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1 Introduction

The purpose of this paper is to show that unitarity of scattering amplitudes imposes the
following universal non-perturbative upper bounds on the entropy of the system.

• The area-law entropy bound:

The maximal entropy of any self-sustained quantum field theoretic object localized
within a sphere of radius R is equal to the area of the sphere measured in units of
the relevant Goldstone decay constant f :

Smax = Area
f−2 . (1.1)

• The inverse-coupling entropy bound:

The maximal entropy of any self-sustained quantum field theoretic object localized
within a sphere of radius R is equal to the inverse of the running coupling α(q) of the
relevant long-range interaction evaluated at the scale of momentum-transfer q = 1

R .

Smax = 1
α
. (1.2)

We shall argue that a violation of the above bounds leads to a non-perturbative violation
of unitarity.

The foundation for this connection was already laid down in previous articles [1, 2].
Namely, it was observed there that entropy of a self-sustained field theoretic object such as
soliton or a baryon of mass M and radius R saturates (1.1) and (1.2) simultaneously with
Bekenstein’s entropy bound [3],

Smax = 2πMR . (1.3)

This happens exclusively when the theory saturates unitarity. That is, the following rela-
tions emerge.

First, the maximal entropy is always equal to the surface area of the object, measured
in units of the decay constant f of the Goldstone field, as given by (1.1). This Goldstone
mode is universally present due to the fact that any localized field configuration breaks
spontaneously set of symmetries, which obviously include Poincare translations. However,
there also emerge the Goldstone mode(s) corresponding to the breaking of internal sym-
metries. This shall become clear below.

Secondly, the same maximal entropy is equal to an inverse of the running coupling
α evaluated at the scale q = 1/R, as described by (1.2). Of course, what matters is the
interaction with the range that covers R. Note, when the scale R separates two different
regimes, the equation (1.2) must be satisfied from both sides. For example, in case of a
baryon of size R, it is satisfied both by gluons and by pions.
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Thus, in [1, 2] the entropy bound attained by various objects was observed to satisfy
the following relation,

Smax = MR = 1
α

= Area
f−2 . (1.4)

(Throughout the paper, the order-one numeric factors shall be explicitly shown only when
they are important.)

From here, the following natural questions emerge:

• Are the three bounds (1.1), (1.2) and (1.3) equivalent?

• And if not, which of them is more fundamental?

The main goal of the present paper is to understand the independent fundamental
meanings of the area-law (1.1) and the inverse-coupling (1.2) entropy bounds and their
connection to unitarity. First, we shall achieve this by analysing scattering amplitudes.
Secondly, we shall construct explicit renormalizable theories in which the saturation of the
three different bounds can be monitored in various parameter regimes.

The first part of our message is to establish an universal connection between the
bounds (1.1) and (1.2) and scattering amplitudes. Namely, there exists a one-to-one corre-
spondence between the saturation of (1.1) and (1.2) by an arbitrary field theoretic entity
— irrespectively whether of Lorentzian or Euclidean signature — and non-perturbative
saturation of unitarity by a set of 2 → n amplitudes with n = 1

α at momentum-transfer
q = 1

R . This saturation is non-perturbative and cannot be removed by resummation.
Surprisingly, the bounds (1.1) and (1.2) turn out to be more stringent than the Beken-

stein bound (1.3). As we shall see, in some situations these bounds can be violated even
when the Bekenstein bound (1.3) is still respected. Such examples are immediately killed
by unitarity. This is because the bounds (1.1) and (1.2) control the saturation of unitarity
by the scattering amplitudes. On the other hand, in all examples known to us, the satura-
tion of the bounds (1.1) and (1.2) automatically leads to the saturation of the bound (1.3).
Therefore, the saturation of the two former bounds appears to provide the necessary and
sufficient condition for reaching the maximal entropy permitted by the consistency of the
theory. Thus, in a consistent theory at the saturation point the entropy satisfies the triple
equation (1.4).

A natural physical interpretation of the above amplitudes at the saturation point is
that they describe a creation of n-particle composite object. This object saturates the
entropy bounds (1.1) and (1.2) and correspondingly satisfies (1.4). We shall refer to such
objects as saturons. The process thus schematically can be presented as a creation of a
classical object in a two-particle scattering,

2→ n = saturon . (1.5)

The reason why the cross-section of such a process is not exponentially suppressed is that
the saturon exhausts all possible final states in the given kinematic regime. So in this
sense saturons effectively provide the mechanism of classicalization of the scattering am-
plitude [4]. Of course, explaining how this happens is one of the central points of our paper.
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However, the above should not create a false impression that it is easy to produce a sat-
uron in a high energy scattering experiment. Although, at its mass-threshold the saturon’s
cross section saturates unitarity at the expense of its maximal entropy, there is a price to
pay. It comes in form of a very narrow (∆E

E ∼ α) “window of opportunity" for the choice of
the center of mass energy E of the initial state. Due to this, in order for saturons to play
a role in UV-completion of the theory, they must fill an almost continuous mass spectrum.
This is possible if the theory possess a non-trivial fixed point. In such a case, saturons can
play an interesting role both in UV-completion as well as in collider phenomenology.

From the point of view of fundamental physics, one of the implications of the
bounds (1.1) and (1.2) is to put phenomena such as confinement in a new light. Namely,
it was already suggested in [1] that confinement in SU(N) gauge theory can be viewed as
a built-in defence mechanism against violations of the entropy bounds. Here, we provide
more evidence for this. Namely, we consider an example presented in [2] of SU(N) gauge
theory in which the entropy bounds (1.1) and (1.2) are saturated by an instanton. We
show that this saturation is mapped on the saturation of unitarity by a set 2 → N -gluon
amplitudes. From here it is evident that in order not to violate these bounds the theory
must become confining at large distances. That is, without confinement there is no visible
mechanism that would prevent such a violation at some IR scale.

Analogously, when quarks are included, the theory resists against violation of the
bounds (1.1) and (1.2) by baryons. Namely, a baryon saturates both entropy bounds when
the number of the quark flavors is of the same order as the number of colors. The baryon
entropy in this limit is given by its area measured in units of the pion decay constant [1].
Simultaneously, the 2→ N pion cross section saturates unitarity. In this case, the violation
of the bounds (1.1) and (1.2) would render the theory asymptotically not free and thus
inconsistent in UV.

Finally, an important message of the present paper is the understanding of black holes
and the saturons of renormalizable theories as the representatives of the same saturon fam-
ily. In order to make the parallels maximally sharp, we construct an explicit renormalizable
theory which contains saturons. These are the solitonic vacuum bubbles. In the interior of
the bubble N distinct gapless Goldstone modes are localized. These gapless modes endow
the bubble with a large micro-state entropy. We then show that at the point when the
bubble saturates the entropy bounds (1.1) and (1.2), the corresponding amplitudes satu-
rate unitarity. So, the bubble becomes a saturon. At this point, all its properties become
identical to the known properties of a black hole.

For example, both the renormalizable saturon and a black hole obey the relation (1.4).
Here, we must remember that for a black hole f = MP , where MP is the Planck mass.
Indeed, first, MP represents the graviton decay constant. Secondly, the Goldstone boson
of a translation symmetry that is spontaneously broken by a black hole, is the graviton
itself. This immediately shows that the famous Bekenstein-Hawking entropy [5] satisfies
the relation (1.4). Next, just like a black hole, in the semi-classical limit (N = ∞) the
non-gravitational saturon possesses an information horizon. It emits particles in a way
that is strikingly similar to Hawking’s emission. In particular, the information stored in
the saturon’s interior cannot be decoded by analysing the emitted radiation. In contrast,
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for finite N , the saturon bubble does release information albeit very slowly. The time-
scales are identical to the ones that are commonly attributed to a black hole. Finally,
both a black hole and a non-gravitational saturon saturate unitarity in respective multi-
particle scatterings. This features are universal and independent on a particular nature of
a saturon. So they are shared by saturons in other renormalizable theories.

The natural interpretation of the above striking connection is that a black hole of size
R represents a saturated state of the soft gravitons of wavelength R, as this has been long
advocated by the black hole N -portrait [6, 7]. In this paper the relation (1.2) for black
holes has already been noticed. This relation was used there as a guiding principle for
establishing the similarity between black holes and other saturated states such as Bose-
Einstein condensates at criticality. The present paper reinforces this view.

2 Entropy of a lump

Before moving to amplitudes, we shall establish mapping between localized field theory
configurations with Lorentzian signature, such as solitons or lumps, and n-particle states.
We explain why for such objects the bound (1.4) holds.

2.1 Lump as multi-particle state

Consider degrees of freedom described by creation/annihilation operators âj(~k)†, âj(~k).
Here the label ~k refers to momentum, whereas j = 1, . . . , N is the species label describing
different spin and internal states. For example, j can denote sets of color or flavor in-
dexes. We shall assume that operators obey the standard bosonic commutation relations,
[âi(~k), âj(~k′)†] = δijδ~k~k′ , [âi(~k), âj(~k′)] = 0. That is, âj(~k) represent different physical
modes of a bosonic quantum field φ̂j ,

φ̂j =
∑
~k

1
√
ω~k

(
ei~k~xâj(~k) + e−i~k~xâj(~k)†

)
. (2.1)

This field can either be fundamental or represent an effective description of some more
fundamental theory. For example, φ̂j may represent the low energy fluctuations of quark-
anti-quark condensate in QCD. We shall also assume that the effective Hamiltonian is
invariant under an internal symmetry G that acts on the label j. Again, this symmetry
can be either emergent or be fundamental.

Next, we shall denote by α the strength of an effective four-boson interaction,

α (φ̂iφ̂i)(φ̂jφ̂j) + . . . , (2.2)

The above notation is highly schematic. Throughout the paper we shall assume the coupling
α to be weak. In fact, defining the analog of the ’t Hooft coupling,

λt ≡ αN , (2.3)

our methods shall be most reliable in the limit,

α→ 0, λt = finite . (2.4)

This is analogous to ’t Hooft’s limit [8].
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Now, we wish to focus on states in which modes of certain momentum ~k are highly
occupied

|n〉micro =
N∏
j=1

(âj(~k)†)nj√
nj !

| 0〉 , (2.5)

where n refers to a total occupation number,

n =
N∑
j=1

nj . (2.6)

This number will be assumed to be very large. We shall refer to such states as micro-states.
This is because they are distinguished solely by different microscopic distributions of the to-
tal occupation number n among the j-species. And, in the limit (2.4) they become indistin-
guishable. Such states therefore describe different micro-states of the same macro-state |n〉.

Obviously, in such a state the wave-functions of n bosonic modes overlap, similarly to
what happens in Bose-Einstein condensates. It is therefore useful to introduce a concept
of the collective coupling defined as,

λc ≡ αn . (2.7)

Again, our analysis is most reliable in the following double-scaling limit,

α→ 0, λc = finite . (2.8)

Despite the superficial similarity between λc and λt, the two couplings are physically very
different. It is enough to note that the ’t Hooft coupling λt is a parameter of the theory,
whereas the collective coupling λc is a parameter of the state. Despite this difference, as
we shall see, the two couplings become comparable and critical on the states that saturate
the entropy bounds (1.1), (1.2) and (1.4).

Now, using the number-eigenstates (2.5), we can form the coherent states that represent
classical field-configurations localized within certain characteristic radius R. They have a
form,

| sol〉 = e
∑

~k

∑N

j=1

√
nj(~k)(âj(~k)†−â(~k)j) | 0〉 , (2.9)

with
N∑
j=1

∑
~k

nj(~k) = n� 1 , (2.10)

where nj(~k)-s are sharply peaked around the characteristic momentum |~k| ∼ 1
R ≡ q.

Obviously, the corresponding classical field is described by the expectation value,

φj = 〈sol | φ̂j | sol〉 , (2.11)

of the quantum field. We shall refer to such a state as a lump or a soliton. Of course,
such a field configuration in general depends on time. It evolves both classically as well as
quantum mechanically. Since the quantum coupling α is weak, the classical (mean field)
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evolution is valid for sufficiently long time. We are interested in field configurations that
spread-out from the initial localization on time-scales t � R. This constraint does not
apply to internal oscillations of the lump, as long as they stay localized within the radius
R. At weak coupling, this requirement is satisfied by most of the self-sustained solitonic
configurations. The condition for self-sustainability will be derived below.

