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ABSTRACT: The singular behaviour of QCD squared amplitudes in the collinear limit is
factorized and controlled by splitting kernels with a process-independent structure. We use
these kernels to define collinear functions that can be used in QCD resummation formulae
of hard-scattering observables. Different collinear functions are obtained by integrating
the splitting kernels over different phase-space regions that depend on the hard-scattering
observables of interest. The collinear functions depend on an auxiliary vector n* that can
be either light-like (n? = 0) or time-like (n? > 0). In the case of transverse-momentum
dependent (TMD) collinear functions, we show that the use of a time-like auxiliary vector
avoids the rapidity divergences, which are instead present if n? = 0. The perturbative com-
putation of the collinear functions lead to infrared (IR) divergences that can be properly
factorized with respect to IR finite functions that embody the logarithmically-enhanced
collinear contributions to hard-scattering cross sections. We evaluate various collinear
functions and their n* dependence at O(ag). We compute the azimuthal-correlation com-
ponent of the TMD collinear functions at O(aZ), and we present the results of the O(a3)
contribution of linearly-polarized gluons to transverse-momentum resummation formulae.
Beyond (9(04%) the collinear functions of initial-state colliding partons are process depen-
dent, as a consequence of the violation of strict collinear factorization of QCD squared
amplitudes.
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1 Introduction

The perturbative QCD calculations of a wide class of hard-scattering observables lead to
logarithmically-enhanced contributions that are due to the radiation of soft and collinear
partons (see, e.g., refs. [1, 2] and references therein). These large contributions have to be
computed at high perturbative orders in the QCD coupling ag, and possibly resummed to
all orders in perturbation theory. For instance, in the case of hadron collisions two topical
observables that can be treated through resummation are the transverse momentum of
produced high-mass systems [3] and the N-jettiness shape variable [4].

In this paper we consider the logarithmically-enhanced contributions produced by
collinear radiation. These contributions originate from the singular behaviour of QCD
scattering amplitudes in the multiparton collinear limit. At the squared amplitude level,
the singular behaviour is factorized and controlled by perturbative splitting kernels that
have a process-independent structure [5-12].



We exploit collinear factorization of the squared amplitudes to introduce collinear func-
tions that contribute to QCD resummation formulae for hard-scattering cross sections. The
collinear functions have a process-independent structure and are obtained by integration
of the splitting kernels over the observable-dependent phase space. Different phase-space
constraints lead to corresponding collinear functions for different hard-scattering observ-
ables. Specifically, we consider differential collinear functions that upon integration lead
to transverse-momentum dependent (TMD) collinear functions and beam functions, which
can be used for transverse-momentum and N-jettiness resummations, respectively.

Our collinear functions depend on an auxiliary vector n*, which is future-like (i.e.,
n? > 0). Such auxiliary vector directly appears in the expressions of the splitting kernels
for collinear factorization of the squared amplitudes. Applications of collinear factorization
typically use a light-like (n? = 0) auxiliary vector. We also use a time-like (n? > 0) auxiliary
vector. In the case of TMD collinear functions we show that the time-like vector avoids
the presence of rapidity divergences, which instead occur if n? = 0 [13-17].

Our collinear functions are, in general, process dependent for radiation from initial-
state colliding partons. Their process dependence originates from the violation of strict
collinear factorization [12], namely, from the corresponding process dependence of the
splitting kernels for amplitude factorization in the space-like (SL) collinear region. The
SL collinear functions are actually process independent up to (’)(04%), and their process
dependence only occurs at higher perturbative orders. In the case of radiation from final-
state fragmenting partons, the collinear functions are process independent as a consequence
of the validity of strict collinear factorization in the time-like (TL) collinear region.

In the TL region our TMD and beam functions with n? = 0 are equivalent to the
corresponding parton level functions defined by using Soft Collinear Effective Theory
(SCET) [18-21]. This perturbative equivalence directly follows from the relation [22] be-
tween SCET collinear functions and collinear factorization of squared amplitudes. In the
SL region, setting n? = 0 a similar equivalence applies up to O(a%).

The collinear functions can be computed order-by-order in ag through the phase-space
integration of the corresponding perturbative expansion of the splitting kernels. The per-
turbative computation of the collinear functions lead to infrared (IR) divergences that can
be properly factorized with respect to the IR finite contributions to the hard-scattering cross
sections. In this paper we discuss these perturbative features, and we present the explicit
calculation at O(a2) of the azimuthal-correlation components of the collinear functions. In
particular, from our calculation of the TMD functions we derive the O(ad) contributions
of linearly-polarized gluons to transverse-momentum resummation, and we find agreement
with the results of independent calculations for both the SL [23, 24] and TL [23] regions.

The outline of the paper is as follows. In section 2 we recall the known structure of
the collinear contributions to the formalism of transverse-momentum and N-jettiness re-
summations. Section 3 is devoted to introduce the collinear functions. We first recall the
collinear factorization formula of QCD squared amplitudes, and then we define the differ-
ential collinear functions, the TMD functions and the beam functions. The perturbative
features of the SL collinear functions are illustrated in section 4. We perform the explicit
calculation of the collinear functions at O(ag), we present a detailed discussion of their



dependence on the auxiliary vector n*, and we explain their IR factorization structure. In
section 5 we carry out the calculation at O(a) of the azimuthal-correlation component
of the SL collinear functions, and we present the ensuing results for the contribution of
linearly-polarized gluons to transverse-momentum resummation. Section 6 is devoted to
the perturbative features of the TL collinear functions, including the O(a3) calculation of
the their azimuthal-correlation components. A brief summary of the paper is presented in
section 7.

2 Transverse-momentum and IN-jettiness resummations

In this section we briefly recall some main features of perturbative QCD resummations
for two ‘classical’ hard-scattering observables. We consider transverse-momentum [3] and
N-jettiness [4] resummations and, in particular, the structure of the corresponding contri-
butions due to partonic collinear radiation.

QCD transverse-momentum resummation is fully developed for the inclusive-production
processes of high-mass colourless systems (e.g., vector and Higgs bosons) in hadron-hadron
collisions. In the kinematical region where the transverse momentum ¢7 of the produced
system is much smaller than its invariant mass M, the perturbative QCD computation
of the gp-differential cross section leads to large logarithmic contributions of the type
In"(M?/g2). The resummation procedure organizes and systematically sums these large
contributions to all perturbative orders in the coupling ag.

In the following we specifically refer to the transverse-momentum resummation formal-
ism of refs. [3, 25-27]. Other equivalent formulations of transverse-momentum resumma-
tion, based either on TMD factorization [14] or on SCET methods [18-21], are presented
and discussed in refs. [14-17].

Transverse-momentum resummation [3, 25-27] is conveniently carried out in impact
parameter space, where the impact parameter vector b is the Fourier conjugate variable
of the transverse-momentum vector qr. The differential cross section do/d*qr is then
obtained by inverse Fourier transformation of the result in b space.

We directly consider and refer to the notation in ref. [27] (see, in particular, egs. (6)—
(16) therein). The b space cross section at bM > 1 is expressed in terms of the parton
distribution functions (PDFs) of the colliding hadrons and of perturbatively calculable
factors. In this paper we are mainly interested in the process-independent partonic factors
Ceq (see egs. (11) and (14) in ref. [27]). Here the subscript a (a = ¢, ¢, g) denotes the type
of initial-state colliding parton, while the subscript ¢ (¢ = ¢, q, g) refers to the parton that
produces the high-mass system through hard scattering. The factors C,, have a definite
dynamical origin [25]: they are due to the initial-state partonic transition a — ¢+ X
produced by final-state partonic radiation (X) that is collinear to the parton a. In the
context of formulations of transverse-momentum resummation that are based on SCET
methods, the factors C,, are directly related to the so-called ‘matching coefficients’ between
TMD parton distributions and customary PDFs.

The quark collinear function Cy, depends on the longitudinal-momentum fraction z
that is transferred in the collinear-radiation process, and it is computable as a power series



expansion in ag. We write its perturbative expansion as follows
« > fag\™
Con (z105) = 8,081 2)+ L e () + X (2) el ). (21)
m=2

The antiquark collinear function Cg, is directly related to the quark collinear function
through the relation Cg, = Cyg, which follows from charge conjugation invariance.

The gluon collinear function C/7 has a richer structure since it also depends on the
Lorentz indices p and v of the gluon that produces the high-mass system (u and v are the
Lorentz indices of the gluon in the hard-scattering amplitude and its complex-conjugated
amplitude, respectively). The structure of the partonic tensor is [26]

Cte (2301, p2, by as) = d"(p1, p2) Cya(z; as) + D" (p1, p2; b) Gya(2; as), (2.2)
where
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(2.4)

The light-like vectors p{ and p4 (p? = 0, i = 1,2) in eq. (2.2) denote the momenta of the
initial-state colliding partons or, equivalently, the directions of the momenta of the two
colliding hadrons as treated in the massless approximation. In a reference frame in which
the colliding hadrons are back-to-back, we can consider light-cone coordinates and we have
¢ = (p{,01,0) and pi = (0,01,p;). The momentum b* = (0,b,0) in eq. (2.4) is the
impact parameter vector in the four-dimensional notation (b*b, = —b?,p1b = p2b = 0).
The gluon collinear functions Cy, and Gy, in eq. (2.2) have the following perturbative

expansions:
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Charge conjugation invariance implies the relations Cy, = Cyz and G4q = Ggz. We note
that the expansion of Cy, in eq. (2.5) is completely analogous to that of the quark function
Cyq in eq. (2.1). At variance, the perturbative expansion of Gy, in eq. (2.6) starts at O(ag).

The structure of eq. (2.2) is the consequence of collinear correlations [26] that are
produced by the evolution of the colliding hadrons into gluon partonic states. In partic-
ular, the contribution of the tensor factor D*¥ in eq. (2.2) leads to spin and azimuthal
correlations [26, 28] in the hard-scattering production of the observed high-mass system at
small values of ¢r. This contribution is sometimes denoted as the contribution of linearly-
polarized gluons [29] to TMD factorization and transverse-momentum resummation. The
size of the azimuthal correlations of collinear origin is controlled by the perturbative func-
tion Gyq in eq. (2.6). The quark collinear function Cy, in eq. (2.1) and the gluon collinear
function Cy, in eq. (2.5) do not lead to spin- and azimuthal-correlation effects.



We recall [25, 27] that the quark and gluon collinear functions in eqgs. (2.1) and (2.2)
are precisely defined (and computable) modulo the following resummation-scheme trans-
formations:

Cya(z;08) = hy(as) Cga(z; as), (2.7)
Cg:(z; ag) — hg(as) C’s’f:(z; ag),

where hg(ag) = 1+ > 00 (ag/m)™ pm (a = q,g) is an arbitrary perturbative function
that does not depend on the momentum fraction z. As a consequence of the arbitrariness
in egs. (2.7) and (2.8), the explicit results for Cy, and C}g have to be accompanied by
the specification of a resummation scheme. In the computation of the gr cross section,
the resummation scheme dependence of the collinear functions cancels a corresponding
dependence of the other factors that contribute to the transverse-momentum resummation
formula [25].

The azimuthally-uncorrelated quark and gluon collinear functions Cy, and Cy, in
egs. (2.1) and (2.5) are known up to next-to-next-to-next-to-leading order (N3LO) in QCD
perturbation theory, namely up to (’)(ag). The first process-independent computation of
the next-to-leading order (NLO) terms C’éé)(z) and Cg(,}b)(z) was carried out in ref. [30]. The
next-to-next-to-leading order (NNLO) terms C(g(zl) (z) and Céz)(z) were first computed in
refs. [31-34]. Subsequent independent computations of these NNLO terms were presented
in refs. [23, 35, 36]. The N3LO terms C(gi) (z) and C’éi) (z) have been computed very recently
and independently by two research groups [37-39].

The azimuthally-correlated gluon collinear functions Gg,(2; ag) in egs. (2.2) and (2.6)
are known up to O(ad). The first-order coefficients ng) are resummation-scheme indepen-
dent, and they read [26]

1—-=2

Gl (2) = C, —,  a=qy (2.9)

where C, is the Casimir colour coefficient of the parton a, with C; = Cp = (N2 —1)/(2N.)
and Cy = Cy4 = N, in SU(N.) QCD with N, colours. The second-order terms Gé%)(z) have
been obtained more recently by the independent computations of refs. [23] and [24].

The transverse-momentum resummation formalism can be extended to processes that
are related by ‘kinematical crossing’ to the hadroproduction processes of high-mass colour-
less systems. Crossing related processes are double-inclusive hadron production in ete™
annihilation [14, 40] and single-inclusive hadron production in deep-inelastic lepton-hadron
scattering [14, 41, 42]. The corresponding transverse-momentum resummation formu-
lae [14, 40-42] are analogous to that for hadron-hadron collisions and they involve a main
difference through the replacement of the PDFs of the colliding hadrons with the parton
fragmentation functions (PFFs) of the triggered hadrons in the final state. In the resum-
mation formulae the PFFs are convoluted with computable perturbative functions that
embody the effect of QCD radiation collinear to the final-state partons that are produced
by the hard scattering and that fragment in the triggered hadrons. These perturbative
functions for time-like (TL) collinear evolution have the same structure as the initial-state



collinear functions Cyq,Cyq and Gyq in egs. (2.1), (2.2), (2.5) and (2.6), and they are
denoted by C'qTaL, C;FaL and Grg% in this paper.

The azimuthally-uncorrelated quark and gluon collinear functions CqTaL and C’gTaL are
known up to the N3LO. The NLO terms C;I;L(l) (z) and C’;FaL(l) (z) were obtained in refs. [41]
and [35]. The NNLO terms C(;I;L(Q)(z) and C;L(z) (z) were computed in refs. [35] and
refs. [23, 36]. The N3LO terms C;L(g)(z) and C’;L(:s) (z) have been obtained very recently
through the independent computations of refs. [39, 43]. The azimuthally-correlated gluon
collinear functions GEC{J have been evaluated up to O(ad). The first-order coefficients G;}} )

are resummation-scheme independent, and they are

Gl (z) = Ca 2(1 - 2), (2.10)
Gt (z) = —Tr 2(1 — 2), (2.11)

where Tp = 1/2. The second-order coefficients Grgl} @ were computed in ref. [23]. Our
independent computation of GgTaL @ (see section 6.3) confirms the results of ref. [23].

In the case of hadron-hadron collisions, the formalism of transverse-momentum re-
summation can be extended to production processes of high-mass colourful systems (i.e.,
systems that contain particles with QCD colour charge). Example of such extension are
those for the associated production of a (vector or Higgs) boson and a jet [44-49] and for
the production of heavy quarks [50-52]. In particular, in the case of the hadroproduction
of a heavy-quark pair, the transverse-momentum resummation formalism is fully developed
up to next-to-next-to-leading logarithmic accuracy and through the explicit computation
of all the resummation factors up to NNLO [50, 51, 53, 54].

The extension from colourless to colourful systems produces significant differences
within the formalism of transverse-momentum resummation. These differences are ba-
sically due to QCD radiation from the colourful particles of the observed high-mass system
and, hence, they are mostly related to soft radiation at wide angles with respect to the direc-
tions of the initial-state colliding partons. Beyond the NNLO level of perturbative accuracy,
non-abelian soft wide-angle interactions of absorptive origin lead to violation of strict (i.e.,
process-independent) factorization of collinear radiation from the initial-state partons [12].
Therefore, the quark and gluon collinear functions Cy, and Cl} in egs. (2.1) and (2.2)
are expected not to be process-independent contributions to transverse-momentum resum-
mation for the production of high-mass colourful systems. They are certainly process
independent up to O(ad) (see the accompanying comments to eqs. (3.24) and (3.25) and
section 4.2), but they can acquire process-dependent structures starting from some higher
perturbative orders [12, 55, 56] and consistently with studies on the violation of generalized
TMD factorization [57, 58].

The N-jettiness 7 [4] is a shape variable that measures the amount of radiation that
accompanies the hard-scattering production of N distinct hadronic jets in hadron and
lepton collisions. The limit 7,y — 0 corresponds to an almost exclusive configuration of
the N jets. In this limit, or generically in the region where 7y < @ (@ is the typical
hard scale of the process), the perturbative computation of the N-jettiness cross section



produces large logarithmic contributions of the type In(Q/7x). These large contributions
can be organized and treated by the N-jettiness resummation formalism.

The N-jettiness resummation formula [4] has a process-independent structure and it
includes various factors that embody the effect of the radiation of soft and collinear partons
in the final state. In the case of hadron collisions one of the factors in the N-jettiness
resummation formula is the beam function of the colliding hadron [59]. The beam function
is due to QCD radiation that is collinear to the direction of the initial-state colliding hadron
(parton), and it depends on the ‘transverse virtuality’ of the parton that enters the hard
scattering after collinear evolution.

At small values of transverse virtuality ¢ (which correspond to small values of the N-
jettiness 7x) the beam function B.(z;t) of the parton c is related to the customary PDF
fa of the parton a through the following convolution structure [59]:

L de ~
Busit) = Y [ Tt aslyid)) Sule/os i), (212

where z is the fraction of the hadron longitudinal momentum carried by the parton c,
and pp is the evolution scale of the PDF f,. The convolution kernels Ia (c,a = q,q,9)
are known as ‘matching coefficients’ of the beam function and they are perturbatively
computable as power series in the QCD coupling ag.

