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1 Introduction

Ding-Tohara-Miki (DIM) algebra [1, 2], also denoted by Uga(gh), or Uy(gh) is a t-

deformation of the algebra of volume-preserving diffeomorphisms of the quantum torus [3,

4], which can also be described as Wi .-algebra, or a deformation of the double loop al-

gebra of gl; = C* [5]. The DIM algebra is an extremely elegant object. It has three

deformation parameters ¢ = ¢ = 9q~! (coming from the quantization of the torus),
t 1

g2 = t71 = g0 (the t-deformation) and g3 = il g%, which are treated on



equal footing. In fact, the algebra is invariant with respect to the permutations of ¢;. It
also enjoys an SL(2,7Z) symmetry,! corresponding to the mapping class group of the quan-
tum torus. There are two central charges in the algebra, which form a two-dimensional
representation of the SL(2,7Z) automorphism group.

A natural® representation of the DIM algebra seems to be the MacMahon module
M(K;v), i.e. a linear space spanned by plane partitions, or 3d Young diagrams. Here is
an example of a 3d Young diagram:

= [[2,1], [1]]- (1.1)

We denote the 3d diagrams as sequences of ordinary Young diagrams lying at the suc-
cessive horizontal layers, as seen on the r.h.s. of eq. (1.1). Metaphorically, one can think of
an additional dimension in the diagrams as related to an additional loop in the definition
of the algebra (compared, e.g., to the affine or Virasoro algebras). The MacMahon rep-
resentation has the central charge vector (1, K) (with K arbitrary). Permutations of the
three deformation parameters ¢; act on this representation by permutations of the azes of
the 3d Young diagram, i.e. by 3d “transpositions”.

There are other representations of the DIM algebra, which are in fact reductions of
the MacMahon one. If one puts the central charge K to a particular quantized value
K = g;, then the MacMahon representation becomes reducible. After factoring out the
invariant subspace, one gets the space of ordinary Young diagrams. The resulting rep-
resentation is called the Fock (or free field) representation F(v). More generally, when
K= qfngg, a, b, c € Z, the MacMahon representation reduces to a representation spanned
by plane partitions with a “pit” [10, 11]. Further reduction is provided by the vector rep-
resentation, in which the central charges are trivial and the vectors can be thought of as
columns of boxes, i.e. 1d Young diagrams.

The DIM algebra is a (quasi triangular) Hopf algebra and has a universal R-matrix.
In [12, 13], we have explicitly constructed the R-matrix acting on the product of Fock
representations and elucidated its role in refined topological strings and the Nekrasov par-
tition function.® In the present work, we follow the same program and construct the DIM
R-matrix for the MacMahon representations.

For the Fock spaces, there is a well-known construction [15] of intertwining operators,
which turn out to be the refined topological vertices C,,(q,t) of topological string the-
ory [16-23]. The labels A\, u and v in the vertex are 2d Young diagrams denoting the
vectors in the three Fock spaces being intertwined. Here we are going to generalize the
intertwiner construction so that one of the labels in the vertex is the 3d Young diagram.
This indicates the existence of a generalization of refined topological string theory, in which
the 3d Young diagrams live on the edges along the preferred direction of the toric diagram.

!For possible extensions to SL(3,Z) symmetry see [6-9].

2Though, probably not the most general: in the MacMahon representations one of the central charges
is fixed to be unit (we use the multiplicative convention for levels), while generally the both central charges
can be chosen arbitrarily.

3Similar R-matrix was considered from the point of view of geometric representation theory in [14].



The parameters ¢ and ¢ are perhaps most familiar from the theory of Macdonald
polynomials [24]. The basis of Macdonald polynomials in fact plays a distinguished role in
the Fock representation of DIM algebra. The R-matrix is then conveniently written as a
set of matrix elements in the Macdonald basis. Our construction for the R-matrix in the
MacMahon representations is similar, but the role of Macdonald polynomials is played by
triple Macdonald polynomials [25].

More concretely, in this note, we try to construct the intertwining operator for the
MacMahon representation as the vertical representation. In [15], the authors chose the
Fock representation and constructed the intertwiner that reproduced the refined topologi-
cal vertex. We want to replace the Fock representation with the MacMahon representation.
One of the features of the MacMahon representation is that it has a continuous value K
for the second level y2 (see section 2.1 for the notation). Consequently, we also need vertex
operator representations that allow o to be continuous. At the best of our knowledge,
such a vertex operator representation is not known at the moment, though a continuous
shift of 79 may be achieved by some judicious choice of the zero mode sector. To over-
come this problem, we make use of the idea of constructing the MacMahon representation
from an infinite tensor product of Fock representations [11]. A similar idea is employed
for constructing the Fock representation from the vector representation [26]. Therefore, in
order to support the validity of our approach, we first start with the intertwiner for the
vector representation and construct the Fock intertwiner in a way parallel to [26] where
the Fock representation was constructed from a certain infinite tensor product of vector
representations. It turns out that, with this method, we can obtain the same Fock inter-
twiner as [15] did and, as a by-product, also an additional insight into relevant horizontal
representations. Thus, we believe we can lift the construction in [11, 26] to the level of
intertwiners.

In the remaining part of the introduction, as a warm-up, we offer a construction of
the intertwiner and of the R-matrix for the vector representations in order to prepare for
technicalities of the main text. The remaining part of the paper is organized as follows.
We introduce the definition of the DIM algebra in section 2.1 and present the known
representations of the algebra in sections 2.2-2.3. In particular, we review the idea of taking
an infinite tensor product following [26] and [11] in section 2.2. The crucial point here is how
to regularize the infinite products. In section 3, based on the formula of the diagonal part of
the universal R-matrix [27], we compute the R-matrix for the MacMahon representations.
We then construct the intertwining operator for the MacMahon representations in a way
parallel to [11, 26] in section 4. In section 5, we confirm that the commutator of such
intertwiners indeed gives the same MacMahon R-matrix computed in section 3. We present
our conclusions in section 6.

1.1 gWji 1 algebra and the vector representation

In this part of the introduction, we deal with a “toy model” of the representations and
intertwiners, which we are going to study in the main part of the paper.



The toy algebra. Instead of the DIM algebra, we take its ¢t = 1 limit: W1, algebra,
which is a Lie algebra spanned by the generators W, , satisfying the relations

nyimi
[Wml,nla sz,ng] = (qn1m2 - anml)Wml—l—mz,nl—Fnl + (Clnl + Cle)q 2 6m1+m2,06n1+n2,07
(1.2)

where cq o are the central charges. There are two grading operators dy and do counting

m and n in Wy, ,. The relations are manifestly SL(2,Z)-invariant, if we assume that
the labels (m,n) and the central charges (c1,c2) transform as 2d vectors under SL(2,Z)-
transformations.

The toy representation. We further simplify our toy model by putting ci 2 = 0. Then
the algebra (1.2) can be represented by difference operators acting on functions of one
variable z:

p(Winn) = 2" (1.3)

We call representation p the vector representation. This is nothing but the evaluation
representation of the algebra (1.2). As usual, there are two viewpoints on the evaluation
representation. In the first convention, the representation is seen as a finite-dimensional
(in our case one-dimensional) space of functions f(z), while, within the second approach,
the representation is an infinite-dimensional space of vectors, in which the parameter z is
not a variable, but is fixed.

In the case under discussion, one can also use the equivalence of two conventions and
say that the states in the vector representation, instead of being functions of z, are now
labelled by an integer and a complex parameter, |z,i), so that

p(Winn)l|2,€) = 2™z, 0 + n). (1.4)

The parameter z is fixed in this definition and is called the spectral parameter of the vector
representation. Evidently, this is just a rewriting of eq. (1.3) with |z,¢) corresponding

to f(zq").

The toy intertwiner. The toy algebra (1.2) is a Hopf algebra with the standard Lie-
algebraic coproduct
AWpn) =Winn®@1+10 Wy, p. (1.5)

One can then build tensor products of representations. In particular, one can take the
tensor product of the Fock representation of (1.2), which has ¢ = log,, K1 = 1,¢0 =
log,, K2 = 0, and the vector representation.

