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1 Introduction

Elementary particles propagating on Minkowski space-time have been classified long time

ago by Wigner using the unitary irreducible representations (UIRs) of the Poincaré group

ISO(3, 1) [1] (see also [2] for more details in any dimension). In d space-time dimensions, the

massive particles are determined by representations of the rotation group SO(d−1), while

the massless particles (helicity particles) which describe particles with a finite number of de-

grees of freedom are determined by representations of the Euclidean group Ed−2 =ISO(d−2).
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Another massless representation, called continuous spin representation,1 describes a con-

tinuous spin particle (CSP) with an infinite number of physical degrees of freedom per

spacetime point characterized by the representations of the short little group SO(d − 3),

the little group of Ed−2 [3]. This representation labels by a dimensionful parameter µ (a

real parameter with the dimension of a mass) so as when µ vanishes, the helicity eigenstates

do not mix while they do when µ 6= 0. Thus, the continuous spin parameter µ controls the

degree of mixing. In fact, in the “helicity limit” µ → 0, the continuous spin representa-

tion becomes reducible and decomposes into the direct sum of all helicity representations.

We recall that for the both massless representations, helicity and continuous spin, the

eigenvalue of the quadratic Casimir operator C2 := P 2 (the square of the momentum Pµ)

vanishes. However, for the helicity representation, the eigenvalue of the quartic Casimir

operator C4 := W 2 (the square of the Pauli-Lubanski vector Wµ = 1
2 ε

µνρσ Pν Jρσ) is zero,

while the one for the continuous spin representation becomes µ2.

Historically, constructing a local covariant action principle for continuous spin particle

has been a mystery for decades, however, about 75 years after Wigner’s classification, the

first action principle for the bosonic continuous spin particle was presented by Schuster and

Toro [4] in 2014, and the first action principle for the fermionic continuous spin particle

was suggested in 2015 [5]. In these two action principles there are no constraint on the

gauge fields and parameters, so in this sense one can refer to them as unconstrained formu-

lations of the CSP theory. Along with the unconstrained formulation, Metsaev established

a constrained formulation of the CSP theory for both the bosonic [6] and fermionic [7]

continuous spin fields, in d-dimensional (A)dS space-time, in which the gauge fields and

parameters are constrained. These two formulations of the CSP theory, unconstrained and

constrained,2,3 that have been formulated based on the metric-like approach, have not yet

been supersymmetrized in the literature, which is the main purpose of the present paper.

Indeed, for each formulation, we provide supersymmetry transformations for the N = 1

continuous spin supermultiplet in 4-dimensional Minkowski space-time. We observe that,

in the CSP supermultiplet, the bosonic field should be a complex scalar continuous spin

field and the fermionic one must be a Dirac continuous spin field:

N = 1 CSP supermultiplet ⇒
(

complex scalar CSP , Dirac CSP

)
. (1.1)

We note that the first supersymmetry transformations, in the frame-like approach,

for the N = 1 continuous (infinite) spin supermultiplet was presented by Zinoviev [15] in

three-dimensional Minkowski space-time, which was recently generalized to four dimen-

sions [16], however our approach to supersymmetrize the theory in this paper is different.

1Also known as infinite spin representation in the literature.
2Notice that, in 4-dimensional flat space-time, we have explained in [8] how to obtain unconstrained

formulation of the bosonic [4] and fermionic [5] CSPs, and moreover, we have elaborated in [9] how to

acquire constrained formulation of the bosonic [6] and fermionic [7] CSPs, both directly from the Fronsdal-

like and Fang-Fronsdal-like equations [10].
3Note also that in the helicity limit µ→ 0, unconstrained formulation of the bosonic [4] and fermionic [5]

CSP actions reproduce, respectively, the bosonic [11] and fermionic [12] higher spin actions, and constrained

formulation of the bosonic [6] and fermionic [7] CSP actions reproduce, separately, the Fronsdal [13] and

Fang-Fronsdal [14] actions, in 4-dimensional flat space-time.
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Furthermore, there are other papers discussing the supersymmetric continuous (infinite)

spin gauge theory [17]–[19]. Apart from supersymmetry, a number of papers have studied

other aspects of the continuous spin theory in different approaches [20]–[46]. For instance,

since an interacting theory is more favored, possible interactions of continuous spin par-

ticle with matter have been investigated in [8, 33], while interactions of continuous spin

tachyon4 is examined in [41, 44].

The presence of the dimensionful parameter µ 6= 0 in the CSP theory makes it in some

ways similar to a massive theory. More precisely, one may find an apparent connection (in

formulations) between the massive higher spin gauge field theory and the continuous spin

one. For instance, although continuous spin particle is massless, its representation is not

conformally invariant since it is characterized by a parameter with the dimension of a mass,

like massive particles [47]. Moreover, we shall show that the Dirac continuous spin field

equation does not decouple into two Weyl equations, which is similar to the massive Dirac

spin-1
2 field equation. In addition, the number of real CSP fields we use for the N = 1

CSP supermultiplet (1.1) equals the number of real fields in the massive higher spin N = 1

supermultiplet, in which two bosonic fields (with opposite parity) and two fermionic fields

are used [48]. On the other side, there is a tight connection between the massless higher

spin field theory and the continuous spin one at µ = 0 (refer e.g. to footnote 3). These two

connections with the massive and massless higher spin gauge theories can give us a better

understanding of how to deal with and develop the continuous spin gauge field theory.

The layout of this paper is as follows. In section 2, we will briefly review the supersym-

metric higher spin theory à la Fronsdal for both half-integer and integer spin supermulti-

plets. The review contains and pursues a method we have used to find the supersymmetry

transformations for the CSP theory, however, the reader can jump to next section and

follows the main part of the paper. In section 3, we will present supersymmetry trans-

formations for unconstrained formulation, while in section 4, we will provide those for the

constrained formulation of the CSP theory. In section 5, we will make a connection be-

tween two obtained supersymmetry transformations, presented in 3 and 4. The conclusions

are displayed in section 6. In appendices; we present our conventions in the appendix A.

The appendix B includes a proof related to section 3. Transformation rules of the chiral

supermultiplet will be presented in appendix C. A discussion on inverse operators will be

displayed in appendix D. Useful relations concerning supersymmetry and so on will be

presented in the appendix E.

2 SUSY higher spin gauge theory: a brief review

This section reviews the massless half-integer and integer higher spin N = 1 supermultiplets

in four-dimensional Minkowski space-time in the metric-like approach which is known for a

long time [49]5 (see also [48] for review). However, our approach is based on the generating

functions and we deal with operators, so as this fashion somewhat facilitates calculations.

4Also known as massive continuous spin particle.
5We note that a frame-like approach was given by Vasiliev in [50]. We note also that off-shell superfield

realizations of N = 1, d = 4 higher superspin massless multiplets were given in [51, 52].
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Moreover, the applied method to supersymmetrize the massless higher spin (HS) theory in

this section has been employed for the CSP theory in sections 3 and 4, so in this respect

the present review may be informative.

In 4-dimensional flat space-time, a real massless bosonic higher spin field (except the

spin-0 field which has one degree of freedom) has two degrees of freedom. Thus one can

consider a Majorana spinor as its superpartner, which has also two real degrees of freedom

for any arbitrary half-integer spin. Therefore, in what follows, we will take into account the

Fronsdal actions [13] (except the Klein-Gordon action) for real massless higher spin fields,

as well as the Fang-Fronsdal actions [14] in which the fermionic field is a Majorana spinor.

Two possible supermultiplets, half-integer and integer ones, will be discussed separately in

the following.

2.1 Half-integer spin supermultiplet: (s, s + 1/2)

Let us first introduce the bosonic and fermionic massless higher spin fields, respectively,

by the generating functions

φs(x, ω) =
1

s!
ωµ1 . . . ωµs φµ1...µs(x) , ψs(x, ω) =

1

s!
ωµ1 . . . ωµs ψµ1...µs(x) , (2.1)

where φµ1...µs is a tensor field of integer spin s, and ψµ1...µs is a spinor-tensor field of

half-integer spin s + 1
2 . To ignore the chiral supermultiplet (0, 1/2) which is irrelevant

for higher spins, we consider s > 1 in the half-integer spin supermultiplet (s, s+ 1/2) and

consequently in the gauge fields (2.1). The generating functions (2.1) are considered to be

double- and triple gamma-traceless, that is

(∂ 2
ω )2 φs(x, ω) = 0 , (∂ω/ )3 ψs(x, ω) = 0 , (2.2)

and obey the following homogeneity conditions

(N − s )φs(x, ω) = 0 , (N − s )ψs(x, ω) = 0 , (2.3)

where N = w · ∂ω . Then, the Fronsdal [13] and Fang-Fronsdal [14] actions can be given

respectively by6

Ibs =
1

2

∫
d4x φs(x, ∂ω) B φs(x, ω)

∣∣∣
ω=0

, (2.4)

Ifs =
1

2

∫
d4x ψs(x, ∂ω) F ψs(x, ω)

∣∣∣
ω=0

, (2.5)

where the operators B and F are respectively the bosonic and fermionic operators,

defined as

B :=−�+(ω ·∂x)(∂ω ·∂x)− 1

2
(ω ·∂x)2∂ 2

ω−
1

2
ω2(∂ω ·∂x)2+

1

2
ω2�∂ 2

ω+
1

4
ω2(ω ·∂x)(∂ω ·∂x)∂ 2

ω ,

(2.6)

F := i

[
∂/−ω/ (∂ω ·∂x)−(ω ·∂x)∂ω/ +ω/ ∂/∂ω/ +

1

2
ω/ (ω ·∂x)∂ 2

ω+
1

2
ω2(∂ω ·∂x)∂ω/ −

1

4
ω2∂/∂ 2

ω

]
. (2.7)

6We note that the spinor field ψs in (2.5) is considered to be a Majorana field, thus the overall factor

of 1
2

compared to the Fang-Fronsdal action [14] is usual for selfconjugate fields, introduced to ensure a

consistent normalization of the field operators in quantum field theory.
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We note that the hermiticity of the actions (2.4), (2.5) satisfy by

(B)† = B , (F)† = γ0 F γ0 , (2.8)

[φs(x, ω)]† = φs(x, ∂ω) , [ψs(x, ω)]† = ψ†s(x, ∂ω) , (2.9)

with respect to the following Hermitian conjugation rules

(∂ αx )† := − ∂ αx , (∂ αω )† := −ω α , (ω α)† := − ∂ αω . (2.10)

