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1 Introduction and summary

The conformal bootstrap method is arguably the simplest way of exactly computing correla-
tion functions in diagonal CF'Ts such as Liouville theory and minimal models. The idea is to
constrain generic three-point structure constants by studying four-point functions that in-
volve degenerate fields. This is possible provided that degenerate fields exist, i.e. that OPEs
and correlation functions involving degenerate fields make sense and obey axioms such as
OPE associativity. In this sense, degenerate fields can exist without ever appearing in OPEs
of other fields: this is known to happen in Liouville theory. (See [1] for a brief review.)

In this article we will investigate whether the same method can be applied to the
case of non-diagonal CFTs. There is ample motivation for investigating these theories:
for example, the Potts model at criticality is expected to display non-diagonal features.
(See [2] and references therein.) However, we will not attempt to solve any specific model,
but rather compute correlation functions that obey conformal bootstrap equations. We will
make three main assumptions which will allow us to derive such equations, and which are



known to hold in consistent conformal field theories such as Liouville theory and generalized
minimal models [3]. We assume

1. that two independent degenerate fields exist,
2. that correlation functions are single-valued,
3. that the model depends analytically on the central charge.

As a first consequence of these assumptions, we will show that non-diagonal primary fields
are parametrized by two integer numbers. (By non-diagonal fields we mean not only spinful
fields, but also spinless fields that generate spinful fields when fused with degenerate fields.)
Each degenerate field will be responsible for shifting the value of one of the integer numbers,
and the resulting bootstrap equations will therefore determine the correlation functions of
our non-diagonal fields.

Some steps in this direction were previously taken by Estienne and Ikhlef [2], who
found the striking result that three-point structure constants of certain spinful fields were
geometric means of Liouville three-point structure constants. (See also [4] for a similar
relation in a more complicated CFT.) Schematically,

C(A;, A;) = /OL(A)CL(A), (1.1)
where A; and A; are left- and right-moving conformal dimensions respectively, so that a
primary field is spinful if A; # A; and spinless if A; = A;. The structure constants that we
will compute do obey a geometric mean relation, where we will resolve the sign ambiguity
and show that the square root is compatible with an analytic dependence on the central
charge. In appendix A we will actually show that the geometric mean relation is a universal
feature of non-diagonal CFTs under certain assumptions.

The bootstrap equations that determine the structure constants are derived from four-
point functions that involve degenerate fields, but they do not imply that more general four-
point functions are crossing-symmetric. In order to show that, we also need to determine
the operator product expansions (OPEs) of the fields. And finding which fields appear in
a given OPE is not necessarily easy. For instance, Liouville theory with a central charge
less than one was shown to exist by the determination of its spectrum and OPEs [5] a long
time after its structure constants were computed.

In order to guess plausible OPEs we will take a limit of the D-series Virasoro minimal
models, a class of non-diagonal CFTs which have already been solved, but which exist
only for discrete values of the central charge. Since however these values are dense in the
half-line ¢ € (—o0, 1), taking limits of minimal model OPEs yields sensible OPEs for any
¢ € (—o0,1), and actually by analyticity for any central charge in the half-plane

Re < 13. (1.2)

By combining these OPEs and our analytic structure constants, we can compute four-point
functions of two diagonal fields with arbitrary conformal dimensions, and two non-diagonal
fields. We will numerically check that these four-point functions are crossing-symmetric.



The D-series minimal models, along with their limits and analytic continuations, obey
a rule of conservation of diagonality: a correlation function can be nonzero only if it involves
an even number of non-diagonal fields. This implies that our four-point functions based
on limits of D-series minimal models only involve three-point structure constants with 0 or
2 non-diagonal fields. In order to test our results with 1 or 3 non-diagonal fields, we will
focus on the Ashkin-Teller model, a ¢ = 1 CFT where diagonality is not conserved. We
will show that our analytic results agree with Al. Zamolodchikov’s [6] for this model.

2 Spinful fields and their correlation functions

2.1 Global conformal symmetry

Consider a field theory on the Riemann sphere, with local conformal symmetry. The
symmetry algebra is made of two copies of the Virasoro algebra, with the same central
charge c. For the moment, let us focus on global conformal transformations,

az+b . ab

Under such transformations, a primary field V(z) with left and right conformal dimensions
A and A behaves as

V(z) = (cz +d) 22z +d) 28V (Zi;’) . (2.2)

8
In particular, a rotation by an angle 6 corresponds to <€02 e ), and gives
e 2
V(z) = e~ ARy (ewz> . (2.3)

In this transformation, there appears the difference between the right and left dimensions,
called the conformal spin and denoted as

S=A-A. (2.4)

In a CFT, correlation functions are invariant under conformal transformations. In partic-
ular, the invariance of an n-point function of primary fields V;(z;) with spins S; implies

<ﬁ Vz(zz)> — ¢ 0515 <ﬁ Vi(eiezi)> : (2.5)
=1 =1

Assuming that our n-point function is single-valued and non-vanishing, the phase should
be 1 for the rotation by 6 = 27, which implies

> Sjez. (2.6)
j=1



Let us consider the cases of two-point functions. Global conformal symmetry implies
that a two-point function vanishes unless the two fields have the same left and right con-
formal dimensions. We further assume that there is an orthogonal basis of primary fields,
so that two-point functions of elements of this basis take the form

012

(Via)Valz2)) = Bi—ss (27)
212?12

where By = B(V4) is a z-independent factor called the two-point structure constant. In

particular, the two-point function can be nonzero only if S; = So. Combined with the

constraint on the total spin eq. (2.6), this implies that the spins S;, Sy obey

1
S e 52. (2.8)

All our fields will obey this constraint, and will be called bosons if S € Z, and fermions if
SeZ+13.
In the case of three-point functions, global conformal symmetry implies

<V1(Z1)‘/§(22)‘/:),(Z3)> = C1a3
A3—Ao—A1 =A3—As—A1 A1—As—A3-A1—As—A3 _As—Az—A1 -As—Az—A
X Z123 2 12123 2 12231 2 32231 2 3Z312 3 1Z312 3 1 , (29)
where Cho3 = C(V1, V5, V3) is called the three-point structure constant. Since fermions
anticommute, under a permutation o the three-point function should behave as

<V0(1)V0(2)V0(3)> = 77123(0)<V1V2V3,> 7 (2.10)

where

(2.11)

—1 if o exchanges two fermions,
Mas(o) =
1 else.