The matching coefficients fca for N-jettiness resummation and the collinear functions
Ceq in egs. (2.1) and (2.5) for transverse-momentum resummation originate from the same
underlying dynamics, namely from QCD radiation that is collinear to the colliding parton
a. Note that the radiation that contributes to the beam function is integrated over the
entire azimuthal region and, consequently, in the case of N-jettiness resummation there is
no analogue of the azimuthal-correlation function Gy, in eq. (2.6).

In view of the renormalization properties of the beam function [59] it is convenient
to consider its Laplace transformation with respect to the transverse virtuality. Corre-
spondingly, we introduce the Laplace transformation I., of the matching coefficient I, in
eq. (2.12), and we define

+o0 ~
ICQ(Z,O'; MF,OCS(M%‘)) = /O dt e Ica(zyt§ ,U'F;OJS(,U/%))v (2~13)

where o is the Laplace space variable that is conjugated to the transverse virtuality t.
The matching coefficients I, have the following perturbative expansion:

« 2 > « 2 "
Ica(z7U;MFuaS(/~L%')):5ca5(1_2)+S(;_LF)LECLI) (27(7; /~LF)+Z (S(;LF)> IC(ZLn) (Z7U;MF)7
m=2

(2.14)
and they fulfil the relation I., = Iz, which follows from charge-conjugation invariance.
The first-order coefficients I.2) were first computed in refs. [60, 61]. The evaluation of the
second-order coefficients LSCLQ) was performed in refs. [62, 63]. Partial results for the N3LO
coefficients I(g’) were obtained in refs. [64—67]. The complete N3LO results are presented
in ref. [68].



The beam function for N-jettiness resummation has a corresponding TL function,
known as fragmenting jet function [69]. We do not consider this TL function in this paper.

In our previous discussion on transverse-momentum resummation we have mentioned
the possible occurrence of high-order factorization breaking effects of collinear radiation.
We note that similar factorization breaking effects can affect N-jettiness resummation for
multijet production in hadron-hadron collisions.

3 Collinear functions

In this paper we compute the collinear functions of section 2 by starting from the evaluation
of QCD scattering amplitudes. At the bare level the computation exhibits ultraviolet (UV)
and IR divergences. We regularize both divergences by working in d = 4 — 2¢ space-time
dimensions. In particular, we use the scheme of conventional dimensional regularization
(CDR) [70-73], in which on-shell gluons have d — 2 physical states of spin polarizations and
on-shell massless quarks (or antiquarks) have 2 spin polarization states. The dimensional
regularization scale is denoted by pg.

3.1 Collinear factorization of scattering amplitudes

QCD scattering amplitudes are singular in the kinematical configurations in which two or
more momenta of their external massless partons become collinear. The singular behaviour
in the collinear limit is described by a factorization formula [5-12] that has a universal (i.e.,
process-independent) structure.

We write the collinear factorization formula in its most general form as follows (see
also ref. [12])

Mg}k, kn) P = M@t k) P({aits k..o kvin) IM{aghi k) +..., (3.1)

where the dots on the right-hand side denote non-singular terms in the collinear limit.
Here, M denotes the on-shell scattering amplitude of a generic hard-scattering process,
and |M|? is the corresponding squared amplitude summed over the spins and colours of
its external particles. In eq. (3.1) we are considering the limit in which the momenta
ki,...,kn of N external massless QCD partons (gluons, quarks and antiquarks) of M
become collinear. The momenta of the other external particles of M are ¢, ¢2,... and so
forth. The dependence on the momenta and quantum numbers of the non-collinear particles
is generically denoted as dependence on {g;}. The singular behaviour in the collinear limit
is embodied by the factor P, while M ({g;}; l;:) denotes the scattering amplitude that is
obtained from M ({¢;}; k1, ..., kn) by replacing the N collinear partons with a single parent
parton with momentum & (k is the collinear limit of Zfil k;). In the right-hand side of
eq. (3.1) we are using the colour+spin space notation of ref. [74], so that |[M) and (M| are
vectors in the colour—+spin space of the external particles of M and, correspondingly, the
collinear splitting kernel P is an operator acting onto this vector space (i.e., P is a matrix
in the colour and spin indices of the external particles of M ({¢;}; l;:))

The scattering amplitude M can be computed in QCD perturbation theory as a power
series (loop) expansion in ag. We note that the factorization formula (3.1) is valid to all



perturbative orders and, consequently, the collinear splitting kernel P has a corresponding
loop expansion in powers of ag. The dependences on ag and on the CDR parameters €
and po are not explicitly denoted in the arguments of M and P.

Ineq. (3.1), k and ki,..., ky are the outgoing momenta of the corresponding external
partons. The scattering amplitude M (and the kernel P) is evaluated in different physical
kinematical regions depending on the sign of the ‘energies’ (i.e., time components) of the
outgoing momenta. If the energies of k1, ..., kxn are all positive, we are dealing with the TL
collinear region, in which all the collinear partons are produced in the physical final state of
the hard-scattering process. If one (or more) of the collinear partons has negative energy,
we are considering the SL collinear region. The parton with negative energy corresponds
to its antiparton in the physical initial state of the hard-scattering process. The distinction
between TL and SL collinear regions is, in general, very relevant. Indeed, in the case of the
TL collinear region the splitting kernel P has the relevant property of being completely
process independent: it does not depend on the momenta and quantum numbers of the non-
collinear partons in M. This property of strict (process-independent) collinear factorization
is instead violated in the SL collinear regions [12], where the collinear splitting kernel P
can depend on the non-collinear particles of M and, hence, on the specific hard-scattering
process. In both the TL and SL collinear regions, the splitting kernel P depends on an
auxiliary vector n, as discussed in section 3.2.

The splitting kernels P for the various partonic collinear configurations at O(ag) are
well known (see, e.g., section 4.3 in ref. [74]), and they are directly proportional to the real-
emission contributions to the Altarelli-Parisi kernels for the leading order (LO) evolution
of the PDFs. The collinear splitting kernels P at O(a3) are fully known [9, 10, 75-79] for
both the TL and SL collinear regions [12]. Various contributions to the splitting kernels
P at O(ad) have been computed in refs. [11, 80-91], and some results on the SL collinear
regions are presented in refs. [12, 56].

3.2 Differential (unintegrated) collinear functions and the auxiliary vector n*

The splitting kernels P of the factorization formula (3.1) describe collinear emission at
the fully exclusive level. We use these splitting kernels to introduce collinear-radiation
functions at a more inclusive level.

We first consider the TL collinear region. In this case the splitting kernels P are
process independent, and they have a non-trivial dependence only on the flavours, spins and
momenta of the collinear partons. We introduce the subscript ¢ = a;...an in Peoay..an
to denote the dependence on the flavours: a; (i = 1,..., N) is the flavour of the collinear
parton with momentum k;, and c is the flavour of the parent collinear parton (i.e., the
flavour of the parton with momentum % in M({ai}; l;:)) The TL splitting kernel P is
proportional to the unit matrix in color space and it is also proportional to the unit matrix
in the spin indices of the non-collinear partons. The dependence of P._;q4,...ap On the spin
of the parent collinear parton ¢ can be instead non-trivial [10] and it is different for the
cases c=¢q,q and ¢ = g.

In the case of the TL collinear splitting of a quark or antiquark, spin correlations are
completely absent [10]. Projecting the kernel PP onto basis vectors in colour + spin space,



we have

(8;70, | Pessayay K1y - knsn) [857, ) (3.2)
= ,Pcﬁal---aN (k'l, .. .,k'N;n) 588/ <7‘i7 c | 1 |7";a o > ) c=q,q,

where 1 is the unit matrix in colour+spin space. In eq. (3.2) s and s’ are the spin indices

of the parent collinear parton ¢ in (M| and | M), respectively, while the indices r;, -+ and

rl,--- denote the other spin and colour indices of the external particles in M ({g;}; k).
Spin correlations are instead present in the case of the collinear splitting of a gluon [10],

and we write

(i, 1 Pgssayay (Frs - k) [vsrg, - ) =P oy (B, ks m) (rey - [, - -),
(3.3)
where p and v are the Lorentz indices of the parent collinear gluon in (M| and |[M),
respectively.

The scalar kernel P._q,..ay (¢ = ¢,q) in eq. (3.2) and the tensor kernel P4, ...qy in
eq. (3.3) are c-number functions (i.e., they are not matrices in colour and spin indices).
The tensor dependence of P4%q,...qy [10] is due to terms that are proportional to either the
metric tensor g"¥ or to quadratic terms of the type kf‘T ;’T (i,j =1,...,N), where kl’»‘T is
the transverse momentum of the i-th collinear parton (the parton with momentum k;) with
respect to the collinear direction. The remaining dependence of Pe_sg,...ay (¢ = q,q, g) is
due to scalar functions of the collinear momenta k1, ..., ky. These functions are the sub-
energies s;; = 2k;k; and the ratios x;/z; of the longitudinal-momentum fractions x; and
x; of the momenta k; and k; with respect to the collinear direction.

The most general definition [10] of the longitudinal-momentum fractions of the collinear
partons is obtained by introducing an auxiliary reference vector n* that is far away from
the collinear direction. Then the collinear splitting kernels depend on the ratios x;/x; that
are defined as

ﬂjj nkj

(3.4)

In the literature the reference vector n* is usually chosen to be a light-like vector (i.e.,
n? = 0). Indeed this choice is very convenient for direct specific computations of the
collinear kernels [10, 11, 79, 83, 84] and for many applications of the collinear factorization
formula (3.1). However, we emphasize that we can also set n? # 0.

In this paper we introduce and use a time-like auxiliary vector n* (n? > 0), in addition
to using also the customary light-like choice. Note that we do not modify any formal
expression of the splitting kernels P in the literature. These kernels depend on n* through
the ratios in eq. (3.4), and we use the freedom of arbitrarily choosing n? > 0 in the collinear
limit. This arbitrariness follows from the fact that changing the value of n? produces ratios
x;/x; that differ between themselves by terms of order k;r or k;r, which therefore vanish
in the collinear limit. In other words, varying n? from n? = 0 to n? > 0 in the kernel P
of eq. (3.1) only produces differences in terms that are non-singular in the collinear limit
(these terms can be regarded as ‘power corrections’ in the context of squared amplitude

2

computations in the collinear limit). Using n® > 0 we also note that the quantity nk;
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(i=1,...,N) can vanish! only if k; — 0 (using n? = 0, nk; vanishes also if k; is collinear
to n). We observe that, independently of the value of n?, the collinear kernels P (and the
ratios in eq. (3.4)) are invariant under the rescaling n* — {n#, where £ is an arbitrary
parameter.

After our discussion of the structure of eq. (3.1) in the TL collinear region, we define
differential TL collinear functions FL (c,a = g,q,q) as follows. We consider the produc-
tion of a parton of flavour ¢ and momentum p* in the physical final state and we fully
integrate over the accompanying collinear radiation by keeping its total (d-dimensional)
momentum k fixed.

If the parent collinear parton ¢ is a gluon, we have to take into account the spin
correlations in eq. (3.3), and the precise definition of the collinear function fg} MY s

TL +oo ddk? ) @ N-1
FIL (p ki) = H/ "oy (2)] 0 k=3

2l ki,....,kn;n
x ) —E koo Bim)) (3.5)
A1y ON 1 (ala s 7aN71) kn=p
aN=a
where SF (aj,...,ay—_1) is the Bose symmetry factor for the identical particles in the set

{a1,...,an_1} (e.g., SF (a1,...,any—1) = (N — 1)! if all these partons a; are gluons).

The parton momentum p* precisely specifies the collinear direction, and we can use
a light-cone reference frame where p* = (p™,0r,0) with p™ > 0. In this frame we have
k' = (ki kip, k) and k* = (kT ,kr, k™). The auxiliary time-like vector n has coordinates
n* = (n*,0p,n7), with n? = 2n*n~ > 0. The case of a light-like vector n* is obtained by
setting n™ = 0.

The gluonic kernel P* in eq. (3.5) is related to the collinear kernel in eq. (3.3) as
follows

Pg‘ial ay (k1o kyin) = d", (pin) Pg_fal ay (K1, kysn) dY (pyn), (3.6)
where the spin polarization tensor d*”(p;n) is

R e T
np (np)?

d" (p;n) = —g" + (3.7)
The use of P* in eq. (3.5) removes purely longitudinal terms, proportional to p* or p”,
from ngaL MV (such terms are physically harmless, since they do not contribute to eq. (3.1)
as a consequence of the gauge invariance relation p, M*({g;}; k) = 0). The function F =
depends on the vectors p, k,n and it is orthogonal to both p and n. Therefore it has the
following decomposition in tensor structures:

’FTLMV(p7k n) = dl“/(p’ )fgr]I(‘J az.in. (pak 7’L) + DH (p,n kTa )]:gTa corT. (p7k n) (38)

!Considering a space-like auxiliary vector n* (n? < 0), the scalar product nk; vanishes also at a finite
value of k; inside the physical region (though far from the collinear limit). We do not introduce and use
space-like auxiliary vectors in our splitting kernels and collinear functions (see also some related comments
at the end of section 4.2).
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where

D" (p,n;kr, €) = d*(p;n) — (d —2) ——- (3.9)

The tensor DM in eq. (3.8) leads to correlations with respect to the azimuthal angle of
the transverse-momentum vector k. The scalar function Fga corr. controls the size of
the azimuthal correlations of ngaL ¥ The azimuthal-independent component of ]-";1} g

proportional to the scalar function F, ;faLaz in.

The tensors in egs. (3.7) and (3.9) are the d-dimensional generalization of those in
egs. (2.3) and (2.4). They fulfil the following relations:

dyw (p; ) DM (p,n;kr,€) =0,
duv(p;n) d" (p;n) =d -2, (3.10)
Dw/(p) n; kTa E)D'uy(p7 n; kTa 6) = (d - 2)(d - 3) )

withd—2=2—-2candd—-—3=1— 2e.

The scalar functions FgaLaZ . and f;Lcorr can be directly expressed in terms of the

collinear splitting kernels P/, . These expressions are obtained from eq. (3.5) through

the replacements F .l # — {F 1 Focore. } and Py {Pasin. peorin the left-hand

ga,az.in.’

and right-hand sides, respectively. The corresponding collinear splitting kernels P and
PO are obtained from eq. (3.6), and they are given by the following relations:

az.in. d V(p;n) Uy d V(p; ) v
Pyiar.an = id o Pl s an = Jd o Pl ans (3.11)
D 14 ) ;k ) D vV b ;k )
ppeorr. 1 (p n; Kt ),P/W I (p n; K 6) (312)

= = [
g—ai...an (d—2)(d—3) g—ai.. aN (d—2)(d—3) Pg—ml,..aN'

The TL collinear function FL"(p, k;n) (c = ¢, ) of a parent collinear fermion ¢ (quark
or antiquark) is defined analogously to the gluon collinear function ]:TL(p,k n), taking
into account the relevant simplification of the absence of spin correlations in the collinear
splitting kernels Pcﬁal ay (see eq. (3.2)). Therefore, we simply perform the replacements
]:TL w— FIL and Pgﬁal any — Pesay..an 10 €q. (3.5), and we define

TL +oo ddk ) (@ N-1
FTL(p, kin) = II/ b (R2)| 5O k=X
=1

Z Pc—>a1...aN (k17 RN kN?”)
SF (CLI, ceny aN_1>

x . c=q,q (3.13)

kn=p
aN=a

Q150N -1

where Pe_yq,..ay is the collinear splitting kernel in the right-hand side of eq. (3.2).

We can briefly and straightforwardly illustrate our definition of differential collinear
functions for the SL collinear regions. Our main point is that the SL collinear splitting
kernels P in the factorization formula (3.1) are, in general, process dependent and, in
particular, they can depend on the colour indices and momenta of the non-collinear partons
and on the colour indices of the parent collinear parton c in the hard-scattering process.
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The general extension F, of the TL collinear functions in egs. (3.5) and (3.13) to the
SL collinear regions is as follows

Feal{ai}ip, kin) +OO lH/ ddk 6+ k2 )] 6(d)<k—Nz_:lki> (3.14)
=1

’PE—)aL..aN ({ql}v kl? IR kNa TL)
X
Z SF (a1,...,an—-1)

kn=-p

aN=a

1,0 N -1

The SL collinear functions F.q({¢:};p, k;n) depend on the flavour a of the parton with
momentum p* = (p™,0r,0) (with p™ > 0) that collides in the physical initial state of
the scattering process. The flavour ¢ refers to the incoming parton of the hard-scattering
process after the radiation of the final-state collinear partons with total momentum k*.
Similarly to the TL collinear functions, the auxiliary vector n* = (n*,0r,n™) is time-like
(n? =2n*tn~ > 0), in general (the light-like case can be obtained by setting nt = 0).

The function N,(€) in the right-hand side of eq. (3.14) depends on the number of
space-time dimensions, and it is Ny (€) = (=1)**n,(a, €)n.(a), where S, denotes the spin
of the parton with flavour a, ns(a,€) is number of spin polarization states of that parton,
and nc(a) is its number of colours. Therefore, we have Ny (e) = Nz(e) = —2N, and
Ny(e) = 2(1 — e)(NZ - 1).

