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1 Introduction

The systems with both coordinates and momenta lying on two independent tori called dou-

ble elliptic systems (Dell) were introduced in [1] for a description of the 6d Seiberg-Witten

theories containing the adjoint matter hypermultiplet. A celebrated property of these sys-

tems is self-duality [1–13], which, in nowadays terms, is often referred to as the spectral

(self)-duality [14–19]. Relation of these systems to topological strings and extension to the

6d Nekrasov functions was later discussed in [20, 21]. Moreover, in [22], using solutions

to the elliptic Knizhnik-Zamolodchikov equations, we discussed the modular properties of

these 6d gauge theories described by Dell systems and derived in [23, 24].

One of the problems with the Dell systems is that they are unambiguously defined only

in the SU(2) case (two particles), while the SU(n) (n-particle) generalization admits two

formulations described respectively in [9, 10] and [25] whose interrelation remains unclear so

far. Calculations proved to be very tedious: finding explicit formulas is a non-trivial quest

even in the classical case [26, 27], the Nekrasov (Ω-background) case is even more involved

(in Seiberg-Witten theory, these formulas are supposed to describe the intermediate case

of the Nekrasov-Shatashvili limit [28–31] on the way to the full-fledged Dell deformation of
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Nekrasov functions [20, 21]). A new suggestion for the Dell Hamiltonians was done recently

in [32]; it looks close to the older variant in [25].

In this paper, we study the eigenvalue problem for these Hamiltonians [32] and con-

centrate on a general approach. Similarly to the trigonometric limit, where the Macdonald

functions solve the problem, it could be drastically simplified if one considers [33] not

Macdonald-like functions per se, but their much simpler continuations from the Young dia-

grams (or partitions) λi to arbitrary values of spectral parameters yi [34]. Such a function

M{~x|~y} with the property

M
{
yi = qλitn−i

∣∣∣xi} = Macλ[xi], i = 1, . . . , n (1.1)

was nicknamed mother function in [35, 36] (see also earlier papers [37, 38]), where an

elliptic (rather than generic Dell) version was studied and related to the theory of elliptic

quantum toroidal algebras [39–45]. The main tool in [35, 36] were Kostka matrices Kλµ,

which describe a triangular transform from generalized Macdonald polynomials to products

of the Schur polynomials thus having two Young diagram indices and a slightly different

mother function depending on a doubled set of y-variables, K{~y, ~y ′} [35, 36]. Its Dell

version, as well as the Kerov deformations [46–49] still remain to be built. It would be

interesting to see whether the two functions, the triangular K and the symmetric M are

related in the Dell case.

The mother function M is symmetric in {~x}, but it is not a polynomial being rather

a formal series in arbitrary negative powers of x. A nice explicit example of such a series

is provided by an elegant generalization of the Macdonald polynomials introduced recently

by J. Shiraishi [50]. The Shiraishi series are explicitly self-dual, namely, symmetric under

permutation of ~x and ~y variables, they have a proper elliptic limit, being therefore natural

candidates for eigenfunctions of the Dell system. Moreover, the Shiraishi series for the

partition [1] and n = 2 is an eigenfunction of the Dell Hamiltonian (which we verified for

few first terms of expansion). Some problems remain with an explicit realization of the

Shiraishi functions as Dell eigenfunctions, and with probing its various limits. However, a

complete solution of these problems will complete the program of explicit construction of

the Dell systems, at least in the Nekrasov-Shatashvili limit.

In fact, the very idea of the mother function is quite old, and goes back to the notion of

quantum momentum-coordinate (PQ-) duality, which implicitly appeared in the S. Ruijse-

naars paper [2] and was later discussed in [7, 8, 11–13, 51]. While the classical PQ-duality

is realized just in terms of Hamiltonians and their canonical transformations [11–13] and

is sometimes realized as a gauge transformation within the Hamiltonian reduction [7, 8],

or, equivalently, in terms of dynamics of zeroes [9, 10, 52] of the τ -functions of integrable

KP/Toda hierarchies [53–57], the quantum duality requires the eigenvalue problem, i.e.

Hamiltonians must be accompanied by eigenfunctions from the very beginning. That is, if

the eigenvalue problem for a Hamiltonian Ĥx, which is an operator acting on the variable

x, reads

Ĥx ·Ψλ(x) = E(λ)Ψλ(x) (1.2)
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then the dual Hamiltonian acts on the variable λ:

ĤD
λ ·Ψλ(x) = ED(x)Ψλ(x) (1.3)

Here E and ED are some fixed functions of the respective variables x and λ. These functions

are given by the momenta dependence of classical free Hamiltonians [1, 11–13]:

E(λ) = Ĥ free
x

∣∣∣
i∂x→λ

(1.4)

In the case of many-body integrable system we have several coordinates xi, i = 1, . . . , n and

the corresponding λi are associated with the separated variables provided a system allows

such a separation. Integrability implies that in this case there are n commuting Hamilto-

nians and n dual Hamiltonians. In this context one naturally considers the eigenfunction

Ψλ(x) as a function of the two continuous variables x and λ. Such a function provides

a reference example of the mother function. In the case of the Hamiltonians from the

Calogero-Moser-Ruijsenaars-Shneider family, the most informative are the Hamiltonians

of the Dell system, which are elliptic both in coordinates and momenta, and are self-dual,

i.e. Ĥk = ĤD
k ; constructing their eigenfunctions is the main goal of this paper.

Plan of the paper. Below, we briefly repeat the basics of the Shiraishi-series theory of

mother functions and then discuss their possible role as eigenfunctions of the Koroteev-

Shakirov Hamiltonians. We consider in more detail the simplest two-particle case n = 2,

while the n-particle case in terms of the Shiraishi functions has to be understood as a

representation in terms of separated variables of the Dell eigenfunctions. Then, in two

appendices, we show the relation of the Shiraishi function to the partition function of

supersymmetric gauge theories. We expect both relations to follow from a relation of Dell

integrable system to six-dimensional supersymmetric gauge theory, and, in this sense, they

provide another, more physical evidence that the (extension of) Shiraishi function solves the

quantum Dell system. These relations also reveal a geometric interpretation of theoretical

meaning of the Shiraishi function. It is desirable to understand the Shiraishi function from

the representation theory of the Ding-Iohara-Miki (DIM, quantum toroidal) algebra.

Notation. We define the odd θ-function

θp(z) :=
1√
z

(z; p)∞(p/z; p)∞(p; p)∞ =
1√
z

∑
k∈Z

(−1)kzkpk
2/2−k/2 (1.5)

and the even θ-function

θ(e)p (z) :=
∑
k∈Z

zkpk
2

(1.6)

with the properties

θp(z) = −θp(z−1), θ(e)p (z) = θ(e)p (z−1), θ(e)p (z/w) = zθ(e)p (1/(zw)) (1.7)

Here the Pochhammer symbol is

(x; q)p :=

p−1∏
n=0

(1− qnx) =
(x; q)∞

(qnx; q)∞
(1.8)
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and

(x; q1, q2)∞ :=

∞∏
n,m=0

(1− qn1 qm2 x) (1.9)

In the standard notation of [58–60], θ
(e)
p (z) = θ3(v, τ) = θ00(v, τ) with p = eπiτ , z = e2πiv,

while changing the θ-function argument z → z
p (see section 5) makes it θ2 = θ10.

2 Mother functions

To understand the notion of mother function, one should begin from the case of

Schur polynomials. In x-variables, they are extremely simple, for the Young diagram

R = {R1 ≥ R2 ≥ . . .}

SchurR[x1, . . . , xn] =

∑
σ∈Sn(−)σ

∏n
i=1 x

Rσ(i)+n−i
i∏

i<j(xi − xj)
(2.1)

For the one-row Young diagrams, we get just

xR1+1
1 xR2

2 − x
R2
1 xR1+1

2

x1 − x2
= xR1

1 xR2
2 ·

1−
(
x2
x1

)R1+1−R2

1− x2
x1

(2.2)

An obvious analytic continuation from integer to arbitrary Ri is provided by just the same

expression, and there is an explicit symmetry log xi and Ri = log yi + i− n: after division

by an R-dependent factor (2.1) becomes

SchurR[x1, . . . , xn] ∼
∑

σ∈Sn(−)σ
∏n
i=1 e

log xi·log yi∏
i<j(xi − xj)(yi − yj)

(2.3)

However, with this continuation the powers of x-variables can be non-integer. An alter-

native continuation, which is assumed in the definition of mother function leaves all the

powers integer, but converts a finite polynomial into an infinite series. The idea is to take

1− xR+1

1− x
=

R∑
k=1

xk −→ lim
ε−→0

{ ∞∑
k=0

Γ(k −R)

Γ(−R)

Γ(−R+ ε)

Γ(k −R+ ε)
xk

}
(2.4)

The r.h.s. is a hypergeometric function 1F1, which can be bosonised by the method

of [61, 62], but we do not need these details here. What is important, at integer R, only the

first R+ 1 items in the sum are non-vanishing, while, at non-integer R, one gets an infinite

sum with R-independent unit coefficients. Note that the function becomes a symmetric

function of xi only at integer Ri and with the common factor
∏n
i=1 x

Ri+1
i inserted.