In order to compensate for the behaviour of the z-dependent factor of the three-point
function (2.9), the structure constant C23 should therefore satisfy

Co(1)o(2)0(3)

Cros = n123(0) sgn(a)sl+s2+53. (2.12)

2.2 Diagonal and non-diagonal fields

In order to determine the three-point structure constants, we will use constraints coming
from four-point functions that involve degenerate fields. Before writing fusion rules involv-
ing degenerate fields, let us introduce notations that make them simpler. We have the
alternative notation [ for the central charge c,

c:1—6<ﬁ—;>2, (2.13)



and we introduce the momentum P instead of the conformal dimension A,

A=S (2.14)

24

In terms of momentums, the spin is
S =P?_ P%, (2.15)

We now introduce the diagonal degenerate fields Vi 1y and V{; 9y. Each one of these fields
has vanishing null vectors at level two for both the left- and right-moving Virasoro algebras.
Each one of these fields has the same left and right momentums, whose values Py 1) and
P12y are special cases of eq. (2.26). We now write these momentums, together with the
corresponding conformal dimensions:

1 1 35
B 1 1.3

Writing Vp p a primary field with left and right momentums P and P, its fusion product
with Vi 1) takes the form

Vo xVep S D Veyu pro- (2.18)

e==+,e=+
This fusion rule follows from the existence of vanishing descendents of V3 1y. Let us fur-
thermore assume that the fields satisfy the half-integer spin condition (2.8). Then the

difference of the spins of Vp p and V, e must be half-integer, which implies

N
P_oPe—z (2.19)
o 252 .
with o = €€ € {4, —}. If this holds for both values of o, then it follows that
_ 1
S=][r+P)e 4—522. (2.20)

Assuming that S # 0 and that the central charge is generic, so that 32 ¢ Q, this is
incompatible with the half-integer spin condition (2.8). Therefore, eq. (2.19) can be satisfied
for only one value of o, and the terms in the fusion product Vi3 1y X Vp p with the other
value of o must, in fact, be absent. Similarly, the fusion product V(; 9y X Vp p can have only
two terms, and these terms are determined by the value of the sign & € {4, —} such that

P-GPe gz. (2.21)

We consider o and & as properties of fields, which control their fusion products with de-
generate fields:

Vieny X Vpp = Z Vp#e%maeg + Voo < Vpp Z VP 2Eﬁ P-gs (2.22)

e=+



The fields on the right-hand sides have the same values of o, as the field VIZ ;, because

their momentums satisfy the same relations (2.19), (2.21). Let us now solve these relations
and determine the momentums. The solution strongly depends on o&, and we will call fields
diagonal or non-diagonal depending on this sign. Once o¢ is fixed, the choice of o makes
no difference: flipping o is equivalent to performing the reflection (P, P) — (P, —P), which
leaves the conformal dimensions (A, A) invariant. In what follows we set ¢ = + without
loss of generality.
e Diagonal fields 6 = o
Still assuming 42 ¢ Q, diagonal fields must have P — P € & 27N 5 Z = {0}, and
therefore A = A. Introducing the notation
VE =Vpi, (2.23)

the fusion products with degenerate fields read

Via1y X VP Z +£ Vi2) X VP = Z VP—— : (2.24)
e=+

e Non-diagonal fields 6 = —0o

Keeping in mind the half-integer spin condition (2.8), the momentums of non-diagonal
fields are of the type

P=P 1
_ (r,s) ) with r,s,rs € =7, (2.25)
P = JP(T,—S) s 2

where we introduced the notation

Py =5 (7“5 - ﬂ) (2.26)

The spin of a non-diagonal field is S = —rs. Introducing the notation
N +,—
Vv(r,s) = VP(KS)’P(T’_S) s (227)

the fusion products with degenerate fields read

N N N N
V<271> X V(r,s) = _Ziv(r+e,s) ) V(1,2> X V(r,s) = _Z:EV(T’S+€) . (2.28)

We emphasize that it is not enough to know the momentums of a field in order to identify
it as diagonal or non-diagonal. The non-diagonal field V(]Xo) has spin zero, and the same
left and right momentums as the diagonal field VP( 0 These two fields are distinguished
by their fusion products with degenerate fields, equlvalently by their values of ¢ and . In
particular, the fusion product

Vivgy x Vg = ZVM , (2.29)



produces spinful fields. Notice also that linear combinations of V}?m and V(JTV 0) are primary
fields whose fusion products with Vi, 1y and V/; 5y can involve four fields, rather than two
fields as in the fusion products (2.22). And indeed the derivation of our fusion products
assumed that the spin S was nonzero, while we are now dealing with spinless fields of
momentums P = P = P 0). Linear combinations of VI%O) and V(]r\fo) might not be the
only fields whose fusion products with Vi 1y and V/; oy involve four fields, but we refrain
from studying such special cases in more detail, and restrict our attention to our diagonal
and non-diagonal fields.

3 Analytic conformal bootstrap

In this section we will derive and solve conformal bootstrap equations for correlation func-
tions of our diagonal and non-diagonal fields. These equations will follow from the assump-
tion that the correlation functions <V<271>V1V2V3> and <V<172>V1V2V3> exist, for arbitrary
diagonal or non-diagonal fields V7, Vs, V3.

3.1 Operator product expansions and crossing symmetry

We will write operator product expansions in a schematic notation that omits the depen-
dence on the coordinates z;, and also omits the contributions of descendent fields:

iva =Y ChLVs. (3.1)
V3€eS

Here S is a set of primary fields that we call the spectrum of the OPE. The spectrum of
an OPE is a subset of the spectrum of the theory. Inserting the OPE into the three-point
function (2.9), we find that the OPE coefficient C%, is related to the two- and three-point
structure constants Bs (2.7) and C1a3 by

Clo3 = B3C3,. (3.2)
Let us write the degenerate OPEs that correspond to the fusion rules (2.22) as

Ve V=> C(V)V', VigyV=>» C(V)V¥, (3.3)
e=+ e=+

where we introduced the notations

— 0-7(2- § € — 0'76' € — 07& N
V= VP,P 4 VP+6§,P+U€§ , v VP—L p-2<” (3'4)

and the degenerate OPE coefficients C.(V), C.(V). The existence of OPEs implies that
four-point functions can be decomposed into combinations of conformal blocks. In partic-
ular, an s-channel decomposition is obtained by inserting the OPE of the fields V; and V5,
and reads

(WVaVaV) = [ du(Ve) Digiaaa ) (Alei) P (Bl ). (3.5)
Ss



where du(Vs) is some measure on the space Sy of the s-channel primary fields. This is

(s)

a combination of four-point conformal blocks FA"(A;|z;), with the four-point s-channel

structure constants

S

1 \ ( \ (3.6)

C1osC

s s s34

Dy =[O [ Cu | = CCost.
s

Alternatively, we could insert the OPE of the fields V4 and Vj, and obtain the ¢-channel
decomposition of the same four-point function. Both decompositions should agree, and we
obtain the crossing symmetry equation

3

2
2 3
/dﬂ(Vs)Dsm?A H = /dM(Vt)DtMmS t (3.7)
Ss 1 4 St

1 4

Let us now consider a four-point function that involves at least one degenerate field Vi .
Since the OPEs of this field have only two terms, its four-point functions involve only two
terms in each channel,

(VonyVivaVs) = > dDFOFE, = > dOFOFY,, . (3.8)
e1==+ e3==+

where ]-"6(8),.7-"6@) are degenerate four-point conformal blocks, and the four-point structure
constants are of the type

(3.9)

A = Co(v) | C(VE, Vi, Va) .