The SL function F., is the contribution of initial-state colliner radiation at the cross
section level. The cross section is proportional to the square of the scattering amplitude
M, averaged over the spins and colours of the initial-state partons. This average procedure
introduces the factor Ne(€)/Ny(e) in the right-hand side of eq. (3.14) (the factor (—1)25e
in N(e) is due to the crossing of the parton a from the final state to the initial state of
the scattering process).

The spin dependence of P is similar in the TL and SL collinear regions. The SL
collinear kernel P.q,.. a5 is proportional to the unit matrix in the spin indices of the
non-collinear partons and it depends on the spin of the parent collinear parton ¢ as in
egs. (3.2) and (3.3). Analogously to the TL collinear functions in egs. (3.13) and (3.5),
the kernel 730_m1maN in eq. (3.14) is exactly equal to Pcsq,. ay in the quark or antiquark
cases ¢ = ¢, q, and it is given as in eq. (3.6) in the gluon case ¢ = g.

As we have already stated, the kernels P in the SL collinear region are, in general,
process dependent and, correspondingly, the SL collinear functions F., in eq. (3.14) are
also process dependent. We consider the perturbative expansion of P in terms of the

unrenormalized QCD coupling a§, and we write
+oo
P=> PH, (3.15)
L=0

where P©) is the tree-level contribution to P, P is its one-loop contribution, and so

u)N—l—i—L
S

forth. The term P& is proportional to (« . The process dependence of P

c—ail...aN
and, hence, of F, first occurs at O(ad) and it is due to the one-loop and two-loop contri-
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butions P and P2

c—a1a2a3 c—a1a2
particular, such process dependence at (’)(ag) leads to non-abelian colour-matrix structures

[12, 55, 56], while P&%almw is process independent.? In
in P and F ., in the case of collinear radiation from scattering amplitudes for the produc-
tion of two or more QCD hard partons (jets, heavy quarks or hadrons) in parton-parton
(hadron-hadron) collisions.

Considering perturbative contributions at O(ag) and O(ad), the SL collinear kernels
P and functions F are process independent and proportional to the unit matrix in the
colour space of the hard-scattering partons. Therefore, we can factorize such overall (and
trivial) colour space dependence in both sides of eq. (3.14), and we can simply deal with
c-number SL collinear functions, analogously to the TL collinear case. Such SL collinear
functions are denoted as

J:g‘fly(p’ k;n>7 -Fga, az.in.(p7 k;n>7 -Fga, corr. (p7 k; n) and }—ca(pa k; TL) (C =q, Cj) 5 (3~16)

and they are analogous to the TL collinear functions in egs. (3.5), (3.8), and (3.13).

The SL collinear kernel P in eq. (3.1) and the collinear function F., in eq. (3.14)
are proportional to the unit matrix in colour space also in the case of scattering am-
plitudes M ({g:}; l;:) with a single external non-collinear QCD parton in addition to the
parent collinear parton with momentum k. This feature is valid to arbitrary orders in ag
since it simply follows from the fact that the colour space of such scattering amplitudes is
one dimensional. Considering this class of processes, the trivial colour space dependence
factorizes and we can directly deal with c-number collinear functions F, also in the SL
regions. The production of high-mass colourless systems, which is considered in section 2,
is included in this class of processes.

We note that our TL and SL collinear functions, F.L' and F,, in egs. (3.5), (3.13),
and (3.14) are related to corresponding SCET differential functions, namely, to the dif-
ferential fragmenting jet functions and the differential beam functions of refs. [92-94].
Their relation follows from the fact that all these functions are differential with respect to
the (d-dimensional) momentum k* of the final-state collinear radiation. The differential
functions of refs. [92-94| are defined as matrix elements of appropriate SCET operators
and, considering parton matrix elements, they lead to quantities that can directly be com-
pared with FL and F,, at small values of £~ and kt (i.e., in the collinear region where
kTt =0(p"),k~ < p' and k7 < (p7)?). In the following we can briefly comment on some
general aspects of this comparison.

We first note that the SCET differential functions depend on a light-like vector n*,
which specifies the direction of Wilson line operators that enter the definition of the SCET
operators [18-21]. The differential fragmenting jet functions [92] at partonic level directly
correspond to our TL collinear functions F.L*(p, k;n) with the choice of a light-like aux-
iliary vector n*. Such direct correspondence is also true between the differential beam
functions [92-94] and our SL collinear functions F., with n? = 0, but the correspondence
is limited up to O(a%). Indeed the SCET differential functions are process independent,

2The tree-level kernels 'Pgﬂalma}\, (N > 2) are process independent for both TL and SL collinear
radiation.
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while our SL collinear functions F., become process dependent at O(ad) and higher or-
ders. We also note that the TL and SL collinear functions, ]—“5} and F.,, with a time-like
auxiliary vector n* do not directly correspond to SCET differential functions. Perturbative
computations of SCET differential jet and beam functions are presented in refs. [92-96].
The perturbative calculation of the SL and TL collinear functions, F., and FLF, with
n? > 0 is presented in sections 4.1, 5.1, 6.1 and 6.3.

The differential collinear functions in egs. (3.5), (3.13), and (3.14) are defined by inte-
grating the splitting kernels PP with the constraint of fixing the total momentum k& of the
final-state collinear radiation. Applications of the collinear factorization formula (3.1) to
different types of hard-scattering observables can require different or additional phase-space
constraints (e.g., constraints related to jet definitions or to angular/rapidity limitations)
on the momenta of the produced collinear partons. These constraints can be implemented
on the phase-space integrations in the right-hand side of egs. (3.5), (3.13) and (3.14), thus
leading to the definition of corresponding collinear functions. Some main features of these
functions (e.g., their n* dependence and their process dependence in the SL collinear re-
gion) are equal to those of the collinear functions that we explicitly consider in this paper.

3.3 TMD collinear functions and beam functions

The TL and SL differential collinear functions that we have introduced in section 3.2 can be
used to define inclusive functions that are directly related to the perturbative computation
and resummation of large logarithmic contributions to hard-scattering observables. In
the following we define TMD collinear functions and beam functions that lead to the
resummation coefficients which we have discussed in section 2.

We first consider the TL collinear region. We use the gluon collinear function
]-"TL H(p,k;n) of eq. (3.5) and we define the gluon TMD function F;LW by integrating
over the radiated collinear momentum £ as follows

Frlm (zp/z,qrin) = 6(1 — 2) 6“2 (qr) d4a " (p;in)

+ _
n /ddk 52 (kr + q) 5("/’+ L
p

: ) Foa ™ (p,ksn). (3.17)
The TMD function F| L(;F@L ¥ describes the inclusive perturbative fragmentation of a gluon into
a parton a. The collinear fragmentation process transfers the transverse momentum qr and
the longitudinal-momentum fraction z, with 0 < z < 1. The gluon function FQEL # depends
on the Lorentz indices (and, hence, on the spin polarizations) of the fragmenting gluon. As
a consequence of eq. (3.8), the tensor function F, ;raL # fulfils the following decomposition:

2 2
n-qr
FXlt(zp/z,qrin) = d™ (p;n) FgTaLazm< §QT237( )

2np/z)?
0 . TL . 2 nqu2
+D (p7n7 que) Fga corr.| 73 AT 7W ) (318)
where FTL and FIL are the azimuthally-independent and azimuthally-correlated

ga, az. in. ga, corr.
components, respectively. These components are straightforwardly related to the collinear
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functions FLF and FLL of eq. (3.8). We have

ga,az.in. ga, corr.

n’qr? _
FgTaI,Jaz.m.(Z; OIT27 W =0(1-2) 5 2)(OIT) dga

B kY 1—2
4 / d?k 692 (ky + qr) 5<p+ - ) Fgaazin. (0> s ),

z
(3.19)
n’qr? _ kT 11—z
F!E“corr(z; qTQ, M) = /ddk (5(d 2)(kT + qT) 5<p+ — . > ‘F;l;zl,lcorr. (p, k; n)
(3.20)

The quark (or antiquark) TMD function F.L* (¢ = ¢, q) is defined analogously to the gluon
TMD function in eq. (3.17), and we have

FTL( 4. g2 n’qr® \ _ (d-2)
ca | % 4T T - 5(1 - Z) 0 (qT) Oca

+ _
+ /ddk: 5(d*2)(kT +qr) 5<k+ 1=
D

z

) Fea (p kin),
(3.21)

where FL(p, k;n) is the collinear function in eq. (3.13) .
We note that F, grl;Ijazvin., FgTanCOH_, and FIV (¢ = q,q) are scalar functions that depend
on z and the vectors p*,n*, qr. Therefore they depend on the scalar quantities z, qr?

and %, as explicitly denoted by their argument in eqgs. (3.18)—(3.21). In particular,

the dependence on TZZ‘;}"{; is a consequence of the invariance under the arbitrary rescaling
nt — Ent.

As discussed in the following sections, the perturbative computation of the TL TMD
functions F.L (¢ = g,¢q,q) leads to IR divergences that can be factorized in terms of IR
singular and IR finite contributions. The IR finite contributions are directly related to the
collinear functions CLF of section 2.

The general S TMD function F,, is obtained by analogy with the TL functions in
egs. (3.17) and (3.21) and by taking into account that the SL collinear function F, in
eq. (3.14) is, in general, process dependent. The explicit definition of F, is

Fca({Qi}; 2, Zp,qr; TL) =1 5(1 - 2) 6(d_2) (qT) 5ca
k+
+ z/ddk 6142 (ky + qr) 6(p+ —1+ z) Fea{ai}ip, kin),
(3.22)

where the symbol 1 in the right-hand side denotes the unit matrix in colour+spin space.
The TMD function F, is a process-dependent operator that acts onto the colour and spin
indices of the external QCD partons of the scattering amplitude vectors |M({¢;}; l;:)) and
(M({qi}; k)| (see eq. (3.1)). The parton ¢ in Feo({g;}; 2; 2p, qT;n) carries the transverse
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momentum g and the fraction z (with 0 < z < 1) of the momentum p of the initial-state
parton a.

Using the SL collinear function F., we also introduce the partonic beam function B,
as follows

Beo({gi}; 2 2p,tm) = 1 6(1 — 2) 0(t) Oca
Jr
+ z/ddk §(t — 22pk) 5(2]; -1+ z) Feal{ai};p, kin),  (3.23)

where the kinematical variable ¢ denotes the transverse virtuality and z (with 0 < z < 1)
is the longitudinal-momentum fraction that is transferred by the initial-state parton a to
the colliding parton c. Similarly to the SL TMD function in eq. (3.22), the beam function
B, is, in general, a process-dependent operator in colour and spin space.

The SL functions F., and B, are relevant in the context of transverse-momentum
resummation and N-jettiness resummation for general hard-scattering processes, respec-
tively. The process-dependent features of F., and B, directly follow from the correspond-
ing features of the SL collinear function F.,, which have been discussed in section 3.2.

In particular, considering either computations up to O(a%) or computations (at ar-
bitrary orders in «g) for processes with two hard-scattering partons, F., and B, are
proportional to the unit matrix in colour space. In these cases the trivial colour space
dependence can be factorized with respect to c-number TMD functions F,., and beam
functions B, for the SL collinear region. In the case of TMD functions we can deal with
the gluon functions

F/ V(Z z ) F, z 2 7712 i F, z 2 7712 i (3 24)
; yn z.in.| %3 ) ) rr.| 25 ) ) .
ga 3 2P, qT; 1), ga,a qr (2 )2 ga, co qr (2an)2

and the quark (or antiquark) functions

Fe <Z qT2 anTQ) (C =dq Q) (325)
’ " (2zpn)? |’ T

which are the SL analogue of the TL TMD functions in egs. (3.17)-(3.21). In the case of

the gluon beam functions, the integration over kt in eq. (3.23) cancels the contribution

of the azimuthal-correlation component of F /i (p, k;n) (i.e., BbY = d"Bg,), and we can

simply deal with c-number scalar functions

n%t
Bca (Z;ta ()2> ’ (C =99, 6)7 (326)

for both the gluon and quark (or antiquark) partonic channels.

In the following sections we discuss the perturbative computation of the functions in
egs. (3.24), (3.25), and (3.26). After appropriate factorization of IR divergences, these
TMD functions lead to the SL collinear coefficients Cy, and Cly in eqgs. (2.1) and (2.2),
while the partonic beam functions lead to the matching coefficients in eqs. (2.12) and (2.14).
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Setting n? = 0, our TMD functions (see egs. (3.17), (3.21) and (3.22)) and beam
functions (see eq. (3.23)) are related to the partonic matrix elements of corresponding SCET
function operators. Such relation between collinear splitting kernels and SCET functions
was already observed in ref. [22], and it is also used in recent high-order perturbative
computations [64-67, 97]. In particular (see the related comments on differential collinear
functions at the end of section 3.2), our collinear functions and the partonic SCET functions
are perturbatively equivalent in the TL region. In the SL region the equivalence is, in
general, limited up to O(aZ). Such limitation follows from the general process dependence
of the collinear splitting kernels P beyond O(ad). Our SL collinear functions directly
acquire the general process dependence of the collinear splitting kernels. The SL partonic
SCET functions instead have a process-independent form, and they are directly related to
the collinear limit and corresponding splitting kernels of the QCD scattering amplitudes
for a specific class of processes, namely, the production processes of high-mass colourless
systems (see section 2). Therefore, the all-order equivalence between our collinear functions
and the partonic SCET functions in the SL region is specific for this class of processes.

4 SL collinear functions: IR factorization and perturbative results

In this section and in the following section we discuss the perturbative calculation of the SL
collinear functions introduced in sections 3.2 and 3.3. We consider explicit computations
up to O(a%) and, hence, we simply refer to the process-independent c-number functions of
eq. (3.16) and egs. (3.24)—(3.26).

4.1 Differential collinear functions at O(ag)

The perturbative expansion of the collinear functions in eq. (3.16) can be written as follows
F(p, ksn) = F(p,kin) + | FED(p,kin) + FUY) (pkim) [+ 0(ed).  (4)

The notation in eq. (4.1) applies to any specific collinear function and, therefore, we have
not explicitly denoted the corresponding subscripts and superscripts in F. The terms in
the right-hand side of eq. (4.1) are directly related to the loop expansion of the collinear
splitting kernels P (see eq. (3.15)). The contribution to F at O(ag) is due to FUR) | which
corresponds to single real emission in the final state at the tree-level, and it is obtained by
using the tree-level kernel 'P£0_)>m a, in the right-hand side of eq. (3.14). The contributions
to F at O(a?) are F?H) (double real emission at the tree level) and FIV) (single real
emission with one-loop virtual corrections). The terms F3%) and FOFV) are obtained
from eq. (3.14) by using the tree-level kernel P©)

c—ai1a2a3

and the one-loop kernel ’P&galm,
respectively.

We express the perturbative contributions in eq. (4.1) in terms of the unrenormalized
(bare) QCD coupling oﬁs‘i, which is related as follows to as(u%), the renormalized coupling
at the scale pr in the MS renormalization scheme:

u € € « 2
o 13 5. = as(uih) i [1 - SR o (a%w%))] , (4.2
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where fy = (11C4 — 2Ny)/12 and Ny is the number of massless quark flavours. The
d-dimensional spherical factor S is S, = (47 e %) and g is the Euler number (yp =
0.5772...).

The definition in eq. (3.14) leads to a direct relation between F() and the well-

known expressions of the collinear kernels ’Pg%alaz (see, e.g., refs. [10, 74]). In the case

of the azimuthally-independent functions F, (1R)

ca,az.in.’
to P.q(x;€), which are the d-dimensional real emission contributions to the Altarelli-Parisi

splitting functions for the LO evolution of the PDFs. We have

the collinear kernels are proportional

oS, e 502 1
N T ml=c  pk 2z,

]:(1R) (p7 k; n) ﬁca(an 6)7 c=9,4,q, (4'3)

ca,az.in.

(LR)

where we have introduced the notation Feq /= fc(;i)zlm_

tions in the quark and antiquark partonic channels. The azimuthal-correlation contribution

(¢ = q,q) for the collinear func-

in the gluon channel is

_ag [i5° Se €8 34 (k) C L=z
a

F it tore. (0, ks m) =

ga, corr.

, (4.4)

T ml=c  pk 22

where C, is the Casimir colour coefficient of the parton a = ¢,q, g, as in eq. (2.9). The

(1R)

expressions of F\% in egs. (4.3) and (4.4) depend on the auxiliary vector n* through the

variable z,

—k
o= M= R) (4.5)
np
In the exact collinear limit (i.e., k&~ = 0) the parent hard-scattering parton c¢ in .FC(;R)

carries the momentum z,p*, independently of the value of n?.

The explicit expressions of the real emission kernels ﬁca(x; €) are

Pryla;e) = % Cr h*_‘f (1 - a:)] , (4.6)
Pyg(wie) = 5 T [1 - 2””51_6”3)] , (47)
Pyy(z3¢) = Cg [1f 41 - T a1 — $)} , (4.8)
Pyglse) = 5 Cr ll + (1:5 2 ex] , (4.9)
Pyg(w;€) = Py (w;€) = Py (w;6) = 0, (4.10)

where ¢ and ¢’ denote quarks with different flavour. The expressions of ]30(1 for the remain-
ing partonic channels are obtained by using the relation P.,(z;€) = Ps(z;€), which follows
from charge conjugation invariance. For subsequent use we also introduce the decomposi-

tion of P, in their singular (P518) and regular (P8) parts around the point 2 = 1. We
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write

Pra(ws€) = P (z) + Bice(ase), (411)

L AW

P&"8(@) = dea 7, (4.12)
ﬁczeg(:v; €) = ﬁcffg(x; e=0)+e ﬁéa(x; €). (4.13)

The coefficients A&l) (¢ = q,q,9) in eq. (4.12) measure the intensity of soft and collinear
gluon radiation from the parton ¢, and we have

AV =AM =cp, AV =y (4.14)
The explicit expressions of PI8(z;e = 0) and P/ (z;¢€) are readily obtained by direct
comparison of egs. (4.6)—(4.10) and egs. (4.11)—(4.13).