This singular-looking construction gets automatically regularized already in the case

of Macdonald polynomials, where ε is no-longer vanishing, but is rather equal to log(q/t),

thus no limits are needed, and the coefficients, while still vanishing at appropriate integer

Ri, become smooth functions of Ri. This continues to work nicely when the Macdon-

ald polynomials are further deformed to elliptic Shiraishi series and their double-elliptic

generalizations.

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
2
1
2

3 Noumi-Shiraishi representation of Macdonald polynomials

We continue with the simplest healthy example of the mother function: the case of ordinary

Macdonald polynomials. This example was described in detail in [33].

Suppose tk /∈ qZ for k = 1, . . . , n− 1. For i, j = 1, . . . , n define a power series

Pn(xi, yi|q, t) :=
∑
mij

Cn(mij , yi|q, t)
∏

1≤i<j≤n

(
xj
xi

)mij
(3.1)

where mij = 0 for i ≥ j, mij ∈ Z≥0,

Cn(mij , yi|q, t) :=

=

n∏
k=2

∏
1≤i<j≤k

(
q
∑
a>k(mia−mja)tyj/yi; q

)
mik(

q
∑
a>k(mia−mja)qyj/yi; q

)
mik

·
n∏
k=2

∏
1≤i≤j<k

(
q−mjk+

∑
a>k(mia−mja)qyj/tyi; q

)
mik(

q−mjk+
∑
a>k(mia−mja)yj/yi; q

)
mik

(3.2)

This Pn(xi, yi|q, t) solves the eigenvalue problem

D̂(u) · xλPn(xi, yi|q, t) =

n∏
i=1

(1− uyi) · xλPn(xi, yi|q, t) (3.3)

where λ is a set of complex parameters defined through qλi := yit
i−n and

D̂(u) :=
∑
r

(−u)rĤr (3.4)

is the generating function of the Ruijsenaars Hamiltonians Ĥr,

Ĥr := tn(n−1)/2
∑
|I|=r

∏
i∈I;j /∈I

txi − xj
xi − xj

∏
i∈I

T̂q,xi (3.5)

where T̂q,xif(x1, . . . , xi, . . . , xn) := f(x1, . . . , qxi, . . . , xn).

With the choice yi = qRitn−i, the infinite series (3.1) becomes a Laurent, polynomial

proportional to the Macdonald polynomial for the partition R with lR = n,

MacR(xi; q, t) = xR · Pn(xi, q
Ritn−i|q, t) (3.6)

Limit to the Schur polynomials. As already mentioned, the limit of this represen-

tation of the Macdonald polynomials to the Schur polynomials is not naive, since naively

the mother function at t = q does not depend on yi at all. The role of the numerator of

the first factor in (3.2) is that, when specializing to the Macdonald point yi = qRitn−i, it

selects out the domain of values of variables mij : the factor

n∏
k=2

∏
1≤i<j≤k

(
q
∑
a>k(mia−mja)tyj/yi; q

)
mik

(3.7)
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is non-vanishing iff non-vanishing is the factor with j = i+ 1, i.e. 0 ≤ mik ≤ Ri − Ri+1 −∑
a>k(mia − mi+1,a) for all 1 ≤ i < k, 1 < k ≤ n. However, if one immediately puts

t = q in (3.2), this numerator does not work this way any longer. Hence, in contrast to

the Macdonald case, when one can ascribe arbitrary complex values to the variables yi,

one can not consider the Schur polynomial outside the values associated with a concrete

Young diagram. In this case, one has to restrict the admissible values of mij by hands,

and only after this put t = q, what leads to Cn(mij , yi|q, t) = 1. Thus, one obtains in the

Schur limit, instead of (3.6), the expression

SchurR(xi) := xR ·
∑

mij∈AR

∏
1≤i<j≤n

(
xj
xi

)mij
(3.8)

where AR is a set of mik : 0 ≤ mik ≤ Ri − Ri+1 −
∑

a>k(mia −mi+1,a) for all 1 ≤ i < k,

1 < k ≤ n.

Parameterizing mij by Young diagrams. The formulas for AR in the previous para-

graph suggest to introduce, instead of mij ,

µ
(k)
i := Ri −

∑
a>k

mik, i = 1, . . . , k (3.9)

Then, the conditions defining AR are nothing that a requirement for µ(j) to be a set of

Young diagrams (with j lines, j = 1, . . . , n). In fact, formula (3.9) follows from the equation

mij = µ
(j)
i − µ

(j−1)
i (3.10)

and the initial conditions µ
(n)
i = Ri, which one additionally imposes when associating

P (xi, yi|q, t) with the Macdonald polynomial. Generally, it is sufficient to define µ
(j)
i

with (3.10).

In particular, with this definition (3.10), the x-dependent factor in (3.1) can be rewrit-

ten in the form ∏
1≤i<j≤n

(
xj
xi

)mij
=

∏
1≤i<n

(
xi+1

xi

)∑i
a=1(µ

(n)
a −µ

(i)
a )

(3.11)

Choosing the initial conditions µ
(n)
i = 0, one arrives at

∏
1≤i<j≤n

(
xj
xi

)mij
=

∏
1≤i<n

(
xi+1

xi

)−∑i
a=1 µ

(i)
a

=
∏

1≤i<n

i∏
a=1

(
xi+1

xi

)−µ(i)a
(3.12)

Note that one can define Λ
(j)
i := −µ(i)j so that mij = Λ

(i)
j−1 − Λ

(i)
j , and the condition of

non-negativity of mij would just mean that Λ(i) is a Young diagram. However, there is still

an additional condition for Λ
(j)
i that j ≤ i (see (3.9)). In order to remove it for having an

unconstrained set of the Young diagrams, we define, for future convenience, λ
(i)
j := Λ

(i)
i+j−1

so that the additional condition becomes just j ≥ 1. With this definition, the previous

factor can be rewritten as ∏
1≤i<j≤n

(
xj
xi

)mij
=

n−1∏
b=1

n−b∏
a=1

(
xa+b
xa+b−1

)λ(b)a
(3.13)
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Note that the initial conditions µ
(n)
i = 0 reads that the number of lines of the Young

diagram lλ(i) ≤ n− i. Note also that AR in these variables is:

AR : λ
(i)
j ≤ Ri −Ri+1 + λ

(i+1)
j , 1 ≤ j ≤ n− i (3.14)

Examples

n = 2. The coefficient (3.2) is

C2(m12, y1, y2|q, t) =
(ty2/y1; q)m12

(qy2/y1; q)m12

(t; q)m12

(q; q)m12

(q
t

)m12

(3.15)

The Macdonald polynomial associated with the 2-line Young diagrams is

Mac
[R1,R2]

(x1, x2; q, t) = xR1
1 xR2

2

R1−R2∑
m=0

(qR2−R1 ; q)m
(qR2−R1+1/t; q)m

(t; q)m
(q; q)m

(
qx2
tx1

)m
(3.16)

and the corresponding Schur polynomial is

Schur
[R1,R2]

(x1, x2) = xR1
1 xR2

2

R1−R2∑
m=0

(
x2
x1

)m
(3.17)

n = 3. The coefficient (3.2) is (notice a misprint in [33])

C3(m12,m13,m23, y1, y2, y3|q, t)

=
(qm13−m23ty2/y1; q)m12

(qm13−m23qy2/y1; q)m12

(ty2/y1; q)m13

(qy2/y1; q)m13

(ty3/y1; q)m13

(qy3/y1; q)m13

(ty3/y2; q)m23

(qy3/y2; q)m23

×

× (q−m23qy2/ty1; q)m13

(q−m23y2/y1; q)m13

(t; q)m12

(q; q)m12

(t; q)m13

(q; q)m13

(t; q)m23

(q; q)m23

(q
t

)m12+m13+m23

(3.18)

The Macdonald polynomial associated with the 3-line Young diagrams is

Mac
[R1,R2,R3]

(xi; q, t)

= xR1
1 xR2

2 xR3
3

R1−R2∑
m13=0

R2−R3∑
m23=0

R1−R2+m23−m13∑
m12=0

C3(m12,m13,m23, t
2qR1 , tqR2 , qR3 |q, t)×

×
(
x2
x1

)m12
(
x3
x1

)m13
(
x3
x2

)m23

(3.19)

and the corresponding Schur polynomial is

Schur
[R1,R2,R3]

(xi) = xR1
1 xR2

2 xR3
3

R1−R2∑
m13=0

R2−R3∑
m23=0

R1−R2+m23−m13∑
m12=0

(
x2
x1

)m12
(
x3
x1

)m13
(
x3
x2

)m23

(3.20)

This same expression in the λ(i)-variables is

Schur
[R1,R2,R3]

(xi) = xR1
1 xR2

2 xR3
3

R2−R3∑
λ
(2)
1 =0

R1−R2∑
λ
(1)
2 =0

R1−R2+λ
(2)
1∑

λ
(1)
1 =λ

(1)
2

(
x2
x1

)λ(1)1
(
x3
x2

)λ(2)1 +λ
(1)
2

(3.21)
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4 Shiraishi functions

Now we are ready to describe the double deformation of the Noumi-Shiraishi representation

of the Macdonald polynomials, which was proposed by J. Shiraishi [50], who constructed

it as an average of the product of screened vertex operators made of the affine screening

operators.