The bosonic (2.4) and fermionic (2.5) actions are invariant under the following gauge

transformations

δ φs(x, ω) = (ω · ∂x) ξs(x, ω) , (2.11)

δ ψs(x, ω) = (ω · ∂x) ζs(x, ω) , (2.12)

where ξs and ζs are gauge transformation parameters introduced by the generating

functions

ξs(x,ω) =
1

(s−1)!
ωµ1 . . .ωµs−1 ξµ1...µs−1(x) , ζs(x,ω) =

1

(s−1)!
ωµ1 . . .ωµs−1 ζµ1...µs−1(x) ,

(2.13)

subject to the traceless and gamma-traceless conditions

(∂ 2
ω ) ξs(x, ω) = 0 , ∂ω/ ζs(x, ω) = 0 . (2.14)

In order to find supersymmetry transformations which leave invariant the sum of both

free actions (2.4), (2.5)

I(s, s+1/2) = Ibs + Ifs , ; s > 1 (2.15)

one can consider the following ansatz

δ φs(x, ω) = α εψs(x, ω) , δ ψs(x, ω) = Xφs(x, ω) ε , (2.16)

δ φs(x, ∂ω) = αψs(x, ∂ω) ε , δ ψs(x, ∂ω) = ε φs(x, ∂ω) X , (2.17)

where ε is the global supersymmetry transformation parameter which is a Majorana spinor,

α is considered to be a real number determining from the closure of the SUSY algebra, and

X (assuming that X† = γ0 X γ0) is an operator which we would like to find out. To this

end, one can vary the SUSY action (2.15) with respect to the ansatz, which yields

δI(s,s+1/2) = δIbs+δIfs =
1

2

∫
d4x

[
αψs εBφs+φsBαεψs+εφsXFψs+ψsFXφs ε

] ∣∣∣
ω=0

=
1

2

∫
d4x

[
ψs (αB+FX)φs ε+εφs (αB+XF)ψs

]∣∣∣
ω=0

. (2.18)

Demanding δI(s, s+1/2) = 0, one can cancel the first term in (2.18) by choosing

αB = −F X . (2.19)

– 5 –
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Then, taking hermitian conjugation of (2.19) leads to αB = −X F which, in turn, vanishes

the second term of (2.18). Now we are in a position to find the operator X. For this

purpose, we consider a general form (which is considered to be similar to the fermionic

operator F (2.7)) with undetermined coefficients

X = i
[
∂/A1+ω/ (∂ω ·∂x)A2+(ω ·∂x)∂ω/ A3+ω/ ∂/∂ω/ A4+ω/ (ω ·∂x)∂ 2

ωA5+ω2(∂ω ·∂x)∂ω/ A6+ω2∂/∂ 2
ωA7

]
,

(2.20)

where Ai (i = 1, . . . , 7) are considered to be real functions of N(:= ω · ∂ω) to satisfy our

assumption: X† = γ0 X γ0 . Plugging the operators (2.6), (2.7), (2.20) into (2.19), and

using (anti-)commutation relations presented in appendix of [9] which lead to some useful

relations (E.2)–(E.11), one can read the coefficients Ai , which become

A1 = −α , A2 = −A4 = 2A5 =
α

2N
, A3, A6, A7 = 0 . (2.21)

Therefore, we could determine the operator X and consequently the expression for δ ψs,

which is

δψs(x,ω) = Xφs(x,ω)ε (2.22)

=−iα
[
∂/−ω/ 1

2(N+1)
(∂ω ·∂x)+ω/ ∂/

1

2(N+1)
∂ω/ −ω/ (ω ·∂x)

1

4(N+2)
∂ 2
ω

]
φs(x,ω)ε .

To find the parameter α, we should check the closure of the SUSY algebra. We will then

find that the algebra closes up to a field dependent gauge transformation parameter by

choosing α =
√

2, that is

[ δ1, δ2 ]φs(x, ω) = − 2 i (ε̄2 ∂/ ε1)φs(x, ω) + (ω · ∂x) ξs(φ) , (2.23)

where

ξs(φ) =
i

N + 1

[
(ε̄2 ω/ ε1) ∂ 2

ω − 2 (ε̄2 ∂/ω ε1)
]
φs(x, ω) . (2.24)

To illustrate how the SUSY algebra closes we have used the Majorana flip relations (E.1)

and the identity (E.13).

Hence, we find that the SUSY action (2.15) is invariant under the following supersym-

metry transformations:

δφs(x,ω) =
√

2εψs(x,ω), (2.25)

δψs(x,ω) =− i√
2

[
2∂/−ω/ 1

N+1
(∂ω ·∂x)+ω/ ∂/

1

N+1
∂ω/ −ω/ (ω ·∂x)

1

2(N+2)
∂ 2
ω

]
φs(x,ω)ε .

(2.26)

This is equivalent to the well-known result of the supersymmetry transformations for the

half-integer spin supermultiplets (s, s+ 1/2) with s > 1, which was first presented by

Curtright in [49].

– 6 –
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2.2 Integer spin supermultiplet: (s + 1/2, s + 1)

Let us take into account s > 0 for the integer spin supermultiplet (s+ 1/2, s+ 1), and as a

result for the generating functions in (2.1). In this case, one can consider the bosonic [13]

and fermionic [14] higher spin actions respectively by

Ibs+1 =
1

2

∫
d4x φs+1(x, ∂ω) B φs+1(x, ω)

∣∣∣
ω=0

, (2.27)

Ifs =
1

2

∫
d4x ψs(x, ∂ω) F ψs(x, ω)

∣∣∣
ω=0

, (2.28)

where the bosonic B and fermionic F higher spin operators were given in (2.6), (2.7) . In

order to find the supersymmetry transformations for the SUSY action

I(s+1/2, s+1) = Ibs+1 + Ifs , ; s > 0 (2.29)

one can start with the following ansatz

δ φs+1(x, ω) = i ε ω/ f ψs(x, ω) , δ ψs(x, ω) = Y(∂ω)φs+1(x, ω) ε , (2.30)

δ φs+1(x, ∂ω) = i ψs(x, ∂ω) f ∂ω/ ε , δ ψs(x, ∂ω) = −ε φs+1(x, ∂ω) Y(ω) , (2.31)

where ε is the global supersymmetry transformation parameter, f can be in general a real

function of N determining from the closure of the SUSY algebra, and Y is an operator

(assuming that Y(∂ω)† = − γ0 Y(ω) γ0) that we would like to find. We note that presence

of the unit imaginary number i in the ansatz guaranties that the Majorana spinor field is

real. Varying the SUSY action (2.29) with respect to the above ansatz, we will reach to

δI(s+1/2,s+1) = δIbs+1+δIfs

=
1

2

∫
d4x

[
iψsf∂ω/ εBφs+1+φs+1Biεω/ fψs−εφs+1Y(ω)Fψs+ψsFY(∂ω)φs+1ε

]
=

1

2

∫
d4x

[
iψs

[
f∂ω/ B−iFY(∂ω)

]
φs+1ε+iεφs+1

[
Bω/ f+iY(ω)F

]
ψs

]
. (2.32)

Demanding δI(s+1/2, s+1) = 0, we have to choose

f ∂ω/ B = iF Y(∂ω) , (2.33)

leading in turn to Bω/ f = − iY(ω) F, by taking hermitian conjugation of (2.33). Hence,

the remaining task is determining the operator Y(∂ω). Considering the property we

adopted to the operator Y(∂ω), one can drop an ω/ from the left-hand-side of the operator

F (2.7), and surmise a general form for Y(∂ω) as

Y(∂ω) = B1 (∂ω · ∂x) +B2 ∂/ ∂ω/ +B3 (ω · ∂x)∂ 2
ω +B4 ω/ (∂ω · ∂x)∂ω/ +B5 ω/ ∂/∂

2
ω , (2.34)

where Bi (i = 1, . . . , 5) are considered to be real functions of N(:= ω · ∂ω). Then, plug-

ging (2.6), (2.7), (2.34) into (2.33), and applying the (anti-)commutation relations presented

in appendix of [9], we will find the coefficients as

B1 = − f , B2 = f B3 = − 1

2
f B4, B5 = 0 . (2.35)

– 7 –
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Therefore, the operator Y(∂ω) and as a result the expression for δψs can be given by

δψs(x, ω) = Y(∂ω)φs+1(x, ω) ε (2.36)

= f

[
∂/ ∂ω/ − (∂ω · ∂x)− 1

2
(ω · ∂x) ∂ 2

ω

]
φs+1(x, ω) ε .

The closure of the SUSY algebra will fix the f operator. In fact, we will find by choosing

f =
1√
N + 1

, (2.37)

the algebra will be closed up to a field dependent gauge transformation parameter

[ δ1, δ2 ]φs+1 = − 2 i (ε̄2 ∂/ ε1)φs+1 + (ω · ∂x) ξs+1(φ) (2.38)

where

ξs+1(φ) = − i√
N + 1

[
(ε̄2 ω/ ε1) ∂ 2

ω − 2 (ε̄2 ∂/ω ε1)
]
φs+1 . (2.39)

Therefore, we find that the SUSY action (2.29) is invariant under the following supersym-

metry transformations:

δ φs+1(x, ω) = i ε ω/
1√
N + 1

ψs(x, ω) , (2.40)

δ ψs(x, ω) =
1√
N + 1

[
∂/ ∂ω/ − (∂ω · ∂x)− 1

2
(ω · ∂x) ∂ 2

ω

]
φs+1(x, ω) ε . (2.41)

This is also equivalent to the well-known result of the supersymmetry transformations for

the integer spin supermultiplets (s+1/2, s+1) with s > 0, which was first discovered in [49].

3 Unconstrained formulation of the CSP theory

This section, and the next one, include main results of this paper. As we know, a general

property of all supersymmetric theories is that the number of physical bosonic degrees of

freedom is always identical to the number of fermions. On the other hand, we know that

a continuous spin particle (bosonic or fermionic) has infinite number of physical degrees of

freedom per space-time point. Hence, the equality of the number of bosonic and fermionic

degrees of freedom in a CSP supermultiplet looks like meaningless. Therefore, in four-

dimensional flat space-time, there would be in principle four possibilities for the N = 1

supermultiplet containing of a CSP and CSPino (superpartner of CSP)

N = 1 CSP supermultiplet ⇒
(

CSP , CSPino
)

(3.1)

so as one can consider CSP to be a real or complex scalar continuous spin field, while

one may consider CSPino to be a Majorana or Dirac continuous spin field. Among these

possibilities, we find that the mentioned case in (1.1) with complex scalar CSP field and

Dirac CSP field is the only choice which is consistent with supersymmetry expectations.