As discussed at the end of section 3.2, we can relate the collinear functions Fe,(p, k;n)
to the SCET differential beam functions [92-94]. More precisely, setting n? = 0 and intro-
ducing the variables qr = kt and t = 2zpk, the first-order collinear function .FC(;R) (p, k;m)
is equal to the first-order contribution to the partonic differential beam function B, (z, ¢, qT)
of ref. [92]. The expressions in egs. (4.3) and (4.4) agree with the first-order results pre-
sented in ref. [92].

4.2 TMD functions

The SL TMD functions F,, are obtained from the differential collinear functions F., by
using eq. (3.22). The contribution of O(ag) to Fy, is denoted by FC(JR), and it is obtained
from the corresponding contribution FEB) 46 the differential collinear functions. At O(ad),

the terms fégR) and ]-'c(;RIV) in eq. (4.1) produce corresponding contributions to the TMD
functions that are denoted as Fc(gR) and Fc(,%RW), respectively.

The explicit expressions of Fc(;R) are obtained through eq. (3.22) by using the corre-

sponding expressions of fc(;R) (p, k;n) in egs. (4.3) and (4.4). At this perturbative order
the integration over the momentum k in eq. (3.22) is trivial, and Fc(gR) turns out to be
proportional to the overall factor 1/qr? times a function of z and qr?. This functional de-
pendence on z and qr? is due to the corresponding dependence on z, in egs. (4.3) and (4.4).
The overall factor 1/qr? is singular in the limit g — 0, and it corresponds to the singu-
lar behaviour of QCD cross sections that we can consistently compute by exploiting the
collinear factorization formula (3.1). Therefore, considering the residual dependence of
F,;(;R) on z, we can set qr = 0, provided the limit qr — 0 is smooth and non-singular.

We immediately discuss the dependence on the auxiliary vector n#, which affects Fc%R)
through the variable z, (see eq. (4.5)). The key point regards the effect of the singular
contribution P58 (z,) (see eqs. (4.11)(4.13)) to FOB and, hence, to Fa™ . Such contri-
bution is proportional to the following factor:

L np pT _ 1

— = = 2 - = 2qm2
L=z bk k4 gmipt 12t 258

: (4.15)
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where in the last equality we have implemented the kinematics of the TMD collinear
function at O(ag) (ie., k2 = 0,kT = (1 — 2)p*, kT = —qr). Setting n? = 0, the factor in
eq. (4.15) becomes (1 — z)~! and, therefore, it is divergent (and not integrable over z) at
z = 1. Correspondingly, the first-order contributions FC((%R) to the TMD collinear functions
are divergent. Such divergences, which are known as rapidity divergences [13—17] in the
literature, are a general feature of SCET formulations of TMD functions, and they can be
treated by introducing appropriate regularization procedures [14, 98-102]. In the following

computations of the TMD functions we use n?

> 0, thus avoiding rapidity divergences.
Further comments on the origin of the rapidity divergences are postponed to the final part
of this subsection.

Using a time-like auxiliary vector n#, the factor in eq. (4.15) is not divergent, and it
can be further approximated in the limit qr — 0. Indeed, setting A\ = n?qr?/(2pn)? in

eq. (4.15), we can use the following relation:

1 1—2 1 1—2
= 5(1— de/ ———
1—z+4 2 <(1—z)2+)\)++ ( z)/o TA—22 A

=5 m(5) 0=+ (=) +own. (4.16)

where the symbol (f(z)) . denotes the customary ‘plus-distribution’ of the function f(z)
with respect to the variable z. The term of O(v/A) ~ O(qr) in eq. (4.16) smoothly vanishes

in the limit gqpr — 0 and, therefore, it can be neglected in the computation of FC(C%R). We
can similarly neglect other smooth terms in the limit qp — 0 by using z, = z + O(qr?) in

the remaining z,, dependence of FC(;R).

In summary, we obtain the following first-order results for the azimuthal-independent
component of the TMD collinear functions:

2 2 u ,,2€ S e€VE
pUR) .9 n7Qqr _ QS Hp Pe 4.17
ca, az.in. 24T (22pn)2 T ml—e qT2 ( )
~ 1 1 n2qT2 _
X {Pczeg(z;e)—i—ém Agl) [(1—2’)+ — 5 In ((22’?%)2 (5(1_2) ; ¢c=g,4,49,
o . . (IR) _ p(1R) —
where, similar to eq. (4.3), we have introduced the notation Fea ' = F,, ., 5, (¢ = ¢, q) for

the TMD collinear functions in the quark and antiquark partonic channels. The first-order
result for the azimuthal-correlation components in the gluon channel is

2 2 u 2 YE _
IR .2 nTar o ogupSe e 1—=z
Fg(a,c)orr(z,qtr : (2an>2> = 2 O (4.18)

We note that the result in eq. (4.18) is independent of the auxiliary vector n*. We recall
that we have neglected terms of relative order gr in the right-hand sides of eqgs. (4.17)
and (4.18). Such terms are actually controlled by the parameter n?qr?/(2pn)%. However,
250
In our framework the value of n? is arbitrary, and it is not regarded as a small expansion

we remark on the fact that we are not performing approximations in the limit n

parameter.
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We introduce the Fourier transformation of the TMD collinear function F,., to the
purpose of having a more direct relation with the discussion in section 2 on the transverse-
momentum resummation formalism in impact parameter space. The Fourier transforma-
tion F.q in b space of the TMD collinear function F¢, for the quark and antiquark partonic
channels is

_ b2 n2b2 ) anT2
F, D=5, 0 )= /dd_2 —itb.ar p : 2, —, =q,q, 4.19
ca (Z b(Q) (2an)2 b2 qr € cal| %;4T (2an)2 c=4q,9 ( )

where the impact parameter b is a (d — 2)-dimensional vector. The numerical coefficient
bop = 2e77E is conveniently and customarily introduced in b space resummation formulae
(see, e.g., ref. [27]). We note that the n* dependence of F., (¢ = ¢,q) occurs through
the variable n?(b3/b?)/(22pn)?. In the gluon partonic channel we introduce the Fourier
transformation Fg“a” of the TMD tensor function F}y, and we have

FI¥(z2p,byn) = /d‘HqT e AT FIY(z: 2p, qrin). (4.20)

Analogously to the TMD gluon function in eq. (3.18), the b space tensor function Fg”a”
can be decomposed in its azimuthal-independent and azimuthal-correlation components,
F‘ga7 az.in. and Fga, corr. -
Z;biza 2 1.2

G (2zpn)?b

~ - b2 n2b2
F;ay(z; zp, b; ’I’L) = d'm/(p; n) Fjga7 az.in.( :

+ D" (p,n;b,e€) Fou corr zb—Q ﬂ ) (4.21)
7 IO B2 (22pn)2 b2

Similarly to ﬁca in eq. (4.19), the scalar functions ﬁ’gmazm_ and ﬁga,corr. depend on the
auxiliary vector n# through the variable n?(b3/b?)/(2zpn)?.

The fixed-order perturbative contributions to the TMD functions F,, depend on gt
through powers and logarithms. To move from F, to F., we have to perform the Fourier
transformation of this type of functional dependence on . The required most general

Fourier transformations are as follows

m m e+0—
[attqpeman ) _ e 40 (b0 "Dip—c=9)
(qr?)t* dp™ |,y |\ 4 (146 —p)

(4.22)

) 1 m 2
/ d=2qp = ar BT s LD (b, €) w1

(qr?)'+e
L (l)2>€+6_pf(1+p—e—5)
dp™ |, |\ 4 r2+d6—-p |’

(4.23)

where eqs. (4.22) and (4.23) refer to azimuthal-independent and azimuthal-correlation con-
tributions, respectively. The function I'(z) denotes the Euler I'-function of the variable x.
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These basic Fourier transformations are sufficient to go from qr space to b space in the
computation of the TMD functions at arbitrary perturbative orders.

The perturbative expansion of the azimuthal-independent component of the TMD
collinear functions in b space is as follows

~ b? n2b3 ~(1R) b? n2b3 9
Fea,az.in. (Z; b?)’ W = 0ca 6(1 — 2) + Feaazin\ % 75 79 —=a33 | T O(ag),

€=9,4,9,
(4.24)
where, analogously with the notation in eq. (4.17) we have defined F., = ~Ca, az.in. for
¢ = ¢q,q. The first-order term Fc(i?zm is obtained from eq. (4.17) by using the Fourier

transformations in eq. (4.22) with § = 0 and m = 0,1. We obtain the following result:

gom (. b* nfhg ) _agSe (pgb? R O
ca,az.in. | ©» b% ) (Qan)Z b2 T bg (_6)

Agl) 1 n2b3 Ve _
_5ca5(1_z)[ 9 <6+¢(1—6)—¢(1)+ln(22pn)2b2 ‘|‘5 5 ¢c=g,4,49,

{Pc(i)(Z) +e Ply(z:0)

(4.25)

where ¢(x) = dInT'(z)/dx is the Euler ¢-function, and we have introduced the lowest-order
Altarelli-Parisi kernel Pc(;)(:z:) for the evolution of the PDFs:

P(l) :]f)reg ce— 60(1
() = Pri(eze=0) + .

AL <1> + % Yo 6(1 — x)] : (4.26)
+

The functions P8 and P/, are given in eqs. (4.11)~(4.13) and the coefficients . (¢ = ¢, 7, g)
are

3 1
Y =17 = 5CF, Vg = 5 (1104 — 2Ny). (4.27)

The azimuthal-correlation component F ya, corr. Of the gluon TMD function F e ineq. (4.21)
has the following perturbative expansion:

P b et _mamy (P2 nBG
ga, corr.| Z; b%’ (Qan)Q b2 ga, corr.\ = b% ’ (2zpn)2 b?

Fer) (P2 W\ omamv(, B2 0’
ga,corr.| < b(g) ) (2an)2 b2 ga,corr.| < b(Q) ) (2an)2 b2

The first-order term ﬁg%,Rcz)rr, is obtained from eq. (4.18) by using the Fourier transformation
in eq. (4.23) with § = 0 and m = 0. The result is

_ 2 272 u 212\ "¢ _
FOR) ( b =g >:0‘sSe <Nob> e ET(1 —¢) Calzz' (4.29)

- +0(ad).  (4.28)

IR
9ot 77 p2 7 (22pn)? b? T b2

The results in eqs. (4.25) and (4.29) are valid in arbitrary d = 4 — 2¢ space-time dimen-
sions. Considering the physical four-dimensional limit ¢ — 0, we see that the azimuthal-
correlation components are finite while the azimuthal-independent terms are divergent.
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The divergences are due to double and single poles, 1/€? and 1/e, and they have an IR
(soft and collinear) origin.

More generally, the perturbative computation at O(ag) of the TMD functions in b
space leads to divergent pole terms 1/€™ with 1 < m < 2n. These divergences are of UV
and IR origin. The UV divergences are removed by using eq. (4.2) which is used to express
the bare coupling ag in terms of the renormalized coupling as(,u%?). The IR divergences
are then factorizable.

The TMD functions in b space fulfil the following IR factorization formulae:

_ b2 2b2 n2b2
Fca az.in. c b2 b2 — 0 __ 4.30
o ( b2 ’ (2zpn)2b2> (as( 0/b%), (22pn)2b2> ( )

2b -

XZ/ —Cu| as(bo/b2),e,< )%b2> Lpa(z/2;05/b%),

~ b? 2b2 n?b2
Fya,corr. s | =2, b5 /b?), ———2— 4.31
ga,co ( b2 ’ (2an)2 b2> g (aS( 0/ )7 (2an)2 b2> ( )

ng

XZ/ ng<x as(b/b?), ¢ W)fba(z/x;bg/bQ).

Note that in the right-hand side of egs. (4.30) and (4. 31) we use the renormalization scale
u? h= = b3 /b%. Therefore, the various functions Z, Fba, C.p and ng depend on ag(b3/b?). A
generic renormalization scale ppr can be introduced in a straightforward way by expressing
as(b3/b?) in terms of ag(u%),In(b3u%/b?) and € (see eq. (4.2)).

The factor Tpe(2; 4%) in the right-hand side of egs. (4.30) and (4.31) is the customary
collinear-divergent function that defines the scale-dependent PDF fy(z;u2%.) in the MS
factorization scheme. We have

dr ~
k) = 3 [ 5 Bulefoinb) 1100, (432)
where fa(LO) (z) is the bare (scale-independent) PDF of the parton a. The perturbative
expansion of I'y, is

as(uz) P (z)
T €

i:\ba(z; ,U/%?) - 6ba 5(1 - z) - + O<O‘§)7 (4'33)
where Pb(i)(z) is the lowest-order Altarelli-Parisi kernel in eq. (4.26).

After factorization of the collinear-divergent € poles embodied in f‘ba, the b space TMD
functions still contain IR divergences that are factorizable in the perturbative functions Z.
of egs. (4.30) and (4.31). The functions Cy and égb are then finite and independent of n?
(i.e., n2(b3/b?)/(22pn)?) in the limit e — 0, order-by-order in the perturbative expansion
in powers of ag(bZ/b?).

We note some main features of the IR factor Z. of Fy, in egs. (4.30) and (4.31). The
factor Z. depends on the hard-scattering parton c of Ea, and it is independent of the initial-
state parton a. The dependence of Z. on the parton ¢ occurs through the perturbative
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coefficients (see eq. (4.35)) and the momentum zp (i.e., n%(b3/b?)/(2zpn)?), which is the
longitudinal momentum transferred to the parton ¢ by the collinear emission. The function
Z. has no additional dependence on the momentum fraction z. We remark on the fact that
in the gluon channel, the IR factor Z, is the same for both the azimuthal-independent
and azimuthal-correlation components (i.e., Z; is the overall IR factor of the tensor I3 b In
eq. (4.21)). The factor Z. embodies € poles and also possible IR finite contributions that
depend on n?. Moreover, Z, can include arbitrary IR finite terms that are independent of n?
(see eq. (4.35)). Such arbitrariness corresponds to the IR factorization scheme dependence
of egs. (4.30) and (4.31), and it is related to the resummation-scheme dependence [25, 27]
of the transverse-momentum resummation formalism of QCD cross sections.

Comparing the structure of eq. (4.30) with the results in eqs. (4.24) and (4.25), we can
immediately derive the explicit expression of Z. up to O(asg). Setting A=n?(b2/b?)/(22pn)?,

we obtain
Zefas, ) = 14 == 20 (3) + O(ad), (4.34)
~ 1 1 1, +\ 1 72 . ~
73y -+ [ A0 ( 1 ) 1 ] T AW () 4 ) n
C (A) 2 C 62 + B n A + € 70 24 C + hC + hC (67 A)? ( 35)

where h((;l) and Egl)(e, X) are introduced to specify the scheme dependence of Z. (we have
hgl) = hg) and ES) = EQ) because of charge conjugation invariance). The function
Egl)(e, 5\) vanishes in the limit € — 0. The coefficient hgl) is related to the resummation-
scheme dependence (see egs. (2.7) and (2.8)). Setting hY = 7240 /24 corresponds to a
‘minimal’ scheme in which Z{" contains only e pole contributions. The hard scheme [27]
is instead obtained by setting Y =0 (see eq. (4.37)).

The IR finite function C,q of the azimuthal-independent component of the TMD func-
tion in eq. (4.30) has the following perturbative expansion:

~ ~ ~ ~ 2 ~ ~
Cea(z5 08,6, \) = 0eq 6(1 — 2) + as C’éé)(z; €,A) + <ozs) C'((:Z)(z; €,A) + (9(0(%),
T

™

(4.36)
c=4q,q,9.

The limit € — 0 of this function is finite and independent of X. The limit gives the collinear
functions in egs. (2.1) and (2.5), namely Cé;n)(z;e =0,\) = Cé,ﬁ”)(z) (c =4q,q,9). We
obtain

CD(2) = —Ply(z€=0) — 6 61— 2) bV, c=1q,q,9, (4.37)
in agreement with the known results in the literature. In particular, as first derived in
ref. [30], the non-trivial z dependence of Cé;)(z) is due to P/, (z;e = 0) (see eqs. (4.11)-
(4.13)), which is the contribution of O(e) to the d-dimensional real emission kernel P.q(z; )
in egs. (4.6)—(4.10). In the hard scheme [27] C%)(z) has no contributions proportional to
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0(1 — z) and, therefore, pY = 0. In explicit form and for a general scheme we have

Ciq(2) = %CF (1—2)—hi) 81 - 2), (4.38)
Cig (2) = Tr (1 - 2), (4.39)
Cig (2) = —hg? 6(1 - 2), (4.40)
OW() = 50r = (4.41)
Ci(2) = () = ClD(2) =0, (4.42)

and we recall that the expressions in the other partonic channels are obtained by the charge

conjugation relation C’g)(z) = C’%)(z) The complete € dependence of Y s

~ ~ . 1 — e ET(] —

GW (e, 3) = — e~ D1 =€) P, (256) + LT =6 pay (4.43)
€

— e €VE — ~
IPSPONY (EXL L EL) FITEREN O
€

2e

- A0 (- - () - LAl + 1 + RO D))
€

C:(L(Lg'

Such dependence is relevant to compute the contributions at higher orders in ag through
the implementation of the IR factorization formula in eq. (4.30).