There is an intertwining operator ¥, which acts from this tensor product into a single
Fock representation. It is just the standard (g-deformed) vertex operator

1 1, -
Uz, /) @ -+ = exp Z Ez”qzna,n exp | — Z % nga, | . (1.6)
n>1 n>1

The intertwiners commute up to contact terms, which is the reflection of the fact that the
coproduct (1.5) is symmetric, and thus the R-matrix of the algebra (1.2) is trivial.



A small generalization and the toy R-matrix. Leaving the rigorous derivation for
section 4, we give here the vector intertwining operator for ¢ # g (see also [28]):

n 1
t2"qa_, | exp | — z;l ;q”z_”q_enan . (L7
n>

The commutation of intertwiners (1.7) yields a nontrivial (though diagonal) R-matrix:

(|, k) @ W(lw,€) @ ) = Rig (=) (w, ) @ W(|2,k) @ ), (1.8)
where 2y (5" "4) (B4 )
e (3;) = (34" 5a) (6" ‘asa) )

This R-matrix, though may seem simple, actually encodes in itself the information about
all the representations of the DIM algebra. This is because all the representations can
be built from the vector representation by taking appropriate tensor products so that the
intertwiners also become products of the basic intertwiner (1.7). This will be precisely our
strategy in the main part of the paper.

2 Representations of DIM algebra

2.1 Definition of the quantum toroidal algebra Uq,a(gll)

The quantum toroidal algebra Ug o (gA [;) has two deformation parameters q,9. We introduce
the structure function

9(z,w) = (z — qw)(z — @w)(z — g3w) (2.1)
where our convention is

a=0"" @=0'" g¢=d, q192q3 = 1. (2.2)

In this paper, we assume that ¢; are generic, that is, q%ngg = 1 for integer a, b, c if and
only if a = b= c. We also use

(2.3)

Glw/z) = (@1 —w/2)(e2 —w/2)(gs —w/z) _ g(w,2) _ ). (2.4

(1 —quw/z)(1 - gu/z)(1 —guw/z)  g(zw)

The generators of Uq,a(gll) are Ey, Fp, K*', H, (k € Z,r € Z\ {0}) and the central
element C. It is convenient to introduce the generating functions (currents)

E(z) = ZEkz_k, F(z)= Zsz_k, K*(2) = K exp (:l:(q —q Y ZHﬂszr> .
r=1

keZ kEZ
(2.5)



Note that K*(z) is expanded in negative (positive) powers of z. With these currents,

Ugo (gAll) is defined by the following relations:*

K+ (2)K* (w) = K*(w)K*(2), (2.6)
g(C7rzw) NK+H(w) = glw,C1z) . VK~ (2
?@EETK()K( >‘§@IETK<)K(>’ (2.7)
g(z, w)KH(CIFV2 ) B(w)+g(w, 2) E(w) KT (CHTFY/22) =0, (2.8)
g(w, 2) KF(CEV/2) F(w)4g(z, w) F(w) KE(CIE)/22) = 0, (2.9)
[B(:), F(w)] = § (5 (C2) K*(2)=6 (=) K~ (w)).
(2.10)
g(z,w)E(z)E(w)+g(w, z) E(w)E(z) = 0, (2.11)
g(w, 2)F(2)F(w)+g(z,w)F(w)F(z) = 0. (2.12)

The coefficient g in (2.10) affects only the relative normalization of currents E(z), F'(z) and
K¥*(2). In this paper, we choose

(1-q)1—q)
lfq:,j1 ’

g= (2.13)
There are essentially® two central elements C' and K~ = (K*)™!, and we define that the
representation has level (v1,72) if C = v and K~ = 7. We call representations with
C =1 and C = q vertical and horizontal representation, respectively.® The commutation
relation of modes H, are read from (2.7),

[r] _ _cr-Ccr

H’!’7HS:57"87 " T — L) P —

[ J=0rs0” (0" +97" —0" =0 )q—q—l

[r] cr-Ccr
= ras0—q (1 —¢)(1—¢)———, 2.14
+8,07 q"( q1)(1 — g3) q—q° ( )
where we define g-integer by

=39 (2.15)

q—q!
Note that in the vertical representations H, are mutually commuting.
Actually the vertex operator representation (see section 2.3), which is the only hori-
zontal representation to be considered in this paper, satisfies stronger relations:

K*(2)K*(w) = K¥(w)K*(2), (2.16)
KT (2)K~(w) = G(C™ 'w/2)G(Cw/2)"t K~ (w)K*(2), (2.17)

“They also satisfy the Serre relations, which we do not use in this paper, [2, 29].

"We impose K~ = (K1)™'.

5They correspond to the two choices of the Borel subalgebra, “vertical” and “horizontal” are related by
the spectral duality automorphism S [2, 30-38] (a proof is given in Lemma A.5 of [27]), which is one of the
generators of the SL(2,Z) automorphism group of the DIM algebra.



K*(2)E(w) = G(w/2) E(w)K*(2), (2.18)

E(2)K~(Cw) = G(w/z) K~ (Cw)E(2), (2.19)

KT (C2)F(w) = G(w/2)" F(w)K*(C%), (2.20)

F(z)K™ (w) = G(w/2)"! K~ (w)F(2), (2.21)

[E(2), F(w)] = § 5(0%) K*(z)—é(C%) K’(w)), (2.22)

9(z,w) E(z)E(w) + g(w, 2) E(w)E(z) =0, (2.23)
g(w,z) F(2)F(w) + g(z,w) F(w)F(z) = 0. (2.24)

To define the tensor product of two representations, we need a coproduct of Uy, (gAll).
We use the following coproduct in this paper:

A(E(2) = E(z) @1+ K (C12) ® E(Cy2), (2.25)
A(F(2)) = F(Coz) @ KT (Ce2) +1® F(2), (2.26)
A(KT(2) = Kt (2) @ KT(Cy t2), (2.27)
AK(2) = K~ (Cy'2) @ K™ (2), (2.28)
A(C)=C®C, (2.29)

where C1 =C®1land Cy; =1® C.
We also have two grading operators d; and dy such that

[d1, E(2)] = —E(2), [dy, F(2)] = F(2), [dy, H(z)] = 0, (2.30)
[da, E(2)] = 20,E(z), [da, F(2)] = 20, F(2), [do, H(2)] = 20,H (). (2.31)

2.2 Vertical representations

Since C' = 1 for the vertical representations, the modes H, (r € Z\{0}) commute with each
other due to the relation (2.7). Then we can find a basis which simultaneously diagonalizes
H,. In [11, 26], three kinds of vertical representations: the vector, Fock and MacMahon
representations have been defined. In these representations, the basis on which H, acts
diagonally is roughly speaking labeled by 1D, 2D and 3D Young diagrams, respectively.
Accordingly, we can define the Fock representation as an irreducible subrepresentation of
an appropriate infinite tensor product of the vector representations [26]. In a similar man-
ner, we can construct the MacMahon representation from the Fock representations [11].
The second level of the vector representation is 79 = 1. However, the regularization pro-
cedure required in the above procedure makes o non-trivial. Consequently, the Fock
representation has a quantized level v = q. Moreover, quite interestingly the MacMa-
hon representation allows continuous level 75 = K. We can find a natural regularization
for the Fock representation, while that for the MacMahon representation somehow looks
ambiguous and leads to an arbitrary value K, which we can interpret formally as a limit
of gV (N — 00). In summary, the explicit actions of the vector, Fock and MacMahon
representations are given by (2.32)—(2.35), (2.57)—(2.60) and (2.75)—(2.77), respectively.



