ · · · ≥ sαN−1 ≥ 0
should reduce to sα1 ≥ · · · ≥ sαN−1 ≥ 0, with no upper limit on the value of sα1 , and we
expect this set of vectors to exhaust all eigenvectors of B. In order to verify this it would
be convenient to be able to generate the vectors (6.50) using transfer matrices instead of
Q-operators since the former are usually easier to work with. Hence, we need some transfer
matrix which at some value of the spectral parameter becomes the ratio (6.49). Luckily, it
is not hard to work out that the transfer matrix in question is given by

TN−1,sαj

(
θα + is− i

2(N − sαj − 1)
)

(6.51)

and we derive a new commutation relation between B and TN−1,s, alternate to (6.17),
which reads

TN−1,s

(
v− i2(N−s−1)

)
B(u) =h(u,v)B(u)TN−1,s

(
v− i2(N−s−1)

)
+

N∑
j=1
T1,j(v)×. . . .

(6.52)
This relation is a special case of a more general relation involving B and the transfer
matrices constructed from the inverse monodromy matrix T−1(u), see appendix A but
for our purposes this relation is enough. Now we can use (6.52) directly to diagonalise B
starting from 〈0|, avoiding analytic continuation. Like what was previously described when
starting from the lowest weight state, it is possible to apply a transfer matrix corresponding
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to a given θα at most N − 1 times and the remainder term will still vanish, meaning all
eigenvectors of b can be constructed as

〈0|
L∏
α=1

N−1∏
j=1

TN−1,sαj

(
θα + is− i

2(N − sαj − 1)
)
, (6.53)

and the corresponding eigenvalue is given by

L∏
α=1

N−1∏
j=1

(u− xα,j), xα,j = θα + i(s + sαj ) (6.54)

with sαj = nα,j in the notation of section 3. The fact that this normalisation ensures that
the states 〈x| are independent of the twist eigenvalues is clarified in appendix A.

6.5 Reduction of SoV bases to the compact case

We close this section by demonstrating how the SoV bases we have constructed behave
when we restrict ourselves to the compact case with s ∈ {0,−1

2 ,−1, . . . }. In this scenario
our infinite-dimensional irreducible space becomes reducible with a finite-dimensional irre-
ducible part. As we will see, the SoV basis vectors corresponding to the irreducible part
remain non-zero and everything else vanishes.

Since the SoV bases are polynomial functions in the spin s when we use the differential
operator realisation like in the sl(3) case there is no problem with simply setting s to some
negative half-integer value. Using the results of appendix B only a finite number of transfer
matrices will remain non-zero when we do this. For the right SoV basis |y〉 defined by

|y〉 =
L∏
α=1

T∗µα
(
θα + i

2
(
2s + µα1 − µ

α,′
1

))
|0〉 (6.55)

the state will vanish for any configuration with µα1 > −2s but will be non-zero as long as
µα1 ≤ −2s, and hence the number of non-zero states precisely matches the dimension of the
finite-dimensional irreducible part of the representation, see [13, 19].

Similarly, for B, the transfer matrix (6.51) can be shown to be non-zero for any s in
the non-compact case, and if we reduce to the compact case it remains non-zero only if
0 ≤ s ≤ −2s and we reach the same conclusion.

7 Determinant representations for overlaps and expectation values

In this section we will extend the previous results by deriving the SoV based determinant
representations for overlaps and expectation values of various operators.

7.1 Defining det-product and its relation to SoV

Here we discuss the main tools for computing some physical observables with the help of
the SoV approach we developed in the previous sections. For simplicity we will mostly
demonstrate the method on the sl(3) example but in all cases the generalisation to sl(N)
is quite clear.
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In particular, in this section we consider the overlaps between the state of the chains
with different twists. Such overlaps were recently considered in the context of AdS/CFT
correspondence [35] and can be interpreted as 3 point correlation functions involving so-
called color twist operators.

The key observation is that the SoV states, in the non-diagonal frame (2.8), are not
sensitive to the twist of the monodromy matrix. In other words the same SoV basis will
separate the wave function for any values of the twist eigenvalues λa. This implies that
the integral representation we derived in the previous section for the states of the same
spin chain can be, very non-trivially, used to compute overlaps between the eigenstates of
different transfer matrices.

For what follows it will be convenient to introduce the notation for what we call the
det-product,

JGα,1+a|Fα K = 1
N0

det
(α,a),(β,b)

((
Fα(u) uβ−1 D3−2b Gα,a+1(u)

))
α

(7.1)

where the notation with double brackets, which initially referred to an integration (4.4),
we understand now more generally as a sum over the poles of the factor µα. So in this
section we re-define

(( f(u) ))α ≡
∞∑
n=0

rα,nf(xα,0 + in) . (7.2)

The normalisation factor is

N0 = ∆2
θα

L∏
α

r2
α,0 . (7.3)

Thus for the case when G and F in (7.1) are Q-functions describing two spin chain states,
the det-product gives the overlap of these states we presented above in (4.29). Notice that
with the expression (7.1) one can follow all the same steps as in section 5 to arrive to the
following result:

JGα,1+a|Fα K =
∑
x,y

My,x
∏
α,a

Fα(xα,a) (7.4)

×
∏
α

[
Gα,2(yα,1 + i

2)Gα,3(yα,2 + i
2)−Gα,3(yα,1 + i

2)Gα,2(yα,2 + i
2)
]
.

We will see that a number of correlators can be expressed in terms of the det-product.
Even though we found an explicit expression for the SoV measure My,x, our ultimate goal
is to bring the correlator to a determinant form, rather than to a sum over the SoV states.
We will show how in some important cases the explicit form of the measure is not needed
as the result takes the form of the det-product.

In order for two states Θ and Φ to have a scalar product which can be written in the
det-product form, we have to require what we call separability property from these states,
which can be expressed as

〈x|Θ〉 =
L∏
α=1

Fα(xα,1)Fα(xα,2) , (7.5)

〈Φ|y〉 =
L∏
α=1

[
Gα,2(yα,1 + i

2)Gα,3(yα,2 + i
2)−Gα,3(yα,1 + i

2)Gα,2(yα,2 + i
2)
]
. (7.6)
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If that is the case, then as a consequence of the completeness of both SoV bases {x} and
{y} and due to the relation (7.4) we then immediately get

〈Φ|Θ〉 = JGα,1+a|Fα K . (7.7)

In what follows we explore a few examples when (7.5) does hold. One immediate example
is when both states are transfer matrix eigenstates. In this case of course we simply have
Fα = Q1 and Gα,c = Q1,c, so that

〈ΨA|ΨB〉 =
q
QA1,1+a|QB1

y
∝ δAB . (7.8)

In the above expression the left and right wave functions are normalised according to our
conventions from section 3.

7.2 Overlaps between wave functions with different twists

Another quite obvious example where the separability property (7.5) is satisfied for both
states but gives much less trivial overlap than (7.8) is the case when both states are eigen-
states of transfer matrices with different sets of twists eigenvalues λa and λ̃a. As we
emphasised before, the SoV states do not depend on λ′s and thus should separate wave-
functions corresponding to the spin chains with arbitrary twist eigenvalues λa (provided
the twist matrix is of the form (2.8)).

Thus we conclude that the overlap between the states of the spin chains with different
twist eigenvalues can we written in the form

〈Ψλ̃a |Ψλa〉 =
r
Q̃12, Q̃13

∣∣∣Q1

z
. (7.9)

In the above expression we still assume that the states are normalised in agreement with
our conventions. However, we can also form a normalisation independent combination, for
example

〈Ψλ̃a |Ψλa〉〈Ψλa |Ψλ̃a〉
〈Ψλ̃a |Ψλ̃a〉〈Ψλa |Ψλa〉

=

r
Q̃12, Q̃13

∣∣∣Q1

z r
Q12, Q13

∣∣∣Q̃1

z

r
Q̃12, Q̃13

∣∣∣Q̃1

z r
Q12, Q13

∣∣∣Q1

z . (7.10)

Examples of the non-trivial overlaps. The simplest example of a non-trivial overlap
is the overlap between two ground states corresponding to two different twists. Since our
twist is non-diagonal, the corresponding ground states can be obtained by acting with a
suitable global rotation on the constant polynomial. This is discussed in detail in section 3
where we explicitly found the ground states (3.25) and (3.24). For the simplest length 1
spin chain we have

|Ωλa
L=1〉 = λ

2ix1,0
1

(
x

λ1
+ y

λ2
1

+ 1
)−2s

, (7.11)

〈Ωλ̃a
L=1| = λ̃

ix1,0+ 1
2

1 (λ̃3 − λ̃2)
(
x
(
λ̃2 + λ̃3

)
− y

λ̃1
+ 1

)−2s
. (7.12)

In order to demonstrate that equation (7.9) holds, we first compute the l.h.s. by expanding
both functions up to some fixed order, computing the scalar product between two resulting
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polynomials and then sending the expansion order to infinity, like we did previously in (3.26)
for two equal twists. We find that the generalisation of (3.26) reads34

〈Ωλ̃a
1 |Ω

λa
1 〉 = λ

2ix1,0
1 λ̃

ix1,0+ 1
2

1 (λ̃3 − λ̃2)(1− λ̃2/λ1)−2s(1− λ̃3/λ1)−2s . (7.13)

Now we can try to reproduce this result using the det-product of the corresponding
Q-functions, i.e.

Qλa1 = λiu1 , Qλ̃a1,1+a = λ̃iu1 λ̃
iu
1+a . (7.14)

Evaluating the sum over residues we get
((
λiu1 λ̃

iu+b− 3
2

1 λ̃
iu+b− 3

2
1+a

))
α=1

= −Γ(2s)
2π λiθ1−s

1

(
λ̃1λ̃a+1

)b+iθ1−s− 3
2

(
1− 1

λ1λ̃1λ̃a+1

)−2s

.