The perturbative expansion of the azimuthal-correlation component Fgy4 corr. in
eq. (4.28) starts at O(ag). Therefore, no IR factorization procedure is required at this
perturbative order. The IR finite function Gy, in eq. (4.31) has the following perturbative
expansion:

& )= 28 am 2\ as\? ~(2) 2\ 3
GQCL(Z; as, ¢, )\) = ? Gga (Z; € )‘) + ? Gga (Z; € )‘) + O(aS)' (444)
The first-order term é;}) is simply obtained from eq. (4.29) by expressing ag in terms of
as(bg/b?), and we obtain
A (e X) — e 1-2
Goil(zi6,A) =e BT (1 —€) Cy . (4.45)

ga 2

In the four-dimensional limit ¢ — 0, éga gives the transverse-momentum resummation
function Gy, in egs. (2.2) and (2.6), and specifically we have G§T>(z; e=0,)) = GéT)(z).
By inspection of eq. (4.45) we see that é;l)(z; €=0,)\) = Cy(1 — 2)/z, in agreement with
the known result [26] reported in eq. (2.9).

We briefly comment on the relation between the IR factorization formulae in eqgs. (4.30)
and (4.31) and the transverse-momentum resummation formulae of QCD cross sections
(see the discussion in section 2). The TMD functions in egs. (4.30) and (4.31) embody the
collinear contributions to the cross section, and they lead to the resummation coefficients
Ceq and Gy (ice., Ceu and Chy of egs. (2.1) and (2.2) in the limit € — 0) and to the
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IR singular factors Z.. In the small-gr (or large-b?) region, the cross section receives
additional relevant contributions from soft, but non-collinear, radiation. Such contributions
have to be properly evaluated and combined with the factors Z. and with the purely-virtual
contributions to the cross section. The combination of all these contributions in transverse-
momentum resummation formulae produces the cancellation of the IR divergences, and it
leads [27] to the large logarithmic terms (i.e., In b? terms) of the Sudakov form factor and
to the hard (i.e., IR finite) virtual factors.

We remark on the fact that the soft non-collinear contribution to the cross section de-
pends on the auxiliary vector n# that is used in the TMD collinear functions. Indeed, the
soft non-collinear contribution is obtained from the complete soft terms (which are inde-
pendent of n*) by subtracting the soft limit of the terms (which depend on n*) included in
the TMD collinear functions. This subtraction is necessary to avoid double counting of soft
and collinear terms. The n? dependence of the soft non-collinear contribution cancels the
n? dependence of the collinear factors Z,., and the result for the cross section is independent
of n?. At O(ag) we have explicitly verified this cancellation, and we have reobtained the
complete contributions to the transverse-momentum resummation formula [27].

We conclude this subsection with some comments on rapidity divergences. The order-
by-order perturbative computation of ¢p-differential cross sections at any values of qr
can be carried out in exact form without encountering rapidity divergences. From this
computation one can then (‘a posteriori’) extract the small-gr behaviour of the cross section
by simply neglecting subdominant terms at small values of gp. Therefore, the rapidity
divergences are an artifact of ‘a priori’ approximations that are introduced to evaluate
only the dominant terms of the cross section in the small-gr region. These ‘a priori’
approximations regard the QCD scattering amplitudes and the gr-dependent phase space.

The dominant collinear contributions at small gy can be consistently evaluated by ap-
proximating the squared amplitudes through the collinear factorization formula (3.1) and
by introducing the differential collinear function F,(p, k;n) in eq. (3.14). In the compu-
tation of the cross section the upper value of the momentum k* is bounded by kinematics
and, in particular, k= < O(p™). Moreover, the validity of the collinear factorization for-
mula is, strictly speaking, limited to the collinear region where k= < O(k™). Introducing
the TMD collinear function F, in eq. (3.22), the cross section kinematics is approximated
by removing any upper bounds on £~ and integrating over the entire region 0 < k=~ < +o0.
Such approximation is justified only if the collinear factorization formula and the collinear
function F.q(p, k;n) are sufficiently well behaved at large values of k™, so that the large-k~
region eventually leads only to subdominant terms at small values of gp.

The n* dependence of Fq(p, k;n) is harmless in the collinear region where k= < O(k™),
but it is very relevant at large values of k~. If n? = 0, the n* dependence of F.q(p, k;n) in
the limit ¥~ — +o0o produces the rapidity divergences. However, if n? > 0, Feq(p, k;n) is
integrable over the large-k~ region and, actually, it is effectively (dynamically) damped in
the region where k= > O(2(n~)? k™ /n?) (see, e.g., egs. (4.15) and (5.16)), namely, outside
the region of validity of the collinear approximation of the squared amplitudes. Therefore,
if n2 > 0, the TMD function F, in eq. (3.22) can be consistently used to approximate and
evaluate the dominant collinear contributions to the gp cross sections at small values of
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gr. We note that the dependence of F.,(p, k;n) on the auxiliary time-like vector n* affects
the soft limit k& — 0 and, consequently, the small-g7 limit of the TMD function depends on
n?. As previously mentioned, such n? dependence is properly compensated and cancelled
by the corresponding n? dependence of the soft non-collinear contributions to the cross
section.

The rapidity divergences of the TMD function F, in eq. (3.22) can also be avoided by
considering collinear functions F,(p, k;n) that are defined as in eq. (3.14) by using a space-
like auxiliary vector n* (n? < 0). However, the use of a space-like vector n* can introduce
unphysical divergences at finite values of k~. These features can be clearly seen by setting
n# = (n,0p,n") with n? = 2n*n~ < 0 and by considering the computation of F,,(p, k; n)
and F,, at O(ag). If n? < 0, the factor 1/(1—z,) of eq. (4.15) leads to a dynamical damping
in the large-rapidity region where k= > k* (similarly to the case in which n? > 0), but it
also produces a divergence at the value k= = —2(n~)?k*/n?. This divergence has to be
regularized (for instance, we can perform the replacement 1/(1 — z,) — PV[1/(1 — z,)],
where PV denotes the principal value prescription) to carry out the integration over k~
and to properly define the TMD function F_,. In view of the unnecessary complications
(with respect to using n? > 0) of introducing and, consequently, regularizing unphysical
divergences, we do not use a space-like auxiliary vector n* in the definition (see section 3)
of the splitting kernels P and of the ensuing collinear and TMD functions.

Auxiliary space-like vectors are used in the formulation of TMD factorization that is
worked out in ref. [14]. However, as briefly discussed below, those auxiliary vectors are
not related to the space-like auxiliary vector that can be introduced through the collinear
splitting kernels P.

The formalism of ref. [14] regards TMD factorization for the specific class of produc-
tion processes involving colourless high-mass systems and corresponding processes related
by kinematical crossing (see section 2). The TMD functions defined in ref. [14] embody
both collinear and soft contributions that depend on several Wilson line operators. The
dressing of the collinear contributions uses Wilson line operators along the direction n*,
while the soft contributions depend on Wilson line operators along the directions n* and
nls, where n/ is a space-like vector (n% < 0). The auxiliary vector n* in the collinear
and soft contributions is light-like (although the limit n? = 0 is approached from space-
like values). The ensuing TMD functions eventually depend on the space-like vector nlg
that is introduced through the soft contributions. Such ng dependence is not related to
the auxiliary-vector dependence that is introduced in our collinear functions through the
collinear splitting kernels P.

4.3 Beam functions

The partonic beam function B, is obtained from the differential collinear function F,
by using eq. (3.23). The contribution of O(ag) to B, is denoted by B((;CllR), and it is
obtained from the corresponding contribution fééR) to the differential collinear function.
The computation of BgéR) is performed by using the expression of ]—"C(;R) (p, k;n) in eq. (4.3),
similarly to our computation of the TMD functions in section 4.2. The integration over

k in eq. (3.23) is trivial at O(ag), and BGT) turns out to be proportional to the overall
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factor t~17¢ (1 — 2)7¢2¢ times a function of z and ¢, which is due to the corresponding
dependence of eq. (4.3) on z, (see eq. (4.5)). Using the collinear factorization formulae, we
compute the singular terms of B, in the limit ¢ — 0. Such terms are due to the overall
factor t~17€ in B&R) and, therefore, the residual z, dependence can be approximated by
setting ¢t = 0, provided the limit ¢ — 0 is smooth and non-singular. In complete analogy
with our discussion of the TMD functions (see section 4.2), we can set z, = z + O(t) in
all the contributions to B’ with the exception of those that are due to PS8(z,) (sce
egs. (4.11)—(4.13)) in eq. (4.3).
The contribution of P58(z,) to B s proportional to the following factor
1 np pt B 1

1—Zn_nk_k++%f7_p+_l—z+z(372;)g

, (4.46)

where in the last equality we have implemented the kinematics of the beam function (i.e.,
kt = (1—2)pT, k= =t/(22pT)). Setting n? = 0, this factor is divergent (and not integrable
over z) at z = 1, analogously to the corresponding factor in eq. (4.15) for the TMD
functions. However, as previously noted, BgR) contains an overall factor (1 — z)~¢, which
is produced by the integration over kt (at O(ag) we have kp? = t(1—2)/z). In the context
of dimensional regularization the factor (1 — 2)~¢ regularizes the singular factor (1 — z)~1
and, therefore, B((;}IR) is well defined (though it is IR divergent in the limit ¢ — 0) by using

a light-like auxiliary vector n*. In other words, if n? = 0 the beam function BgéR) does

not contain rapidity divergences (in contrast to the case of the TMD function FC((%R)). Few
other comments on the absence of rapidity divergences are presented at the end of this
subsection.

The first-order term B&R) is well defined if n? = 0 and, also, if n? > 0. In the following
we consider the explicit computation of the beam function for a generic auxiliary vector
with n2 > 0.

Independently of the specific value of n?, the contribution of the factor in eq. (4.46)
to Bg}zR) can be approximated in the relevant limit ¢ — 0. Considering the effect of

the additional factor (1 — z)~¢ and setting N = n?t/(2pn)?, we can use the following

approximation:
1—2)"¢€ 1—2)"¢ 1 1 — )¢
( Z)X=<( z>X> rot—s [lar A2

—€
=[(NM)"T(A+e)T'(1—¢) —1] %6(1 —z)+ <(11__Z)Z> +O(\N), (4.47)
+
which is valid for arbitrary values of e. Owing to the factor (\)7¢ in eq. (4.47), we note
that the limit + — 0 and the transition from n? > 0 to n? = 0 are not smooth (i.e., the
limits ¢ — 0 or n2 — 0 do not commute with the limit ¢ — 0). The term of O(\) ~ O(t)
in the right-hand side of eq. (4.47) smoothly vanishes in the limit ¢ — 0 (i.e., it vanishes
order-by-order in the € expansion around € = 0) and, therefore, it can be neglected in the

computation of Bg(llR) .
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Using eq. (4.47) and neglecting subdominant terms that smoothly vanish in the limit
t — 0, we obtain the following result for the beam function at O(as):

2t al MQE S e€VE 1—2\"€ ~
BUR | 28, - — 2510 2 e ( ) Bres(z; 4.48
ca | #h (22pn)? 7 (1 —e) z ca (3€) (4.48)

5 AD) [(Ze =, ((1 - >>
.

1—=2 1—2

AT (%) F(l—i—e)f‘(l—e)—l]},

€

where the kernels PI®8(z;¢) are given in eqs. (4.6)—(4.14). The singular ¢ dependence of
eq. (4.48) is due to the terms ¢t~17¢ and ¢~!72¢, which can be customarily expanded in the
limit € — 0 (see, e.g., ref. [22]) and lead to € poles and plus-distributions of the variable ¢.
Setting n? = 0, it is straightforward to check that the e expansion of eq. (4.48) agrees with

the expressions of B(g}]R) and BC(I}]R) obtained in ref. [22].

In the following we consider the Laplace transformation gca of the beam function B,
with respect to the transverse virtuality t. We define B, as follows

~ n2og oo . n’t
Bea <Z;U’(22pn)20 E/O dt €77 Beg z;t,m , (4.49)

where o is the conjugate variable to ¢ in Laplace space, and o9 = e 7F is a customary
numerical coefficient [103, 104] that appears in Mellin or Laplace transformations of plus-
distributions.

In Laplace space, the singular terms of B, in the limit ¢ — 0 become logarithmic
contributions of the type In o, which are large in the limit o0 — +00. We use the following
result:

o0 In™¢ d™
dte 7" =—
/0 € t1+6 dp™

. (@) T (p-13)] (4.50)

which is the most general Laplace transformation that is necessary to go from B, to gca
at arbitrary perturbative orders in ag.

The perturbative expansion of Beg is

2

B | z; 0, oo =0 0(1 —2)+ B,V | 2; 0, @epn)2o + O(ag). (4.51)

The first-order contribution ESLR) is obtained from the expression of Bé(llR) in eq. (4.48) by
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using the Laplace transformations in eq. (4.50) with 6 = ¢€,2¢ and m = 0. We have

~ 2 &S 20 A 1—2\"°~
B(IR) : n-oo _ Qg Ve [ Hp L) < ) preg(,.
ca z0, (2an)20_ T %0 c > ca (Za 6)

_5caA£1) [(ze _ 1) (1 _z)ie + <(1 _Z)€>
1-2 1-2 N

-z n’o ¢
* 5(126 | <((2zpn;)20> eI+ I = 2¢) - 2) ] } ’
(4.52)

which is the result for arbitrary d = 4 — 2¢ space-time dimensions. In the limit ¢ — 0,
g&ILR) contains double and single poles, 1/¢2 and 1/¢, of IR origin. At higher perturbative
orders, the computation of Bey leads to € poles of UV and IR origins. The UV divergences
are removed by renormalizing the bare coupling ad (see eq. (4.2)), while the IR divergences
are factorizable.

The IR factorization formula for the beam function gca in Laplace space is

2 2
~ n-oo 2 n-oo
Boa 250, -0 ) = 2 L
o (Z’U’ (22pn)20> C<as(uF)’a’ HEs (2zpn)2a)

ldz ~

X Z/ — Cb(&?,U;MF,OCS(/J/%?),G,
p 7z T (

2zpn)2o

77,20'0

> fba(Z/x; :u%) )
(4.53)

where the functions Z, fcb and f‘ba are expressed in terms of the renormalized coupling
as(p?) at the renormalization scale g = pup. The structure of eq. (4.53) is closely analo-
gous to that of the corresponding IR factorization formulae in egs. (4.30) and (4.31) for the
TMD functions in b space. The factor Ty, (; u%) in eq. (4.53) is the collinear-divergent
function that defines the scale-dependent PDFs f;,(2; u%) at the scale up in the MS factor-
ization scheme (see egs. (4.32) and (4.33)). The function Z. embodies € poles of IR origin
and the function I is finite in the limit e — 0. Using a time-like auxiliary vector n*, Bea
explicitly depends on n?. In the limit € — 0 any IR finite dependence on n? is absorbed
in the factor Z., so that the function I is independent of n? and it leads to the matching
coefficient I in egs. (2.13) and (2.14).

The explicit expression of Z. up to O(ag) is derived by comparing the factorized
structure in eq. (4.53) with the results in eqs. (4.51) and (4.52). Setting N = 00 we

~ (2zpn)20’
obtain

~ 2 ~
Z(as(p2), o pp N) =1+ O‘S(:F)zgﬂ(a, pes N+ O0(ad), (4.54)

< 11 2 1 <
ZM (o, pp; N) = ALY LQ +—In <'UJ5;T>] + Yege ~ AWM (e, X pp, o),  (4.55)

where the function r(1) is

2 2 +e 2 —€
W (, "0 . _ 1 (Hpo o0 —evm _
r (6, (2an)207HF, U) . ( ) <(2an)20> e F'(1+¢€(1—2¢). (4.56)
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Analogously to the IR factor Z. for the TMD functions (see eq. (4.35)), the beam
function factor Z. in eq. (4.53) has a factorization scheme dependence, which is specified by
IR finite contributions. If n? = 0, the function #(!) in eq. (4.56) vanishes and, consequently,
the expression of Zc(l) in eq. (4.55) contains only € poles. Therefore, such expression
corresponds to a ‘minimal’ scheme, in which ch) has no IR finite contributions. This
minimal scheme is customarily used for the SCET definition of the beam functions [22, 59—
61]. If n®> > 0, (1) is not vanishing and, in particular, Z(gl) in eq. (4.55) embodies the
entire dependence (i.e., the dependence at arbitrary orders in the € expansion) of BSLR) on
n? (see eq. (4.52)). In the limit € — 0 the expression of () for n? > 0 is

1 n2oq 1 1 no3 1., n03 572

r )(6’ (22pn)20;'uF’U) T2 2 n ((Qan)2g2M2F>+4 n ((22pn)222u%>+24+0(6)'
(4.57)

As we have already noticed (see eq. (4.47) and accompanying comments), the limit n? — 0

is not smooth (i.e., it does not commute with the limit ¢ — 0). Indeed, the result #(1) =0

for n? = 0 cannot be recovered by setting n? = 0 in the expression in the right-hand side

of eq. (4.57).