2.2.1 Vector representation

The vector representation V' (v) consists of the basis [v]; labeled by i € Z and depends on
the spectral parameter v. The action of the algebra is defined as

K" (2)[v]i w(qw/Z)[ Jis (2.32)
K~ (2)[v)i = ¥(ar "~ 2/v)[vli, (2.33)

E@Z)vli =€ 5( 1o/2) i, (2.34)
F(2)[]is1 = F 6(gi" v/2)[v]i, (2.35)

where the generating function of eigenvalues of K*(z) is expressed by

(1-g'2)(1—q5'2)

= (g7 /2). .
Tio ey =Ya'/?) (2.36)

(z) =

The multiplication factors £ and F are determined from the choice of g:

-1 -1
E.F= g(l - Q21 z((lh_ ds ) _ (1 . QQ)(l o q2—1)’ (237)

and, in this paper, we choose
E=1—q, F=1-¢" (2.38)

Since ¢)(0) = 1, the vector representation has the trivial level (1,1). It is also convenient
to introduce a more fundamental function v (z) such that

1—q§12

—2 = =(es/2) 7 () = v )T (2.39)

Y(z) =q

2.2.2 Fock representation
At first following [26], we outline the idea to obtain the Fock representation (p, F(v)).
One can construct a natural tensor product of the vector representations by making use

of the coproduct of Uq@(gA[l). We want to define an infinite tensor product of the vector
representations and find an irreducible subrepresentation, whose basis is composed of par-
titions, that is, the Fock representation. Let us consider the following tensor product with
q2-shifted spectral parameters:

N N

QR V(i) 3N =Qldb vlr-1, A= (A, ) € ZV, (2.40)

i=1 i=1
Since C' =1 for the vector representations, the coproduct (2.27) and (2.28) give

N
AN UK ) = K5 (2) @ - @ K%(2). (2.41)




Similarly, the coproduct (2.25) and (2.26) implies

N k-1 N—k

AVHE(R) =) K (2)® K (2)QE(z) 01 a1, (2.42)
k=1
N k—1 N—k

AV FR) =) 10 0leF(z) @ KM (z) -0 K (). (2.43)

k=1

The tensor product representation is defined by pn (X (2)) := p}, ®- - @ pY (AN 1(X (2))),
where py,. denotes the vector representation with the spectral parameter u; = qé_lv.

One can naturally view A € ZN as A e ZNt! with An+1 = 0. However
(pn, @Y, V(gi ) does not form an inductive system because actions of py and py i1
on |A) (A € ZV) are different. For this reason, one cannot take a limit N — oo naively.
In order to settle this problem, we modify the action of (pN,®£\;1 V(gh ') to some

(PN, ®fi1 V(gs v)) so as to form an inductive system of Uq@(g[l)-modules. Then one can
take the inductive limit p = limy_.pn to find the Fock representation (p, F(v)) as an
irreducible subrepresentation of p:

Q) V(g o) > Fv) 312 = Q)lds " v]x-1, (2.44)
i=1 =1

where A = (A1,...,Ayn)) € P : set of partitions and A\, =0 (n > £(\)).

In the following, we describe the idea of modification in detail. Actually, we have to
modify only pny(K*(2)) and pn(F(2)) keeping py(FE(2)) intact. Let us modify the action
of py to py so as to obtain the condition, for X = K+ FE or F,

n(X(2) = pnem(X(2)) on [N), AeZN"L VM eN (2.45)

Then we can define the action of p(X(z)) on |\) (A € ZN~1) as py(X(2)). Therefore,
we should search for a modified action which satisfies the condition (2.45). At first, let
us see that the action py(E(z)) can be the same as py(F(z)). This action satisfies the
condition (2.45) due to the vanishing property,

(K™ (2) ® B(2)) ([0 0]-1 ® [03"v] 1) (2.46)
= (g VT2 /0)8 (5 v/ 2) [ ] @ [¢dv] 1 = 0. (2.47)
Further, let us focus on the action of K*(z). This time the actions of py and pyxyas
differ. We denote Kx(z) = pn(K*(2)) = pn(K*(2)) x 85 = ANHK*(2)) x B3, where
8% = BE((v/2)*!) is a modification factor that satisfies 55 (v/z) = By(2/v) as a rational
function. Since

E*(2)[g3'v)-1 = d(ay a3 v/2) [0 v] 1, (2.48)

one gets a recursion relation for the modification factor B]J\r,
:()"KJ—\?H(Z)P‘) _ 51—54-1
(KN (2)[N) By

D4y a3 v/2). (2.49)



This is equivalent to

B = (g e /2) T B = vl e T 2) (e e P/ 2) B
U N tu/z) (g M /2) B (2.50)

which determines B]j\t, up to an appropriate initial condition. Naturally, the initial condition
should be related to the regularization problem of the vacuum of the Fock representation.
To see this, let us look at the unmodified representation px on the “vacuum state |@)”,
@ =(0,...,0),

2
2

(@IAN (K ())|o) = ]l s v/z) = ] wlartas " v/=0e(d asz/v) !

k=1 k=1

_ 1-gdlv/z 1-qav/z
1Y gu/z 1—v/z

(2.51)

This expression makes no sense in the limit of N — oo, but we can formally regularize it
by specifying the ordering of infinite products,

wlaso/2) " T (vlardb™v/=)blabaso/=) ™) = wlaso/2) ™" (2.52)

k>1

Therefore, in the modified representation py, one expects the vacuum expectation value
to be

N
(2| Ky (2) H s o/2) B (v/2)

11 —qsv/z

=1p(qzv/2) "t =q 1@, VN € N. (2.53)

Thus, the problematic factor % in (2.51) has been replaced by the factor q~! by
2

the regularization. Now (2.53) leads to the initial condition
By (v]2) = blar v/2) 7. (2.50)
Hence, the above prescription for the regularization gives
B (v/z) = (et tv/2) 7t = wlay V2/v) = By(z/v). (2.55)

As concerns the action of F'(z), we also need some modification factor. This factor should be
precisely the same as 35 (v/z) for the sake of (2.10). In fact, it satisfies the condition (2.45)
due to the vanishing property,

By F()las v]-1 = vl 'a v/2) 7 o (@' v/ 2) @3 v] -2 = 0. (2.56)

~10 -



Now we can write down the action of the infinite tensor product representation
(p, F(v)) explicitly (see (2.41)-(2.43)),

o\ 2N (N)+1
K*(z Hv,b v/ 2) ﬁe(/\) (v/2)|\) = Hw x50/ 2) H V(gy trsv/2) N, (2.57)
£(N) 2(\) L(N)+1
H¢ qte 2 /o) 55()\) (z/v)|\) = H¢ gy iz o)t H Y(gr etz v)|N),
(2.58)
L(AN)+1 5—
E@)IN)=0-q) Y H D(q; ws/z)d(qaju/2)|A + 1))
j=1 s=1
L) +1 j—
=(1—¢q) H D(ay sz (gsms /z) " o (quaju/2) A + 1 ), (2.59)
j=1 s=1
o) LN
PN = (1—g;Y) Blaefa))0(ag0/2) B (1/a)IA 1)
j=1s=j5+1
176}
(1—qy H Y(xs/zj) H ¥(gy SES/SE] (mjv/z)’)‘ - 1), (2.60)
Jj=1s=j+1 s=j+1
where we have introduced the coordinates x5 = x,, ;j; = q1 lqg L As already men-

tioned, we can find the invariant subspace F(v) which consists of only partitions by inves-
tigating the positions of zeros appearing in the action of the creation operator F(z) and
the annihilation operator F(z) [26]. This irreducible subrepresentation generated by the
empty Young diagram & is called Fock representation. The Fock representation is the high-
est weight representation with the empty Young diagram @ being the highest weight state.
The generating function of eigenvalues of the vacuum is (@|K(2)|9) = ¥(q3v/2)~!. Note
that, similarly to the vector representation, the finite tensor representations have trivial
level (1,1), however, now the Fock representation has the nontrivial level (1,q) due to the
chosen regularization (2.53).
Thanks to the relation

G(xmv/z):z[}(x”v/z) Y(qy x”v/z) , (2.61)

one can rewrite the above formula in a symmetric way, for example,

AKF ()N = va(v/z) [] Glaigo/z), (2.62)

(4,9)€EX
where ¥y (v/z) is

Yo (v/2) = (81K (2)|2) = W(gsv/2) " (2.63)
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2.2.3 MacMahon representation

We want to define the MacMahon representation as an appropriate limit of (7x, My (v))
similarly to the definition of the Fock representation [11],

=

®]~" ) D My(v) 3 |A) = (X)[AW). (2.64)

k=1
The notation of the plane partition (3d partition) A is as follows
A=(AD AN A (24) partition such that A" < AP (i k),  (2.65)
and we also use the notations
h(A) = min{k > 0|(1,1,k+ 1) € A}, (2.66)
(i,5,k) € A AP > 5 (2.67)

We interpret as [A®)) € F(¢¥'v) unless otherwise mentioned.

