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1 Introduction

Our vacuum is not a vacant space, and there are full of quantum fluctuations popping
in and out of existence. When the vacuum is exposed to a strong field, those quantum
fluctuations can interact with the field, leading to non-trivial responses of the vacuum. A
prominent example of such a response is pair production of charged particles from the vac-
uum by a strong electric field (for review, see refs. [1–3]). Since the first proposal by Sauter
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in 1931 [4], the vacuum pair production has been under intensive investigation not only as a
fundamental prediction of quantum-field theory but also to understand actual physics pro-
cesses under extreme conditions (e.g., the early-stage dynamics of heavy-ion collisions [5–
11], the vacuum decay induced by a superheavy nucleus [12–16], the magnetogenesis in the
early Universe [17–23], and possibility of prohibition of anisotropic inflation [24]) as well
as some analogous phenomena with different kinds of fields/forces (e.g., the Hawking radi-
ation by a strong gravitational field [25, 26], the dynamical Casimir effect by time-varying
boundaries [27–34], and axion production by a time-dependent condensate [35–37]). The
vacuum pair production has never been verified by experiments yet, as it requires an ex-
tremely strong electric field of the order of eEcr = m2

e ∼
√

1029W/cm2, with me = 511 keV
being electron’s mass (cf. the current world record is eE ∼

√
1022 W/cm2, achieved by

HERCULES laser [38]). Nevertheless, the up-coming intense laser facilities such as Ex-
treme Light Infrastructure (ELI) may reach or go beyond the critical field strength eEcr,
providing the very first opportunity to observe the vacuum pair production in laboratory
experiments [39].

Quantitative features of the vacuum pair production drastically change depending on
the time-dependence of an applied strong electric field [40–43]. If the electric field is fast
(i.e., the typical frequency Ω is large), the field interacts with the vacuum fluctuations
incoherently. That is, the electric field behaves like a dynamical photon γ to produce
particles via perturbative multi-photon processes nγ → e+e−, with n being the number
of photons involved. This is an analog of the photo-absorption effect in materials. The
production number Ne+e− becomes proportional to powers of the coupling constant e as

lim
Ω→∞

Ne+e− ∝ e2n. (1.1)

Note that we have a factor of 2 in the exponent because the production number Ne+e− is
the square of the amplitude ∝ en. On the other hand, for small Ω, the field interacts with
the fluctuations coherently, rather than incoherently, and produces particles via quantum
tunneling. The production number Ne+e− becomes purely non-perturbative with respect
to the coupling constant e as [4, 44, 45]

lim
Ω→0

Ne+e− ∝ e−const.×e−1
. (1.2)

This production mechanism is called the Schwinger mechanism, named after Schwinger
who first derived the exponential formula (1.2) in a fully quantum-field theoretical man-
ner [45], and can be understood as an analog of the electrical breakdown of materials. In
the above, we have implicitly assumed that the applied electric field is dominated by a sin-
gle frequency mode Ω. For a field with several frequency modes Ω1,Ω2, · · · , the production
mechanisms with different frequency modes interfere with each other. The interference
leads to, for example, substantial enhancement in the production number (the dynamically
assisted Schwinger mechanism [46–50]), characteristic momentum signatures in the spec-
trum [51–60, 62], and spin-dependences [58, 61]. Those time-dependent effects are utilized
to “optimize” electromagnetic field profiles, so that the signatures of the vacuum pair pro-
duction become the most manifest in intense laser experiments [63–68]. Thus, getting a
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deeper understanding of the time-dependent effects is important, so as not only to under-
stand actual physics phenomena correctly but also to design a better experimental setup.

The time-dependent effects have been studied with various analytical approaches such
as semi-classical methods (e.g., the worldline instanton method [69–71], the imaginary-time
method [72], and the steepest descent evaluation of the Bogoliubov coefficients by Brezin
and Izykson [40]), the standard perturbative calculation [42], and the perturbation theory
in the Furry picture [55–59, 73]. Those approaches have different regimes of applicability.
For example, the semi-classical methods are justified only in the semi-classical limit, in
which one takes a formal limit of ~� 1, while the standard perturbative calculation covers
the opposite regime ~� 1. The perturbation theory in the Furry picture can be applied to
arbitrary values of ~, but it is valid only if one can clearly separate a given electromagnetic
field into a strong field and perturbations on top of it. It is, therefore, desirable to develop
a novel method for the vacuum pair production in order to get a deeper understanding of
the time-dependent effects and to cover a wider parameter regime for the production.

The purpose of this paper is to use the exact Wentzel-Kramers-Brillouin (WKB) anal-
ysis as a first step toward developing a novel method for the vacuum pair production by a
time-dependent electric field. The exact WKB analysis, which has been developed mainly
in mathematics since the pioneering work by Voros in 1983 [74], is a powerful tool to an-
alyze Stokes phenomena of Schrödinger-type differential equations. We apply the exact
WKB analysis to derive a production number formula, using the fact that the vacuum pair
production can be regarded as a Stokes phenomenon of a given field equation. By clarifying
the generic structure of a Stokes graph for systems with the vacuum pair production, we
show that the production number Ne+e− is given by a product of connection matrices for
Stokes segments connecting pairs of turning points. The connection matrices are then eval-
uated using the semi-classical approximation. We show that our formula gives a systematic
improvement of the divergent asymptotic series method proposed by Berry [75] (see also
Dingle’s book [76]) and agrees with other semi-classical approaches such as the worldline
instanton method [69–71] and Brezin-Izykson’s steepest descent evaluation [40]. We also
use the formula to discuss the time-dependent effects including the interplay between the
perturbative multi-photon pair production and non-perturbative Schwinger mechanism and
their interference effects.

This paper is organized as follows: in section 2, we review the basics of the exact
WKB analysis. Section 3 is the main section of the paper, in which we apply the exact
WKB analysis to formulate the vacuum pair production by a time-dependent electric field.
Section 4 is devoted to summary and discussion. In appendix A, we discuss the Airy
equation by means of the exact WKB analysis. We briefly review other computational
methods for the vacuum pair production such as the standard perturbation theory and
the perturbation theory in the Furry picture in appendices B and C, respectively. We
also present a detailed analysis of a Sauter-type electric field in appendix D and of Stokes
graphs in the dynamically assisted Schwinger mechanism in appendix E.
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2 Preliminaries: exact WKB analysis

To be self-contained, we here review the basics of the exact WKB analysis. The exact
WKB analysis, originally proposed by Voros [74] and developed, e.g., by Pham and his
collaborators [77–80] and by Aoki, Koike, and Takei [81–83], is an extension of the con-
ventional (J)WKB method, proposed independently by Jeffreys, Wentzel, Kramers, and
Brillouin [84–87]. The central idea of the exact WKB analysis is to apply the Borel resum-
mation technique [88–90] to the conventional WKB method, which does not only make the
conventional WKB method mathematically well-defined but also provides a powerful tool
to investigate Stokes phenomena of WKB solutions. The exact WKB analysis can also be
regarded as a generalization and a mathematically rigorous justification of the divergent
asymptotic series method proposed by Berry [75].

The conventional WKB method is a method to analyze differential equations with a
small parameter. To be precise, let us consider a second order differential equation of the
form,

0 =
[
ε2

d2

dt2 +Q(t)
]
φ(t), (2.1)

where t ∈ R is a real variable and ε > 0 is some small parameter (e.g., the Planck constant
~). One may understand that the parameter ε controls fastness/slowness of the potential
Q. Indeed, by introducing τ ≡ t/ε, one can rewrite the differential equation (2.1) as
0 =

[
∂2
τ +Q(ετ)

]
φ. Thus, the potential Q effectively becomes slow and fast in the limit of

ε→ 0 and∞, respectively. The starting point of the WKB method is to make the so-called
WKB ansatz,

φ±(t; ε) ≡ 1√
2Ω(t)

exp
[
∓ i
ε

∫ t

t0
dt′Ω(t′)

]
, (2.2)

where t0 is an arbitrary point on R and the WKB ansatz is normalized as

1 = +iε φ−
↔
∂ tφ+,

0 = +iε φ±
↔
∂ tφ±. (2.3)

Note that φ+ (φ−) describes an out-going (in-coming) wave propagating in the positive
(negative) time direction, and hence we added the subscript ±. By substituting the WKB
ansatz (2.2) into the differential equation (2.1), one obtains an equation for Ω as

0 = Q− Ω2 + ε2
[

3
4

(Ω′

Ω

)2
− 1

2
Ω′′

Ω

]
. (2.4)

Assuming ε� 1, one may expand Ω as

Ω ≡
∞∑
n=0

εnΩn, (2.5)
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with which one may iteratively solve Ωn as

Ω0 = Q1/2,

Ω2 = 5Q′2 − 4QQ′′

32Q5/2 ,

Ω4 = 64Q3Q′′′′ − 448Q2Q′Q′′′ − 304Q2Q′′2 + 1768QQ′2Q′′ − 1105Q′4

2048Q11/2 , · · · , (2.6)

and
Ωn = 0 if n = odd (2.7)

because the differential equation (2.4) does not depend on the sign of ε. Now, it may look
that the series (2.5) gives a “solution” of the differential equation (2.1). Unfortunately, it
turns out that the series (2.5) is not necessarily convergent and therefore is in general ill-
defined. For example, see appendix A, in which we explicitly show that the Airy equation
gives a factorially divergent series. This problem can be resolved by the exact WKB
analysis, as we describe below.

The idea of the exact WKB analysis is to apply the Borel resummation technique
to make the conventional WKB method well-defined. To apply the Borel resummation
technique, we first reexpress the WKB ansatz (2.2) by expanding the exponential factor as

φ±(z; ε) ≡ exp
[
∓ i
ε

∫ z

t0
dz′
√
Q(z′)

] ∞∑
n=0

ψ±,n(z)εn

≡ exp
[
∓ i
ε

∫ z

t0
dz′
√
Q(z′)

]
ψ±(z; ε), (2.8)

where we have used Ω0 =
√
Q and complexified the variable t as t ∈ R → z ∈ C. One

can explicitly compute the series coefficients ψ±,n from the iterative solution Ωn (2.6) and
understands that the series ψ± (2.8) is ill-defined in general because of the non-convergence
of Ω (2.5). Now, we apply the Borel resummation technique to make the series ψ±, or
accordingly φ±, well-defined. Namely, we introduce a Borel transformation ψ̃± as

ψ̃±(z; η) ≡
∞∑
n=0

ψ±,n(z)
n! ηn, (2.9)

which is a well-defined object if the series ψ± is at most factorially divergent, i.e., for any
n there exist some constants A,C such that |ψ±,n| < ACnn!. Then, the theory of the
Borel resummation guarantees that if a Borel sum Ψ± exists (Borel summable), i.e., one
can perform the following Laplace transformation in a well-defined manner,

Ψ±(z; ε) ≡
∫ ∞

0

dη
ε

e−η/εψ̃±(z; η), (2.10)

then
Φ±(z; ε) ≡

[
∓ i
ε

∫ z

t0
dz′
√
Q(z′)

]
Ψ±(z; ε) (2.11)

becomes a well-defined solution of the original equation (2.1) having the asymptotic ex-
pansion (2.8). The Borel sum (2.11) can be analytically continued to arbitrary values of
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ε, while the smallness of ε � 1 is assumed in the conventional WKB method. Note that
Berry [75] assumes some truncation of the series (2.8) and only considers the leading order
factorial divergence of ψ± to compute (a correspondence of) the Borel transformation (2.9),
and then further employs the saddle point method to evaluate the Borel sum (2.10). Such
treatments are unneeded in the exact WKB analysis.

The Borel (non-)summability is determined by the singularity structure of the Borel
transform (2.9) in the η-plane. Since the Borel transform (2.9) is dependent not only on
η but also on the complexified variable z, the singularity structure in the η-plane changes
as z varies in general. To proceed, let us assume for simplicity that (i) the potential Q is
an analytic function on the entire complex z-plane and (ii) its Taylor expansion around a
zero always starts from a linear term as

Q = 0 + c(z − zt) +O(|z − zt|2) (c 6= 0), (2.12)

where zt is a root of the potential such that Q(zt) = 0 and is called a turning point (or,
specifically, a simple turning point because it is of order one) in the language of the exact
WKB analysis. Since the potential Q reduces to the Airy potential QAiry = c(z−zt) around
the turning point z ∼ zt, one can investigate the change of the singularity structure in the
η-plane by analyzing the Airy equation (see appendix A). Mathematically, this procedure
is justified by the so-called WKB-theoretic transformation [81, 82]. It turns out that the
singularity can hit the integration contour of the Laplace transformation (2.10) when z

crosses the so-called Stokes line Czt :

Czt ≡
{
z

∣∣∣∣∣ 0 = Im
[ i
ε

∫ z

zt
dz′
√
Q(z′)

]}
. (2.13)

Therefore, the Borel sum exists unless z is on top of a Stokes line. It should be noted that
we implicitly assumed for the moment that (iii) there are no Stokes lines degenerated with
other Stokes lines emanating from other turning points (such a degenerated Stokes line is
called a Stokes segment), which case shall be discussed later.

The Borel summability is important not only to make the conventional WKB method
well-defined but also to describe Stokes phenomena of WKB solutions. Consider a Borel
sum defined at some point in a Stokes region, which is defined as a region in the z-plane that
is separated from other regions by some Stokes lines. The Borel sum can be analytically
continued to the entire Stokes region, since it does not hit any Stokes line within the
region. However, whenever moving to another Stokes region, z must hit a Stokes line,
at which the integration contour of the Laplace transformation hits singularities in the
η-plane. Then, the Borel sum experiences a sudden jump due to the integration of the
singularity. This is the Stokes phenomenon of WKB solutions. To be precise, let us consider
two Borel sums, say Φ±,I and Φ±,II, defined on two neighboring Stokes regions, I and II,
separated by a Stokes line Czt . For an analytic potential Q having the property (2.12),
one can explicitly evaluate the discontinuity by carrying out the integration around the

– 6 –



J
H
E
P
0
3
(
2
0
2
1
)
0
8
2

corresponding singularity and finds1 [74, 81] (see also appendix A)

(
Φ+,II
Φ−,II

)
=
(

1 ±ie−σzt/ε

0 1

)(
Φ+,I
Φ−,I

)
for i

∫ z∈Czt

zt
dz′
√
Q(z′) < 0

(
Φ+,II
Φ−,II

)
=
(

1 0
±ie+σzt/ε 1

)(
Φ+,I
Φ−,I

)
for i

∫ z∈Czt

zt
dz′
√
Q(z′) > 0

, (2.14)

where we have introduced
σzt ≡ +2i

∫ zt

t0
dz′
√
Q(z′) (2.15)

and one chooses + (−) sign if crossing the Stokes line Czt counter-clockwise (clockwise) with
respect to the turning point when moving from the region I to II. Note that i

∫ z∈Czt
zt

dz′
√
Q ∈

R by definition (2.13) and its sign does not change unless the Stokes line Czt emanating
from zt hits another turning point or a singularity, which are forbidden by the assumptions.
The connection formula (2.14) is the basis to quantify the Stokes phenomenon of WKB
solutions within the exact WKB analysis:

(1) Draw a Stokes graph (i.e., draw turning points and Stokes lines) for a given potential
Q;

(2) Draw a path that connects a WKB solution defined at some Stokes region and another
one defined at a distinct Stokes region; and

(3) The Stokes phenomenon of the two WKB solutions is quantified by successively ap-
plying the connection formula (2.14) whenever the path hits a Stokes line.