(7.15)
Then we plug this expression into the determinant and divide by the normalisation con-
stant, obtaining

r
Qλ̃a1,1+a

∣∣∣Qλa1

z
= 1
N0

det
a,b

((
λiu1 λ̃

iu+b− 3
2

1 λ̃
iu+b− 3

2
1+a

))
α=1

, (7.16)

which perfectly reproduces (7.13)!

Probing the transition matrix. The overlap between two eigenstates of the transfer
matrix in different frames is sl(N) invariant. This means that one can diagonalise either one
of the two twist matrices (2.8). The matrix which relates the two frames that diagonalise
one of these two twist matrices has the following general form, valid for sl(N):

Sab =
∏
i 6=a

λi − λ̃b
λi − λa

, S−1
ab =

∏
i 6=a

λ̃i − λb
λ̃i − λ̃a

. (7.17)

Let us show that the above transformation is hard-wired into the SoV construction and
into the det-product in particular. Consider the normalisation independent combination
of the scalar products of two twisted vacua,

〈Ω̃|Ω〉〈Ω|Ω̃〉
〈Ω|Ω〉〈Ω̃|Ω̃〉

= (λ1 − λ̃2)−2s(λ1 − λ̃3)−2s(λ̃1 − λ2)−2s(λ̃1 − λ3)−2s

(λ1 − λ2)−2s(λ1 − λ3)−2s(λ̃1 − λ̃2)−2s(λ̃1 − λ̃3)−2s . (7.18)

Let’s now focus on the fundamental representation, i.e. s = −1/2. Let’s assume that |Ω〉
is in the diagonalised frame. We know that for the diagonal twist the ground is simply
the highest weight state |Ω〉 = ~e1, whereas the other state reads |Ω̃〉 = S−1|Ω〉 = S−1

11 ~e1 +
S−1

21 ~e2+S−1
31 ~e3. Similarly for the left states 〈Ω| = ~e1 and 〈Ω̃| = 〈Ω|S = S11~e1+S21~e2+S31~e3,

from where we would expect that for s = −1/2 we should get

〈Ω̃|Ω〉〈Ω|Ω̃〉
〈Ω|Ω〉〈Ω̃|Ω̃〉

= S11S
−1
11 , (7.19)

34For the limit of the truncated series to exists one requires |λ1| > |λ̃2| and |λ1| > |λ̃3|, which also
coincides with the condition for the convergence of the sum over poles in the r.h.s. of (7.9) (generalising a
similar condition for the equal twists case discussed in equation (5.6)).
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which is indeed the case as we see from (7.18). Note that one can further interchange the
order of the eigenvalues, changing the vacua accordingly, to deduce any combination of
the form SabS

−1
ba , a, b = 1, 2, 3. One can invert the logic and verify that the knowledge

of all SabS−1
ba , a, b = 1, 2, . . . , N allows one to reconstruct Sab modulo the transformation

S → D1.S.D2, where D1, D2 are two independent diagonal matrices. The diagonal matrices
will commute with the twist matrices and they reflect the freedom in the definition of S in
the first place.

7.3 On-shell off-shell overlap

In this section we explore the effect of the action by B(u) or C(u) operators on the states.
Assuming the state |Θ〉 is separated by the SoV basis like in (7.5), we have

〈x|b(w)|Θ〉 = 〈x|Ψ〉
L∏
α=1

(w − xα1 )(w − xα2 ) =
L∏
α=1

(u− xα1 )(u− xα2 )Fα(xα1 )Fα(xα2 ) (7.20)

where b(w) is the nontrivial part of the B(w) operator defined in (3.30). We see that the
action by b(w) simply translates into the replacement Fα(u) → (w − u)Fα(u). It is clear
that there is a potential to generalising this further. We can define a “local” bα operator
so that

b(u) =
L∏
α=1

bα(u) (7.21)

where bα(u) is a polynomial of degree N − 1 in u, diagonalised by 〈x|, with the spectrum∏N−1
a=1 (u − xα,a). Repeating the same calculation as in (7.20) we see that bβ(w) acts on

Fα as35

bβ(w) ◦ Fα(u) = (w − u)δβαFα(u) . (7.22)

To summarise, this means that multiple action of any bβ(w) operators does not spoil the
separability property of the wave function. This means that we can compute a set of rather
non-trivial form factors in a determinant form,

〈Φ|bβ1(v1) . . .bβK (vK)|Θ〉
〈Φ|Θ〉 =

r
Gα,a

∣∣∣∏K
i=1(vi − u)δβiαFα

z

JGα,a|Fα K
. (7.23)

A particularly important case is the following state

|Ψ〉off shell ≡ b(v1) . . .b(vk)|Ω〉 , (7.24)

which in analogy with sl(2) one could call the off-shell Bethe state. To distinguish it from
some other off-shell Bethe states existing in the literature, one could call it algebraic off-
shell Bethe states as opposed to the hybrid coordinate-algebraic way of building eigenstates
of transfer matrix in nested Bethe ansatz approach. It follows immediately from (7.23) that

35One should be careful with the ◦ notation, as there is no linearity in the first argument, e.g. sum of two
operators does not necessarily produce a factorisable state and thus does not have any well defined action
on individual Fα. However, ◦ is an associative operation and does support an action by several operators.
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the overlap between (7.24) and any separable state, and in particular with an eigenstate
〈Φ| of the transfer matrix, is of a determinant form

〈Φ|Ψ〉off shell =
t

Q1,a+1

∣∣∣∣∣λiu1
K∏
k=1

(u− vk)
|

. (7.25)

Note that for that to be true it is not required that {vk} are the Bethe roots, solving Bethe
ansatz equations. As we described before in section 3.3, when the parameters {vk} do
satisfy the Bethe ansatz equations the state |Ψ〉off shell does actually become an eigenstate
of the transfer matrix.

In analogy with bα(u) we can also define cα(u), containing only those roots of c(u)
that are associated with θα. For the insertion of this operator we can use the relation

〈Φ|cβ(w)|y〉= 〈Φ|y〉(w−yβ,1)(w−yβ,2) (7.26)

= (w−yβ,1)(w−yβ,2)
L∏
α=1

(
Gα,2(yα1+ i

2)Gα,3(yα2+ i
2)−Gα,3(yα1+ i

2)Gα,2(yα2+ i
2)
)

implying that Gβ,a(u)→ (w−u+ i
2)Gβ,a(u), leaving other Gα,a(u) with α 6= β unchanged.

Therefore we can generalise the result (7.23) as follows:

〈Φ|cγ1(v1) . . . cγK (vK)bβ1(w1) . . .bβJ (wJ)|Θ〉
〈Φ|Ψ〉 (7.27)

=

r
Gα,a+1(u)

∏K
k=1(vk − u+ i

2)δγkα |Fα(u)
∏J
k=1(wk − u)δβkα

z

JG,H|F K
.

7.4 Form factors of derivatives of the transfer matrices

In this section we show how our integral SoV approach leads to determinant representations
for a large class of diagonal form factors, extending the results of [21] from s = 1/2 to generic
s. While the extension is almost straightforward, we present here the key steps to make
the discussion self-contained. We first consider the sl(3) case, but generalization to sl(N)
is immediate as we will explain shortly. We also show how to compute matrix elements of
some local operators from this data.

The form factors we consider are the diagonal matrix elements of the derivatives of
integrals of motion (coefficients of the transfer matrices) defined in (4.27),

〈Ψ|∂Îb,β−1
∂p |Ψ〉
〈Ψ|Ψ〉 = ∂Ib,β−1

∂p
(7.28)

where p is a parameter of the model (either an inhomogeneity θα or a twist λa). While
the spectrum of the model is under good control and one could in principle compute the
derivative in the r.h.s. of (7.28) directly (as a ratio of finite differences), here we rather wish
to express it in terms of Q-functions evaluated at one fixed value of p, and it is nontrivial
that such an expression exists at all. We will see that the result has a rather natural form
of a ratio of two determinants, with the denominator corresponding to the norm (4.29) and
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the numerator given by the same expression with an extra insertion that we interpret as
describing the operator ∂pÎa,α−1 we consider. In the AdS/CFT context correlators of this
kind are also important as they correspond to 3-pt functions with marginal operators [55].

If we consider a small variation of our parameter p → p + δp, the Q-functions Qa+1

as well as the operator Ô† in the Baxter equation (4.21) will change, but the equation will
remain satisfied, so that (Ô†+δÔ†)(Qa+1 +δQa+1) = 0. Using that the original Q-function
satisfies Ô†Qa+1 = 0, and dropping the terms quadratic in variations, we have

0 =
((
Q1(Ô† + δÔ†)(Qa+1 + δQa+1)

))
α

=
((
Q1Ô

†δQa+1
))
α

+
((
Q1δÔ

†Qa+1
))
α
. (7.29)

Using now the self-adjoint property in the form of (4.22), we see that the first term vanishes
so that we get ((

Q1∂pÔ
†Qa+1

))
α

= 0 . (7.30)

Explicitly, the variation of Ô† reads

∂pÔ
† =

∑
(b,β)

(−1)b+1∂pIb,β−1u
β−1D−2b+3 − Ŷp (7.31)

with

Ŷp = −
[
∂pQ

[−2s]
θ D−3 + (−1)3∂pQ

[+2s]
θ D+3

]
−
∑
b

(−1)b+1∂pIb,Lu
LD−2b+3 . (7.32)

Here we denoted by Ib,L the leading coefficient in the transfer matrices of (4.27) so that
Ib,L = χb(λ1, λ2, λ3). Plugging this into (7.30) we get a linear system for the variations
∂pIb,β−1, of the form∑

(b,β)
m(a,α),(b,β)(−1)b+1∂pIb,β−1 = y(a,α) , y(a,α) ≡

((
Q1 Ŷp ◦Qa+1

))
α

(7.33)

where
m(a,α),(b,β) ≡

((
Q1 u

β−1 D−2b+3 ◦Qa+1
))
α

(7.34)

is the same matrix appearing in the sl(3) scalar product (4.29) with the two states taken
to be the same. We can write the solution of (7.33) using Cramer’s formulas as

∂pIb′,β′−1 = (−1)b′+1 det(a,α),(b,β) m̃(a,α),(b,β)
det(a,α),(b,β)m(a,α),(b,β)

, (7.35)

where m̃(a,α),(b,β) is the matrix m(a,α),(b,β) with the column (b′, β′) replaced with y(a,α)
defined in (7.33). This gives a determinant representation for the variation of integrals of
motion and the form factor (7.28).

