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1 Introduction

According to the AdS/CFT correspondence, spacetime and gravitational physics in AdS

emerge from the dynamics of certain strongly-coupled conformal field theories with a large

number of degrees of freedom. A central question is to understand why and how this

happens. In recent work, it has been suggested that the physics of quantum entanglement

plays an essential role, e.g. [1–11]. This was motivated in part by the importance of

quantum entanglement for understanding quantum phases of matter in condensed matter

systems [12–15]. Ryu and Takayanagi have proposed [1–4] that entanglement entropy, one

measure of entanglement between subsets of degrees of freedom in general quantum systems,

provides a direct window into the emergent spacetime geometry, giving the areas of certain

extremal surfaces. This provides a quantitative connection between CFT entanglement and

the dual spacetime geometry. Recently, this connection has been utilized to understand

the emergence of spacetime dynamics (i.e. gravity) from the CFT physics [16]. Making

use of a ‘first law’ for entanglement entropy derived in [17], it was shown [16] that in any

holographic theory for which the Ryu-Takayanagi prescription computes the entanglement

entropy of the boundary CFT, spacetimes dual to small perturbations of the CFT vacuum

state must satisfy Einstein’s equations linearized around pure AdS spacetime.

In this paper, we provide further insight into the results of [16, 17] and extend them

to general holographic CFTs, for which the classical bulk equations may include terms at

higher order in the curvatures or derivatives. We show further that the first law for entan-

glement entropy in the CFT can be understood as the microscopic origin of a particular case

of the first law of black hole thermodynamics, applied to AdS-Rindler horizons. We begin

with a brief review of some essential background before summarizing our main results.

The ‘first law’ of entanglement entropy

The crucial piece of CFT physics giving rise to linearized gravitational equations in the

dual theory is a ‘first law’ of entanglement entropy,

δSA = δ〈HA〉 (1.1)

equating the first order variation in the entanglement entropy for a spatial region A with

the first order variation in the expectation value of HA, the modular (or entanglement)

Hamiltonian. The latter operator is defined as the logarithm of the unperturbed state, i.e.

ρA ≃ e−HA — see section 2.1 for further details. The first law was derived in [17]1 as a

special case of a more general result for finite perturbations

∆SA ≤ ∆〈HA〉 (1.2)

obtained using the positivity of ‘relative entropy’.2 A more direct demonstration of (1.1)

is reviewed in section 2.1 below.

1Related observations had been made independently using various holographic calculations, e.g. [18–21].
2Relative entropy can be viewed as a statistical measure of the distance between two states (i.e. density

matrices) in the same Hilbert space — e.g. see [22, 23] for reviews.
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In general, the modular Hamiltonian HA is a complicated object that cannot be ex-

pressed as an integral of local operators. However, starting from the vacuum state of a

CFT in flat space and taking A to be a ball-shaped spatial region of radius R centered at

x0, denoted B(R, x0), the modular Hamiltonian is given by a simple integral [24]

HB = 2π

∫

B(R,x0)
dd−1x

R2 − |~x− ~x0|2
2R

Ttt , (1.3)

of the energy density over the interior of the sphere (weighted by a certain spatial profile).

Thus, given any perturbation to the CFT vacuum we have for any ball-shaped region

δSB = 2π

∫

B(R,x0)
dd−1x

R2 − |~x− ~x0|2
2R

δ〈Ttt〉 , (1.4)

where HB and SB denote the modular Hamiltonian and the entanglement entropy for a

ball, respectively.

The holographic interpretation

For conformal field theories with a gravity dual, the first law for ball-shaped regions can

be translated into a geometrical constraint obeyed by any spacetime dual to a small per-

turbation of the CFT vacuum. To understand this, we first recall the holographic inter-

pretation of entanglement entropy and energy density in the general case (see section 2.3

for more details).

As shown by [24] in deriving (1.3), the vacuum entanglement entropy of a CFT for a

ball-shaped region in flat space can be reinterpreted as the thermal entropy of the CFT

on a hyperbolic cylinder at temperature set by the hyperbolic space curvature scale, by

relating the two backgrounds with a conformal mapping. For a holographic CFT, the

latter thermal entropy may then be calculated as the horizon entropy of the “black hole”

dual to this thermal state on hyperbolic space. In this case, the black hole is simply a

Rindler wedge (which we call the AdS-Rindler patch) of the original pure AdS space, as

shown in figure 2. If the gravitational theory in the bulk is Einstein gravity, then the

horizon entropy is given by the usual Bekenstein-Hawking formula, SBH = A/(4GN), and

this construction [24] provides a derivation of the Ryu-Takayanagi prescription [1, 2] for

a spherical entangling surface.3 However, we note that the same analysis applies for any

classical and covariant gravity theory in the bulk, in which case the horizon entropy is

given by Wald’s formula [26–28]

SWald = −2π

∫

H
dnσ

√
h

δL
δRab

cd
nab ncd , (1.5)

where L denotes the gravitational Lagrangian and nab is the binormal to the horizon H.

To summarize, in general holographic theories, entanglement entropy in the vacuum

state for a ball-shaped region B is computed by the Wald functional applied to the horizon

3Recently, this approach was extended to a general argument for the Ryu-Takayanagi prescription for

arbitrary entangling surfaces in time-independent (and some special time-dependent) backgrounds [25].
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of the AdS-Rindler patch associated with B. We will argue in section 2.3 that this should

remain true for perturbations to the vacuum state, so the left side of (1.4) computes the

change in entropy of the AdS-Rindler horizon under a small variation of the CFT state.