. : i o :
Let us introduce the ratio p = p(Vi|Va, V3) = ﬁ, which is important because we will be

able to compute it in section 3.2. Its expression in terms of structure constants is

C.,.(Vl)C(VlJr, V27 V3)
C_(W)C(V, Vo, V3)

p(Vi|Va, V3) = (3.10)



In the particular case of the four-point function <V<271>V1V<2,1>V1>, the four-point structure
constants are of the type

(3.11)

and the corresponding ratio is

CL(V1)*B(Vy)

p(Vi) = (3.12)

C_(V1)*B(Vy)
It follows that the dependence of the four-point structure constants D134 = D(V5) (3.6)
on the field V; is controlled by the shift equations

D(V;H) _ p(ValVi,Va)p(ValVa, Vi) D(ViH) _ p(ValVa, Vo) p(ValVa, Vi)

S S

D(Vy) p(Vs) " DWWy p(Vs) 819

where the second equation is obtained by replacing Vi 1y with V{; 9) in our analysis. Next
we will determine the ratios p and p of degenerate four-point structure constants.
3.2 Ratios of four-point structure constants

The s- and t-channel degenerate four-point conformal blocks ]-}(s) and ]-"E(t) that appear in
the decomposition (3.8) of <V<271>V1V2V3> are two bases of solutions of the same Belavin-
Polyakov-Zamolodchikov equation [3]. They are related by a change of basis of the type

]:6(18) = ZFE1,E3‘F£§) ) (3.14)
€3

whose coefficients are the fusing matrix elements

['(1 + 2Be1 P)I(—2Be3P3)
[1.T(; + BerPL £ P — BesPs))

Feies = (3.15)

The right-moving blocks ]i}_(s) and ]}E(t) obey a similar relation, with a fusing matrix I

whose elements are obtained from those of F' by P; — P,. As a consequence, we obtain

four equations relating the structure constants d(f ), dg? of both channels, two for each value

of €3 = =+:
Z dg)FELELaﬁmeh—ageg =0, (3.16)
€1
Z dgf)F617€3F0161,0363 = dé? . (3.17)
€1



The four-point function vanishes unless equations (3.16) admit a non-zero solution for dgs),

which happens only if

Fi F Fi F N\
L e e e sl : (3.18)
F,_F F._F |
Explicitly, this condition reads
H cosf(Py + Py — P3) _ H cosmf(o1 Py £+ Py — 03P3) (3.19)

COST(‘ﬁ(PliPQ—I—Pg) 1 COST('B(Ulplﬂ:PQ—l-O':;P:;) ’

+

Assuming that our three fields are diagonal or non-diagonal as discussed in section 2.2,
the numbers s; = 3(0;P; — P;) must be half-integer. (For a non-diagonal field, s; coincides
with the half-integer index of a same name. For a diagonal field, we have s; = 0.) Then
our condition reduces to

(1 —(—1)2Zh Si) sin(2m3P;) cos(2m3P,) sin(21BPs) = 0. (3.20)

Assuming we are in the generic situation where the trigonometric factors do not vanish,
this implies

3
> si€. (3.21)
=1

Now, since fusion with Vi, 1) (2.22) leaves the number s unchanged, this condition holds
not only for our four-point function <V<2,1>V1V2V3>, but also for the three-point functions
that result from the fusion Vip ;) x V4. It follows that any nonzero three-point function
must obey this condition. The same analysis with the correlation function <V<172> V1V2V3>,
and with the convention r = 0 for a diagonal field, leads to the analogous condition

3
Y rel. (3.22)
=1

To illustrate the implications of these conditions, let us consider two examples:

e For any three-point function of the type <VD VPyN >, the non-diagonal field must
have integer indices r, s € Z.

e Any three-point function with an odd number of fermionic fields vanishes, because
fermionic fields obey r; +s; € Z +% while Z?Zl(ri +8;) € Z. So our conditions imply

the single-valuedness condition (2.6) for three-point functions.

Returning to the four-point function <V<271>V1V2VE;> we see that, if conditions (3.18) are
obeyed, the ratios of the four-point structure constants are given in terms of fusing matrix

elements,
& P F
+ —,€3% —01,-03¢€3
e = — — s veg E —f—, —r. 323
g d(s) F+,63F01,70363 { } ( )

~10 -



Inserting explicit expressions (3.15) for the fusing matrix elements, we obtain
P(—Qﬁfﬁ) F(—Q,@O’lpl)

I'2pP) T(2B01P)
H [(5+BP1+BP2+ BesPs) H L(1+B0o1Pi£BP,—BesosPs)
S T(3—BPi£BP+BesP3) “ 2t T3 —Bor PSP —BezosPy)

p(V1|Va,V3) = —

(3.24)

where we have restored the explicit dependence of p = p(V1|Va, V3) on the fields. Remem-
bering that s; = (0, P — P;) € 37Z obey eq. (3.21), this can be rewritten in manifestly
€3, o3-independent way:

25, D(=28P) T(—2B01 Py) Tls L(3+8P1+3P,+(Ps)

p(Vi|Va,V3) = —(-1) T'(28P,) F(Qﬁalpl) Hi’if(%—ﬁ(flpliﬁpziﬁp?)).

(3.25)

Let us check that this behaves as expected when we permute the fields V5 and V3. Using
eq. (3.21), we find

p(V1|V, V3) = (=1)*1 p(V3|V5, Va) . (3.26)

This is actually what we expect from the expression of p(Vi|Va,V3) in terms of struc-

ture constants (3.10), given their behaviour (2.12) under permutations, and the relation
(—1)251 = (_1)S(V1+)*S(V17)'
. .4y
The analogous expression for the ratio p = ﬁ of s-channel structure constants of

the four-point function <V<172>V1V2V3> is obtained by the substitutions s — r, ¢ — 0,
B——pt

L2 'p) T(287'61P)
[(—28-1P) T(—28"161P)

[ TGP REpPy)
[T+ 80P+ B P+ 571P3)

p(Vi|Va, V3) = —(—1)%

(3.27)

The particular case of a four-point function <V<2,1>VV<271>V> with two degenerate fields
corresponds to

(P, P) = (Ps,P3) = (P, P), (3.28)
P2:P2:B—215, (3.29)

and we find

_ T(-28P)T(-2B0P) T(B?+28P)'(1— %+ 25P)
PV = = T3P T (2B0P) T(F —2B0P)T(1 = §2 —230D) (3:30)

Similarly, the ratio of structure constants of the four-point function <V<1’2>VV<172>V> is

res-tP)yreps-teP) T(B2-28"'P)I(1-p"2-238"1P)

p(V) = _F(—Qﬁ_lP)F(—25_15P) [(B~2+2B716P)T(1 - p~2+28716P) "

(3.31)

- 11 -



These ratios slightly simplify in the case of diagonal fields i.e. if P = ¢P = G P,

(VD)__FQ(—%P) V(B*+28P) VD)= I?(287'P) (8 2-287'P)
PYPI=TT2006P) 4(B7—26P)" PP T T TR(2pIP) (B 2126 1P)’

(3.32)

where we introduced v(z) = %

The determination of the ratios p, p lead to shift equations (3.13) for the four-point
structure constants that appear in generic four-point functions (ViV2V3Vy). For some
spectrums, these shift equations are enough for determining the structure constants up to
a Vs-independent factor, and therefore enough for checking crossing symmetry. We will
see examples of this in section 4. For the moment, let us determine three-point structure
constants.