Here, in this section, we first present bosonic [4] and fermionic [5] unconstrained for-

mulations of the continuous spin gauge field theory. Then we provide supersymmetry

– 8 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
7

transformations for the N = 1 continuous spin supermultiplet which leave the sum of the

bosonic and fermionic actions invariant and simultaneously satisfy the SUSY algebra, as

we expect. We also investigate the helicity limit of the SUSY CSP theory and supersym-

metrize unconstrained formulation of the higher spin gauge field theory à la Segal, given

by the actions [11, 12]. We note that this formulation of the higher spin theory has not

been already supersymmetrized. Notice again that in these formulations of the CSP and

HS theories there is no constraint on gauge fields (bosonic or fermionic) and their related

gauge transformation parameters.

3.1 Bosonic action

Let us consider the Schuster-Toro action [4] in four-dimensional Minkowski space-time, in

which the scalar continuous spin gauge field is complex. Applying partial integration to the

Schuster-Toro action, the complex scalar continuous spin gauge field action is given by7

Sb
CSP

=

∫
d4xd4ηδ′(η2+1)Φ†(x,η)

[
−�+(η ·∂x)(∂η ·∂x+µ)− 1

2
(η2+1)(∂η ·∂x+µ)2

]
Φ(x,η) ,

(3.2)

where µ is continuous spin parameter, η µ is a 4-dimensional auxiliary Lorentz vector local-

ized to the unit hyperboloid η2 = −1, and δ′ is the derivative of the Dirac delta function

with respect to its argument, i.e. δ′(a) = d
da δ(a) . The complex scalar CSP field Φ is

unconstrained and introduces by a collection of totally symmetric complex tensor fields

Φµ1...µs(x) of all integer rank s, packed into a single generating function

Φ(x, η) =
∞∑
s=0

1

s!
ηµ1 . . . ηµs Φµ1...µs(x) . (3.3)

We note that in the infinite tower of spins (3.3), every spin state interns only once, and

the spin states are mixed under the Lorentz boost, so as the degree of mixing is controlled

by the continuous spin parameter µ.

The action (3.2) is invariant under gauge transformations

δξ1Φ(x, η) =

[
η · ∂x −

1

2
(η2 + 1)(∂η · ∂x + µ )

]
ξ1(x, η) , (3.4)

δξ2Φ(x, η) = (η2 + 1)2 ξ2(x, η) , (3.5)

where ξ1, ξ2 are two arbitrary complex gauge transformation parameters, which are uncon-

strained. By varying the action (3.2) with respect to the gauge fields Φ† and Φ, one can

obtain two independent equations of motion which the one for the CSP gauge field Φ reads

δ′(η2 + 1)

[
−�+ (η · ∂x)(∂η · ∂x + µ)− 1

2
(η2 + 1)(∂η · ∂x + µ)2

]
Φ(x, η) = 0 , (3.6)

besides a same independent equation of motion for the CSP gauge field Φ†.

7We note an overall factor of 1
2

has been dropped from the Schuster-Toro action [4] compared to (3.2),

because we deal with a complex scalar CSP field.
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3.2 Fermionic action

Let us now consider the fermionic version of the Schuster-Toro’s action in four-dimensional

flat space-time [5], in which the fermionic continuous spin field is a Dirac spinor. By

applying partial integration to the action [5], the Dirac continuous spin gauge field action

is given by

S f
CSP

=

∫
d4x d4η δ′(η2 + 1) Ψ(x, η) (η/+ i)

[
∂/ − (η/− i)(∂η · ∂x + µ)

]
Ψ(x, η) , (3.7)

where ∂/ (or η/) is defined according to the Feynman slash notation: ∂/ ≡ γµ ∂µ with γµs

as the gamma matrices in 4 dimensions . The fermionic SCP field Ψ is considered to be a

Dirac spinor field, which is unconstrained and introduced by the generating function

Ψ(x, η) =

∞∑
s=0

1

s!
ηµ1 . . . ηµs Ψµ1...µs(x) , (3.8)

where Ψµ1...µs(x) are totally symmetric Dirac spinor-tensor fields of all half-integer spin

s + 1
2 , in such a way that the spinor index is left implicit . Again, as the bosonic case,

in the infinite tower of spins (3.8), every spin state interns only once, and the spin states

mix under the Lorentz boost which the degree of mixing is controlled by the continuous

parameter µ.

The action (3.7) is invariant under spinor gauge transformations

δζ1 Ψ(x, η) =
[
∂/ (η/− i)− (η2 + 1)(∂η · ∂x + µ)

]
ζ1(x, η) , (3.9)

δζ2 Ψ(x, η) = (η2 + 1)(η/+ i) ζ2(x, η) , (3.10)

where ζ1, ζ2 are the unconstrained arbitrary spinor gauge transformation parameters .

Varying the action (3.7) with respect to the spinor gauge field Ψ yields the equation

of motion for the unconstrained Dirac continuous spin field Ψ

δ′(η2 + 1) (η/+ i) [ ∂/ − (η/− i)(∂η · ∂x + µ) ] Ψ(x, η) = 0 . (3.11)

We note that there are two possibilities for presenting the unconstrained formulation

of the fermionic CSP/HS theory (see appendix of B in [8]). One possibility is the one we

have used in [12] and here. Another possibility can be expressed by converting i→ − i in

relations of (3.7)–(3.11) which have been used in [5, 8].

Remark. Here, we recall that a four-component Dirac spinor field can be written as

ψ =

(
ψL
ψR

)
,

where the two-component objects ψL and ψR are left-handed and right-handed Weyl spinors

respectively. If one uses notation in [53] which defines

σµ := (1, ~σ) , σ̄µ := (1,−~σ) , so that γµ =

(
0 σµ

σ̄µ 0

)
, (3.12)
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then the Dirac equation for massive spin 1
2 particle can be written as(

−m iσ · ∂
i σ̄ · ∂ −m

)(
ψL
ψR

)
= 0 , (3.13)

demonstrating the two Lorentz group representations ψL and ψR are mixed by the mass

term in the Dirac equation. However, in massless case, the equations for ψL and ψR
decouple and yield Weyl equations:

i σ̄ · ∂ ψL = 0 , i σ · ∂ ψR = 0 . (3.14)

Based upon the above discussion, as the Dirac continuous spin gauge field (given by

the equation of motion (3.11)) describes a massless particle, one can expect to derive the

so-called Weyl continuous spin equations. To this end, using the above notation, let us

write (3.11) in terms of ΨL and ΨR

δ′(η2 + 1)

(
M i σ · ∂
i σ̄ · ∂ M

)(
ΨL

ΨR

)
= 0 , (3.15)

where

M := (σ ·η)(σ̄ ·∂)−(η2 +1)(∂η ·∂x+µ) , M := (σ̄ ·η)(σ ·∂)−(η2 +1)(∂η ·∂x+µ) . (3.16)

This equation, manifestly, demonstrates that the Dirac continuous spin equation (3.15)

can not be decoupled into two independent Weyl CSP equations. Even in the helicity

limit (µ → 0) which massless higher spin equations are expected to be reproduced, the

equation (3.15) does not decompose into Weyl equations. However, the latter case happens

due to the unconstrained formulation we use, so as in the constrained formulation (next

section) we will see it can be decomposed.

3.3 Supersymmetry transformations

Now we are in a position to supersymmetrize unconstrained formulation of the continuous

spin theory in 4-dimensional flat space-time for the N = 1 supermultiplet, in which we have

considered the bosonic CSP as a complex scalar continuous spin filed and the fermionic

CSP as a Dirac continuous spin field. By this feature, we find conveniently that the SUSY

CSP action, a sum of the bosonic (3.2) and fermionic (3.7) CSP actions

S
SUSY

CSP
= S b

CSP
+ S f

CSP
(3.17)

is invariant under the following supersymmetry transformations

δΦ(x, η) =
1√
2
ε̄
(
1 + γ5

) (
η/− i

)
Ψ(x, η) , (3.18)

δΨ(x, η) =
1√
2

[
∂/ − 1

2

(
η/+ i

)(
∂η · ∂x + µ

)] (
1− γ5

)
ε Φ(x, η) , (3.19)
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where ε is an arbitrary constant8 infinitesimal, anticommuting, Dirac spinor object that

parameterizes the supersymmetry transformations (see (E.1) for its properties), γ5 is the

fifth gamma matrix, and Φ, Ψ are respectively the complex scalar and Dirac CSP fields.

Let us now calculate commutator of the supersymmetry transformations (3.18), (3.19)

acting on the bosonic and fermionic CSP fields. We straightforwardly find the SUSY

commutator on the bosonic CSP field yields

[ δ1, δ2 ] Φ(x, η) = − 2 i (ε̄2 ∂/ ε1) Φ(x, η) , (3.20)

which corresponds to the translation, while the one on the fermionic CSP field becomes

[δ1, δ2]Ψ(x, η) ≈ −2i(ε̄2∂/ε1)Ψ(x, η) (3.21)

+
[
∂/(η/− i)− (η2 + 1)(∂η · ∂x + µ)

] [1

2
ε̄1γµε2γ

µ(1− γ5)Ψ(x, η)

]
.

where “≈” denotes that we have applied the Dirac continuous spin field equation of mo-

tion (3.11). Taking into account a field dependent spinor gauge transformation parameter,

given by

ζ1(Ψ) =

[
1

2
ε̄1γµε2γ

µ(1− γ5)Ψ(x, η)

]
, (3.22)

the second line in (3.21) would be the ζ1 gauge transformation (3.9), demonstrating that

the SUSY commutator acting on the fermion CSP field is closed on-shell, up to a gauge

transformation.

Remarks. Concerning the supersymmetry transformations we obtained in (3.18)

and (3.19), there are some remarks which are useful to discuss:

• By starting from the ansatz δΦ = α ε̄Ψ which α is an arbitrary parameter, one

can prove9 that there would be no δΨ to leave invariant the sum of the bosonic and

fermionic actions. In other words, in (3.18), the term (η/−i) is necessary for invariance

of the SUSY action (see the appendix B for the proof).

• Employing the gamma fifth matrix γ5 in the above set was essential for the closure

of the SUSY algebra. In fact, by omitting γ5, one can consider the bosonic field

as a real scalar CSP field and the fermionic one as a Majorana or Dirac CSP field.

However, in these two cases, although the SUSY action will be invariant under such

transformations, the SUSY algebra will not be closed.

• When the gamma fifth was employed, the CSP field has to be complex while the

CSPino can be either a Majorana or a Dirac CSP field. We note that again a CSP

has infinite physical degrees of freedom per space-time point, so as the Majorana or

Dirac CSP field can be candidate of the CSPino.