Under such conditions, the localized classical field configuration, φsol, can be treated
as n-particle state of characteristic momenta ∼ q = 1/R, each contributing ∼ q into the
energy of the lump. The total energy therefore is,

E ∼ n

R
. (2.12)

Now, assuming that at distances ∼ R the interaction is attractive, let us estimate
the number of constituents required for creating a self-sustained bound-state. This can be
done by balancing the kinetick energy of each quantum, Ekin ∼ 1

R , against the attractive
potential energy from the rest. The latter goes as Epot ∼ αn

R . This gives the equilibrium
condition,

Critical balance : λc = αn ∼ 1 . (2.13)

We thus learn that the self-sustained configuration is reached when the collective coupling
λc is order one, or equivalently, when n ∼ 1

α . Inserting this relation in (2.12), we get for
the energy of the bound-state,

Esol ∼
q

α
∼ 1
αR

. (2.14)

The latter is a well-known relation between the energy of a soliton and its size.
Note, of corse, in general, in a self-sustained bound-state, the particles do not strictly

satisfy the dispersion relation ω~k =
√
m2 + |~k|2 with m being a mass of a free parti-

cle. That is, the operators âj(~k) of the bound-state are related with analogous operators
of free asymptotic quanta by a non-trivial Bogoliubov transformation. However, in the
regime (2.13) at large-n this difference is unimportant for our purposes. In this regime, the
self-sustained states can consistently be mapped on the scattering amplitudes.

2.2 Inverse-coupling = area-law = unitarity

We now wish to derive the entropy of the lump and establish for which values of parameters
it saturates the bounds (1.1) and (1.2). For this, we need to count the number of degenerate
micro-states. As already noted, the states (2.5) (or (2.9)) represent particular micro-
states belonging to one and the same classical macro state. This is due to the following
reasons. First, such states form large representations under the symmetry G that acts on
the label j. Secondly, because the quantum coupling α is vanishingly small, the time-
scale for differentiating between individual “colors” or “flavors” is macroscopically large.
Correspondingly, such states are classically indistinguishable.

Thus, the number of degenerate micro-states is given by the dimensionality of rep-
resentation that they form under the symmetry group G. This dimensionality is easy to
estimate. For example, in the simplest case of a symmetric wave-function, nj-s can as-
sume arbitrary values subject to the constraint (2.6) (or (2.10)). Therefore, the number of
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micro-states is given by the following binomial coefficient:

nst '
(
n+N

N

)
= cN

((
1 + λt

λc

)λc (
1 + λc

λt

)λt) 1
α

, (2.15)

where we have used the Stirling approximation for large N = λt
α and n = λc

α . Notice, the
coefficient cN '

√
1

2π (N−1 + n−1) can be replaced by one without any loss of information.
This is the benefit of working at large N and at the saturation point. Since we shall take
advantage of this fact throughout the paper, we shall explain it briefly here.

The trick is that the saturation values of λt and λc are determined by matching the
quantities that are exponentially sensitive to N and n (equivalently, to α−1). Therefore,
the coefficients such as cN , that exhibit power-law dependence on N and n, play essentially
no role in it. Such quantities correct the saturation value of λt only by the amount ∼ ln(N)

N

which vanishes in the ’t Hooft limit (2.4). Therefore, all such coefficients can be set equal
to one without compromising our analysis.

Then, taking the collective coupling at the critical value λc = 1, the number of states
becomes

nst '
(

(1 + λt)
(

1 + 1
λt

)λt) 1
α

. (2.16)

The corresponding entropy of the soliton/lump is,

S = ln(nst) '
1
α

ln
(

(1 + λt)
(

1 + 1
λt

)λt)
. (2.17)

This entropy saturates the bound (1.2) for,

Entropy saturation : λt ' 0.54 . (2.18)

Of course, what matters is that the critical ’t Hooft coupling is order one. However, the
above numerical value obtained for λc = 1 will be useful as a reference point for the later
estimates. As a consistency check, notice that the actual value of cN corrects (2.18) by the
amount ∼ ln(N)

N and is negligible.
Thus, we discover that the n-particle state, describing a self-sustained classical soli-

ton/lump, saturates the entropy bound (1.2) when the ’t Hooft and collective couplings
are both of order one,

λc ∼ λt ∼ 1 . (2.19)

As already pointed out in [1, 2], through the above equation, the saturation of entropy is
correlated with the saturation of unitarity. The depth of this correlation will be explored
throughout the paper.

Now, following [1, 2], it is easy to see that at the saturation point the entropy becomes
equal to an area of the soliton/lump in units of the Goldstone decay constant f . Let us
therefore determine the latter. The localized classical field configuration φ breaks spon-
taneously both the Poincare symmetries such as space-translations as well as the internal
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symmetries. The order parameter of breaking the translation invariance is ∇φ ∼ 1
R2√α .

Consequently, the decay constant of the corresponding Goldstone fields is

f = 1
R
√
α

=
√
N

R
. (2.20)

Notice, the above expression also determines the decay constants of the Goldstone modes
of spontaneously broken internal symmetries. These are the symmetries under which the
lump/soliton transforms non-trivially. Previously, they were schematically denoted by G.
The explicit examples will be constructed below.

It is now obvious that the entropy (2.17) at the saturation point of the bound (1.2)
can be written as,

Smax = 1
α

= (Rf)2 = Area
f−2 . (2.21)

Notice, the equation (2.20) relates the Goldstone decay constant f with the running cou-
pling α evaluated at the scale 1/R. All the scale dependence, such as the logarithmic
running of the coupling with the scale, must already be included in α entering both in
equation (2.20) as well as in equation (1.2). Correspondingly, the equation (2.21) includes
no additional log factors.

Thus, the areal-law bound (1.1) is saturated simultaneously with (1.2). As already
stressed in [1, 2], this is strikingly similar to a black hole entropy with the role of the
Planck mass played by f .

Thus, we discover that the saturation of the inverse-coupling entropy bound (1.2) takes
place together with the saturation of the area-law bound (1.1). It is very important that
this happens when the value of the ’t Hooft coupling is order one (2.19). This fact is the
key for connecting the saturation of the above entropy bounds to unitarity.

Notice, the saturation of the bounds (1.1) and (1.2) implies the saturation of the
Bekenstein bound (1.3). This can be seen easily by inserting (2.14) in the Bekenstein
formula (1.3). We get

SBek = ER = 1
α
. (2.22)

Thus, a self-sustained quantum field theoretic system with a single characteristic localiza-
tion scale R satisfies (1.4). This is exactly the result obtained in [1, 2].

However, the converse is not true in general. That is, a satisfaction of the Bekenstein
bound (1.3) does not guarantee the satisfaction of the bounds (1.1) or (1.2). However,
such examples violate unitarity and, therefore, are inconsistent. Thus, the areal-law and
the inverse-coupling bounds turn out to be more restrictive than the Bekenstein bound.
We conclude that in a consistent theory all three bounds must be saturated together (1.4).
In all examples known to us this proves to be the case.

3 Connection with amplitudes

The equation (2.17) tells us that the classical lump saturates the entropy bounds (1.1)
and (1.2) and satisfies (1.4) when the ’t Hooft coupling λt equals to the critical value (2.19)
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Figure 1. A typical diagram that violates perturbative expansion in powers λt in ’t Hooft’s double
line notations. Each extra bubble brings an additional factor λt.

(or more explicitly, (2.18)). We now wish to connect this phenomenon to the saturation of
unitarity by certain scattering amplitudes.

As the first step, let us have a closer look at the nature of would-be violation of
unitarity at strong ’t Hooft coupling. The first place where this violation is manifest is the
loop expansion. An example is given by bubble diagrams depicted on figure 1.

Since the addition of each bubble carries a factor ∼ λt, the expansion breaks down
for large λt. From the first glance, one would think that such breakdown of unitarity is
not fundamental and can be bypassed by re-summation. While the bubble diagrams are
resummable, the question is whether this procedure renders the saturation of unitarity
unphysical. We shall argue that this is not the case.

The important processes to look at are the multi-particle amplitudes of the sort 2→ n,
in which the final n-particle state has the form (2.5). We wish to show that such processes
saturate unitarity whenever the inverse-coupling entropy bound (1.2) is saturated by the
final state. The same applies to the area-law bound (1.1). This saturation is physical and
cannot be removed by resummation.

However, in order to avoid confusion, we must keep a clear separation between the
following two summations.

– 10 –
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• The first one is the resummation of all Feynman diagrams that contribute to the
transition amplitude into a specific n-particle micro-state (2.5).

• The second is the summation — in the cross section — over all micro-states (2.5)
that belong to the same classical macro-state.

We focus on the first one first.

3.1 Exponential suppression of individual n-particle micro-states

In order to clearly distinguish the false saturation of unitarity from the real one, consider
first a theory in which the final state particles do not transform under any large symmetry
group G. In this case, we can simply temporarily forget about the label j in the final state.
Of course, we still assume that the four-point coupling α is weak. In such a theory, we
look for a transition from an initial 2-particle state into a state (2.5). The latter contains
a high occupation number n with some characteristic momentum q = 1/R. As already
discussed, the proper coherent superposition of such states (2.9) can be viewed as a lump
or a solitonic wave of a classical field.

It is well-accepted (see, [15]–[23]) that the cross-section for such a process must be
exponentially suppressed. This is true, despite the fact that the multiplicity of contributing
Feynman diagrams grows factorially with n already at the tree-level [24, 25]. Namely, at
large n the perturbative cross-section behaves as,

σ2→n = cn n!αn , (3.1)

where only the leading factorial and exponential scalings in n are displayed explicitly. All
the standard integration, not connected with the G-degeneracy of the final state, is included
in the prefactor cn which has proper dimensionality. In particular, if theory is gapless, cn
will include the standard infrared dressing due to emission of infinitely-soft quanta.

As explained previously, since the prefactor cn exhibits a power-law dependence on n,
it is unimportant for physics close to saturation point at large n. Therefore, as previously,
we set all such coefficients equal to one. The maximal error we commit with this setting is
∼ ln(n)

n .
The factorial growth of the perturbative cross section (3.1) creates a false impression

that at large n unitarity can be saturated (or even violated) at weak coupling α by a single
final micro-state. Or to put it differently, a classical object can saturate unitarity without
summation over final states of internal degeneracy G. This is not true, since for n > α−1

the growth of (3.1) is unphysical and cannot be trusted. The reason is that the perturbative
expansion in α breaks down beyond this point.

Indeed, thinking of cross section in terms of expansion in series of α, we must stop as
soon as σ2→n reaches the minimum in n. This happens at n = α−1, i.e., for the critical
value of the collective coupling,

Optimal truncation: λc = 1 . (3.2)

Hence, we shall adopt this value of the collective coupling as the point of optimal truncation
of series in α. It is highly instructive that this optimal value of λc coincides with its critical

– 11 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

value obtained by the self-sustainability condition (2.13). This is no accident and it reveals
how the information about the non-perturbative solitonic state penetrates in the realm of
scattering amplitudes.

Now, using Stirling approximation, it is easy to see that for the critical value (3.2) the
cross section (3.1) is exponentially suppressed,

σ2→n = e−n = e−
1
α . (3.3)

This suppression represents an embodiment of the difficulty of producing a classical object
in a two-particle scattering process.

From (3.2), it is clear that the expression (3.1) can only be trusted for n 6 α−1.
Beyond this point it must be abandoned and non-perturbative methods must be used.
This non-perturbative analysis [15]–[21] confirm the exponential suppression of transitions
to states with high occupation number n.

However, for self-sufficiency, in the appendix we present a refined version of a short-cut
non-perturbative argument of [22]. It shows that for n� α−1 the cross-section of any given
n-particle state (2.5) is suppressed as

σ2→n . n!n−n ∼ e−n . (3.4)

Notice, this is only a consistency upper bound and in reality the suppression could be much
stronger. However, the above upper bound is sufficient for our considerations.

3.2 Entropy enhancement

We thus adopt a physically justified picture that, in the absence of large internal degen-
eracy G, the cross section of producing a high-occupation number state is exponentially
suppressed, as given by (3.3) and (3.4).

However, in the presence of a large internal degeneracy group G, a new twist appears.
The theory now can give rise to classical objects that saturate entropy bound (1.2). From
quantum field theory perspective they represent the high occupation number states with
exponential degeneracy nst = e

1
α .

In such a case, while the exponential suppression of the properly resummed individual
processes (3.4) continues to hold, the number of processes that contribute into creation
of a given classical object is exponentially large. This number is equal to the number of
micro-states nst that belong to the same classical macro-state. The total cross section of
production of the classical object is thus obtained by summing over all such micro-states,

σ =
nst∑

micr.st
σ2→n . (3.5)

Notice, here and below the notation σ refers exclusively to the part of the cross-section
that describes a creation of a given classical object.

We are now ready to understand the fundamental meaning of the inverse coupling
bound (1.2) in terms of the unitarity of the scattering amplitudes. For this, let us first note
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that for large n the summation over the micro-states in (3.5) reduces to a multiplication
by the micro-state degeneracy factor nst = eS ,

σ = σ2→neS . (3.6)

Using (3.3), at the point of optimal truncation, λc = 1, this becomes,

σ = e−
1
α

+S . (3.7)

From this expression it is clear that the cross section (3.7) saturates/violates unitarity
whenever the entropy S saturates/violates the bound (1.2). That is, the number of micro-
states nst compensates the exponential suppression of individual amplitudes precisely when
the classical object saturates the inverse-coupling entropy bound (1.2). At this point σ
becomes an all-inclusive cross-section and the corresponding classical object becomes a
saturon.