Define

Pn(xi; p|yi; s|q, t) :=
∑
λ(i)

n∏
i,j=1

N
(j−i)
λ(i)λ(j)

(tyj/yi|q, s)

N
(j−i)
λ(i)λ(j)

(yj/yi|q, s)
·
n∏
b=1

∏
a≥1

(
pxa+b
txa+b−1

)λ(b)a
(4.1)

where {λ(i)}, i = 1, . . . , n is a set of n partitions, we assume that xi+n = xi, and

N
(k)
λµ (u|q, s) :=

∏
β≥α≥1

β−α=k mod n

(
uq−µα+λβ+1sβ−α; q

)
λβ−λβ+1

∏
β≥α≥1

β−α=−k−1 mod n

(
uqλα−µβsα−β−1; q

)
µβ−µβ+1

(4.2)

This is what has to do with an eigenfunction of the quantum Dell Hamiltonian [32].

P(xi; p|yi; s|q, t) is a symmetric function w.r.t. simultaneous permutations of the pairs

(xi, yi), however, it is not a symmetric function of xi only. In order to give rise to a

symmetric function of xi, one has to choose this time yi = qRi(ts)n−i. Then, the function

MR(xi|p, s|q, t) := xR ·Pn(pn−ixi; p|qRi(ts)n−i; s|q,
q

t
) (4.3)

is a symmetric function.

Dualities. J. Shiraishi has conjectured [50] two duality formulas generalizing the corre-

sponding duality formulas for the ordinary Macdonald polynomials: pq-duality

Pn(xi; p|yi; s|q, t)
Pn(xi; p|yi; 0|q, t)

=
Pn(yi; s|xi; p|q, t)
Pn(yi; s|xi; 0|q, t)

(4.4)

and Poincare duality
Pn(xi; p|yi; s|q, t)
Pn(xi; p|yi; 0|q, t)

=
Pn(xi; p|yi; s|q, qt )
Pn(xi; p|yi; 0|q, qt )

(4.5)

Note that

Pn(xi; p|yi; 0|q, t) =
∏

1≤i<j≤n

(pj−iqxj/xi; q, p
n)∞

(pj−itxj/xi; q, pn)∞

∏
1≤i≤j≤n

(pn−j+iqxj/xi; q, p
n)∞

(pn−j+itxj/xi; q, pn)∞
(4.6)

The limit to the elliptic Ruijsenaars system. Another important conjecture by

J. Shiraishi deals with the limit to the elliptic Ruijsenaars system. That is, let ξ(p|yi; s|q, t)
be the constant term of Pn(xi; p|yi; s|q, t) w.r.t. xi:

ξ(p|yi; s|q, t) :=
∑
λ(i)

m1=...=mn=0

n∏
i,j=1

N
(j−i)
λ(i)λ(j)

(tyj/yi|q, s)

N
(j−i)
λ(i)λ(j)

(yj/yi|q, s)
·
(p
t

)|λ|
(4.7)

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
2
1
2

where we have introduced the notation: |λ| :=
∑

b |λ(b)|, mi :=
∑
b

∑
a≥1

a+b=i mod n

(λ(b)a − λ(b+1)
a )

(i.e. |λ| = 0 mod n). Then, the elliptic counterpart of the Macdonald polynomial is the

function (the naive limit of (4.1) at s = 1 is singular)

Pn(xi; p|yi|q, t) := ξ(p|yi; s|q, t)−1 ·Pn(xi; p|yi; s|q, t)
∣∣∣
s=1

(4.8)

It is conjectured [50] to be the eigenfunction of the elliptic Ruijsenaars Hamiltonian:

D̂1 · xλPn
(
pn−ixi; p|yi|q,

q

t

)
= Λ(yi|p|q, t) · xλPn

(
pn−ixi; p|yi|q,

q

t

)
,

D̂1 := tn/2
n∑
i=1

∏
j 6=i

θpn(txi/xj)

θpn(xi/xj)
T̂q,xi (4.9)

Here again, λ is a set of complex parameters defined through qλi := yit
i−n. Note that

Λ(yi|p|q, t) is a power series in p, Λ(yi|0|q, t) =
∑n

i=0 yi.

5 Quantum Dell Hamiltonians [32]

A quantum counterpart of the Dell Hamiltonians proposed in [32] is

Ĥa(w, u|q, t) := Ô−10 (w, u|q, t) · Ôa(w, u|q, t), a = 1 . . . n− 1 (5.1)

where Ôa is read from

Ô(z|w, u|q, t) =
∑
k∈Z

Ôk(w, u|q, t)zk :=
∑

k1,...,kn∈Z
z
∑
i kiw

∑
i ki(ki−1)/2

∏
i<j

θu2
(
tki−kjxi/xj

) n∏
i=1

T̂ kiq,xi

(5.2)

The Hamiltonians Ĥa are conjectured to commute with each other (it was checked in [32]

for the first terms with the computer checks). The Hamiltonians depend on two parameters

w and u that are associated with the double elliptic deformation. There is also a trivial

Hamiltonian at a = n:

Ĥn(w, p|q, t) =

n∏
i=1

T̂ kiq,xi (5.3)

Shiraishi functions are trivially its eigenfunctions, since they are graded symmetric

functions.

We conjecture that (an extension of) the Shiraishi master function (4.1)–(4.2) solves

the eigenvalue problem of the Dell Hamiltonians (5.1)–(5.2):

Ĥa(w, u|q, t) · xλPn

(
pn−ixi; p

∣∣∣ yi; s ∣∣∣ q, q
t

)
= Λa(yi|p, s|q, t) · xλPn

(
pn−ixi; p

∣∣∣ yi; s ∣∣∣ q, q
t

)
(5.4)

with some identification of parameters (w, u) → (s, p). In particular, the limit s → 1

corresponds to w → 0. Note that Ĥa(w, u|1, 1) become functions at the q = t = 1 point,

and these eigenvalues are dictated by the general rules of [11–13]. In fact, in the next

section, we consider the case of n = 2 and demonstrate that the Shiraishi function provides

an eigenfunction of the Dell Hamiltonian in the case of simplest partition [1], while higher

partitions may require an extension.
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Now we briefly consider various limits of this formula.

w → 0 limit. In this limit, the Hamiltonians (5.1) reduce to the elliptic Ruijsenaars

Hamiltonians, in particular, the first one is D̂1 in (4.9), and, in accordance with (4.9), the

Shiraishi function is an eigenfunction of this Hamiltonian provided the w → 0 is associated

with s→ 1. A typical exact formula is (6.17).

u → 0 limit. This limit is dual to the w → 0 limit. Hence, one has to expect that it

should correspond to the Shiraishi functions in the p → 1 limit. On the other hand, the

Dell Hamiltonians are reduced in this case to the Hamiltonians of the system dual to the

elliptic Ruijsenaars one. Its eigenvalues can be explicitly constructed as we discuss in the

next section in the two-particle case, the extension to arbitrary number of particles being

immediate. As for the p→ 1 limit of the Shiraishi function, there are some problems with it.

p → 1 limit. Indeed, the Shiraishi function is defined as a formal power series in p.

One may think that it is possible to use the duality (4.4) in order to deal with this limit.

However, as follows from (4.4), the limit of P2(p
n−ixi; p|y1, y2; s|q, qt ) at p→ 1 is given by

Pn(pn−ixi; p|yi; s|q,
q

t
)
∣∣∣
p→1

=

(
Pn(pn−ixi; p|yi; 0|q, qt )
Pn(yi; s|pn−ixi; 0|q, qt )

·Pn(yi; s|pn−ixi; p|q,
q

t
)

)∣∣∣∣∣
p→1

(5.5)

Here the x-dependent factor Pn(pn−ixi; p|yi; 0|q, qt ) is given by (4.6) (note that, in accor-

dance with (4.6), Pn(yi; s|pn−ixi; 0|q, qt ) does not depend on xi and can be removed by

changing the normalization) and requires a regularization in the p→ 1 limit:

Pn(pn−ixi; p|yi; 0|q, q
t
) =

∏
1≤i<j≤n

(qxj/xi; q, p
n)∞

(qxj/txi; q, pn)∞

∏
1≤i≤j≤n

(pn−2j+2iqxj/xi; q, p
n)∞

(pn−2j+2iqxj/txi; q, pn)∞

(5.6)

is divergent at p→ 1. Hence, dealing with the Shiraishi function in the limit p→ 1 is not

immediate.

p → 0 limit. The limit p → 0 in the Shiraishi functions is the limit to the ordinary

Macdonald functions. We discuss it in detail in appendix A. Note that, in this limit, the

θ-functions in (5.1)–(5.2) become just

θp(x)
∣∣∣
p→0

=
1− x√
x

(5.7)

The Dell Hamiltonians (5.2) have to reduce in this case to the ordinary Macdonald Hamil-

tonians, i.e. p→ 0 limit corresponds to both w → 0 and u→ 0.