8We discuss global supersymmetry which means that ε is a constant, satisfying ∂µ ε = 0.
9We thank Mohammad Khorrami for discussion and sending us the proof.
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• If one chooses the Majorana CSP field as superpartner of the complex scalar CSP field,

then the right-hand-side of (3.19) does not satisfy the Majorana spinor condition and

should be improved by adding a complex conjugate of the right-hand-side of (3.19).

However, by adding the complex conjugate term, one finds that the SUSY algebra

can not be closed.10

• For the N = 1 supermultiplet, we had to pick the Dirac CSP field as superpartner

of the complex scalar CSP field. Therefore, one concludes that in the context of the

CSP theory, instead of the equality of the number of bosonic and fermionic physical

degrees of freedom, the number of bosonic and fermionic real CSP fields should be

equal. This fact can be seen here for the N = 1 supermultiplet, and may hold for

N > 1 but it remains to be checked.

• As we employed the Dirac CSP field, we deal with supersymmetry transformation

parameter ε which is also a Dirac spinor object. Therefore, to illustrate how the

SUSY algebra closes, we have used the so-called “Dirac flip relations” (E.1). Indeed,

it is notable to mention that the Majorana flip relations hold also for Dirac spinors11

(see [54], page 49, for more details) .

• Although the supersymmetry transformation parameter ε is a Dirac spinor object, it

is effectively not a Dirac spinor, but the right-handed Weyl spinor. This is due to the

fact that, by defining 1
2 (1− γ5) ε := Rε := εR, one can see that ε always appears as

εR and εR in the SUSY transformations (3.18) and (3.19) respectively, which reflects

the fact that we deal with N = 1 SUSY.12

• In the frame-like approach, authors of [16] have supersymmetrized the infinite spin

theory using four fields; two real infinite spin fields with opposite parity, as well as

two Majorana infinite spin fields. In this regard, the number of real CSP fields we

have used is quite consistent with [16].

3.4 Helicity limit

By the term “helicity limit”,13 we refer to a case that the continuous spin parameter µ

vanishes, and consequently the known results of the higher spin theory are expected to

be reproduced. Since, in this section, we deal with unconstrained formulation of the CSP

theory, it is natural to arrive at unconstrained formulation of the higher spin theory14 in the

helicity limit. In the approach we follow here, unconstrained formulation of the bosonic

higher spin gauge field theory was established by Segal in d-dimensional (A)dS space-

time [11]. In four-dimensional flat space-time, this theory becomes the helicity limit of the

10We thank Dmitri Sorokin for many fruitful discussions on this issue.
11We thank Antoine Van Proeyen for clarifying the subject.
12We thank again Dmitri Sorokin for pointing out this important comment.
13Authors of [4] used the term “helicity correspondence”.
14Here, by the term “unconstrained” we mean there are no constraints on the gauge fields and parameters,

as well as there are no auxiliary fields in the theory. However, there are some differences in the meaning of

the term, e.g. see unconstrained formulations in [55–61].
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Schuster-Toro formulation (see [4, 8] and [12] for more details). In addition, unconstrained

formulation of the fermionic higher spin gauge field theory was constructed in d-dimensional

(A)dS space-time [12], which in four-dimensional flat space-time becomes the helicity limit

of the fermionic CSP action [5]. However, as we know, unconstrained formulation of the

higher spin gauge theory à la Segal has not been supersymmetrized by now. Therefore, in

the helicity limit, we will reach to a result that has not been already in the literature and

thus its accuracy should be examined, what we will do here.

At µ = 0, the bosonic and frmionic CSP actions (3.2), (3.7) reduce respectively to the

following bosonic and fermionic higher spin actions

Sb
HS

=

∫
d4xd4ηδ′(η2 + 1)Φ†(x, η)

[
−�+ (η · ∂x)(∂η · ∂x)− 1

2
(η2 + 1)(∂η · ∂x)2

]
Φ(x, η) ,

(3.23)

Sf
HS

=

∫
d4xd4η δ′(η2 + 1)Ψ(x, η)

[
(η/+ i)∂/ − (η2 + 1)(∂η · ∂x)

]
Ψ(x, η) , (3.24)

where, here, the bosonic field Φ is a complex higher spin field and the fermionic one Ψ is

a Dirac higher spin field. These fields can be introduced respectively by the generating

functions in (3.3) and (3.8), but by this difference that here the infinite towers of spins are a

direct sum over all integer helicity states (s = 0, 1, · · · ,∞) and all half-integer helicity states

(s = 1/2, 3/2, · · · ,∞), in which helicity states do not mix under the Lorentz boost. These

higher spin actions are invariant under gauge transformations (3.4), (3.5), (3.9), (3.10), and

their equations of motion are given by (3.6), (3.11), when we set µ = 0.

By taking the helicity limit of the CSP theory (setting µ = 0), one can propose that

the SUSY higher spin action à la Segal, a sum of the complex higher spin action (3.23) and

the Dirac higher spin action (3.24)

S
SUSY

HS
= S b

HS
+ S f

HS
, (3.25)

is invariant under the following supersymmetry transformations

δΦ(x, η) =
1√
2
ε̄
(
1 + γ5

)(
η/− i

)
Ψ(x, η) , (3.26)

δΨ(x, η) =
1√
2

[
∂/ − 1

2

(
η/+ i

)(
∂η · ∂x

)] (
1− γ5

)
ε Φ(x, η) . (3.27)

We have examined and found that indeed the SUSY higher spin action (3.25) is invariant

under the above supersymmetry transformations, and the SUSY algebra closes on-shell

up to a gauge transformation. More precisely, relations of (3.20)–(3.22) with µ = 0 will

be obtained for the closure of the SUSY higher spin algebra. Here, we just provided the

supersymmetry transformations (3.26), (3.27) for unconstrained formulation of the higher

spin gauge theory (à la Segal), and let us postpone further discussion to subsection 4.4,

where we will investigate the helicity limit of constrained formalism.

4 Constrained formulation of the CSP theory

In this section, we first display bosonic [6] and fermionic [7] constrained formulations of the

continuous spin gauge field theory in 4-dimensional flat space-time, discovered by Metsaev

– 14 –
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in d-dimensional (A)dS space-time. Then we provide supersymmetry transformations for

the N = 1 continuous spin supermultiplet which leave the sum of the bosonic and fermionic

actions invariant. Again, as the previous section, we consider a supermultiplet consist of

one complex scalar CSP field and one Dirac CSP field.

4.1 Bosonic action

Let us define the complex scalar continuous spin gauge field as the generating function

Φ(x, ω) =

∞∑
s=0

1

s!
ωµ1 . . . ωµs Φµ1...µs(x) , (4.1)

where Φµ1...µs represent for all totally symmetric complex tensor fields of all integer rank

s, and ωµ is a 4-dimensional auxiliary vector. Then, the bosonic CSP action [6], in which

the boson field is complex, is given by the complex scalar continuous spin action

I b
CSP

=

∫
d4x Φ†(x, ∂ω)

(
B + B1 + B2

)
Φ(x, ω)

∣∣∣
ω=0

, (4.2)

with

B :=−�+(ω ·∂x)(∂ω ·∂x)− 1

2
(ω ·∂x)2∂ 2

ω−
1

2
ω2(∂ω ·∂x)2+

1

2
ω2�∂ 2

ω+
1

4
ω2(ω ·∂x)(∂ω ·∂x)∂ 2

ω ,

(4.3)

B1 :=µ

[(
ω ·∂x−ω2(∂ω ·∂x)+

1

4
ω2(ω ·∂x)∂ 2

ω

)
−1√

2(N+1)

+
−1√

2(N+1)

(
∂ω ·∂x−(ω ·∂x)∂ 2

ω+
1

4
ω2(∂ω ·∂x)∂ 2

ω

)]
(4.4)

B2 :=µ2

[
1

2(N+1)
+ω2 1

8(N+3)
∂ 2
ω−

1

4
ω2 1√

(N+1)(N+2)
− 1

4

1√
(N+1)(N+2)

∂ 2
ω

]
, (4.5)

where N := ω · ∂ω, and µ is the continuous spin parameter. We note that the operators B,

B1 and B2 are Hermitian (i.e. B† = B) with respect to the Hermitian conjugation rules

(∂ αx )† := − ∂ αx , (∂ αω )† := −ω α , (ω α)† := − ∂ αω . (4.6)

The action (4.2) is invariant under the gauge transformation

δΦ(x, ω) =

(
ω · ∂x − µ

1√
2(N + 1)

− µ ω2 1

2(N + 1)
√

2(N + 2)

)
χ(x, ω) , (4.7)

where χ is the gauge transformation parameter introduced by the generating function

χ(x, ω) =
∞∑
s=1

1

(s− 1)!
ωµ1 . . . ωµs−1 χµ1...µs−1(x) . (4.8)

– 15 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
7

We note that this formulation of the CSP theory is constrained, that is, the gauge

field Φ and the gauge transformation parameter χ are respectively double-traceless and

traceless

(∂ 2
ω )2 Φ(x, ω) = 0 , (∂ 2

ω )χ(x, ω) = 0 . (4.9)

By varying the action (4.2) with respect to the gauge field Φ†, we shall arrive at the

bosonic CSP equation of motion(
B + B1 + B2

)
Φ(x, ω) = 0 , (4.10)

which after dropping a factor of (1 − 1
4 ω

2 ∂ 2
ω ) from its left-hand-side can be expressed as

the following form[
−�+

(
ω ·∂x−µ

1√
2(N+1)

−µω2 1

2(N+1)
√

2(N+2)

)

×

(
∂ω ·∂x−

1

2
(ω ·∂x)∂2

ω−µ
1√

2(N+1)
+

1

2
µ

1√
2(N+2)

∂2
ω+µω2 1

4(N+2)
√

2(N+3)
∂2
ω

)]
Φ(x,ω) = 0 .

(4.11)

In comparison to the spin-two case, one can refer to (4.10) and (4.11) as the Einstein-like

and Ricci-like equations respectively. We note that in the helicity limit µ → 0, the above

equation of motion reduces to a direct sum of all Fronsdal equations

∞∑
s=0

[
−� + (ω · ∂x) (∂ω · ∂x) − 1

2
(ω · ∂x)2 ∂ 2

ω

]
φs(x, ω) = 0 , (4.12)

where φs was given by the generating function in (2.1).