The term saturation of unitarity must be understood in the standard way that the
cross section becomes maximal compatible with unitarity. In particular, it will saturate
the Froissart bound for a given theory.

The above phenomenon comes from an additional enhancement of the cross section
due to an internal degeneracy G. This degeneracy is responsible for the maximal entropy
of the classical final-state. This saturation cannot be removed by any resummation. As
discussed above, this effect is very different from a “false” saturation of unitarity due to
factorial multiplicity of Feynman diagrams of individual amplitudes.

It is useful to translate the unitarity bound in terms of ’t Hooft coupling. For this, we
again focus at the optimal truncation point n = 1

α . Then, the individual cross sections are
given by (3.3) and the total one is given by (3.7). Expressing the entropy S through (2.17),
we can rewrite (3.7) as

σ =
((

(1 + λt)
1
e

) 1
λt

(
1 + 1

λt

))N
. (3.8)

The critical value of λt for which the above cross section saturates unitarity is,

Unitarity saturation : λt ' 0.54 . (3.9)

Of course, λt here must be understood as the running ’t Hooft coupling evaluated at
the scale q. As it is clear from (2.18), the exact same value also saturates the entropy
bound (1.2).

As we can see from (3.9), the bound is saturated for the critical value of the ’t Hooft
coupling that is order one. This is typical and may raise some concerns. One may worry
that at the saturation point the perturbative expansion in λt may not be reliable (although
not out of question for (3.9)).

However, the fact that at the saturation point λt is “borderline”, as opposed to being
much larger than one, gives an important advantage. It allows to unambiguously capture
the tendency of saturation while approaching the saturation point from the domain of
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weak ’t Hooft coupling. In other words, we clearly see a synchronized growth of the
entropy and of the cross section when we increase λt while it is still smaller than one and,
correspondingly, falls within a perturbative control. Extrapolating this tendency, we reach
the conclusion that, for certain critical value λt ∼ 1, the saturation of unitarity by the
cross section does take place. In such a case, the corresponding value of S should be taken
as the field theoretic bound on the entropy. Using the expression (3.7) as the guideline,
the corresponding bound on entropy is given by (1.2).

We thus see that the saturation of the cross section by a classical object gives the
inverse-coupling entropy bound (1.2). The object therefore represents a saturon. Its mass
and the size are uniquely determined as,

Saturon mass: M ∼ q

α
∼ 1
αR

(3.10)

and
Saturon size: R ∼ 1

q
, (3.11)

where q is the scale at which the running ’t Hooft coupling reaches the critical value (3.9).
It is clear that simultaneously the area law bound (1.1) is also saturated. Indeed,

the saturon state breaks spontaneously both the space translations as well as the internal
symmetry that acts on index j. The decay constant of the resulting Goldstone modes is
f =

√
n
q = q√

α
. It is then obvious from (3.11) that the final state entropy S = 1

α that
saturates the inverse-coupling bound is equal to the area of the saturon in units of the
Goldstone decay constant f .

Finally, it is clear from (3.10) and (3.11) that the Bekenstein (1.3) bound is also
saturated. The saturon, therefore, saturates the combined bound (1.4).

The physical meaning of the above finding is pretty transparent. When we form an
n-particle state in a 2-particle collision, we are effectively forming a classical object. The
formation probability is exponentially suppressed by e−n. This suppression is confirmed
both by the previous analysis [15]–[21] as well as by the non-perturbative argument of [22]
presented in the appendix.

However, when the classical object saturates the entropy bound (1.2), the novelty ap-
pears. Now, the theory contains exponentially large number of copies of the same classical
object. I say “copies” because classically they are indistinguishable from one another. In-
deed, a classical observer, Alice, cannot resolve the “flavor” index j since the coupling
vanishes as α ∼ λt

N ∼
λc
n . Rather, Alice is only sensitive to the effects controlled by ’t

Hooft and collective couplings. That is, Alice cannot tell the difference between the states
with different j-content, as long as the total occupation number n is large.

Correspondingly, the production of any of these micro-states in a scattering experiment
will be interpreted by Alice as the production of one and the same classical state. Now,
while each particular transition matrix element is exponentially suppressed, all of them
will contribute to the Alice’s classical count. Once the number of micro-states reaches the
critical value, this classical object saturates the scattering cross-section.

It is clear that this effect cannot be removed by any further re-summation. Indeed,
the resummation helps to compute the correct cross sections of the individual 2 → n
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Figure 2. A 2→ n process and an example of diagram in ’t Hooft double-line notation contributing
in it.

physical processes. They come out exponentially suppressed (3.3)–(3.4), as they should.
At the same time, the resummation cannot reduce the number of physically distinct final
states. As a result, no matter how suppressed are the individual processes, the suppression
gets compensated by the multiplicity of final micro-states when the corresponding micro-
state entropy saturates the bound (1.2). This is a fully non-perturbative phenomenon
highlighting a deep connection between entropy and unitarity.

4 Entropic meaning of confinement

One remarkable thing in connection between entropy and unitarity is that the saturation is
fully controlled by ’t Hooft and collective couplings, λt, λc. At the same time, the quantum
coupling α can be arbitrarily weak. It is fair to ask:

What happens if we try to deform the theory and push the state beyond the
saturation point?

This can be done by fixing the collective coupling at the critical value λc = 1 while
increasing the ’t Hooft coupling. From (2.15) it is clear that for λt → ∞ the number of
micro-states increases as,

nst ' (eλt)
1
α . (4.1)
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Correspondingly, the entropy of the macro-state increases as,

S ' 1
α

(1 + ln(λt)) . (4.2)

Consequently, for λt � 1 the bound (1.2) is violated. Simultaneously, the cross section (3.8)
diverges as,

σ ' (λt)
1
α , (4.3)

and violates unitarity. Obviously, in a consistent theory this cannot happen. What is the
lesson that we are learning from here?

As a minimalistic move, we must adopt the saturation value as a consistency upper
bound on ’t Hooft coupling. The precise value depends on the representation content under
the symmetry group G but in general is order one.

Yet, the story must be more profound. It would be somewhat counter-intuitive if a
theory allows us to cross into a dangerous domain without a prior warning. Of course,
one can say that violation of unitarity by a multi-particle state is a clear warning sign.
However, we expect that a consistent theory does not stop here. Instead, it must block the
entrance into the dangerous domain of the parameter space dynamically.

Therefore, we would like to ask whether a consistent theory possesses a built-in mech-
anism that prevents such deformations from happening. We shall now argue that confine-
ment in SU(N) gauge theory represents such a preventive mechanism agains the violations
of the entropy and unitarity bounds. This idea has already been put forward in [1] and we
shall now elaborate on it.

4.1 Confinement from entropy bound

As an illustrative example, we consider a SU(N) Yang-Mills gauge theory with no fermions.
As it is well-known, this theory is asymptotically free, with the running gauge coupling α(q)
becoming weak at short distances. We shall define the ’t Hooft coupling λt as before (2.3)
and shall be working in ’t Hooft’s limit (2.4). Obviously, in this limit QCD scale ΛQCD is
kept fixed.

Now, as shown in [2], in this theory the entropy of an isolated instanton saturates the
bounds (1.1) and (1.2) for a critical value of the ’t Hooft coupling λt ∼ 1. For a generic
value of λt, the entropy scaling is similar to (2.17). More details can be found in [2] and
shall not be repeated here. Instead, we wish to establish what is the significance of this
fact from the point of view of the scattering amplitudes. Next, we wish to find out how
the theory responds if we attempt to violate the bound by making λt large.

First, we wish to show that the violations of the entropy bounds (1.1)–(1.2) by in-
stanton (or any colored state) would result into violation of unitarity by the scattering
amplitudes. We then argue that this is prevented by confinement. We shall try to support
this statement by assuming the opposite and running into an inconsistency.

Indeed, assume that the theory never becomes confining. Yet, it is asymptotically free
and therefore is consistent in UV. In such a theory there is no visible reason for why we
cannot force an instanton of some size R to violate the entropy bounds (1.1) and (1.2). This
can always be achieved by making the ’t Hooft coupling λt arbitrarily large at that scale.
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However, the problem with this proposal is that simultaneously the unitarity would
be violated by a 2→ n scattering process with the momentum-transfer q = 1

R . Consider a
process in which the two initial gluons would scatter into n final ones,

AγβA
ξ
γ → Aα1

β A
α2
α1A

α3
α2 . . . A

ξ
αn−1 . (4.4)

A typical ’t Hooft diagram describing a process of this sort is given in figure 2. The color
labels β and ξ are fixed by the initial gluons, whereas the color labels αj (j = 1, . . . , n− 1)
take values from 1 to N .

Since, by assumption, the theory is not confining, the complete set of S-matrix asymp-
totic states can be represented by all possible n-gluon states with arbitrary color indexes,∣∣∣Aα1

β1
Aα2
β2
, . . . , Aαnβn

〉
. (4.5)

Of course, by symmetry, the final state vector | t =∞〉, obtained as a result of Hamilto-
nian evolution, must transform under the same representation of the SU(N)-group as the
initial state | t = −∞〉. That is, the state | t =∞〉 must transform as a hermitian traceless
N ×N matrix with respect to the open color indexes ξ and β. So, the true final state will
be an appropriate superposition of all possible gluon states (4.5). In the current exam-
ple this superposition will contain traces with respect to all indexes other than ξ and β.
Schematically,

| t =∞〉 =
∑
n

∑
α1,...,αn−1

un
∣∣∣Aα1

β A
α2
α1A

α3
α2 . . . A

ξ
αn−1

〉
, (4.6)

where un are some coefficients. The S-matrix elements will be determined by projecting this
superposition on different individual states from the complete set (4.5). Correspondingly,
in the rate of the process the squares of S-matrix elements are summed over all such states.
In particular, for 2→ n processes of the type (4.4) this amounts to,∑

α1,...,αn−1

|
〈
AγβA

ξ
γ

∣∣∣ Ŝ ∣∣∣Aα1
β A

α2
α1A

α3
α2 . . . A

ξ
αn−1

〉
|2 . (4.7)

In order to avoid a potential confusion with the counting of the final states, we can softly
Higgs the color group. We can easily achieve this by giving the tiny vacuum expectation
values to a set of the “spectator” Higgs fields. Such a Higgsing of SU(N) symmetry
generates a small mass gap and introduces the small mass splittings among the gluon fields.
Since the theory is non-confining by assumption, this splitting affects neither the structure
nor the magnitude of the amplitude. However, it removes all doubts whether the gluons of
different colors must be counted as independent final states. We can then smoothly take
the vacuum expectation values of the Higgs fields to zero and recover a gapless theory.

Note, in practice, the assumption that we are in an unconfining theory means that the
scale R = q−1, at which the entropy bound is violated, can be taken arbitrarily shorter
than the length of the confinement, LQCD. For example, we can choose LQCD to be of
galactic size, whereas q = R−1 to correspond to LHC energies. Obviously, in such a case
a local LHC observer is not affected by the confinement. Such an observer would use
the colored gluons (4.5), rather than the colorless composites such as glueballs, as the
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asymptotic states of the S-matrix. Can such an observer witness a violation of entropy by
some field configuration at the scale R?

In order to argue against this, first assume that we are dealing with a fully resummed
amplitude. Then, our previous discussion goes through and we skip the details. The sum-
mary is that the cross section of creating an each particular n-gluon state is exponentially
suppressed. The enhancement is due to summation over micro-states corresponding to
different color assignments of the final gluons, as expressed in (4.7). The resulting multi-
plicity factor is similar to (2.15). So, for n = 1

α the cross section is given by (3.8). This
cross-section saturates unitarity for λt ∼ 1. This is strikingly close to a critical value for
which, as observed in [2], the entropy of a single instanton of the same scale saturates both
bounds, (1.1) and (1.2).

We now wish to see what happens if we try to violate these bounds by deforming the
theory. We can achieve this by freezing λc = 1 while increasing the ’t Hooft coupling, λt →
∞. Of course, as already discussed, this would immediately result in a non-perturbative
violation of unitarity by the process (4.4) since the cross section grows exponentially (4.3)
with large λt. However, our point is that the confinement will set in before this can happen.

In other words, as already noted, by taking the theory not be confining, we have
implicitly assumed that the scale of confinement LQCD can be arbitrarily separated from
the scale R were the saturations of the entropy and unitarity bounds were taking place.
Or equivalently, LQCD can be arbitrarily larger than the saturon size R. What theory tells
us is that this was a wrong assumption.

We shall now explain why. Indeed, the increase of λt at a fixed scale q represents a
motion in the space of theories. This is because we are changing the relation between α(q)
and N . However, alternatively, we can view the same deformation as a motion towards
the IR-scale q from some UV-scale q′ > q within the same theory. Since we keep λc = 1,
this motion is accompanied by changing the number n of gluon constituents in the final
state. That is, within the same theory, we move from one process at the UV scale q′ to a
different process at the IR-scale q.