Meanwhile, the expectation value of the stress tensor is related to the asymptotic behaviour

of the metric, so the right side of (1.4) may be expressed as an integral involving the

asymptotic metric over a ball-shaped region of the boundary. In section 2.3, we show that

this integral may be interpreted as the variation in energy of the AdS-Rindler spacetime.

Thus, the gravity version of the entanglement first law (1.4) may be interpreted as a first

law for AdS-Rindler spacetimes. At a technical level, this represents a non-local constraint

on the spacetime fields, equating an integral involving the asymptotic metric perturbation

over a boundary surface to an integral involving the bulk metric perturbation (and possibly

matter fields) over a bulk surface.

Main results

Our first main result, presented in section 3, is that this first law for AdS-Rindler space-

times, i.e. the gravitational version of (1.4), is a special case of a first law proved by Iyer and

Wald for stationary spacetimes with bifurcate Killing horizons (i.e. at finite temperature)

in general classical theories of gravity. According to Iyer and Wald, for any perturba-

tion of a stationary background that satisfies the linearized equations of motion following

from some Lagrangian, the first law holds provided we define horizon entropy using the

Wald functional (1.5) associated with this Lagrangian. Thus, the CFT result (1.4) can

be seen as an exact quantum version of the Iyer-Wald first law, at least for the case of

AdS-Rindler horizons.

Our second result, presented in sections 4 and 5, provides a converse to the theorem

of Iyer and Wald. In AdS space, we can associate an AdS-Rindler patch to any ball-

shaped spatial region on the boundary in any Lorentz frame, as in figure 2. An arbitrary

perturbation to the AdS metric can be understood as a perturbation to each of these

Rindler patches. We show that if the first law is satisfied for every AdS-Rindler patch,

then the perturbation must satisfy the linearized gravitational equations. Thus, the set

of non-local constraints (one for each ball-shaped region in each Lorentz frame) implied

by (1.4) is equivalent to the set of local gravitational equations.

The result in the previous paragraph — that the first law for AdS-Rindler patches

implies the linearized gravitational equations — is completely independent of AdS/CFT

and holds for any classical theory of gravity in AdS. However, since for holographic CFTs

this gravitational first law is implied by the entanglement first law, we conclude that

the linearized gravitational equations for the dual spacetime can be derived from any

holographic CFT, given the entanglement functional. This extends the results of [16] to

general holographic CFTs.

As a further application of the entanglement first law, we point out (see section 4.1)

that eq. (1.1), applied to infinitesimal balls, can be used to deduce the ‘holographic stress

tensor,’ i.e. the gravitational quantity that computes the expectation value of the CFT

stress tensor, given the holographic prescription for computing entanglement entropy. This

provides a simple alternative approach to the usual holographic renormalization procedure,
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as we illustrate with examples in section 6. Finally, we show that eq. (1.1) also provides in-

formation about the operators in the boundary theory corresponding to additional degrees

of freedom that can be associated with the metric in the context of higher derivative gravity.

We conclude in section 7 with a brief discussion of our results. In particular, we discuss

the relation of our work to the work of Jacobson [29], who obtained gravitational equations

by considering a gravitational first law applied to local Rindler horizons.

2 Background

In this section, we review some basic facts about entanglement entropy, modular Hamil-

tonians and their holographic interpretation. In section 2.1, following [17], we review the

first law-like relation δSA = δ〈HA〉 satisfied by entanglement entropy, specializing to en-

tanglement for ball-shaped regions in a conformal field theory in section 2.2. In section 2.3,

we review the bulk interpretation of SA and 〈HA〉 in a holographic CFT.

2.1 The first law of entanglement entropy

For any state in a general quantum system, the state of a subsystem A is described by a

reduced density matrix ρA = trĀ ρtotal, where ρtotal is the density matrix describing the

global state of the full system and Ā is the complement of A. The entanglement of this

subsystem with the rest of the system may be quantified by the entanglement entropy SA,

defined as the von Neumann entropy

SA = − tr ρA log ρA (2.1)

of the density matrix ρA.

Since the reduced density matrix ρA is both hermitian and positive (semi)definite, it

can be expressed as

ρA =
e−HA

tr(e−HA)
, (2.2)

where the Hermitian operator HA is known as the modular Hamiltonian. The denominator

is included on the right in the expression above to ensure that the reduced density matrix

has unit trace. Note the eq. (2.2) only defines HA up to an additive constant.

Now, consider any infinitesimal variation to the state of the system. The first order

variation4 of the entanglement entropy (2.1) is given by

δSA = − tr(δρA log ρA)− tr
(

ρA ρ
−1
A δρA

)

= tr(δρAHA)− tr(δρA) . (2.3)

Since the the trace of the reduced density matrix equals one by definition, we must have

tr(δρA) = 0. Hence, the variation of the entanglement entropy obeys

δSA = δ〈HA〉 , (2.4)

where HA is the modular Hamiltonian associated with the original unperturbed state.

4 Here and below, the variations are defined by considering a one-parameter family of states |Ψ(λ)〉 such
that |Ψ(0)〉 = |0〉. The variation δO of any quantity associated with |Ψ〉 is then defined by δO = ∂λO(λ)|λ=0.
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B

D

H
d-1

Figure 1. Causal development D (left) of a ball-shaped region B on a spatial slice of Minkowski

space, showing the evolution generated by HB . A conformal transformation maps D to a hyperbolic

cylinder Hd−1× time (right), taking HB to the ordinary Hamiltonian for the CFT on Hd−1.