4.2 Fermionic action

Let us introduce the Dirac continuous spin gauge field by the generating function

Ψ(x, ω) =
∞∑
s=0

1

s!
ωµ1 . . . ωµs Ψµ1...µs(x) , (4.13)

where Ψµ1...µs denote for all totally symmetric Dirac spinor-tensor fields of all half-integer

spin s + 1
2 , and the spinor index is left implicit. The fermionic CSP action [7], in which

the fermion field is a Dirac spinor, is then given by the Dirac continuous spin action

I f
CSP

=

∫
d4x Ψ(x, ∂ω)

(
F + F1

)
Ψ(x, ω)

∣∣∣
ω=0

, (4.14)

where

F := i

[
∂/−ω/ (∂ω ·∂x)−(ω ·∂x)∂ω/ +ω/ ∂/∂ω/ +

1

2
ω/ (ω ·∂x)∂ 2

ω+
1

2
ω2(∂ω ·∂x)∂ω/ −

1

4
ω2∂/∂ 2

ω

]
, (4.15)

F1 :=µ

[
1

N+1

(
1−ω/ ∂ω/ −

1

4
ω2∂ 2

ω

)
+

(
ω/ − 1

2
ω2∂ω/

)
−i√

2(N+1)
+

−i√
2(N+1)

(
∂ω/ −

1

2
ω/ ∂ 2

ω

)]
.

(4.16)
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We note that operators F, F1 are Hermitian (i.e. F† = γ0 F γ0) with respect to the Her-

mitian conjugation rules (4.6).

The action (4.14) is invariant under the gauge transformation

δΨ(x, ω) =

(
ω · ∂x + µ

1√
2(N + 1)

− iµω/ 1

2(N + 1)(N + 2)
+ µω2 1

[2(N + 2)]3/2

)
τ(x, ω) ,

(4.17)

where τ is the spinor gauge transformation parameter introduced by the generating function

τ(x, ω) =

∞∑
s=1

1

(s− 1)!
ωµ1 . . . ωµs−1 τµ1...µs−1(x) . (4.18)

The formulation is constrained so as the spinor gauge field Ψ and the spinor gauge trans-

formation parameter τ are respectively triple gamma-traceless and gamma-traceless

(∂ω/ )3 Ψ(x, ω) = 0 , (∂ω/ ) τ(x, ω) = 0 . (4.19)

By varying the action (4.14) with respect to the gauge field Ψ, one can easily obtain

the Dirac CSP equation of motion(
F + F1

)
Ψ(x, ω) = 0 , (4.20)

which after removing a factor of (1− 1
2 ω/ ∂ω/ −

1
4 ω

2 ∂ 2
ω ) from its left-hand-side will take the

following form

i

[
∂/−iµ 1

N+1
+µω/

2

[2(N+1)]3/2
(4.21)

−
(
ω ·∂x+µ

1

[2(N+1)]1/2
+iµω/

1

2(N+1)(N+2)
+µω2 1

[2(N+2)]3/2

)
∂ω/

]
Ψ(x,ω) = 0 .

We note that, similar to the previous section, in constrained formulation there are also two

possibilities for presenting the fermionic CSP theory.15 One possibility is the one we have

stated in above, however there exists another possibility which obtains by converting i→
− i in relations of (4.16), (4.17), (4.21) that has been applied in [9] (see also appendix D).

Remark. Let us here pursue again the discussion we had in the previous section about

Weyl equations. Referring to the issue and using the notation we applied in that section,

one can write the Dirac CSP equation of motion (4.21) as(
M iΣ + iΞ

iΣ + iΞ M

)(
ΨL

ΨR

)
= 0 , (4.22)

where

M :=µ
1

N+1
+µ

1

2N(N+1)
(σ ·ω)(σ̄ ·∂ω) , (4.23)

Σ :=σ ·∂−(ω ·∂x)(σ ·∂ω) , (4.24)

Ξ :=µ(σ ·ω)
2

[2(N+1)]3/2
−µ 1

[2(N+1)]1/2
(σ ·∂ω)−µω2 1

[2(N+2)]3/2
(σ ·∂ω) . (4.25)

15Notice that, in contrast to the unconstrained formulation, here there exists just one possibility for

expressing the fermionic HS theory, which is the Fang-Fronsdal formalism [14].
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It is clear, when µ 6= 0, the operator M is non-zero and as a result the equation (4.22)

does not decompose into two Weyl equations. However, in the helicity limit µ → 0,

which the higher spin equations should be reproduced, the operators M and Ξ vanish, and

consequently the equation (4.22) decouples into two Weyl higher spin equations:

iΣ ΨL = 0 , iΣ ΨR = 0 . (4.26)

Therefore, one may conclude that the continuous spin parameter µ (which has a dimension

of mass) in the Dirac CSP equation plays a role as mass in the massive Dirac spin- 1
2

equation. Accordingly, one can observe that although continuous spin particle is a massless

object, there would be no Weyl continuous spin equation, at least in its two formulations

which we have studied in this paper. We recall that the existence of Weyl equations was

dependent on formulation we use, so as at µ = 0 there was no weyl equations based on

unconstrained formulation, while there exists in constrained one.

4.3 Supersymmetry transformations

In previous subsections, we discussed constrained formulation of the bosonic and fermionic

continuous spin gauge field theories in 4-dimensional flat space-time. At this stage we

are ready to provide supersymmetry transformations for the N = 1 continuous spin su-

permultiplet, in which CSP and CSPino are respectively a complex scalar and a Dirac

continuous spin fields. We acquire that the supersymmetry continuous spin action (sum of

the bosonic (4.2) and fermionic (4.14) continuous spin actions)

I
SUSY

CSP
= I b

CSP
+ I f

CSP
(4.27)

is invariant under the following supersymmetry transformations

δΦ(x,ω) =
√

2ε̄

(
1+γ5

2

)
Ψ(x,ω)+iε̄ω/

1√
(N+1)

(
1−γ5

2

)
Ψ(x,ω) , (4.28)

δΨ(x,ω) =

{
− i√

2

[
2∂/−ω/ 1

(N+1)
(∂ω ·∂x)+ω/ ∂/

1

(N+1)
∂ω/ −ω/ (ω ·∂x)

1

2(N+2)
∂ 2
ω

]
+

1√
(N+1)

[
∂/∂ω/ −(∂ω ·∂x)− 1

2
(ω ·∂x)∂ 2

ω

]
+

1√
2
µ

[
1

N+1
−ω2 1

4(N+2)(N+3)
∂ 2
ω−

1√
4(N+1)(N+2)

∂ 2
ω (4.29)

−iω/ 1√
2(N+1)3/2

+iω/
1

2(N+1)
√

2(N+2)
∂ 2
ω

]}(
1−γ5

2

)
εΦ(x,ω),

where the supersymmetry transformation parameter ε is a Dirac spinor object, and Φ, Ψ

are respectively the complex scalar and Dirac CSP fields. Using the above transformations,

it is tedious but straightforward to check the closure of the SUSY algebra. We find that

the algebra closes on-shell

[δ1, δ2]Φ(x, ω) = −2i(ε̄2∂/ε1)Φ(x, ω) , (4.30)

[δ1, δ2]Ψ(x, ω) ≈ −2i(ε̄2∂/ε1)Ψ(x, ω) + gauge transformation , (4.31)

up to a gauge transformation which is proportional to (4.17).
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Remarks. Most of remarks in the preceding section are valid here, however, let us add

a few points concerning the supersymmetry transformations (4.28) and (4.29):

• The gamma fifth matrix γ5 is responsible for closure of the SUSY algebra, so as

by dropping the γ5 from the above supersymmetry transformations, the SUSY ac-

tion (4.27) will remain still invariant under (4.28) and (4.29).

• It is notable to see that the SUSY CSP variation of boson field (4.28) contains two

terms. The first term is proportional to the SUSY variation of the half-integer spin

supermultiplet (2.25), and the second term is corresponding to the SUSY variation

of the integer spin supermultiplet (2.40).

• Moreover, one can observe that the first line in the SUSY CSP variation of fermion

field (4.29) is identical to the SUSY variation of the half-integer spin supermulti-

plet (2.26), while the second line in (4.29) is proportional to the integer spin super-

multiplet (2.41).

4.4 Helicity limit

Let us go on the discussion was carried out about the helicity limit in the previous section.

However, here, the formulation is constrained and one expects to reach to the well-known

result of [49] in the helicity limit. To be more precise, in the helicity limit, result of the

supersymmetric higher spin theory, i.e. supersymmetry transformations of half-integer and

integer spin supermultiplets (2.25), (2.26) and (2.40), (2.41) discussed in the section 2, are

expected to be recovered. However, we note that the chiral supermultiplet (0, 1/2) was

irrelevant for higher spins and was not discussed, while here in the helicity limit of the

continuous spin theory it may be reproduced. In order to make clear the discussion, let

us take into account the CSP supermultiplet (1.1), in which the complex scalar CSP and

Dirac CSP fields are given respectively by (3.3) and (3.8):

(
Φ(x, ω),Ψ(x, ω)

)
⇐⇒

( ∞∑
s=0

1

s!
ωµ1 . . . ωµs Φµ1...µs(x),

∞∑
s=0

1

s!
ωµ1 . . . ωµs Ψµ1...µs(x)

)
.

(4.32)

On the other side, in the helicity limit µ→ 0, we know that the continuous spin representa-

tion becomes reducible and decomposes into the direct sum of all helicity representations.

Therefore, at µ = 0, one can expect that the above supermultiplet decomposes into a

direct sum of the chiral supermultiplet as well as the well-known half-integer and integer

spin supermultiplets of the higher spin theory, i.e.