If gluons were to remain the valid degrees of freedom down to arbitrarily low energies,
such a descend towards IR could be continued indefinitely. We would then sooner or later
violate both entropy bounds (1.1) and (1.2). Correspondingly, the unitarity would also
be violated. This would mean that the SU(N) gauge theory is inconsistent, despite being
asymptotically free.

Somehow, the theory must prevent this from happening. In a theory with pure glue,
the only visible mechanism that can prevent such an unlimited descend towards IR is
confinement. That is, the theory must become confining before we manage to make λt suf-
ficiently large and violate both entropy bounds and unitarity. Thus, in a large-N theory of
pure glue the confinement appears to be a direct consequence of the bounds (1.1) and (1.2)
and of the unitarity constraints imposed by them.

The above example with confinement is indicative in the following general sense. On
one hand, the saturation of the entropy bound takes place for a critical value of the ’t
Hooft coupling that is typically order one. A further increase of λt would make entropy
larger than the value permitted by the bound (2.21). However, this is precisely the point
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at which the confinement sets in and prevents any further growth of λt. Of course, the
confinement is a very special phenomenon belonging to a particular theory. However, the
fact that the theory resists to an unlimited increase of the ’t Hooft coupling beyond the
critical point, appears to be genetic.

All the evidence we have, indicates that ’t Hooft coupling is universally bounded from
above by a critical value that is typically order one. When the system is pushed towards
the strong ’t Hooft coupling domain, it responds by a change of the regime which prevents a
further growth of λt. In the above example of large-N QCD with pure glue, the preventive
mechanism is confinement, but the effect is very general.

We are observing that different systems respond differently to the increase of λt. In
some non-confining systems, the further growth of λt is simply impossible due to a dynam-
ical energy balance. An example of this sort shall be considered in section 6. In some other
cases, for strong collective coupling, the configuration becomes unstable and chaotic. For
example, such a behaviour has been confirmed by an exact numerical diagonalization of
the Hamiltonian of a 1 + 1-dimensional system studied in [26].

4.2 Baryons

Notice, we encounter a similar resistance if we try to violate the entropy bound by quark
bound-states. As observed in [1], a baryon of large-N QCD [9] saturates the entropy bound
when the number of quark flavors NF becomes of the same order as the number of colors
N . Indeed, consider a baryon transforming as a symmetric tensor of rank N under the
flavor group SU(NF ). Its entropy is given by [1],

Sbar '
1
α

ln
((

1 + λc
λF

)λF (
1 + λF

λc

)λc)
, (4.8)

where we have defined the analog of the ’t Hooft coupling with respect to the global
SU(NF )-flavor group, λF ≡ αNF . The baryon consists of N quarks and has a size Rbar ∼
Λ−1
QCD. Therefore, the collective coupling evaluated at the scale q = R−1

bar is λc ∼ 1. The
above entropy then saturates the bound (1.2) for λF ∼ 1. That is, the entropy reaches the
allowed maximum for N ∼ NF .

Simultaneously, the area-law bound (1.1) as well as the Bekenstein bound (1.3) are
also saturated. Indeed, remembering that the pion decay constant is fπ =

√
NΛQCD and

the baryon mass is Mbar = NΛQCD, we can write,

Sbar = 1
α

= 1
απ

= (Rbarfπ)2 = MbarRbar , (4.9)

where απ = q2

f2
π
is the pion coupling constant evaluated at the scale q = R−1

bar = ΛQCD.
It is natural that at the same time the 2 → N pion scattering cross section saturates

unitarity for the momentum-transfer set by the above scale q. This cross section is given
by the expression analogous to (3.8) with λt substituted by λF and α by απ. This process
can be interpreted as the production of a classical lump of the pion field. More precisely,
the final state can be viewed as an overlapping pair of the pion solitons, i.e., skyrmions [10].
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These solitons, as shown by Witten [11, 12], offer an effective description of the baryons at
large N .

Now, we can try to violate the entropy bound by taking λF � 1. However, this is
impossible because of the two reasons. First, this would make the theory asymptotically
not free. Simultaneously, the above multi-pion scattering process would violate unitarity
at the scale q � R−1

bar. This would mean that the effective theory of pions breaks down at
distances much larger than the would-be size of a baryon. So the latter object cannot even
be described within such a theory. Of course, the two responses are related. Namely, the
low energy theory of pions “senses” that something is going wrong in the UV and responds
to it via violations of unitarity by multi-pion amplitudes. We thus observe that asymptotic
freedom prevents the violation of the entropy bounds.

From the above point of view, the conformal window [13, 14] is of special interest.
Since the coupling is at the fixed point, it appears that in such a regime the saturons
with the fixed number of constituents n = N and arbitrarily large sizes R can exist.
Correspondingly, their masses will assume values (3.10). As a result, the entropy of a
saturon will be independent of its size and will be fixed at the bound (1.4). In this respect,
such saturons would exhibit a scale-invariance.

5 Scanning the cross section

We now wish to scan the multi-particle cross section over different values of kinematic
variables. For this, we need to parameterize σ properly. First, we shall choose n and q as
the scanning variables. Of course, in general, the number of active species N can depend on
the scale of momentum-transfer q. However, to start with, we assume N to be independent
of q. The scale-dependence of the ’t Hooft coupling λt(q) then is uniquely determined by
the running of α(q). Thus, the cross section effectively depends on two parameters (n, q),
which can be traded for (λc, λt) or (E, q), and so on.

We shall perform the scanning in two different regimes. In the first case, we scan n for
fixed q. This is equivalent of scanning over λc and E while keeping λt and α fixed. In the
second case, we scan over q (equivalently, over λt and E) for the fixed values of n.

5.1 Scanning λc

We first freeze λt, α and the scale q by the saturation condition (3.9) while allowing n
(equivalently λc) to vary. In this way, we scan over various processes in the same theory.
These processes probe the same momentum transfer scale q but differ by the occupation
number n in the final state. Obviously, they take place at different center of mass energies
E = nq.

Now, when we move λc away from its critical point, the resulting n-particle state
saturates neither entropy bound nor unitarity. In order to see this, let us write the total
n-particle cross section (3.8) for generic values of λc and λt

σ = σ2→n

((
1 + λt

λc

)λc (
1 + λc

λt

)λt) 1
α

, (5.1)
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where

σ2→n .

(λ−1
c e)−

λc
α for λc 6 1,

e−
λc
α for λc > 1 .

(5.2)

As previously, using the power of large-N , the non-exponential prefactor is set equal to one.
Of course, at the point of optimal truncation λc = 1 the equation (5.1) reproduces (3.8).
As already expressed by (2.18) and (3.9), at this critical point both entropy and unitarity
are saturated for

λt(q) ' 0.54 . (5.3)

Thus, if the running ’t Hooft coupling reaches this critical value at some scale q, the theory
gives rise to a saturon state in its spectrum. The mass and the radius of the saturon are
given by (3.10) and (3.11) respectively.

The expression (5.1) shows that the cross section of n-particle state is peaked at λc = 1
with the width ∼ α and falls-off exponentially away from this point. In particular,

σ .

λ
λc
α
t for λc � 1,

( eλc
λt

)
λt
α e−

λc
α for λc � 1 .

(5.4)

This means that the saturon represents an exponentially narrow “resonance” of the width
∼ α in the spectrum of all possible n-particle states of momentum q. As explained above,
the momentum q is defined by the criticality of the ’t Hooft coupling (5.3).

Expressing λc = E
M in terms of the center of mass energy E = nq and the saturon

mass M = q
α , we can rewrite (5.4) as,

σ .

(λt)
E
Mα for E �M,

( eE
λtM

)
λt
α e−

E
Mα for E �M .

(5.5)

Now, remembering that λt ' 0.54, it is clear that away from the resonance energy E = M

the cross section is exponentially suppressed.
Thus, for producing a saturon in a 2-particle scattering experiment, the center of mass

energy must be fine tuned to the mass of the saturon with an accuracy,

Saturation window : ∆E
M
∼ α . (5.6)

This illustrates the price that one needs to pay for producing a classical object with
an unsuppressed cross-section in a renormalizable theory.

5.2 Scanning λt(q)

We now wish to scan the cross section over q and n while keeping λc = 1. Then, the
q-dependence enters the cross section (3.8) through the running ’t Hooft coupling. Taking
the derivative of (3.8) with respect to q2, we get,

d

dq2 ln(σ) ' −N ln
(
(1 + λt)e−1

) 1
λt

d

dq2 ln(λt) . (5.7)
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Around the saturation value (5.3) this expression simplifies to,

d

dq2 ln(σ) ' N d

dq2 ln(λt) , (5.8)

or equivalently,
d ln(σ)
d ln(λt)

' N . (5.9)

This result teaches us several things. First, around the saturation point the derivative of
the cross section with respect to λt scales as N . Thus, the scale-dependence of the cross
section is extremely sensitive to the scale-dependence of λt.

Now, consider a theory that is asymptotically-free. In such a theory, λt runs with q2

logarithmically. Then, assuming we are not at the fixed point, we get,

d ln(λt)
d ln(q2) ∼ λt . (5.10)

Since, at the saturation point (5.3) the r.h.s. of the above equation is order one, the
derivative is order one. Then, (5.8) tells us that the derivative of σ around the same point
is of order N . Thus, the cross section sharply diminishes as we move towards UV from the
saturation point (5.3).

The motion towards infrared is more subtle. Obviously, any further increase of λt is im-
possible without violating the entropy bound. Thus, we see the following two possibilities:

• Either the theory hits an infrared fixed point;

• Or it develops a mass-gap.

The latter can happen either due to confinement or a Higgs effect. In particular, as
discussed above, in SU(N) gauge theory without matter, confinement appears to be the
only mechanism that can prevent the violation of the entropy bound.

It is impressive how profound the quantum field theory is. It tells us that there is no
“free-lunch” for producing a classical object in a two-particle scattering experiment at weak-
coupling. This is true, despite the fact that the object saturates the cross section at the
right energy E = M . The price is that the kinematic window of opportunity is very narrow.

It is certainly remarkable that a classical object can be produced with an unsuppressed
cross-section in a renormalizable theory. However, it dominates the cross-section only for a
particular “resonant” value of the center of mass energy. Away from it, the cross section falls
off steeply. Fundamentally, the following trade-off takes place. The difficulty of producing
a classical object in a quantum process manifests itself in an extremely precise choice of
the center of mass energy in the scattering experiment.

Can saturons unitarize the cross section in a continuous range of energies? In
renormalizable theories the difficulty is in maintaining the criticality relations such as
λc ' 1, λt ' 0.54 over a continuous range of scales. In other words, the renormalizable
theories do not possess saturons of arbitrary masses and sizes unless theory is at some
non-trivial fixed point.
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Here comes a profound difference with non-renormalizable theories such as gravity.
Gravity contains an almost continuous spectrum of saturons starting from the Planck
mass and above. These saturons are black holes. This is the reason why gravity can self-
unitarize by black holes at arbitrarily high center of mass energies above the Planck mass.
It is interesting to confront how violations of the entropy bound and unitarity are avoided
by the two theories. In SU(N) gauge theory this is achieved by confinement which generates
a mass gap and forces the asymptotic states to be colorless. In contrast, in gravity the
entropy violation is avoided by offering a black hole for arbitrarily high energy. In this
way, the entropy is kept at the saturation point for arbitrarily high center of mass energy.

6 A model of saturon as vacuum bubble

We shall now come up with an explicit renormalizable theory that contains saturons. This
theory allows us to take different parameter choices for which various entropy bounds are
saturated by solitonic objects of different sizes and energy. We can then explicitly trace how
the theory becomes inconsistent if Bekenstein bound (1.3) is obeyed without respecting the
other two bounds (1.1) and (1.2). The conclusion is that a consistent theory must respect
all three bounds and saturate all three of them simultaneously (1.4).

6.1 The model

Consider a theory of a scalar field φ that transforms as an adjoint representation of SU(N)
symmetry. As usual, the latter can be written as N × N traceless hermitian matrix φβα,
where α, β = 1, 2, . . . , N . In order not to blur the effect by the confinement, we shall keep
the SU(N)-symmetry global. The Lagrangian of the theory is,

L = 1
2Tr(∂µφ∂µφ)− V (φ) , (6.1)

where the scalar potential has the form,

V (φ) = α

2 Tr
(
fφ−

(
φ2 − I

N
Trφ2

))2
. (6.2)

Here, I is the unit N ×N matrix. The vacuum equations,

fφβα − (φ2)βα + δβα
N

Trφ2 = 0 , (6.3)

have many degenerate solutions. They correspond to spontaneous breaking of SU(N)
symmetry down to SU(N −K) × SU(K) × U(1) subgroups for values of 0 < K < N . In
addition there exists an unbroken symmetry vacuum with φβα = 0.