The IR finite contribution I, in eq. (4.53) has the following perturbative expansion:

B 2 2

2
n<oyo as(Ur) = n-oo
I, <z,a;uF,as(u%),e,(22pn)20> :60,15(1—2)—1—(71_}7)]6(;) <Z’G;MF’€’(22pn)2a> +O(a§).
(4.58)

The matching coefficient I, of eqs. (2.13) and (2.14) corresponds to the limit € — 0 of I,.
In particular, we have

~ n?og

Ic(clz) (Za O, hF, €= 07

(22pn)20> = c%)(zﬂf; 1) (4.59)

By using the result in eq. (4.52), the IR factorization formula (4.53) and the expression
of Zél) in eq. (4.55), the first-order term ﬁi) is independent of n? and, setting € = 0, we
obtain

1—2z
z

2
IV (z,05ur) = —P)(2) In <W> — Ply(z:€=0) + Pyi®(z;¢ = 0) In ( ) (4.60)
0o

1
+ 0 A (hl(l_ Z)) _ Inz +(1—2) A In? L% T) + 2oy L% 7
@ e l—2 ), 1-z 2 o0 2 00 '

This result for the matching coefficient Ic(;)

agrees with the Laplace transformation of the
known result in the literature [60, 61]. We recall that eq. (4.60) refers to a minimal scheme
in which Zc(l) has only € pole contributions if n? = 0. The generic scheme dependence of
the beam functions at O(ag) can be explicitly denoted by introducing an e-independent
function in the expressions of Zc(l) and Igi), similarly to the function hgl) in egs. (4.35)
and (4.37) for the TMD functions.

We conclude this subsection with some additional comments about the dependence of
the beam functions on the auxiliary vector n*. As discussed in section 4.2, in the case of the
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TMD function F,, the singular dependence on n? and the rapidity divergences originate in
eq. (3.22) from the &k~ integration of Fq(p, k;n) over the region O(p*) < k™ < 400, which
lies outside the region of validity of the collinear factorization formula (3.1) that is used to
define Feq(p, k;n). In the case of the beam function B, the integration of F.,(p, k;n) over
the momentum k* is specified in eq. (3.23), and it is always bounded inside the collinear
region. Indeed, we have k= = t/(2zp") and the transverse virtuality ¢ is fixed to be
small (i.e., t < O((pT)?)) in the computation of the beam function. The kr integration in
eq. (3.23) is also bounded to the region of small values of kr since we have kp? < t(1—2)/z
(which follows from k2 > 0).

In summary, due to its definition in eq. (3.23), the beam function B, can be consis-
tently computed by using both time-like or light-like auxiliary vectors n*, without encoun-
tering rapidity divergences. Varying the value of n? varies the behaviour of F.q(p, k;n)
in soft limit & — 0 and, consequently, the effect of the soft contributions included in the
beam function Be,. This effect produces the n? dependence of B.,, which can be factorized
in the function Z, of eqs. (4.53) and (4.55). In the computation of cross sections, the n?
dependence of B, is cancelled by the n? dependence of the soft non-collinear contributions,
through the same mechanism that leads to the cancellation of the n? dependence due to
the TMD function (see the discussion at the end of section 4.2).

At O(ag) we have explicitly evaluated the beam function by using a time-like auxiliary
vector. Similar computations of the beam function B., with n? > 0 can be carried out at
higher orders in ag. Admittedly, such computations turn out to be much more cumbersome
than those with n? = 0 [62-68).

5 Azimuthal correlations at O(a3) in the SL region

In this section we consider the perturbative calculation of the azimuthal-correlation terms
at O(ad). We present the results for the differential collinear function Fyq, corr.(p, k3 1) and,
subsequently, for the TMD function Fy,, corr.-

5.1 Differential collinear functions

At (’)(a%) the differential collinear function Fy4, corr. receives the two contributions, fééilo‘r/r)

and ]—“g(if?orr_, in eq. (4.1). We discuss them in turn.

The term .FC(;RW) (p, k;n) is due to the one-loop virtual correction to the final-state
emission of a collinear parton with momentum k, and it is obtained from eq. (3.14) by using
the one-loop collinear kernel P(gl_)mla. The one-loop correction to the collinear splitting
process ¢ — aja is known since a long time [9, 77-79]. The original results in the literature
regard collinear factorization at the amplitude level and they refer to the TL collinear
region. The extension to the SL region was worked out and discussed in ref. [12], by noticing
two main features: one-loop factorization for the collinear splitting ¢ — aja is process
dependent at the level of the scattering amplitudes, and it becomes process independent
at the squared amplitude level. We have computed the SL kernels P£2a1a by squaring the
amplitude level results of refs. [9, 77-79] and by applying the prescription of ref. [12] (see

section 7.2 therein) to derive the results in the SL region.

— 33 —



The expression of fg(i%‘{r) (p, k;n) is directly proportional to Pﬁm (see egs. (3.12)

and (3.14)) and we obtain the following results:

PR i) (515 6)2 B O SOl
+0A12;2z [612_1(1n(1_z)_21n(z))—7;2+;1n2(1_z) }—I—O(e),
o (282 ) SO s[4
+Ca ;2—#% (131—2111(2)4-111(1—,2)) —|—796+7;2—;1n2(1—z)]
+Ny [—326—190] }—i—@(e), (a=4q,q). (5.2)

We note that in egs. (5.1) and (5.2) we have neglected contributions of O(e), since they are
not relevant to the four-dimensional limit at O(ag). Moreover, we have used the momentum
fraction z that is defined as

p o M= k) (5.3)
np
where the light-like auxiliary vector n* is
21
R L (5.4)
2np

In our customary reference frame we have p* = (p*,0r,0), n* = (n™,0p,n~) and, there-
fore, n* = (0,0p,n") and z =1— kT /p*.

The use of the variable z = n(p—k)/np in egs. (5.1) and (5.2) deserves some comments,
since it is practically equivalent to compute fécllﬁélo‘é) (a = g,q,q) by setting n? = 0.
As discussed in sections 4.2 and 4.3, the use of the time-like auxiliary vector n* in the
computation of the collinear functions is, in general, essential to avoid unphysical behaviour
outside the collinear region. Nonetheless, already at O(ag) we noticed that we can correctly
co(m}gute the collinear functions by setting n? = 0 in most of the n-dependent terms of
Fas

ca, az.in.

in the expressions of egs. (5.1) and (5.2) we have directly implemented the approximation
2

in eq. (4.3) and in the entire n dependence of féi,Rc)orr, in eq. (4.4). Therefore,

of setting n? = 0 in terms with a harmless dependence on n
]-"g(i}g‘é) on n? can be recovered from eqs. (5.1) and (5.2) by replacing the variable z of
eq. (5.3) with the variable z, of eq. (4.5).

The term fég@om (p,k;n) in eq. (4.1) is due to the final-state emission of two collinear

. The exact dependence of

partons at the tree level. It is obtained starting from the azimuthal-correlation component
of the tree-level collinear kernel Pg%‘fﬁaw(kl, ka,p;n) (see egs. (3.12) and (3.14)). The tree-
level kernel is process independent, and the TL and SL regions are straightforwardly related
through the replacement p <+ —p. The explicit expressions of Pé%’é’f@a(kl, ko, p;n) for the
various partonic channels were obtained in refs. [10, 76]. We evaluate ]:g(zﬁ)orr, (p, k;n)

in eq. (3.14) by performing the integrations of the azimuthal-correlation component of
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Pg([i))ala2a(k1, ko, p;m) over k; and kg at fixed momentum k = ki + ky. Such integrations can
be carried out to all orders in € and for arbitrary values of n? by using the d-dimenional
angular integrals of ref. [105]. In the following we present the results in a simplified form
that amounts to neglect contributions at high orders in e and to set n? = 0 in all the
contributions with a harmless (smooth and non-singular) dependence on n?. In particular,
we use the variable z of eq. (5.3) to express part of the n dependence of fégﬁ%m (p,k;n).

We write fg(Zﬂer. in terms of contributions with different colour factors:

u,,2€ 2 2B (1 —
(2R) L — a5 o SE € ( 6) ]{32 —€
]: gg, CorT. (pa ’n) ( T 27’[‘1_EF(1 — 26) ( ) (55)
2
CrTRN;Figt 6™ ™ (p, s m) +-CATR N Figt o6 N (p, ks m) +- O F g 0 (p. ki) |
u,,2€ 2 257311 1—
(2R) k) — g " Se € ( €) E2)€
‘ng, corr. (p7 7”) ( T 277'1_5 11(1 _ 26) ( )

CFyemm! (b ki) + CaCrF RS (p,kim)| (5.6)
and we recall that ]-"g(q sz (p,k;m) = ]:éch%rr (p,k;m).  The individual coefficients
fg(g R SrTrs , J-'g(f,f?gr?‘TRNf nd fg(g c)orr of eq. (5.5) for the gluon-gluon channel are
given by the following expressions:

2 2 2
T T L W LR e 0
]:99 corr (pa 7”) 222(]3]{)4 € +4|+ Zz(pk‘) +
1 1422 2 1
148 — | —+1 2.7
T 20h? { e T } 2pk(k?—2pk) L+ ] (51)
F(2R), CaTrN; (p. im) = 4(1—2)(3+5¢)  (k*—2pk)? B k> —2pk B 1
99, cort T 922k2(k2—2pk)  622(pk)*  6(1—2)(pk)3 3(1—2)(pk)?
(14+22)(K*—2pk) 24z+2* 2(1-2z) (5.8)
622(pk)3 322(pk)2  322pk(k?—2pk)’ ’
(2R),C% 1—2 [2 11 67 } 4 1 k% —2pk
COrT. ,k; =T 579,79 A N | T T o T € — -
Fag.com” (P, k;n) 22k%(k?—2pk) e 3 + 9° z(k? —2pk)? e+12(1—z)(pk:)3
(K —2pk)? [1 10]_ k% —2pk [1+z+19+202]
422(pk)* le 3] 222(pk)3 | € 6
N 1 1 2+z+14+19z+22
6(1—2)(pk)2 22(pk)? | e 6
1 1+4z 11-28z2
— _ K. k:
22pk (k2 —2pk) ( € 6 >+ (p, ;)
+FSE (p ki), (5.9)

where the functions K and F™*~5"8 are presented in egs. (5.12)—(5.14). The individual
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coefficients fg(q C)orr nd féﬁ’?gﬁACF of eq. (5.6) for the gluon-quark channel are
féii?;rf%(p,k;n)zm [4+3+7] m [1+2} (5.10)
222(1]9]{)2 F;Zﬂazz] +2z2pk(l€12_2pk) [2(26_2)+3(122)} ,
2
féé@)gACF (p, kim) = z%gél}:?—zgpk) - z(k? —42pk‘)2 % B 522(192/?)12 {1 2]
g | e
+/C(p,k:;n)+.7:”27smg‘ (p,k;n). (5.11)

The function K in egs. (5.9) and (5.11) has the following expression:

1+e€
1 21—z 171 2 ky” 1
K(p, k;n) = — ol PR
(p7 ,n) 22(k2 _ ka) |: k2 t pk] € Zka(k2 — 2pl€) ( k2 € * 6 ‘

B 1 [6(1—2)_1]111 m B\ 2 k2
22(k? — 2pk) k2 pk kr? z pk(k? — 2pk)?
4(2 — 2)pk 24— 2) } k
1 - In(1-=%
+1n(2) [(kQ ok 22 —2pk)?] T kplpk 2k

1 C2(1+2)(1—2)] K kT k?
* L 2pk(k2 — 2pk)  22k2(k? — 2pk)] kr? n (1 + k:2> ~hn (1 B 2p/-c>
8(1 — 2)(2 — 2)(pk)? 1 4(6 — 3z + 2%)pk  2(2+ 5z — 2?%)
NTRRG2 — 2k 2Kk Zk2(k2 — 2pk)? | 22K2(k2 — 2pk)
82(1 — 2)(2 — 2)(pk)? |In(z)  2pk k2
a0 2ph)? L_z San (1—2%)] (5.12)

The function F° 518 in eqgs. (5.9) and (5.11) embodies the non-smooth dependence of
]-"g(zf%c)orr, on n?. In the case of a time-like auxiliary vector we find the following result:

-z n?k? -
]'—nQ_Sing'(p:k‘?n) = 3 ) (4( : )2)

1+7T2
-+ —€
€ 3

2
SE R (5.13)

22k2(k? — 2pk) np)?(1—z

¥ 21— 2) 212 (pk) :
X [ (o2 E ) + - ln( 20 1 ten?) (g ¢ 2R , (n®>0).
p + (np)2 T (np)?(k? + ko7) ( D)2

Performing the calculation of fégigrr, with a light-like auxiliary vector we obtain

fn27sing. (p7 k; n) -

z
1 2(1-2) k> 2\ 1+¢ )
— In(1+-—%- — ) === =0).
x{ pk+ Top? [n( + 2 + Top? ; , (n®=0)

We comment on the results in eqs. (5.5)—(5.14) by discussing the € dependence and the n?

dependence in turn.
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The differential collinear function Fg(if?orr_ (p, k;n) is singular in the limit k%2 — 0. The
singularities are due to contributions that are proportional to the factors (k?)~!1=¢ and
(k2)~12¢, Such factors can be expressed in terms of plus-distributions of the variable k2,
which are integrable at k2 = 0, and contact terms of the type &, (k2), whose coefficients are
single poles 1/e. Owing to these single-pole effective contributions, in egs. (5.8)—(5.13) the
coefficients of the factors that are singular at k? = 0 are reported up to O(e), by neglecting
terms at O(e?) and higher orders in €. In all the other contributions to eqs. (5.7)—(5.14)
that are not singular in the limit k2 — 0, we limit ourselves to presenting the results up to
O(eY).

The contributions of the function F n?—sing. ¢ féﬁfﬂ)rr, have a non-smooth dependence
on n2. All the other contributions of egs. (5.7)—(5.12) to J-‘ﬁfi{)rr, have a smooth and
harmless dependence on n? and, similarly to fg(ﬁ%) in egs. (5.1) and (5.2), they are
presented by setting n? = 0.

By direct inspection and comparison of egs. (5.13) and (5.14), we can see that
i —sing. (p, k;n) has a non-smooth and singular dependence on n? in the limit n? — 0. The
n? dependence of F n?—sing. (p, k;n) is also related to the issue of the rapidity divergences,
which we have already considered in sections 4.2 and 4.3. If n? = 0, Fri-sing. g given
by eq. (5.14) and its contribution to féZ,P;LH, (p, k;n) in the limit k= — 400 is due to the
following factor:

—1—e¢
21—z (kr?)  14e
22 pt k— e’

k™ — +oo (n*=0),

(5.15)
which is proportional to 1/k~. This contribution is not integrable over k™~ in the region

(#) " Fe (p ki)

where k= — +o0. This singular behaviour is a manifestation at O(a2) of the rapidity
divergences that we have discussed in section 4.2. If n? > 0, the expression of JFn’—sing. g
given by eq. (5.13) and in the limit £~ — +o00 we have

2(1—2) (2kTk™) "¢

k,2 € ]_-nQ—Sing. 7]{7; ~ 5.16
(+*) (ki) = = e (5.16)
20,2
X 12“—1n<1+sz(npl> , k7 = 400 (n*>0),
14 @R n?(pk)
(np)*kr

where we have neglected contributions of O((k~)7272¢) and O((k~)~27¢) that are n-
independent at large values of k~. The overall factor (k~)~'~¢ in the right-hand side of
eq. (5.16) is not integrable* as k= — 4-o00. However, since n?(pk)?/(np)? = n?(k™)%/(n™)?,
both terms in the square bracket of eq. (5.16) screen the non-integrable behaviour of the
factor (k=)~1~¢. Therefore, F n®—sing. (p, k;n) does not produce rapidity divergences in the
expression of fégi)orr, (p, k;n). The n? dependence of the square bracket term in eq. (5.16)
leads to a dynamical damping at large values of k™, and the non-integrable behaviour of

30ther comments on the singularities in the limit k* — 0 are presented in section 5.2.
“In our computation we have € < 0 to regularize the IR divergences. Therefore, the e-dependent factor
(k7)7° does not remove the rapidity divergence due to 1/k~ at k= — +oo.
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the type (k7)~!7¢ is effective only inside the region where (k7)? < (n™)?ky?/n?. Since
k2 < 2kTk™ (i.e., k2 > 0), this region is contained in the region with k= < 2(n™)2 k™ /n?,
where the collinear approximation of the squared amplitudes is certainly valid. Obviously,
the issue of rapidity divergences is not relevant by considering the differential collinear
functions Fgq, corr. (P, k; 1) at finite and not large values of k™.

As discussed at the end of sections 3.2 and 4.1, setting n> = 0, qr = kr and
t = 2zpk, the collinear function F.,(p,k;n) is related to the SCET differential beam
function Beq(z,t,qr) [92-94] at the partonic level. At O(a3) we have Bg)(z,t, qr) =

Fc(;mv)(p,k;n) + Fc(,fR)(p, kin) (a = q,q,9), where Bég) is the second-order contribu-

tion to Be,. The azimuthal-independent component Bgi) anin. at O(ad) was computed in
refs. [95, 96]. Our expressions in eqgs. (5.1), (5.2), (5.5) and (5.6) give the result at O(a3)

for the azimuthal-correlation component Bﬁ), corr. Of the SCET differential beam function.