3.3 Three-point structure constants

Before studying how our conformal bootstrap equations constrain three-point structure
constants, let us warn that in principle such structure constants cannot be fully determined.
This is because our fields, and therefore also their correlation functions, are only defined
up to a z-independent renormalization,

Vi(z) = \NiVi(z) . (3.33)

We could fix this ambiguity by imposing additional constraints on correlation functions,
as is done in minimal models by imposing B(V) = 1, or in Liouville theory by imposing
C.(V) = Cy(V) = 1 [3]. However, in the case of non-diagonal fields, imposing either
constraint would lead to correlation functions having factors that involve square roots of
Gamma functions. Such factors would be complicated, and non-analytic in 5. Rather,
we will introduce a reference normalization where the three-point function has a particu-
larly simple expression C{y4, and write the three-point structure constant in an arbitrary
normalization as

3
Clog = (H Y) Clag s (3.34)
=1

Then C},; is normalization-independent, and the normalization factor Y; behaves as
Y; = A\;Y; under (3.33). Since the two-point structure constant (2.7) behaves as B; — A\?B;,
the normalization-independent quantities that we can hope to determine are

Clos and  Y2B7h. (3.35)
Rewriting the four-point s-channel structure constant as
4 ) Y2
Dgj1234 = H Yi | Clas 5343*8 ; (3.36)
i=1 s

shows that the crossing symmetry equation (3.7) only involves normalization-independent
quantities.

- 12 —



The equations that constrain the structure constants are written in terms of the ratios
p (3.10) and p. If we define the normalization-independent ratio

C/(V1+7 VYQ) V:?)

(V1| Va, V3) = ,
p( 1| ’ 3) C/(Vl_a‘/?av}i)

(3.37)

then the combination

p(VilVa, Vs) _ CL (V)Y (Vi) (3.38)
p(VilVa,Va) — C_(W)Y (V) '

should only depend on the field V3. So let us look for a function C’(V7, Vs, V3) such that
the corresponding combinations § and § only depend on Vj. The problem simplifies
significantly if at least one of the fields is diagonal, say Vi = V£ , and we will restrict to

this case. We propose the ansatz

f2,3(P1)

:Etrg(g—i—%—l—Pl:l:PQ:l:Pg):EEFB(Q—F%—Plipgﬂ:pg) ’

C' (VA Vo, V3) = (3.39)

where I'g(x) is a double Gamma function with periods 8 and 871, which is invariant under
B — B~! and obeys

i
Ig(x+B)=van T(37)

The factor fo3(P1) € {—1,+1} is included in order to account for the sign factors appearing
in egs. (3.25) and (3.27). It is determined by the equations

fo3(Pr+ 33)
fo3(P1— 35)

Ts(z). (3.40)

fa3(P1 + §)
fos(Pr—5)

If ry,s9 € Z, in particular if either V5 or V3 is diagonal, we have fo3(P;) = 1. With our

= (—1)%2, = (—1)%=. (3.41)

ansatz, the ratios are

aup e T (5 + 8P+ 8P+ 8F3)

/ D _ (_ PED) 85P1 )

p(Vi7|Va,Vs) = (=1)728 [L.T(,— AP LoB LR, (3.42)
1 p-1 —-1p —-1p

FVPV V) = (c1prgip e TG AT AESTRESTR)

[[o.T(G+81P£p PSR’

which indeed match the expressions (3.25) and (3.27) for p(V1|Va, V3) and p(Vi|Va, V3), up
to factors that depend on V; only.

Notice that the denominator of C’(V,”,Va,V3) (3.39) is invariant under P; — —P;.
Neglecting the numerator, we indeed have

S8+ L+P P+ P
CI(VJQ,VQ,Vg) :Et B(2+25+ 1 2 3)

X Y
C'(V V2, Va) inis/g(g +35+ Pt Pyt Py)

(3.44)
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Ss(z+p)
Sg(z)

with Sg(x) = Fﬁrﬁ. Using the shift equation =2sin(mpx), we find the identity

(B+5—)

Sﬁ(xip(r—s))
PEEZ ) gy s e 3.45

We can use this identity thanks to the non-triviality conditions (3.21) and (3.22), and
we find

C'(VE), Vo, V3)
C'(VD, Vo, Vi)

—1)2rzsatrass) — 1 (3.46)

where we also used the single-valuedness of correlation functions eq. (2.6).

Using the combination § (3.38), together with the ratio p(V1) (3.12), we can write a
shift equation for the normalization-independent quantity Y2B~1,

Y2B-L (Vi) pP(Vi|Va, Va)p(Vi) '
In the case of a diagonal field, this equation is explicitly
(V2B (VPr 2 2
! _ _5165P1F (=28P1) v(8° — 26h) (3.48)
(v2B-1) (") 2(28P1) (B2 +26P1)’
and the dual shift equation is
2p-1 D,+
(¥Y°B™) <V1 > _ _ghm [2(287'P) y(B72+287' 1) (3.49)
(v2B-1) (1”7) T2(—25-1P) 4(B-2 = 26-1P)
. . . . _ 1
A solution can be written in terms of the function Yg(z) = T @ T=)
1
V2B ) (VP) = : 3.50

Let us now determine the factor Y2B~! for a field V5 that is not necessarily diagonal. We
set 09 = —d9 = 1, but the result does not depend on these choices. We compute the ratios
p(Va|V3, ViP) and p(Va|V3, ViP) by renaming the momentums in (3.25) and (3.27). Making
use of the permutation properties of the three-point structure constant (2.12) we rewrite

1(yyD 1/+ 1(v,D 1+
C(Vl vVQ 7V3) ﬁI(V2|V3,V1D)= C(Vl 7V2~7V3)‘

/ D
p(Va|Vs, V™) = — ;
OV VL V) (VP Vs V)

(3.51)
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Using the ansatz (3.39), we compute these ratios. Inserting them into eq. (3.47), we obtain

(Y2871 (V3) 586(P2+P2)F( 28P)T(—23P)
(Y2B-1) (Vy ) L(28P)T(28P,)

F(52_2/6p2)1_‘(1_182 —2,8?2) (3 52)
D(B2 +26P)T(1 — B2+ 2BP) ‘

(Y?B~) (VJ) _ g (287 1P (2871 P)

(Y2B-1) (VQL) B [(—28-1P)[ (2871 1)
I(B2-287tP)I(1 - B2 —-28"1P)

“T(F2—25-1P)I(1— 2 —25-1Py) (3.53)
A solution of these equations is
(2B~ (Vi) = ()77 T Ta(8+2P)Ts(37" +2P), (3.54)
+

which reduces to the diagonal case expression (3.50) if P = +P.