(
0,

1

2

)
⊕
∞∑
s=1

(
s, s+

1

2

)
⊕
∞∑
s=0

(
s+

1

2
, s+ 1

)
. (4.33)

In what follows, let us discuss and attempt to reproduce each case separately.
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Chiral supermultiplet (0, 1/2). At µ = 0, if one just considers spin-0 and spin- 1
2 fields

in the infinite towers of spins (4.32), there would be no ω in the gauge fields and conse-

quently the act of ω-dependent derivatives on the gauge fields vanish. Thus, the super-

symmetry transformations (4.28) and (4.29) reduce to those for the chiral supermultiplet

(appendix C)

δ φ(x) =
√

2 εR ψL(x) , (4.34)

δ ψL(x) = − i
√

2 ∂/ φ(x) εR , (4.35)

where we have considered decomposition of the Dirac field ψ = ψL + ψR and the super-

symmetry transformation parameter ε = εL + εR in terms of Weyl spinors, and took into

account

ψL =

(
1 + γ5

2

)
ψ = Lψ , ψR =

(
1 − γ5

2

)
ψ = Rψ . (4.36)

Half-integer (s, s+1/2) and integer (s+1/2, s+1) spin supermultiplets. Ignoring

the chiral supermultiplet, one can redefine the supersymmetry transformation parameter

ε :=

(
1 − γ5

2

)
ε , (4.37)

and as a result, at µ = 0, one can illustrate that (4.28) and (4.29) are a direct sum of the

reducible supersymmetry transformations of the reducible half-integer spin supermultiplet

(s, s+ 1/2)

δφ(x,ω) =
√

2ε̄ ψ(x,ω) , (4.38)

δψ(x,ω) =− i√
2

[
2∂/−ω/ 1

(N+1)
(∂ω ·∂x)+ω/ ∂/

1

(N+1)
∂ω/ −ω/ (ω ·∂x)

1

2(N+2)
∂ 2
ω

]
ε φ(x,ω) ,

(4.39)

as well as the reducible supersymmetry transformations of the reducible integer spin su-

permultiplet (s+ 1/2, s+ 1)

δφ(x, ω) = iε̄ω/
1√

(N + 1)
ψ(x, ω) , (4.40)

δψ(x, ω) =
1√

(N + 1)

[
∂/∂ω/ − (∂ω · ∂x)− 1

2
(ω · ∂x)∂ 2

ω

]
ε φ(x, ω) . (4.41)

In these two above SUSY transformations, the bosonic field φ(x, ω) is a complex higher

spin field, and the fermionic field ψ(x, ω) is a Dirac higher spin field. However, as we

know, such transformations are reducible and can reduce, respectively, to the well-known

irreducible supersymmetry transformations of the irreducible half-integer spin supermulti-

plet (2.25), (2.26) and integer spin supermultiplet (2.40), (2.41), which were presented by

Curtright in [49].

Let us close this section with a remark on the helicity limit where we try to demonstrate

that in the limit µ = 0, we get the correct reducible supersymmetry transformations of the

reducible higher spin supermultiplets. In the SUSY CSP transformations (4.28), (4.29),
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the fermionic CSP field is a Dirac field, however, at µ = 0, we arrive at (4.34) and (4.35),

illustrating that the chiral supermultiplet (0, 1/2) involves only the left-handed part of the

Dirac spin-1
2 field, then the natural question is what happens with the right-handed part of

the Dirac spin- 1
2 field? It seems what happens is that this right-part combines with a real

(or imaginary) part of the spin-1 field into the integer spin-1 supermultiplet (1/2, 1), while

the imaginary (or real) part of the spin-1 field couples to a left-haded (or right-handed)

Weyl part of the spin- 3
2 Dirac field which thus form the half-integer spin- 3

2 supermultiplet

(1, 3/2) and so on and so forth.16

5 Relationship of supersymmetry transformations

In this section we aim to make relationship between our unconstrained continuous spin

SUSY transformations (3.18), (3.19) and the constrained SUSY transformations (4.28),

(4.29). For this purpose, we begin from the unconstrained CSP SUSY transformations, and

will pursue three steps; performing the Fourier transformation, applying field redefinition,

and changing of auxiliary space variable. We note that, however, one can follow a reverse

approach by starting from the constrained CSP SUSY transformations.

5.1 Fourier transformation

Let us multiply the SUSY variation of boson field (3.18) by δ′(η2 + 1), and the SUSY

variation of fermion field (3.19) by δ′(η2 + 1)(η/− i) to the left which become

δ
[
δ′(η2+1)Φ(x,η)

]
=

1√
2
ε̄
(
1+γ5

)
δ′(η2+1)

(
η/−i

)
Ψ(x,η) , (5.1)

δ
[
δ′(η2+1)(η/−i)Ψ(x,η)

]
=− 1√

2

[
∂/(η/+i)−η ·∂x+

1

2
(∂η ·∂x+µ)(η2+1)

]
×
(
1−γ5

)
δ′(η2+1)Φ(x,η)ε. (5.2)

We then perform a Fourier transformation in the auxiliary space variable ηµ to express

relations (5.1), (5.2) in their Fourier-transformed auxiliary space, i.e. ω-space, via

Φ̃(x, ω) ≡
∫
d4η e− iη·ω δ′(η2 + 1) Φ(x, η), (5.3)

Ψ̃(x, ω) ≡
∫
d4η e− iη·ω δ′(η2 + 1)(η/− i) Ψ(x, η) . (5.4)

Notice that the fields in the left-hand-sides of the latter are constrained while the ones

in the right-hand-sides are unconstrained. More precisely, the equations (5.3) and (5.4)

can be understood respectively as the general solutions of the double traceless-like and the

triple gamma-traceless-like conditions

(∂ 2
ω − 1)2 Φ̃(x, ω) = 0 , (5.5)

(∂ω/ − 1)(∂ 2
ω − 1) Ψ̃(x, ω) = 0 . (5.6)

16We acknowledge Dmitri Sorokin for bringing our attention to this question and his clarifications.
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Using (5.3), (5.4), we perform the Fourier transformation over the auxiliary variable η, and

rewrite (5.1) and (5.2) in ω-space, which become

δΦ̃(x,ω) =
1√
2
ε̄
(
1+γ5

)
Ψ̃(x,ω) , (5.7)

δΨ̃(x,ω) = i
1√
2

[
∂/(∂ω/ −1)−(∂ω ·∂x)− 1

2
(ω ·∂x+iµ)(∂ 2

ω−1)

]
Φ̃(x,η)

(
1−γ5

)
ε . (5.8)

5.2 Field redefinition

As it can be seen from (5.5), (5.6), the gauge fields Φ̃ and Ψ̃ in (5.7), (5.8) are respectively

double traceless-like and triple gamma-traceless-like. However, one can apply a field re-

definition to rearrange traces. We have elaborated such rearrangement in detail in [9]. In

fact, by applying the following fields redefinition

Φ̃(x, ω) = PΦ Φ(x, ω) , PΦ :=

∞∑
k=0

ω 2k 1

2 2k k! (N + 1)k
, (5.9)

Ψ̃(x, ω) = PΨ Ψ(x, ω) , PΨ :=

∞∑
k=0

[
(ω/ )2k + 2k(ω/ )2k−1

] 1

2 2k k! (N + 1)k
, (5.10)

where N := ω · ∂ω and (a)k is the rising Pochhammer symbol (E.19), one can convert

the double traceless-like condition (5.5) to the double traceless one (∂ 2
ω )2 Φ(x, ω) = 0, and

reduce the triple gamma-traceless-like condition (5.6) to the triple gamma-traceless one

(∂ω/ )3 Ψ(x, ω) = 0. In terms of these redefined CSP fields Φ(x, ω) and Ψ(x, ω), one can

rewrite relations (5.7), (5.8) as

δΦ(x,ω) =
1√
2
ε̄
(
1+γ5

)(
1+ω/

1

2(N+1)

)
Ψ(x,ω) , (5.11)

δΨ(x,ω) =− i√
2

[
∂/−ω/ 1

2(N+1)
(∂ω ·∂x)+ω/ ∂/

1

2(N+1)
∂ω/ −ω/ (ω ·∂x)

1

4(N+2)
∂ 2
ω (5.12)

+(∂ω ·∂x)−∂/∂ω/ +
1

2
(ω ·∂x)∂ 2

ω

+
1

2
iµ

(
1

N+1
+∂ 2

ω−ω/
1

2(N+1)2
−ω/ 1

2(N+1)
∂ 2
ω−ω2 1

4(N+2)(N+3)
∂ 2
ω

)
+O(ω3)

]
×Φ(x,ω)(1−γ5)ε .

To obtain the relation (5.11), one can simply use (5.9), (5.10) in (5.7) and apply the relation

between operators PΦ and PΨ, given in (E.20). This in turn leads to (5.11) by remov-

ing the operator PΦ in both sides of (5.7) from the left. In addition, the relation (5.12),

straightforwardly, can be acquired by plugging (5.9) and (5.10) in (5.8), then multiply-

ing the obtained relation by the inverse of PΨ (D.14) to the left, and finally applying

relations (E.21)–(E.23). We note that, in (5.12), appeared terms of order ω3 eliminate in

variation of the SUSY action due to the constraint Ψ(x, ∂ω) (ω/ )3 = 0, so we do not consider

such terms in rest of this section.
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5.3 Change of variable

As final step, let us make a change of variable in the auxiliary space ω by shifting

ωα −→ i ωα
√

2(N + 1) , (5.13)

which in turn leads to the following changes

∂αω −→−
i√

2(N+1)
∂αω , ω2−→−ω2

√
4(N+1)(N+2) , ∂ 2

ω −→−
1√

4(N+1)(N+2)
∂ 2
ω .

(5.14)

If one applies these changes in relations (5.11) and (5.12), ones convert to

δΦ(x,ω) =
1√
2
ε̄
(
1+γ5

)(
1+iω/

1√
2(N+1)

)
Ψ(x,ω) , (5.15)

δΨ(x,ω) =− i√
2

[
∂/−ω/ 1

2(N+1)
(∂ω ·∂x)+ω/ ∂/

1

2(N+1)
∂ω/ −ω/ (ω ·∂x)

1

4(N+2)
∂ 2
ω (5.16)

− i√
2(N+1)

(
∂ω ·∂x−∂/∂ω/ +

1

2
(ω ·∂x)∂ 2

ω

)
+
iµ

2

(
1

N+1
− 1√

4(N+1)(N+2)
∂ 2
ω−iω/

1√
2(N+1)3/2

+iω/
1

2(N+1)
√

2(N+2)
∂ 2
ω

−ω2 1

4(N+2)(N+3)
∂ 2
ω

)]
Φ(x,ω)(1−γ5)ε .

These supersymmetry transformations are precisely the ones we presented in (4.28), (4.29)

for constrained formulation of the CSP theory. Therefore, by following the above three

steps, we could make a precise relation between two separate set of SUSY transformations,

unconstrained (3.18), (3.19) and constrained (4.28), (4.29) ones.

6 Conclusions and outlook

In this paper, we first reviewed the supersymmetric higher spin gauge theory and obtained

supersymmetry transformations for the N = 1 half-integer and integer spin supermulti-

plets, studied long time ago by Curtright [49]. Nevertheless, our review was based on the

generating functions and we dealt with operators facilitating calculations. In addition, the

review included a method in detail which we applied to find the SUSY CSP transformations.

Then, taking into account the Schuster-Toro action [4] and its fermionic analogue [5],

we supersymmetrized unconstrained formulation of the continuous spin gauge field theory.