In cases where we start with a thermal state ρA = e−βH/ tr(e−βH), equation (2.4) gives

δ〈H〉 = TδSA, an exact quantum version of the first law of thermodynamics. Thus, (2.4)

represents a generalization of the first law of thermodynamics valid for arbitrary perturba-

tions to arbitrary (non-equilibrium) states.

2.2 The first law in conformal field theories

We now specialize to the case of local quantum field theories. Here, for any fixed Cauchy

surface, the field configurations on this time slice are representative of the Hilbert space

of the underlying quantum theory. We can then define a subsystem A by introducing

a smooth boundary or ‘entangling surface’, which divides the Cauchy surface into two

separate regions, A and Ā; the local fields in the region A define a subsystem.

In general, the relation (2.4) is of limited use. For a general quantum field theory, a

general state, and a general region A, the modular Hamiltonian is not known and there is

no known practical method to compute it. Typically, HA is expected to be a complicated

non-local operator. However, there are a few situations where the modular Hamiltonian

has been established to have a simple form as the integral of a local operator, and in which

it generates a simple geometric flow.

One example is when we consider a conformal field theory in its vacuum state, ρtotal =

|0〉〈0| in d-dimensional Minkowski space, and choose the region A to be a ball B(R, x0)

of radius R on a time slice t = t0 and centered at xi = xi0.
5 For this particular case, the

modular Hamiltonian takes the simple form [24, 30]

HB = 2π

∫

B(R,x0)
dd−1x

R2 − |~x− ~x0|2
2R

Ttt(t0, ~x) , (2.5)

where Tµν is the stress tensor.

5Our notation for the flat space coordinates will be xµ = (t, ~x) or (t, xi) where i = 1 . . . d − 1, while

xa = (z, t, ~x) denotes a coordinate on AdSd+1.
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To understand the origin of this expression, we recall that the causal development6 D
of B is related by a conformal transformation to a hyperbolic cylinder H = Hd−1 × Rτ

(time) as shown in figure 1. As argued in [24], this transformation induces a map of

CFT states that takes the vacuum density matrix on B to the thermal density matrix

ρH ∼ exp(−2πRHτ ) for the CFT on hyperbolic space, where R is the curvature radius of

the hyperbolic space and Hτ is the CFT Hamiltonian generating time translations in H.

The modular Hamiltonian for ρH is then just 2πRHτ . Going back to D, it follows that

the modular Hamiltonian for the density matrix ρB is the Hamiltonian which generates

the image under the inverse conformal transformation of these time translations back in

D, shown on the left in figure 1.

To obtain the explicit expression (2.5), we define ζB to be the image of the Killing

vector 2πR∂τ under the inverse conformal transformation. This is a conformal Killing

vector on the original Minkowski space which can be written as a combination of a time

translation Pt and a certain special conformal transformation Kt,

ζB =
iπ

R
(R2Pt +Kt) (2.6)

where

iPt = ∂t , and iKt = −[(t− t0)
2 + |~x− ~x0|2]∂t − 2(t− t0)(x

i − xi0)∂i . (2.7)

It is straightforward to check that ζB generates a flow which remains entirely in D, acting

as a null flow on ∂D and vanishing on the sphere ∂B(R, x0) and at the future and past

tips of D. The generator of this flow in the underlying CFT may be written covariantly as

HB =

∫

S
dΣµ Tµν ζ

ν
B (2.8)

where dΣµ is the volume-form on the (d− 1)-dimensional surface S. The integral may be

evaluated on any spatial surface S within the causal diamond D whose boundary is ∂B, but

for the particular choice S = B(R, x0), we recover (2.5). Note that the normalization of the

conformal Killing vector ζB was chosen in (2.6) to ensure that modular Hamiltonian HB

and the Hamiltonian on the hyperbolic cylinder Hτ are related by HB = 2πRU0Hτ U
−1
0

where U0 is the unitary transformation which implements the conformal mapping between

the two backgrounds [24].

In summary, starting from the vacuum state of any conformal field theory and consid-

ering a ball-shaped region B, the first law (2.4) simplifies to

δSB = δEB, (2.9)

where we define

EB ≡ 2π

∫

B(R,x0)
dd−1x

R2 − |~x− ~x0|2
2R

〈Ttt(t0, ~x)〉 . (2.10)

6The causal development D of the ball (also known as the domain of dependence) comprises all points

p for which all causal curves through p necessarily intersect B(R, ~x0).
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2.3 Interpretation of the first law in holographic CFTs

The first law (2.4) reviewed in the previous section is a general result. Hence for ball-

shaped regions in an arbitrary CFT in any number of spacetime dimensions, δSB = δEB

with EB defined in eq. (2.10). We will be interested in understanding this relation for

holographic CFT’s with a classical bulk dual, i.e. theories for which at least a subset of the

states have a dual interpretation as smooth, asymptotically AdS field configurations. In

this case, the vacuum state of the boundary CFT corresponds to pure anti-de Sitter space,

while certain small perturbations around the vacuum state should correspond to spacetime

geometries that are small perturbations around empty AdS.7 In holographic theories, both

SB and EB should match with observables on the gravity side, so δSB = δEB will translate

into a constraint δSgrav
B = δEgrav

B that must be satisfied for any spacetime dual to a small

perturbation of the vacuum AdS spacetime.