Remind that we have assumed the following to justify the above procedures: (i) the po-
tential Q has no singularities in the complex z-plane; (ii) all the turning points are simple
satisfying the condition (2.12); and (iii) there are no Stokes segments. For (i), if the Stokes
regions that the path traverses contain some singularities, the connection formula (2.14)
receives some corrections. Such corrections are important in, e.g., analyses of a Fuchsian
differential equation [83]. Nevertheless, in most physical applications, the potential Q is
obtained by analytically continuing some regular function defined on R and thus Q would
not have singularities near the real axis. Therefore, very roughly speaking, as long as one
considers a path that goes near the real axis (which is actually a convenient choice for the
vacuum pair production; see section 3), singularities of Q sufficiently far from the real axis
might not matter. On the other hand, one should be careful about the assumptions (ii) and
(iii) if the potential Q has some symmetries. For example, potentials having a symmetry

1The exponential factors in eq. (2.14) appear because of the normalization of the WKB ansatz (2.2) and
are modified by changing the lower end of the integration in the ansatz (2.2). For example, if one normalizes
the WKB ansatz around a turning point zt, instead of t0, as φ±(z) ≡ 1√

2Ω(z)
exp
[
∓ i
ε

∫ z
zt

dz′Ω(z′)
]
, one

should replace σzt with unity in eq. (2.14). For a different normalization, one also needs to multiply a
proper normalization matrix in addition to the connection matrix, when computing Stokes constants with
the procedure (3).
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[Q(z)]∗ = Q(z∗) must have a Stokes segment connecting a turning point zt and its conju-
gate z∗t , which is also a turning point (see section 3.3 for a proof). The existence of a Stokes
segment brings some difficulties in the exact WKB analysis. For example, in a case of the
Weber potential QWeber(z) = z2 − c2, there appear the so-called fixed singularities in the
η-plane due to a Stokes segment that connects z = +c and z = −c [74, 77–80, 82, 91, 92].
The fixed singularities do not change the structure on the z-plane and may cover the whole
right-half of the η-plane. This implies that the integration contour of the Laplace transfor-
mation hits the singularities no matter what values of z, i.e., the Borel sum never exists.
Therefore, to apply the exact WKB analysis safely, one needs to avoid the existence of a
Stokes segment. In section 3.4, we consider an infinitesimally small perturbation on top
of a potential Q to break symmetries causing a Stokes segment and derive a connection
formula for a Stokes segment by taking the vanishing limit of the perturbation after safely
applying the above procedures (1)–(3).

3 Exact WKB analysis of the vacuum pair production

We discuss the vacuum pair production on the basis of the exact WKB analysis. We
begin with clarifying our physics setup as well as working assumptions in section 3.1; in
a word, we consider a scalar quantum electrodynamics (QED) in the presence of a time-
dependent electric field. After explaining in section 3.2 that the vacuum pair production
can be understood in terms of a Stokes phenomenon of WKB solutions, we perform the
exact WKB analysis to derive the production number formula in sections 3.3–3.5, which
contain the main results of the present paper. To be specific, we first discuss the generic
structure of a Stokes graph for the vacuum pair production and show the existence of Stokes
segments in section 3.3. In section 3.4, we derive a connection formula for a Stokes segment
by considering an infinitesimally small perturbation and assuming the semi-classical limit,
in which we take a formal limit of ~ � 1. Using the results obtained in sections 3.3
and 3.4, we explicitly derive the production number formula in section 3.5 and discuss the
time-dependent effects including the interplay between the perturbative multi-photon pair
production and the non-perturbative Schwinger mechanism and their interference effects.
In section 3.6, we compare our exact WKB result in the semi-classical limit with the
worldline instanton method [69–71] and Brezin-Izykson’s steepest descent evaluation [40]
and show that they are equivalent up to unimportant prefactors.

3.1 Setup

We consider a scalar QED2 in the presence of a time-dependent and spatially homogeneous
U(1) electric field. The complex scalar field φ in the momentum space satisfies a Klein-

2It is straightforward to extend our exact WKB analysis to the usual spinor QED. Indeed, one can
always reduce the Dirac equation into a Klein-Gordon type second order differential equation, to which our
analysis can be applied directly.
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Gordon equation,

0 =
[
~2∂2

t +m2 + (p− eA(t))2
]
φ(t; p)

≡
[
~2∂2

t +Q(t)
]
φ(t; p), (3.1)

where m > 0,p, e ∈ R, and A are mass, (canonical) momentum, the QED coupling con-
stant, and a U(1) gauge potential for the electric field E ≡ −∂tA in the temporal gauge
A0 = 0, respectively. Note that the U(1) gauge potential A is real-valued on t ∈ R. We
can naturally identify the parameter ε in the exact WKB analysis (2.1) with the Planck
constant ~ in our quantum problem.

We assume that (i) the electric field is switched off at the infinite future and past, i.e.,

lim
|t|→∞

A = const. (3.2)

Note that A(+∞) 6= A(−∞) in general. The assumption (i) shall be used to define particle
states in a well-defined manner (see section 3.2). For simplicity, we also assume that (ii) the
gauge potential A, after analytically continued to the complex z-plane t ∈ R→ z ∈ C, is an
analytic function in the entire complex plane, as we assumed in section 2. To quantitatively
compute the production number of the vacuum pair production (see sections 3.4 and 3.5),
we also consider (iii) the semi-classical limit, in which we neglect higher order terms in ~
appearing in connection matrices by formally taking the limit of ~� 1.

3.2 The vacuum pair production as a Stokes phenomenon

We explain how the vacuum pair production can be understood in terms of a Stokes
phenomenon of WKB solutions. Namely, based on the canonical quantization formalism of
quantum-field theory, we explain that the vacuum pair production is reduced to a scattering
problem and that the production number is quantified by a Bogoliubov transformation that
connects solutions of a field equation at the infinite past and future (see also refs. [11, 93]).

In the standard canonical quantization formalism, one may expand the field operator
φ in terms of an annihilation operator â for a particle and a creation operator b̂† for an
anti-particle as

φ(t; p) = â(p)ϕ+(t; p) + b̂†(p)ϕ−(t; p), (3.3)

where ϕ+ and ϕ− are mode functions for positive and negative energy states, respectively,
satisfying the mode equation (3.1). One may normalize the mode functions ϕ± in the same
manner as the WKB ansatz (2.3) as

1 = +i~ϕ−
↔
∂ tϕ+,

0 = +i~ϕ±
↔
∂ tϕ±. (3.4)

Combining with the mode expansion (3.3), one finds

â = +i~ϕ−
↔
∂ tφ,

b̂† = −i~ϕ+
↔
∂ tφ. (3.5)
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The non-vanishing canonical commutation relations for the creation/annihilation operators
are

δ3(p− p′) = [â(p), â†(p′)] = [b̂(p), b̂†(p′)], (3.6)

and the other commutations are vanishing.
One needs a special care in identifying “positive” and “negative” energy states in the

presence of an external electric field (or a time-dependent potential, in general). Indeed,
the time-translational invariance is explicitly broken while the electric field is being turned
on (which physically means that the field is supplying energy to the system). Thus, energy
is no longer a good quantum number and there is no good quantum number to character-
ize a “particle.” This implies that one can define the notion of a particle in a well-defined
manner only after the electric field is turned off, for which the time-translational invariance
is restored. Suppose that there are asymptotic regions where Q(t) becomes constant (the
electric field is turned off), which we assume to occur at the asymptotic times (3.2) [as-
sumption (i)]. Then, one can naturally identify the positive and negative energy states by
plane waves in these asymptotic regions, which are eigenfunctions of the time-translation
operator (or the energy operator) +i~∂t. However, we need to distinguish two different
boundary conditions, since there are two separate asymptotic regions at t = −∞ and
t = +∞. We, therefore, introduce two separate sets of mode functions ϕ±,as (“as” denotes
“in, out”) as full solutions of the field equation (3.1) satisfying two different boundary
conditions associated to two different asymptotic regions:

0 ≡ lim
t→−∞

ϕ±,in − 1√
2Q1/2

exp
[
∓ i
~

∫ t

t0
dt′Q1/2

] ,
0 ≡ lim

t→+∞

ϕ±,out −
1√

2Q1/2
exp

[
∓ i
~

∫ t

t0
dt′Q1/2

] . (3.7)

One has to distinguish ϕ±,in and ϕ±,out because the plane waves cannot be solutions of the
mode equation (3.1) for |t| <∞, during which the electric field is being turned on, and they
mix up with each other during the time-evolution so that ϕ±,in 6= ϕ±,out. Since we now have
two distinct mode functions, we must distinguish the corresponding annihilation/creation
operators as well. Noting eq. (3.5), it is legitimate to define

âas ≡ +i~ϕ−,as
↔
∂ tφ,

b̂†as ≡ −i~ϕ+,as
↔
∂ tφ. (3.8)

Physically, âas and b̂as correspond to annihilation operators of a particle and an anti-
particle at the corresponding asymptotic times, respectively. Since ϕ±,in 6= ϕ±,out, âin, b̂in 6=
âout, b̂out follows, and the mismatch between âin, b̂in and âout, b̂out is given in terms of that
between ϕ±,in and ϕ±,out. To quantify the mismatch, we notice that ϕ±,in and ϕ±,out
satisfy the same second order differential equation (3.1) and that a second order differential
equation can have only two independent solutions. Therefore, there exists a 2 × 2 matrix
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U ∈ SL(2,C) such that(
ϕ+,out
ϕ−,out

)
= U

(
ϕ+,in
ϕ−,in

)
≡
(
U11 U12
U21 U22

)(
ϕ+,in
ϕ−,in

)
. (3.9)

Note that 1 = detU because ϕ±,in and ϕ±,out satisfy the same normalization condi-
tion (3.4). Plugging this expression into eq. (3.8), we find(

âout
b̂†out

)
= [U−1]T

(
âin
b̂†in

)
=
(
U22 −U21
−U12 U11

)(
âin
b̂†in

)
, (3.10)

which is called a Bogoliubov transformation.
The Bogoliubov transformation (3.10) is the essence to describe the vacuum pair pro-

duction. It is evident from eq. (3.10) that the vacuum states at t = −∞ such that

0 = âin |vac; in〉 = b̂in |vac; in〉 (3.11)

is no longer annihilated by the annihilation operators at t = +∞ as

0 6= âout |vac; in〉 , b̂out |vac; in〉 . (3.12)

This means that particles are produced from the vacuum |vac; in〉, and the production
number reads

d6Ne−

dx3dp3 ≡
1
V

〈vac; in|â†outâout|vac; in〉
〈vac; in|vac; in〉 = 1

(2π~)3 |U21|2,

d6Ne+

dx3dp3 ≡
1
V

〈vac; in|b̂†outb̂out|vac; in〉
〈vac; in|vac; in〉 = 1

(2π~)3 |U12|2, (3.13)

where V is the spatial volume and we have used δ3(p = 0) = V/(2π~)3. Thus, analyzing
the vacuum pair production is equivalent to computing the off-diagonal components of the
Bogoliubov transformation (3.10).

The Bogoliubov transformation (3.10) is nothing but a Stokes phenomenon of WKB
solutions. Indeed, Borel sums defined around t = −∞ and +∞, which we write Φ±,in and
Φ±,out, respectively, give solutions of the mode equation (3.1) that asymptote the planes
waves with t → −∞ and t → +∞. Therefore, the Borel sum Φ±,as surely satisfies the
boundary condition (3.7), and we can identify

Φ±,as = ϕ±,as. (3.14)

In general, the Borel sum Φ±,in cannot be analytically continued to Φ±,out because of a
Stokes phenomenon of WKB solutions. To be precise, consider a path in the complex z-
plane that connects t→ z = −∞ to +∞ traversing n Stokes regions. We label the Stokes
region containing t→ z = −∞ as 1 and successively increase the number 2, 3, · · · as enter-
ing the neighboring regions until reaching n, which is the final region containing z = +∞.
Whenever analytically continuing Φ±,in from a Stokes region i to i+ 1, Φ±,in experiences a
sudden jump, which is quantified by a 2× 2 matrix Ti ∈ SL(2,C) just like eq. (2.14). Note
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that Stokes regions are not necessarily separated by Stokes lines emanating from a simple
turning point in general; a Stokes line emanating from a turning point of order more than
one or a pole, or a Stokes segment can separate Stokes regions as well. In such cases, the
connection matrix Ti cannot be identified with eq. (2.14). As we discuss later, the Stokes
regions 1, 2, · · · , n are, indeed, separated by Stokes segments in the case of the vacuum pair
production [or potentials Q having a property [Q(z)]∗ = Q(z∗) in general]. For the mo-
ment, we do not have to specify the explicit form of Ti, but an important point here is that
one may symbolically express the relationship between Φ±,in and Φ±,out in terms of Ti as(

Φ+,out
Φ−,out

)
= TnTn−1 · · ·T2T1

(
Φ+,in
Φ−,in

)
. (3.15)

Comparing this expression with eq. (3.9), we find

U = TnTn−1 · · ·T2T1. (3.16)

Thus, evaluating the off-diagonal components of the Bogoliubov transformation (3.10) is
reduced to evaluating the product of the connection matrices Ti’s. Note that eq. (3.16) is
an exact relation for exact Ti’s. Approximation enters only when one approximates Ti’s.