So we have found solutions of the shift equations for the normalization-independent
quantities C’ and Y2B ™!, with the exception of three-point structure constants that involve
three non-diagonal fields. The formulas are slightly more complicated in that case, and we
leave them for future work. Notice however that the shift equations (3.13) are enough for
practical purposes, as we will demonstrate in an example in section 4.3.

To conclude, let us discuss whether our solution C’ of the shift equations is unique.
The dependences on diagonal and non-diagonal fields deserve separate discussions:

e Just as in the case of Liouville theory [1], shift equations uniquely determine the
dependence of three-point structure constants on momentums of a diagonal field VFI,)
provided 3 € R or 8 € iR. Just like the function I'g, our solution is well-defined and
analytic for § ¢ iR, and is therefore the unique analytic continuation of the 5 € R
solution to the domain § ¢ iR i.e. ¢ ¢ (25, 00).

e When it comes to a non-diagonal field V(fy 5 the shift equations determine how three-
point structure constants change when each one of the indices r, s is shifted by two
units. Given the allowed values (2.25) of these indices, the space of solutions of the
shift equations is finite-dimensional. In specific models however, the indices do not
take all their allowed values. In the case of the spectrum (4.7), shift equations plus
invariance under the reflection (r,s) — (—r, —s) have a unique solution. In the case
of the Ashkin-Teller model (section 4.3), the space of solutions is two-dimensional.

3.4 Relation with Liouville theory

Let us investigate whether our structure constants obey a relation of the type (1.1) with
structure constants of Liouville theory. Let us start with the case of a three-point structure
constant of three diagonal fields. In this case, the normalization-independent factor (3.39)
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reduces to

VP vi? viP) =T 1s (5 +2ﬂ—|—P1j:PgiP3> . (3.55)
+.+

For ¢ < 1 (i.e. p € R) this coincides with the analogous quantity in Liouville theory,
CL(P1, Py, P3), as reviewed for example in [3]. For other values of ¢ though, we have to
use a different solution of the shift equations in order to recover Liouville theory results.
Similarly, our solution for (Y2B~1)(V}) (3.50) agrees with Liouville theory only if ¢ < 1,

and has to be replaced with the solution (Y2B~1)(P) ” = : [L; Tip(£2iP) otherwise.
cé(—o0,1
We will not elaborate on this subtlety, because it affects only diagonal fields with their

continuous values of the momentum P. Liouville theory structure constants that involve
at least one discrete momentum of the type P, ;) are determined by shift equations, modulo
finitely many initial conditions. This implies in particular that they are analytic functions
of B, with no singularity at g € R.

So, if a least one momentum is discrete, we can use the § € R Liouville theory for-
mula (3.55) for complex values of 3 as well. Then it is straightforward to check that our
normalization-independent factor (3.39) obeys

C2(VP|Vy, V3) = CL(Py, Py, P3)CY(Py, Py, P3) . (3.56)

Let us check the analogous relation for the quantity Y2B~! (3.54). We compute

2B (V) Sp(B £ 2P, )
(r=s)) _(_qydrs — 3.57
(YQB—1)< Al ) H S 5:%:2]3,,5)) (=1) ( )
where we used the identity (3.45). This implies
(s (V)] = By (V) o (V) (3.59)

Using 15(,,75) = P, _s) we obtain

[(YQB_l) (V(jjs))] — (Y2B~ )(VP< ))(YZ )(VIE()H)). (3.59)

Together with eq. (3.56), this shows that the geometric mean relation (1.1) holds at the
level of normalization-independent quantities. We have actually written the square of
this relation, in order to avoid having sign ambiguities. These sign ambiguities make the
geometric mean relation more suggestive than practically useful. Still, squares of three-
point structure constants do appear in four-point structure constants of the type Dgji912,
and we find

Doz = Y2(V))Y?(Va) (Y2 B™) (V) CL(P1, Py, Po)CL(P1, Py, Fy). (3.60)

This shows that the crossing symmetry equations for four-point functions of the type
(V1VaV1Va) can be written in terms of Liouville three-point structure constants.
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Our structure constants, and the shift equations that they solve, are ultimately derived
from the fusing matrix. Therefore, the relation with Liouville theory should be expressible
in terms of this matrix. Let us indeed write the square of the ratio (3.23) of fusing matrix
elements, as the product of the two equivalent expressions for this ratio:

Fi o Fo e F. F._ [(F..F, \°
p2 _ H F+, :J,F 1,—03€3 _ F++F+ <F++F+ > ) (3.61)
eg=+ = €37 —01,—03€3 —+4—— —+4——
This relation can be rewritten as
p>(Vi|V2, V3) = pr(P1| P2, P3)p7" (Py| Py, P3) (3.62)

Fi Fyo
F o F__
implies the geometric mean relation for shift equations and therefore for structure constants.

where pr, = is the expression for p when all three fields are diagonal. This relation

See appendix A for a discussion of how general the geometric mean relation might be.

4 Crossing-symmetric four-point functions

In order to compute a four-point function, we need not only structure constants, but also a
spectrum. But the spectrum of an OPE of two non-degenerate fields is a priori not easy to
determine. In order to find plausible guesses for the spectrums of some OPEs, we will start
with known OPEs in minimal models, and send the central charge to non-rational values.

4.1 Non-rational limit of minimal models

Let us first illustrate our approach in the case of diagonal models. For any coprime integers
p,q > 2, there exists a diagonal (A-series) minimal model with the parameter 32 = g. Its
spectrum is built from degenerate representations R, ) of the Virasoro algebra,

-1 p—1
1‘1 p

S[)A’(—]series — 5 @ @ ‘R@«,s) ‘2 : (41)

r=1 s=1

where by |R|?> = R ® R we mean a representation R of the left-moving Virasoro algebra,
tensored with the same representation of the right-moving Virasoro algebra. Let us consider
the limit of this spectrum as p,q — oo such that g — ,6’8, for a given real value of (.
Assuming (2 ¢ Q, the momentums Py (2.26) of the states become dense in the real line.
Moreover, for a generic momentum Py € R, we have P, ) =+ Py = r,s — oo. It follows

that the levels of the null vectors of R, s go to infinity, and that b lim - Rirs)y = Vpys
(r,5) = Fo

where Vp, is the Verma module of momentum F). To summarize, the minimal models’
spectrums tend to a diagonal, continuous spectrum made of Verma modules,
Jim SA-series — / dP [Vp|*. (4.2)
263 Pq R,
We thus recover the spectrum of Liouville theory. Since the three-point structure con-
stants of Liouville theory and minimal models are analytic in 3, P and obey the same shift
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equations, we conjecture that the correlation functions of Liouville theory with 8 € R i.e.
¢ < 1 are limits of correlation functions of diagonal minimal models. Notice however that
the spectrum of Liouville theory with ¢ < 1 was found much later than its structure con-
stants [5]. Taking limits of minimal models is a shortcut that would have led to the correct
spectrum, and that we will now use in the case of non-diagonal models.