2.3.1 Holographic interpretation of the entanglement entropy

The holographic prescription for computing the entanglement entropy is not known in

general, but in the known cases (e.g., [1, 2, 25, 32–38]), it is given by extremizing a certain

functional of the bulk metric over codimension-two bulk surfaces whose boundary coincides

with ∂A in the boundary CFT. However, here we are only interested in the holographic

entanglement entropy for a ball-shaped region B in the CFT when the total state is the

vacuum or a small perturbation thereof. This particular case is well-understood due to the

observation of [24], reviewed in the previous section, that the vacuum density matrix for B

maps by a conformal transformation to a thermal state of the CFT on hyperbolic space.

Using the AdS/CFT correspondence, the thermal state of the CFT on hyperbolic space

at temperature T = 1
2πR is dual to a hyperbolic ‘black hole’ spacetime at this temperature,

i.e., AdS-Rindler space, with metric

ds2 = −ρ
2 − ℓ2

R2
dτ2 +

ℓ2 dρ2

ρ2 − ℓ2
+ ρ2(du2 + sinh2 u dΩ2

d−2) . (2.11)

The entanglement entropy for the region B equals the thermal entropy of the hyperbolic

space CFT, which can be interpreted as the entropy of this ‘black hole.’ In an arbitrary

theory of gravity, black hole entropy is computed by evaluating the Wald functional (1.5)

on the horizon. In terms of the Poincaré coordinates on AdS space

ds2 =
ℓ2

z2
(

dz2 + ηµνdx
µdxν

)

, (2.12)

the hyperbolic ‘black hole’ associated with the ball B(R, x0) is simply the wedge shown

in figure 2, the intersection of the causal past and the casual future of the region D on

the boundary. The coordinate transformation between the two metrics is described in [24].

7More precisely, the states that we will consider have energy of order ε cT , where cT is the central charge

of the boundary CFT (e.g. see [31]) which provides a measure of the number of degrees of freedom in the

CFT. Since we consider classical gravity in the bulk, cT → ∞; we take ε ≪ 1 in order for the perturbation

to be classical, but small. The first law relation also holds for quantum states in the bulk, whose CFT

energy does not scale with cT , but we will not consider them in this article.
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B
B
~Σ

Figure 2. AdS-Rindler patch associated with a ball B(R, x0) on a spatial slice of the boundary.

Solid blue paths indicate the boundary flow associated with HB and the conformal Killing vector

ζ. Dashed red paths indicate the action of the Killing vector ξ.

The horizon slice approached with ρ → ℓ and τ fixed in the black hole metric (2.11)

corresponds to the hemisphere B̃ = {t = t0, (x
i−xi0)2+ z2 = R2} in Poincaré coordinates.

By design [24], this is also the extremal surface in AdS bulk with boundary ∂B. Thus,

the entanglement entropy SB for the vacuum state can be calculated gravitationally by

evaluating the Wald functional (1.5) on the surface B̃.

If we consider a perturbation of the original vacuum state, the perturbation of the

entanglement entropy must equal the perturbation of the thermal entropy of the CFT on

the hyperbolic cylinder. Assuming that this equals the perturbation to the black hole

entropy, we must also have that δSgrav
B = δSWald

B . In general, the entanglement entropy

functional is known to differ from the Wald functional [34–37, 39] by terms quadratic in the

extrinsic curvature of the extremal bulk surface. These terms are important for arbitrarily-

shaped entangling surfaces or general states in the CFT. However, for the special case of a

spherical entangling surface considered here and a CFT in the vacuum, the extremal surface

B̃ in the bulk is the bifurcation surface of the Killing horizon defining the boundary of the

AdS-Rindler patch and the extrinsic curvatures of this surface vanish. Therefore, δSgrav
B

and δSWald
B are equal at linear order in the perturbations we are considering.8

8Further, note that in the perturbed spacetime, the extremal surface will not necessarily correspond to

the bifurcation surface of the AdS-Rindler horizon. However, since B̃ is an extremal surface for the Wald

functional, changes in the Wald functional due to variations in the surface come in only at second order in

– 9 –
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To summarize, the holographic dictionary implies that Sgrav
B for a small perturbation

around AdS is the Wald functional of the perturbed metric evaluated on B̃.

2.3.2 Holographic interpretation of the modular energy EB

In the CFT, the expression (2.10) defines EB in terms of the expectation value of the field

theory stress energy tensor. On the gravity side, the latter is computed by the “holographic

stress tensor” T grav
µν , a quantity constructed locally from the asymptotic metric.9 For

a general theory, T grav
µν can be obtained via a systematic procedure known as holographic

renormalization [40–45]. Alternatively, as we show in sections 4.1 and 6 below, T grav
µν can be

derived using the holographic entanglement entropy function and the relation δSB = δEB.

The gravitational version of EB is simply obtained by replacing the stress tensor ex-

pectation value in (2.8) or (2.10) with the holographic stress tensor

Egrav
B =

∫

S
dΣµ T grav

µν ζνB = 2π

∫

B(R,~x0)
dd−1x

R2 − |~x− ~x0|2
2R

T grav
tt (t0, ~x) (2.13)

giving Egrav
B as an integral of a local functional of the asymptotic metric over the region

B(R, x0) at the AdS boundary.