From the discussion in appendix C it is clear that the result (7.35) extends immediately
to the sl(N) case provided that instead of (7.32) we use

Ŷp = −
[
∂pQ

[−2s]
θ D−N + (−1)N∂pQ[+2s]

θ D+N
]
−
N−1∑
b=1

(−1)b+1∂pχbu
LD−2b+N , (7.36)
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and the indices a, b, . . . take now values from 1 to N − 1 while the matrix m(a,α),(b,β) is
given by (4.30). Let us also note that we can derive a similar determinant representation
for the values of Ia,α themselves. For that we simply repeat the steps above starting now
from the identity ((

Q1Ô
†Qa+1

))
α

= 0 (7.37)

rather than (7.30). This gives a linear system for the set of Ia,α−1 with α = 1, . . . , L whose
solution reads

Ib′,β′−1 = (−1)b′+1 det(a,α),(b,β) m̃(a,α),(b,β)
det(a,α),(b,β)m(a,α),(b,β)

, (7.38)

where now m̃(a,α),(b,β) is the matrix m(a,α),(b,β) with the column (b′, β′) replaced by z(a,α)
defined (similarly to (7.33)) as

z(a,α) ≡
((
Q1 Ẑ ◦Qa+1

))
α

(7.39)

with

Ẑ = −
[
Q

[−2s]
θ D−N + (−1)NQ[+2s]

θ D+N
]
−
N−1∑
b=1

(−1)b+1χbu
LD−2b+N . (7.40)

Notice that the determinant in the denominator of the result (7.38) for the quantities Ia,α−1
is the same as the one appearing for their variations given by (7.35) (and is the overlap of
the state with itself).

7.4.1 Example: local spin expectation value

One of the key quantities of interest in spin chains are correlators of “local” operators, i.e.
those that act on a particular spin chain site in contrast to “global” operators such as the
transfer matrix. While certain maps from local to global operators are well known (see
e.g. [56] and the reviews [57, 58]), here we will demonstrate that our approach offers yet
another way to access local quantities. Namely, there is a remarkable relation between
a subset of local operators and derivatives of the integrals of motion ∂Îa,β/∂θα, whose
expectation values we computed in the previous section.

The main idea is that when taking the derivative in θα we can single out the α-th spin
chain site. To make it precise, let us write explicitly the large u expansion of the transfer
matrix with fundamental representation in the auxiliary space defined in (2.3), (2.4) using
the form of the Lax matrix from (2.2),

T(u) = uLTr (Λ) + uL−1
L∑
α=1

(
iTr(E(α)tΛ)− θαTr(Λ)

)
+O(uL−2) . (7.41)

The trace here is taken over the auxiliary space, and E(α) is an N×N matrix whose element
at position (a, b) is the operator Ea,b (the sl(N) generator) acting on the α-th site of the spin
chain. Note that E in this expression is transposed w.r.t. the indices a, b as we indicated
with the superscript t (this is due to the form of the Lax matrix (2.2)). We see that in (7.41)
we have a sum of local operators over all sites of the spin chain. Now we notice that when
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we differentiate the transfer matrix in θα, the Lax operator at position α in its definition
will be simply replaced by minus the identity matrix, so as a result we will get the transfer
matrix for the spin chain with the α-th site removed. This means that the derivative will
be given by the same result (7.41) but with sum taken over all sites except one,

∂T(u)
∂θα

= −uL−1Tr(Λ)− uL−2 ∑
β 6=α

(
iTr(E(β)tΛ)− θβTr(Λ)

)
+O(uL−3) . (7.42)

By combining this with (7.41) we can therefore extract the contribution from the site α only,

T(u) + u
∂T(u)
∂θα

= uL−1
(
iTr(E(α)tΛ)− θαTr(Λ)

)
+O(uL−2) . (7.43)

Taking the coefficient of uL−1 in this relation, we finally get

Tr(E(α)tΛ) = −i∂Î1,L−2
∂θα

− iÎ1,L−1 − iθαTr(Λ) . (7.44)

We remind that Îa,α are the operator coefficients in the expansion of the transfer matrices
in (4.27). We see that (7.44) is a relation between a local operator acting on the α-th site
(in the l.h.s.) and a global operator acting on all sites (in the r.h.s.). Sandwiching this
relation between left and right transfer matrix eigenstates |Ψ〉 and 〈Ψ|, we find that the
expectation value is given by

〈Ψ|Tr(E(α)tΛ)|Ψ〉
〈Ψ|Ψ〉 = −i

〈Ψ|∂Î1,L−2
∂θα

|Ψ〉
〈Ψ|Ψ〉 − iI1,L−1 − iθαTr(Λ) . (7.45)

Let us note that this expression does not depend on normalisation of the states |Ψ〉. The
only nontrivial correlator in the r.h.s. is the first term, which is given by the determi-
nant (7.35) we derived above in the SoV approach. Thus we find a compact result for the
expectation value of the local operator Tr(E(α)tΛ).

We can also repeat a similar argument starting from the transfer matrices in a-th
antisymmetric sl(N) representation in the auxiliary space. Using the results of appendix F,
we find that the generalization of (7.44) reads

a∑
j=1

Tr
(
(E(α)t − s)(−Λ)j

)
χa−j = (iθα + s) Îa,L + iÎa,L−1 + i∂θα Îa,L−2 (7.46)

where a = 1, 2, . . . , N − 1 and we recall that χj is the character defined in (2.9). This
gives a (lower triangular) system of N − 1 linear equations from which we can extract the
expectation values of the local operators Tr

(
E(α)tΛj

)
for j = 1, 2, . . . , N − 1.

To illustrate the structure of this linear system, let us give as an example the expecta-
tion values of the operators in the r.h.s. of (7.46) for the sl(3) case with a = 2 and L = 2,
taking α = 1. The first term is simply the character, I2,2 = χ2, while the other two are
given by the determinants presented in (7.35) and (7.38),

I2,1 = 1
N

∣∣∣∣∣∣∣∣∣∣∣∣

((
uQ1Q

−
12

))
1

((
Q1Q

−
12

))
1

((Q1R12 ))1

((
Q1Q

+
12

))
1((

uQ1Q
−
13

))
1

((
Q1Q

−
13

))
1

((Q1R13 ))1

((
Q1Q

+
13

))
1((

uQ1Q
−
12

))
2

((
Q1Q

−
12

))
2

((Q1R12 ))2

((
Q1Q

+
12

))
2((

uQ1Q
−
13

))
2

((
Q1Q

−
13

))
2

((Q1R13 ))2

((
Q1Q

+
13

))
2

∣∣∣∣∣∣∣∣∣∣∣∣
(7.47)
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and

∂θ1I2,0 = 1
N

∣∣∣∣∣∣∣∣∣∣∣∣

((
uQ1Q

−
12

))
1

((
Q1Q

−
12

))
1

((
uQ1Q

+
12

))
1

((Q1S12 ))1((
uQ1Q

−
13

))
1

((
Q1Q

−
13

))
1

((
uQ1Q

+
13

))
1

((Q1S13 ))1((
uQ1Q

−
12

))
2

((
Q1Q

−
12

))
2

((
uQ1Q

+
12

))
2

((Q1S12 ))2((
uQ1Q

−
13

))
2

((
Q1Q

−
13

))
2

((
uQ1Q

+
13

))
2

((Q1S13 ))2

∣∣∣∣∣∣∣∣∣∣∣∣
(7.48)

where N = det(a,α),(b,β)
((
Q1 u

β−1 D−2b+3 ◦Qa+1
))
α
and

RA = Q
[−2s]
θ Q

[−3]
A −Q[+2s]

θ Q
[+3]
A + u2χ1Q

[+1]
A − u2χ2Q

[−1]
A , (7.49)

SA = (∂θ1Q
[−2s]
θ )Q[−3]

A − (∂θ1Q
[+2s]
θ )Q[+3]

A . (7.50)

Let us describe more explicitly the local operator Tr(E(α)tΛ) which enters (7.45). No-
tice that this equation holds as long as |Ψ〉 and 〈Ψ| are eigenstates of the transfer matrix
constructed as in (2.3), (2.4) with the twist given by Λ. In our current notation Λ is the
non-diagonal companion twist matrix (2.8), so the operator Tr(E(α)tΛ) is quite nontrivial.
At the same time, the corresponding states |Ψ〉 are somewhat unusual as they are built
starting from the nontrivial ground state (e.g. (2.24) for sl(2)). Alternatively, we can go to
a more standard frame by performing a global rotation that diagonalizes the twist matrix
Λ → Λdiag. Then the states |Ψ〉 will also get rotated |Ψ〉 → |Ψ′〉, so that e.g. the ground
state will become simply the trivial state |0〉 (given by (2.31) for sl(2)). The value of the
r.h.s. of (7.45) is the same in either frame,36 so we have

〈Ψ|Tr(E(α)tΛ)|Ψ〉
〈Ψ|Ψ〉 = 〈Ψ

′|Tr(E(α)tΛdiag)|Ψ′〉
〈Ψ′|Ψ′〉 . (7.51)

In the new frame, our local operator will be a simple combination of the Cartan elements.
As an example, for sl(2) it will be

Tr(E(α)tΛdiag) = λ1E
(α)
11 + 1

λ1
E(α)

22 = λ1 − 1/λ1
2

(
E(α)

11 − E(α)
22

)
(7.52)

so it reduces to the usual spin projection operator E11 − E22. Here we used that for sl(N)
in our representation the operator

∑N
a=1 Eaa acts as a scalar,

N∑
a=1

Eaa = (N − 2)s . (7.53)

For sl(N) we can compute in this way the expectation values of all N operators Eaa on a
given site by considering (7.46) for a = 1, . . . , N − 1 together with the condition (7.53).