Let us now focus on the action of K*(z) and the regularization problem. We denote
as Ki(z) = ay(K*(2)) = ANTYK*(2)) x 7%, where 7% = v3((v/2)*) is a modifica-
tion factor which satisfies v (v/z) = v5(2/v) as a rational function. Since we have, for
|2) € F(a3'v),

(BIK ™ (2)|9)| 7(qr0) = ¥laz Tv/2) 7, (2.68)

we get a recursion relation for the modification factor vj(f as

:(A‘K]—{_f+1(z)’A)‘MN+1(U) _ ’YZJ\r/-i—l w(qN—HU/Z)_l (2.69)
AES @Dy % ’
which means
1 1—q3v/z
= o/ = N @70

1—qdv/z"!
Hence, we can determines ’yﬁ up to an appropriate initial condition. As concerns the
initial condition, let us look at the unmodified representation mn on the vacuum state
12) € My(v), @ = (80,..., 8™,

N N

_ _ 1—qhv/z 1= v/z
N—1 + _ N 3 _ N 3
(2|AN (K <z>>®>|MN<v>—kHl (ghv/2)" = Hl_qkl ki ey

(2.71)

This expression makes no sense in the limit of N — oo, but we cannot use the same strategy
as in the previous subsection due to the presence of the monomial factor q=»V. Here we
have to regularize it in another way: we formally substitute q”¥ by an arbitrary parameter
K'/2_ Then, in the modified representation 7y, we have

— Kv/z

(@I (2)12) | tno qugv/z T = KR 27
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which leads to the initial condition

K=12(1 - Kv/z)

+
v/z) = 2.73
71( / ) q_l(l—Q3U/Z) ( )
Hence, our regularization gives
K121 - Kuv/z
Vi (v/z) = ( /?) (2.74)

N1 - qgv/z)

Now we can write down the action of the MacMahon representation (w, M(K;v)),

h(A)
K@) = TLASIEEAD) | iy 7 0 (0/272)]A)
k=1
= (KUQ (v/2) il) H G( x”kv/z)il)il\/\) (2.75)

(4,9,k)EA

R(A)+1 (AT 41 1

Z Z H(A(s) ’Kf(qwijkv)\/\(s))’f(qgflv)
k=1  i=1 s=1

x (A®) 4 1| E()AD)| o 1A+ 1), (2.76)

h(A) ((AR))

F(:)|A) = (A®) — 1| F(2)|A®) 1,
k=1 i=1

h(A)
x T MK @ipo) AD) 2oy Wiy @A = 1), (2.77)

s=k+1
where we have introduced the coordinates x;;; = q1 1q§ 1q§ - q{ng:’)f and the generating

function of eigenvalues of the vacuum:

— K*u

WE(KY20) = K712 (2.78)

1—u
We note that j = Az(k) is understood at the r.h.s. of (2.76) and (2.77). The action of
K+ (z) has a manifestly symmetric expression with respect to the permutation of ¢ 2 3 but
E(2),F(z) do not. In [11], it was proved that the actions (2.75)—(2.77) indeed keep the
subspace spanned by plane partitions. This is assured by the g3-shift of spectral parameters

among adjacent Fock representations in the tensor product. One can check that the factor
(A(S)]K_(qlxijkv)|1\(s))|}-(q§—1v) in (2.76) vanishes for s = k — 1 when Agkil) = Agk), which
means that the action of E(z) cannot add the box at (i, Agk) +1,k). On the other hand, the
factor (A(S)\K*(mijkv)|A(S))]}-(q571v) in (2.77) vanishes for s = k 4+ 1 when Agk) = A§k+1),
which implies that the action of F(z) cannot remove the box at (i,Agk),k). Thus the
invariant subspace M(K;v) is generated by acting F(z) on the empty plane partition,
which is the highest weight state, while the action of F(z) keeps M(K;v). In fact, there
is a formula called shell formula [11, 39], which expresses the r.h.s. of (2.76) and (2.77) as

~13 -



a finite sum over the concave and the convex corners of A. Note that 7wy has level (1,q")
as an N-fold Fock representation, however, now the MacMahon representation has level
(1, K¥/?) with a continuous parameter K due to the regularization (2.72).

2.3 Horizontal vertex operator representation

When C = q, the Heisenberg part satisfies

r 2
[y H) = 00 (1 )1~ g5), (279)

and we define the fundamental vertex operator as follows,

VE(2) = exp <:F i h[[:i ﬁr) . (2.80)

The fundamental OPE by the normal ordering is
V)V (w) =s(w/z) : VI(2)V(w) :, (2.81)
where the scattering factor s(z) is

(1-g2)(1—q'2)

= 2.82
@) = T e (2.82)

and satisfies the following formulas as a rational function,
s(z) =s(z71), G(z2) =s(a'2)s(az) "t =Gz (2.83)

We can define the vertex operator representation of level (q,1) by making use of the
fundamental vertex operator as follows:

BE(z) > n(z) =V~ (q*%z) v (q%z) , (2.84)
F(z) = &(z)=V" (q%z)il VT (q_%z:)il , (2.85)
K*(q'22) = o*(2) = VE@H ) VE(@T2) ), (2.86)

where the vacuum state |0) of the Fock space for the horizontal representation is defined
by the annihilation condition

H,0)=0, r>0. (2.87)

The shift of the argument in K*(z) is conventional. Furthermore, for any 7o € C*, we can
employ a more general level (q,72) representation with zero modes e(z), f(2), k*(z),

E(z) = n(2) e(z), (2.88)
F(z) = &(2) £(2), (2.89)
K*(q1%2) = ¢o*(2) k*(2), (2.90)



where the constant part of k¥ (2) is fixed by the second level 7. We denote the horizontal
representation with these zero modes by H = H(k*(2),e(z),f(z)). The zero modes must
satisfy appropriate relations. In fact, we have

e(2)E(q7'2) = k*(q¥1/2%2) (2.91)

from (2.10), so e(z) can be determined from f(z) and k*(z) uniquely

e(z) = k*(q7'/%2)/f(aT'2 \/k+ “122)k(a'/22) /f(a 7" 2)E (q2). (2.92)

Furthermore, we make an ansatz that k¥ (z) is independent of z:
k*(2) = k™(0) =7, (2.93)

so that we can lift the modification factors (2.55), (2.74) of vertical representations to vertex
operators uniquely. Under the ansatz (2.93), there is a one parameter family of constant
solutions to (2.91). However, as we will see in section 4, one cannot keep e(z) and f(z)
constant for the existence of the intertwiner. For example, the level (q, qv ) representation
used in [15] is defined by

k() =q7™,  e(2) = (0/2)"u, ()= (a/2) Nut, (2.94)

where u is the spectral parameter of the representation. With the notation introduced
above, we can express this horizontal representation as F*9) — H( N, (q/2)Nu, (q/2) " Nu1).

It is also useful to introduce the dual vertex operator V*(z) that satisfies

VRV (w)=(1—-w/2)"t: V)V (w):, (2.95)
Vi)V (w) =0 —-w/2): VT (2)V (w):. (2.96)
It is expressed explicitly as
- ° q—q!
VE(z) = exp IF;Aﬂz:FT , A, = W H,, (2.97)
where
3 - , 3 3
=1l =g =Tlw -0 =3 -7 (2.98)
i=1 i=1 i=1
and we have
[Ar, Hg] = Orys 0[:]. (2.99)
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3 DIM R-matrix for MacMahon representations

In this section, we calculate the universal DIM R-matrix in the basis of generalized triple
Macdonald polynomials. It will be diagonal and depend on the ratio of spectral parameters
r = 3, two central charges K, K2 and a pair of plane partitions II, A.