In the next section, we discuss our conjecture very explicitly in the case of n = 2.
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6 Two particle n = 2 case

6.1 Shiraishi functions

Consider the simplest case of n = 2. In this case,

P2(x1, x2; p|y1, y2; s|q, t)

=
∑

λ(1),λ(2)

N
(0)

λ(1)λ(1)
(t|q, s)

N
(0)

λ(1)λ(1)
(1|q, s)

·
N

(0)

λ(2)λ(2)
(t|q, s)

N
(0)

λ(2)λ(2)
(1|q, s)

N
(1)

λ(1)λ(2)
(ty2/y1|q, s)

N
(1)

λ(1)λ(2)
(y2/y1|q, s)

N
(1)

λ(2)λ(1)
(ty1/y2|q, s)

N
(1)

λ(2)λ(1)
(y1/y2|q, s)

×

×
(p
t

)|λ(1)|+|λ(2)|(x2
x1

)∑
i≥1(λ

(1)
2i−1−λ

(1)
2i +λ

(2)
2i −λ

(2)
2i−1)

(6.1)

Here

N
(0)
λλ (u|q, s) :=

∏
j≥i≥1

j−i=even

(
uq−λi+λj+1sj−i; q

)
λj−λj+1

∏
j≥i≥1
j−i=odd

(
uqλi−λjsi−j−1; q

)
λj−λj+1

N
(1)
λµ (u|q, s) :=

∏
j≥i≥1
j−i=odd

(
uq−µi+λj+1sj−i; q

)
λj−λj+1

∏
j≥i≥1

j−i=even

(
uqλi−µjsi−j−1; q

)
µj−µj+1

(6.2)

Note that potentially there could be factors that vanish at some values of λ(1,2): N
(0)
λλ (1|q, s).

However, the both factors that could restrict the admissible values of λ(1,2), i.e. when the

degree of s is zero, have the form (q−n; q)n, which is non-vanishing. The sum (6.1) giving

the Dell polynomial is a power series in p, which one can manifestly construct term by

term. For instance, the constant term is just 1, and the linear term gets contributions

when only one of λ
(1)
1 and λ

(2)
1 is non-vanishing and equal to 1. The first terms in p in this

expression are

P2(x1,x2;p |y1,y2;s |q, t) = 1+p· 1−qt
−1

1−q

(
qsy1−ty2
qsy1−y2

x1
x2

+
qsy2−ty1
qsy2−y1

x2
x1

)
+

+ p2 ·
(

1−q2t−1

1−q2
1−qt−1

1−q
q2sy1−ty2
q2sy1−y2

qsy1−ty2
qsy1−y2

x21
x22

+
1−q2t−1

1−q2
1−qt−1

1−q
q2sy2−ty1
q2sy2−y1

qsy2−ty1
qsy2−y1

x22
x21

+const

)
+O(p3)

Now, in accordance with (4.3), in order to make a reduction to the symmetric function

corresponding to the Young diagram one has, first of all, to make the substitution x1 → px1,

t→ q
t :

P2

(
p · x1, x2; p

∣∣∣ y1, y2; s ∣∣∣ q, q
t

)
= 1 +

q

t

1− t
1− q

sty2 − y1
qsy2 − y1

x2
x1

+
q2

t2
1− qt
1− q2

1− t
1− q

qsty2 − y1
q2sy2 − y1

sty2 − y1
qsy2 − y1

x22
x21

+ . . .+O(p2) =

= 1 +
∑
k=0

xk+1
2

xk+1
1

k∏
i=0

qi+1

ti+1

1− qit
1− qi+1

qisty2 − y1
qi+1sy2 − y1

+ p · 0 +O(p2) (6.3)
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Now one can restrict this function to particular Young diagram R. For instance, for

R = [1] = [1, 0] we put y1 = qts, y2 = 1 and the series in (6.3) is truncated so that only

the first two terms survive, and one obtains

M
(0)
[1] (x1, x2|p, s|q, t) = x1 ·P2

(
p · x1, x2; p

∣∣∣ qts, 1, s ∣∣∣ q, q
t

)
= x1 + x2 +O(p2) (6.4)

Similarly, in the case of R = [2] = [2, 0], one puts y1 = q2ts, y2 = 1, the series (6.3) is

truncated with only the three first terms remaining, and one obtains

M
(0)
[2] (x1,x2|p,s|q, t) =x21 ·P2

(
p·x1,x2;p

∣∣∣q2ts,1;s
∣∣∣q, q

t

)
=x21+x22+

(1−t)(1+q)

1−qt
x1x2+O(p2)

(6.5)

In the case of R = [1, 1], one puts y1 = qts, y2 = q, only the first term in (6.3) remains,

and one obtains

M
(0)
[1,1](x1, x2|p, s|q, t) = x1x2 ·P2

(
(p · x1, x2; p

∣∣∣ qts, q; s ∣∣∣ q, q
t

)
= x1x2 +O(p2) (6.6)

and so on.

R = [1, 0]. Let us consider the simplest Young diagram R = [1] = � in more detail. We

collect more terms, the answer looks like

M
(0)
� (x1,x2|p,s|q, t) =x1 ·P2

(
p·x1,x2;p

∣∣∣qts,1;s
∣∣∣q, q

t

)
=

= (x1+x2)

[
1+p2

1−t
1−q2s2t

·
(
q

t

1−qs2t2

1−q
(x1+x2)

2

x1x2
+
s2

t

q−t
1−s2

(2qt+q+t+2)

)]
+O(p4)

(6.7)

Note that one can also expand around the point s = 1. The function P2

(
p · x1, x2;

p,
∣∣∣ qts, 1, s ∣∣∣ q, qt) is singular at this point, and we explained in section 4 how to choose the

proper normalization factor in order to have a smooth limit: one has just to extract the

constant term in the brackets in (6.7). Then, after rescaling, the answer has the form

M�(x1,x2|p,s|q, t) =x1 ·ξ
(
p
∣∣∣qts,1;s

∣∣∣q, q
t

)−1
·P
(
p·x1,x2;p

∣∣∣qts,1;s
∣∣∣q, q

t

)
=

= (x1+x2)

[
1+p2

1−t
1−q

q

t

1−qs2t2

1−q2s2t
(x21−x1x2+x22)

x1x2

]
+O(p4) (6.8)

which, indeed, has a smooth limit at s = 1. Note that it can be written in the form

M�(x1,x2|p,s|q, t)

= p0+η001

(
p2
q

t

)
·
[
η142η122+p2

(
η142η122η222η

−1
121η

−1
221−

1−q/t
1−q2

1−q2s2t2

1−q2s2t
q−s2t2

1−qs2t

)]
·p1+

+η001

(
p2
q

t

)2
η101η122η222 ·p2+O(p6) (6.9)

where the time variables are defined as pk :=
∑
i x

2k+1
i∏
i x
k
i

and ηijk := 1−qisjtk
1−qi+1sjtk−1 .
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6.2 Shiraishi function for the one-box Young diagram as an eigenfunction

Consider the Dell Hamiltonian in the two-particle, n = 2 case. In this case,

Ô0 =
∑
k∈Z

wk
2
θu2
(
t2k

x1
x2

)
T̂ kq,x1 T̂

−k
q,x2 , Ô1 =

∑
k∈Z

wk
2−kθu2

(
t2k−1

x1
x2

)
T̂ kq,x1 T̂

−k+1
q,x2 (6.10)

and one has to check that MR(x1, x2|p, s|q, t) solves the equation

Ô1(u,w|q, t)MR(x1, x2|p, w|q, t)− ΛR(p, w|q, t) · Ô0(u,w|q, t)MR(x1, x2|p, w|q, t) = 0

(6.11)

with some eigenvalue ΛR(p, w|q, t). For the one-box Young diagram, it looks so that one

can put u = p so that the p → 0 limit is equivalent to the p → 1 limit (which could be

the case if there exists a kind of modular invariance relating p− 0 and p = 1 points). We

checked this with the computer, here we list just a few first terms of the (w, p)-expansion:

Λ�(p,w|q, t) =−qt+1

t1/2
+w · (qt+1)(q2t2+1)

t3/2q
−w2 (qt+1)(q4t4+q3t3+q2t2+qt+1)

q2t5/2
+

+w3 (qt+1)(q2t2+1)(q4t4+q3t3+q2t2+qt+1)

q3t7/2
+O(w4)−p2 ·

(
(t−1)(qt+1)(q−t)2

t3/2(qt2−1)
−

−w · (t−1)(qt+1)(q−t)2(t4q4−t3q4+q3t3+q2t3+2q3t+2q2t2+2t3q+q2t+qt−t+1)

t7/2q2(q2t−1)
+O(w2)

)
(6.12)

The parameters s and w are related in non-trivial way:

s− 1 = 2(qt2 − 1)(q2t2 − 1)(q2t− 1)
∑
k=1

( w

4q3t3

)k
· φk(q, t) (6.13)

with

φ1(q, t) = qt+ 1

φ2(q, t) = 3q7t7 + 6q6t6 + q6t5 + q5t6 − 2q5t4 − 2q4t5 − 3q4t4 + 4q4t3 + 4q3t4

− q3t3 + 2q3t2 + 2q2t3 + 3q2t+ 3qt2 + 2qt+ 1

φ3(q, t) = 2(qt+ 1)2(5q12t12 + . . .)

. . .