We note that form factors of exactly the type we can compute here are important
e.g. in Landau-Lifshitz models [59], and it would be interesting to further explore their
properties. Let us also point out that the expectation values of operators like ∂T (u)/∂θ
are not straightforwardly accessible by traditional methods of the algebraic Bethe ansatz,
but appear to be natural objects in the SoV approach. We believe that exploring the inter-
relations between the SoV and more standard methods should open the way to computing
a still larger class of correlators in the future.

36Since the eigenvalues of the transfer matrices do not change under this rotation.
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8 Outlook

In this paper for the first time we found an explicit expression for the SoV measure for
spin chains in highest-weight representation of sl(N) with general spin s. This was done
by carefully analysing and bringing together two different approaches — the operatorial
SoV approach [8, 10–13] and the functional SoV approach [21].

The knowledge of the SoV measure has unlocked for us the possibility of computing a
number of nontrivial scalar products, overlaps and form factors for which we derived new
determinant representations. These results include in particular overlaps of states with
different twists and on-shell/off-shell type overlaps.

Having direct access to the elements of the measure opens the way to an in-depth
study of a great variety of important quantities in higher rank sl(N) models. Some future
applications may include form factors, correlators and g-functions of the types studied
via SoV in [60–63] for rank-one cases. Our results should also facilitate studying the
thermodynamic limits for higher rank spin chains in the SoV framework, extending the
existing su(2) results (see e.g. [64]).

Another class of objects which can be computed using the functional SoV approach,
generalising the initial observation in [21], are the form factors of derivatives of the transfer
matrices w.r.t. external parameters like twists or inhomogeneities. As we discussed in
section 7.4.1, in particular this type of form factors includes local spin operators — Cartan
generators acting on one site of the chain. These are still to be fully understood within
the operatorial SoV approach and could be relevant for the exact calculation of correlation
functions in N = 4 SYM.

Most of these results seem to be highly nontrivial to get within traditional algebraic
nested Bethe ansatz methods e.g. [65, 66]. Trying to merge these methods together could
promise a fruitful interplay.

Our results have already allowed us to compute rather exotic overlaps involving states
with different twists. We are hopeful that they could find applications in N = 4 SYM
where similar objects emerged already [32, 35, 67]. Our results could also give further clues
about the type of algebraic structures that may appear in the N = 4 SYM context.

Let us note that in N = 4 SYM we have infinitely many degrees of freedom and
corresponding integrals of motion, so we expect the determinants in the expression for
the norm will be of infinite size. At the same time, it should be possible to find a set
of appropriate integration measures such that the determinant will truncate e.g. at weak
coupling (see [60, 61] where related issues are discussed in 2d QFTs).

We leave for the future investigation the generalisation of our results to non highest-
weight representations. One should keep in mind that there are certain complications on
this way — none of the Q-functions Qi, the constituent blocks of the SoV wave function,
are polynomial anymore, furthermore the spectrum of conserved charges will no longer
be a discrete set of points. These additional features should have certain effect on the
SoV construction as well, and there are still some mysteries to uncover. This direction is
particularly important as it has applications for the Fishnet/Fishchain theories [68, 69].
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SoV-type methods adapted to the principal series representations have already led to a
variety of interesting results in this context [70–73] (see also [74]).

Another interesting direction is developing SoV for higher rank spin chains with differ-
ent symmetry groups such as so(N) where progress was made recently in [75, 76]. Other
natural extensions include the super-symmetric case (see [18, 77] for related results), bound-
ary problems and q-deformations (see [15, 78] for recent work). We hope to come back to
some of these problems in future work.
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A Transfer matrices and antipode

In this section we will derive the relation (6.52) — actually we will derive a more general
form of it. Our main tool for doing this will be the so-called Yangian antipode map S which
sends the monodromy matrix T (u) to its inverse

S (T (u)) = T −1(u) . (A.1)

For ease of notation we will also denote S(u) = T −1(u). Note that this map extends in
an obvious way to the twisted case: if, as before, T(u) denotes the twisted monodromy
matrix T(u) = T (u)Λ then the antipode sends T(u) 7→ S(u) := Λ−1S(u). We will now
derive a new commutation relation which intertwines B and Sµ, which are transfer matrices
constructed from S(u) in a similar way as to how Tµ is constructed from T(u), and reduces
to (6.52) for special choice of µ.

In order to derive this relation we will need some properties of the antipode map, which
we now describe. We will need to perform fusion with the inverted monodromy S(u). The
original monodromy matrix T satisfies the RTT relation

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) (A.2)

which acts on two copies a and b of the auxiliary space CN and the physical Hilbert space,
and the R-matrix Rab(u) is given by

Rab(u) = u 1ab + i Pab (A.3)

where 1ab and Pab denote the identity operator and the permutation operator on CN ⊗CN ,
respectively. Note that when v = u + i the R-matrix Rab(u − v) = Rab(−i) becomes an
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antisymmetriser, and it is this reason why the quantum minors (6.1) are constructed by
taking products with the shift in each subsequent T(u) increased by i. Inverting the RTT
relation, we obtain

R−1
ab (u, v)T−1

a (u)T−1
b (v) = T−1

b (v)T−1
a (u)R−1

ab (u− v) (A.4)

or
R−1
ab (u, v)Sa(u)Sb(v) = Sb(v)Sa(u)R−1

ab (u− v) (A.5)

Since Rab(u) = u 1ab + iPab we have that R−1(u) = u 1ab − iPab up to a scalar factor, so
fusion for S is performed in exactly the same way as for T up to changing the sign of the
shifts, which leads to the following definition for quantum minors constructed from S

S
[
i1...in
j1...jn

]
(u) =

∑
σ

(−1)deg σ Siσ(1)j1(u)Siσ(2)j2(u− i) . . .Siσ(n)jn(u− i(n− 1)) . (A.6)

Since the transfer matrices Tµ(u) corresponding to generic Young diagrams µ can be ex-
pressed in terms of Ta,1 using the CBR formula

Tµ(u) = det
1≤j,k≤µ1

Tµ′j−j+k,1
(
u− i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
(A.7)

it then follows that all Sµ(u) can be expressed in terms of Sa,1(u) as

Sµ(u) = det
1≤j,k≤µ1

Sµ′j−j+k,1
(
u+ i

2
(
µ′1 − µ1 − µ′j + j + k − 1

))
. (A.8)

It is important to stress that the transfer matrices Sµ(u) do not give us a different set of
conserved charges, or even any new ones. All transfer matrices constructed from S(u) can
be written as simple expressions in transfer matrcies obtained from T(u). Denoting by
I = {i1, i2, . . . , iN} and J = {j1, j2, . . . , jN} two permutations of {1, 2, . . . , N} then the
following relation can be shown to be true [79]

TN,1
(
u+ i

2(N − 1)
)
S
[
jm+1...jN
im+1...iN

]
(u+ i(N − 1)) = sgn(I)sgn(J )T

[
i1...im
j1...jm

]
(u) . (A.9)

This relation then implies the following relation for transfer matrices

TN,1
(
u+ i

2(N−1)
)
Sa,1

(
u+i(N−1)− i2(a−1)

)
=TN−a,1

(
u+ i

2(N−a−1)
)
. (A.10)

Since all Sξ and all Tξ respectively can be constructed as polynomials in these anti-
symmetric transfer matrices it follows that

[Sµ1(u1),Tµ2(u2)] = 0 (A.11)

for any Young diagrams µ1 and µ2.
We will introduce one final map, which is usually denoted by ω [79], obtained by first

applying the ∗-map and then the antipode S. It is trivial to check using the definitions that

ω
(
T
[
i1...ia
j1...ja

]
(u)
)

= S
[
i1...ia
j1...ja

]
(u) . (A.12)
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This holds if we are twisted or not, so in particular

ω
(
T
[
i1...ia
j1...ja

]
(u)
)

= S
[
i1...ia
j1...ja

]
(u) . (A.13)

We will now consider the commutation relation (6.17) which we repeat here for convenience

Tµ
(
v − i

2
(
µ1 − µ′1

))
B(u) = fµ(u, v)B(u)Tµ

(
v − i

2
(
µ1 − µ′1

))
+R1(u, v) . (A.14)

As was stated earlier in the paper the relation (A.14) is strictly speaking not correct as we
have written it. The correct version is given by

TNµ
(
v − i

2
(
µ1 − µ′1

))
B(u) = fµ(u, v)B(u)TNµ

(
v − i

2
(
µ1 − µ′1

))
+R1(u, v) . (A.15)

The objects TNµ are null twist transfer matrices, obtained from Tµ(u) by sending all twist
eigenvalues37 λi to 0. It was demonstrated in [13] that all Tµ(u) have the form

Tµ
(
v − i

2
(
µ1 − µ′1

))
= TNµ

(
v − i

2
(
µ1 − µ′1

))
+

N∑
j=1
Tj1(v)× twist (A.16)

and so when applied to an eigenstate of B which is annihilated by Tj1(v) (A.15) is equivalent
to (A.14).

The new relation we will derive then reads

S∞µ
(
v + i

2
(
µ1 − µ′1 + 2

))
B(u) = gµ(u, v)B(u)S∞µ

(
v + i

2
(
µ1 − µ′1 + 2

))
+R3(u, v)

(A.17)
where

gµ(u, v) =
hµ∏
a=1

u− v + i(a− 1− µa)
u− v + i(a− 1) , R3(u, v) =

N∑
j=1

T1j(v)× . . . (A.18)

and S∞µ are transfer matrices obtained from Sµ(u) by sending the twist eigenvalues λi →∞,
in analogy with the null twist transfer matrices.