To this end, we provided supersymmetry transformations (3.18), (3.19) for the N = 1

supermultiplet which leave the SUSY continuous spin action (3.17) invariant. Since a

CSP (bosonic or fermionic) has infinite physical degrees of freedom per space-time point,

we observed that the number of real CSP fields should be equal in the N = 1 CSP su-

permultiplet (which may be held for N > 1). Therefore, we took into account a CSP

supermultiplet (3.1), in which CSP is a complex scalar continuous spin field and CSPino is

a Dirac continuous spin field. We note that in the frame-like approach, authors of [16] pro-

vided supersymmetry transformations for the N = 1 infinite spin supermultiplet containing
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four real fields; a pair of massless bosonic CSP fields with opposite parity, and a pair of

massless fermionic CSP fields. Therefore, in this regard, the number of real fields we used

to supersymmetrize the CSP theory in the metric-like approach is compatible with [16].

We then took the helicity limit of the CSP theory, and supersymmetrized unconstrained

formulation of the higher spin gauge theory à la Segal, given by the bosonic [11] and

fermionic [12] actions, in 4-dimensional flat space-time. To supersymmetrize this theory,

similar to the CSP case, we considered the N = 1 higher spin supermultiplet in which HS

is a complex higher spin field and the so-called “HSpino” is a Dirac higher spin field. In

both cases, continuous spin and higher spin, the fact that we should have a complex field

in the supermultiplet is related to the presence of the spin-0 field in the spectrum, which

should be complex in the chiral supermultiplet.17 We recall that in the supersymmetric

higher spin theory à la Fronsdal [49], the spin-0 field does not exist in the spectrum while

here there exists.

Afterwards, building on the Metsaev actions in 4-dimensional flat space-time [6, 7],

we supersymmetrized constrained formulation of the continuous spin gauge theory by pro-

viding supersymmetry transformations (4.28), (4.29). In both formulations, the gamma

fifth was employed to close the algebra and we illustrated that the SUSY algebra closes

on-shell up to a gauge transformation. Moreover, we demonstrated that although CSP

is a massless elementary particle, the continuous spin parameter µ in the theory plays a

role of mass, and thus the Dirac continuous spin equation can not be decoupled into Weyl

equations. We also made a relationship between two set of unconstrained and constrained

supersymmetry transformations by performing a Fourier transformation, field redefinition

and change of variable.

As we know, in the helicity limit µ → 0, the continuous spin representation becomes

reducible and decomposes into the direct sum of all helicity representations. Therefore,

in the limit, the bosonic (fermionic) CSP field gives rise to an infinite set of the bosonic

(fermionic) higher spin fields in which each spin appears only once. Let us mention that

there is a different formulation in which similar infinite sets of higher spin fields appear.

In this formulation the infinite sets of higher spin fields are described as scalar and spinor

fields in the so-called tensorial (or hyper) spaces (for a review and references see [62]).

Supersymmetric higher spin models constructed in hyperspace [63–66] describe infinite-

dimensional higher spin supermultiplets and thus differ from the conventional higher spin

supermultiplets obtained in the helicity limit of the supersymmetric CSPs.

Constrained formulation of the continuous spin theory à la Fronsdal is more favorable

for higher spin community, however, it seems calculations in the unconstrained formulation

à la Segal or Schuster-Toro are more convenient. For instance, at a glance, one can see that

the form of supersymmetry transformations in (3.18), (3.19) are more brief in comparison

with those in (4.28), (4.29), however both are equivalent and can be converted to each

other. Therefore, it would be interesting to establish the massive higher spin gauge theory in

unconstrained formulation and find its supersymmetry transformations which will probably

take a simple form but equivalent to existing shapes [48]. In addition, it would be nice to

17We thank Dmitri Sorokin for comments and pointing out this issue.
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construct a supersymmetric massive higher spin gauge theory in constrained formulation,

such that by taking the continuous spin limit (m→ 0 , s→∞ while ms = µ = constant)

converts to the result of this paper. It is also interesting to develop cubic interaction

vertices for the N = 1 arbitrary spin massless supermultiplets [67, 68] to the continuous

spin gauge theory.
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A Conventions

We use the mostly minus signature for the metric and work in the 4-dimensional Minkowski

space-time. The convention

∂ω ν =
∂

∂ ω ν
, ν = 0, 1, 2, 3 , (A.1)

and the following commutation relations[
∂ αω , ω

β
]

= η αβ ,
[
∂ 2
ω , ω

2
]

= 4 (N + 2) , N := ω · ∂ω , (A.2)

are used . The hermitian conjugates in ω-space and η-space introduce as

(∂αx )† := −∂αx , (∂αω )† := −ωα , (ωα)† := −∂αω , (∂αη )† := −∂αη , (ηα)† := ηα . (A.3)

For the 4-dimensional Dirac gamma-matrices we use the conventions

{
γα,γβ

}
= 2ηαβ , (γα)†= γ0γαγ0 , (γ0)†= γ0 , (γ0)2 = 1 , (A.4)

∂/ := γµ∂µ, ∂ω/ := γµ∂ωµ , ω/ := γµωµ , η/ := γµηµ , Ψ = Ψ†γ0 , (A.5){
∂ω/ ,ω/

}
= 2(N+2) , γ5 = iγ0γ1γ2γ3 , (γ5)2 = 1 ,

{
γα ,γ5

}
= 0 . (A.6)
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B Proof

Considering the Schuster-Toro action (3.2) and its fermionic analogue (3.7), we aim to

prove that a δΨ can not be found if we start with the ansatz δΦ = α ε̄Ψ which α is an

arbitrary parameter. To this end, let us consider the ansatz as

δΦ = α ε̄Ψ , δΨ = αX Φ ε , (B.1)

where Φ and Ψ are considered to be, respectively, a real scalar CSP field and a Majorana

CSP field, and X is an operator which we aim to find (if any). It is convenient to find that

the invariance of a sum of the real scalar CSP action and the Majorana CSP action under

the ansatz (B.1) leads to the following relation (for simplicity we set µ = 0 without losing

any accuracy of the proof)

− 1

2

[
−2∂x · ∂x + 2(η · ∂x)(∂η · ∂x)− (η2 + 1)(∂η · ∂x)2

]
=
[
(η/+ i)∂/ − (η2 + 1)(∂η · ∂x)

]
X .

(B.2)

It is seen that the left-hand-side of (B.2) is quadratic in ∂x, and as no function of x is

involved in the left-hand-side, X should be linear in ∂x. Thus, one can consider

X = − 1

2

(
∂η · ∂x +Q · ∂x

)
, (B.3)

where Q does not contain any x or ∂x. Plugging (B.3) into (B.2), one arrives at

−2∂x · ∂x + 2(η · ∂x)(∂η · ∂x) = (η/+ i)∂/(∂η · ∂x) +
[
(η/+ i)∂/ − (η2 + 1)(∂η · ∂x)

]
(Q · ∂x) .

(B.4)

Since both sides of the latter are quadratic in ∂x, the symmetric part of the coefficients of

(∂αx ∂
β
x ) on the two sides should be equal, that is

−4gαβ + 2
(
ηα∂βη + ηβ∂αη

)
=
(
η/+ i

)(
γα∂βη + γβ∂αη

)
+
(
η/+ i

)(
γαQβ + γβQα

)
(B.5)

− (η2 + 1)
[
(∂βηQ

α) + (∂αηQ
β)
]
− (η2 + 1)

(
Qα∂βη +Qβ∂αη

)
.

In this relation, if one equals the coefficients of the partial derivatives on the two sides, one

arrives at

Qα =
(η/+ i) γα − 2 ηα

η2 + 1
, (B.6)

while the remaining parts of (B.5) leads to

− 4 gαβ =
(
η/+ i

)(
γαQβ + γβ Qα

)
− (η2 + 1)

[
(∂βη Q

α) + (∂αη Q
β)
]
. (B.7)

In conclusion, by plugging (B.6) into (B.3) one can claim that the operator X has been

found, provided the identity (B.7) holds. However, one can simply check that the iden-

tity (B.7) does not satisfy if one uses (B.6) in (B.7). This shows that the operator X could

not be found.
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C Chiral multiplet (0, 1/2)

Let us present here supersymmetry transformations for the Wess-Zumino model in which

the bosonic field is a complex scalar field φ(x) and the ferminic one is a Weyl spinor ψL(x)

(left-handed one) or a Majorana spinor ψ(x).

One can introduce left-handed and right-handed spinors ψL(x), ψR(x) satisfying re-

spectively by

ψL =

(
1 + γ5

2

)
ψ = Lψ , ψR =

(
1 − γ5

2

)
ψ = Rψ . (C.1)

Then, considering a left-handed spinor ψL(x), the supersymmetry action is given by (for

more details see [69])

S =

∫
d4x

(
−φ†�φ+ ψL i ∂/ ψL

)
, (C.2)

which is invariant under the following supersymmetry transformations

δ φ =
√

2 εR ψL , δ φ† =
√

2 ψL εR , (C.3)

δ ψL = − i
√

2 ∂/ φ εR , δ ψL = i
√

2 εR ∂/ φ† . (C.4)

Taking into account a Majorana spinor, the supersymmetry action is given by

S =

∫
d4x

(
−φ†�φ+

1

2
ψ i ∂/ ψ

)
, (C.5)

which is invariant under the supersymmetry transformations

δφ =
√

2ε̄

(
1 + γ5

2

)
ψ , δφ† =

√
2ψ

(
1− γ5

2

)
ε , (C.6)

δψ = − i√
2

[
∂/(1− γ5)φ+ ∂/(1 + γ5)φ†

]
ε , δψ =

i√
2
ε̄
[
∂/(1 + γ5)φ+ ∂/(1− γ5)φ†

]
.

(C.7)

If one defines the complex scalar field as

φ =
1√
2

(A − i B) , (C.8)

where A and B are two real scalar fields, one can rewrite the supersymmetry action as

S =
1

2

∫
d4x

(
− A�A− B�B + ψ i ∂/ ψ

)
, (C.9)

which would be invariant under the following supersymmetry transformations

δA = ε̄ψ , δψ = −
(
i∂/A+ γ5∂/B

)
ε , (C.10)

δB = iε̄γ5ψ , δψ = ε̄
(
i∂/A− γ5∂/B

)
. (C.11)
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D Inverse operators

To make a relationship between the unconstrained and constrained supersymmetry trans-

formations in section 5, we may need to know the inverse of operators in (5.9) and (5.10).

Therefore, referring to [9] (appendix B), let us clarify and find the inverse operators in

the following. We will follow this appendix in d-dimensional space-time to include a more

general form.