All the above vacua are equally good for our purposes. So, for definiteness, we shall
focus on the unbroken-symmetry vacuum φ = 0 and the one with K = 1. In the latter
vacuum only the following component

φβα = φ(x) diag((N − 1),−1, . . . .,−1) 1√
N(N − 1)

, (6.4)
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has a non-zero expectation value. Up to irrelevant 1/N -corrections, this expectation value
is equal to

〈φ〉 = f . (6.5)

Due to spontaneous breaking of global SU(N) symmetry down to SU(N − 1)× U(1), this
vacuum houses massless Goldstone species. Their number is,

NGold = 2(N − 1) , (6.6)

and their decay constants are given by f . As usual, the coupling “constant” of these
Goldstones, which we denote by αGold, exhibits the following dependence on the scale of
momentum-transfer q,

αGold = q2

f2 . (6.7)

Correspondingly, we define the ’t Hooft coupling for Goldstones,

λGold ≡ αGoldNGold ' 2N q2

f2 . (6.8)

Since the vacuum (6.4) is exactly degenerate with the one with unbroken symmetry,
there exist domain walls that separate the two. The solution for a planar infinite wall has
the form,

φ(x) = f

2

(
1± tanh

(
xm

2

))
, (6.9)

where x is a coordinate that is perpendicular to the wall. The tension (energy per unit
surface area) of the wall is given by,

µ = 1
6
m3

α
, (6.10)

and the thickness of the wall is,
R ∼ 1

m
. (6.11)

Approximately, the same expressions apply to a closed bubble when its radius r is much
larger than the wall thickness, r � R ∼ m−1. This regime is usually referred to as the thin
wall approximation.

In the regime of our interest, in which α is very small, the bubbles are long-lived. That
is, they oscillate for a sufficiently long time before decaying into particles. The qualitative
way for understanding this stability is different for large and for small bubbles. For large
bubbles (r � m−1) the oscillation frequency is ∼ 1/r. This is much less that the mass of
a free quantum. Consequently, the production rate is suppressed. The decay rate for the
small bubbles, r ∼ m−1, will be derived later. However, a qualitative reason for their long
life-time is that the decay goes through the quantum re-scattering of constituents which is
suppressed due to weak coupling.

Notice, if we restrict the adjoint field to its component (6.4), the potential (6.2) becomes

V (φ) = α

2
(
fφ− φ2

)2
+ O(N−2) . (6.12)

– 24 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

We now wish to derive the restrictions imposed on the theory by the three entropy
bounds, (1.3), (1.2) and (1.1) and by unitarity. We start by choosing the trivial vacuum
φ = 0 as our asymptotic S-matrix vacuum. In this vacuum all particles have a mass
m =

√
αf . Next, consider a vacuum bubble inside of which φ = f .

The crucial fact is that inside the bubble the SU(N)-symmetry is spontaneously broken
down to SU(N − 1)× U(1) subgroup. This breaking results into ∼ 2N gapless Goldstone
modes localized within the bubble world-volume. These Goldstone modes create an expo-
nentially large number of the bubble micro-states. Using the method of [1], we can estimate
this number in the following way. The degeneracy of the bubble interior is controlled by the
degeneracy of the vacuum manifold in the broken phase. This vacuum manifold is obtained
by the action of SU(N)/SU(N − 1)×U(1) transformations on the expectation value (6.4).
The effective quantum Hamiltonian that describes the corresponding degeneracy of the
bubble is:

Ĥ = X

∑
j

â†j âj − s(r)

 , (6.13)

where âj-s are quantized zero modes that classically parameterize the bubble moduli space.
Their number is of order 2N . The quantity s(r) is the time-averaged space integral of φ2(x).
For large (and slow) bubbles, r � m, for which the thin wall approximation works, it is
given by the bubble volume times mf2,

s(r) ' 4π
3 r3mf2 = 4π

3
(rm)3

α
, (6.14)

whereas for the smallest bubbles, r ∼ m−1, we have s ∼ 1
α .

Now, the degeneracy of (6.13) is given by the binomial factor which is of order

nst(r) ∼
(

1 + 2N
s(r)

)s(r) (
1 + s(r)

2N

)2N
. (6.15)

This degeneracy endows the bubble with the corresponding micro-state entropy Sbub(r) =
ln(nst(r)). Next, for convenience, we introduce a notation,

λ(r) ≡ 2N
s(r) = 2λt

αs(r) , (6.16)

where the ’t Hooft coupling λt is defined as before, (2.3). In this notations, we can write
the entropy of a bubble of radius r as

Sbub(r) = s(r) ln
(

(1 + λ(r))
(

1 + 1
λ(r)

)λ(r)
)
. (6.17)

We shall now investigate the response of the theory when the above entropy saturates the
three bounds (1.3), (1.1) and (1.2) for the bubbles of various sizes.
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6.1.1 Small bubbles as saturons

We consider the smallest bubbles first, r ∼ R = m−1. The energy and the surface area of
such a bubble are given by Ebub ∼ 1

Rα and Area∼ R2 ∼ m−2 respectively. Correspondingly,
for such bubbles we have,

EbubR ∼
1
α
∼ 1
αGold

∼ (Rf)2 . (6.18)

Thus, all three bounds: the Bekenstein bound (1.3), the inverse-coupling bound (1.2) and
the area-law bound (1.1) are satisfied simultaneously. Moreover, the inverse-coupling bound
is satisfied for both couplings: for the coupling of massless Goldstones, αGold, as well as,
for the coupling of massive φ-quanta, α. The reason is that the range of the interactions
mediated by both fields is large enough to cover the size of the smallest bubble r ∼ m−1.
Correspondingly the bound (1.2) must be satisfied with respect to both couplings, and it
is. To put is shortly, we see that for smallest bubbles the relation (1.4) holds.

From the definition (6.16) and the expression (6.17) it is easy to see that the above
saturation takes place when the both ’t Hooft couplings are order one,

Saturation point: λt ∼ λGold ∼ 1 . (6.19)

Using our previous knowledge, it is easy to see how the above saturation of the entropy
bound is mapped on the saturation of unitarity. Namely, in respective S-matrix vacua the
processes 2→ n saturate unitarity at momentum transfer q = m. Of course, in both vacua,
the saturation takes place at the points of optimal truncation.

A typical process of this sort is given by figure 2. Here the double lines must be
understood as the adjoint φ-field in ’t Hooft’s notations. For such processes, our previous
analysis is directly applicable. As we already discussed in details, the cross section of this
process is given by (3.8). Obviously, in this expression we must insert the couplings that
are relevant for a given process. For example, for 2 → n Goldstone scattering process in
SU(N − 1)×U(1) vacuum, at the point of optimal truncation n = α−1

Gold the cross section
will take the form,

σGold =
(

e−1(1 + λGold)
(

1 + 1
λGold

)λGold
) 1
αGold

. (6.20)

As we already discussed several times, the above cross section is saturated for λGold order
one.

It is not surprising that this matches a regime in which the vacuum bubble saturates
the entropy bound (1.4). Indeed, from the point of view of an S-matrix vacuum with
unbroken symmetry, the smallest bubbles are well described as self-sustained states of
weakly interacting quanta of occupation number n = 1

α . Correspondingly, the n-particle
process that saturates unitarity can be viewed as describing the formation of such a bubble
in a two-particle scattering process.

As we have discussed previously, the processes with the higher number of the final
quanta are exponentially suppressed. The reason was that, once we saturate the entropy
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bound by a state λc = 1, all the states λc � 1 are well below the bound. As a result,
their entropy factors are too weak for winning over the exponential suppression of the
amplitudes. This is clearly illustrated by the equations (5.4) and (5.5).

The above insufficiency of the entropy enhancement for the states with λc � 1 is also
matched by the entropy count of the larger bubbles r � m−1. In order to see this, first
check the entropies of such bubbles. From (6.16) and (6.14) it is clear that for large bubbles
we have

λ(r) ' 3λt
2π(rm)3 . (6.21)

Recall that the ’t Hooft coupling was already set to its critical value λt ∼ 1 by the require-
ment of entropy saturation by the smallest bubbles. Since, λt is a parameter of theory, it
is the same for the bubbles of all sizes. Then, from (6.17) and (6.21) it is clear that for the
large size bubbles the entropy scales as,

Sbub(r)|r�m−1 '
2λt
α

ln
(

2πe(rm)3

3λt

)
. (6.22)

It is not difficult to see that the above entropy is well below of all three bounds (1.3), (1.1)
and (1.2).

Indeed, the maximal entropy permitted by the Bekenstein bound (1.3) for a large
bubble has the form,

SBek(r) = 2πEbubr '
4π2

3
(rm)3

α
. (6.23)

Obviously, this is much larger than (6.22).
Next, check the inverse coupling bound (1.2). Since the bubble is much larger than

m−1, the only interaction that has a relevant range is the Goldstone exchange. Remem-
bering that the Goldstone coupling (6.7) evaluated at q = 1

r is αGold = (fr)−2, the corre-
sponding entropy bound is

SGold(r) = 1
αGold

= (fr)2 = (mr)2

α
. (6.24)

Since the Goldstone coupling constant is equal to the inverse area of the bubble measured
in units of f , the last expression also accounts for the area-law entropy bound (1.1). As
we can see, both are way larger than the actual entropy of the large bubble (6.22).

To summarize, we see that when the smallest bubble saturates the entropy bound, it
saturates all three bounds simultaneously, (1.4). At the same time, the larger bubbles are
below the bound. Correspondingly, their entropies cannot compete against the exponential
suppressions of the respective amplitudes.

6.1.2 Suppression of large bubbles

We wish to explicitly demonstrate the insufficiency of the entropy enhancement of the cross
sections for creation of large bubbles in a two-particle scattering process in the regime in
which the smallest bubbles saturate the entropy bound. We can achieve this by applying
our results to the analysis of [18]. In this work a process or bubble-creation in thin wall
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approximation was studied in a theory of a single real scalar field φ with two degenerate
vacua. Naturally, since such bubbles carry zero entropy, no entropy enhancement was
discussed there. Notice, our theory would reduce to such a model if we would reduce it
to a single component (6.4) of the adjoint field. The resulting theory of course contains
vacuum bubbles similar to ones we have studied. However, they carry zero entropy due to
the absence of the Goldstone phenomenon in the bubble interior. Therefore, the bubble
production rates in [18] and in the present model (6.1) will differ by the entropy factor.

In [18] the creation of a vacuum bubble of energy E = nm from a single virtual quantum
was studied as the first stage of a two-stage process. The second stage amounts to a decay
of the bubble into n near-mass-threshold particles. We shall focus on the first part of the
process. In our notations, the matrix element of [18] describing the bubble-formation has
the form,

|A1→B|2 ∼ e−cn
√
λc , (6.25)

where c > 0.
Now, the novelty in our case is that the rate must be summed over a large number of

the bubble micro-states. This amounts to multiplying (6.25) by the degeneracy factor eSbub .
For the large bubbles the entropy is given by (6.22). Noticing that λc = Ebub

m α = 2π
3 (mr)2,

the large bubble entropy can be written as Sbub(r) ' 3λt
α ln(λc). The rate of the bubble

production is then given by,

Γ ∼ |A1→B|2eSbub ∼ e
−n
√
λc

(
c−3λt ln(λc)

λc
√
λc

)
. (6.26)

Now, remembering that in the above expression λt ∼ 1 and λc � 1, it is clear that
the entropy enhancement factor is negligible as compared to the suppression. So, the
production rate of the large bubbles continues to be exponentially suppressed despite the
entropy enhancement.

Of course, the situation is very different for the smallest bubbles, r ∼ m−1, that
saturate the entropy bound (1.4). Because of this, they also saturate unitarity in the
scattering process and are produced by an unsuppressed rate. This is also indicated by
saturation of unitarity by the corresponding n-particle scattering process.

Unfortunately, the analysis of [18] is not applicable for small bubbles. Such bubbles
correspond to λc ∼ 1, which is outside of the validity domain of [18]. However, extrap-
olating (6.26) towards λc ∼ 1, clearly shows the tendency: the entropy factor starts to
compensate the suppression term. Of course, this is fully consistent with our results of
saturating the n-particle cross section at the optimal truncation point. This is natural
since the smallest bubbles are well-described as n-particle states. Correspondingly, the two
pictures — producing a bubble or an n-particle state — must match.

6.1.3 Superiority of area-law and inverse-coupling bounds

We now wish to show that saturating the Bekenstein bound (1.3) while disrespecting the
bounds (1.2) and (1.1) leads to an inconsistency of the theory. This indicates that in
general the latter bounds are more stringent than the former one.
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In the present model this happens when a large bubble of certain radius r∗ � m−1

saturates the Bekenstein entropy bound (1.3). As we shall see, such a saturation violates
the other two bounds (1.1) and (1.2) and this triggers the violation of unitarity by the
scattering amplitudes.