For any coprime integers p, ¢ such that ¢ > 6 is even and p > 3 is odd, there exists a
non-diagonal (D-series) minimal model with the parameter 5% = % [7]. The spectrum can
be split into a diagonal and a non-diagonal sector,

q—1 p—1
1

_— 1 pt _
S = ;DD Real'e; D DRew ©Rig—r- (4.3)
T‘%l s=1

1<r<g—1 s=1
=49

r=3 mod 2

The notation = means that r increases in steps of 2, implying that the diagonal representa-
tions have 7 odd, while the non-diagonal representations have r = 4 mod 2. If ¢ = 2 mod 4
the representation |R< g ,s>‘2 appears with multiplicity 2, with one copy in the diagonal
sector and the other copy in the non-diagonal sector. If ¢ = 0 mod 4 every representation
has multiplicity 1.

The fusion rules of the D-series minimal models have the remarkable property that
diagonality is conserved [8],

DxD=D, DxN=N, NxN=D. (4.4)

This property, plus the fusion products of degenerate representations, are enough for de-
termining the spectrums of the OPEs in D-series minimal models.
In the non-diagonal sector of the spectrum S]],?(‘Zseries, spins take the values

§=Bgrs) =By = (r=3) (s-2) . (4.5)

These spins are integer, and must therefore remain constant when we take a limit p, g — oo
such that % — 3. This suggests that we take both factors r — 4 and s — & to be constant,
and assume that r, s take p, g-dependent values,

=1 27
I B 1 S (4.6)
s=735+ S0, so €L+ 5.
Then A g) = Apgse) and Ag_rs) = A(rg,—s), S0 not only the spins but also the left

and right dimensions of our states remain constant in our limit. On the other hand, the
diagonal sector behaves just like the spectrum of a diagonal minimal model in this limit.
To summarize,

1
lim SP-series — — /R dP |Vel® @ Sy 501 (4.7)

p.q
p 2
L53 2

where we use the notation Sxy = @, cx D,cy VP, ® ]_/P(T R
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Let us investigate how correlation functions behave in our limit. We write a four-point
function as a sum over some spectrum in some channel. The sum is finite in minimal
models, and becomes infinite in our limit. The convergence of the infinite sum depends on
the behaviour of its terms as r, s — oco. In Liouville theory, the analogous terms behave as
decreasing exponentials in the total conformal dimension A + A as A + A — oo [5]. Due
to the geometric mean relation (3.56) and the universality of conformal blocks, the same
behaviour must occur in the limit of non-diagonal minimal models. Now, if the limiting
spectrum is non-diagonal and of the type Sx y, then the total dimension of a state is

2
Apg) T Aq—s = 6121 + % <’r262 + ;2> . (4.8)
Assuming $32 > 0 i.e. $c < 13, this goes to infinity as r, s — co. So the infinite sum over
Sx,y converges, and the finite sums that appear in minimal models tend to this infinite
sum in our limit. If however the finite sum is over diagonal states, then the situation is
more subtle, because the total dimensions 2A, , of diagonal degenerate states do not tend
to infinity as r,s — co. Our heuristic analysis of the limit of the spectrum may therefore
not capture the behaviour of correlation functions, and the limiting spectrum need not
necessarily be continuous or even diagonal. Our guess is that such subtleties are absent in
four-point functions of diagonal fields, whether these four fields belong to A-series minimal
models, or to the diagonal sectors of D-series minimal models. We expect that these
subtleties occur when structure constants are not analytic as functions of momentums.
This can happen with the three-point structure constant (3.39) due to its sign factor
f2,3(P1), which can be non-trivial if two fields are non-diagonal.
Therefore, we only keep the non-diagonal spectrum SQZ’Z Llasa robust prediction from
minimal models. Let us display the momentums (P, P) corresponding to this spectrum (red
dots) and to the spectrum of Liouville theory (thick blue line) for an arbitrarily chosen

value of 3:
P [ ]
(0:3) ’ .
8 =0.81 oy .
[c = —0.08] . ) “p (4.9)

The momentums of SQZ,Z + form a lattice spanned by two vectors that point along the
diagonal (thick blue line) and anti-diagonal (thin blue line). The diagonal and anti-diagonal
themselves correspond to the spinless states.

A numerical bootstrap analysis in the context of the Potts model has shown that this
spectrum appears in correlation functions of the type [9]

_ D N D N
Z(] — <VP(071)‘/(075)‘/P(07%>‘/(07é)> . (410)

2
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Our present analysis suggests that the same spectrum should appear in many more corre-
lation functions. These correlation functions should conserve diagonality, as an inheritance
from D-series minimal models. Actually, diagonality must be conserved in any theory
whose non-diagonal sector is Sy 7, 1, as a consequence of our condition (3.21) on three-
point functions.

Let us point out that the shift equations (3.13) completely determine the dependence
of structure constants on fields in Sy ;. 1. This is obvious for the dependence on the
first index r, which takes values in 2Z while the relevant equation shifts it by 2. This

is less obvious for the dependence on s, because shifts by 2 relate all values s € Z + %
11
272
s are opposite to one another, and we can use the fact that normalization-independent

to two values, say s € {— }, rather than just one value. However, our two values of

quantities are invariant under (r,s) — (—r, —s), because V(JTV 9 and V(JX res) have the same

—S
conformal dimensions. Therefore, the solution of the shift equations is unique up to an
(r, s)-independent factor. In order to compute structure constants, we can use indifferently

the shift equations, or their solution.

4.2 Numerical tests of crossing symmetry

We conjecture that for any central charge ¢ such that Re¢ < 13, for any two diagonal
fields with arbitrary momentums, and any two non-diagonal fields in S,; 1, there is a
)
crossing-symmetric four-point function
_ /y/Dy/N Dy,N

Z= <VP1V(7“2782)VP3V(T4,84)>’ (4.11)

with the spectrum S,; ;. 1 in the s- and t-channels. (However we know neither the u-
TR
channel spectrums of such four-point functions, nor the spectrums of four-point functions
of the type (VNVNVNYI) )
We will provide evidence for this conjecture by directly testing the crossing symmetry

equation (3.7) for four-point functions of the type

Z = VBV, VAV ) (4.12)

2,82 72,52)

In this case the structure constants Dy, ) are the same in both s- and ¢-channels, and are

Dr,s)

given by eq. (3.60). We perform the renormalization D, ) — 3 =, in order to have
0,3)

The four-point structure constants were computed iteratively by using (3.13), taking the
ground-state structure constant D(o, 1y as a starting point. Conformal blocks were com-
puted using Zamolodchikov’s recursion formula, see appendix A.2 in [5] for more details.
The Jupyter notebooks used to perform these computations are available on GitHub, along
with further examples.