Before closing this subsection, we comment on the relationship between our use of
the exact WKB analysis and another common use of it, i.e., application to bound-state
problems to get exact quantization conditions (e.g., ref. [94]). In this work, we apply the
exact WKB analysis to a scattering problem of quantum fields, i.e., to investigate how
the behavior of a wave function changes between t = −∞ and t = +∞, and the change
is described in terms of the Bogoliubov transformation (3.9). In scattering problems,
the magnitude of the Borel sums Φ±,as (or the mode functions ϕ±,as) is always bounded
|Φ±,as| < ∞ because the potential is positive definite Q(t ∈ R) > 0, and accordingly
the system never gets quantized. On the other hand, the exact WKB analysis has also
been applied to bound-state problems in quantum mechanical systems. In bound-state
problems, the potential Q is a function of space x, instead of time t. A crucial difference
is that the potential Q takes negative values at the asymptotic points x = ±∞ in bound-
state problems. Thus, either of the Borel sums Φ+ and Φ− diverges exponentially at
x = ±∞. So as to have a normalizable wave function, the divergent Borel sum at the
asymptotic points x = ±∞ must be vanishing. The Borel sums at the asymptotic points
x = ±∞ are related with each other by a Bogoliubov transformation as in the case of our
scattering problem, and hence the normalization condition requires some conditions onto
the Bogoliubov transformation, which eventually give exact quantization conditions of a
given quantum mechanical system. During the above procedures in bound-state problems,
the exact WKB analysis is applied to get the Bogoliubov transformation. This is completely
the same usage as in our scattering problem. Nonetheless, our analyses presented below
cannot be applied directly to bound-state problems. For example, the generic properties
of Stokes graphs that we shall discuss in section 3.3 [in particular, the properties (4) and
(5), which assume Q > 0] should be modified by the property Q < 0. Accordingly, our
path (see figure 1) to compute the Bogoliubov transformation is not necessarily suitable
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in bound-state problems. It is an interesting topic to extend our analyses to bound-state
problems, and we leave it as a future work.

3.3 Generic properties of Stokes graph

As the first step toward the exact WKB analysis of the vacuum pair production, let us
discuss some generic properties of a Stokes graph for the potential Q (3.1):

(1) The Stokes graph is symmetric in the upper and lower half complex planes, i.e.,
symmetric with respect to Im z ↔ −Im z.

Proof. Since Q is a real-valued function on the real axis, the Schwarz reflection
principle guarantees [Q(z)]∗ = Q(z∗). Therefore, if zt is a turning point, z∗t is also a
turning point because 0 = Q(zt)⇒ 0 = [Q(zt)]∗ = Q(z∗t ). Similarly, if a point z is on
a Stokes line Czt , z∗ must be on a Stokes line Cz∗t because 0 = Im

[
i
∫ z
zt

dz′
√
Q(z′)

]
⇒

0 = Im
[(

i
∫ z
zt

dz′
√
Q(z′)

)∗]
= −Im

[
i
∫ z∗
z∗t

dz′
√
Q(z′)

]
.

(2) Let zt be a turning point of the potential Q. The turning point zt is of order one if
0 6= (p− eA(zt)) · eE(zt).

Proof. Around a turning point z ∼ zt, the potential Q behaves as

lim
z→zt

Q(z) = 2 (p− eA(zt)) · eE(zt)× (z − zt), (3.17)

which proves the statement.

(3) A turning point zt and its conjugate z∗t are always connected by a Stokes segment.

Proof. It is sufficient to show 0 = Im[+i
∫ z∗t
zt

√
Qdz]. By using [Q(z)]∗ = Q(z∗), one

finds [+i
∫ z∗t
zt

√
Qdz]∗ = +i

∫ z∗t
zt

√
Qdz. Therefore, Im[+i

∫ z∗t
zt

√
Qdz] = 0.

(4) The Stokes segment connecting a pair of zt and z∗t crosses the real axis only once.

Proof. A Stokes segment connecting zt and z∗t should cross the real axis because of
the topology. Namely, in order to connect two points having opposite signs of the
imaginary parts Im zt = −Im z∗t via a continuous line, the line must cross Im z = 0
because of the intermediate value theorem. This proves the first half of the statement.
To prove the second half, suppose that there are two (or more) crossings t1, t2 ∈ R
between the Stokes segment and the real axis. One can assume t1 6= t2 because Stokes
lines cannot cross each other except at a turning point, which is absent on the real
axis since Q(t ∈ R) ≥ m > 0, or at a singularity, which is assumed to be absent by
the assumption (ii). Then, 0 = Im[i

∫ t2
t1

√
Qdz] follows from the definition of a Stokes

line 0 = Im[i
∫ t1
zt

√
Qdz] = Im[i

∫ t2
zt

√
Qdz] under the assumption (ii). However, Q ∈ R

on the real axis, and thus 0 6= Im[i
∫ t2
t1

√
Qdz], which contradicts with the above.

Therefore, the Stokes segment can cross the real axis only once.

(5) Stokes lines/segments emanating from a turning point zt, other than the Stokes
segment connecting zt and z∗t , cannot cross the real axis.
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Im z

Re z

Φ±,outΦ±,in

. . . . . .Region 1 2 3 n-2 n-1 n

T1 T2 T3 Tn-2 Tn-1 Tn

zt,1

zt,2

zt,3
zt,n -2

zt,n -1

zt,n

zt,1
*

zt,2
*

zt,3
*

zt,n -2
*

zt,n -1
*

zt,n
*

Figure 1. (color online) Generic structure of a Stokes graph for the potential Q (3.1). The red
points, the blue lines, and the green wavy lines are representing turning points, Stokes lines, and
branch cuts, respectively. Stokes segments connecting a pair of (zt,i, z

∗
t,i) are represented by the

doubled blue lines. The orange arrow represents the path we consider to compute the Bogoliubov
transformation between Φ±,in and Φ±,out. Note that the Stokes segments are depicted by straight
lines. This is just for simplification, and a Stokes segment is not necessarily a straight line in general.
Also, there could exist other Stokes segments connecting pairs on either half of the complex z-plane
(zt,i, zt,j) or (z∗t,i, z

∗
t,j). Those Stokes segments do not cross the real axis directly (see also footnote 3

for appearance of multiply degenerated Stokes lines) and thus are omitted here for simplicity.

Proof. The proof is the same as that for the property (4). Suppose there are two
(or more) Stokes lines/segments emanating from the same turning point zt crossing
the real axis at, say, t1, t2 ∈ R. Then, one gets 0 = Im[i

∫ t2
t1

√
Qdz], which is a con-

tradiction. Therefore, only one Stokes line, which is nothing but the Stokes segment
connecting zt and z∗t , can cross the real axis.

Summarizing the above properties (1)–(5), a Stokes graph for the potential Q (3.1)
should generically look like figure 1. In figure 1, we have considered p such that 0 6=
(p− eA(zt)) · eE(zt), so that any turning points zt,i’s become of order one [property (2)].
In general, three Stokes lines emanate from a simple turning point. Indeed, the integration
of eq. (3.17) yields

+ i
∫ z

zt

√
Q(z′)dz′ z∼zt−−−→ 2i

3

√
2 (p− eA(zt)) · eE(zt)(z − zt)3/2, (3.18)

and thus Stokes lines around z ∼ zt are emanating in directions

arg(z − zt) = 2πk
3 − 2

3 arg 2i
3

√
2 (p− eA(zt)) · eE(zt), (3.19)

where k is an integer. The integral (3.18) is a multi-valued function around a turning point.
Accordingly, we inserted cuts for each turning point in such a way that the cuts do not
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Im z

Re z

Q

zt

zt
*

region L region R

Φ±,L Φ±,R

Q(+)

Φ±,L
(+)

Φ±,R
(+)

Q(-)

Φ±,L
(-)

Φ±,R
(-)

Figure 2. (color online) De-degeneration of a Stokes segment Czt;z∗t by the perturbations Q →
Q(±) (3.21). Turning points, Stokes lines, and branch cuts are represented by the red points, blue
lines, and green wavy lines, respectively. The Stokes segment Czt;z∗t is represented by a doubled
blue line in the left most panel.

traverse the real axis. Then, one understands that k can take three values when restricted
in one Riemann sheet, and only one out of the three values corresponds to the Stokes
segment that connects zt and its conjugate z∗t . Below, we concentrate on a Riemann sheet
such that

√
Q > 0 on the real axis. Note that one may insert a cut in other directions,

which does not alter our final results if one takes an appropriate path for the new cut. Also,
one may play with the exact WKB analysis for p such that 0 = (p− eA(zt)) · eE(zt) by
first considering some perturbation onto p→ p + δp, for which 0 6= (p− eA(zt)) · eE(zt),
and then taking δp→ 0.

In order to compute the Bogoliubov transformation (3.10) based on the exact WKB
formula (3.16), we consider a path from z = −∞ to +∞ just along the real axis as shown in
figure 1, so as to avoid the branch cuts located away from the real axis. The path crosses all
the Stokes segments that connect pairs of turning points zt,i and z∗t,i, while it does not cross
any other Stokes lines because they never traverse the real axis [properties (4) and (5)].
As explained in the previous subsections, the Borel sum Φ±,in experiences a sudden jump
whenever it crosses the Stokes segments. The jump is quantified by connection matrices
Ti’s, whose explicit form in the semi-classical limit is obtained in the next subsection.

3.4 Connection formula at a Stokes segment

We derive the connection matrix T for a Stokes segment connecting a pair of turning points
zt and z∗t , assuming the semi-classical limit. In the exact WKB analysis, the existence of a
Stokes segment can spoil the Borel summability even inside of a Stokes region. To circum-
vent this difficulty, let us recall that the existence of a Stokes segment is closely related to
symmetries of the potential [e.g, [Q(z)]∗ = Q(z∗); see the proof for the property (3)]. This
fact temps us to consider some perturbations Q→ Q+δQ to break the symmetries, so as to
de-degenerate a Stokes segment into some Stokes lines. Then, one can safely apply the exact
WKB analysis and expects that the correct connection matrix T is reproduced by taking a
vanishing limit of the perturbations after completing the procedures (1)–(3). We show that
this prescription works in the semi-classical limit and write down an explicit form of T .
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To be specific, let us consider a Stokes segment Czt;z∗t into which two Stokes lines, Czt
and Cz∗t , emanating from a pair of turning points, zt and z∗t , are degenerated.3 Without
loss of generality, we can set Im zt > 0. Note that Im zt = 0 is forbidden because Q > 0 on
the real axis. Now, consider an infinitesimally small perturbation,4

Q(z)→ Q(±)(z) ≡ Q(ze±iδ) with δ → 0+, (3.21)

and denote the corresponding Borel sum as

Φ± → Φ(±)
± . (3.22)

One may interpret the perturbation (3.21) as the iε-prescription in quantum-field theory.
The perturbation Q→ Q(±) shifts (the real part of) the turning points zt, z

∗
t as

Re zt → Re
[
zt × e∓iδ

]
∼ Re zt ± 0+ × Im zt,

Re z∗t → Re
[
z∗t × e∓iδ

]
∼ Re zt ∓ 0+ × Im zt (3.23)

because 0 = Q(zt)⇔ 0 = Q(±)(zt × e∓iδ). Equation (3.23) implies that the turning points
zt and z∗t are shifted to the right (left) and left (right), respectively, in the complex z-plane
by the perturbation Q → Q(+) (Q → Q(−)); see figure 2. The shift of the turning points
zt and z∗t also shifts the Stokes lines Czt and Cz∗t , which in turn de-degenerate the Stokes
segment Czt;z∗t as shown in figure 2. The two Stokes lines de-degenerated from the Stokes
segment should have the following property:

sgn
[
+i
∫ z∈Czt

zt

√
Q(z′)dz′

]
= −sgn

[
+i
∫ z∈Cz∗t

z∗t

√
Q(z′)dz′

]
> 0. (3.24)

3One can extend the discussions/results presented in this subsection to more generic situations where
more than two Stokes lines are degenerated. A Stokes segment connecting a pair of turning points zt,i and
z∗t,i becomes multiply degenerated when, for example, z(∗)

t,i forms a Stokes segment with a turning point on
the same half of the complex z-plane z(∗)

t,i′ (i
′ 6= i). Suppose we have such a multiply degenerated Stokes

segment, into which 2n Stokes lines emanating from zt,i and z∗t,i’s (i = 1, · · · , n) are degenerated [note
that if a Stokes line Czt,i is degenerated with other Stokes lines, its complex pair Cz∗t,i

must be degenerated
because of the property (1)]. Repeating the same argument, one can generalize the connection matrix for
a doubly degenerated Stokes segment (3.29) as

T (±) ∼
(

1 −i
∑n

i=1 e−i Imσzt,i
/~e−Szt,i

/~

+i
∑n

i=1 e+i Imσzt,i
/~e−Szt,i

/~ 1

)
δ→0−−−→ T. (3.20)

where we have dropped e−(Szt,i
+Szt,i′

)/~ contributions by virtue of the semi-classical approximation. Just
for the sake of simplicity, we implicitly assume in the main text that all the Stokes segments are doubly
degenerated and simply use the connection matrix (3.29), instead of the generalized one (3.20). One can
carry out the same analysis for multiply degenerated Stokes segments in the following and can show that
our main result for the production number (3.33) is unchanged.