The saturation value of λ(r∗) can be found by equating (6.17) to the corresponding
Bekenstein entropy (6.23). Using the expression (6.14), this saturation condition can be
written in the following form,

(1 + λ(r∗))
(

1 + 1
λ(r∗)

)λ(r∗)
' eπ , (6.27)

which is satisfied for λ(r∗) ' 8.
At first glance this saturation looks rather innocent. However, meanwhile the

bounds (1.1) and (1.2) are violated both by the Goldstone coupling αGold and the decay
constant f . This is immediately clear by comparing the maximal entropy (6.24) permitted
by the area (1.1) and the inverse-coupling (1.2) bounds to the Bekenstein entropy of the
same bubble (6.23). We have,

SBek(r∗)
SGold(r∗)

= 4π2

3 (mr∗)� 1 . (6.28)

The violation of the inverse-coupling (1.2) and the area-law (1.1) bounds, leads to the
following disaster.

First notice, that the corresponding value of the Goldstone ’t Hooft coupling is enor-
mously large,

λGold '
32π
3 (r∗m) � 1. (6.29)

This is a very serious problem for the theory. With such a strong ’t Hooft coupling, the
2→ n Goldstone scattering process in SU(N − 1)×U(1) vacuum, violates unitarity at the
point of optimal truncation n = α−1

Gold. Indeed, the cross section (6.20) for large Goldstone
’t Hooft coupling given by (6.29) scales as,

σ ' (λGold)
1

αGold =
(32π

3 (r∗m)
) (r∗m)2

α

. (6.30)

Since in this expression (r∗m) � 1, the above cross section violates unitarity beyond any
repair.

Now, the important thing is that the above violation takes place for the momentum-
transfer q ∼ r−1

∗ . The physical meaning of this fact is that the actual UV-cutoff of the
theory in the Goldstone vacuum is much less than the scale r−1

∗ ,

ΛUV �
1
r∗
. (6.31)

This means that the bubble of size r∗ cannot be described within the validity of the theory.
This is despite of the fact that the bubble respects the standard Bekenstein bound (1.3). It
is the violation of the other two bounds (1.1) and (1.2) that makes the theory inconsistent.
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We thus arrive to the following conclusion:

A violation of the inverse-coupling (1.2) and the area-law (1.1) entropy bounds
makes the theory inconsistent even if the standard Bekenstein bound (1.3) is
satisfied.

Thus, the inverse-coupling (1.2) and the area-law (1.1) entropy bounds are not equiva-
lent to Bekentein bound (1.3) and in fact are more stringent. On the other hand, saturation
of (1.1), (1.2) also implies saturation of (1.3). Thus, in a consistent theory all three bounds
must be respected and saturated simultaneously.

7 Black holes as saturons

Obviously, there are striking parallels exhibited by saturons in renormalizable theories on
one hand and black holes in gravity on the other. These parallels appear to be so vast
and so precise that they must indicate about the universality of physics-laws that govern
the saturation point (1.4). This universality goes way beyond the particularities of the
underlying theory, whether it is gravity, a gauge theory or something entirely different.
What we are learning is that physics is controlled by a fundamental connection between
entropy and unitarity expressed by the bound (1.4).

In this section we shall make these parallels more transparent by organizing them in
form of an explicit “checklist” of similarities between renormalizable saturons and black
holes. In order to make the extend of the connection brisk, we shall choose for the role of
non-gravitational saturons the vacuum bubbles of the theory given by (6.1). We remind the
reader that the latter is a renormalizable quantum field theory of a self-interacting scalar
field φ in the adjoint representation of SU(N) symmetry. Since this symmetry is not even
gauged, it is hard to imagine an example that is more distant from gravity. Nevertheless,
as we shall see, the saturons in this theory share all their key properties with black holes.
We shall now discuss these properties one by one.

7.1 Similarities in entropy

As already discussed in details, saturons in the theory (6.1) represent vacuum bubbles. An
exterior of the bubble is an unbroken symmetry vacuum which we choose as asymptotic
S-matrix vacuum for our observer Alice. In the interior of the bubble the SU(N) symmetry
is spontaneously broken down to a maximal subgroup which we chose as SU(N−1)×U(1).
This breaking results into ∼ N Goldstone bosons localized in the bubble world volume.
They endow the bubble with the entropy given by (2.17). As already explained, the alter-
native way to think about bubble entropy is in terms of group representations. Because the
bubble is not elementary but rather is a state with high occupation number, it transforms as
a large representation of the SU(N) group. The entropy is set by the log of the dimensional-
ity of this representation. As we have seen, only the smallest bubbles, of size r ∼ R = m−1,
can saturate the entropy bound consistently. At the saturation point they saturate all three
bounds (1.3), (1.1) and (1.2) simultaneously. Therefore, they satisfy the relation (1.4).
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Now, we wish to note that (1.4) is exactly the relation satisfied by the Bekenstein
entropy of a black hole [5]. Of course, the fact that black hole entropy saturates the ordinary
Bekenstein bound (1.3) and also exhibits the area law, is well-known. What is much less
appreciated is that the black hole entropy also saturates the inverse-coupling bound (1.2).
The latter observation was originally made in [6, 7] which we shall now explain.

For this, first note that the graviton coupling at the scale of momentum-transfer q is
given by,

αgr(q) = q2

M2
P

. (7.1)

However, this is nothing but an inverse of the Bekenstein entropy of a black hole of radius
R = q−1! Thus, the entropy of a black hole of mass M and radius R = M

M2
P

obeys the
following relation,

SBH = MR = 1
αgr(q)

= Area
M−2
P

. (7.2)

This is exactly the relation (1.4) with f = MP and q = 1/R. As already explained in
the introduction, the relation is obvious since MP represents the graviton decay constant.
Also, a black hole breaks translation symmetry spontaneously and the Goldstone mode of
this breaking is of course the graviton excitation.

7.2 Decay and life-time

Until now, the best understood computation about the decay of a black hole, is the famous
original one by Hawking [30]. This computation is exact in the following semi-classical limit,

M →∞, MP →∞, R = finite . (7.3)

Of course, simultaneously the Planck constant ~ = 1 is kept finite. Notice, in the above
limit, also the black hole entropy SBH becomes infinite, as it is clear from (7.2).

Now, in the limit (7.3) the geometry of a black hole experiences no back-reaction from
the emitted quanta. That is, a black hole becomes a rigid reservoir of infinite energy
and information capacity. The Hawking’s computation shows that in this limit black hole
emits in thermal spectrum with temperature T ∼ 1

R . That is, on average, a black hole
emits a quantum of energy ∼ 1

R per time ∼ R. The emission of more energetic quanta is
exponentially suppressed, whereas the less energetic ones are suppressed by the phase-space.

Of course, in the limit (7.3) the black hole mass is infinite and so is the life-time.
However, if we extrapolate Hawking’s result for finite M , we can estimate that the black
hole shall lose of order half of its mass approximately after the time,

tBH ∼ R (RMP )2 ∼ RSBH . (7.4)

The last part of the equation relates this time-scale with the black hole entropy. This is
indicative, since the number of the emitted quanta of energy ∼ 1/R is equal to the black
hole entropy.

Now, strictly speaking, it is unjustified to extrapolate the results of Hawking’s semi-
classical computation beyond the above time-scale. The reason, without entering into much
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guess-work about the microscopic quantum gravity, is simple [32]. The back-reaction, that
the black hole experiences with each emission, is of order ∼ 1

SBH
. So, the cumulative effect

after the time (7.4) is large and must be taken into account. This cannot be done without
working in an explicit microscopic theory in which we shall not enter. We shall therefore
limit the study of the connection between saturons and black holes by the time-scale (7.4).

We now wish to show that the quantum decay of a saturon bubble exhibits a very
similar behaviour. Let us first note that the long life-time of large bubbles was concluded
in the earlier studies both by numerics [27–29] as well as by analytic arguments [18]. The
latter argument relies on a very narrow level-spacing of quantized bubbles. Due to this, the
emission of particles requires transitions between distant levels which is suppressed by the
wave-function overlap. In the present case there will be an additional suppression factor
due to the memory burden effect [35, 36]. This effects is connected with the high entropy of
the bubble which stabilizes it against the spread-out. Assuming that classically the bubble
is long lived, we focus our interest on the smallest ones that saturate the entropy bounds
and satisfy (1.4).

Now, for a saturon bubble of the theory (6.1), the analog of Hawking’s semi-classical
limit (7.3) is

M →∞, f →∞, R = finite , (7.5)

or equivalently,
Sbubble = 1

α
→∞, λc = 1, R = finite . (7.6)

In this limit, the decay rate of the saturon can be estimated in the following way.
The saturon bubble represents a loose bound-state of bosons of mass m. Because

of the binding potential their energies are of course below the threshold of free quanta.
However, the particles can be emitted because of quantum depletion due to re-scattering.
The rate can be easily estimated and is given by (see, [6, 7] for a very similar estimate of
the depletion of a saturated state),

Γemission ∼ R−1α2n2 ∼ R−1 . (7.7)

Thus, just like a black hole, the saturon emits on average one quantum of energy ∼ 1
R per

time ∼ R. The emission of more energetic quanta is exponentially suppressed because this
requires a re-scattering of larger number of constituents. At the same time, the low energy
ones are suppressed by the phase space. Of course, since theory has a mass gap, nothing
can be emitted below the energy ∼ m.

To summarize, an asymptotic observer, Alice, would see a saturon bubble as an object
that emits in approximately-thermal spectrum. This is true despite the fact that the n-
particle state of saturon is not really thermal. What creates the effect of thermality is the
softness of the constituent quanta and the fact that the state is at the critical point λc = 1.
Now, extrapolating this result to finite n, the resulting half-life time of saturon bubble is,

tbub ∼ R (Rf)2 ∼ RSbub . (7.8)

Without much commenting, the striking analogy with all the aspect of black hole evapo-
ration and in particular with its half-life (7.4) is obvious.
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7.3 Infomation horizon and time-scales

One of the characteristic properties of semi-classical black holes (7.3) is the existence of
the horizon. This makes an information about the black hole interior inaccessible for
an outside observer, such as Alice. It is widely believed, although remains a subject of
active controversy, that for a black hole of finite mass the information is no longer hidden
and finally comes out. We shall not question this point of view since within a consistent
particle physics framework with unitary S-matrix, no other outcome is imaginable for us.
The question therefore is not whether the information is accessible but rather how long
is the required time-scale for decoding it. Of course, it is reasonable to assume that the
minimal time-scale required for a start of the information read-out, is the half-life of a
black hole. This view is supported by general arguments by Page [31]. We shall therefore
adopt the equation (7.4) as the lower bound on such a time-scale.

We shall now see that all the above properties are matched by saturons of renormal-
izable theory (6.1). Of course, the advantage is that in case of a saturon bubble we can
understand the microscopic origin of such properties very transparently. Let us first notice
that, just like a black hole, a saturon bubble creates an information horizon that makes the
knowledge about its micro-state inaccessible for Alice. Indeed, the quantum information is
encoded in saturon micro-states. These micro-states are labelled by the excitations of the
gapless Goldstone modes that are confined to the interior of the saturon. Their number is
∼ N as it is also indicated by the entropy of the saturon.

Now, for reading out this information Alice faces the following dilemma:

• Alice can wait for Saturon evaporation and examine its decay products very carefully;

• Alternatively, Alice can scatter an external probe particle at the saturon and study
the outcome.

A slight technical problem with pursuing both methods simultaneously is that scat-
tering will in general alter the internal state of saturon. So, it is cleaner to follow one
protocol.

It is easy to see that the minimal time-scale required by both efforts is given by (7.8).
Indeed, in order to examine the decay products carefully, Alice has to setup an interaction
that distinguishes among the different states within the same SU(N)-multiplet. This is sim-
ilar to measuring a spin polarization of a particle in a theory with a rotationally-invariant
Hamiltonian. Despite the fact that Hamiltonian commutes with the spin operator, the
particle spin projection can still be measured. This is not an issue. The problem in case of
a saturon bubble is that the information is stored among the states of enormous number of
Goldstone modes. So, each emitted quantum carries only a tiny fraction of this information.

The rate by which an emitted quantum interacts with Alice’s device is,

ΓAlice ∼
1
R
α2NAlice , (7.9)

where NAlice is the measure of the capacity of the device which is under Alice’s control.
Alice can maximize this capacity, for example, by preparing a huge reservoirs of probe
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particles. However, even if Alice manages to identify the state of a given emitted quantum,
the latter only carries an exponentially small part of the information about the state of the
entire saturon. So, Alice needs to gather at least of order ∼ n emitted quanta before she
can start decoding information at a reasonable rate. This requires a minimal waiting time
given by (7.8), in exact analogy with a black hole.

Now, the second option for Alice is to scatter a soft probe particle through the interior
of the saturon and study the scattering products. The hope is that the probe particle
shall interact with Goldstone bosons that are confined within the interior and bring out
the information about their state. Notice, the probe particle must be optimally soft: on
one hand, it should not create too much level-splitting among the states of the gapless
Goldstones and, on the other hand, the interaction rate must not be too low. The latter
rate is suppressed by the decay constant of Goldstone bosons f .