Note that the transformation gets a little bit simpler for the combination s2 − 1:

s2 − 1 =
(qt2 − 1)(q2t2 − 1)(q2t− 1)

qt

∑
k=1

( w

q2t2

)k
· Φk(q, t)

Then

Φ1(q, t) = qt+ 1

Φ2(q, t) = q6t6 + 2q5t5 − q4t3 − q3t4 − q3t3 + q3t2 + q2t3 + q2t+ qt2 + q + t

Φ3(q, t) = (qt+ 1)(q10t10 + . . .)

. . .
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It looks like this relation between s and w does not depend on p and, hopefully, on the

Young diagram: hence, it is sufficient to calculate it in the first non-vanishing order in p

for the simplest one-box Young diagram. Thus, one can just substitute into (6.11) the first

terms of expansion

θp2(z) =
1− z − p2z−1 + z2p2√

z
+O(p4) (6.14)

and use only the terms written down in (6.8). In this way, one obtains a series of relations

that are satisfied with using the properties (1.6) of the θ-function and

Λ�(p, w|q, t) =
1√
t

θ
(e)
w (qt/w)

θ
(e)
w (qt)

+O(p2) (6.15)

from the p0-terms and then

Λ�(p,w|q, t) =
1√
t

θ
(e)
w (qt/w)

θ
(e)
w (qt)

+p2 · 1
√
t(q−1)

(
θ
(e)
w (qt)

)2 ·
[

Ξ
(−1)
q,t +

Ξ
(1)
q,t

Ξ
(1)
t,q

Ξ
(−1)
t,q

]
+O(p4) (6.16)

s2 =
1

qt

Ξ
(1)
q,t−Ξ

(1)
t,q

qΞ
(1)
q,t−tΞ

(1)
t,q

(6.17)

Ξ
(a)
q,t (w) := (q−1)

(
tθ(e)w (qt/w)θ(e)w (t3qa)−q(1−a)/2θ(e)w (qt)θ(e)w (t3qa/w)

)
(6.18)

from the p2-terms.

Thus, the relations that guarantee that (6.11) is correct for the one-box Young diagram

and in the first two non-vanishing orders in p fix not only the first terms of p-expansion of

the eigenvalues (6.16) but also the exact relation (6.17) between w and s.

6.3 Dual to the elliptic Ruijsenaars system, u → 0

Formula (6.15) can be easily generalized to an arbitrary partition:

Λ[r1,r2](p, w|q, t)
∣∣∣
p=0

=
qr2√
t

θ
(e)
w (qr1−r2t/w)

θ
(e)
w (qr1−r2t)

=
y2√
t

θ
(e)
w (y1/(wy2))

θ
(e)
w (y1/y2)

(6.19)

where y1 = qr1t, y2 = qr2 . This formula is consistent with (1.4), since, in accordance

with the general rule (1.4), one has just to substitute in (5.2) Tq,xi for yi and remove the

x-dependent factor.

Note that, say, in the case of the first non-trivial partition R = [2], the eigenvalue is

given by this formula, but the eigenfunction should be slightly corrected, i.e. the p → 0

limit does not work in this case, and one has probably to consider p→ 1:

Ψ[n](x1,x2|p,s|q, t)

=M[n](x1,x2|q, t)−wx1x2 ·
q

t2
(y1−ty2)(y1−qty2)

y1−qy2
(t−1)(q−t)

q−1

y1+y2
y1

M[n−2](x1,x2|q,qt)+

+O(w2)+O(p2) (6.20)
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These expressions should be compared with

Ψ[1](x1, x2|p, s|q, t) = M[1](x1, x2|q, t) +O(p2) (6.21)

since there is no x1x2 term by grading. This explains why, for the simplest one-box Young

diagram, the Shiraishi function is an eigenfunction even at p = 0: in all these cases, the

answer is just the ordinary fundamental Macdonald polynomial.

The general eigenfunction can be realized as a finite sum

Ψ[n](x1, x2|0, s|q, t) =
∑
k=0

βk(y1, y2|w|q, t)M[n−2k](x1, x2|q, qkt)(x1x2)k (6.22)

with the coefficients βk(y1, y2|w|q, t) ∼ wk +O(wk+1). For y1 = qrt, y2 = 1 they look like

βk(y1, y2|w|q, t) =

k∑
i=0

α
(k)
i ·

(q
t

)k−i
·
k−i∏
j=1

Θ
(
w|y1y2 ,

1
(qj−1t)2

)
Θ
(
w|y1y2 ,

1
q2j

)
α
(k)
i :=

(
− 1

qt

)i
· q

2iy1 − tq2ky2
qiy1 − tq2ky2

·
i∏

j=1

qk · y1 − tq
2k−jy2

qj−1y1 − qky2
· tq

k−j − 1

qj − 1
(6.23)

where we have introduced the θ-function of genus 2:

Θ(w|z1, z2) :=
w1/4

z1
√
z2

(
θ(e)w (z1)θ

(e)
w

(z2
w

)
−
√
z2
z1
· θ(e)w (z2)θ

(e)
w

(z1
w

))
(6.24)

In the notation of [1], the genus 2 θ-function defined in formula (53) of [1] is associated

with this one upon the identification

s = 0, w = e2πir, z1 = e2πi(ξ1+ξ2), z2 = e2πi(ξ1−ξ2)

Now, using formula (6.3), one can lift these formulas up to the mother function:

Ψ(x1, x2|y1, y2, w|q, t) =
∑
k,n=0

βk(y1, y2|w|q, t)
xn+1+k
2

xn−k+1
1

n∏
i=0

qi+1

(qkt)i+1

1− qk+it
1− qi+1

q3k+isty2 − y1
q2k+i+1sy2 − y1

(6.25)

such that

Ô−10 Ô1

∣∣∣
p=0
·xλΨ(x1,x2|y1,y2,w|q, t) =

y2√
t

θ
(e)
w (y1/(wy2))

θ
(e)
w (y1/y2)

·xλΨ(x1,x2|y1,y2,w|q, t) (6.26)

which solves the eigenfunction problem for the n = 2 dual Ruijsenaars Hamiltonian. These

formulas can be straightforwardly generalized to n > 2.

6.4 A way to construct the eigenfunctions

Let us explain one of the ways to construct the eigenfunctions of the Dell Hamiltonian

in the two-particle case that gives the answer immediately in terms of the genus two

θ-functions. It also avoids re-expansion in terms of Macdonald polynomials, which was

attempted in (6.20).
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Expanding Hamiltonians (6.10) in powers of w and u,

Ô0 =
∑
k,l≥0

wk
2
ul(l−1)Ô

(k,l)
0 , Ô1 =

∑
k,l≥1

wk(k−1)ul(l−1)Ô
(k,l)
1 (6.27)

one obtains very simple and instructive recurrent formulas for their action on arbitrary

symmetric functions of two x-variables:

√
x1x2

x1 − x2
· Ô(k,l)

0

(xr+1
1 − xr+1

2

x1 − x2
· (x1x2)m

)
=

=
(−)l−1

1 + δk,0
· sym

(
qrk tk(2l−1)

)
· x

r+1
1 − xr+1

2

x1 − x2
· x

2l−1
1 − x2l−12

x1 − x2
· (x1x2)m+1−l+

+

r∑
j=1

(−)l · asym
(
qk
)
· asym

(
q(r+1−2j)k tk(2l−1)

)
· x

r+1−j
1 − xr+1−j

2

x1 − x2
· x

2l−j−1
1 − x2l−j−12

x1 − x2
· (x1x2)m+j+1−l (6.28)

√
x1x2

x1 − x2
· Ô(k,l)

1

(xr+1
1 − xr+1

2

x1 − x2
· (x1x2)m

)
=

= (−)l−1 qm+ r
2 · sym

(
qr(k−

1
2
) t(k−

1
2
)(2l−1)

)
· x

r+1
1 − xr+1

2

x1 − x2
(x2l−11 − x2l−12 )

x1 − x2
· (x1x2)m+1−l+

+
r∑
j=1

(−)l · qm+ r
2 · asym

(
qk−

1
2

)
· asym

(
q(r+1−2j)(k− 1

2
) t(k−

1
2
)(2l−1)

)
· x

r+1−j
1 − xr+1−j

2

x1 − x2
· x

2l−j−1
1 − x2l−j−12

x1 − x2
· (x1x2)m+2−l

where sym(x) = x+ 1
x and asym(x) = x− 1

x . This is true for all integer r, k, l ≥ 0 and for

all integer m, not obligatory positive. Thus, one gets a general description of bi-triangular

action in the case of two x-variables, which is easy to sum over k and l and express the

answer in terms of genus two θ-functions. For m ≥ 0, the l.h.s. can be considered as action

of Ô-operators on an arbitrary two-line Schur[r+m,m][x1, x2] =
xr+1
1 −xr+1

2
x1−x2 · (x1x2)m, which

can be straightforwardly generalized from two to an arbitrary number of x-variables. The

Hamiltonians are the ratios of these triangular matrices, but most interesting properties

should be seen already at the level of (6.28). The x↔ y symmetry is not yet explicit and

should be revealed at further stages.