As discussed above, EB is the conserved quantity associated with the boundary confor-

mal Killing vector ζB. An alternate definition [28] of the gravitational quantity associated

with this is as the canonical conserved charge associated to translations along a bulk asymp-

totic Killing vector ξB that asymptotically agrees with ζB, limz→0 ξB = ζB. We review this

definition Egrav
B [ξB] in section 5 below and show in section 5.3 that it agrees with (2.13)

(at least for the perturbations we are considering). Thus, for perturbations to the vacuum

state, Egrav
B can be interpreted as the perturbation to the energy of the AdS-Rindler patch

associated with the region B, as in figure 2.

Note that under the conformal map from D to H, the conserved charge associated

to ζB maps to (2πR times) the energy associated to τ translations, computed using

either formalism.

2.3.3 Summary

In summary, for states of a holographic CFT with a classical gravity dual description, the

CFT relation δSB = δEB translates to a statement that the integral of the Wald functional

over the bulk surface B̃ must equal the integral of the energy functional, as given in (2.13),

over the boundary surface B. This provides one nonlocal constraint on the metric for each

ball B in each Lorentz frame. The constraints may be interpreted as the statement that

the perturbation to the entropy of the AdS-Rindler patch associated with the region B

equals the perturbation to the energy.

the metric perturbation. To calculate the Wald functional at leading order in the metric perturbation, we

therefore need only evaluate δSWald
B on B̃, the bifurcation surface of the unperturbed AdS-Rindler horizon.

9Other fields in the bulk may also contribute to the holographic stress tensor (e.g. a bilinear of gauge

fields when d = 2), but their contributions are always nonlinear in the fields and vanish at the linearized

order around pure AdS that we are considering.
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3 The holographic first law of entanglement from the first law of black

hole thermodynamics

In holographic CFTs, whenever the gravitational observables corresponding to SB and EB

are known, the first law of entanglement entropy (2.4) applied to a ball, i.e. δSB = δEB,

gives a prediction for the equivalence of two corresponding gravitational quantities, δSgrav
B

and δEgrav
B , in any spacetime dual to a small perturbation of the CFT vacuum state. This

prediction must hold assuming the validity of the AdS/CFT correspondence and of our

holographic interpretation of EB and SB. As we will see in the next section, the power

of this equivalence arises because in fact, we have an infinite number of predictions since

δSB = δEB can be applied for any ball-shaped region in any Lorentz frame in the boundary

geometry. For the case of Einstein gravity, where entanglement entropy is calculated by

the Ryu-Takayanagi proposal [1–4], the equivalence of δSgrav
B and δEgrav

B was confirmed

in [17], and by a different method in [16].

In this section, we will verify that δSgrav
B = δEgrav

B follows from the equations of motion

in a general theory of gravity. The crucial observation, described in the previous section,

is that this gravitational relation can be interpreted as a statement of the equivalence

of energy and entropy for perturbations of AdS-Rindler space. This equivalence follows

directly from the generalized first law of black hole thermodynamics proved by Iyer and

Wald [46].

The Iyer-Wald theorem states that for a stationary spacetime with a bifurcate Killing

horizon generated by a Killing vector ξ, arbitrary on-shell perturbations satisfy κ
2π δSWald =

δE[ξ]. Here SWald is the Wald entropy defined in the introduction, E[ξ] is a canonical energy

associated to the Killing vector ξ and κ is the surface gravity: ξa∇aξ
b = κ ξb on the horizon.

The key observation that connects this to our holographic version of the entanglement

first law is that the Iyer-Wald theorem applies to AdS-Rindler horizons. It is straightfor-

ward to check that the vector

ξB = −2π

R
(t− t0)[z∂z + (xi − xi0)∂i] +

π

R
[R2 − z2 − (t− t0)

2 − (~x− ~x0)
2] ∂t (3.1)

is an exact Killing vector of the standard Poincaré metric (2.12), which vanishes on

B̃(R, ~x0). This vector is in fact proportional to ∂τ in the AdS-Rindler coordinates (2.11).

Thus, the hemisphere B̃ is the bifurcation surface of the Killing horizon for ξB and the

region Σ(R, ~x0) enclosed by B̃ and B is a spacelike slice that plays the role of the black

hole exterior. The Iyer-Wald theorem applies, and the Killing vector has been normalized

such that κ = 2π, so δSWald
B = δEB[ξB].

The definition of modular energy entering the above equality is the Iyer-Wald one; we

show in section 5.3 that this quantity agrees with δEgrav
B defined in terms of the holographic

stress tensor. Finally, we argued in the previous section that δSgrav
B = δSWald

B , and therefore

it follows that δSgrav
B = δEgrav

B . This generalizes the result of [17] to an arbitrary higher-

derivative theory of gravity.
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4 Linearized gravity from the holographic first law

In the previous section, making use of the theorem of Iyer and Wald [46], we argued that in

a general theory of gravity, any perturbation to AdS satisfying the linearized gravitational

equations will obey the holographic version of the entanglement first law, i.e. δSgrav
B =

δEgrav
B . In this section, we will demonstrate a converse statement: any asymptotically AdS

spacetime for which δSgrav
B = δEgrav

B for all balls B in all Lorentz frames must satisfy the

linearized gravitational equations and have the appropriate boundary conditions at the

asymptotic boundary.

We begin in section 4.1 by showing that δSgrav
B = δEgrav

B applied to infinitesimal ball-

shaped regions allows us to determine the holographic stress tensor in a general theory of

gravity and to constrain the asymptotic behavior of the metric. In section 4.3, we explain

how δSgrav
B = δEgrav

B , when applied to balls of arbitrary radius and centered at arbitrary

locations in arbitrary Lorentz frames, can be used to deduce the linearized gravitational

equations of motion, generalizing the results of [16]. Since we have already argued in sec-

tion 3 that these equations of motion imply δSgrav
B = δEgrav

B , it follows that the holographic

version of the entanglement first law is equivalent to the linearized gravitational equations

in general theories of gravity.