5.2 TMD functions

We use our results at O(a%) for the differential collinear functions Fgq, corr. (P, k; 1) to com-
pute the TMD functions Fyq, corr. at the corresponding perturbative order. Similarly to our
computations of the TMD functions at O(ag) (see section 4.2), we use a time-like auxiliary
vector n* to avoid rapidity divergences. However, we comment on the n? dependence of

the various contributions to Fyq, corr.-

The O(a%) contributions to Fyq corr. are denoted by Fg(allig‘r/r) and Fg(ifEer,, and they

are obtained according to the definition in eq. (3.22) by integrating ]:g((llRC?r/r) (p,k;n) and
]:g(zﬁ)orr,(p, k;n) over the momentum k. The integrations over k™ and k are trivial, and
the integration over £k~ extends up to +oo.

The &k~ integration of the expressions of féﬁé‘f) (p,k;n) (a = g,q,q) in egs. (5.1)
and (5.2) is elementary since it simply sets k= = qr2/(2(1 — 2)pT) by using the delta
function &4 (k?). The ensuing expressions of Fgéﬁo‘r/r_ contain double and single poles, 1/¢>
and 1/e, and the dominant contributions in the limit g2 — 0 do not depend on n?. These
contributions can be computed by setting n? = 0, since the n? dependence leads to terms
of O(n?qr?/(np)?).

The k™ integration of fég@orr, (p, k;n) extends over the region kpin < k7 < +00. The
lower limit k.. = qr?/(2(1 — 2)p™) derives from k% > 0. As noticed in section 5.1, the
expressions of fézﬁorr, (p, k;n) contain contributions of the type (k?)~17¢ and (k?)~172.
The integration of these contributions over £~ produces single poles 1/¢ from the region
where K~ — k

—. (ie., k? — 0). The k™ integration in the region k= — -+oco produces
rapidity divergences if n?> = 0. We use an auxiliary vector with n? > 0 and the correspond-
ing expression of JFn—sing. (p,k;n) in eq. (5.13), which eventually leads to contributions
of the type In(n?qr?/(np)?) to Fﬁfﬁlrr, The remaining contributions of egs. (5.7)—(5.12)
to fég,Rc)orr,(p,k;n) produce terms with a smooth n2 dependence in Fg(ﬁf?orr,, which can
be evaluated by setting n? = 0 (i.e., neglecting subdominant terms of O(n%qr?/(np)?)).
Regarding the dependence of Fg(ﬁf“’&n, on the momentum fraction z = 1 — kT / pT, the k~
integration of fézﬁ)orr, (p, k;n) can be carried out in terms of rational, logarithmic and

di-logarithmic functions of the variable z.
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Having computed the (’)(oz%) contributions Féa%})ﬁ) and Fg(ﬁff;%rr, to the TMD function

Fya, corr. in g1 space, we perform their Fourier transformations to obtain the correspond-
ing contributions Féé’iéyr) nd F;a C)Orr of eq. (4.28) to the b space function ﬁga7 corr. 1D
egs. (4.20) and (4.21). The explicit Fourier integrals that are required at O(a) are given
in eq. (4.23) with § = €,2¢ and m =0, 1.

The expressions of Féal?o‘r/r) and Fég,RC)OH, have double and single poles, 1/ €2 and 1 /€,
in the limit ¢ — 0. Part of the single-pole terms are cancelled by performing the UV
renormalization of the bare coupling: we use eq. (4.2) up to O(asg) and we choose the
renormalization scale /ﬁ% = b%/b%. The remaining € poles have to be treated by using the

IR factorization formula in eq. (4.31), which we expand up to O(ad):

ﬁgajcorr.(z;b2/53j) M G(l)( 2 7)\) + <0zs(b7r/b)> {Zgl)(X) éé}l)(z; E,X)

_ fz/ e X) P (2/2) + GA (26, 0) | +0(ad),
(5.17)

where A = n2(b2/b?)/(2zpn)?. The first-order functions P(l), Zél) and C:’g}l) are given in

egs. (4.26), (4.35) and (4.45). Our computation of Fg(ﬁ%) and ﬁg(ﬁf?orr. gives an explicit

expression up to O(e) of the entire contribution in the square bracket on the right-hand

side of eq. (5.17) and, knowing Pb(;), Z_(Sl) and é;ﬁ}, we can explicitly determine C:‘éi) up

to O(e). Our result for éé%) is finite and independent of X in the four-dimensional limit

€ — 0, therefore confirming the validity of the IR factorization structure of eq. (4.31).
Setting € = 0 we have

2 —
GP(ze=0,)) =GP (2), (5.18)
where Gg?l)(z) (a = g,q,q) are the contributions at O(ad) to the transverse-momentum

resummation functions in eq. (2.6). We find the following results:

37 31 13z 1122 1 197 In?(2) 1-=z 2
G2 (2)=C2 3115z 1 [ } (2 Lig(z)—
09 =Cay ~3g v g~y T3g B Tt T M)

1—2)% 1 1 4 2 1
+CFNf{(Z)—IHQ(Z)}—FCANJI{—?—F—F : +Zf—*1 (Z)}

2z 4 36z 9 12 36 6
1-2
—hg? Ca—, (5.19)
1—2 5 1 1—2
@) ()2 ) _ ° 2y _ 201 _
Gy (2) CF{ 5 —1—4111(2) 4ln (2) 5 [ln(l z)+1n*(1 z)]}
1-272 11 10 =z 1 5
+CFNf{_ 32 [3+1n(1_z)”+0‘4%{ T8z T g o +2}

_ 2
+—1n2(z)+1 z lzln(l—z)—i-;ln2(1—2)+L12(z)—7;1 }_hg

(5.20)
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and Gézq) (2) = Gg%)(z). These results regard a generic resummation scheme, which is

specified by the coefficient hél) of the IR factorization function Z") with ¢ = g in eq. (4.35).
We recall that the hard scheme [27] is defined by setting hgl) = 0, and the ‘minimal’ scheme
has hgl) = m2C4/24. We find full agreement with the results for Géi)(z) that were obtained
in refs. [23, 24] (ref. [23] uses the hard scheme, while ref. [24] uses the minimal scheme) by
using TMD functions defined in a SCET framework.

We note that our results at (9(04%) for the azimuthally-correlated TMD function F ga, corr.
are an important and highly non-trivial check of the IR factorization formulae in egs. (4.30)
and (4.31) and of our framework to define and compute TMD functions. In particular, we
find that the same IR singular and n? dependent contribution Zél) of eq. (4.35) is involved
in the IR factorization of both the azimuthal-independent function ﬁ‘ga,az.in. at O(ag) (see
section 4.2) and the azimuthally-correlated function Fga7corr_ at O(ad). At the purely tech-
nical level, we also note that the n? dependence of Zél) has an entirely different origin in
the calculations of ﬁga,az,in. at O(ag) and ﬁ’g% corr. at O(a%) (see eq. (4.16) vs. eq. (5.13)
and related comments).

The agreement between our results in egs. (5.19) and (5.20) and those in refs. [23, 24]
is also highly non-trivial. Indeed, this agreement is obtained by using fully independent
methods and, in particular, very different procedures to deal with the issue of rapidity
divergences.

6 TL collinear functions

In this section we consider the perturbative computation of the differential collinear func-
tions FLI and of the TMD functions F.L in the TL collinear region. We closely follow the
presentation of the analogous SL results in sections 4.1, 4.2 and 5, with brief comments to
highlight the main differences between SL and TL functions.

6.1 TL differential collinear functions at O(as)

The perturbative expansion of the TL collinear functions in egs. (3.5), (3.8) and (3.13) can
be written in the following form:

FTL(p, kin) = FTIL(OR) (p, k;n) + []—"TL (2R) (p,k;n) + FTLQARY) (p, k; n)} +O(ag), (6.1)

where, analogously to eq. (4.1), we have not explicitly denoted subscripts and superscripts
in FTL,

The first-order term .F;L(IR) (p, k;m) in eq. (6.1) is obtained from the contribution of
the tree-level collinear kernel Pég)ala(k,p; n) to egs. (3.5) and (3.13). Comparing egs. (3.5)
and (3.13) with the analogous expression in eq. (3.14) for the SL function FOB (p, k;m),
we straightforwardly obtain the following relation:

Na(e)
Ne(e)

which is valid for both the azimuthal-independent and azimuthal-correlation components of

Fea M0 (p, kin) =

FGR (p, kim)| (6.2)

9
p——Dp

the differential collinear functions. We note that the SL-TL crossing relation in eq. (6.2) is
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valid since the tree-level kernel Pég)ala(k, p;n) is process independent and it has a rational
dependence on the external momenta, which permits a straightforward replacement p <
—p. A similar comment applies to any tree-level kernel Péo_)>a1%_,a, and this leads to ensuing
SL-TL crossing relations at higher perturbative orders (see, e.g., eq. (6.31)).

Using the SL results in egs. (4.3) and (4.4) and the relation in eq. (6.2), we obtain
the following explicit expressions for the azimuthal-independent® and azimuthal-correlation
components of the TL collinear functions at O(ag):

fﬁﬁgﬁknknﬂ==agi?séjii 5?Z%.§w@356% c=9,¢,7, (6.3)
PR ki) = - S5 CE 0D ¢ g, (6.0
e L A N

where we have introduced the n-dependent variable zI,
g P (6.6)

" nlpt k)

The right-hand side of eq. (6.3) is proportional to the d-dimensional Altarelli-Parisi kernel

~

Puc(x;€) of egs. (4.6)-(4.10), and we note that we have directly used the following well-
known (see, e.g., ref. [74]) crossing symmetry relation:

Na(e) 35 .
o [Pea )]

s P,c(z;€). (6.7)

1
z

As discussed at the end of section 3.2, the collinear function F1 ¥ (p, k;n) is related to
the SCET fragmenting jet function G(z,s,p.) of ref. [92]. More precisely, setting n? = 0,

s = (p+ k)? and p; = zkr, the first-order collinear function ]:CTaL(lR)(

p,k;n) is equal
to the first-order contribution Qg)(z,s,p 1) to G at the partonic level. The azimuthal-
independent component of Qéé was computed in ref. [92], and the expression in eq. (6.3)
agrees with the results presented therein. The azimuthal-correlation component of gg}l is

given by egs. (6.4) and (6.5).

6.2 TMD functions and IR factorization in the TL region

The TL TMD functions F.." are obtained from the corresponding differential collinear
functions F.LY(p, k;n) by using egs. (3.17) and (3.19)(3.21).

The contribution of O(ag) to F.L is denoted by FcTaL(lR), and it is computed by using
the expressions of For OF) (p, k;m) in egs. (6.3)-(6.5). We define and compute the TL
functions FLT by using a time-like auxiliary vector n#, since the use of a light-like vector
produces rapidity divergences. The origin of the rapidity divergences is exactly similar in
the TL and SL regions, and we can briefly follow the discussion in section 4.2. At O(asg)

(1R)

the non-smooth dependence of Foy” on n? is produced by the contribution ﬁascing (X1

5Similarly to the case of the SL functions, we introduce the notation FLF = chanaZ‘in‘ and FIF =
ch,;]jaz‘in, (¢ = ¢q,q) for the TL collinear functions in the quark and antiquark partonic channels.
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(see egs. (4.11)—(4.13)) to the kernel P,e(z1%; €) in the right-hand side of eq. (6.3). Indeed,
such contribution is proportional to the following factor:

1 pT 2z

=l =1+ (6.8)
_ ,TL n? k 22n2qr?
-2z, kT + %FW 1—z+ 7(1_2)(3;3)2
1 1 1
= — 1 -_ 1 - .
5 n()\) §( z)+<1_z)++0(ﬁ), (6.9)

where A = n?qr?/(2pn)%. In the last equality of eq. (6.8) we have implemented the

kinematics of the TL TMD function at O(asg) (i.e., k¥ = 0,kT = p™(1 — 2)/2, kT = —qr),
and in eq. (6.9) we have properly performed the limit gr — 0 by using the same procedure

TL (1R
Feg (1R) on z,TLL can be

as in eq. (4.16). The small-g limit of the remaining dependence of
evaluated by simply setting 21" = 2z + O(qr?). Eventually, we obtain the following final

results for the first-order TMD functions in the TL region:

2 2 u ,,2€ EVE
TL (1R) 2 n°qr ag puptSe e
prLan _ 6.10
ca,az.in. <Z7 ar -, (2pn/z)2> T ml—e qT2 ( )
~ 1 1 n2qT2 _
x {Parceg(z;e)+5ca A¢(:1) [<1—Z>+2 1n<(2pn/z)2 6(172) ) c=9,49,49,
2 2 u ,,2€ S e€VE
FILAR) (.2 AT _ _ %S5 Ho P Ca 2(1 — 6.11
gg,corr. | #3 AT (2]971/2)2 T Tle qT2 A Z( Z)a ( )
2 2 u ,,2€ EYE 1—
TL(1R) [ .. 2 _nqr _ as Mo Se € T Z( Z) — 4 6.12
ga, Corr. <Zﬂ qT b (2pn/z)2> T 7[_1_6 qT2 R 1 —€ ) a q’ q ( * )

The Fourier transformation FCEL of the TL TMD function F.L" is defined analogous
to the SL case: we simply use eqs. (4.19)—(4.21) with the replacements F,, — F.L and
F.. — FIl'. The perturbative expansion of the b space functions F.." can be written as
follows:

“ R (2pn/2)2 b2 13 (2pn/z)
c=4g,4, 67 (613)

_ b2 2p2 _ b2 2p2
Pl (5 ) = st ) AR (s, ) 4 oty

FTL Z.b72 o’y _ FTL(R) Z.b: _n'h (6.14)
ga, corr. ) bg ’ (2pn/z)2 b2 ga, corr. ) b% ) (2pn/2)2 b2 .

- b2 n2b2 ~ b2 n2b2
Fga%g@(- N pram (LB w0 Ao

* . b2 (2pn/z)? b2 "B (2pn/z)? b2

a=9,94,9.

~TL (1R)

The first-order contributions F,, ", ;' and F, ngch(olr]r% ) are directly computed from egs. (6.10)—

(6.12) by using the Fourier transformations in eqs. (4.22) and (4.23). We obtain the fol-
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lowing results:

+e  _
FTL(R) ( ‘bz n2b3 ) _ ag Se (Ng b2) e ET(1—¢)

. —_ pr) P (2
ca, az.in. Z; b% ’ (2pn/z)2 b2 T b% (—E) { ac (Z) +e ac(zve)

A((;l) 1 n2b3 Ye _
7660«5(172) [ 9 <€+T/1(1€)7/)(1)+1n (2p7’L/Z)2b2 +5 ) ¢c=g,4,4,
(6.15)
_ b2 n2p2 al S /~L2 b2 +e
FTL(IR) el 0 _ S Ve 0 —VET(] — 1— 1
gg, COrT. 2 b% ) (2])77,/2’)2 b2 T b(g) € ( €)CAZ( Z)7 (6 6)

~ b? n2b3 a¥ S. [ 3 b? e 2(1—2)
FTL (1R) . 0 — S Me 0 —€vE (1 = )T _ q.
ga, corr. 5 b(Q) ’ (2pn/z)2 b2 T b% € ( 6) R 1—¢ ' a q,9q

(6.17)

In the right-hand side of eq. (6.15) we have used the lowest-order Altarelli-Parisi kernel
(1)

e (z) (see eq. (4.26)) and the contribution P/, to the d-dimensional real emission kernel
P,e (see eqs. (4.11)—(4.13)).

The perturbative expansion of ﬁ’CEL in powers of the bare QCD coupling a§ has e-pole
contributions of UV and IR origins. The UV poles are removed by using eq. (4.2) and
introducing the renormalized coupling as(,u%). The IR poles can be factorized, similarly
to the SL case in egs. (4.30) and (4.31). The IR factorization formulae for the b space

TMD functions ﬁ’CEL in the TL region are

- b? n2b? n?bg
FIL D % ) L B2 /b2). —— 0
ca,az.in. <z7 b(2) ’ (2pn/z)2 b2> ¢ Oés( 0/ )’ (2pn/z)2 b2

PG T D n TTE (25 03 /b2 6.18
X ; . p1—2¢ cb z/x,as( O/ )767W ba (.%', O/ )7 ( : )

~ b? n2b? n’by
TL 0 TL 2 12 0
. "0 -7z ag(bg /b)), ——5—=5
ga, corr. <Z7 b(2) ’ (2pn/z)2 b2> g < S( 0/ )’ (2pn/z)2 b2>

n?bg ~TL 2 /12
W Lyo (23 b5/b%). (6.19)

Lode <
X Z/ xrl—2e GgTbL (Z/CC;Oés(bg/bZ),e?
PR

The factor fgaL(x; p2) in the right-hand side of eqs. (6.18) and (6.19) is the customary
collinear-divergent function that defines the scale-dependent PFF dj(z; ,u%) in the MS fac-
torization scheme. The relation between dj(2; u%) and the bare PFF % (z) is

Ldx
dzpd) =3 [ ST ) AP @), (6:20)

The perturbative expansion of f‘l?aL is

= ae(u2y PTEM
Lo (23 1) = 04 0(1 — 2) — S(:F) hn (2)

+ 0(ad), (6.21)
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with
P V(2) =P (2), (6.22)

where Pb(i)(z) is the lowest-order Altarelli-Parisi kernel in eq. (4.26). We recall that the SL
and TL functions fba and IN’E;L at O(ag) are directly related through the Gribov-Lipatov
relation [106, 107], namely, through the transposition ba <> ab of the flavour indices (see
egs. (4.33), (6.21) and (6.22)).