7 Conclusion

To summarize, in this paper, we discussed the appealing possibility that the self-dual Shi-

raishi series provide eigenfunctions of the Dell systems. We modelled the latter by the ver-

sion recently advocated by P. Koroteev and Sh. Shakirov based on the old suggestion to use

higher genus theta-functions with a constant period matrix. Conjecturally, the dynamical

period matrix, reflecting the Seiberg-Witten symplectic structure can arise after projection

from genus n to n−1, which is a standard step in the study of the Calogero-Ruijsenaars fam-

ily systems, but this remains to be explicitly worked out. Anyhow, the Hamiltonians (5.1)
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have a nice triangular structure, which allows a straightforward construction of eigenfunc-

tions through peculiar recurrent relations. This seems indeed consistent with J. Shiraishi’s

anzatz, though some details remain to be clarified. In two appendices below, we further

comment on the relation of the entire construction to network DIM-based models, which

are widely used to build Nekrasov functions from Dotsenko-Fateev integrals. Once again,

some effort is still needed to “close the circle” and fully reveal the symplectic structures and

rich symmetries of the theory in the Dell case. Hamiltonians and their eigenfunctions arise

from Nekrasov functions in the ε2 = 0 (Nekrasov-Shatashvili) limit, but the Shiraishi func-

tions can appear applicable even beyond it. In the forthcoming paper [63], we discuss an

improved version of our claim, with an additional elliptic deformation of the Shiraishi series.
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A p → 0 limit of the Shiraishi function and T [U(n)] theory

In the limit of p→ 0, the Shiraishi function reduces to

lim
p→0

Pn

(
pn−ixi; p|sn−iyi; s|q,

q

t

)
=
∑
~λ

n∏
i,j=1

N
(j−i)
λ(i)λ(j)

(si−j
qyj
tyi
|q, s)

N
(j−i)
λ(i)λ(j)

(si−j
yj
yi
|q, s)

n∏
β=1

n−β∏
α=1

(
txα+β
qxα+β−1

)λ(β)α

,

(A.1)

where we have made a change of parameter t to q
t for the consistency with the function

Pn(x|y|q, t) defined by (3.1). Note that we made the scaling pδx = (pn−1x1, · · · , pxn−1, xn)

and similarly for the dual variables (yi, s), which gives an additional factor si−j . Due

the scaling of x-variables, the power (pxα+β/txα+β−1)
λ
(β)
α appearing in Pn(x; p|y; s|q, t) is

scaled to (pnxα+β/txα+β−1)
λ
(β)
α , if α + β ≡ 1 mod n and (xα+β/txα+β−1)

λ
(β)
α otherwise.

Hence to obtain a non-vanishing result in the limit p → 0 we have to impose λ
(β)
α = 0 for

α+β = n+1. Thus the length of the partition λ(β) is at most n−β, which is the restriction

on α in (A.1). As we will see later by examining the selection rule in (4.2), the right hand

– 17 –



J
H
E
P
0
4
(
2
0
2
0
)
2
1
2

side of (A.1) is actually independent of the dual elliptic parameter s. In [50], it is pointed

out that the Shiraishi function in the limit of p → 0 agrees with the function Pn(x|y|q, t)
introduced in [33] as a solution to the bispectral problem for the Ruijsenaars-Macdonald

q-difference operators.

As we demonstrate in appendix B, Pn(x; p|y; s|q, t) is identified with the Nekrasov

partition function of N = 2∗ SU(n) gauge theory with the maximal monodromy defect

which breaks SU(n) completely to U(1)n−1. In the four dimensional case, the surface

defect has another description by N = (2, 2) gauged linear sigma model coupled to the bulk

theory [64]. The coupling is achieved by gauging the flavor symmetry and the (twisted)

mass parameters are identified with the Coulomb moduli of the bulk theory. When the

bulk theory is five dimensional, we should consider S1 lift of the two dimensional N = (2, 2)

theory. In the limit of p → 0, only the “perturbative” sector (the zero instanton number

sector) survives. From the viewpoint of 3d theory on the codimension two defect, this means

the bulk contribution decouples. Hence, we expect that the function Pn(x; p|y; s|q, t) in the

limit of p→ 0 is identified with the vortex partition function of 3d theory. In the following

we show this is indeed the case. Namely, the function Pn(x|y|q, t) agrees with the vortex

counting partition function for the holomorphic block of 3d N = 4 T[U(n)] theory, where

the identification of the parameters are:

Pn(x|y|q, t) 3d T[U(n)] theory

x FI parameters

y real mass parameters

q 2d Ω background

t axial (adjoint) mass

Note that T[U(n)] theory is self-mirror where the 3-dimensional mirror symmetry exchanges

the FI parameters and the chiral mass parameters. This is consistent with the fact that

Pn(x|y|q, t) is a solution to the bispectral problem [33].

T[U(n)] theory is a 3 dimensional N = 4 quiver gauge theory with gauge group U(1)×
U(2)× · · · ×U(n− 1). Originally it was introduced as a boundary theory of 4 dimensional

N = 4 supersymmetric Yang-Mills theory [65]. The theory has bifundamental matters

connecting the adjacent nodes and n hypermultiplets at the final node. Thus the flavor

symmetry is U(n). In [66] the vortex counting partition function for the holomorphic block

of 3D N = 4 T[U(n)] theory is computed as follows (see also [67, 68]):

Zvor

(
~µ, ~τ

∣∣∣ q, q
t

)
=
∑
{k(a)i }

n−1∏
a=1

(
qτa
tτa+1

)∑a
i=1 k

(a)
i

a∏
i 6=j

(
qµi
tµj

; q
)
k
(a)
i −k

(a)
j(

µi
µj

; q
)
k
(a)
i −k

(a)
j

a∏
i=1

a+1∏
j=1

(
tµi
µj

; q
)
k
(a)
i −k

(a+1)
j(

qµi
µj

; q
)
k
(a)
i −k

(a+1)
j

,

(A.2)

where we have replaced t in the original formula with q
t , which is related to the Poincaré

duality of Pn(x|y|q, t) [33]. The parameters ~τ and ~µ are the (exponentiated) FI and mass

parameters, respectively. Under the 3-dimensional mirror symmetry which exchanges the
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Coulomb branch and the Higgs branch, we have [66]:

~τ ↔ ~µ, t↔ q

t
. (A.3)

The set of non-negative integers k
(a)
i (1 ≤ i ≤ a) comes from the positions of poles in the

contour integral of screening currents and satisfies the condition:

k
(1)
1 ≥ k

(2)
1 ≥ k

(3)
1 ≥ · · · ≥ k

(n−1)
1 ,

k
(2)
2 ≥ k

(3)
2 ≥ · · · ≥ k

(n−1)
2 ,

. . .
. . . · · ·

...
...

k
(n−2)
n−2 ≥ k

(n−1)
n−2 ,

k
(n−1)
n−1

(A.4)

The upper label (a) of the integers k
(a)
i stands for the color (or the Zn orbifold charge)

from the defect and each row of the inequalities above corresponds to the Young diagram

λ(i) with height `(λ(i)) = n− i. Note that the genuine holomorphic block has also classical

and one-loop contributions [66]:

BD2×S1

T [U(n)] = Zcl

(
~µ, ~τ

∣∣∣ q, q
t

)
Z1−loop

(
~µ, ~τ

∣∣∣ q, q
t

)
Zvor

(
~µ, ~τ

∣∣∣ q, q
t

)
, (A.5)

where

Z1−loop

(
~µ, ~τ

∣∣∣ q, q
t

)
=

n∏
i<j

(
q µiµj ; q

)
∞(

t µiµj ; q
)
∞

(A.6)

The classical part contains the theta function

Zcl

(
~µ, ~τ

∣∣∣ q, q
t

)
∼

n∏
i<j

θq

(
qµj
tµi

)
θq

(
µj
µi

) , (A.7)

which implies some cancellations of q-shifted factorials between Z1−loop and Zcl. The

perturbative contribution Zcl ·Z1−loop corresponds to the normalization factor of the func-

tion (3.1), which is inevitable for the bispectral duality [33]. It is quite remarkable that

the vortex counting function Zvor(~µ, ~τ |q, t) is obtained from the “Higgsed” network model

of DIM (quantum toroidal) algebra Uq,t(
̂̂
gl1) [69]. See also the computation in appendix A

of [70]. Hence it is natural to expect the Shiraishi function Pn(x; p|y; s|q, t) for p 6= 0 can

be obtained by compactifying the “Higgsed” network [71, 72]. We can associate the elliptic

modulus p with the compactified edge, while the appearance of the dual elliptic parameter

s seems rather tricky.