Let us recall that the twist matrix Λ has the explicit form Λij = (−1)j−1χjδi1 + δi,j+1,
and lets define ΛNij = δi,j+1 so that

Λij = ΛNij + (−1)j−1chijδi1 . (A.19)

Next, it is easy to work out the inverse matrix Λ−1 is given by

Λ−1
ij = (−1)j χj−1

χN
δiN + δi+1,j (A.20)

and in the same way we define Λ∞ij = δi+1,j . The main property we will use below is
that ΛN and Λ∞ are related by a simple change of basis. Let K denote the matrix with
Kij = δN+1−i,j . Then

KΛNK−1 = Λ∞ . (A.21)
37In this section for transparency we do not impose det Λ = 1 and leave all λ1, . . . , λN free.
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Now lets consider the transfer matrix in the fundamental representation, TN1,1 =
tr
(
T (u)ΛN

)
. Unfortunately we cannot apply the antipode map to TN1,1 as the twist ΛN is

not invertible. On the other hand, we can bring TN1,1 to S∞1,1 by first performing a change
of basis by K and then applying the ω map to the untwisted monodromy. Let consider
the change of basis Tij → TN+1−i,N+1−j which can be done with K. More precisely, we
transform

tr
(
T (u)ΛN

)
→ tr

(
KT (u)K−1ΛN

)
(A.22)

which, because of the cyclicity of the trace, is equivalent to sending ΛN → KΛNK−1 = Λ∞!
If we then apply ω to the untwisted monodromy T we will obtain precisely S∞1,1. It is a
straightforward calculation to show that the procedure can be done for all transfer matrices
TNµ , by first considering transfer matrices in anti-symmetric representations Ta,1 and then
considering Tµ together with the CBR formula (6.4), being careful to take in account
various shifts.

To summarise, the net effect of the change of basis K followed by ω is

TNµ (u)→ S∞µ (u) . (A.23)

It now remains to see what happens to B when we apply K followed by ω. For
simplicity of the calculation we will consider the sl(3) case, with higher rank following
immediately.

Recall the explicit form of B in terms of untwisted monodromy entries Tij given
in (6.11):

B(u) = T11T [−2]
[

12
12

]
+ T21T [−2]

[
12
13

]
. (A.24)

Now we perform the change of basis given by K which sends Tij → TN+1−i,N+1−j which
results in

B 7→ T33T [−2]
[

23
23

]
+ T23T [−2]

[
23
13

]
. (A.25)

By applying ω we obtain

ω (T33)ω
(
T [−2]

[
23
23

])
+ ω (T23)ω

(
T [−2]

[
23
13

])
(A.26)

after which we apply the relation (A.13) to obtain, up to an overall factor of the scalar
quantum determinant, B[−2], and the same computation goes through for higher rank in
exactly the same way.38

Now lets examine the remainder term R1(u, v) =
∑N
j=1 Tj1(v)× in (A.14). Applying

the same transformations results in
∑3
j=1 ω (T4−j,3(v))× which works out to be, up to

quantum determinant factors,

T
[

12
12

][−4]
× · · ·+ T

[
12
13

][−4]
× · · ·+ T

[
12
23

][−4]
× . . . (A.27)

38Actually, one finds that the order of minors will be reversed. For sl(3) this doesn’t matter since all of
the minors commute. For higher-rank this is no longer the case, but it can be easily checked, using the
method of [13] that the commutation relation (6.17) is invariant under reversing the order of minors in B,
meaning one could apply the mentioned sequence of transformations to that commutation relation and the
end result will contain precisely B.
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which can be recast in the form T [−2]
1j (v) . . . by expanding out the minors. Putting all of

this together we hence obtain

S∞µ
(
v + i

2
(
µ1 − µ′1 + 2

))
B(u) = gµ(u, v)B(u)S∞µ

(
v + i

2
(
µ1 − µ′1 + 2

))
+R3(u, v)

(A.28)
with R3(u, v) =

∑N
j=1 T1j(v).

Next, if we recall that the transfer matrices Tµ(v) satisfied

Tµ
(
v − i

2
(
µ1 − µ′1

))
= TNµ

(
v − i

2
(
µ1 − µ′1

))
+

N∑
j=1
Tj1(v)× . . . (A.29)

and so, on eigenstates 〈Λ|of B which satisfy 〈Λ|Tj1(v) = 0 we can replace TNµ in (A.15)
with Tµ, resulting in (A.14). In a similar style, we can show that

Sµ
(
v + i

2
(
µ1 − µ′1 + 2

))
= S∞µ

(
v + i

2
(
µ1 − µ′1 + 2

))
+

N∑
j=1
T1j(v)× . . . (A.30)

and so on eigenstates 〈Λ|of B which satisfy 〈Λ|T1j(v) = 0 we can replace S∞µ in (A.28) with
Sµ, resulting in

Sµ
(
v + i

2
(
µ1 − µ′1 + 2

))
B(u) = gµ(u, v)B(u)Sµ

(
v + i

2
(
µ1 − µ′1 + 2

))
+R3(u, v) .

(A.31)
Now in order to derive (6.52) we will specialise to Young diagrams µ with a single row,
so that µ1 = s and µ′1 = 1 and in this case the transfer matrix Sµ is denotes S1,s, and
so (A.31) becomes

S1,s

(
v + i

2 (s+ 1)
)
B(u) = gµ(u, v)B(u)S1,s

(
v + i

2 (s+ 1)
)

+R3(u, v) . (A.32)

By using the CBR formula (A.8) together with (A.10) we can easily derive the following
relation

S1,s

(
v + i

2(s+ 1)
)

=
TN−1,s

(
v − i

2(N − s− 1)
)

s∏
k=1

TN,1
(
v − i

2(N − 2k − 1)
) . (A.33)

Since the TN,1 factors are just scalar multiples of the identity operator we can then replace
S1,s

(
v + i

2(s+ 1)
)
in (A.31) with TN−1,s

(
v − i

2(N − s− 1)
)
to finally obtain (6.52).

B Eigenstates of B and C form a basis

In this appendix we prove that the eigenstates 〈x| of B and |y〉 of C indeed form a basis
of the Hilbert space which we remind the reader is the space of functions analytic at the
origin. We will demonstrate this in two parts. First, we show that all of the vectors 〈x| and
|y〉 constructed in the main text are non-zero. The fact that they are linearly independent
follows from the fact that each 〈x| and |y〉 corresponds to a unique eigenvalue of B and C.
Then, we will show that every element of the Hilbert space admits a series representation
in 〈x| and |y〉.
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B.1 〈x| and |y〉 are non-zero

In the main text we constructed the SoV bases by action of certain transfer matrices
evaluated at special points. We need to check that the resulting states are not identically
zero. To do this we need to check that the required transfer matrices do not having
vanishing eigenvalues at the required point. In order to do this we use the method developed
in [19], which is to check that the transfer matrices in question do not have vanishing
eigenvalues for a specific value of the twist and hence to not in general. We use the fact
that, for length L = 1, when the twist matrix is the identity matrix all transfer matrices are
just scalar multiples of the identity operator where we can easily verify that the required
transfer matrices are non-vanishing. At higher values of L the statement can be shown to
reduce to the L = 1 case by taking limit where inhomogeneities are largely separated [19].

In order to prove the above claims we will use so-called quantum semi-standard Young
tableaux [19, 80–83]. A semi-standard Young tableaux T of shape µ is a Young diagram
µ filled with numbers from {1, 2, . . . , N} such that the numbers in each row weakly de-
crease and the numbers in each column strictly decrease. Let g ∈ GL(N) have eigenvalues
λ1, . . . , λN . Then the character χµ(g) of g in the representation µ can be written as a sum
over all tableaux T of shape µ:

χµ(g) =
∑
T

∏
(a,s)⊂µ

λ#(a,s) (B.1)

where #(a, s) denotes the number in position (a, s) of the tableaux T .
Similar expressions exist for transfer matrices. In order to describe them, let us consider

generic highest-weight representations with gl(N) highest-weight ν1, . . . , νN . Denote by
Rk(u) = (u − θ + is + iνk), k = 1, . . . , N . Then the transfer matrix Tµ(u) can be also
written as a sum over tableaux of shape µ according to the rule

Tµ
(
u− i

2(µ1 − µ′1)
)

=
∑
T

∏
(a,s)⊂µ

R#(a,s)(u+ i(a− s)) . (B.2)

In [19] Tµ
(
θα − is− iνN − i

2(µ1 − µ′1)
)
was proven to be non-zero under certain conditions

on µ, which were precisely the cases needed for constructing the SoV basis. Namely,
let ν̄ denote the “reduced” diagram of ν, i.e. ν̄ is the Young diagram [ν̄1, . . . , ν̄N ] where
ν̄j := νj − νN . Then Tµ

(
θα − is− iνN − i

2(µ1 − µ′1)
)
is non-zero if any only if µ ⊂ ν̄, i.e.

if and only if the diagram of µ can be inscribed inside the diagram of ν̄, see figure 4.
Let us examine how this rule changes under action of the ∗-map, i.e. when are the

transfer matrices T∗µ(v) necessary for constructing |y〉 non-zero? To understand this we
should first understand what happens with transfer matrices in antisymmetric representa-
tions Ta,1. By writing the sum (B.2) we obtain

Ta,1
(
u+ i

2(a− 1)
)

=
∑

N≥ia>···>i1≥1
Ria(u) . . .Ri1(u+ i(a− 1)) (B.3)

Applying the ∗-map we find that

Ta,1
(
u+ i

2(a− 1)
)
7→ Ta,1

(
u− i

2(a− 1)
)

(B.4)
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Figure 4. The reduced Young diagram ν̄ is denoted by the dotted exterior and the shaded region
denotes the Young diagram µ.

which can be written as ∑
i1<···<ia

Ri1(u) . . .Ria(u− i(a− 1)) (B.5)

and hence we can deduce from the CBR formula [46, 47] that all of the transfer matrices
T∗µ(u) can be written as

T∗µ
(
u+ i

2(µ1 − µ′1)
)

=
∑
T ′

∏
(a,s)⊂µ

R#(a,s)(u− i(a− s)) (B.6)

where T ′ is a tableaux of shape µ but now the entries strictly increase (instead of decrease)
in each column and weakly increase in each row, which is equivalent to permuting the
weights {ν1, . . . , νN} 7→ {νN , . . . , ν1}. Notice also the difference in the sign of the shift in
R#(a,s) in (B.6) compared to (B.2). Hence, T∗µ has the interpretation of being a Young
diagram describing the lowest-weight of the representation instead of the highest. For the
classical character χµ(g) there is no difference, but Tµ and T∗µ correspond to two different
quantizations of this character. Alternatively, instead of swapping the weights and signs
of shifts we can interpret both of these as having flipped the Young diagram upside down
and backwards, while keepting the same rules for associating shifts to boxes after assigning
zero shift to the bottom right corner.