For bosonic fields, introducing the bosonic operators

PΦ :=

∞∑
k=0

ω 2k 1

4kk!(N+ d
2−1)k

, QΦ :=

∞∑
k=0

ω 2k 1

4kk!(N+ d
2 +3)k

, (D.1)

where N := ω · ∂ω and (a)k is the rising Pochhammer symbol (E.19), one can show (see

explanations of the appendix B in [9])

QΦ (∂ 2
ω )2 = (∂ 2

ω − 1)2 PΦ . (D.2)

Then, using the latter, and by the following field redefinition

Φ̃(x, ω) := PΦ Φ(x, ω) , (D.3)

one can convert the double trace-like constraint to the double trace one as the following

(∂ 2
ω − 1)2 Φ̃ = 0 =⇒ (∂ 2

ω − 1)2 PΦ Φ = 0 =⇒ QΦ (∂ 2
ω )2 Φ = 0 =⇒ (∂ 2

ω )2 Φ = 0 . (D.4)

Now the question is what happens if one wants to apply a reverse way in (D.3) and rewrite

Φ in terms of Φ̃? In other words, one can define

Φ(x, ω) := P−1
Φ Φ̃(x, ω) , (D.5)

and use the identity (which can be simply obtained from (D.2))

(∂ 2
ω )2 P−1

Φ = Q−1
Φ (∂ 2

ω − 1)2 , (D.6)

to rearrange the double trace constraint to the double trace-like one, using the latter

identity, in the following form

(∂ 2
ω )2 Φ = 0 =⇒ (∂ 2

ω )2 P−1
Φ Φ̃ = 0 =⇒ Q−1

Φ (∂ 2
ω −1)2 Φ̃ = 0 =⇒ (∂ 2

ω −1)2 Φ̃ = 0 . (D.7)

In this case, we would like to know inverse operators which will satisfy the relation (D.6).

It is convenient to find that those inverse bosonic operators satisfying (D.6) are

P−1
Φ :=

∞∑
k=0

ω 2k (−1)k

4kk!(N+ d
2 +k−2)k

, Q−1
Φ :=

∞∑
k=0

ω 2k (−1)k

4kk!(N+ d
2 +k+2)k

. (D.8)

We note that these obtained reverse operators can be also acquired directly from (D.1).
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For fermionic fields, as we mentioned, there are two possibilities to present the action

principle and so on. Therefore, one can introduce

P±Ψ :=

∞∑
k=0

[
(ω/ )2k ± 2k(ω/ )2k−1

] 1

4kk!(N + d
2 − 1)k

,

Q±Ψ :=

∞∑
k=0

[
(ω/ )2k ∓ 2k(ω/ )2k−1

] 1

4kk!(N + d
2 + 2)k

, (D.9)

where the upper and lower signs are related to each possibility we choose. These two set

of operators satisfy the following two possible identities

Q+
Ψ (∂ω/ )3 = (∂ω/ − 1)(∂ 2

ω − 1) P+
Ψ , Q−Ψ (∂ω/ )3 = (∂ω/ + 1)(∂ 2

ω − 1) P−Ψ . (D.10)

Therefore, there are two possible ways to apply a field redefinition. Indeed, by applying

the field redefinitions

Ψ̃(x, ω) := P+
ΨΨ(x, ω) , or Ψ̃(x, ω) := P−ΨΨ(x, ω) , (D.11)

one can convert the two possible triple gamma-trace-like conditions to the triple gamma-

trace condition

(∂ω/ ∓1)(∂ 2
ω−1)Ψ̃ = 0 =⇒ (∂ω/ ∓1)(∂ 2

ω−1)P±ΨΨ = 0 =⇒ Q±Ψ (∂ω/ )3 Ψ = 0 =⇒ (∂ω/ )3 Ψ = 0 .

If we follow a similar manner as the bosonic case, we can conveniently find the inverse

fermionic operators, which are

(P±Ψ)−1 :=
∞∑
k=0

(−1)k

4kk!(N + d
2 − k − 1)k

[
(ω/ )2k ± 2k(ω/ )2k−1

]
, (D.12)

(Q±Ψ)−1 :=
∞∑
k=0

(−1)k

4kk!(N + d
2 − k + 2)k

[
(ω/ )2k ∓ 2k(ω/ )2k−1

]
. (D.13)

We note that in this paper and [12] we have chose the upper sign of the fermionic operators,

while we have considered the lower sign in [5, 8] in order to rearrange trace conditions on

the fermionic CSP or higher spin fields. In d = 4 dimensions, by choosing the upper sign

and keeping the terms up to O(ω3), one can write (D.12) as

(P+
Ψ)−1 = 1 − ω/

1

2(N + 1)
− ω2 1

4(N + 2)
+ O(ω3) , (D.14)

which can be used in section 5. Note that the upper sign is left implicit in (5.10).

E Useful relations

The “Majorana flip relations” or the so-called “Dirac flip relations” are given by

ε̄2 (γµ1 γµ2 · · · γµp) ε1 = (−1)pε̄1 (γµ1 γµ2 · · · γµp) ε2 , (E.1)
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where ε1 and ε2 can be either the Majorana spinors or Dirac spinors depending on the

problem we are dealing with (see [54], page 49, for more details).

In order to illustrate that the SUSY HS/CSP actions are invariant under supersym-

metry transformations, the following obtained relations are useful:

(ω ·∂x)∂ω/ (ω/ ∂/∂ω/ ) = (ω ·∂x)ω/ ∂/∂ 2
ω−2ω/ (ω ·∂x)(∂ω ·∂x)∂ω/ +2(ω ·∂x)h∂/∂ω/ (E.2)

(ω/ ∂/∂ω/ )(ω/ ∂/∂ω/ ) =−ω2�∂ 2
ω+2ω/ �h∂ω/ +2ω2∂/(∂ω ·∂x)∂ω/

+2ω/ (ω ·∂x)∂/∂ 2
ω−4ω/ (ω ·∂x)(∂ω ·∂x)∂ω/ (E.3)

1

2
ω/ (ω ·∂x)∂ 2

ω(ω/ ∂/∂ω/ ) =−ω/ (ω ·∂x)∂/∂ 2
ω+2ω/ (ω ·∂x)(∂ω ·∂x)∂ω/ +

1

2
ω2(ω ·∂x)∂/∂ω/

3 (E.4)

1

2
ω2(∂ω ·∂x)∂ω/ (ω/ ∂/∂ω/ ) =

1

2
ω2�∂ 2

ω−ω2∂/(∂ω ·∂x)∂ω/ +ω2∂/(h+1)(∂ω ·∂x)∂ω/ (E.5)

−1

4
ω2∂/∂ 2

ω(ω/ ∂/∂ω/ ) =
1

2
ω2�∂ 2

ω−ω2∂/(∂ω ·∂x)∂ω/ −
1

2
ω2(ω ·∂x)∂/∂ω/

3 (E.6)

(ω/ ∂/∂ω/ )(ω/ ∂ω/ ) =ω2∂/∂ 2
ω−2ω/ (ω ·∂x)∂ 2

ω+2ω/ ∂/h∂ω/ (E.7)

(ω/ ∂/∂ω/ )(ω2∂ 2
ω) =−2ω2∂/∂ 2

ω+4ω/ (ω ·∂x)∂ 2
ω (E.8)

1

2
ω2(∂ω ·∂x)∂ω/ (ω/ ∂ω/ ) =−1

2
ω2∂/∂ 2

ω+ω2(h+1)(∂ω ·∂x)∂ω/ (E.9)

1

2
ω2(∂ω ·∂x)∂ω/ (ω2∂ 2

ω) =ω2∂/∂ 2
ω+ω2(ω ·∂x)∂ω/

3 (E.10)

−1

4
ω2∂/∂ 2

ω(ω/ ∂ω/ ) =−1

2
ω2(ω ·∂x)∂ω/

3− 1

2
ω2∂/∂ 2

ω (E.11)

where h := ω · ∂ω + d
2 , such that d is space-time dimension. We obtained these relations

using (anti-)commutation relations presented in appendix of [9] and have dropped terms of

order O(ω3) and O(∂4
ω) which vanish by constraints ψ(x, ∂ω)ω/ 3 = 0 and (∂ 2

ω )2 φ(x, ω) = 0

in the SUSY actions.

In order to close the SUSY algebra, one can use the identity

γµγνγρ = ηµνγρ + γµηνρ − ηµργν − i εαµνρ γα γ5 , (E.12)

leading to

ω/ ∂/∂ω/ = (ω · ∂x) ∂ω/ + ω/ (∂ω · ∂x)−N ∂/ − i εαµνρ ωµ∂ν∂ωρ(γα γ5) , (E.13)

where N := ω · ∂ω. Moreover, defining

A21 := (1− γ5) ε2 ε̄1 (1 + γ5) , (E.14)

B21 := (1 + γ5) ε2 ε̄1 (1− γ5) , (E.15)

one can show

A21 −A12 = − ε̄1 γµ ε2 γµ (1 + γ5) , (E.16)

B21 − B12 = − ε̄1 γµ ε2 γµ (1− γ5) , (E.17)

where we have applied the identity

ε2 ε̄1 − ε1 ε̄2 − γ5 (ε2 ε̄1 − ε1 ε̄2) γ5 = − ε̄1 γµ ε2 γµ . (E.18)
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The rising Pochhammer symbol (a)n is defined as

(a)n := a (a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n ∈ N and a ∈ R . (E.19)

It is convenient to show that operators PΦ and PΨ, defined in (5.9) and (5.10), are

related to each other through

PΨ = PΦ

(
1 + ω/

1

2(N + 1)

)
. (E.20)

The quantities ∂ αω , ∂ 2
ω and ωα act on the bosonic operator PΦ (5.9) as (for details, see

the appendices in [9]18)

∂αωPΦ = PΦ

[
∂αω−ω2 1

4(N+1)(N+2)
∂αω+ωα

1

2(N+1)

]
, (E.21)

∂2
ωPΦ = PΦ

[
∂ 2
ω−ω2 1

2(N+1)(N+3)
∂ 2
ω+

N+2

N+1
−ω2 1

4(N+2)(N+1)2
+O(ω4)

]
, (E.22)

ωaPΦ = PΦ

[
ωα+ω2ωα

1

4(N+1)(N+2)
+O(ω4)

]
, (E.23)

where the terms containing O(ω4) in two last relations will be eliminated at the level of

the action, due to the double-traceless condition on the gauge field Φ(x, ∂ω) (ω2) 2 = 0.
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