Before testing crossing symmetry of generic four-point functions let us verify that
our analytic four-point structure constants (3.60) agree with the numerically determined
structure constants in [9], for the four-point function Zy (4.10) in the case ¢ = 0 that is
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https://github.com/ribault/bootstrap-2d-Python

relevant for critical percolation. The following table shows the values of the first 9 four-
point structure constants calculated with each method. The coefficient of variation ¢, ) is
an estimate of the precision of the numerical bootstrap determination of the corresponding
structure constant. The last column shows the relative difference between both calculations.

Numerical bootstrap Analytic bootstrap | Relative

(r,s) D5 Clr,s) D5 differences
(0,3) 1 0 1 0
(2,1) 0.0385548051 2.4 x 107* 0.0385548051 | 8.7 x 10710
(0,2)| —0.0212806511 7.6 x 107°| —0.0212806510 | 2.9 x 107°
(2,3) 0.0004525024 2.2 x 1078 0.0004525024 | 1.7 x 1079 (4.14)
(0,3)| —3.5638-10°  44x1077| -—3.5638-107° | 3.7x107®
(4,3)| -—29746-1075  24x107%| —29746-107% | 1.2x107°
(2,3) 8.4077-1077 1.3 x107° 8.4078 -1077 | 6.3 x 107°
(4,3)| —44131-107® 1.6 x107*| -4.4135-10"% | 8.8 x 107"
(0,7) 1.5064-1071% 9.3 x107? 1.5174-1071% | 7.3 x107*

We note that not only the absolute values, but also the signs of the structure constants
agree, a result that could not be deduced from the geometric mean formula (1.1). While
the precision of the numerical bootstrap calculations decreases as s-channel conformal
dimensions increase, our analytic results (coming from (3.13)) do not have this problem.
This explains the increase in relative differences between both calculations, and the fact
that the estimated numerical uncertainty c(,.,) is comparable to these differences. This
supports the idea that the analytic results are indeed exact.

Let us now test crossing symmetry of four-point functions computed from our analytic
structure constants. For a number of choices of the parameters ¢, Ay and (r2, s2), we will
display the values of the four-point function Z (4.12) (or its real part when it is complex)
computed from the s- and t-channels for four values of the cross-ratio z, and the relative

29 =2 | |otween the two channels. Our first choice of parameters corresponds

difference ‘ 2

AOF0)
again to the four-point function Zy at ¢ = 0:
z Zy(2) Difference
0.01]%° 0.420743288653023 5 % 10-7
t : 0.420743500577090
: 0.5147031022 2
0.03] 0.51470310228356 51 % 10-9
c=0 t:0.514703104911165
Ay = A(o,%) — 015" 0.635102793381169 a4 % 10-11 (4.15)
(12, 89) = (0, %) t:0.635102793359283
:0.706457914 4
09 |5 0.70645791457587 59 % 10-13
t:0.706457914575509
045 0.761209621824938 3.8 % 10-16
t:0.761209621824937
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c¢=0.7513
A1 =0.0731

(ro,s2) = (0,3)

c=0.7513
A1 =0.0731

(ro,s2) = (2, 3)

c=4.7240.12¢
A1 =0.23140.1432¢

(7“2, 32) = (07 %)

—

_)

—

z Z(z) Difference
001l & 0.458407080230741 9 4 x 10-12
t :0.458407080231849
0.03] 5 0.453858548437590 1.8 x 10-14
t :0.453858548437598
o1l 5 0.166547888308668 3 x 10-15
t:0.166547888308669
02 |5 —0.350128460299570 1.4 % 10-15
t: —0.350128460299570
(|5 L085635947272218 | T
t: —1.085635947272219
z Z(z) Difference
001l 0.454365494340930 1.3 x 10-9
t:0.454365494931425
0.03 5" 0.488568249965185 45 % 10-12
t : 0.488568249967384
015 0.603030367288685 9.9 x 10-15
t : 0.603030367288691
0o |5 0.968890687817652 6.6 x 10-15
t : 0.968890687817658
045 1.720792857730145 19 x 10-15
t:1.720792857730149
z RZ(2) Difference
0015 0.616734633551431 13 % 10-14
t:0.616734633551427
0.03l 5" 0.712923810169360 0.9 x 10-15
t:0.712923810169357
(q | 5+ 0T81039104794377 | T
t:0.784039104794372
(g | 5 F0TT208TI383A4852 | T
t:0.772087133344848
045 0.724037027055028 3.9 x 10-15
t:0.724037027055025

~99 _

(4.16)

(4.17)

(4.18)



z RZ(2) Difference
001l 5 0.642349222078378 40 x 10-4
t :0.642607584797052

51 —0.111756545727778

0.03 5.5x 1076
c=4.72+0.12i t: —0.111755334852274 8
Ap=0231+0.1432 | — | | s:—2.187839195998956 | (4.19)
(ro, s2) = (2,3) Tt —2.187839195940312 |

0.9 | 7 —4295291665306662 || o o 14

t: —4.295291665306607

04 | T13.166871727284267 | 4
t: —13.166871727284297

We obtain larger differences for some values of the parameters, because of numerical trun-
cations in calculations of conformal blocks. Of course, differences increase as z — 0, where
the t-channel expansion diverges. Moreover, values of ¢ € (—oo, 1) suffer from the proxim-

ity of poles at the minimal model values ¢ = ¢ 4. And larger values of Ay, A lead to

r2,52)
larger errors.

Overall, we find strong evidence that crossing symmetry is satisfied. In particular,
the observed discrepancies between s-channel and ¢-channel results are controlled by the
truncation that we use for computing conformal blocks using Zamolodchikov’s recursion
formula, and we find no hint that we should add more states in our spectrum. This sup-
ports our claim that there exist consistent non-rational conformal field theories whose non-
diagonal spectrum is S2Z’Z +1s and whose structure constants satisfy the analytic bootstrap

equations of section 3.