We use the formula for the diagonal (on the vertical representations) part of the uni-
versal R-matrix from [27]:

Ro = (K ® 1210 (10 K)2 @ exp { — N nky(hon @ ) 3, (3.1)

n>1

where K is the second component of the central charge vector, d; is the first grading
operator and h,, are modes of the K¥(z) currents defined as follows:

E*(2) = KT2exp{ Y knhanz™ p. (3.2)

n>1

For the vertical MacMahon representation, we have

K*(2)|,u) =
1— ku 1— i J—1 ku 1— k—1lu
u < q QQ(IS z>< @192 437 Q1C]2q 2
¢g <K1/2;2> H ku i Jtl ku k+1lu H7u)7 (33)
(i,5,k) €T (1_‘11 q2q35> <1 4192 q32> (1 Q1QQq >
K™ (2)|ILu) =
1—q1_iq_jq_’“5) (1 0 ‘e gt )(1 R ’”)
_ z ( 2 3 u 1 2 3 u 1 2 3 u
vo (K7%5) 1] ML),
(4,5,k) €L (1_q1 Y u) (1 a q2 q3 u) (1 a q q u)
(3.4)
and therefore
u' 1—K”
hnIH,u)zm > | ). (3.5)

(,5,k)€Il
The R-matrix in two MacMahon representations is given by (we divide by the vacuum
matrix element to get rid of the overall scalar factor, which can be evaluated separately)

RELK: (g) _ (L u, Ky |@(A, v, Ko|RolIL u, K1)®[A, v, Ka)
A (®7u7K1|®(®7U7K2|R0|®>U>Kl)®|®>U7K2)

(1—K Z qm nj nk 1 Kn Z q 3nk+

n>1 (i,5,k)eA (i,4,k)€Il

1Al 1
— K" K, exp{§ ()=
v n

Z q;niq Z q?aqannc] }

(4,5,k) €Il (a,b,c)EA
AL 1-Kolq igylg7" 1—2¢%5qS
b— k 2,91 42793 ‘11‘I2‘I3
=ik I IT e (Gai'ea ) 1T =5 I e
(i,4,k)€ETI (a,b,c) €A Gimen 7ol 27T (ghoen T pafadas
(3.6)
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where G(x) = (1-q; 'z)(1-g; '2)(1—q5 ‘@)

T (—en) (I=gsr) The result is a rational function, e.g.

O

K1,K2 12 K1,K> _ 7%K1 -
R[[l]]@ (x) = K3 ot RZ[[IH (x) =K, T (3.7)
It reduces to the R-matrix for the Fock representations in the limit of K2 — ¢3 = ﬁ.
Notice that the R-matrix obeys a simple inversion identity
K2,K1 1
Ryp ' (z) = (3.8)

= Ki,Ka, 1\’
R (0 )

which does not allow one to use such an R-matrix for generating new knot invariants [13,
section 12]. It also respects the symmetry of the DIM algebra under arbitrary permutation
of parameters ¢;, which needs to be accompanied by the corresponding transposition of the
plane partitions II and A, e.g. exchange of ¢; and g; corresponds to the transposition in
the (i, 7)-plane.

In what follows, we build intertwining operators of the Fock representations with the
MacMahon ones and verify that the same R-matrix determines their commutation relations.

4 Intertwining operator for MacMahon representation

The intertwiner of the quantum toroidal algebra Uy, (5 [,) is the vertex operator that inter-
twines the tensor product of vertical and horizontal representations with an appropriate
horizontal representation. Graphically, it is represented by a trivalent vertex with two “hor-

izontal” edges and a single vertical edge. As we explained earlier, the center of Uq@(g[l)
is two dimensional, and one defines two levels (1,72) for each representation. In the fol-
lowing, we fix the horizontal representation as the vertex operator representations of free
deformed bosons. It has the unit first level v; = q. On the other hand, we call represen-
tations with «; = 1 vertical representation,” and there are various choices for the vertical
representations, as we saw in the previous section. Note that the condition v; = 1 is kept
intact under taking the tensor product of two vertical representations.

In general, one can define the trivalent intertwiner ¥ : VQH — H’ for a vertical repre-
sentation V with a pair of horizontal representations (H,H') by the intertwining condition

a¥ = WA(a),  Va e Uypa(gh). (4.1)

Because V has a basis {a} that simultaneously diagonalizes K*(z), one can define the
a-component of the intertwiner as an operator between the horizontal representations

U(o)=V(a@e): H—H 6 ecH. (4.2)

Since C7 = 1 and Cy = q for the vertical and the horizontal representations, the defi-
nition of the coproduct (2.25)—(2.28) implies the following intertwining relations for the

"In the case of affine algebra, the evaluation representation is an example of the vertical representation.
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a-components:

KT(2)W = (a| KT (2)]a) UaK T (2), (4.3)
K™ (92)¥0 = (a| K™ (2)]a) UaK ™ (q2),
E(2)0q =Y (BIE(2)|a) ¥g + (oK™ (2)|a) YaE(2), (4.5)
B
F(2)To =Y (BIF(a2)|a) UK (q2) + UaF(2). (4.6)
B

Note that, in the above formulas, operators at the right side of ¥, act on H, while op-
erators on the left side of ¥, act on H’. The matrix elements (3|X|a) are computed in
V. Our tasks are to construct the component of the intertwiner in the vertex operator
formalism (section 2.3) and to specify admissible horizontal representations. Note that we
can typically specify the relative conditions between H and H’ but there seemingly remains
some freedom for each of them. At first, we will construct the vector intertwiner, which is
essentially the same as the one given by [28] before. Then, as a composition of the vector
intertwiner with an appropriate ordering, we will obtain the Fock intertwiner firstly given
by [15]. Finally, using the same strategy we will construct the MacMahon intertwiner from
the Fock intertwiner. The N-fold Fock intertwiner was constructed in [40], but the spectral
parameters of Fock representations were independent in their construction. Our MacMa-
hon intertwiner corresponds to an appropriate N — oo limit of the intertwiner in [40]
when the spectral parameters are correlated so that the infinite tensor product leads to the
MacMahon representation.

In the following, we use the notation x(z) for the zero modes of the vertex operator
representation #H, while x/(z) for those of H', where x = e,f,k*. We also denote the
second level of H,H' by 7, unless otherwise mentioned.

4.1 Vector intertwiner
4.1.1 Definition of the vector intertwiner

Let us consider the intertwining operator for the vertical vector representation V' (v). We
define the n-component of the vector intertwiner by

L,(v)(®) =1([v)p_1 @ e): H—H 6 ecH, (4.7)

where {[v]n—1}nez is the basis of V(v). Explicit intertwining relations for I,,(v) are

E* (2)a(v) = d(a7 ™ "v/2) In(v) K (2), (4.8)
K~ (92)In(v) = ¥(gy"2/v) Ln(v) K~ (q2), (4.9)
E(2)L(v) = (1~ 42)0(¢7v/2) Lnt1(v) + 4 (g; "2/v) () E(2), (4.10)
F(2)(v) = (1 =3 )8(a™ " 0/2) L1 (0) KT (92) + Ln(v) F (2). (4.11)

In the next subsection, we find that there are consistency conditions between the source H
and the target H', namely 7/ = v on the second level and €'(2) = g5 'e(2), f'(2) = ¢2f ()
on the zero modes.
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4.1.2 Construction of the vector intertwiner

We define the operator I, (v) between two horizontal representations as

I,(v) = 2,1, (v), I(v) =Io(¢), nezZ, (4.12)
S o~ oy (a1 ) 1 (a2 o)
Io(v) = exp (— Tz:l Wi ) ( z:: 1o ql > , (4.13)

where z, = z,(v) is a stack of zero modes
n .
20 =1, zn:qgnl_[e(qflv) (n>0), z,=4q5 He 7 (n<0).  (4.14)

Note that I,(v) is a lift of the function (2.36) to the vertex operator, and we can formally
interpret I,,(v) as an infinite product form

H n(q{_lv)fl . (4.15)

j=n+1

Using the fundamental OPE relations

VHTo(o) = LY ) TV () = ST vy

1—q'/2v/z 1—q'/2¢5 12 fv
(4.16)
one can check the following relations for the zero-component Ip(v):
ot (@ 22)lo(v) = P(ar o /z) To(v)et (a~22), (4.17)
In(v)e ™ (a"22) = d(z/v) ™" ™ (a"22)o(v), (4.18)
M) = ) -, Towee) = T )
(4.19)
o) = S (e o) 1, To(z) = e Tafuln()
3
(4.20)