At the end, the rate of scattering between an optimally-soft probe and the saturon
Goldstone field is,

ΓGold ∼
1

R3f2 . (7.10)

The corresponding time-scale is nothing but a half-life of the saturon bubble (7.8). Again,
we observe that similarity with the black hole case is complete. In particular, in the
limit (7.5) the information becomes inaccessible. This is exactly analogous to what happens
with black hole information in the limit (7.3). Of course, both limits are fully consistent
with unitarity since the respective objects become infinitely massive and their life-times
become eternal.

7.4 Scattering amplitudes

As the last step for completing the list of similarities between non-gravitational saturons
and black holes, we discuss relation with scattering amplitudes. As we have shown, the
saturation of entropy bound (1.4) by a bubble (or any other soliton) is in one to one
correspondence with the sturation of unitarity by the respective 2→ n scattering process.
We wish to point out that this connections carries over into black holes. The idea that a
black hole can be produced in a collision of few particles of center of mass energy E �MP

is not new and goes back to [37–41] and many subsequent papers. However, only relatively
recently [42–44], this process has been connected to 2→ n graviton scattering amplitudes.
The actual detailed computation of the amplitude was performed in [43] and [44]. The
study was motivated by the microscopic picture of [6, 7] in which a black hole is described
as n-graviton state at the point of saturation λc = 1. However, in the present discussion
we would prefer not to have any microscopic bias.

So, we put ourselves in the position of Alice, who is making no assumption about
the microscopic theory of a black hole. Alice is simply observing a process of black hole
formation in a collision of two quanta of center of mass energy E �MP and its subsequent
evaporation into n soft ones. It is obvious that the process that Alice identifies as a relevant
S-matrix process is 2→ n.
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This is exactly the computation performed in [43]. The resulting cross section of
producing a particular n-graviton state is

σ2→n = n!(αgr)n . (7.11)

The crucial point is that the above expression reduces to,

σ2→n = e−
1
αgr = e−SBH , (7.12)

exactly when the softness of outgoing gravitons matches the Hawking quanta q = 1
R . Now,

strictly speaking, we have no moral obligation to interpret these n-graviton states as the
black hole micro-states. However, intuitively the connection is clear. So, we can interpret
them as “relatives”. This relation carries the same meaning as the relation between the
saturon vacuum bubble in theory (6.1) and the n-particle state into which it decays. It
is then clear that the total cross section obtained by multiplying (7.12) by the number of
black hole micro-states, nst = eSBH , saturates unitarity.

In order to keep it sharp: in this discussion, we do not pretend to understand the
microscopic origin of SBH. Instead, we simply take it for granted and observe that the
structure of the 2 → n graviton amplitude matches what is expected from a black hole.
We are not going further than this. However, a complete similarity with the properties of
a non-gravitational saturon bubble — where we do understand the microscopic origin of
the entropy — must ring some bell.

The above concludes our check list. It is obvious from this list that we are dealing
with striking similarities between two types of objects. On one side, this are saturons in
a simple renormalizable theory. Their microscopic properties are as transparent as they
could be for a multi-particle state at weak coupling. On the other side, we have black holes
in a non-renormalizable theory. Yet, we see that essentially all known properties match.
As we have seen, the central source that defines these similarities is that both saturate
the bound (1.4). While the reader can decide for themselves how seriously to take this
connection, our view is the following:

We think that there is something fundamental about the connection between sat-
urations of unitarity and entropy encoded in the bounds (1.1) and (1.2). This
connection goes well beyond gravity or renormalizability. It is the saturation
point (1.4) that determines the behaviour of the system, including its decay pat-
tern, life-time, as well as the capacities of information storage and processing.

8 Saturons and classicalization

Few years ago [4] it has been suggested that certain theories — that lack sensible Wilsonian
UV-completions — can instead be UV-completed by classicalization. The key idea is
as follows. Consider a theory in which a coupling α(q) becomes strong above certain
cutoff ΛUV . In such a theory the processes with momentum-transfer q > ΛUV are out of
control. In certain cases the theory allows to be UV-completed above the scale ΛUV by
integrating-in new weakly-interacting degrees of freedom. These new degrees of freedom

– 35 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

restore perturbative unitarity in processes with momentum-transfer q � ΛUV . We call
such UV-completion Wilsonian. A nice example of this is the Higgs in the Standard Model
which restores unitarity in scattering of longitudinal W -bosons at high q. What happens
when the sensible Wilsonian UV-completion is not possible?

The idea of classicalization is that in such a case the theory can use its classical objects
for UV-completion. A classical object of mass M � ΛUV and size R � Λ−1

UV is composed
out of many soft quanta of momenta q ∼ R−1 � ΛUV . Since q is below the cutoff,
the coupling is weak, α(q) � 1. In this way, a would-be strong coupling is traded for a
high multiplicity. Such a classical object represents a coherent state of the sort (2.9) with
occupation number n ∼ α(q)−1.

Now, imagine that a scattering process at center of mass energy E ∼M � ΛUV is dom-
inated by production of a classical state. Such objects in [4] were referred to as classicalons.
In such a case, the momentum-transfer in the process will be q � ΛUV . This is because the
constituent quanta of the classical objects are soft. Then, the process, despite being con-
ducted at energy much higher than the cutoff, never probes distances shorter than R. So
the theory shields itself from the strong coupling regime by becoming effectively-classical.

However, there is a tradeoff: the occupation number must be very high. Correspond-
ingly, the theory must find a way of compensating the exponential suppression of the cross
section (3.4). As explained in [22], this requires that the entropy of the classical object
is high. Thus, in the language of present discussion, the classicalons must be saturons.
Then, from the results of the present paper it follows that for classicalization to work, the
following two conditions must be satisfied:

• The theory must contain saturons (classicalons);

• Saturons must form an almost continuous spectrum for M > ΛUV .

The second requirement comes from our previous findings that each saturon dominates
the cross section only in a very narrow window of center of mass energy given by (5.6).
Therefore, a theory that is UV-completed by classicalization must deliver a saturon for
each value of the center of mass energy.

In a renormalizable asymptotically-free theory the saturons appear with very specific
masses (3.10) and sizes (3.11). These are determined by the scale q at which the running ’t
Hooft coupling reaches the critical value (5.3). So, such a theory cannot be UV-completed
by classicalization. But, also there is no need for this since asymptotic-freedom takes care
of UV-physics.

On the other hand, non-renormalizable theories can offer a continuous spectrum of
saturons in UV. The example of this is gravity. There saturons are black holes. This is why
gravity can be unitarized by black hole creation. In fact, the proposal of UV-completion
by classicalization [4] was based on a similar proposal for gravity [45].

Now, in order to avoid misunderstanding we must stress that unitarization by black
holes works for center of mass energies above the Planck scale MP . In fact, higher the
better. For processes with the center of mass energies MP in which the momentum transfer
is also of order MP , the coupling αgr is order one. The resulting resonances produced in
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such collisions represent micro black holes. These cannot be described classically. This is
similar to production of QCD resonances around ΛQCD scale. In the language of [6, 7],
they are described as states with n ∼ 1.

9 Gravitational species bound

It has been shown [46–48] that black hole physics puts the following bound on the number
of particle species,

ΛUV .
MP√
N
. (9.1)

Here ΛUV represents the scale above which the quantum gravity enters the strong coupling
regime to which the semi-classical treatment does not apply.

Equation (9.1) is supported by several argument which can be found in [46–48] and will
not be repeated here. We just note that perhaps the physically most transparent one is the
following: a black hole of radius smaller than Λ−1

UV has no way to sustain Hawking’s thermal
evaporation self-consistently. Now, since Hawking’s derivation is exact in semi-classical
limit, its invalidity implies a breakdown of semi-classical gravity. Hence, the bound (9.1).

Because it relies exclusively on the validity of well-understood properties of semi-
classical black holes, the bound (9.1) is fully non-perturbative. The question therefore is
whether this bound can be understood in the language of scattering amplitudes.

The present discussion about the entropy saturation and unitarity answers this ques-
tion. The relevant processes are the 2→ n processes in which two initial gravitons produce
n particles of momenta q ∼ MP√

N
. The example is depicted on figure 3. Of course, the final

state quanta gravitate and must be properly dresses by infrared gravitons. This standard
dressing is independent of entropy of species and is assumed to be done. Again, as before,
by power of large-N physics, all non-exponential and non-factorial dependences on N play
little role in determining the saturation point. Such factors therefore will be set to one.

Now, the n final-state particles can belong to N different species and Einstein gravity
couples to all of them democratically. Due to this, the number of final states is exponentially
large. The counting is identical to the one given for a gauge theory with a minor difference
in a final degeneracy factor. We shall display the cross section for

n = 1
αgr(q)

, (9.2)

where, αgr(q) is the gravitational coupling given by (7.1). Defining the gravitational analog
of the ’t Hooft coupling,

λgr ≡ αgrN = q2N

M2
P

, (9.3)

we can write the cross section in the form

σ =

e−1(1 + 2λgr)
1
2

(
1 + 1

2λgr

)λgr
 1

αgr

. (9.4)

– 37 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

Figure 3. Above, 2 → n process in which two initial gravitons produce n particles of different
species denoted by different colors. The process saturates unitarity at the species scale ΛUV ∼ MP√

N
.

Below, Alice observing a smallest semi-classical black hole which carries the species hair (denoted
by colors).

This cross section saturates unitarity for,

λgr ' 1.1 . (9.5)

Obviously, the corresponding value of momentum-transfer q = MP√
N

marks the upper bound
on UV-cutoff of the theory. It is clear that this bound is exactly the same as the species
bound (9.1).

We thus learn that the physical meaning of the species scale ΛUV is the following. It
determines the value of momentum-transfer q that brings the gravitational ’t Hooft coupling
to the saturation point (9.5). For this value, the n-particle state becomes a saturon. That is,
it saturates both the entropy bound and unitarity. This saturon has a very clear physical
meaning. It represents a smallest possible semi-classical black hole. Such a black hole
carries a species hair [49]. Notice that the entropy derived due to micro-state degeneracy
of species, exactly matches the Bekenstein entropy of such a black hole.
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10 Outlook

In the present paper we have further explored the ideas about the connection between
entropy and unitarity that were introduced in [1, 2]. The central message is that unitarity
of the scattering amplitudes imposes two universal bounds on the entropy of a quantum
system. Namely, the maximal entropy is given by the area measured in units of a decay
constant f of a relevant Goldstone degree of freedom (1.1). At the same time, the entropy
bound is set by the inverse running coupling α−1 evaluated at the scale of the size of
the object (1.2). These bounds turn out to be more stringent and more general than
Bekenstein’s classic bound (1.3). In particular, they may be violated by the objects that
respect the latter bound. Of course, such systems are eliminated by unitarity. Also, since
these bounds have no explicit reference to the energy, they are applicable to the Euclidean
entities such as instantons for which the Bekenstein bound cannot be defined. On the other
hand, the objects that saturate/respect (1.1) and (1.2) also saturate/respect the Bekenstein
bound (1.3). That is, in a consistent theory all three bounds are saturated simultaneously.
We refer to the objects that reach this point as saturons.

We have seen that the saturation of both bounds (1.1) and (1.2) is mapped on the
saturation of unitarity by 2 → n scattering amplitudes with n = 1

α . This saturation is
non-perturbative. Naturally, such processes are interpreted as the production of a saturon
in two-particle collision.

Now, the saturon is a multi-particle state which is approximately-classical. It therefore
appears to defy the standard field theoretic intuition that a production of a classical object
in a two-particle collision must be exponentially suppressed. We have explained what is
going on in reality. Fist, refining the analysis of [22], we gave a general argument showing
that the transition to each individual final state is indeed exponentially suppressed. This
is in full accordance with the previous studies [15]–[23]. However, in case of a saturon
the suppression is compensated by the exponentially large number of micro-states that
are classically-indistinguishable. In other words, the cross section is enhanced due to the
entropy of the final state. Due to this, with a properly chosen center of mass energy, the
saturon cross section can dominate the scattering process. However, the cross section is
very narrowly peaked at a resonant value of the initial energy. Away from this value the
cross section diminishes exponentially steeply.

Due to the above properties, saturons can play the role in UV-completion by classical-
ization [4], but only if they form a continuous spectrum above certain energy. However, it
is unclear how wide is the range of such theories.

We have observed that consistent theories dynamically resist to violations of the en-
tropy bounds. An especially interesting example is provided by SU(N) gauge theory. It
was already shown in [2] that an isolated instanton saturates the entropy bounds (1.1)
and (1.2) at the critical value of ’t Hooft coupling of order one. We have seen that any
further increase of the running ’t Hooft coupling would violate the entropy bounds. Corre-
spondingly, the scattering amplitudes would violate unitarity. In order to prevent this from
happening, the theory must become confining. This puts the phenomenon of confinement
in a new light. Namely, it appears that in SU(N) with pure glue the confinement represents
a necessary response that avoids the violations of the entropy bounds and unitarity. In
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other words, in order not to violate the entropy bounds (1.1) and (1.2) somewhere in deep
IR, the theory must eliminate the asymptotic colored states. The possible alternatives
would be that the theory either hits an IR fixed point or develops a mass gap via the
Higgs effect. However, none of the two options are feasible in pure glue. Thus, confinement
emerges as a direct consequence of the entropy bounds and unitarity.