4In principle, one can consider any perturbation here, as long as it breaks the symmetry [Q(z)]∗ 6= Q(z∗)
so that Stokes segments are de-degenerated, and it gives the same result in the semi-classical limit. Note that
one may formally deform the Planck constant ~→ ~e±i0+

to break the symmetry, though it is equivalent to
our perturbation (3.21). This is because, as we mentioned below eq. (2.1), changing values of ~ is equivalent
to that of the argument of the potential Q. Indeed, the Klein-Gordon operator ~2∂2

z +Q(z) is transformed
under the deformation ~→ ~e±i0+

as ~2∂2
z +Q(z)→ (~e±i0+

)2∂2
z +Q(z) = ~2∂2

ξ +Q(±)(ξ) with ξ ≡ ze∓i0+
,

which is nothing but the perturbation (3.21).
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As a proof of eq. (3.24), we first notice that the de-degenerated Stokes line Czt (Cz∗t ) crosses
the real axis only once, which is a reminiscence of the property (4), and is heading to the
lower (upper) half plane at the crossing because Im zt > 0. Thus, by noticing

√
Q > 0

on the real axis, one understands that dz ∝ −i[
√
Q]∗ ∝ −i (dz ∝ +i[

√
Q]∗ ∝ +i) at

the crossing. On the other hand, the integrals in eq. (3.24) monotonically increase or
decrease as z varies from their initial point to the end. This is because if they suddenly
start decreasing/increasing at some point z̄ on the corresponding Stokes line while they
were increasing/decreasing until that point, z̄ must be a singularity or another turning
point, which is assumed to be absent. Therefore, the integral along Czt (Cz∗t ) is increasing
+i
√
Qdz > 0 (decreasing +i

√
Qdz < 0) as z varies. This proves eq. (3.24), as the integrals

are vanishing at the initial points. Now, we consider a path that crosses the de-degenerated
Stokes lines from the left to right in the complex z-plane (see figure 2). The path first crosses
the Stokes line Cz∗t (Czt) in the clockwise (counter-clockwise) direction around the turning
point, and then crosses Czt (Cz∗t ) in the counter-clockwise (clockwise) direction for Q(+)

(Q(−)). Therefore, by successively using the connection formula (2.14), one gets

Φ(+)
+,R

Φ(+)
−,R

 =
(

1 0
+ie+σzt/~ 1

)(
1 −ie−σz∗t /~

0 1

)Φ(+)
+,L

Φ(+)
−,L


Φ(−)

+,R
Φ(−)
−,R

 =
(

1 −ie−σz∗t /~

0 1

)(
1 0

+ie+σzt/~ 1

)Φ(−)
+,L

Φ(−)
−,L


⇔

Φ(±)
+,R

Φ(±)
−,R

 = T (±)

Φ(±)
+,L

Φ(±)
−,L

 ,

(3.25)
where Φ(−)

±,R/L denotes the Borel sum defined at the right/left Stokes region with respect
to the de-degenerated Stokes lines (see figure 2) and

T (±) ≡


1 + e−2Szt/~

2 ∓ e−2Szt/~

2 −i e−i Imσzt/~e−Szt/~

+i e+i Imσzt/~e−Szt/~ 1 + e−2Szt/~

2 ± e−2Szt/~

2

 , (3.26)

with

Szt ≡ −Reσzt

= +i
∫ z∗t

zt

√
Q(z′)dz′ > 0, (3.27)

where we have used the assumption (ii) that there are no singularities in the complex
z-plane to get the second line, and the positivity of Szt follows from eq. (3.24). Equa-
tion (3.26) indicates that

lim
δ→0

[T (+) − T (−)] 6= 0 (3.28)

because of the diagonal components. It means that one cannot obtain T in the naive δ → 0
limit5 of T (±). Nevertheless, if one neglects the exponentially small factors O(e−2Szt/~) in

5This can be understood as another type of Stokes phenomena that is induced by a Stokes segment.
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the diagonal components, which are negligible compared to the off-diagonal ones in the
semi-classical limit, the limit δ → 0 becomes well-defined and one may obtain T as

T (±) ∼
(

1 −i e−i Imσzt/~e−Szt/~

+i e+i Imσzt/~e−Szt/~ 1

)
δ→0−−−→ T. (3.29)

Below, we use this approximate connection matrix (3.29) to derive the production number
formula for the vacuum pair production.

3.5 Production number formula in the semi-classical limit

We derive the production number formula within the exact WKB analysis in the semi-
classical limit (which we shall call semi-classical exact WKB analysis for brevity). Let zt,i
(i = 1, 2, · · · , n) be the i-th turning point in the upper half plane such that Im zt,i > 0 and
Re zt,1 ≤ Re zt,2 ≤ · · · ≤ Re zt,n (see figure 1). One may identify Ti’s in eq. (3.16) as the
connection matrices for the Stokes segments emanating from the above zt,i’s. To proceed,
we decompose eq. (3.29) as

T = I2 +
(

0 −i e−i Imσzt/~e−Szt/~

+i e+i Imσzt/~e−Szt/~ 0

)
+O(e−2Szt,i/~)

≡ I2 + δT +O(e−2Szt,i/~), (3.30)

where I2 is a 2× 2 unit matrix. Plugging this expression (3.30) into eq. (3.16), we obtain

U =
[
I2 +δTn+O(e−2Szt,n/~)

][
I2 +δTn−1 +O(e−2Szt,n−1/~)

]
· · ·
[
I2 +δT1 +O(e−2Szt,1/~)

]
= I2 +

n∑
i=1

δTi+O(e−(Szt,i+Szt,i′ )/~), (3.31)

where we have used ‖δT‖ = O(e−Szt/~) and neglected terms of the order of
O(e−(Szt,i+Szt,i′ )/~), so as to be consistent with the semi-classical approximation that we
used in eq. (3.29). The off-diagonal components read

U12 = U∗21 = −i
n∑
i=1

e−i Imσzt,i/~e−Szt,i/~ +O(e−(Szt,i+Szt,i′ )/~). (3.32)

Therefore, the phase-space density of the produced particles (3.13) reads

d6Ne−

dx3dp3 = d6Ne+

dx3dp3 = 1
(2π~)3

∣∣∣∣∣
n∑
i=1

e−i Imσzt,i/~e−Szt,i/~
∣∣∣∣∣
2 (

1 +O(e−Szt,i/~)
)
. (3.33)

The same amount of particles and anti-particles are produced, indicating that a particle
and an anti-particle are always created as a pair because of the gauge invariance. The pro-
duction number (3.33) is basically controlled by the exponentially small factor e−Szt,i/~, and

Namely, the normalization of the Borel sums Φ(+)
± and Φ(−)

± becomes discontinuous at δ = 0, which leads to
the discontinuity in the connection matrices T (+) and T (−). In general, the discontinuity can be quantified
by the so-called Voros symbol and is studied well for the Weber potential QWeber = z2−c2; see, for example,
refs. [74, 77–80, 82, 91, 92].
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a pair of turning points having the smallest Szt,i dominates the production. When there are
several pairs of turning points equally contributing to the production, those turning points
interfere with each other because of the factor e−i Imσzt,i/~. This point was missing in the
naive imaginary time formalism developed by Popov [72] and was first clarified by Dumlu
and Dunne [60, 62], who demonstrated that the interference is responsible for the charac-
teristic momentum signatures observed in field profiles with subcycle structures [51–59].

Equation (3.33) agrees with other semi-classical methods such as the steepest descent
evaluation of the Bogoilubov coefficients by Brezin and Izykson [40] and the worldline
instaton method [69–71], as we discuss in detail in section 3.6. The same formula was also
used in particle production with other types of an external field in, e.g., refs. [95, 96], whose
derivation is based on Berry’s divergent asymptotic series method [75].

3.5.1 Interplay between the non-perturbative Schwinger mechanism and the
perturbative multi-photon pair production process

The semi-classical exact WKB formula (3.33) describes the interplay between the non-
perturbative Schwinger mechanism for a slow electric field and the perturbative multi-
photon pair production process for a fast electric field. From a view point of the exact
WKB analysis, the interplay can be understood in terms of the change of the location of
dominant turning points. We also confirm that the formula (3.33) is valid in the semi-
classical regime and cannot describe processes beyond that regime such as the low-order
pair production processes (e.g., one-photon pair production).

To see those points in an analytical manner, let us assume that the electric field has a
typical frequency Ω > 0 (without assuming some specific field profile). Then, the Fourier
transformation of the electric field eE ,

eE(t) ≡
∫ +∞

−∞

dω
2π e+iωteE(ω), (3.34)

may be peaked sharply at ω ∼ ±Ω. Using eE , one may approximate the gauge potential
eA as

eA(t) =
∫ +∞

−∞

dω
2π

e+iωt

−iω eE(ω)

∼ e+iΩt

−i~Ω

∫
ω∼+Ω

dω
2π ~eE(ω) + e−iΩt

+i~Ω

∫
ω∼−Ω

dω
2π ~eE(ω)

= e+iΩt

−i~Ω
~eĒ

2 + e−iΩt

+i~Ω
~eĒ∗

2 , (3.35)

where
eĒ

2 ≡
∫
ω∼+Ω

dω
2π eE(ω) (3.36)

characterizes the typical electric field strength [for example, a monochromatic electric field
eE = eE0 cos(Ωt) gives eĒ = eE0]. Then, the potential Q in the complex z-plane reads

Q(z) ∼ m2 +
(

p + e+iΩz

+i~Ω
~eĒ

2 + e−iΩz

−i~Ω
~eĒ∗

2

)2

. (3.37)
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For small ~Ω, one may expand the exponentials in eq. (3.37) as

Q ∼ m2 +
(
P + Re eĒ × z

)2
, (3.38)

where
P ≡ p− eA(0) ∼ p + 1

~ΩIm ~eĒ (3.39)

is kinetic momentum (at time t = 0). We neglected O(|Ωz|2)-terms, which is justified if
γ . 1, with

γ ≡ m~Ω∣∣∣Re ~eĒ
∣∣∣ (3.40)

being the so-called Keldysh parameter [40–43]. Indeed, eq. (3.38) has only a single pair of
turning points zt and z∗t given by

zt ∼
−P‖ + i

√
m2 + |P⊥|2∣∣∣Re eĒ

∣∣∣ , (3.41)

where P‖ and P⊥ denote kinetic momenta parallel and perpendicular to the electric field
eĒ, respectively. Thus, |Ωz|2 � 1 is guaranteed along the integration contour of Szt (3.27),
i.e., z : zt → z∗t , as long as 1 � |Ωzt| ∼ γ is satisfied. Now, using eqs. (3.38) and (3.41),
one can explicitly evaluate Szt (3.27) as

Szt ∼
π

2
m2 + |P⊥|2∣∣∣Re eĒ

∣∣∣ , (3.42)

where we have used 2
∫

dz
√

1 + z2 = z
√

1 + z2 + ln
[
z +
√

1 + z2
]
. Therefore, the semi-

classical exact WKB formula (3.33) yields

d6Ne±

dx3dp3 ∼
1

(2π~)3 exp

−πm2 + |P⊥|2∣∣∣Re ~eĒ
∣∣∣
 , (3.43)

which precisely agrees with Schwinger’s result for a constant electric field [45]. On the
other hand, for large ~Ω such that γ & 1, one may approximate Q (3.37) by expanding the
square as

Q ∼ m2 + p2 + e+iΩz

+i~Ω
(
p · ~eĒ

)
+ e−iΩz

−i~Ω
(
p · ~eĒ

)∗
. (3.44)

The corresponding turning points zt and z∗t read

zt ∼
1
−iΩln+i~Ω(m2 + p2)(

p · ~eĒ
)∗ . (3.45)

Then, we can explicitly evaluate Szt (3.27) as

Szt ∼ i
∫ z∗t

zt
dz
√
m2 + p2 ∼ 2

√
m2 + p2

Ω ln
∣∣∣∣∣~Ω(m2 + p2)

p · ~eĒ

∣∣∣∣∣ . (3.46)
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Standard perturbation theory (LO)
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Figure 3. (color online) The production number Ne− for the Sauter electric field (3.48) with
parameters |p⊥|/m = 0, p‖/m = 0.20, and ~eE0/m

2 = 0.25. The black line shows the exact
result (D.5), and colored lines show different theoretical predictions: the semi-classical exact WKB
formula [eq. (3.33) or (D.11)] (long dashed blue line), the lowest order standard perturbation theory
[eq. (B.10) or (D.14)] (short dashed red line), and the Schwinger formula for a constant electric
field (3.43) (green line). The background shading distinguishes values of γ = m~ω

~eE0
(i.e., the Keldysh

parameter) and ν = (~Ω)2

~eE0
.

Therefore,

d6Ne±

dx3dp3 ∼
1

(2π~)3

∣∣∣∣∣ p · ~eĒ
~Ω(m2 + p2)

∣∣∣∣∣
2 2
√
m2+p2
~Ω

, (3.47)

which describes the multi-photon pair production involving n = 2
√
m2 + p2/~Ω� 1 pho-

tons. Equation (3.47) also indicatess that the low-order perturbative processes such as the
one-photon pair production (see appendix B) cannot be described within the semi-classical
approximation, for which higher order corrections O(e−2Szt/~) must be taken into account.
Note that the scalar QED is a derivatively coupled theory, so that Ne± ∼ 0 for p ∼ 0.

We demonstrate the interplay and validity of the semi-classical exact WKB for-
mula (3.33) by considering, as an example, the so-called Sauter electric field [4, 42],

E(t) = E0
[cosh(Ωt)]2 × e‖. (3.48)

An advantage of this field configuration is that one can derive an exact formula for the
production number by analytically solving the mode equation (3.1). The exact result, in
comparison with the formula (3.33) and the standard perturbation theory at the lowest
order (see appendix B), is shown in figure 3 (see appendix D for more details such as
the derivation of the analytical formulas and the Stokes graph). Qualitative features of
figure 3 can be understood in terms of two dimensionless parameters [42], i.e., the Keldysh
parameter γ (3.40) and

ν ≡ (~Ω)2

~eE0
. (3.49)
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For small ~Ω, where the semi-classical approximation is justified, the formula (3.33) and
the semi-classical exact WKB result coincide. Both results agree with the Schwinger for-
mula for a constant electric field (3.43) at around ~Ω ∼ 0 (or γ . 1, ν . 1) and deviate
from it with increasing ~Ω (or γ & 1, ν . 1), implying that the production mechanism
becomes dominated by the perturbative multi-photon pair production process. For larger
values of ~Ω (such that γ & 1, ν & 1), the semi-classical approximation is invalid. In
such a parameter region, the low-order perturbative processes such as the one-photon pair
production process dominate the production, and the standard perturbation theory works
better than the semi-classical approaches.

3.5.2 The dynamically assisted Schwinger mechanism

The production number can be enhanced significantly if one superimposes a weak
fast electric field onto a strong slow electric field (the dynamically assisted Schwinger
mechanism [46–50]), which is an analog of the Franz-Keldysh effect in semi-conductor
physics [57, 97–100]. The semi-classical exact WKB formula (3.33) gives a good descrip-
tion of this mechanism in the semi-classical parameter regime.