Actually, we have defined Iy(v) so that it satisfies the relations (4.17), (4.18), which imply
~ =7 on the second level. The relative relation for the zero modes is determined from the
intertwining relations for F'(z) and E(z). To see it, let us check the intertwining relation
for the O-component for F'(z). To obtain the relation (4.11), we find that the additional
factor ¢ of F(z) on the left is necessary, compared to F(z) on the right, namely

-1
BEEIE(0) - D)) = (1- ) (qlq> are(ar o) Lot (@22,
(4.21)
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where we have used the relation (2.91) and

S(E ) e =0 () utar vt (129

This is the reason why the vector intertwiner should shift the horizontal zero mode by ¢y L
In the same way, one can check

a3 'n(2)e(2)lo(v) — P (z/v)lo(v)n(2)e(z) = (1 = 2)6(v/2)q5 'e(v) L1 (v). (4.23)

The intertwining relation for general components can be also checked easily by making use
of the relation among the functions G(z), ¥ (z) and s(z).

If we choose the horizontal representation ‘H = Jffﬂ’qN) used in [15], the zero mode
N
sector is defined by (2.94) and H' = ]:;q_’f'u ). Then, the zero mode stack z, = zn(Njulv) is

2
Zn = U/QZ (

Essentially the same vector intertwiner was given in the Appendix of [28], where they

IE:

N 1 N
) (n>0),  zn=/e)"]] (qjl ) (n <0).
1

Jj=n

(4.24)

computed the generating function of the components of the intertwiner (4.7). By the simple
n-dependence (4.12) of the components, it is easy to see that the intertwiner in [28] agrees
with ours.

4.2 Fock intertwiner

4.2.1 Definition of the Fock intertwiner

Let us consider the intertwining operator for the vertical Fock representation F(v). With
the basis {|\)} of F(v), explicit intertwining relations for the A-component ®y(v) are

K" (2)@x(v) =
K™ (q2)@x(v) =

AK*(2)[A) @a(0) KT (2), (4.25)
AIK™(2)[A) @x(v) K (g2), (4.26)

o(N)+1
= D A+ LIER)N) Bapr, (v) + MK (2)]N) @A(v)E(2),  (4.27)
k=1

(
(

)

Z — L[ F(a2)|A) @a-1, (V) K (a2) + PA(v) F(2), (4.28)
=1

where matrix elements can be read from (2.57)—(2.60). In the next subsection, we
obtain as consistency conditions the relative shift 7/ = gy of the second level and
e'(2) = (—qu/z2)e(z), f'(z) = (—qu/z)~'f(2) on the relative shift of the zero modes.
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4.2.2 Construction of the Fock intertwiner

We construct the Fock intertwiner in a parallel way to the construction of the Fock rep-
resentation (section 2.2.2) in contrast to a rather direct way of [15]. In our approach,
taking the tensor product of the vertical representations is realized by merely composing
the corresponding vector intertwiners. And the modification factor 5 (v/z2) is lifted to the
corresponding vertex operator B, (v).

We begin with specifying the modification operator By, (v). This is realized by making
use of the dual vertex operator (2.97) as

By(v) = V™ (a'?q50)VF (a*2g50) ", (4.29)

and satisfies the following relations

Pt (a7%2)Ba(v) = 4B, (v/2) Bu(v)e™ (a7'/%2), (4.30)

Bu(0)e™(a"22) = af; (/o) ¢~ @) Balv),  (431)

(A-atv)) " €)Bulw) ~ Balw)e(z) =0, (432)
(=a50)n()Ba(v) = B85 (/v) Bulv)n(2) = —a0(g5v/2) : () Ba(v) - (4.33)

Note that we can formally interpret B, (v) as an infinite product form

o0
I e et ) (4.34)
ij=1

(4.30) and (4.31) mean that the operator B,(v) exactly corresponds to the modification
factor 37 (v/z) up to the monomial factor g, and this discrepancy leads to the relative level
shift. Furthermore, (4.32) and (4.33) lead to the relative shift of the zero modes. We can
summarize the conditions for By, (v): H — H" as follows

V' =ay, €'(2) = (—agiv/2)e(z), £'(2) = (—agsv/z)"'(2). (4.35)

Now we can define the operator ®,(v) between two horizontal representations as the
following composition® of vector intertwiners with the modification operator B,,(v)

Dy(v) = 23 Pr(v) - H = H' = H, (4.36)

dy(v) = G T ) B,(v), n>L(N), (4.37)

where ﬁ[;] (v) = Iy, (v) 0 --- oIy, (g8 v) and the coefficient G is defined by the normal
ordering”

15 (0) Ba(v) = (61"~ : T3 (0) By (v) : . (4.38)

80ne should be careful of the ordering of constituent vector intertwiners.
9We have defined as A\, = 0 for n > £(\).
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Finally, zx = 2)(v) is a stack of zero modes (see the discussion of the intertwiner zero
modes in appendix C)

LA) g

n(A _
HH(—% w}) e(wi0) = a3V I a7 te(wizo). (4.39)
i=1j=1 (4,7)EX

Note that the definition (4.37) is independent of n > ¢(\) thanks to the relation

: ]ﬂ\n] (v)Bp(v) :=: ]NI[;H_I] (v)Bpyi1(v)

= exp Ty
; T PR i
— H, 1/2, \—r a5
X exp | — —(q/“v T, = , (4.40
2 Gy Taoga—g) ) 0

(4,7)EX

which can be also understood from the formal infinite product form of them. The consis-
tency conditions between the horizontal representations in ®(v): H — H' can be read as

v =ay, €(z)=(—av/z)e(z), f(z)=(—qv/2)"'f(2). (4.41)

Indeed, these zero modes of H' satisfy the relations (2.91). We can confirm that the
operator ®y(v) agrees with the AFS intertwiner [15], and the factor Gy, which is defined
independently of n > ¢(\) by

(@) Ba(v) = (@)1 1 (@) Ba(w) -, (4.42)

plays the same role as ¢y in [15]. An explicit form of G is

g)\ — H <1 . ql—ax(D)qéA(D)'i‘l) — ql_”()‘/)61721()‘)""|)‘|C)\7 (443)
Oex

cy = H (1 - q?(m)q;lk(m)_l) . (4.44)
Oex

N
If we choose the AFS type horizontal representation H = ]_-1(Lq,q ), where the zero mode

action is defined by (2.94), then H' = J:S%ZNH), and the zero mode stack z) = z)(N;ulv) is

o ) X N+1
2\ (N ulv) = HZ,\,L-(N-I- 1; —ghvulgy 'v) = H ~q5 'vu) H ( —1_i—1 )
@

i=1 i=1 j=1 D)

=gV (o) T (aorfv!