We can check that Pn(x|s|q, t) agrees with Zvor(~µ, ~τ |q, qt ) with the relation

mij = λ
(i)
j−i − λ

(i)
j−i+1 = k

(j−1)
i − k(j)i (A.8)
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Substituting this relation, we obtain

Cn(k
(a)
i ; y|q, t)

=

n−1∏
a=1

∏
1≤i<j≤a+1

(qk
(a+1)
i −k(a+1)

j
tyj
yi

; q)
k
(a)
i −k

(a+1)
i

(qk
(a+1)−k(a+1)

j
i

qyj
yi

; q)
k
(a)
i −k

(a+1)
i

∏
1≤i≤j≤a

(q−k
(a)
j −k

(a+1)
i

qyj
tyi

; q)
k
(a)
i −k

(a+1)
i

(q−k
(a)−k(a+1)

i
j

yj
yi

; q)
k
(a)
i −k

(a+1)
i

,

(A.9)

where we have set a = k − 1. We see that the factors in Cn with 1 ≤ i = j ≤ a are

(q−θik qt ; q)θik
(q−θik ; q)θik

=
(q
t

)k(a)i −k
(a+1)
i

(t; q)
k
(a)
i −k

(a+1)
i

(q; q)
k
(a)
i −k

(a+1)
i

(A.10)

We find up to the power of q
t , the corresponding factors in Zvor are exactly the same as

above. When i < j, we use the formula

(qmu; q)n =
(u; q)m+n

(u; q)m
, m, n ∈ Z (A.11)

which is valid also for negative integers. Then we find the following factors:(
tyj
yi

; q
)
k
(a)
i −k

(a+1)
j(

qyj
yi

; q
)
k
(a)
i −k

(a+1)
j

(
qyj
yi

; q
)
k
(a+1)
i −k(a+1)

j(
tyj
yi

; q
)
k
(a+1)
i −k(a+1)

j

, 1 ≤ i < j ≤ a+ 1, (A.12)

and (
qyj
tyi

; q
)
k
(a)
i −k

(a)
j(

yj
yi

; q
)
k
(a)
i −k

(a)
j

(
yj
yi

; q
)
k
(a+1)
i −k(a)j(

qyj
tyi

; q
)
k
(a+1)
i −k(a)j

, 1 ≤ i < j ≤ a (A.13)

In each case we see the first factor agrees with the factors in Zvor with i < j by substituting

yi = µ−1i , where we have taken the condition k
(n)
i = 0 into account. To obtain the missing

factors with j < i, we exchange i and j in the second factors of (A.12) and (A.13). If we

employ the formula:

(u; q)n = (−u)nq
1
2
n(n−1)(qu−1; q)−1−n, n ∈ Z≥0.m (A.14)

the second factor gives

(q
t

)k(a+1)
j −k(a+1)

i

(
qyj
tyi

; q
)
k
(a+1)
i −k(a+1)

j(
yj
yi

; q
)
k
(a+1)
i −k(a+1)

j

1 ≤ j < i ≤ a+ 1 (A.15)

and (
t

q

)k(a+1)
j −k(a)i

(
tyj
yi

; q
)
k
(a)
i −k

(a+1)
j(

qyj
yi

; q
)
k
(a)
i −k

(a+1)
j

, 1 ≤ j < i ≤ a (A.16)
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respectively. Taking the condition k
(n)
i = 0 into account again, we can see these factors

indeed give the missing factors for j < i in Zvor, up to the power of q
t . Finally for

completeness let us count the total power of q
t that arose during the above computations:

n−1∑
a=1

a∑
i=1

(k
(a)
i − k

(a+1)
i ) +

n−1∑
a=1

∑
1≤j<i≤a+1

(k
(a+1)
j − k(a+1)

i ) +
n−1∑
a=1

∑
1≤j<i≤a

(k
(a)
i − k

(a+1)
j )

=

n−1∑
a=1

k(a)a +

n−1∑
a=1

a∑
j=1

k
(a+1)
j −

n−2∑
a=1

∑
1≤j<i≤a+1

k
(a+1)
i +

n−1∑
a=2

∑
1≤j<i≤a

k
(a)
i

=
n−1∑
a=1

a∑
i=1

k
(a)
i (A.17)

where we have used k
(n)
i = 0. Hence the power is exactly the same as that of (A.1).

Armed with the agreement of the Noumi-Shiraishi representation of the Macdonald

function Pn(x|y|q, t) and the vortex partition function of T [U(n)] theory, we can show that

they also agree with (A.1). We first have to examine the selection rule in the Nekrasov

factor (4.2). Since 1 ≤ α ≤ β ≤ n− 1 in the limit p→ 0, when k ≥ 0, there is no solution

to the selection rule in the second factor of (4.2) and there is a unique solution β = α+ k

to the selection rule in the first factor. On the other hand when k < 0, it is the second

factor that has a unique solution β = α − k − 1 and the first factor has no solution to

the selection rule. Hence, substituting the relation λ
(i)
` = k

(`+i−1)
i we obtain the following

three contributions:

1. i = j

n∏
i=1

N
(0)

λ(i),λ(i)

( q
t |q, s

)
N

(0)

λ(i),λ(i)
(1|q, s)

=
n−1∏
i=1

n−i∏
α=1

(t; q)
k
(i+α−1)
i −k(i+α)i

(q; q)
k
(i+α−1)
i −k(i+α)i

(q
t

)k(i+α−1)
i −k(i+α)i

(A.18)

2. i < j

∏
1≤i<j≤n

N
(j−i)
λ(i),λ(j)

(
si−j

qyj
tyi
|q, s

)
N

(j−i)
λ(i),λ(j)

(
si−j

yj
yi
|q, s

)
=

∏
1≤i<j≤n

n−j∏
α=1

(
qyj
tyi

; q)
k
(α+j−1)
i −k(α+j−1)

j

(
qyj
tyi

; q)
k
(α+j)
i −k(α+j−1)

j

(
yj
yi

; q)
k
(α+j)
i −k(α+j−1)

j

(
yj
yi

; q)
k
(α+j−1)
i −k(α+j−1)

j

. (A.19)

3. i > j

∏
1≤j<i≤n

N
(j−i)
λ(i),λ(j)

(
si−j

qsj
tsi
|q, s

)
N

(j−i)
λ(i),λ(j)

(
si−j

sj
si
|q, s

)
=

∏
1≤j<i≤n

n−i+1∏
α=1

(
qyj
tyi

; q)
k
(α+i−1)
i −k(α+i−1)

j

(
qyj
tyi

; q)
k
(α+i−1)
i −k(α+i−2)

j

(
yj
yi

; q)
k
(α+i−1)
i −k(α+i−2)

j

(
yj
yi

; q)
k
(α+i−1)
i −k(α+i−1)

j

(A.20)
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In the first case, setting a = i + α − 1, we have 1 ≤ a ≤ n − 1 and 1 ≤ i ≤ a. Hence the

contribution becomes

n−1∏
a=1

a∏
i=1

(t; q)
k
(a)
i −k

(a+1)
i

(q; q)
k
(a)
i −k

(a+1)
i

(q
t

)k(a)i −k
(a+1)
i

. (A.21)

In the second case, setting a = j + α− 1 implies 2 ≤ a ≤ n− 1 and 1 ≤ i < j ≤ a. Hence

we obtain

n−1∏
a=2

∏
1≤i<j≤a

(
qyj
tyi

; q)
k
(a)
i −k

(a)
j

(q yiyj ; q)
k
(a)
j −k

(a+1)
i

(t yiyj ; q)
k
(a)
j −k

(a+1)
i

(
yj
yi

; q)
k
(a)
i −k

(a)
j

(q
t

)k(a)j −k
(a+1)
i

, (A.22)

where we have used (A.14). Finally in the last case, setting a = i+α−2 implies 1 ≤ a ≤ n−1

and 1 ≤ j < i ≤ a+ 1

n−1∏
a=1

∏
1≤j<i≤a+1

(
qyj
tyi

; q)
k
(a+1)
i −k(a+1)

j

(q yiyj ; q)
k
(a)
j −k

(a+1)
i

(t yiyj ; q)
k
(a)
j −k

(a+1)
i

(
yj
yi

; q)
k
(a+1)
i −k(a+1)

j

(q
t

)k(a)j −k
(a+1)
i

, (A.23)

where we have used (A.14) again. Then by the same change of variables yi = 1/µi as before

we can find an agreement with (A.2) up to the power of q
t . Note that we have to exchange

i and j for the factors with k
(a)
j − k

(a+1)
i . Finally one can check the total power of q

t is

correct by a similar counting to (A.17).

B Shiraishi function and maximal monodromy defect

Let us note that the power of the series expansion (4.1) can also be rewritten as

n∏
β=1

∏
α≥1

(
pxα+β
txα+β−1

)λ(β)α

=
(p
t

)|~λ| n∏
i=1

xmii , (B.1)

where mi = di − di+1 with

|~λ| :=
n∑
β=1

|λ(β)|, di(~λ) :=

∞∑
α=1

∑
α+β≡i
(mod n)

λ(β)α (B.2)

The integer mi with
n∑
i=1

mi = 0 corresponds to the magnetic flux associated with the

monodromy defect which breaks SU(n) to U(1)n−1 [73]. In [50] it was pointed out

Pn(xi; p|yi; s|q, t) is identified with the equivariant Euler characteristic of the affine Lau-

mon space [74], while in [32] it was argued that the eigenfunction of elliptic integrable

system is related to the instanton partition function with monodromy defect, which in

turn is obtained from the ordinary instanton partition function by introducing appropriate

Zn-orbifold action on the equivariant parameters [68, 73, 75–78].

In the following we summarize how the orbifold action correctly reproduces the equiv-

ariant Euler characteristic of the affine Laumon space derived in [74]. In fact, at the level
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of the equivariant character to be discussed later, the selection rules j− i ≡ k (mod n) and

β−α ≡ −k− 1 (mod n) mean taking the terms with the charge k/n, if we assign the frac-

tional charge 1/n for the orbifold action of Zn to the parameter s. Hence if we define the

charge of the Coulomb moduli parameter yi to be −i/n, then the function Pn(xi; p|yi; s|q, t)
corresponds to the neutral (integral) charge sector of the equivariant character.