To get an analytical understanding of the above mechanism within the semi-classical
exact WKB formula (3.33), let us assume that the strong slow electric field is sufficiently
slow and treat it as a constant field. For simplicity, we also assume that the strong and weak
fields are pointing in the same direction ∝ e‖. The gauge potential may be expressed as

A(t) = −
(
Est+ ε

∫ t

0
dt′Ew(t′)

)
× e‖ ⇒ E(t) = (Es + εEw(t))× e‖, (3.50)

where we normalized e‖ as |e‖|2 = 1 and set eEs > 0 and A(0) = 0 without losing generality.
eEs and eEw (such that |eEw| � eEs) denote the strength of the strong and weak fields,
respectively. ε is a book-keeping parameter, inserted so as to make sure the weakness of
the weak field. Now that eEw is weak, one speculates that the location of a turning point
may not change significantly from that for the strong constant electric field alone eEs:

zt = z
(0)
t +O(ε), (3.51)

where z(0)
t is the turning point (in the upper complex half plane) for eEs,

z
(0)
t =

−p‖ + i
√
m2 + p2

⊥

eEs
. (3.52)

Note that one needs to replace p‖,p⊥ with P‖,P⊥ as in eq. (3.39) if A(0) 6= 0. Using
eq. (3.39), we can compute Szt in eq. (3.27) up to the lowest order in ε as

Szt = π

2
m2 + |p⊥|2

eEs
− iε

∫ z
(0)∗
t

z
(0)
t

dz
√
m2 + p2

⊥ +
(
p‖ + eEsz

)2 eEw(z)
eEs

+O(ε2)

= π

2
m2 + |p⊥|2

eEs

1− ε

π

∫ +∞

−∞
dω e−i

~ωp‖
~eEs

I1

(
~ω
√
m2+|p⊥|2
~eEs

)
~ω
√
m2+|p⊥|2
~eEs

eEw(ω)
eEs

+O(ε2)

 , (3.53)
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where Ew ≡
∫+∞
−∞

dω
2π e+iωtEw(ω) and we used

∫+1
−1 dz

√
1− z2e+ωz = πI1(ω)/ω, with I1

being the Bessel function of the first kind. Equation (3.53) gives a faithful description
as long as the semi-classical approximation is valid and eq. (3.51) is satisfied, i.e., the
weak electric field Ew is weak enough that the deviation zt − z(0)

t is controlled well only
by the book-keeping parameter ε. To get a better understanding of eq. (3.53), it may be
instructive to expand the Bessel function I1 in terms of ~ω as

Szt = π

2
m2 + |p⊥|2

eEs
(3.54)

×
[
1− ε

2π

∫ +∞

−∞
dω e−i

~ωp‖
~eEs

eEw(ω)
eEs

(
1+ γ̃2

8 +O(γ̃4)
)

+O(ε2)
]

= π

2
m2 + |p⊥|2

eEs

×
[
1−ε

(
eEw(−~p‖/~eEs)

eEs
− 1

8
m2 + |p⊥|2

|~eEs|2
~2eE′′w(−~p‖/~eEs)

eEs
+O(γ̃4)

)
+O(ε2)

]
,

where we have used I1(x)/x = 1
2

(
1 + x2

8 +O(x4)
)
and introduced the so-called combined

Keldysh parameter [46]

γ̃ ≡
~ω
√
m2 + p2

⊥

~eEs
. (3.55)

In the static limit Ew → const., eq. (3.54) reproduces the Schwinger formula (3.43) for the
total electric field E = Es + εEw up to O(ε2). The particle production by Es occurs at
t = −~p‖/~eEs, and thus the value of Ew at that time becomes relevant. Physically, this
value corresponds to the instant of time when the energy threshold ∼

√
m2 + (p + eEst)2

becomes the minimum. From an exact-WKB point of view, it is the location of the
crossing between the Stokes segment by the strong constant field Es and the real axis
Re z(0)

t = −~p‖/~eEs, at which the Stokes phenomenon occurs. Equation (3.54) im-
plies that the production number can be enhanced by the time-dependence of the weak
field if eE′′w(−~p‖/~eEs) < 0, compared to the naive prediction of the Schwinger for-
mula (3.43). Even though eEw is weak, the enhancement can be significant if eEs is sub-
critical m2/~eEs � 1, which is the essence of the dynamically assisted Schwinger mecha-
nism. Note that the expanded result (3.54) agrees with the perturbation theory in the Furry
picture (see appendix C) if one neglects high frequency corrections O(γ̃4). The disagree-
ment originates from the O(e−2Szt/~) terms neglected by the semi-classical approximation.

As an explicit demonstration, let us consider a situation in which a constant strong
electric field is superimposed by a weak monochromatic perturbation, i.e.,

eE = [eEs + eEw cos Ωt]× e‖, (3.56)

where we have assumed eEs > 0 and eEs � |eEw|. We have computed the produc-
tion number by numerically solving the mode equation (3.1), and compared it with the
semi-classical WKB formula (3.33) and the perturbation theory in the Furry picture (see
appendix C). The semi-classical WKB formula (3.33) gives a good description for suffi-
ciently small values of ~Ω, where the semi-classical approximation is valid. For large ~Ω,
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Figure 4. (color online) The production number for a constant strong electric field superimposed by
a weak monochromatic perturbation (3.56). The parameters are fixed as ~eEs/m

2 = 0.25, Ew/Es =
0.01, |p⊥|/m = 0, and p‖/m = 0.20. The black line is an exact result, obtained by numerically
solving the mode equation (3.1). The long dashed blue line is obtained by the semi-classical exact
WKB formula (3.33), in which we have numerically determined turning points (see appendix E for
the resulting Stokes graphs) and computed the corresponding actions Szt ’s. The dotted cyan line
represents the analytical formula (3.53), which is obtained by expanding the exact WKB formula in
terms of |Ew/Es| � 1. For comparison, results of the perturbation theory in the Furry picture (C.7)
and the Schwinger formula for a constant electric field (3.43) are plotted by the short dashed red
line and the green line, respectively.

it fails to reproduce the exact result quantitatively. Nevertheless, it qualitatively captures
the oscillating behavior of the production number. The oscillating behavior is an analog of
the Franz-Keldysh oscillation in semi-conductor physics, whose origin is the modification
to the energy spectrum by the strong electric field eEs [57]. Even though the semi-classical
approximation cannot fully take into account effects of eEw in the quantum regime where
~Ω is large, it captures those of eEs correctly and thus it shows the qualitative agreement.

3.6 Relation to other semi-classical approaches

We discuss the relationship between our semi-classical exact WKB result (3.33) and other
semi-classical methods to compute the vacuum pair production; in particular, Brezin-
Izykson’s steepest descent evaluation of the Bogoliubov coefficients [40] and the worldline
instanton method [69–71]. Although they look different at first sight, we show that they
are equivalent in the semi-classical regime, if one neglects unimportant prefactors.

3.6.1 Brezin-Izykson’s steepest descent evaluation

Brezin and Izykson [40] derived an integral representation of the Bogoliubov coefficient
U12 and evaluated it within the steepest descent method, explicitly for a linearly polarized
cosine electric field E ∝ cosωt× e‖. Note that the Dykhne-Davis-Pechukas formula [101,
102] (see also ref. [103]), which is widely used in analyses of the Landau-Zener transition
in the condensed matter community, is obtained in the same manner. For the sake of
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simplicity, we here focus on U12 only, but one can equally perform the same calculation
for U21. We shall see that the steepest descent method and the exact WKB analysis have
a close relationship to each other, as already indicated in mathematics [104], and their
leading order results in the semi-classical limit coincide.

First, we derive an integral representation of U12. From eq. (3.9), we have

U12 = i~ϕ+,out
↔
∂ tϕ+,in. (3.57)

Since U12 is a constant independent of t, one can evaluate eq. (3.57) at any convenient
time. Taking t→ +∞, we obtain

U12 = i~ lim
t→+∞

e−
i
~

∫ t
t0

√
Q(t′)dt′√

2Q1/2(t)

↔∂ tϕ+,in ≡ lim
t→+∞

u12(t). (3.58)

Note that u12(−∞) = 0. To proceed, let us consider to act ∂t onto u12. We thus get

u′12 = −i~
(

5
16
Q′2

Q2 −
1
4
Q′′

Q

)e−
i
~

∫ t
t0

√
Q(t′)dt′√

2Q1/2(t)

ϕ+,in, (3.59)

where we have used [~2∂2
t +Q]ϕ+,in = 0. Integrating u′12 over t, one finds

U12 = lim
t→+∞

∫ t

−∞
dt′u′12(t′)

= −i~
∫ ∞
−∞

dt
(

5
16
Q′2

Q2 −
1
4
Q′′

Q

)e−
i
~

∫ t
t0

√
Q(t′)dt′√

2Q1/2(t)

ϕ+,in. (3.60)

The production number may be suppressed strongly in the semi-classical limit, so one may
simply approximate ϕ+,in by the lowest order WKB solution as

ϕ+,in ∼
e−

i
~

∫ t
t0

√
Q(t′)dt′√

2Q1/2(t)
. (3.61)

Note that this approximation is not so accurate and gives an incorrect prefactor [62];
nevertheless, it is sufficient to extract the exponentially small main factor in U12 and is
the same approximation level considered by Brezin and Izykson [40]. Substituting the
approximation (3.61) into eq. (3.60), one gets an integral representation of U12 as6

U12 ∼ −i~
∫ ∞
−∞

dt
(

5
32
Q′2

Q3 −
1
8
Q′′

Q2

)
e−2 i

~

∫ t
t0

√
Q(t′)dt′

. (3.62)

6Equation (3.62) looks slightly different from what Brezin and Izykson derived [eq. (35) in ref. [40]]
because of the treatment of the first order time derivative of the mode functions (or choice of the “adiabatic
basis” [105, 106]). Within the approximation (3.60), they give different prefactors, which are, nevertheless,
unimportant within the accuracy of the approximation.
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One may evaluate the integral representation (3.62) with the steepest descent method,
which is a good approximation in the semi-classical regime, in which ~ is formally regarded
as a small quantity. After complexifing the integration variable t ∈ [−∞,+∞] → z ∈ C,
we define saddle points zs,i as

0 = ∂z

∫ z

t0
dz′
√
Q(z′)

∣∣∣∣
z=zs,i

=
√
Q(zs,i). (3.63)

Apparently, zs,i is nothing but the turning point zt,i in the language of the exact WKB
analysis. We notice that not all the saddle points but only a part of them are relevant in
evaluating the integral (this point shall be clarified in more detail later). By picking up the
contributions from the relevant saddle points and noticing eq. (3.18), the integral (3.62)
can be evaluated as

U12 ∼
∑

zs,i∈relevant saddles
e−2 i

~

∫ zs,i
t0

dz′
√
Q(z′)

× −5
24

∫
Γ

dz 1
z − zs,i

e−
i
~

2
3

√
2(p+eA(zs,i))·eE(zs,i)(z−zs,i)3/2

= −5πi
18

∑
zs,i∈relevant saddles

si e−2 i
~

∫ zs,i
t0

dz′
√
Q(z′)

, (3.64)

where Γ is an integration contour running from z = −∞ to +∞ during which it wraps
each relevant saddle point zs,i over the angle 4π/3. The integrand in the first equality is
singular at the saddle points, and we have picked up the corresponding residues to get
the second equality. si ≡ +1 (−1) if the contour Γzs,i wraps the saddle point zs,i counter-
clockwise (clockwise). One may expect that the contour wraps a saddle point clockwise
(counter-clockwise) if that point is located in the lower (upper) half plane, i.e.,

si = Im zs,i. (3.65)

Therefore,
U12 ∼

−5πi
18

∑
zs,i∈relevant saddles

Im zs,i e−2 i
~

∫ zs,i
t0

dz′
√
Q(z′)

. (3.66)

Essentially, this is eq. (42) in Brezin-Izykson’s paper [40].
Next, we need to identify which saddle points are relevant. For this, we need to under-

stand the topology concerning how steepest descent/ascent lines are located in the complex
z-plane. This can be achieved by making use of the properties (1)–(5) for the Stokes graph
in the exact WKB analysis. Indeed, in the steepest descent method (or the Lefschetz thim-
ble method in more general), steepest descent/ascent lines Czs,i emanating from a saddle

point zs,i are given by a set of points z ∈ C satisfying 0 = Im
[
−2 i

~
∫ z∈Czs,i
zs,i dz′

√
Q(z′)

]
,

which are nothing but the Stokes lines (2.13) in the language of the exact WKB analysis.
Therefore, we can directly use the properties (1)–(5) to determine the structure of steepest
descent/ascent lines. In the language of the steepest descent method, one may rephrase
the properties (1)–(5) as:
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(1’) The locations of saddle points and steepest lines are symmetric in the upper and
lower half planes.

(2’) All the saddle points zs,i’s are of order one if 0 6= (p + eA(zs,i)) · eE(zs,i).

(3’) A saddle point zs and its conjugate z∗s are connected by a line in which steepest
descent and ascent lines are degenerated.

(4’) The degenerated steepest descent/ascent line connecting a pair of zs and z∗s crosses
the real axis only once.

(5’) The other steepest lines emanating from a saddle point, other than the degenerated
line, cannot cross the real axis.

According to the steepest descent method, only saddles whose steepest ascent line crosses
the real axis (or the original integration contour of the integral that one wants to evaluate)
contribute to the integral. Therefore, either of zs,i and z∗s,i is relevant because of the
property (3’). Without loss of generality, we can assume Im zs,i > 0. Then, by repeating the
same argument below eq. (3.24), one can show that the “action,” −2 i

~
∫ z∈C∗zs,i
z∗s,i

dz′
√
Q(z′) ∈

R, increases as it goes from z = z∗s,i to zs,i along the steepest line Cz∗s,i . Therefore, the
steepest line emanating from z = z∗s,i is the steepest ascent, and thus z = z∗s,i is relevant.
Thus, we have

U12 ∼
+5π
18 × i

n∑
i=1

exp
[
−i Im

[
+2 i

~

∫ zs,i

t0
dz′
√
Q(z′)

]]
exp

[
− i
~

∫ z∗s,i

zs,i
dz′
√
Q(z′)

]
, (3.67)

where n is the number of saddle points in the upper half plane, and we have used
Re[−2 i

~
∫ z∗s,i
t0 dz′

√
Q(z′)] = − i

~
∫ z∗s,i
zs,i dz′

√
Q(z′), which is negative definite because of

eq. (3.27), and Im[−2 i
~
∫ zs,i
t0 dz′

√
Q(z′)] = −Im[+2 i

~
∫ z∗s,i
t0 dz′

√
Q(z′)]. Equation (3.67) re-

produces the semi-classical exact WKB result (3.32), putting aside the unimportant prefac-
tor 5π/18, which is inaccurate within the approximation (3.61). This coincidence is not an
accident, as the Stokes graph in the exact WKB analysis has precisely the same structure
as that of steepest ascent/descent lines in the steepest descent method. In obtaining the
exact WKB result (3.32), we neglected higher order terms of the order of O(e−2Szt,i/~) by
virtue of the semi-classical approximation. Similar approximations were implicitly used in
the steepest descent method in eqs. (3.61) and (3.64).