The structure of the egs. (6.18) and (6.19) for the TL functions is analogous to that
of the corresponding eqs. (4.30) and (4.31) for the SL functions. The IR e-poles of FLk
are factorized in the fragmentation related function f‘;raL (z;b3/b?) and in the overall per-
turbative function Z*. The remaining functions ég)L and CNJgTbL are finite and independent
of n? (i.e., n?(b3/b?)/(2np/2)?) in the limit ¢ — 0, order-by-order in the perturbative
expansion in powers of ag(b3/b?). The main difference between egs. (4.30), (4.31) and
egs. (6.18), (6.19) is due to the phase space convolution factor z~!¥2¢ in the IR factor-
ization formulae for the TL functions. The e dependence of such convolution factor has
a general origin from the d-dimensional kinematics of inclusive single-particle production
and fragmentation (see, e.g., ref. [74]).

The first-order perturbative results for the TL factors Z1%, Cv';l;)L and C:’gbL in egs. (6.18)
and (6.19) are obtained by using the expressions of Fonh O 4y egs. (6.15)—(6.17) and they
are reported below. We note that these TL factors depend on n? through the variable
A= n*(b3/b?)/(2np/2)*.

The IR factor ZI" in eqgs. (6.18) and (6.19) has the following perturbative expansion:

ZM (g, \) = 1+ 25 ZTLM(}) 4+ O(ad), (6.23)
T
and its first-order contribution is

2
ZIEM () = % {Ag) <€12 + éln X) + 17} - %Agﬂ + RO L RTEM e X). (6.24)
Similarly to eq. (4.35) for the SL case, the terms Aat M and A" in eq. (6.24) spec-
ify the resummation-scheme dependence. In particular, we have hCTL(l) = 0 in the hard
scheme [27] and thL(l) = 7T2A£1)/ 24 in a minimal scheme in which ZcT L) contains only €
pole contributions in the limit € — 0. The term ?LCTL(I)(G, ) vanishes in the limit ¢ — 0.
We note that the SL contribution Zél) in eq. (4.35) and the TL contribution Z;FL(I) in
eq. (6.24) are equal, modulo their scheme-dependence arbitrariness.

The perturbative expansion of the IR finite function C'L* in eq. (6.18) is

~ ~ ~ ~ 2 ~ o~
CEIL(z; ag,€,A) = 0cq 0(1 — 2) + as C'CTGL(l)(z; €,\) + (045) CCTaL (2)(2; €,\) + (’)(ag),
T

™

c=4q,q,9,
(6.25)

and the limit € — 0 gives the TL collinear function CI¥(z;ag) = CTl(z;ag,e = 0,\) for
transverse-momentum resummation (see section 2). At O(ag) we explicitly obtain

C’;L(l)(z) = —ﬁ;c(z; e=0)+ 2PCEg)(z) Inz— ¢ (1 —2) h;rL(l), c=4q,q,9, (6.26)
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which agrees with the known results in the literature [23, 35, 36, 41]. The complete €

dependence of écTaL(l) is

22¢ — 7B (1 — ¢)

ColW(ze,X) = —e P T(1—€) Pl(zie) + PV (2)
€
— T €E — ~
b 61— 2) {1 eIl ) [AgU (1 +ln >\> + %] (6.27)
2¢ €
—€YE _ 2 - ~
SR A0 (1 - ) () - 1 AD AT ¢ hCTL“)(e,A)}, c=a.dg
€

Comparing the SL function in eq. (4.37) with the TL function in eq. (6.26), we note that
they both involve the contribution P/, of O(e) to the d-dimensional kernel P (z;¢€). In

ca
particular, the transposition of flavour indices (i.e., P, <> P..) in egs. (4.37) and (6.26) is
due to the crossing relation in eq. (6.7). The TL function Col@ also includes the term
2P(£g)(z) In z, which is due to the collinear factorization of the fragmentation contributions
in the MS factorization scheme (see the convolution factor =12 in eq. (6.18)).
The azimuthal-correlation function é;}} in eq. (6.19) has the following perturbative
expansion:

as

~ ~ ~ ~ 2 ~ ~
G;faL(z; ag,€,\) = % Grg%(l)(z; €,\) + < ) GgTaL(Q)(z;e,)\) + O(a?s’). (6.28)

™

At O(ag) the azimuthal-correlation component E gTJjCOH_ of the b space TMD function does
not require the factorization of IR divergent contributions, and we directly obtain the

following results:
é;rgLu)(z; &N =e ET(1—¢) Cy2(1—2), (6.29)

~ ~ . z2(1—2)

G;qu(l)(z; eN)=—e TET(1—¢€) Tgr T (6.30)
and ég;(l)(z;e,X) = C:’qu(l)(z;ﬁ,X). The limit € — 0 of eq. (6.28) gives the transverse-
(m)(

momentum resummation function G;%(z;as) of section 2, and we have C:’;,faL
0,\) = G;l} (m) (z). Setting € = 0 in egs. (6.29) and (6.30), we find agreement with the
results for Grgl}(l)(z) in egs. (2.10) and (2.11). The computation of the TL azimuthal-
correlation functions G;l} (2)(2) at O(ad) is discussed in the following subsection.

z;€e =

6.3 TL azimuthal correlations at O(a3)

We briefly describe the calculation at O(aZ) of the azimuthal-correlation components

fg},cm and Fggjcorr. of the differential and TMD collinear functions in the TL collinear

region.

At O(a) the differential collinear function F L., (p, k;n) receives the two contribu-

ga, corr.
: TL (2R TL (1R1V) .
tions, fga,c(orr,) and fga’c(orr, ), in eq. (6.1).

The term J—“;%C(Err_ is obtained by inserting the tree-level collinear kernel
Pg(o_zalaw(kl, ka,p;m) in eq. (3.5) and performing the integration over ki and ko at fixed
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momentum k = k; + ko. This integration procedure is completely similar to that involved
in the SL collinear region and, therefore, by direct comparison of egs. (3.5) and (3.14) we
obtain

Na(e) [
Ng(e)

where ]:g(z,l%c)orr,(p,k;n) (a = g,q,q) are the contributions in eqgs. (5.5)-(5.14) to the SL
collinear functions Fgq corr.. The SL-TL crossing relation in eq. (6.31) is analogous to the

ga, corr.

Tl o (0, R )|

ga, corr.

(6.31)

)
p—>—p

corresponding relation at O(ag) (see eq. (6.2) and accompanying comments).

The term fg;l]jc(gg,lv)(p,k;n) is directly proportional (see egs. (3.5) and (3.12)) to

the azimuthal-correlation component of the one-loop collinear kernel Péggfa(k, p;n). This
kernel can be evaluated by squaring the corresponding collinear-factorization results [9, 77—

79] at the amplitude level. We obtain the following explicit expressions:

2
FILARIV) () oy (a?#3655> e2ED (1 + €)[2(1 — ¢) CA6+(k2){ Ny ) Ca

ggcorr. ™ ml=eD(1 — 2¢) (2pk)1+e 6 6
(6.32)
11 21 1-—
+ CazrL(1 — 27L) [—62 + - In (zpr(1 — ZTL))_%—§ In? ( zTiTLﬂ } cos(me) + O(e),
2
]_-TL(lRlV)(p kin) = alp2eS.\” e2ET(1 + e)T2(1 — €) Tréo (k2) 211 (1 — 211)
94,CotT. B T ml=el'(1 — 2¢) (2pk)1+e 1—c¢
1 1/11 76 7w 1 1— 271
-+ (= +1 1— — T (—==
X {CA €2 + € ( 3 I (2 ZTL))) + 9 6 2" ( 2TL >]
2 3 2 10 _
vop|l-2-2- s] LN [-36 - 9} }cos(we) L0, (a=q.0) (6.33)
where the momentum fraction zpy, is
np
=—" 6.34

and n* is the light-like auxiliary vector in eq. (5.4). Similarly to the SL results in egs. (5.1)
and (5.2), we have neglected contributions to .Fgrra%éﬁlv) (p, k;n) with a harmless depen-
dence on n%. We note that the SL expressions in eqgs. (5.1) and (5.2) and the corresponding
TL expressions in egs. (6.32) and (6.33) are not related by a crossing relation similar to
egs. (6.2) and (6.31). This is due to the fact that the corresponding SL and TL one-
loop kernels Pél_)mla(k:, p;n) cannot be directly related by the replacement p <+ —p [12], as
recalled at the beginning of section 5.1.

As discussed at the end of sections 3.2 and 6.1, setting n? = 0, s = (p + k)? and

p.1 = zkT, the collinear function FL(p, k;n) is directly related to the SCET fragmenting

jet function Geu(z,s,pL) [92]. At O(a?) we have gég)(z,s,pl) = f;{lL(lRlv)(p,k;n) +
chaL (2R) (p, k;m), where géﬁ) is the second-order contribution to G.,. The expressions in

egs. (6.31)—(6.33) give the explicit result for the azimuthal-correlation component of G.,.
The azimuthal-correlation component of the TL TMD function at O(aZ) can be evalu-

ated by integrating over k (see eq. (3.17)) the results for ]-";F(lljc(gg,)(p,k;n) and
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]-"ga LARv) (p, k;m) that we have just presented in egs. (6.31)-(6.33). The integration pro-

cedure is completely similar to that of section 5.2 for the case of the SL collinear function.
In particular, we recall that we use a time-like auxiliary vector n* to avoid rapidity diver-

gences. Using eqs. (6.31)—(6.33) we compute the corresponding contributions FgELC(OZI‘}I? ) and

F‘;ELLc(Olg V) to the TMD function in qt space, and then the b-space terms FgTa c(gg) and
~TL (1R1V) .

Fya,corr. ' in eq. (6.14).

The expression of F;;Lcorr at O(ad) has e-pole divergences of UV and IR origins The
UV divergences are removed by renormalizing the bare coupling at the scale 2 R = = b3 /b2
The IR divergences are treated by expanding the IR factorization formula in eq. (6.19) up
to O(a?), and we have

2 12\ 2
FIL (2 ;b2/b2,5\): (bo/b )GTL(l)( X)+<as(bo/b ))

a, COrr.
9 T

TL(1) /Y\ ~TL(1 N
ZIO(R) GIEO (216, )

_72/ da GO (2 /e, )BT D () + GIEO) (26, X)| + O(ad),

.’El 26

(6.35)

where X = n2(b3/b?)/(2np/z)?. The first-order functions Pb?“(l), ZgTL(l) and ég“(l) are

glven in egs. (6.22), (6.24), (6.29) and (6.30). Therefore, using eq. (6.35) and our results for

Fga 502@ and FE;FGLC(OIIE v , we obtain the exphc1t expressions of the functions Gga (2)(2 € )\)

(a = g,q,9) up to O(e). We find that Gga L®) are finite and independent of X in the

limit € — 0, namely érgl} (2)( zie=0,)) = Gga L2 )(z). Our results for the TL azimuthal-
. . TL (2

correlation functions Ggq '’ (z) are

1 1 4z 1722 2 1 5 20z 1122
OANsd ———— = —Zln i - — ===
+Af{ 36z 12 9+36 6 ()}+ A{ 36z 12 9+4

+In(z) [32—1—%4—2 ]—l—z(l—z) [ln(z)ln(l—z)—Lig(l—z)}
—In?(2) l3z—z221 }—th(l)CAz(l—z), (6.36)
z 522 z 22 z 3z
GO =Cr{ 5+ -2 —nu(e) i+?’8—4] n(2) [?’8—34]

7T2
+2(1—2) Lllln(l—z)—2ln(z)ln(l—z)—}—iln2(1—z)—Lig(z)—]}

+Ny {2(1—Z) B—éln(z)—i-éln(l—z)] }+CA{1n(z) [1+13z_ 1722]

4 6 12
3z 22 25 5 1
In2 —+— 1— ————In(1—2)—=Liy(1—
+1n“(2) 4—1—2 +2( z)[ %6 12 n(l—z) 5 ia(1—2)
1.5 ? L) 1
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and Gqu @)

the resummation-scheme dependence, and we recall that h;FL
(see egs. (6.24) and (6.26)).

. . TL (2 .
The transverse-momentum resummation functions Ggq ( )(z) were first computed in

(z) = Gz;qL (2)(,2). The coeflicient th(l) in egs. (6.36) and (6.37) parametrizes

1 — 0 in the hard scheme

ref. [23] (the hard scheme is used therein), by using a SCET framework with properly
regularized rapidity divergences. We have presented the first recomputation of G;}} (2)(2),
and we have used a fully independent method. Our results in eqgs. (6.36) and (6.37) agree
with those in ref. [23].

7  Summary

QCD squared amplitudes are singular in the multiparton collinear limit, and the singular
behaviour is controlled by the splitting kernels of a factorization formula that has a process-
independent structure.

In this paper we have exploited the collinear factorization of QCD amplitudes to intro-
duce collinear functions that contribute to QCD resummation formulae for hard-scattering
cross sections. The collinear functions are defined through the integration of the multipar-
ton splitting kernels over a constrained phase space that depends on the hard-scattering
observable of interest. Considering different phase-space constraints, one can define dif-
ferent collinear functions, which embody the logarithmically-enhanced contributions of
collinear origin to the corresponding hard-scattering observables. In this paper we have
explicitly considered differential collinear functions that can in turn be used to evaluate
TMD functions for transverse-momentum resummation and beam functions for N-jettiness
resummation.

A distinctive and relevant feature of our collinear functions is their dependence on
an auxiliary vector n*, which directly follows from the corresponding n dependence of the
splitting kernels. In applications of collinear factorization of QCD amplitudes, the auxiliary
vector is usually chosen to be light-like. We use both light-like and time-like auxiliary
vectors. In the paper we have discussed how the n dependence controls the behaviour
of the splitting kernels in kinematical regions that are far from the collinear region. In
particular, in the case of TMD functions we have shown that the use of a time-like vector
n* avoids the rapidity divergences that are instead present if n* is light-like.

The collinear functions can be introduced for the cases of both final-state fragment-
ing partons and initial-state colliding partons. The final-state and initial-state collinear
functions use the splitting kernels in the corresponding TL and SL collinear regions, re-
spectively. The TL splitting kernels and, consequently, the final-state collinear functions
are process independent. In contrast, the initial-state collinear functions are, in general,
process dependent beyond O(ad) (although they have a process-independent structure).
Such process dependence is a consequence of the violation of strict collinear factorization
of the QCD squared amplitudes in the SL collinear regions.

As discussed in the paper, our TMD and beam functions with a light-like auxiliary
vector n* can be related to the analogous SCET functions in the literature. In the TL
region our collinear functions are equivalent to the parton level SCET functions. In the
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SL region the same equivalence is limited up to (’)(a%), since at higher perturbative orders
our collinear functions are process dependent.

We have discussed the perturbative computation of the collinear functions. Such com-
putation leads to UV and IR divergences, which we have regularized by the customary
procedure of analytic continuation in d = 4 — 2¢ space-time dimensions. The e-pole di-
vergences of UV origin are removed by the renormalization of the QCD coupling ag. The
IR divergences can instead be factorized from IR finite collinear terms that directly con-
tribute to QCD resummation formulae of hard-scattering observables. At the cross section
level the IR divergences of the collinear functions are partly removed by the ‘renormal-
ization’ of the bare parton densities and fragmentation functions, and the remaining part
is then cancelled by the IR terms due to the soft and purely-virtual contributions to the
hard-scattering observable.

We have illustrated the perturbative features of the collinear functions by performing
their calculation at O(ag) and discussing the explicit dependence on the auxiliary vector n*.

In the case of TMD observables, the collinear functions have both azimuthal-indepen-
dent and azimuthal-correlation components. The azimuthal-correlation component is spe-
cific of the gluon partonic channels and is also known as the contribution of linearly-
polarized gluons. We have presented the calculation at O(ad) of the azimuthal-correlation
component of the differential and TMD collinear functions. Performing UV renormaliza-
tion and factorization of the IR divergences, we have computed the O(a3) contribution of
linearly-polarized gluons to transverse-momentum resummation. Our result for both the
SL and TL regions agree with the results obtained by other authors using SCET functions
and related theoretical methods.

The computation at O(a) of the azimuthal-independent component of the collinear
functions will be presented in future work, where we shall also discuss the related com-
putation of the n-dependent soft factor for transverse-momentum resummation. We also
plan to study collinear functions for other hard-scattering observables.

Certainly, an important future step can be the explicit extension of our theoretical
framework to O(ag) and higher perturbative orders. In particular, the explicit computation
of the process dependence of the collinear functions in the SL region is very relevant. This
computation requires the preliminary calculation at (’)(ag) of the splitting kernels for the
SL collinear limit of the QCD scattering amplitudes. At present, such SL splitting kernels
are not known at the required order in the ¢ expansion.
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