Now consider the ∗-reduced diagram ν̄∗= {ν̄∗1 , . . . , ν̄∗N} where we define ν̄∗j := νj−ν1.
Since all of the entries of ν̄∗ are either zero or negative we can view the diagram
as having been flipped upside down and backwards. Then the requirement on µ for
T∗µ
(
θα−is−iν1+ i

2(µ1−µα1 )
)
to be nonzero is totally analogous to the original case, that

is µ should be a subdiagram of ν̄∗ after µ has been flipped upside down and backwards as
well, see figure 5.

Restricting to the compact case of interest where ν1 = −2s, ν2 = 0 = · · · = νN , this
then implies that the transfer matrix

T∗µ
(
θα + is + i

2(µ1 − µ′1)
)

(B.7)

will be non-zero as long as we restrict to µ being height at most N − 1 and width at most
−2s. When we extend to general s this latter restriction is no longer present, and the only
condition is that µ is of height at most N − 1, and hence all |y〉 are non-zero.
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Figure 5. The reduced Young diagram ν̄∗ is denoted by the dotted exterior and the shaded region
denotes the Young diagram µ.

Finally, we examine 〈x| which is constructed using the transfer matrix

TN−1,s

(
θα + is− i

2(N − s− 1)
)
.

This transfer matrix is the same as TN−1,s
(
θα + is + i

2(N − s− 1)
)
, which admits the sum

over tableaux (B.2), together with an overall shift of i(s−N + 1). If we write

TN−1,s

(
θα − is + i

2(N − s− 1)
)

using the sum over tableaux then any tableaux containing 1 must contain it in the bot-
tom right corner, which comes with a shift of −i(s − N + 1). Hence, the transfer matrix
TN−1,s

(
θα + is + i

2(N − s− 1)
)
when expanded in a sum over tableaux will always con-

tribute a factorR1(θα+is) = 0 if that tableaux contains 1, and so only tableaux which don’t
contain 1 can contribute — in fact there is a unique such tableaux. In the compact case, it
can easily be worked out that this single contribution is non-vanishing as long as s ≤ −2s,
and in the non-compact case it is always non-vanishing. Hence, all 〈x| are non-zero.

B.2 Series representation

Now that we have demonstrated that all 〈x| and |y〉 are non-zero, we need to show that
every element f of the Hilbert space can be written as

f =
∑

x
cx〈x| (B.8)

where cx are some finite coefficients and similarly with |y〉.
The key point is then that both the orthonormal basis of monomials and 〈x| are

eigenvectors of the SoV charge operator (3.3). The charge operator gives the Hilbert space
H the structure of a graded space, that is H =

⊕
s≥0Hs where Hs is the subspace of SoV

charge s. It is then a trivial counting exercise to verify that the number of 〈x| contained
in Hs precisely matches the number of basis monomials, and each is contained in precisely
one Hs. Hence, 〈x| with charge s form a basis of the finite-dimensional space Hs.

By definition f admits a series expansion in the orthonormal basis of monomials and
this series is absolutely convergent so can be rearranged in any order we like. We can then
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arrange it in order of increasing charge and so can write f as

f =
∑
s≥0

fs (B.9)

where fs denotes the projection of f onto Hs. Then, each fs can be written as a finite
linear combination of 〈x| with charge s and precisely the same argument goes through for
|y〉, completing the proof.

C Measure for sl(N) from the Baxter equations

In this section we extend the results of sections 4.1 and 4.2 for the integral form of the
orthogonality relation to the generic sl(N) case. We present the derivation in a more
algebraic way, largely following the one done in [21] for the s = 1/2 case.

In order to concisely obtain the transfer matrix eigenvalues in the sl(N) case, it is
convenient to use the generating functional described [51] (see [84] for a review) which in
our case it can be written as

W = Q
[+2s]
θ (1− Λ1D−2)(1− Λ2D−2) . . . (1− ΛND−2) , (C.1)

where Λn are ‘quantum eigenvalues’ that are given in terms of Q-functions,

Λ1 = Q
[−2s]
θ

Q
[+2s]
θ

Q−−1
Q1

, Λi =
Q

[+i]
Ji−1

Q
[−2+i]
Ji−1

Q
[−3+i]
Ji

Q
[−1+i]
Ji

, i = 2, . . . , N , (C.2)

where Ji ≡ 12 . . . i is a multi-index, so that e.g. QJ2 = Q12 (recall also that Q12...N =
1 in our conventions). The Q-functions which appear here are all twisted polynomials,
i.e. polynomials times exponents. This functional provides the (nontrivial part of the)
eigenvalues of transfer matrices τk with k-th antisymmetric representation of sl(N) in the
auxiliary space as coefficients of powers Dn in its expansion,

W =
N∑
a=0

τa(−1)aD−2a . (C.3)

Let us note also that the first and last terms are state-independent,

τ0 = Q
[+2s]
θ , τN = Q

[−2s]
θ . (C.4)

All the other τk are also polynomials (of degree L) as long as the Bethe ansatz equations
are satisfied. This can be shown by following the same argument as in [21]. Their relation
to Ta,1 (eigenvalues of Ta,1 defined in section 2.1) is

Ta,1 = τ [+a−1]
a

a−1∏
k=1

Q
[+2s−2k+a−1]
θ . (C.5)

Using this functional we can write the Baxter equations in a very compact form.
Following [22] let us introduce the notation for action of the shift operators to the left and
to the right,

f
←−
D = f− ,

−→
Df = f+ . (C.6)
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Then we see from the last factor in (C.1) that −→WQN [+N ] = 0. Similarly to [21] one can
show that this is true for all twisted polynomial Q’s with one upper index (which we remind
are defined in (4.31)),

−→
WQ(a+1)[+N ] = 0 , a = 1, . . . , N − 1 . (C.7)

Moreover, from the form of the first factor in (C.1) we find that when acting to the left W
annihilates Q1 if we multiply it by the same function ε we used before in (4.8),

Q1ε
←−
W = 0 . (C.8)

As a result we can write the N -th order Baxter equations satisfied by Qa and Q1 as (C.7)
and (C.8). Due to (C.3), the first of these equations can be written in a more explicit form as

Ô†Qa+1 = 0 , a = 1, . . . , N − 1 (C.9)

where we introduced the difference operator Ô†,

Ô†Qa ≡ τ0Q
a[+N ] − τ1Q

a[+N−2] + · · ·+ (−1)N−1τN−1Q
a[−N+2] + (−1)NτNQa[−N ] = 0 .

(C.10)
This makes it clear that in particular for N = 3 we get the Baxter equation (4.21) we
described before.

C.1 Orthogonality

Like for the sl(3) case, in order to derive the orthogonality relations for Q-functions we will
prove the key relation ((

Q1Ô
†f
))
α

= 0 (C.11)

where we take the measure µα in the definition of the bracket (see (4.4)) to be the same
function (4.10) as for sl(3) and sl(2). Here f is a regular function with the same large u
asymptotics as any of the Qa+1 functions (a = 1, . . . , N − 1). To demonstrate (C.11), we
start from its l.h.s. and use that Ô† = −→WDN , then we transfer the shifts of the argument
away from f by moving the integration contour,((

Q1Ô
†f
))
α

= 1
2πi

∫
du µαQ1

−→
Wf [+N ] (C.12)

= 1
2πi

∫
du

(
µαQ1

←−
W
)
f [+N ] + [poles contributions] .

We see that as a result we get the operator ←−W acting to the left on the combination µαQ1,
and this gives zero due to (C.8), thus proving (C.11). In (C.12) we have also indicated
that when we move the integration contour there could be extra contributions from poles
of µα (located at u = θβ− is− in and u = θα+ is + in with β = 1, . . . , L and n = 0, 1, . . . ).
However, we see that when s is positive and large enough, there are no poles in the region
where the contour is being moved. Since all the terms under the integral are analytic as
functions of s, so should be the whole expression and thus the poles do not give any extra
contribution.39

39One can also verify directly that the poles contributions cancel by adapting the derivation from [21].
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Let us also comment on convergence of the integrals. Since we take f to have the same
asymptotics as any of the Qa+1, the integrals in (C.12) will be finite if

0 < arg λc − arg λ1 < 2π , c = 2, . . . , N . (C.13)

Here for definiteness we assume that these inequalities hold. If that is not the case, one
should modify the integration measure in the same way as for the sl(2) and sl(3) spin
chains (see the discussion after (4.25)).