3.6.2 Worldline instanton method

The worldline instation method [69–71] computes the one-loop QED effective action Γ1-loop,
whose imaginary part gives the production number, based on the Feynman’s worldline path
integral representation [107, 108]. The steepest descent method is applied to evaluate the
worldline path integral, and thus the worldline instation method is valid in the semi-classical
regime. We shall see that the semi-classical exact WKB result (3.33) is equivalent to the
worldline instation method by showing that worldline instanton actions are nothing but
cycle integrals enclosing turning points of the potential Q.
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The starting point of the worldline instaton method is Schwinger’s proper-time repre-
sentation of the one-loop effective action Γ1-loop [45]:

Γ1-loop ≡ ~ tr ln
[
m2 + ~2D̂µD̂

µ
]

= −~
∫ ∞

0

dτ
τ

∫
d4x 〈x|e−

i
~ Ĥτ |x〉 , (3.68)

where τ is the so-called proper-time parameter and D̂µ is a covariant derivative operator
under an external gauge field Aµ such that 〈x|D̂µ|y〉 = δ4(x− y)

[
∂µx + i

~eA
µ(x)

]
. We have

also assumed an iε-prescriptionm2 → m2−i0+ and used an identity ~ Ô−1 = i
∫∞

0 dτ e−
i
~ Ôτ

for ImO < 0 to get the second equality. One may interpret the last exponential factor as
a “time-translation operator” with respect to the proper-time τ with a “Hamiltonian” Ĥ,

Ĥ ≡ m2 + ~2D̂µD̂
µ. (3.69)

The time-translation operator can be expressed as a path integral. For a spatially homo-
geneous gauge potential Aµ(t,x) = (0,A(t)) [see eq. (3.1)],7 the Hamiltonian Ĥ does not
depend on x and one can explicitly carry out the spatial part of the path integration [109].
The resulting expression is the so-called worldline representation of the one-loop effective
action Γ1-loop:

Γ1-loop = −~
∫

d4x

∫ d3p

(2π~)3

∫ ∞
0

dτ
τ

∫ z(τ)=x0

z(0)=x0
Dz(u)e+ i

~S[z(u)], (3.70)

where p is canonical momentum, which is an eigenvector of the spatial derivative −i~∂,
and we have introduced an “action” S as

S[z] ≡ −
∫ τ

0
du
[(dz

du

)2
+Q[z(u)]

]
, (3.71)

with Q[z] = m2 + (p− eA[z])2 as before. Note that all the integration variables z, u, and
τ are real at this stage.

The path- and proper-time τ -integrations in eq. (3.70) are not analytically doable,
except for a few special cases. In the worldline instanton method, those integrations are
evaluated by the steepest descent method, which is justified in the semi-classical regime.
To be concrete, we first expand the path-integration variable z and the action S as8

z ≡ zcl + δz,

S[z] = S[zcl]︸ ︷︷ ︸
≡Scl

+S[z]− S[zcl]︸ ︷︷ ︸
≡δS

, (3.72)

7We here assume a spatially homogeneous gauge potential in order to discuss the momentum distribution
and to directly see the relationship with our exact WKB analysis at the semi-classical level. In general,
the worldline instanton method can be applied to inhomogeneous gauge potentials depending on several
coordinate variables [71].

8We here carry out the path integral first and then the τ -integration. Alternatively, one may carry out
the τ -integration first and then the path-integral. For this case, the resulting classical equation of motion
as well as the classical action Scl might look a bit different, but they are essentially the same and one can
discuss the coincidence of our semi-classical exact WKB formula in a similar manner that we discuss below.
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where zcl (or “instanton” on the worldline) is a solution of the classical equation of motion
for S, i.e.,

0 = d2zcl
du2 −

1
2

dQ
dzcl

with x0 = zcl(0) = zcl(τ). (3.73)

Here, we complexified the integration variable z ∈ R→ C by virtue of the steepest descent
method, and thus the classical solution zcl is in general complex-valued. The one-loop
effective action (3.68) now reads

Γ1-loop = ~
∫

d4x

∫ d3p

(2π~)3

∫ ∞
0

dτ
τ
Ce+ i

~Scl(τ), (3.74)

where the prefactor C comes from the path-integration of the fluctuation δS. The remaining
τ -integration may be evaluated by the steepest descent method, which is again valid in the
semi-classical regime. Complexifying the variables τ, u ∈ R → C and assuming that the
integral is dominated around τ ∼ τst at which the classical action Scl becomes stationary,

0 = dScl
dτ

∣∣∣∣
τ=τst

, (3.75)

we find

Γ1-loop = ~
∫

d3x

∫ d3p

(2π~)3 C
′e+ i

~Scl(τst)

∼ ~
∫

d3x

∫ d3p

(2π~)3 e+ i
~Scl(τst), (3.76)

where the prefactor C is replaced by C ′ after absorbing contributions from the fluctuations
around the stationary point

∫
Γ

dτ
τ e+ i

~ (Scl(τ)−Scl(τst)), with Γ being the steepest descent path,
and from the time integral

∫
dx0 =

∫
dudzcl(0)

du = finite [70]. In the second equality of
eq. (3.76), we have assumed C ′ = O(1) for simplicity. In principle, the prefactor C ′ is
calculable numerically/analytically [70, 110], but it is quite complicated and not essential
in our discussion below. In fact, the dominant factor of the production number comes from
the exponential e+ i

~Scl , compared to which the prefactor C ′ is not so important. Note that
the stationary condition (3.75) is just a necessary condition for a relevant stationary point,
which shall be discussed later. So far, we have implicitly assumed that there is only one
classical solution zcl with a single relevant stationary point τst. Generally, one can have
several classical solutions zcl,i and/or stationary points τst,ij . In such a case, the effective
action Γ1-loop shall be given by a sum of all the relevant classical solutions zcl,i and/or
stationary points τst,ij as

Γ1-loop ∼ ~
∑
i,j

∫
d3x

∫ d3p

(2π~)3 e+ i
~Scl,i(τst,ij). (3.77)

Having obtained the effective action (3.77), we turn to compute the production number.
The effective action (3.77) is related to the vacuum persistence probability P as

P ≡ | 〈vac; in|vac; out〉 |2

= e−2 Im Γ

∼ 1− 2 Im Γ. (3.78)
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Im z

Re z

zt,1

zt,1
*

zt,2

zt,2
*

zt,3

zt,3
*

zcl

◄

◄

Figure 5. (color online) A non-trivial classical path zcl (blue line) enclosing a single pair of turning
points zt,i and z∗t,j (red dots). The wavy green lines represent branch cuts. The dashing of the blue
line distinguishes Riemann sheets; thick (dashed) for the first (second) Riemann sheet such that
dzcl/du = +

√
Q[zcl] (−

√
Q[zcl]).

Since the vacuum decay occurs due to the particle production, it is natural to assume9

P ∼ 1− (Ne− +Ne+)
= 1− 2Ne− , (3.79)

where Ne− = Ne+ is assumed because of the gauge invariance (no spontaneous charge
production). Then, using eq. (3.77), we arrive at

Ne± ∼ Im Γ ⇒ d3Ne±

dp3dx3 ∼
1

(2π~)3

∑
i,j

e+ i
~Scl,i(τst,ij). (3.80)

We show that the worldline instanton method (3.80) agrees with our semi-classical
exact WKB formula (3.33) (see also ref. [109]). To this end, we first integrate the classical
equation of motion (3.73) over u to find(dzcl

du

)2
−Q[zcl(u)] = a ⇒ dzcl

du = s
√
Q[zcl] + a, (3.81)

where s ≡ ±1 is fixed after choosing a Riemann sheet associated with the square root in
eq. (3.81). The integration constant a is independent of u but can be dependent on τ .
The arbitrariness of a is essentially related to the number of classical solutions. For our
steepest descent evaluation (3.76), it is sufficient to know the value of a at τ = τst, which

9Precisely speaking, 1−P and the production numberNe−+Ne+ are different quantities and coincide only
when the production number is sufficiently small [111]. The worldline instanton method cannot compute
the production number directly.
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is uniquely fixed by the stationary condition (3.75) and thus we just have to consider a
single classical solution characterized by the unique value a(τst). Noticing

τ =
∫ τ

0
du

=
∮

dzcl

(dzcl
du

)−1

=
∮ dzcl

s
√
Q[zcl] + a(τ)

, (3.82)

the stationary condition (3.75) yields10

0 = dScl
dτ

∣∣∣∣
τ=τst

= d
dτ

[
a(τ)τ − 2

∮
dzcl s

√
Q[zcl] + a(τ)

]∣∣∣∣
τ=τst

= a(τst). (3.83)

Using eq. (3.83), one can evaluate the classical action i
~Scl at a relevant stationary point

τ = τst as

+ i
~
Scl(τst) = −2 i

~

∫ τst

0
dudzcl

du s
√
Q[zcl(u)]

= −2 i
~

∮
dzcl s

√
Q[zcl]. (3.84)

Equation (3.84) implies that the classical action Scl can have non-trivial values only when a
classical path zcl encloses some singularities of the integrand

√
Q as shown in figure 5. One

can always construct such a classical path by properly choosing a path for the complexified
time variable u. Topologically distinct paths u give distinct stationary points τst, whose
contributions should be summed up as in eq. (3.77). In principle, one may consider multi-
loops and/or loops containing more than two pairs of turning points, whose contributions
are exponentially suppressed in the semi-classical regime by the worldline instanton action
O(e+ 2i

~ Scl) [i.e., O(e−
2
~Szt )-contributions in the notation of the exact WKB analysis] and are

negligible compared to loops containing a single pair of turning points shown in figure 5.
For such a classical path enclosing only a single pair of turning points zt,i (such that
Im zt,i > 0) and z∗t,j , we have

+ i
~
Scl,ij = − i

~

∫ z∗t,i

zt,j
dz(+1)

√
Q[z]− i

~

∫ zt,i

z∗t,j

dz(−1)
√
Q[z]

= −2 i
~

∫ z∗t,i

zt,j
dz
√
Q[z], (3.85)

in which, without loss of generality, the path is assumed to be on the first (second) Riemann
sheet dzcl/du = +

√
Q[zcl] (−

√
Q[zcl]) when going from zt,i to z∗t,j (coming back from z∗t,j to

10a = 0 corresponds to “Bogomolnyi-Prasad-Sommerfield (BPS) instantons [112, 113]” in the language
of instanton calculus, and one may say that BPS worldline instantons dominate the particle production.
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z∗t,i). Before proceeding, we remark that the classical path must be in the counter-clockwise
direction, so that Im τst < 0. To show this, we notice that if τst is a stationary point, its
conjugate τ∗st must also be a stationary point because 0 =

[
dScl/dτ |τ=τst

]∗
= dScl/dτ |τ=τ∗st

,
where we have used [zcl(u)]∗ = zcl(u∗) and [Q[z]]∗ = Q[z∗]. Repeating a similar discussion
that we presented in section 3.6, one can show that, in the complex τ -plane, the pair of
the stationary points τst and τ∗st is connected by steepest descent and ascent lines and
that the lines cross the real axis. One can also identify that the steepest line emanating
from the point with negative imaginary part is ascent. Thus, a stationary point which has
negative imaginary part is relevant, and its conjugate pair, having positive imaginary part,
is always irrelevant in the steepest descent evaluation of the τ -integration. The value of
τst is determined by the cycle integral (3.82). For a classical path in the counter-clockwise
direction as shown in figure 5, it can be evaluated as

τst =
∫ z∗t,i

zt,j

dzcl

+
√
Q[zcl]

+
∫ zt,j

z∗t,i

dzcl

−
√
Q[zcl]

= 2
∫ xi

xj

dz
+
√
Q[z]︸ ︷︷ ︸

∈R

+ 2
∫ xj

zt,j

dz
+
√
Q[z]

+ 2
∫ z∗t,i

xi

dz
+
√
Q[z]︸ ︷︷ ︸

∈−i×R+

, (3.86)

where we have deformed the integration contour in the second line and xα ∈ R (α = i, j) is
a crossing between the real axis and a Stokes line C connecting the pair of turning points
zt,α and z∗t,α on which Im

[
+i
∫ z∈C
zt,α

dz/
√
Q[z]

]
= 0. In a similar manner as in eq. (3.24),

one can show +i
∫ z∈C
zt,α

dz/
√
Q[z] > 0, and thus eq. (3.86) surely has negative imaginary

part, as we wanted. Note that one can show in a similar manner that Re
[
+ i

~Scl,ij
]
< 0

for the counter-clockwise classical path, and thus the production number (3.80) never
becomes exponentially large but is always suppressed exponentially by the worldline in-
stanton action. We also remark that classical paths enclosing (zt,i, zt,j) or (z∗t,i, z∗t,j) do
not contribute because they never cross the real axis, and hence the boundary condition
zcl(0) = zcl(τ) = x0 ∈ R cannot be satisfied. Having explained that only counter-clockwise
classical paths enclosing a pair of zt,i and z∗t,j are relevant at the leading order in the
worldline instatnton action, we substitute eq. (3.85) into eq. (3.80) to arrive at

d6Ne±

dp3dx3 ∼
1

(2π~)3

∑
i,j

exp
[
−2 i

~

∫ z∗t,i

zt,j
dz
√
Q[z]

]

= 1
(2π~)3

∣∣∣∣∣∑
i

exp
[
−2 i

~

∫ z∗t,i

t0
dz
√
Q[z]

]∣∣∣∣∣
2

, (3.87)

with t0 being an arbitrary point on R. Equation (3.87) agrees with our semi-classical exact
WKB formula (3.33).

4 Summary and discussion

We have studied the vacuum pair production by a time-dependent strong electric field
on the basis of the exact WKB analysis under the semi-classical approximation. First,
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we have explained that the vacuum pair production can be formulated in terms of a
Bogoliubov transformation, which can be regarded as a connection matrix that describes
a Stokes phenomenon of WKB solutions at the asymptotic times t = ±∞. To apply the
exact WKB analysis, we have identified the generic structure of a Stokes graph for the
vacuum pair production (see figure 1), assuming that the potential is adiabatic at the
infinite times and is an analytic function on the entire complex plane. Then, we have
shown that the total connection matrix is given by a product of that for a Stokes segment
connecting a pair of turning points, zt and z∗t , which we have evaluated in the semi-classical
limit [eq. (3.30)]. From the connection matrix, we have obtained the production number
formula [eq. (3.33)], which is given by a sum of exponential factors e−Szt/~, controlling
the magnitude of the production, as well as imaginary factors e−

i
~ Imσzt , responsible for

interference between different pairs of turning points. The obtained formula is equivalent
to other semi-classical approaches such as the steepest descent evaluation by Brezin and
Izykson [40] and the worldline instanton method [69–71], and generalizes the divergent
asymptotic series method by Berry [75]. The time-dependent effects such as the interplay
between the perturbative multi-photon pair production and non-peturbative Schwinger
mechanism and the interference effects including the dynamically assisted Schwinger
mechanism have also been discussed within the obtained formula, and we have found a
good agreement with the exact results in the semi-classical regime.

As a future work, it is desirable to include the higher order O(e−2Szt/~) corrections,
which are important for the production in the quantum regime where ~ cannot be regarded
as a small quantity and to describe smooth interplay between the multi-photon pair pro-
duction processes and the low-order ones. For this, it is essential to improve the connection
matrix T for a Stokes segment [eq. (3.30)]. To the best of our knowledge, there does not
exist such a mathematical formula applicable in generic situations. For some special cases,
one may transform a generic potential Q into a simple potential that can be analyzed ex-
actly. For example, in the case of the so-called merging-turning-points (MTP) equation, it
is rigorously proved that the corresponding potential Q can be locally transformed into the
Weber potential [82]. The monodromy structure of the Weber potential (or the resulting
parabolic cylinder function) is well-known, so that one can compute T without resorting
to any approximations. In a physics sense, this mathematical transformation amounts to
mapping a generic electric field configuration into a superposition of constant electric fields.
It is interesting to study such special cases as a first step toward a complete formula for
the vacuum pair production by a time-dependent electric field.