Let us first confirm the Nekrasov factor (4.2) without the selection rules

Nλ,µ(u|q,1/s) =
∏
j≥i≥1

(uq−µi+λj+1si−j ;q)λj−λj+1
·
∏

β≥α≥1
(uqλα−µβsβ−α+1;q)µβ−µβ+1

, (B.3)

agrees with the standard one (see e.g. [79]). Using (1.8), we obtain

Nλ,µ(u|q, 1/s) =
∏
j≥i≥1

(uqλj+1−µisi−j ; q)∞
(uqλj−µisi−j ; q)∞

·
∏
i≥j≥1

(uqλj−µisi−j+1; q)∞
(uqλj−µi+1si−j+1; q)∞

=

=
∞∏

i,j=1

(uqλj−µisi−j+1; q)∞
(uqλj−µisi−j ; q)∞

(usi−j ; q)∞
(usi−j+1; q)∞

=

= exp

( ∞∑
n=1

un

n

1− sn

1− qn
[
pn(qλjs−j)pn(q−µisi)− pn(s−j)pn(si)

])
(B.4)

where pn(•) is the power sum function. Thus we can see Nλ,µ(u|q, 1/s) agrees with the

standard Nekrasov factor in terms of the power sum functions. We note that the equivariant

parameters for the Ω background is q1 = eε = q and q2 = eε2 = s−1 and t does not

correspond to the Ω background: physical meaning of the parameter t is the mass of

the adjoint matter t = e−m. On the other hand when we drive the Macdonald function

from Pn(xi; p|yi; s|q, t) the deformation parameters are actually (q, t). Thus there is “a

mismatch” between the deformation parameters of the Macdonald function and the Ω

background.

Geometrically the Nekrasov factor Nλ,µ(u|q, s) is derived from the equivariant character

of the tangent space of the instanton moduli space T~λM at the isolated fixed points of the

torus action, which are labelled by n-tuples of Young diagrams ~λ = {λα}. According

to [80, 81], the relevant equivariant character is given by:

χ(uα; qi) = N∗K + q1q2K
∗N − (1− q1)(1− q2)K∗K, (B.5)

where1

N :=
n∑

α=1

uα, K :=
n∑

α=1

uα ·

 ∑
(i,j)∈λα

q1−j1 q1−i2

 (B.6)

N∗ and K∗ denote dual characters. uα are coordinates of the Cartan torus of the gauge

group U(n) and qi are equivariant parameters of the torus action on C2.

The equivariant character of the tangent space at the fixed points of the affine Laumon

space is given by Zn invariant part of the character by introducing the orbifold action

1Compared with the standard formula, we have exchanged q1 and q2, or take the transpose of the

Young diagram.
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on the equivariant parameters (uα, qi). Thus the denominator of the Shiraishi function

Pn(xi; p|yi; s|q, t) is related to the equivariant character of the affine Laumon space [50],

which is identified with the instanton moduli space with the maximal monodromy defect

corresponding to the partition N = (1n), which breaks U(n) completely to U(1)n. The

CFT side of the AGT relation in this case is supposed to be the conformal block of the

affine algebra ŝln [82, 83].

Let us show Zn invariant part of the equivariant character (B.5) actually gives the

character formula [74]

Ch
(~λ,~µ)

[(~a,~b); q1, q2] =

= (1− q1)
n∑
k=1

∑
1≤`

∑
1≤˜̀

eak−`+1−bk−˜̀q

(
b ˜̀−k
n
c−b `−k−1

n
c
)

2

µ
(k−˜̀)
˜̀∑
i=1

qi−11

λ
(k−`+1)
`∑
j=1

q1−j1 +

+ q1

n∑
k=1

∑
1≤˜̀

eak−bk−˜̀q

(
b ˜̀−k
n
c−b− k

n
c
)

2

µk−
˜̀

˜̀∑
i=1

qi−11 −

− (1− q1)
n∑
k=1

∑
1≤`

∑
1≤˜̀

eak−`+1−bk−˜̀+1q

(
b ˜̀−k−1

n
c−b `−k−1

n
c
)

2

µ
(k−˜̀+1)
˜̀∑
i=1

qi−11

λ
(k−`+1)
`∑
j=1

q1−j1 +

+
n∑
k=1

∑
1≤`

eak−`+1−bkq
(b−kn c−b

`−k−1
n
c)

2

λ
(k−`+1)
`∑
j=1

q1−j1 (B.7)

where we have made a change of variables `→ k−`+1 and ˜̀→ k− ˜̀ (but ˜̀→ k− ˜̀+1 only

for the third term) in the original formula (Prop. 4.15 in [74]). Multiplied with e−m, (B.9)

gives the character for a bifundamental matter with mass m. To get an adjoint matter we

specialize a = b and λ = µ. The character for the vector multiplet is obtained from that

of adjoint matter by setting m = 0 and reversing the overall sign.

Replacing `→ mn+ ` and ˜̀→ m̃n+ ˜̀ with 0 ≤ m, m̃ and 1 ≤ `, ˜̀≤ n, we can rewrite

the character as follows:

Ch
(~λ,~µ)

[(~a,~b); q1, q2] = (1− q1)
n∑
k=1

V ∗k−1(
~b, ~µ)Vk(~a,~λ) + q1

n∑
k=1

V ∗k−1(
~b, ~µ)Wk(~a)−

−
n∑
k=1

(1− q1)V ∗k (~b, ~µ)Vk(~a,~λ) +
n∑
k=1

W ∗k (~b)Vk(~a,~λ), (B.8)

where Wk(~a) := eakq2 and

Vk(~a,~λ) (B.9)

:=
∑
0≤m

n∑
`=1

eak−`+1q
−m−b `−k−1

n
c

2

λ
(k−`+1)
mn+`∑
j=1

q1−j1 =

=
∑
0≤m

 k∑
`=1

eak−`+1
∑

(i,mn+`)∈λ(k−`+1)

q1−i1 q−m+1
2 +

n∑
`=k+1

eak−`+1
∑

(i,mn+`)∈λ(k−`+1)

q1−i1 q−m2
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To eliminate the floor function in the formula (B.9) we use that fact that when 1 ≤ k, `, ˜̀≤
n the arguments X in the floor function appearing the formula satisfies −1 ≤ X < 1.

Therefore we have either bXc = 0 for 0 ≤ X < 1 or bXc = −1 for −1 ≤ X < 0,

respectively. Then we can see that (B.8) is nothing but the Zn invariant (the charge zero)

part of2

χ
(~λ,~µ)

(aα, bα; qi) = −(1− q1)(1− q
1
n
2 )V ∗~b,~µ ⊗ V~a,~λ +W ∗~b ⊗ V~a,~λ + q1q

1
n
2 V
∗
~b,~µ
⊗W~a, (B.10)

namely

χZn
(~λ,~µ)

(aα, bα; qi) = −(1− q1)
n∑
k=1

(V ∗~b,~µ)k ⊗ (V
~a,~λ

)k + (1− q1)
n∑
k=1

(V ∗~b,~µ)k−1 ⊗ (V
~a,~λ

)k

+

n∑
k=1

(W ∗~b )k ⊗ (V
~a,~λ

)k + q1

n∑
k=1

(V ∗~b,~µ)k−1 ⊗ (W~a)k, (B.11)

where Wn ≡W0 and Vn ≡ V0 with

(W~a)k = eakq
1− k

n
2 , (B.12)

and

(V
~a,~λ

)k =
k−1∑
`=0

eak−`q
1− k−`

n
2

 ∑
(i,n(j−1)+`+1)∈λ(k−`)

q1−i1 q
−(j−1)− `

n
2

+

+
n−1∑
`=k

eak−`+nq
− k−`

n
2

 ∑
(i,n(j−1)+`+1)∈λ(k−`+n)

q1−i1 q
−(j−1)− `

n
2

 = (B.13)

=
k∑
`=1

eak−`+1q
1− k

n
2

 ∑
(i,mn+`)∈λ(k−`+1)

q1−i1 q−m2

+

+
n∑

`=k+1

eak−`+n+1q
− k
n

2

 ∑
(i,mn+`)∈λ(k−`+n+1)

q1−i1 q−m2


Note that the Zn fractional charge of Wk and Vk defined by (B.12) and (B.13) is (1− k/n)

and we have rescaled them by multiplying q
k/n
2 so that they have unit charge.

It is known that there are two ways of computing the instanton partition function with

a monodromy (surface) defect [84–87]. One is the orbifold construction described above

and the other is the degenerate gauge vertex construction in the quiver gauge theory, where

we tune the Coulomb moduli and mass parameters3 [88–92]. It was argued that the two

constructions are related by the brane transition in M theory so that they are dual in

IR [93]. The fact that the Shiraishi function Pn(xi; p|yi; s|q, t) agrees with the holomorphic

block of T [U(n)] theory in p → 0 limit is in accord with the second description in terms

of the quiver gauge theory. Note that the network diagram for T [U(n)] theory is what is

called Higgsed network in [69].

2Compare it with (B.5).
3In the AGT dictionary, this corresponds to the insertion of a fully degenerate primary field.
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