Likewise, in [1] it was observed that a baryon saturates the above entropy bounds
when the numbers of flavors and colors are of the same order. At this point the baryon
entropy satisfies the relation (1.4). The violation of the entropy bounds would render
the theory asymptotically non-free. Simultaneously, the multi-pion scattering amplitudes
would violate unitarity.

Next, we have constructed an explicit theory that contains saturons. We deliberately
chose the example that is maximally distant from gravity. In particular, the theory is
renormalizable and not based on any gauge symmetry. The saturons there represent the
vacuum bubbles that house a large number of Goldstone modes in their interior. These
gapless Goldstone excitations create an exponentially large number of the bubble micro-
states. The resulting micro-state entropy saturates the bounds (1.1) and (1.2) for a critical
value of ’t Hooft coupling. At this point, the bubble becomes a saturon.

We have shown that on all counts the bubble saturons behave like black holes. It is also
clear that these properties are universal. They must be shared by saturons in other renoma-
lizable theories. The generalization of the constructions given in [1, 2] and in the present pa-
per is straightforward. In particular, for making contact with decaying black holes, we need
to construct saturons without any net conserved topological charge. The vacuum bubble
saturons discussed in this paper have this property. The construction can easily be general-
ized by creating saturons using pairs of topological or non-topological solitons with opposite
charges that are placed on top of one another. For example, one can pair up baryon-anti-
baryon (skyrmion-anti-skyrmion), monopole-anti-monopole and so on. The annihilation of
topological defect has been studied previously numerically. For example, monopole-anti-
monopole pairs were analysed in [54]. However, to our knowledge, no studies have been
done either for the saturated case or in the limit (7.6). The oscillating lumps of the scalar
fields, the so-called oscillons [50–52],1 can also be used as the building block for constructing
a saturon. However, one has to be careful to stay within the regime of weak coupling α.

A profound question for future studies is whether there are any implications of the
present results for AdS/CFT correspondence [55–57]. Perhaps a natural avenue to go
would be to ask whether AdS can be viewed as a saturated state of some gravitational
degrees of freedom, as it was suggested in [6, 7]. No real progress in this direction has been
achieved so far. Surprisingly, the analogous approach to de Sitter space turned out to be
more straightforward. In particular, the resolution of de Sitter patch in form of a saturated
coherent state of gravitons has been discussed in [33, 34].

Finally, our studies bring us to the point at which the properties of a black hole can be
understood through the prism of a fundamental connection between unitarity and entropy.
We observe that this connection is universal and is shared by saturons irrespective of their
origin. This strongly suggest that black hole is a saturon state of gravitons, as was originally
proposed in [6, 7].

1For implications for dark matter, see ref. [53].
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A Argument from effective S-matrix

We shall now give a fully non-perturbative consistency argument explaining why a properly
resummed matrix element of transition

| few〉 → |many〉 (A.1)

must be exponentially suppressed. This argument is a refined version of the one in [22] and
is based on effective Ŝ-matrix. Consider a process describing a transition between two sorts
of quanta, denoted by a and b respectively. During it, l particles of species b get converted
into n particles of species a. Here, the term species specifies all quantum numbers. For,
example a and b can denote the different momentum modes of the same quantum field, or
some modes of two distinct fields.

We assume that number eigenstates of a and b species represent the legitimate
S-matrix states over the time-scales of interest. Among other things, this implies that
the effective Hamiltonian is approximately diagonal in a and b modes throughout the
transition process. That is, the off-diagonal terms in the Hamiltonian must be subleading
as compared to the diagonal ones during the relevant time-evolution. This is a necessary
condition for having a well-posed transition process. It of course implies that the
underlying field theory stays within the weak-coupling regime throughout the transition.
The theory shall be otherwise unspecified.

We focus on the case when the occupation number n in the final state is much larger
then the analogous number l in the initial state, n

l � 1. As we shall see, in such a case,
the transition matrix element is always exponentially suppressed. This is in accordance
with [21]. Therefore, for simplicity we first take l = 1.

Thus, the initial state is a one-particle state | in〉 = | 1〉b⊗| 0〉a with a single b-quantum
present. Respectively, the final state | f〉 = | 0〉b ⊗ |n〉a is populated with n a-quanta. Of
course, we assume that the transition is kinematically allowed.

Now, consider a fully resummed Ŝ-matrix operator. The term that is responsible for
the above transition has the form

Ŝ1b→na = κ(â†)nb̂ . (A.2)

The form is unique since the operator has to destroy a single particle of species b and create
n particles of species a. Of course, the operator (A.2) is a result of resummation of infinite
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series. The information about this resummation is contained in the coefficient κ. We shall
now argue that by consistency κ is bounded as,

κ . n−
n
2 . (A.3)

This upper bound is universal and independent of the details of underlying field theory. It
may come as a surprise because, naively, all we need to require is that the matrix element
satisfies,

| 〈f | Ŝ1b→na | in〉 |
2 < 1 . (A.4)

The latter requirement would give a much milder bound,

κ <
1√
n!
. (A.5)

However, the correct bound is (A.3). Here is why: in order to have a well-posed scattering
problem, we must demand that the matrix element 〈ψ | Ŝb→na |ψ〉 is small over all the
states |ψ〉 that are physically close to either | in〉 or | f〉. The meaning of this requirement
we shall now explain.

We define the two normalized states | 1〉 and | 2〉 as physically close if they provide
comparable expectation values for a physical observable Ô,

〈1 | Ô | 1〉 ∼ 〈2 | Ô | 2〉 . (A.6)

Under comparable we mean the same order of magnitude. The role of the physical ob-
servable Ô can be played by an arbitrary measurable quantity. We choose it to be the
number operator of a-quanta n̂ ≡ â†â. The reader should feel free to explore other
choices. Then, according to above definition, a state |ψ〉 is physically close if, for ex-
ample, 〈ψ | n̂ |ψ〉 ∼ 〈f | n̂ | f〉. Our criterion is that on any such state |ψ〉 the expectation
value of Ŝb→na must be small. Why?

Here is one way to explain this. Think of the above transition process in terms of time-
evolution in the Hilbert space. Let the state vector at some initial time be | t = 0〉 = | in〉.
After a sufficiently long time t this state evolves into | t〉. The projection of 〈f | | t =∞〉
determines the S-matrix elements. During the time evolution in any given process the state
vector explores only a finite portion of the infinite Hilbert space. With the states populating
this portion, vector | t〉 has a significant overlap. These are states that are physically-close to
| t〉. Our requirement then is equivalent to demanding that on all such states the off-diagonal
part of the effective Hamiltonian must be smaller than the diagonal part. A violation of this
requirement would imply that somewhere in the transition process a and b-modes stop to be
the valid weakly-coupled degrees of freedom. The Hamiltonian then must be re-diagonalized
by a large canonical transformation. This would contradict to our starting point.

Since the state |ψ〉 can be chosen arbitrarily, we take it to be the following coherent
state,

|ψ〉 = e
√
n(â†−â)+(b̂†−b̂) | 0〉 . (A.7)

Obviously, this state satisfies the criterion of the physical closeness since

〈ψ | n̂ |ψ〉 = n = 〈f | n̂ | f〉 . (A.8)
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Therefore, we must require,
| 〈ψ | Ŝ1b→na |ψ〉 |

2 < 1 , (A.9)

which immediately gives (A.3). Taking this into account, we get

| 〈f | Ŝ1b→na | in〉 |
2 < n!n−n ∼ e−n , (A.10)

where in the last step we used Stirling’s approximation. Thus, a transition matrix element,
describing the creation of any n-particle state | f〉 from a one-particle initial state | in〉,
must be exponentially suppressed. This is a non-perturbative result. This conclusion is of
course in full agreement with the previous studies [15]–[23]. However, it makes the origin
of the suppression transparent from very general perspective of S-matrix consistency.

Obviously, the above reasoning can be easily generalized to the case in which the
occupation number of b-particles in the initial state | in〉 = | l〉b ⊗ | 0〉a is larger than one.
As long as the difference between the occupation numbers in initial and final states is large,
n� l, the exponential suppression of the transition matrix element takes place.

We shall now move to the case in which the final particles can belong to several different
species. That is, we allow the operators âj to carry a species label j = 1, 2, . . . , N . This
label can represent an arbitrary quantum number such as “color” or “flavor”. Thus, we are
looking for a transition matrix element between an initial state | in〉 = | 1〉b ⊗ | 0〉a and a

final state | f〉 = | 0〉b ⊗ |n1, n2, . . . nN 〉a, where |n1, n2, . . . nN 〉a =
∏N
j=1

(â†j)
nj

√
nj !
| 0〉a, with∑N

j=1 nj = n. The occupation numbers nj are otherwise unconstrained. That is, the final
state | f〉 houses n-quanta with arbitrary color indexes. Of course, when only one color is
occupied, the story reduces to the case of singe a-species.

Correspondingly, the transition Ŝ-operator now has a form,

Ŝb→na = κ
N∏
j=1

(â†j)
nj b̂ , (A.11)

with the constraint
∑N
j=1 nj = n.

In order to derive an upper bound on the coefficient κ, we shall repeat the previous
reasoning. Namely, we demand a relative smallness of the expectation values of Ŝ over all
the states |ψ〉 that are physically close to | f〉. Again, as a test observable we use the total
number operator of a-species, n̂ ≡

∑N
j=1 â

†
j âj . Correspondingly, for |ψ〉, we use a simple

generalization of the state (A.7) to several species,

|ψ〉 = e
∑N

j=1

√
ñj(â†j−âj) | 0〉 . (A.12)

Here, we have introduced a notation tilde in order to distinguish between the coherent state
parameters ñj and the corresponding number eigenvalues nj . We shall take ñj ∼ nj . Then,

〈ψ | n̂ |ψ〉 =
∑
j

ñj ∼ n = 〈f | n̂ | f〉 , (A.13)

which ensures that the states |ψ〉 and | f〉 are physically close.
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Now, demanding the smallness of the expectation value (A.9) evaluated for the Ŝ-
matrix operator (A.11) over the coherent state (A.12), we conclude that the coefficient κ
must obey,

κ <
N∏
j=1

ñ
−
nj
2

j . (A.14)

We shall now consider the cases of large and small values of nj separately. We must
remember that nj-s are characteristics of the transition process, whereas ñj are parameters
of the probe state |ψ〉. The latter can be chosen at our convenience subject to ñj ∼ nj .

Now, for the case of large nj-s, we can simply take ñj = nj and use Stirling approxi-
mation in (A.14). Then, for the transition matrix element we get,

| 〈f | Ŝ1b→na | in〉 |
2 <

∏
j

nj !n
−nj
j ∼ e−

∑
j
nj = e−n . (A.15)

Regarding the case of nj ∼ 1, it suffices to take ñj slightly larger than nj . For example,
consider the case nj = 1 for all j. Of course, in this case n = N . Taking ñj = enj = e, we
see from (A.14) that the transition matrix element is suppressed as e−n = e−N .

In summary, we arrive to the universal suppression of a transition matrix element,

| 〈many | Ŝ | few〉 |2 . e−(many) . (A.16)

Here many=n denotes the total occupation number in the final state. This result fully
matches the physical intuition which tells us that the creation of classical states in colli-
sions of few quanta must be strongly suppressed. Indeed, the transition | few〉 → |many〉
represents a quantum-to-classical transition. The classicality of the final state is obvious
when the occupation numbers of the individual species, nj , are large. However, the same
is also true when the individual numbers nj are small, as long as the total occupation
number n is large and coupling α is sufficiently weak. The reason is that the species are
only distinguished by the quantum number j that is associated with the weak coupling.

To reiterate, if n is large, the state | f〉 is essentially classical, even if the individual
occupation numbers are minimal, nj = 1. This is because an observer (Alice) needs a very
long time in order to distinguish the individual “colors” of the constituents if their quantum
coupling α is extremely weak, α = 1

N . Indeed, imagine that Alice wishes to distinguish
the state | f〉 with n1 = N,nj 6=1 = 0 from the one with n1 = n2 = . . . = nN = 1. In order
to read-out the color content of the state | f〉, Alice has to initiate an act of interaction
between the individual a-quanta and some color-sensitive external probe. However, the
rate of such interaction is suppressed by powers of α. Correspondingly, the minimal time-
scale required for the measurement per particle is t ∝ 1

α . Thus, the detection of the species
quantum identities demands an investment of a macroscopically-long time-scale. On the
shorter time-scales, the only observable effects are the collective N -particle processes that
are controlled by the ’t Hooft coupling λt = αN . The latter effects do not vanish in the ’t
Hooft’s large-N limit, and therefore, are classically-observable.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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