Having the property (C.11) we can derive orthogonality relations for different states ex-
actly like for sl(2) and sl(3) cases. For sl(n) the transfer matrix eigenvalues τa have the form

τa = χa(λ1, . . . , λN )uL +
L∑
α=1

Ia,αu
α−1 (C.14)

where the leading term is the character of the twist matrix in the a-th antisymmetric rep-
resentation, and the Ia,α are eigenvalues of the integrals of motion. Using (C.11) we have
for two different states A and B((

QA1 (Ô†A − Ô†B)QB,a+1
))
α

= 0 (C.15)

where the difference of the operators comes from the transfer matrices,

(Ô†A − Ô†B) ◦QB,a+1 =
L∑
β=1

N−1∑
b=1

(−1)b(IAb,β−1 − IBb,β−1)uβ−1 D[−2b+N ] ◦QB,a+1 . (C.16)

Requiring that this linear system has a nontrivial solution leads to

det
(a,α),(b,β)

m(a,α),(b,β) = 0 , m(a,α),(b,β) ≡
((
QA1 uβ−1 D−2b+N ◦QB,a+1

))
α
. (C.17)

This is the orthogonality condition that we presented in the main text in (4.30).

D Scalar product for compact su(N) spin chains and analytic
continuation in the spin

In this section we discuss how our results for the scalar product can be analytically con-
tinued from s > 0 to negative values of s, as well as the reduction to the compact spin
chain case.

D.1 Analytic continuation to s < 0

Let us recall that when deriving the integral form of the scalar product (e.g. (4.30) for
sl(N)) we assumed that s > 0. All these scalar products are written in terms of the
bracket (4.4) which is an integral along the real line with the measure (4.10) which has
poles at u = θβ − is + in (for all β = 1, . . . , L) and u = θα + is + in with integer n ≥ 0.
One potential possibility to define the analytic continuation of this integral to s < 0 would
be to keep the contour always slightly below the pole at u = θα + is, but still we see that
when we go from s > 0 to s < 0 the poles at u = θβ − is cross the integration contour and
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thus one should also subtract their contribution. As we further decrease the value of s,
more and more poles will cross the contour, making the result somewhat cumbersome. A
simpler approach is to first rewrite the integral (for s > 0) as a sum of poles in the upper
half plane at u = θα + is + in with n = 0, 1, . . . as we discussed in sections 4.1.2 and 5 by
closing the contour in the upper half plane. The sum over these poles itself is analytic in
s and thus can be directly used for s < 0.

Thus, for s < 0 we understand the bracket in the scalar product to be the sum over
the poles at u = θα + is + in. Being analytic in s, it retains all its key features and ensures
that the scalar product (4.30) vanishes for different states A,B.

D.2 Reduction to the compact su(N) case

Having clarified the construction for s < 0, we can now explore the particularly interesting
case when s takes negative half-integer values, s = −1/2,−1,−3/2, . . . . In this case the
representation of sl(N) on the spin chain sites becomes reducible and acquires a finite-
dimensional irreducible subspace, corresponding to the (−2s)’th symmetric power of the
fundamental irrep of sl(N). As discussed in the end of section 6, our construction of the
SoV basis then provides the basis precisely for this subspace, so that now our model reduces
to a finite-dimensional compact su(N) spin chain.

We expect that accordingly the scalar products (defined in terms of the sum over poles
as we just discussed) should reduce from an infinite to a finite sum, over the values that
label the SoV basis. Nicely, for the sl(2) case we can see at once that this sum truncates
for s a negative half-integer, as all but the first several elements of the SoV measure vanish
since (2.38) gives zero for nβ ≥ −2s. The same is true for the sl(N) case, as one can see
from the explicit result for the SoV measure (5.35) since the factor rα,n defined in (2.39)
vanishes for n ≥ −2s. As a result, we see that our SoV measure works perfectly for the
finite-dimensional case as well.

For various applications it is interesting to still write the scalar products in an integral
form for the finite-dimensional case as well. This was done for su(3) originally in [22] for
the case s = −1/2 (i.e. fundamental representation). We can now almost immediately
extend this result to any su(N) and any s = −1/2,−1, . . . .

Let us note that for these values of s the measure (4.10) we used so far in the integral
form of the scalar product simplifies and becomes

µα(u) = const
1 + e2π(u−θα) ×

1
s∏

k=−s
Qθ(u+ ik)

(D.1)

where the product goes over k = −s,−s+1, . . . , s. Let us redefine it by multiplying with an
i-periodic function that removes the inifnite set of poles coming from the first factor, and
also removes the poles of the Qθ factors associated to all θβ with β 6= α, so that we define

µα =
∏
β 6=α(1− e2π(u−θβ−is))

s∏
k=−s

Qθ(u+ ik)
. (D.2)
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We see that now we only have poles at u = θα + ik with k = −s,−s + 1, . . . , s. We should
change the definition of the bracket accordingly to pick up these poles, so we define

(( f ))α = 1
2πi

∮
du µα(u)f(u) (D.3)

where the integral goes around a large circle enclosing all the poles of the measures µα
(i.e. all the points u = θβ + ik for k = −s,−s + 1, . . . , s and β = 1, . . . , L). Since the
measure (D.2) differs from the one we used previous just by an i-periodic factor, the same
argument as in section C leads to the key ‘self-adjoint’ property40 (C.11), and consequently
to the orthogonality relation in the form (4.30), the only difference being that the bracket
is now given by (D.3). Of course, this integral can be evaluated as the sum over poles at
u = θα + ik (with k = s,−s + 1, . . . , s) as expected. This provides an integral representa-
tion for the scalar products for the compact su(N) spin chains in the finite-dimensional41

representation with spin s.

E Direct proof of poles cancellation for sl(3)

Here we will verify explicitly that there is no additional contribution from the poles in (4.23)
when we shift the contour to transform the integral in the first line to the one in the second
line. For convenience we repeat this equation here,((
Q1Ô

†f
))
α

=
∫ +∞

−∞
µα(u)Q1(u)

(
Q

[−2s]
θ f [−3]−τ2f

−+τ1f
+−Q[+2s]

θ f [+3]
) du

2πi (E.1)

=
∫ +∞

−∞

[
µ[+3]
α Q

[−2s+3]
θ Q

[+3]
1 −µ+

α τ
+
2 Q

+
1 +µ−α τ−1 Q

−
1 −µ

[−3]
α Q

[+2s−3]
θ Q

[−3]
1

]
f
du

2πi
+residues from poles .

We assume for simplicity that s > 0 and the inhomogeneities θβ are real.
The poles of the integrand are located at u = ±(is + in) + θβ with β 6= α and at

u = is + in+ θα, with n ≥ 0. Let us first consider the case 0 < s < 1/2. We start with the
first type of poles, i.e. those associated with θβ where β 6= α. The first term in (E.1) (the
term with f [−3]) has no pole at potentially dangerous points u = is+θβ and u = is+ i+θβ
which we are crossing, and thus gives no contribution. The second term in (E.1) (the term
with f−) also has no pole at u = is + θβ . The third term (the term with f+) gives a
contribution from the pole at u = θβ − is that we denote as r1 with

r1 = f(θβ − is + i/2)Q1(θβ − is)τ1(θβ − is) ie2πθα+4iπs

(e2πθα+4iπs − e2πθβ )Γ(1− 2s)
(E.2)

×
∏
γ 6=β

Γ(i(θγ − θβ))
Γ(−2s + i(θγ − θβ) + 1) .

40Let us note that now we do not have to worry about any extra poles contributions (i.e. the terms in
square brackets in the second line of (C.12)) when proving this property, since the integration contour is
now far away from all the poles.

41For instance, in our notation for sl(2) the fundamental representation corresponds to s = −1/2, the
3-dimensional vector representation corresponds to s = −1, etc.
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The fourth term (the term with f [+3]) has no pole at u = θβ − is but gives a contribution
from the pole at u = θβ − is− i that we denote as r2 with

r2 = f(θβ − is + i/2)Q1(θβ − is− i)Qθ(θβ − i)
ie2πθα+4iπs

(e2πθα+4iπs − e2πθβ )Γ(−2s)
(E.3)

×
∏
γ 6=β

Γ(i(θγ − θβ)− 1)
Γ(−2s + i(θγ − θβ)) .

Notice that as a consequence of (3.17), (3.18) we have

τ1(−is + θβ) = Q1(−is− i+ θβ)
Q1(−is + θβ) Qθ(−2is + θβ) (E.4)

and
τ2(is + θβ) = Q1(is + i+ θβ)

Q1(is + θβ) Qθ(2is + θβ) . (E.5)

Nicely, using these relations we find that r1 + r2 = 0! Thus, the poles we considered so far
give no contribution.

Next we consider the poles associated with θα. The first term in (E.1) has no pole at
u = is + θα but has a pole at u = is + i+ θα which contributes r3 with

r3 = − 1
2πf(θα + is− i/2)Q1(θα + is + i)Qθ(θα + i)Γ(2s + 1) (E.6)

×
∏
γ 6=α

Γ(2s− iθα + iθγ + 1)
Γ(−iθα + iθγ + 2) .

The second term in (E.1) gives a contribution r4 from the pole at u = θα + is with

r4 = 1
2πf(θα + is− i/2)Q1(θα + is)τ2(θ1 + is)Γ(2s) (E.7)

×
∏
γ 6=α

Γ(2s− iθα + iθγ)
Γ(−iθα + iθγ + 1) .

Using (E.5) we find that r3 + r4 = 0 so these contributions cancel against each other.
Finally, we can check in a similar way that the contributions from the 3rd and 4th terms
in (E.1) also cancel each other.

Thus we see that when 0 < s < 1/2 the poles give no contribution. The case when
s = 1/2 was considered in [21] and the poles similarly cancel. Finally, let us consider the
case s > 1/2. Then the 2nd and 3rd terms in (E.1) do not have poles in the relevant region
at all. For the 1st and 4th terms the poles trivially vanish due to their accompanying
Qθ factors. Thus there are no contributions from any poles. Let us also mention that
when s > 3/2 we see at once that all potential poles are absent from the relevant strip
−3/2 ≤ Im u ≤ 3/2 where we are moving the contour.