(3,7)EN

)NH : (4.45)

where n(\) = Zz( )(j —1)Aj and z; 5 = q1 1Q3 h
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One can check the Fock intertwining relations by making use of the vector intertwining
relation. For example, to check the intertwining relation with E(z), one can compute as
follows:

n

E(2)@x(v) — [] ¥(ai a3 2/v) B, (2/v) ®A(v)E(2)

s=1
n k—1 ~ N B
= 230" > (—adkv/2) [] (e a3 2/v), (v) - I, (g5 2v)
k=1 s=1

% [[B(2), Iy, (5~ o) IkDney (@50) -+~ I, (@5 0) Bu(v)

+ G [T dlar ™ ab>2/0) I (0) (E(2) Ba(v) — B~ (2/v)Ba(v)E(2)) . (4.46)
s=1

where we have introduced the “weighted” commutator by
(14, Blle = AB — (g7 gk~ 2/v)BA, (4.47)

and the zero mode e(z) of F(z) should be adjusted appropriately according to the space
on which E(z) acts. First of all, the last term on the r.h.s. vanishes due to the factor
(g5 "2 /v)8(ghv/2). The intertwining relation for the vector intertwiner tells us that

[E(2), Iy (a3~ o)k = (1 = a2)8(@zxv/2)a " e(2) Iy 11 (a5~ ) (4.48)

Hence, we obtain
E(2)0x(v) = (A[K™(2)[A) ®A(v)E(2)
=(1-q)ag™ ¢’ Z —qg5v/2) H g Mgz o), (0) - I, (g5 )

% 3/ 2)e(2)Ing 1125~ 0) ey, (650) - I, (0 ~"0) Ba(v)
Ak + LE() [N @1, (0). (4.49)
k=1

As concerns the intertwining relation with F'(z), one can compute as follows:

F(2)@5(0)=2A(0)F(2) = 206" Y (=ag5v/2) 7' Ix, (v) - T, (a5 20)
k=1

x[F(2), I, (@5 0)] Ly, (650) - I, (65 10) Ba(0) 422G I (0) [F(2), Ba ().
(4.50)

Note that this time we do not have to use the “weighted” commutator. Again, the last
term vanishes and, by substituting the intertwining relations for the vector intertwiner, we
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obtain

F(2)®x(v)=Pa(v) F(2)

= (1-gz G023 (—agkv/2) "My, (v) - I, _, (g5 2v)
k=1

x8(q~ o/ 2)E(2) -1 (g5~ ) K (q2) Dy, (650) -+ I, (5 0) Bu(v)

= (g )er0 S adbo/e) ™ T] e a5 /) B /) (0) T (ah0)

k=1 s=k+1

x0(q apo/2)f (2)In-1(a5 ™ 0) Dny (a50) - I, (657 10) Ba(v) K (a2)
(Ae=LF(2)|[\) @r-1, () K (q2). (4.51)
k=1

4.3 MacMahon intertwiner
4.3.1 Definition of the MacMahon intertwiner

Let us consider the intertwining operator for the vertical MacMahon representation
M(K;v). We define the MacMahon intertwiner Z(K;v) by the following condition

E(K;v): M(K;v) @H = H', a® =WA(a), ac Up(gl), (4.52)
and the A-component of the MacMahon intertwiner by
Er(0)=Z(A)®e): H—>H 6 ecH, (4.53)

where {|A)} is the basis of M(K;v). Explicit intertwining relations for =, (K;v) are

K" (2)Ea(v) = (AJKT(2)|A) Ea(v) KT (2), (4.54)
K™ (q2)2a(v) = (A|K™ ()!A) Ea(v) K™ (92), (4.55)
E(2)Ea(v) = Z(A+ 1| (2)[A) Epn® () + (AET(2)A) Ea(v)E(2),  (4.56)
F(2)2a(v) = (A= 1{7|P(q2)]A) E, 10 (VK7 (92) + Ea(v) F (2), (4.57)

where the matrix elements can be read from (2.75)—(2.77). In the next subsection, we
specify the constraint on the relations among the zero modes.
4.3.2 Construction of the MacMahon intertwiner

We construct the MacMahon intertwiner in the same way as the construction of the Fock
intertwiner in section 4.2. We begin with specifying the vertex operator I',,(K;v) that pro-
duces the modification factor v¥(z/v) given by (2.74) in the OPE relation. This operator
is realized by

Iy (K;v) =exp (Z ]TAT%W];K(CI_UQ v)" ) exp (Z fw(ql/%)—r) :

r=1
(4.58)
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and satisfies the following fundamental relations

VT (2)Ty (K v) = exp (Z i%(q”v/z)’") DV ()T (K5 0) (4.59)
r=1
Lo (K;0)V™ (2) = exp <— Z 1%15(q3/2v/z)r> T (K50)Vo(2) . (4.60)
r=1

Note that we can formally interpret I',,(K;v) as an infinite product form as

o0
o
S [ B ) ROy () (4.61)
ivjvkzl

Then we find the following relations:

K1/2

n

Pt (a2 (K ) = Yo (v/2) Ta(K;0)e" (a71%2), (4.62)

K1/2
Lo(K;v)e™ (a'%2) = Yo (2/0) 7 @7 (422) D0 (K 0), (4.63)

n

which mean that the operator I',(K;v) produces the modification factor v;=(v/z) up to a
monomial factor. This discrepancy corresponds to a shift of the second level:

N =g Y2y, (4.64)

Furthermore, the normal orderings with £ and n are evaluated to give

E()T (K ) = W ()T 0) -, (4.65)
g2 /05 43) o

P 0)E(2) = ((fqg,f'z //vjqu)) ETa(K0) - (4.66)

BT (K 0) = m ()Tl 0) -, (4,67)

(95"2/v343)00 .

(K=12/v;q3)00

In order to obtain the relation F'(z)T',(K;v) — ', (K;v)F(z) = 0, we need the relative shift
(a0v/2:03)0c ] (K7102/0303)00 _ Baa(akC0/2)

— = — : (4.69)
(Kqv/2303)00 | (dg3"2/01g3)00  bas(dazv/2)

where the theta function 64, (2) is defined by (B.1). Note that this in turn determines the
relative shift for e(z). As a result, we have

045(aKv/2)

045 (ag5v/2)

K72 04, (q5v/2)
q" b4y (Kv/2)

Ly (K;0)n(z) = n(z)In(K;0) : . (4.68)

f(Z)Fn(K; 2)) - Fn(K;v)§<Z) =0, (470)

N(2)Cn (I 0) =7, (2/0) Tn(K50)n(2) = 0. (4.71)
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Note that (4.71) vanishes by itself, while the corresponding equation (4.33) vanishes only

after multiplying with the factor 1 (¢g; " 2/v). We can summarize the relative condition

for T'),(K;v): H — H” as follows

e (5) — K1/2 9q3(qg’l)/2)e 5 M) — M .
()= = 9, (ko) T E =g (e G (4.72)

Now we can define the operator Z5 (K;v) between two horizontal representations as a
well-ordered stack of the Fock intertwiners with the vertex operator I'y,(K;v)

EA(K;v) = 2AZA(K50) : H = H — H, (4.73)
EA(K;v) = MP(E) DT ()0, (K v), n > h(A), (4.74)
where the factor M[(K) is defined as'®
B (0) (K v) = MU (E) ™1 &L ()P (K 0) <, (4.75)
() = B,y () 0+ 0 By (g ), (4.76)

and zp = zp(K;v) is the contribution from the zero modes,

h(A) 1/2 k—1
K7/=0g5(a3~ /ijn)
A (K;v) = | | — e(z;kv). (4.77)
E=L (1g)en ] fas (K /i)

Note that the definition (4.74) is independent of n > h(A) thanks to the relation

B ()T (K 0) i=2 B ()T (K 0) - (4.78)
H v\ 1o . 1-KT
— H, L, . 1-K-
x exp | — Z W(qlmv) Z Tk T T , (4.79)
r=1 (i.5,k)EA "

which can be also understood from the formal infinite product form of them. The relative
condition of horizontal representations for 25 (K;v): H — H' can be read as

/ 1/2 ’ 172 g5 (v/2) / 045 (aKv/2)

v =K'Y2y, €(z)=KY We(z), f'(z) = Wf(z), (4.80)
where we have used the formula in appendix B. Indeed, these zero modes of H’ satisfy
the relations (2.91) as long as those of H satisfy the relations (2.91). Hence, the operator
ZA(K;v) exists for each horizontal representation H.

The intertwining relations for =, (K;v) essentially follow from those for the Fock in-
tertwiners. A proof can be done almost in parallel with the computations we have shown
in the check of the intertwining relations for the Fock intertwiners from those of the vector
intertwiners.