Another interesting direction is to extend our formulation to the vacuum pair pro-
duction by other kinds of fields/forces other than a strong electric field or to analogous
processes such as the Landau-Zener transition in materials. The formulation presented in
section 3 is quite general and is not limited to a strong electric field, as we have just assumed
that the potential Q is adiabatic at the infinite times and is an analytic function on the
entire complex plane. Our formulation gives a powerful and general framework to discuss
the time-dependent effects (or similar effects may occur for spatial variation) in the particle
production. One of the most interesting examples is the Hawking radiation. One can use
the similar Bogoliubov transformation technique to the Hawking radiation. The problem
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is then reduced to solving a field equation under a potential determined by the background
gravitational field (e.g., for a Klein-Gordon equation under the Kerr-Newman background,
the potential is given by that for a confluent Heun equation [114]), and thus our exact
WKB analysis can be applied straightforwardly. It is also reassuring that the worldline
instanton approach has been applied recently to the Hawking radiation [115], which implies
the applicability of our semi-classical WKB analysis because of the equivalence between
the two approaches that we have shown in this paper. The spacetime dependent effects,
which can be conveniently captured with our framework, could play an important role in
the Hawking radiation, e.g., by giving rise to non-thermal corrections.

Note added in proof. While preparing the final draft of our paper, a preprint [116] has
appeared in arXiv, which applied the exact WKB analysis to cosmological particle produc-
tion (particularly for Q(t) ∝ t2 + gt4-type potential) and has some overlap with our paper.
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A Exact WKB analysis of the Airy equation

We discuss the exact WKB analysis of the Airy equation. The Airy potential is defined as
a potential having one simple turning point at some point z = zt,

Q(z) = ξ(z − zt), (A.1)

where ξ, z, zt ∈ C. For the Airy potential (A.1), one can analytically compute the coeffi-
cients ψ±,n in eq. (2.8). The solution reads

ψ±,n = dn × (±i)nξ−1/4−n/2(z − zt)−1/4−3n/2, (A.2)

with
dn ≡

1√
2

1
2π

(3
4

)n Γ(n+ 1/6)Γ(n+ 5/6)
n! . (A.3)

Notice that dn is factorially divergent, so is ψ±,n. In turn, one can explicitly compute the
Borel transformation ψ̃± (2.9) as

ψ̃±(z; η) = 1√
2
ξ−1/4(z − zt)−1/4

2F1

(1
6 ,

5
6; 1;±i34ηξ

−1/2(z − zt)−3/2
)
, (A.4)
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zt

Figure 6. Stokes graph for Airy potential with the case arg[ξ] = 0.

where 2F1(a, b; c; z) is the hypergeometric function,

2F1(a, b; c; z) ≡
∞∑
n=0

(a)n(b)n
(c)n

zn

n! =
∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)
Γ(a)Γ(b)Γ(c+ n)

zn

n! . (A.5)

Therefore, the Borel sum (2.10) reads

Ψ±(z; ~) = 1√
2
ξ−1/4(z−zt)−1/4

∫ ∞
0

dη
~

e−η/~2F1

(1
6 ,

5
6; 1;±i34ηξ

−1/2(z − zt)−3/2
)
. (A.6)

Since the hypergeometric function 2F1(a, b; c; z) has a branch cut on z ∈ [1,∞], the inte-
grand becomes singular on

± i34ηξ
−1/2(z − zt)−3/2 ∈ [1,∞] ⇔ η ∈ ∓i43ξ

1/2(z − zt)3/2 × [1,∞]. (A.7)

Therefore, the integration contour of the Laplace transformation η : 0 → ∞ can hit the
singularity if 0 = Im

[
iξ1/2(z − zt)3/2

]
= Im

[
i
∫ z
zt

dz′
√
Q(z′)

]
, which is nothing but the

Stokes line (2.13).
For the Airy potential (A.1), there exist three Stokes lines emanating from the turning

point zt. The Stokes lines are straight lines emanating with angle arg(z−zt)+(1/3) arg ξ =
−π/3,+π/3, π (mod 2π) and eventually flow into the infinity. For convenience, let us insert
a cut on arg(z−zt)+ 1

3 arg ξ = π (mod 2π) and restrict ourselves on the first Riemann sheet
such that −π < arg(z − zt) + 1

3 arg ξ < π. Then, we have three Stokes regions A = I, II, III
in the z-plane that are separated by the Stokes lines as

A =



I for − π

3 < arg(z − zt) + 1
3 arg ξ < +π

3

II for + π

3 < arg(z − zt) + 1
3 arg ξ < +π

III for − π < arg(z − zt) + 1
3 arg ξ < −π3

. (A.8)
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In each Stokes region A = I, II, III the Borel sum Φ±,A is well-defined, but the Borel sums
in the different Stokes regions are not necessarily identical Φ±,A 6= Φ±,B if A 6= B because
of the Stokes phenomenon of WKB solutions. Namely, suppose z is initially located in
a Stokes region A and smoothly moved to another region B by crossing the Stoke line
separating the regions A and B. In the η-plane, the singularity can hit the integration
contour of the Laplace transformation as changing z. Then, the Borel sum in the region B
gets an additional contribution from the singularity compared to that in the region A as

Φ±,B = Φ±,A + exp
[
∓ i
~

∫ z

t0
dz′
√
Q(z′)

] ∫
Γ

dη
~

e−η/~ψ̃±(z; η), (A.9)

where the second term describes the contribution for the singularity and Γ is a path that
wraps the singularity of the Borel transformation ψ̃±. The second term can be evaluated
with the help of

2F1(a, b; c; z + i0+)− 2F1(a, b; c; z − i0+) (A.10)

= 2πi
Γ(a)Γ(b)(z − 1)c−a−b2F1(c− a, c− b; c− a− b+ 1; 1− z) for 1 < z ∈ R,

and the result reads 

(
Φ+,II
Φ−,II

)
=

1 +ie−2 i
~

∫ zt
t0

dz′
√
Q(z′)

0 1

(Φ+,I
Φ−,I

)
(

Φ+,I
Φ−,I

)
=

 1 0

+ie+2 i
~

∫ zt
t0

dz′
√
Q(z′) 1

(Φ+,III
Φ−,III

) . (A.11)

This is nothing but eq. (2.14), as Re
[
i
∫ z
zt

dz′
√
Q(z′)

]
< 0 on the Stokes line between I and

II and > 0 between III and I.

B Standard perturbation theory (at the lowest order)

The standard perturbative treatment with respect to the applied electric field eA gives a
faithful description when the field varies very fast compared to the mass scale; or, physi-
cally, when the particle production mechanism is dominated by the one-photon (or a few-
photon) pair production process γ → e+e− [42]. In such a regime, the electric field interacts
with particles incoherently rather than coherently, for which the semi-classical treatment
is not justifiable. Thus, the standard perturbation theory is applicable to different pa-
rameter regimes that the semi-classical exact WKB analysis as well as other semi-classical
approaches covers, and vice versa.

For later convenience, we here use the Green function technique to derive the produc-
tion number formula within the standard perturbation theory. We first rewrite the mode
equation [i.e., the Klein-Gordon equation (3.1) in terms of the mode function ϕ±,as] as[

~2∂2
t +Q0

]
ϕ±,as(t) = V (t)ϕ±,as(t), (B.1)
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where
Q0 ≡ m2 + p2, V ≡ Q−Q0 = 2p · eA− |eA|2. (B.2)

Below, we assume smallness of eA, or V , which is justified when the applied electric field is
very fast.11 Indeed, for an electric field with a monochromatic frequency ω, i.e., E = E(ωt),
the corresponding gauge potential decreases linearly with ω as |A| ∝ ω−1. Then, one may
solve eq. (B.1) perturbatively using the Green function technique to obtain

ϕ±,as(t) = ϕ±,(0)(t) +
∫

dt′G(0)(t, t′)V (t′)ϕ±,as(t′)

= ϕ±,(0)(t) +
∫

dt′G(0)(t, t′)V (t′)ϕ±,(0)(t′) +O(|V |2), (B.3)

where G(0) is a retarded Green function satisfying

0 = G(0)(t− t′ < 0), δ(t− t′) =
[
~2∂2

t +Q0
]
G(0)(t, t′), (B.4)

ϕ±,(0) is a plane wave solution of 0 =
[
~2∂2

t +Q0
]
ϕ±,(0), i.e.,

ϕ±,(0) = 1√
2Q1/2

0 (t)
e∓

i
~Q

1/2
0 t = lim

|eA|→0

1√
2Q1/2(t)

exp
[
∓ i
~

∫ t

dt′Q1/2(t′)
]
, (B.5)

and we imposed a boundary condition onto ϕ±,as as [the same as eq. (3.7)]

0 = lim
t→−∞

[
ϕ±,in − ϕ±,(0)

]
, 0 = lim

t→+∞

[
ϕ±,out − ϕ±,(0)

]
. (B.6)

Using
G(0)(t, t′) = − i

~
θ(t− t′)

[
[ϕ+,(0)(t)]∗ϕ+,(0)(t′)− [ϕ−,(0)(t)]∗ϕ−,(0)(t′)

]
, (B.7)

one can express eq. (B.3) as

ϕ±,in(t) = ϕ±,(0)(t)×
[
1± i

~

∫ t

−∞
dt′[ϕ±,(0)(t′)]∗V (t′)ϕ±,(0)(t′) +O(|V |2)

]
+ ϕ∓,(0)(t)×

[
0∓ i

~

∫ t

−∞
dt′[ϕ∓,(0)(t′)]∗V (t′)ϕ±,(0)(t′) +O(|V |2)

]
. (B.8)

Taking t→∞ and comparing with eq. (3.9), one understands

U11 = [U22]∗ = 1 + i
~

∫ +∞

−∞
dt′[ϕ−,(0)(t′)]∗V (t′)ϕ−,(0)(t′) +O(|V |2), (B.9a)

U12 = [U21]∗ = 0 + i
~

∫ +∞

−∞
dt′[ϕ−,(0)(t′)]∗V (t′)ϕ+,(0)(t′) +O(|V |2). (B.9b)

Using the analytical expression for the plane wave ϕ±,(0) (B.5), one can explicitly evaluate
the off-diagonal component of U (B.9b) and arrives at

d6Ne±

dx3dp3 = 1
(2π~)3 |U12|2

= 1
(2π~)3

1
4~2Q2

0

∣∣∣p · ~eE(2Q1/2
0 /~)

∣∣∣2 +O(|~eE|3). (B.10)

11To be precise, the lowest order perturbation works for ν ≡ (~ω)2/|~eE| � 1 and γ ≡ m~ω/|~eE| �
1 [42]. Notice that the largeness of the Keldysh parameter alone γ � 1 is not enough to justify the lowest
order perturbation theory.
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where E(ω) ≡
∫+∞
−∞ dt e−iωtE(t) is the Fourier transformation of E(t), as in the main

text. The Fourier transformation E(ω) may be peaked at some characteristic frequency
ω ∼ ωc of the applied field E. Then, eq. (B.10) implies that the production occurs only
when ~ωc ∼ 2Q1/2

0 = 2
√
m2 + p2, reflecting the threshold nature of the one-photon pair

production.

C Perturbation theory in the Furry picture

The perturbation theory in the Furry picture is an improved version of the standard per-
turbation theory (see appendix B) by using a dressed propagator and wavefunction instead
of the bare ones G(0) (B.4) and ϕ±,(0) (B.5). This theory works quite well when there is a
clear scale separation in the applied electric field as

E = Es + Ew with |Es| � |Ew|, (C.1)

where Ew is some perturbation on top of a strong field Es. In particular, when the strong
field Es is sufficiently slow such that it is well approximated by a constant electric field
(such a situation may be realized in the dynamically assisted Schwinger mechanism), one
can carry out all the calculations exactly, finding an analytical production number formula
for Ew with arbitrary time-dependence.

The derivation of the formula can be done in a parallel manner as the standard per-
turbation theory (we resort details of the derivation to ref. [57]). The only difference is
that the bare propagator and wavefunction, G(0) and ϕ±,(0), respectively, are replaced by
the dressed ones G(0) → G(d) and ϕ±,(0) → ϕ±,as,(d) under the strong field Es such that

0 = G(d)(t− t′ < 0), δ(t− t′) =
[
~2∂2

t +m2 + (p− eAs(t))2
]
G(d)(t, t′),

0 =
[
~2∂2

t +m2 + (p− eAs(t))2
]
ϕ±,as,(d)(t), (C.2)

where As is the gauge potential for the strong field Es and we required that ϕ±,as,(d)
asymptotes a plane wave at t→ ±∞ as in eq. (3.7). Treating the remaining field Ew as a
perturbation and repeating a similar calculation that we explained in appendix B, one can
obtain

d6Ne±

dx3dp3 = 1
(2π~)3

∣∣∣∣(ϕ−,out,(d)|ϕ+,in,(d)) + i
~

∫ +∞

−∞
dt [ϕ−,out,(d)]∗V ϕ+,in,(d) +O

(
|V |2

) ∣∣∣∣2,
(C.3)

where the Klein-Gordon inner product (A|B) ≡ iA∗
↔
∂ tB is a conserved quantity and V

denotes

V ≡ Q−
[
m2 + (p− eAs)2

]
= 2 (p− eAs) · eAw + |eAw|2, (C.4)

with Aw being the gauge potential for the perturbation Ew.
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One can explicitly evaluate eq. (C.3) for a constant strong electric field [34, 57], which
is quite powerful to discuss the dynamically assisted Schwinger mechanism. Namely, we
consider

Es = Es × e‖ with eEs > 0. (C.5)

For this case, one can derive an analytical expression for the dressed wavefunction ϕ±,as,(d):

ϕ+,out,(d)(t)=[ϕ−,out,(d)(t)]∗= e−
π
4
m2+p2

⊥
2~eEs

(2~eEs)1/4

[
D
−i

m2+p2
⊥

2~eEs
−1/2

(
−eiπ/4

√
2

~eEs
(eEst+p‖)

)]∗
,

ϕ+,in,(d)(t)=[ϕ−,in,(d)(t)]∗= e−
π
4
m2+p2

⊥
2~eEs

(2~eEs)1/4D−i
m2+p2

⊥
2~eEs

−1/2

(
+eiπ/4

√
2

~eEs
(eEst+p‖)

)
, (C.6)

with Dν(z) being the parabolic cylinder function. Inserting this expression into eq. (C.3),
one obtains

d6Ne±

dx3dp3 = 1
(2π~)3 exp

[
−πm

2 + p2
⊥

~eEs

] ∣∣∣∣1 +
∫ ∞

0
dω e−i

ωp‖
~eEs

~eEw(ω)
~eEs

I(ω) +O(|~eEw|2)
∣∣∣∣2 ,
(C.7)

where

I(ω) ≡ ~eEs
ω

∂ω

[
e+i ω2

4~eEs 1F1

(
1
2 + i

2
m2 + p2

⊥
~eEs

; 1;− i
2
ω2

~eEs

)]

= m2 + p2
⊥

2~eEs

1 + 1
8

(
1− |~eEs|2

(m2 + p2
⊥)2

) ∣∣∣∣∣∣
ω
√
m2 + p2

⊥

~eEs

∣∣∣∣∣∣
2

+O(ω4)

 . (C.8)

D Analysis of the Sauter electric field

As a supplement to figure 3, we here describe the details of the analysis of the Sauter
electric field (3.48).