In situations where the metric perturbation is the only field turned on in the bulk,

the asymptotic behavior of the metric together with the linearized equations of motion

determine the metric perturbation everywhere. In this case, knowledge of the entanglement

functional allows us to recover the complete mapping from states to dual spacetimes at the

linearized level.

4.1 The holographic stress tensor from the holographic entanglement func-

tional

To begin, we show that given the holographic prescription for computing entanglement

entropy, the equation δSB = δEB applied to ball-shaped regions of vanishing size can be

used to determine the relation between the expectation value of the field theory stress

tensor and the asymptotic metric in the dual spacetime.

Recall the result (2.10),

δEB(R,x0) = 2π

∫

B(R,x0)
dd−1x

R2 − |~x− ~x0|2
2R

δ〈Ttt(t0, ~x)〉 . (4.1)

In the limit of a very small spherical region, i.e. R → 0, the expectation value of

the stress tensor is approximately constant throughout the ball B(R, x0). Thus, the

leading contribution to δEB is obtained by replacing δ〈Ttt(t0, ~x)〉 with its central value

δ〈Ttt(t0, ~x0)〉 ≡ δ〈Ttt(x0)〉, which yields

δEB(R,x0)
R→0−−−→ 2π δ〈Ttt(x0)〉

∫

|x|≤R

dd−1x
R2 − ~x2

2R
=

2πRdΩd−2

d2 − 1
δ〈Ttt(x0)〉 (4.2)

where Ωd−2 is the volume of a unit (d− 2)-sphere. Now using the CFT relation δEB = δSB,

we find

δ〈Ttt(x0)〉 =
d2 − 1

2πΩd−2
lim
R→0

(

1

Rd
δSB(R,x0)

)

. (4.3)
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The meaning of this equation is the following: SB is a bulk Wald functional that depends

on a small metric perturbation hab, as well as the radius R and center x0 of the entangling

surface. The above equation tells us that SB[h]/R
d cannot be arbitrary, but rather it must

have a finite limit as R→ 0.

Repeating the same calculation for a frame of reference defined by some proper d-

velocity uµ, we find

uµuν δ〈Tµν(x0)〉 =
d2 − 1

2πΩd−2
lim
R→0

(

1

Rd
δS

(u)
B(R,x0)

)

, (4.4)

where δS
(u)
B(R,x0)

is the variation of the entanglement entropy for a ball of radius R, centered

at x0 on a spatial slice in the frame of reference of an observer moving with the d-velocity

uµ. From the result (4.4), it is clear that given the bulk prescription for calculating δSB,

this formula provides us the holographic dictionary for the stress tensor.

Example: theories with entropy equal to area

As an example, consider a d-dimensional field theory for which the entanglement entropy

is computed by the Ryu-Takayanagi prescription [1, 2] in the dual (d+1)-dimensional bulk

Sgrav
B =

AB̃

4GN

. (4.5)

We consider a small metric perturbation hab of the AdS metric (2.12), chosen to be in

radial gauge,

hzµ = hzz = 0 . (4.6)

The change in the entanglement entropy of the ball due to this bulk perturbation is

δSgrav
B =

Rℓd−3

8GN

∫

|~x−~x0|≤R

dd−1x z2−d

(

δij − 1

R2
(xi − xi0)(x

j − xj0)

)

hij(z, t0, ~x) . (4.7)

In the limit R → 0, we can replace hij(z, x
µ) by hij(z, x

µ
0 ) under the integral sign. To

compute the R-scaling of the entropy and check whether it can satisfy (4.3), it is useful to

define the rescaled variables

x̂i =
xi − xi0
R

, ẑ =
z

R
(4.8)

which are to be kept fixed as R → 0. Then, the only way that (4.7) has a finite limit as

R→ 0 is if

hµν(z, x
λ
0)

z→0−−−−→ zd−2 h(d)µν (x
λ
0) (4.9)

where h
(d)
µν does not scale with R. Performing the xi integral and substituting into (4.3),

we find

δ〈Ttt〉 =
dℓd−3

16πGN

h(d)ii . (4.10)

In order to generalize this result to an arbitrary Lorentz frame as in (4.4), it is useful to

rewrite h(d)ii = h
(d)
00 −η00 h(d)λλ . Passing to an arbitrary frame and equating the coefficients

of uµuν , we find

δ〈Tµν〉 =
dℓd−3

16πGN

(h(d)µν − ηµν h
(d)λ
λ ) . (4.11)
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Now tracelessness and conservation of the CFT stress tensor imply that this leading per-

turbation of the bulk metric must satisfy

h(d)µµ = 0 , ∂µh
(d)µν = 0 . (4.12)

These equations correspond to the initial value constraints on the z = 0 surface in Einstein

gravity. Applying the tracelessness condition allows the stress tensor to be simplified to

δ〈Tµν〉 ≡ δT grav
µν =

dℓd−3

16πGN

h(d)µν . (4.13)

Of course, this expression is the usual result for the linearized holographic stress tensor in

Einstein gravity in AdSd+1 [40–44].

In section 5.3 we show, using a scaling argument, that even in the presence of higher

derivative terms, the CFT stress tensor Tµν ∝ h
(d)
µν , but with a non-trivial coefficient that

depends on the higher curvature couplings10 — see also section 6.