4.3 Case of the Ashkin-Teller model

The Ashkin-Teller model provides an example of a four-point function that is known ana-
lytically, and does not conserve diagonality. The model has the central charge ¢ = 1, and
it has a four-point function of the type [6]

o N £
<VP<O,%>V<0 VonVo. > > > DioFi A(M) Ty (4.20)

re27 s€Z

with the four-point structure constants

1.2

ria—ip2_1g
D(r,s) = (*1)216 2 27 . (4.21)

Let us see whether this obeys our shift equations (3.13). We first compute the relevant
ratios p. In the case ¢ = 1, eq. (3.30) reduces to

sin(2wo P) N 9
_ —(—1)2s 4.22
p( ) sin(27rP) p(vv(r,s)) ( ) ( )
Then let us evaluate eq. (3.25) with 8 =1 and P, = Py = Py = P3 = 1. 7- Using the Gamma

function’s duplication formula, and more specifically its consequence

H r ( TR 1+ > = 2271 (22)T (22 + 1), (4.23)
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we find

sin(2moq Py )

_ (1 232274(P1+U1P1)
p(Vi| V2, V5) = (—1) sin(27Py)

(4.24)
We are interested in two cases of this ratio, where the fields V3, V3 are either diagonal (thus
sp = 0) or non-diagonal (with sy = ). In these two cases, we find

VN

N _ 281 p—T N
Vi (0’%)) - _(_1) 167", p(‘/('r,s)

(0,3)’

%),V}%%)) = (~1)%167". (4.25)

N D
P (V(T’s) VP(o,

For non-diagonal fields with s € Z, the shift equation therefore reduces to

D(r+1,s)

=167, (4.26)
D(r—l,s)

and this is indeed obeyed by the four-point structure constant (4.21). By a similar analysis,

D(r,s+1

D 1; = 16725, where we no longer have a minus
T,8—

has an integer first index.

we would find the second shift equation

sign because the non-diagonal field V(JS[ 1

The four-point function (4.20) is a sum over the spectrum Spz 7. In this case, our
shift equations relate all the four-point structure constants to Do) and Dg ), but do
not relate these two numbers to one another. Nevertheless, their compatibility with the
known structure constants is a non-trivial test of our ideas and calculations. And this case
illustrates the difference between diagonal and non-diagonal fields with identical conformal

. . D N
dimensions, namely VP(U,%) and V(07 1y

5 Conclusion

Our results suggest that for any central charge ¢ such that Rc¢ < 13, there exists a non-
rational conformal field theory, whose spectrum has the non-diagonal sector SQZ,Z +1- The
three-point structure constants in that theory are given by our analytic formulas. For ¢ < 1,
that theory is a limit of D-series minimal models. Some particular four-point functions in
that theory describe connectivities of clusters in the critical Potts model, at least as very
good approximations [9].

The three-point structure constants that we have determined should be valid not only
in that theory, but actually in any CFT that obeys our assumptions, starting with the
existence of two independent degenerate fields. A second theory of the same type can be
obtained by 5 — %, and its non-diagonal sector is Sy 197 But not all interesting CFT's
obey our assumptions. For example, the sigma models of [10] have non-diagonal fields
whose indices r take fractional values, rather than our half-integer values. This makes it
implausible that the degenerate field Vi 1y exists, as fusion with this field would shift r by
integers. One might still be tempted to use the formula (1.1) for the structure constants,
but this would leave us with an undetermined sign and would most probably be wrong.
In such a case, a more promising approach would be to renounce analytic formulas, and
determine structure constants using the numerical bootstrap method of [9].
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A Universality of the geometric mean relation

Here we show that under rather general conditions, there must be a geometric mean relation
of the type of (1.1) between structure constants of diagonal and non-diagonal conformal
field theories. For some more detail, see [11].

A.1 Mathematical statement

Let DT and D~ be two meromorphic differential operators of order n on the Riemann
sphere. Let a non-diagonal solution of (DT, D™) be a single-valued function f such that
DTf = D~ f = 0, where D™ is obtained from D~ by z — %,0. — 0. Let a diagonal
solution of DT be a single-valued function f such that D*f = DT f =0.

We assume that DT and D~ have singularities at two points 0 and 1. Let (Ff) and

(G5) be bases of solutions of Df = 0 that diagonalize the monodromies around 0 and 1
respectively. In the case of (F;") this means

DYFF =0, F'(e¥2)=NF(2). (A1)
We further assume that our bases are such that

Ve,e € {+,-}, {

F§(2)F; (%) has no monodromy around z =0 <= i=j,

A2
G (2)G5(2) has no monodromy around z =1 <= i=j. (2-2)

For € # € this is a rather strong assumption, which implies that the operators D™ and D~
are closely related to one another. This assumption implies that a non-diagonal solution
f° has expressions of the form

Z SFH(z Z dG(2)G; (2), (A.3)

) and (dY). Similarly, a diagonal solution f€ of D¢ has

for some structure constants (cZ

expressions of the form
Z TS (2)Fi (2 Z diG; (2)G; (2 (A4)

We now claim that

if DT and D~ have diagonal solutions, and if moreover (D*, D™) has a non-
diagonal solution, then the non-diagonal structure constants are geometric
means of the diagonal structure constants,

(c?)2 x cfci_ , (A.5)

where o means equality up to an i-independent prefactor.
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The proof of this statement is simple bordering on the trivial. We introduce the size n
matrices M€ such that

n
=Y 565 (A6)
j=1
Inserting this change of bases in eq. (A.4), we must have

jAk = ZcMG Mf,=0. (A.7)
=1

( D

For a given ¢, this is a system of = linear equations for n unknowns c§. One way to

write the solution is

o (—1) (}et (Mg M5 H M 4 det M ;) (A.8)
jjff el J?ﬂ
Similarly, inserting the change of bases in the expression (A.3) of a non-diagonal solution,
we find
j#tk = ZCOM+ M, =0. (A.9)
=1

We will write two expressions for the solution of this linear equations,

0
e ox (1) det (M, 0,) = H | det (a7;) - (A.10)
#1 el #1
x (—1)192 (MlezTJ) = (-1) H le’l qi’g ( J) . (A.11)
#1 e #1

Writing (¢?)? as the product of the above two expressions, we obtain eq. (A.5).

The difficult problem is actually to study the conditions on the matrices M€ for di-
agonal and non-diagonal solutions to exist. It appears that the existence of non-diagonal
solutions is in general equivalent to

Vi, g, Mg (MF)7h) = Mg (M7)7),, (A12)

but this equation is not easy to solve.

A.2 Conformal field theory applications

In our case, the differential operators Dt and D~ are respectively left- and right-moving
BPZ equations of the order n = 2. The solutions F{ and G are respectively s- and t-
channel conformal blocks, and the matrices M and M~ are respectively the left- and

right-moving fusing matrices. The structure constants c? and d? are respectively s- and
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t-channel four-point structure constants for a four-point function of one degenerate field,
and three fields that may be non-diagonal.

Then our mathematical statement is the geometric mean relation (3.62) for such degen-
erate four-point structure constants. But we have seen in section 3.1 how these degenerate
structure constants determine more general three- and four-point structure constants via
shift equations. This is why the geometric mean relation holds in four-point functions that
do not involve degenerate fields, although such four-point functions violate our assump-
tions: they are combinations of infinitely many conformal blocks, do not obey differential
equations, and violate the assumption (A.2) because for example both ]-"X()T’S) (z)]:'g) )(2)

(r,s
and fg()m) (2) (AS()T L

Our derivation of the geometric mean relation implies that it holds for four-point

(z) are single-valued if rs € Z.

functions that obey BPZ equations of any order. It can also hold in CFTs with W-algebras,
provided our assumptions are obeyed. The assumption (A.2) may be difficult to satisfy
for rational central charges, because conformal dimensions of two fields can easily differ by
integers. It looks easier to satisfy when the central charge is generic.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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