D.1 Exact result

Under the Sauter electric field (3.48), one can cast the mode equation (3.1) into Gauss’s
hypergeometric differential equation. Namely, we introduce

u ≡ 1
2 [1 + tanh Ωt] , m⊥ ≡

√
m2 + p2

⊥, P± ≡ p‖ ±
eE0
Ω , (D.1)

and decompose φ as

φ = u−
i

2~Ω

√
m2
⊥+P 2

−(1− u)+ i
2~Ω

√
m2
⊥+P 2

+f. (D.2)

Then, we can rewrite the mode equation (3.1) as

0 =
[
u(1− u) d2

du2 + {c− (a+ b+ 1)u} d
du − ab

]
f, (D.3)
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where

a ≡ 1
2 −

1
2

√
1−

(2eE0
~Ω2

)2
− 1

2
i
~Ω

√
m2
⊥ + P 2

− + 1
2

i
~Ω

√
m2
⊥ + P 2

+, (D.4a)

b ≡ 1
2 + 1

2

√
1−

(2eE0
~Ω2

)2
− 1

2
i
~Ω

√
m2
⊥ + P 2

− + 1
2

i
~Ω

√
m2
⊥ + P 2

+, (D.4b)

c ≡ 1− i
~Ω

√
m2
⊥ + P 2

−. (D.4c)

Requiring the boundary condition (3.7), one can readily solve eq. (D.3) and derive the
Bogoliubov coefficients U12 and U21, whose square gives the production number. The
result is

d6Ne±

dp3dx3 = 1
(2π~)3

1

sinh π
√
m2
⊥+P 2

−
~Ω sinh π

√
m2
⊥+P 2

+
~Ω

× cosh

π
+ i

2

√
1−

(2~eE0
(~Ω)2

)2
+

√
m2
⊥ + P 2

− −
√
m2
⊥ + P 2

+

2~Ω


× cosh

π
− i

2

√
1−

(2~eE0
(~Ω)2

)2
+

√
m2
⊥ + P 2

− −
√
m2
⊥ + P 2

+

2~Ω

 . (D.5)

For later use, we expand the exact result (D.5) with ~Ω→ 0 and ∞:

lim
~Ω→0

(2π~)3 d6Ne±

dp3dx3 (D.6)

= exp
[
−2π

(
m2
⊥

2~eE0
+

(~eE0)2 −m4
⊥ + 4m2

⊥p
2
‖

8(~eE0)3 (~Ω)2 +
m6
⊥ − 12m4

⊥p
2
‖ + 8m2

⊥p
4
‖

16(~eE0)5 (~Ω)4

+
(~eE0)4 − 5m8

⊥ + 120m6
⊥p

2
‖ − 240m4

⊥p
4
‖ + 64m2

⊥p
6
‖

128(~eE0)7 (~Ω)6 +O((~Ω)8)
)]
,

and

lim
~Ω→∞

(2π~)3 d6Ne±

dp3dx3

=


π2p2
‖(~eE0)2

m2
⊥+p2

‖
(~Ω)−4

sinh
π
√
m2
⊥+p2

‖

~Ω

2


×

1− (~eE0)2m2
⊥

(m2
⊥+p2

‖)
2 (~Ω)−2 +O((~Ω)−4)

1 +
(~eE0)2(m2

⊥−p
2
‖)

(m2
⊥+p2

‖)
2 (~Ω)−2 +O((~Ω)−4)

=
(~eE0)2p2

‖(
m2
⊥ + p2

‖

)2 (~Ω)−2 +
(~eE0)2p2

‖

(
3(~eE0)2

(
p2
‖ − 2m2

⊥

)
− π2

(
m2
⊥ + p2

‖

)3
)

3
(
m2
⊥ + p2

‖

)4 (~Ω)−4

+O((~Ω)−6). (D.7)
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Figure 7. (color online) A Stokes graph for the Sauter electric field (3.48). The red points, the blue
lines, and the green lines are the turning points (D.8), Stokes lines, and branch cuts, respectively.
Parameters are taken as m⊥/Ω = 1, eE0/Ω2 = 1, p‖/Ω = 0.5.

D.2 The exact WKB analysis in the semi-classical limit

For the Sauter electric field (3.48), there exist an infinite number of pairs of turning points
(zA,n, z∗A,n) and (zB,n, z∗B,n):

zA,n ≡ + i
Ω arctan

(
~Ω

m⊥ + ip‖
~eE0

)
+ inπ

Ω , (D.8a)

zB,n ≡ −
i
Ω arctan

(
~Ω

m⊥ − ip‖
~eE0

)
+ i(n+ 1)π

Ω , (D.8b)

with n = 0, 1, · · · ∈ N. Note that 0 < Im ΩzA,0 < π/2 < Im ΩzB,0 < π < Im ΩzA,1 <

3π/2 < Im ΩzB,1 < · · · . The Stokes lines emanating from the turning points form Stokes
segments as shown in figure 7. The Stokes segment crossing the real axis is infinitely degen-
erated with Stokes lines emanating from all the turning points zt = zA,n, z

∗
A,n, zB,n, z

∗
B,n.

The connection matrix for such a multiply degenerated Stokes segment is given by
eq. (3.20), and the resulting production number formula in the semi-classical limit takes
exactly the same form as that for a doubly degenerated Stokes segment (3.33), as we re-
marked in footnote 3. One can explicitly evaluate relevant actions Szt ’s, whose integrals
are enclosing pairs of turning points (zt, z

∗
t ) with zt = zA,n, zB,n, as

SzA,n = +i
∫ z∗A,n

zA,n

dz
√
Q(z) = (2n+ 1)Sα + 2nSβ , (D.9a)

SzB,n = +i
∫ z∗B,n

zB,n

dz
√
Q(z) = (2n+ 1)Sα + (2n+ 2)Sβ , (D.9b)
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where we introduced

Sα ≡ Re
[
+i
∫ z∗A,0

zA,0
dz
√
Q(z)

]
= π

Ω

∑
±

√
m2
⊥ + P 2

±

2 − ~eE0
~Ω

 , (D.10a)

Sβ ≡ Re
[
+i
∫ zA,0

zB,0
dz
√
Q(z)

]
= π

Ω

sgn p‖
∑
±

(∓1)

√
m2
⊥ + P 2

±

2 + ~eE0
~Ω

 , (D.10b)

and used the periodicity of the Sauter electric field Q(z) = Q(z + iπ/Ω) to get the second
equalities of eqs. (D.9a) and (D.9b). Note that Sα, Sβ > 0, which guarantees SA,n, SB,n > 0.
Inserting Im σzA,n = Im σzB,n = Im

[
+2i

∫ zA,0
t0 dz

√
Q(z)

]
and eq. (D.9) into the production

number formula (3.33), one arrives at

d6Ne±

dp3dx3 = 1
(2π~)3

∣∣∣∣∣
∞∑
n=0

(
e−SzA,n/~ + e−SzB,n/~

)∣∣∣∣∣
2

= 1
(2π~)3 e−2Sα/~

∣∣∣∣∣ 1 + e−2Sβ/~

1− e−2(Sα+Sβ)/~

∣∣∣∣∣
2

∼ 1
(2π~)3 e−2Sα/~

∣∣∣1 + e−2Sβ/~
∣∣∣2 . (D.11)

In the last line, we neglected O(|e−2Sα/~|2) terms, so as to be consistent with the semi-
classical approximation.

In the limit of ~Ω→ 0, the production number formula (D.11) behaves as

lim
~Ω→0

(2π~)3 d6Ne±

dp3dx3 (D.12)

= exp
[
−2π

(
m2
⊥

2~eE0
+

(~eE0)2 −m4
⊥ + 4m2

⊥p
2
‖

8(~eE0)3 (~Ω)2 +
m6
⊥ − 12m4

⊥p
2
‖ + 8m2

⊥p
4
‖

16(~eE0)5 (~Ω)4

+
(~eE0)4 − 5m8

⊥ + 120m6
⊥p

2
‖ − 240m4

⊥p
4
‖ + 64m2

⊥p
6
‖

128(~eE0)7 (~Ω)6 +O((~Ω)8)
)]
,

where the slashed parts ∼
(

(~Ω)2

~eE0

)2n+1
= ν2n+1 are absent compared to the exact for-

mula (D.6). Thus, the semi-classical exact WKB formula (3.33) works well in the semi-
classical regime, or when the applied field is slow enough compared to the electric field
strength, such that ν . 1.

D.3 Standard perturbation theory at the lowest order

The Fourier transformation of the Sauter electric field (3.48) is given by

eE(ω) = iπ ~eE0
(~Ω)2

~ω
sinh π

2
~ω
~Ω
. (D.13)
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Figure 8. (color online) Stokes graphs for a constant strong electric field superimposed by a
weak cosine perturbation (3.56). The parameters are common to the three panels ~eEs/m

2 =
0.25, Ew/Es = 0.01, |p⊥|/m = 0, and p‖/m = 0.20, except for the frequency ~Ω/m = 0.5, 1, 2 from
the left to right, respectively. The red points, the blue lines, and the green lines are representing
turning points, Stokes lines, and branch cuts, respectively.

Thus, the formula (B.10) is expressed as

(2π~)3 d6Ne±

dp3dx3 =

π2p2
‖(~eE0)2

m2
⊥+p2

‖
(~Ω)−4

sinh
π
√
m2
⊥+p2

‖

~Ω

2 , (D.14)

which agrees with the square bracket in the first equality in eq. (D.7). In the limit of
~Ω→∞, eq. (D.14) is expanded as

lim
~Ω→∞

(2π~)3 d6Ne±

dp3dx3

=
(~eE0)2p2

‖(
m2
⊥ + p2

‖

)2 (~Ω)−2 +
(~eE0)2p2

‖

(
3(~eE0)2

(
p2
‖ − 2m2

⊥

)
− π2

(
m2
⊥ + p2

‖

)3
)

3
(
m2
⊥ + p2

‖

)4 (~Ω)−4

+O((~Ω)−6). (D.15)

Compared with the exact formula (D.7), the slashed part is ∼
(

(~Ω)2

~eE0

)−4
= ν−4 absent

in the above. This implies that the standard perturbation theory is valid outside of the
semi-classical regime, or when the applied field is fast enough compared to the electric field
strength, such that ν & 1.

E Stokes graphs in the dynamically assisted Schwinger mechanism

As a supplement to section 3.5.2, i.e., the analysis of the dynamically assisted Schwinger
mechanism with a constant strong electric field superimposed by a weak cosine perturba-
tion (3.56), we here discuss the structure of Stokes graphs. We numerically solved Q(zt) = 0
and the condition (2.13) to get turning points and Stokes lines, respectively. Figure 8 dis-
plays the obtained Stokes graphs for various frequencies of the perturbation ~Ω.
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For small ~Ω (the leftmost panel in figure 8), the particle production is dominated by
the pair of turning points closest to the real axis around the origin of the plot. The location
of the dominant pair (zt,dom, z

∗
t,dom) is approximated well by that for a constant electric

field (3.52) as (zt,dom, z
∗
t,dom) ∼ (z(0)

t , z
(0)∗
t ), and the Stoke graph around the origin has

essentially the same structure as that for a constant electric field, i.e., the Weber potential.
This pair (zt,dom, z

∗
t,dom) ∼ (z(0)

t , z
(0)∗
t ) gives the production number consistent with the

Schwinger formula for a constant electric field alone. Other turning points zt’s in figure 8
have considerably larger imaginary parts than that the dominant one zt,dom has. Thus, the
corresponding actions Szt ∼ 2m Im zt become large, and their contributions are negligible
in the semi-classical limit. Note that some Stokes segments (e.g., the four Stokes segments
emanating from the four turning points Im zt ∼ 15 in the leftmost panel) go to the infinity
first and then come back to the real axis, which is in contrast to the dominant Stokes
segment that goes to the real axis directly without passing the infinity.

As increasing ~Ω, the dominant production mechanism smoothly changes from the
non-perturbative Schwinger mechanism to the perturbative multi-photon pair production
processes. During this interplay, all the turning points approach the real axis, and not
only zt,dom ∼ z

(0)
t but also other turning points, which were negligible for small values

of ~Ω, start contributing. Those additional contributions make the production number
deviates from the naive Schwinger formula. It is interesting to point out that the topology
of the Stokes graphs changes at intermediate values of ~Ω (the middle panel of figure 8).
Namely, we had some Stokes segments passing the infinity before crossing the real axis
for small ~Ω as in the leftmost panel, but those Stokes segments change their topology as
increasing ~Ω and eventually cease to passing the infinity. For example, the four turning
points Im zt ∼ 15 in the leftmost panel go down to the real axis as increasing ~Ω. At
some point they cross a Stokes line from the dominant turning point zt,dom, after which the
Stokes segments emanating from those turning points cease to passing the infinity. This is
intuitively because any Stokes lines cannot cross each other except at a turning point or a
pole for finite |z| <∞, and thus if a Stokes segment eventually crossing the real axis is (not)
separated from the real axis by some Stokes lines, it must (needs not) pass the infinity.

For sufficiently large values of ~Ω (the rightmost panel of figure 8), the above-
mentioned change in the topology of the Stokes graphs finishes, and all the Stokes
segments cross the real axis without passing the infinity. Contributions from each Stokes
segment are roughly equal, as the distances between the turning points and the real
axis are almost the same and so are the actions Szt ’s. The structure of the Stokes
graph is essentially the same as that for the cosine perturbation (3.56) alone and is
almost unaffected by the presence of the strong constant electric field. This is reasonable
since the particle production in this parameter regime is dominated by the perturbative
multi-photon pair production processes by the perturbation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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