As a result, we have shown that all the contributions from poles cancel nontrivially
once we invoke relations between various transfer matrices and Q-functions.
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F Oscillator representation for sl(N), and relations for generators

In the main text we noticed that the transfer matrices in anti-symmetric representations
have trivial non-dynamical factors (3.20) and (C.3). This can be traced back to some
simple relations satisfied by the generators of sl(N) in our specific representation.

Firstly, there are linear and quadratic Casimirs, which are easy to determine by acting
on the HW state

Eaa = (N − 2)s , EabEba = Ns2 − 2Ns + 2s , (F.1)

where the repeated indices a and b are summed over. Another relation, which we found to
be very useful, is

Ea,cEb,d − Eb,cEa,d = s (Ea,cδb,d − Eb,cδa,d) + (s− 1) (Eb,dδa,c − Ea,dδb,c) (F.2)
+ (s− 1)s (δa,dδb,c − δa,cδb,d) .

This is easy to verify for sl(3), using the explicit form of the generators (3.1), (3.2), (3.5).
For general sl(N) we used the oscillator representation of [85, 86].

For completeness we write it below in our conventions

Ei,j = b+i−1b
−
j−1 + s δi,j , i, j 6= 1 (F.3)

Ei,1 = b+i−1
√
h , i 6= 1 (F.4)

E1,i =
√
h b−i−1 , i 6= 1 (F.5)

E1,1 = h+ s (F.6)

where h ≡ −2s−
∑N−1
i=1 b+i b

−
i and

[
b−i , b

+
j

]
= δij .

One of the consequences of the relation (F.2) is that the Lax operators La,1 (2.5) is
linear in generators and produces trivial scalar factors. For example for L2,1 we find

Ld1
[e1

(
u+ i

2

)
Ld2

e2]

(
u− i

2

)
= (u+ is− i

2)
(
(u− is + i

2)δd1
[e1δ

d2
e2] + 2iE [d1

[e1 δ
d2]
e2]

)
(F.7)

where we raised some indices to indicate antisymmetrisation more easily. The general
expression, which can be deduced as a consequence of (F.2), takes the form

Ld1
[e1

(
u+ i

a− 1
2

)
. . .Ldaea]

(
u− ia− 1

2

)
= (F.8)((

u− 1
2 i(a− 1)(2s− 1)

)
δd1

[e1 . . . δ
da
ea] + aiE [d1

[e1 δd2
e2 . . . δ

da]
ea]

) a−1∏
k=1

(
u+ is + i

a− 1
2 − ik

)
.

We see that the last factor agrees with (C.3). Removing the scalar factor and performing
the shift in accordance with (C.3) we see that τa(u) is built out of the following “reduced”
L-operators

Lreduced
d̄,ē

(u) = (u− i(a− 1)s) δd1
[e1 . . . δ

da
ea] + aiE [d1

[e1 δd2
e2 . . . δ

da]
ea] . (F.9)
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In section 7.4.1 we are interested in the following combinations τa(u)+u∂θατa(u)|uL−1 =
Ia,L−1 + ∂θαIa,L−2, which give a combination of generators acting on one site of the chain.
From (F.9) we immediately obtain

Îa,L−1 + ∂θα Îa,L−2 =
[
(−θα − i(a− 1)s) δd1

[e1 . . . δ
da
ea] + aiE [d1

[e1 δd2
e2 . . . δ

da]
ea]

]
Λe1 [d1

. . .Λea da]

= (−θα − i(a− 1)s)χa + i
a∑
j=1

(−1)j−1tr(EtΛj)χa−j (F.10)

where we use the superscript t in Et to denote transposition in the auxiliary space and we
used the identities

aiE [d1
[e1 δd2

e2 . . . δ
da]
ea]Λ

e1
d1
. . .Λeada =

a∑
j=1

(−1)j−1tr(EtΛj)χa−j (F.11)

δ
[d1
[e1 δ

d2
e2 . . . δ

da]
ea]Λ

e1
d1
. . .Λeada = χa . (F.12)

Finally, we simplify (F.10) to

a∑
j=1

tr
(
(Et − s)(−Λ)j

)
χa−j = (iθα + s) Ia,L + iIa,L−1 + i∂θαIa,L−2 , (F.13)

which is what we use in section 7.4.1.

G Mathematica implementation of general measure elements

In this appendix we give a simple implementation of our general formula (5.35). The code
is purely for demonstration purposes and is not particularly optimised for long chains.

First, we introduce some notations in Mathematica

In[1]:= (*Trivial permutation*)
sig0:=Table[Table[a,{a,Nc-1}],{al,L}]//Flatten;
xs:=Flatten[Table[x[al,a],{al,L},{a,Nc-1}]];
(*Subset of x’s with given value of sigma*)
xsinv[z_,sig_]:=xs[[(Position[sig,z]//Flatten)]];
(*Vandermond determinant*)
Delta[lst_]:=Product[lst[[i]]-lst[[j]],{i,Length[lst]}

,{j,i+1,Length[lst]}];
(*Vandermond determinant*)
r[al_,n_]:=Product[Pochhammer[n+1-I (t[al]-t[be]),2s-1],{be,L}];
(*Signature of a permutation*)
SGN[sig_]:=Signature[Flatten[Table[xsinv[z,sig],{z,Nc-1}]]];
(*Creates all permutations with fixed alpha’s*)
MyPerm:=Flatten[Table[Flatten@Table[p[al],{al,L}],

Evaluate[Sequence@@Table[{p[al],
Permutations[Take[#,{(Nc-1)(al-1)+1,(Nc-1)al}]]},{al,L}]]],L-1]&
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With these helper definitions the implementation of the measure My,x is very simple and
reads

In[17]:= M[ms_,ns_]:=
If[
(*check SoV charges are the same*)
Total[ms]==Total[ns],

Sum[
sig=ks-ms+sig0;
If[
(*check if sig is a valid permutation*)
Union[Tally[sig]]==Union[Tally[sig0]],

Do[k[al,a]=ks[[(al-1)(Nc-1)+a]],{al,L},{a,Nc-1}];
(*the main formula*)
SGN[sig]/SGN[sig0] *

Product[Delta[xsinv[z,sig]]/Delta[t/@Range[L]],{z,Nc-1}] *
Product[r[al,k[al,a]]/r[al,0],{al,L},{a,Nc-1}]
/.x[al_,a_]->t[al]+I s+I k[al,a],0]

,{ks,MyPerm[ns]}]
,0]

The usage is the following, one has to initialise global variables Nc = N and L. Then
one can call the function M(m′s, n′s) to obtain the corresponding element of the measure
Mx,y. For example, for sl(4) length 3 spin chain the measure element My,x with y =
|1, 1, 0; 3, 1, 1; 1, 1, 0〉 and x = 〈2, 0, 0; 4, 1, 0; 2, 0, 0| can be computed as follows

In[44]:= Nc=4;
L=3;
M[{1,1,0,3,1,1,1,1,0}
,{2,0,0,4,1,0,2,0,0}]/.t[a_]->ta//FunctionExpand//Factor

Out[44]= -((s4 (s+1) (2 s+1)3 (2 s+3) (2 s+i t1-i t2)2 (2 s+i t1-i t2+1)
(2 s+i t1-i t2+2) (2 s+i t1-i t2+3) (2 s-i t1+i t2) (2 s-i t1+i t2+1)
(2 s+i t1-i t3) (2 s+i t1-i t3+1) (2 s+i t2-i t3) (2 s+i t2-i t3+1)
(2 s-i t1+i t3) (2 s-i t1+i t3+1) (2 s-i t2+i t3)2 (2 s-i t2+i t3+1)
(2 s-i t2+i t3+2) (2 s-i t2+i t3+3))
/(3 (t1-t2)2 (t1-t2-i) (t1-t2+i) (t1-t2+2 i) (t1-t2-3 i)
(t1-t2-4 i) (t1-t3-i) (t1-t3+i) (t1-t3-2 i) (t1-t3+2 i)
(t2-t3)2 (t2-t3-i) (t2-t3+i) (t2-t3-2 i) (t2-t3+3 i) (t2-t3+4 i)))

or one can reproduce 1, 3 element of the matrix in (3.76) with this code

In[50]:= Nc=3;
L=2;
M[{0,0,1,1},{0,0,2,0}]/.t[2]->0/.t[1]->t1,2//FullSimplify//Factor

Out[50]=
s (2 s+1) (2 s+i t1,2) (i t1,2+2 s+1)

t1,2 (t1,2-i)
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math-ph/0109013.

[10] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, New Construction of Eigenstates and
Separation of Variables for SU(N) Quantum Spin Chains, JHEP 09 (2017) 111
[arXiv:1610.08032] [INSPIRE].

[11] A. Liashyk and N.A. Slavnov, On Bethe vectors in gl3-invariant integrable models, JHEP 06
(2018) 018 [arXiv:1803.07628] [INSPIRE].

[12] J.M. Maillet and G. Niccoli, On quantum separation of variables, J. Math. Phys. 59 (2018)
091417 [arXiv:1807.11572] [INSPIRE].

[13] P. Ryan and D. Volin, Separated variables and wave functions for rational gl(N) spin chains
in the companion twist frame, J. Math. Phys. 60 (2019) 032701 [arXiv:1810.10996]
[INSPIRE].

[14] J.M. Maillet and G. Niccoli, Complete spectrum of quantum integrable lattice models
associated to Y (gl(n)) by separation of variables, SciPost Phys. 6 (2019) 071
[arXiv:1810.11885] [INSPIRE].

[15] J.M. Maillet and G. Niccoli, Complete spectrum of quantum integrable lattice models
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