19We have defined as A™ = & for n > h(A).
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5 MacMahon R-matrix from the commutation of intertwiners

Following the technique developed for the Fock representations, we can evaluate the com-
mutator of two intertwining operators Zy(K; z), just constructed. For the moment, we
omit the zero modes. The result is

T(K17K2|Z1722)X
K1,K:
i (2)
i =i —k
AL O (K2§%q1 "2y7qs ) O (%q%qé’qﬁ)

L S || — n
(igmen g (%q{ ‘07 a5 ) (abc)en Vas (Kf %Q‘fqg%f)

En(K1; 21) 20 (Ko 22) = Ep (K2 22) 2 (K 21)

)

(5.1)
where
= ex 1 1 Q " _ KN _ N _
Tuma Ko Kelonza) =00 |3 o ((2) a-xrma-rp)
—() <1—K?><1—K2">) . (52)

and 0y(z) = [[150(1—¢" ) (1—¢*z)(1—¢* 1z~ 1). The extra theta-functions in eq. (5.1) are
in fact preciselyicancelled by the zero modes of the intertwiners. Notice that they depend
on the states II or A separately (though the dependence on the both spectral parameters
is nontrivial).

We conclude that the commutation relations for the intertwiners that we have con-
structed in section 4 indeed feature the MacMahon R-matrix from section 3. The whole
picture of the intertwiners and R-matrices which we have presented in this paper is there-
fore consistent.

6 Conclusions

In this paper, we have introduced novel intertwining operators for the DIM algebra. These
operators feature the MacMahon representations (representations on plane partitions),
whose role in the DIM algebra is analogous to the role of free field representations for
(quantum) affine Lie algebras. Our intertwining operators generalize the refined topolog-
ical vertices [16-23]: they depend on a pair of ordinary Young diagrams and on one 3d
Young diagram, and on an extra parameter: the central charge associated with the MacMa-
hon representation. For quantized values of the central charge, our vertices reproduce the
refined topological vertices, or a “strip” combination thereof.

We also write down explicitly the DIM R-matrix acting on the tensor product of
MacMahon representations (assuming their central charges are aligned along the preferred
direction) and prove that it determines the commutation relations of the intertwiners.

The next logical step on our way is to build the generalization of the network for-
malism [8, 41] with some legs having the MacMahon representations and investigate the
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resulting partition functions and corresponding constraint algebras [8, 41-44]. It is also very
interesting to understand if there is a corresponding Type IIB string construction. Since a
pair of central charges of the DIM representation corresponds to the (p, g)-charges of the
5-brane in Type IIB, it is not immediately clear what would the MacMahon representation
with an arbitrary (non-integer) central charge correspond to.

Using the technique of [45, 46|, one can derive the (g,t)-KZ equations for the DIM
intertwiners containing not only Fock representations, but the MacMahon ones too. How-
ever, in this approach, the MacMahon representations are restricted to lie only on the
“vertical” legs. It would be interesting to lift this restriction, but, to this end, one needs
an intertwiner of several MacMahon representations, which have not yet been described.
In [13], we found that the DIM R-matrix Ry, (z) for the Fock representations appears in
the difference equation

Ny, (%x) - (z)é(Alﬂul)R,\u(m)_lN,\“(x), (6.1)

satisfied by the Nekrasov factor Ny, (z);

Nl = 11 <1 B quthi_u;rH) 11 (1 - xq*“i“*lt”ﬂui)

(,5) €A (i,)En

11—t .
=exp |— Z nixn Z(qn(/\i—uj) _ 1)7571(]—1) ] (6.2)

s RUC A

It is an interesting problem to solve a generalization of (6.1) with Ry, (x) replaced by
the MacMahon R-matrix RgXKZ(x). The solution should be regarded as a generalized
Nekrasov factor NI{I( /{’K2 (x). It is natural to expect that the factor is related to a norm of
the triple Macdonald functions [25].

Another interesting aim might be the generalization of our story to the case of MacMa-
hon modules with nontrivial asymptotics, i.e. to 3d Young diagrams with nontrivial “ends”
along the coordinate axes [10, 11]. We think one can use the same strategy by making a
judicious choice of the spectral parameters of constituent Fock representations. Thus, the
formulas should be quite similar to those presented above.

Finally, one can try to build the most general representation of the DIM algebra, in
which the both central charges (not just one, as in the MacMahon case) are completely
arbitrary. To our knowledge, such representations have never been studied, so it might
lead to some unexpected surprises.
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A Conventions and useful functions

The intriguing triality of the quantum toroidal algebra Uq@(g[l) becomes manifest, when
we use the parameters (q1, q2,¢3) with g1g2g3 = 1. These parameters are also natural from
the point of view of plane partitions used in the MacMahon representation. In this paper,

we use the following convention:!!

q=0""=¢q @=0'qg'=t" @g=q¢=t/q (A1)

The parameters (q,t) can be identified with those appear in the Macdonald functions. The
formulas for the vertex operator representation can be expressed neatly by introducing the
following factor:

3 3

3
k=1 - =T]@& - D= ") (A.2)
=1

i=1 i=1
The function

(- ') =g ') (1 —g5'2)

—1y
O e T s vy G(:)G(z!) = 1. (A.3)

derived from the structure function g(z,w) = (2 — qw)(z — qw)(z — gzw) of Uq,a(g[l)
appears in the formula of the MacMahon representation. Starting from the fundamental
rational function

1—gqy 1z

82— y(as/2) 7, (A4)

Y(z) =q

we can reconstruct the function G(x) as follows:

D) =v(Wla o) Gl) = ()l ) (A.5)

These functions appear in the generating functions of the eigenvalues of K*(z) in the
vertical representations. On the other hand, in the vertex operator representation, the
function G(z) arise as

G(z) = s(q7 " 2)s(q2) " (A.6)
from the scattering factor

(1-g2)(1-q7'2)

&) = 01 o)

(A7)

in the OPE relation of the vertex operators.

"' The parameters g2 and g3 are exchanged, compared with [26] and [11].
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B Properties of 8-function

We naturally encounter the following f-function with parameter p = g3 = ¢ in the con-
struction of the MacMahon intertwiner:

0p(2) = (D P)oo(2: D)oo (P2 5D)oe = (1 — 2) [ (1 = pM) (X = pF2)(1 = p¥27"),  (B.1)
k=1
(21P)oc = [ J (1 = P*2). (B.2)
k=0

From the Jacobi triple product formula
= S pEeD (B.3)
neL

we see 0,(z) is an elliptic function with quasi double periodicity. In this paper, only ratios
of §-functions appear in the formula, for example see (4.69), hence we can omit the factor
(p; p)oo in (B.1) safely. The function 6,(z) satisfies the following relations

Op(z71) = =271, (2), (B.4)
0,(zp") = (—2) "p 2 VG, (2), nel. (B.5)

C Zero modes of the Fock intertwiner

In this section, we write down the zero modes of the Fock space intertwining operators [15]
in a more convenient notation.

The horizontal Fock representations are characterized by the integer values of the two
central charges: K1 = q3 = + and Ko fN, and by the complex spectral parameter u. The
zero modes of the Fock representatlon of the DIM algebra should therefore be written as
operators acting on the vectors | N, u). Let us introduce an operator P;, which by definition
gives the eigenvalue u when acting on |N, u):

PN, u) = u|N,u). (C.1)

Let us write the DIM generators 2 (z), 1)*(2) from [15] in terms of Pi, and ¢; = log,, Ko:

2 (2) = Py <\/§z) ), (C.2)
RS e, (©3)

v = (D)7 ot (©4)
@)= (1) e, (C.5)

where 7(z), £(z) and ¢*(z) denote the exponentials of the free boson (non-zero) modes.
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The intertwiner ¥ (w) with the vertical Fock representation of central charges K; = 1,
Ky = 3 and the spectral parameter w changes both the spectral parameter and the central
charge of the horizontal representation. To account for this, we introduce the operators (1
and ey canonically conjugate to P, and ca:

0
Q1|u, N) = u%]u, N), (C.6)
eau, N) = |u, N +1). (C.7)

The intertwiner is then given by

Dy(w) = ea(—w)@ ] <(—wP1) (wqjétéi>‘cz‘1> &, (w) (C.8)

(4,7)EN

where @ (w) contains only nonzero bosonic modes.
It is easy to derive the commutation relations of the intertwiners with the generators,
as well as between the intertwiners themselves from the canonical commutation relations

Q1P = P(Q1+1), (C.9)
coeg = ea(ca + 1). (C.10)

Notice that only part of the zero modes in eqs. (C.8) depends on the diagram living
in the vertical Fock module: the essential part (conjugate to P; and ¢3) is independent of
the diagram.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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