4.2 The linearized Fefferman-Graham expansion

We have just shown how the R → 0 limit of the first law relation constrains the leading

behavior of the metric for small z and determines the holographic stress tensor. By equat-

ing terms at higher orders in the expansion of δSgrav
B(R,x0)

= δEgrav
B(R,x0)

in powers of R, we

can obtain additional constraints on the metric. At each higher order in R, the equations

involve successively higher terms in the Fefferman-Graham expansion of the metric (i.e. the

expansion in powers of z). In [16], it was shown, for theories with holographic entangle-

ment entropy computed by area, that these constraints completely determine the linearized

metric to all orders in the Fefferman-Graham expansion. At the linearized level, this gives

the complete metric perturbation everywhere in the bulk, and the result is precisely the

solution to the linearized Einstein’s equations with boundary behavior governed by the

holographic stress tensor.

While we could apply the same approach to more general theories of gravity, we will

instead take another route that leads to the full equations of motion without having to

assume a series expansion for the quantities in the first law relation.

4.3 Linearized equations from the holographic entanglement functional

In this section, we will show that knowledge of the holographic entanglement functional

allows us to deduce the linearized gravitational equations for the entire dual spacetime, by

making use of the relation δSB = δEB for ball shaped regions B(R, x0) of arbitrary radius

R and center position xµ0 in arbitrary Lorentz frames.

Figure 3 shows the unperturbed bulk AdS spacetime, with the region B(R, x0) on the

boundary, together with the bulk extremal surface B̃(R, x0) with the same boundary as B

10This result can understood using conformal invariance, since h
(d)
µν is the only spin-2 tensor that we can

write down with scaling dimension d under z → λz. Here we are assuming that there are no scalar fields,

coupled linearly to curvature, with mass tuned so that the conformal dimension of the dual operators is

∆ = d, and similarly for other matter fields.
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~R
B

B

t

x

z

0x
Σ

Figure 3. Notation for regions in AdSd+1, with radial coordinate z and boundary space coordinate

~x. B(R, x0) is the (d − 1)-dimensional ball on the z = 0 boundary of radius R centered at ~x0 on

the spatial slice at time t0. B̃ is the (d − 1)-dimensional hemispherical surface in AdS ending on

∂B, and Σ is the enclosed d-dimensional spatial region.

and the spatial region Σ on a constant time slice bounded by these two surfaces. Using

the definition (2.13) and the result (4.4) for the holographic stress tensor, we can write

the quantity δEgrav
B as an integral over the corresponding region B(R, x0) on the boundary

of the dual spacetime of some local quantity, a (d − 1)-form, that is constructed from the

asymptotic limit of the metric perturbation hab.

In a similar way, the holographic entanglement functional gives us a prescription for

writing the entanglement entropy δSB as an integral over the extremal surface B̃(R, x0)

in the bulk (shown in figure 2). Again, the form that we integrate is locally constructed

from the metric perturbation hab (and possibly matter fields). The relation δSgrav
B = δEgrav

B

then places a constraint on the perturbation: the two integrals corresponding to δEgrav
B and

δSgrav
B must be equal. This must be true for any R and xµ0 , in any Lorentz frame. We will

show that this infinite set of nonlocal integral equations together implies the local differ-

ential equations δEg
ab = 0, where δEg

ab are the linearized gravitational equations of motion.

Turning the nonlocal constraint into a local equation

To convert the nonlocal integral equations into a local equation, the strategy is to make

use of the machinery used by Iyer and Wald to derive the first law from the equations of

motion. The Iyer-Wald formalism is reviewed in detail in the next section, but for now we

just need one fact: the crucial step in the derivation is the construction of a (d − 1)-form

χ that satisfies
∫

B

χ = δEgrav
B

∫

B̃

χ = δSgrav
B (4.14)

and for which dχ = 0 on shell (i.e. when the gravitational equations of motion are satisfied).

The first law follows immediately by writing
∫

Σ dχ = 0 and applying Stokes theorem (i.e.

integrating by parts).
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To derive local equations from the gravitational first law, we will show that there exists

a form χ which satisfies the relations (4.14) off shell, and whose derivative is

dχ = −2ξaB δE
g
ab ε

b (4.15)

where the d-form εb is the natural volume form on co-dimension one surfaces in the bulk

(defined in eq. (5.3)), ξB is the Killing vector (3.1) that vanishes on B̃(R, x0), and δEg
ab

are the linearized gravitational equations of motion. In addition, we will require that

dχ|∂M = 0 (4.16)

where ∂M is the AdS boundary, assuming the tracelessness and conservation of the holo-

graphic stress tensor.11 This ensures that the energy Egrav
B does not depend on the surface

S on the boundary that we use to evaluate it, as long as ∂S = ∂B. Note that on Σ,

only the time components of ξaB and εb are non-vanishing, so only the tt component of the

gravitational equations appears on the right-hand side of eq. (4.15).

The derivation of these statements in a general theory of gravity relies on the Iyer-Wald

formalism [46] and is deferred to section 5. Now we will show that the existence of the form

χ with these properties implies the equations of motion. The relation δSgrav
B = δEgrav

B gives

0 = δSgrav
B − δEgrav

B =

∫

B̃

χ−
∫

B

χ =

∫

∂Σ
χ =

∫

Σ
dχ = −2

∫

Σ
ξtB δE

g
tt ε

t . (4.17)

Multiplying this result by R and then taking the derivative with respect to R, we obtain

∫

B̃

(RξtB) δE
g
tt r̂ · εt + 2πR

∫

Σ
δEg

tt ε
t = 0 . (4.18)

The first term vanishes because ξB = 0 on B̃, so we find that

∫

Σ
δEg

tt ε
t = 0 (4.19)

for any Σ(R, ~x0). As we show in appendix A, this implies that the integrand vanishes

everywhere, i.e. δEg
tt = 0, as we wished to show.

So far we have used the first law for every ball B(R, ~x0) in a spatial slice at fixed t.

More generally, demanding δSgrav
B = δEgrav

B in a frame of reference defined by a d-velocity

vector uµ implies uµuνδEg
µν = 0, where the index µ = 0, . . . , d− 1 runs over the boundary

coordinates. Since this holds for any uµ, we have

δEg
µν = 0 . (4.20)

These are all the components of the gravitational equations of motion along the bound-

ary directions.

To obtain the remaining equations δEg
zµ = 0 and δEg

zz = 0, we appeal to the initial

value formulation of gravity, in a radial slicing where these are the constraint equations.

11This in turn follows from the conservation and tracelessness of the CFT stress tensor.
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This formulation guarantees that if these constraints are satisfied at z = 0, and the other

equations (4.20) hold everywhere, then the constraints hold for all z.12 The vanishing of

the constraints at z = 0 follows from eq. (4.16) combined with eq. (4.15), or ultimately

from the conservation and tracelessness of the holographic stress tensor.

In detail, we have using the Noether identity (discussed in appendix B) linearized

about the AdS background,

∇a(δE
g)ab = 0 . (4.21)

Using the vanishing of Eg
µν , the general solution to (4.21) can be written as:

δEg
zµ = zd−1Cµ , δEg

zz = zd−2Cz −
1

2
zd∂µC

µ , (4.22)

for unfixed Cµ, Cz which are functions of the boundary coordinates. We simply need to

show that Cµ, Cz must vanish. This is achieved by the requirement (4.16) which (using

eq. (4.15) and (4.22)) gives:

0 = dχ|∂M = −
(

ζµBCµ + ζ̃zBCz

)

dt ∧ dx1 . . . ∧ dxd−1 . (4.23)

Here, we have defined ζ̃zB ≡ limz→0(z
−1ξzB) = −2πR−1(t − t0) which is related to the

boundary conformal Killing vector via: ∂µ(ζB)ν + ∂ν(ζB)µ = 2ηµν ζ̃
z
B. Since it is possible

to construct χ for all possible boundary regions B and in all Lorentz frames, it follows

that Cµ = Cz = 0.

In summary, we can obtain the full set of linearized gravitational equations, if we can

show that a form χ exists, which satisfies eqs. (4.14), (4.15) and (4.16). We do this in

section 5.

Example: linearized Einstein equations from S = A/4GN

In section 5, we will prove that χ exists in a general theory, but we first give the explicit

formula for Einstein gravity without introducing any additional formalism. Consider the

case of a holographic CFT for which the field theory entanglement entropy of a region A

is equal to one quarter the area of the bulk extremal-area surface with boundary ∂A. In

this case, writing the metric perturbation as hµν = zd−2Hµν , we are looking for a form

χ whose exterior derivative, restricted to Σ, is proportional to the tt component of the

Einstein equation, and which satisfies
∫

B

χ = δEgrav
B =

d

16GNR

∫

B

dd−1x (R2 − |~x− ~x0|2)H i
i (4.24)

and
∫

B̃

χ = δSgrav
B =

ℓd−3

8GNR

∫

B̃

dd−1x(R2H i
i − (x− x0)

i(x− x0)
jHij) . (4.25)

Here, we have used eqs. (2.10) and (4.13) to write an explicit expression for δEgrav
B , making

use of (4.12) to replace Htt with H i
i = δijHij . The expression for δSgrav

B was taken

from [16, 17].

12In Einstein gravity, this follows from the Bianchi identity by a standard argument [47].
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A form χ that satisfies the above requirements is

χ = − 1

16πGN

[

δ(∇aξbB εab) + ξbB εab(∇ch
ac −∇ahcc)

]

(4.26)

where εab is defined in eq. (5.3). The restriction of χ to Σ is

χ|Σ =
zd

16πGN

{

εtz

[(

2πz

R
+
d

z
ξt + ξt∂z

)

H i
i

]

+ (4.27)

+εti

[

(

2π(xi − xi0)

R
+ ξt∂i

)

Hj
j −

(

2π(xj − xj0)

R
+ ξt∂j

)

H i
j

]}

where ξt = π
R
(R2 − z2 − |~x − ~x0|2). Using this expression, it is straightforward to verify

eqs. (4.24) and (4.25), and also check that

dχ|Σ = −2ξt δEg
tt ε

t (4.28)

where

δEg
tt = − zdℓ2−d

32πGN

(

∂2zH
i
i +

d+ 1

z
∂zH

i
i + ∂j∂

jH i
i − ∂i∂jHij

)

(4.29)

is the (tt)-component of the linearized Einstein equations.13 Conservation dχ|∂M = 0 fol-

lows from the conservation and tracelessness of the CFT stress tensor, so the other compo-

nents of the Einstein equations δEg
ab = 0 are also satisfied by the argument above.14 Thus,

for theories where the Ryu-Takayanagi area formula computes entanglement entropies, the

non-local equations δSgrav
B = δEgrav

B are equivalent to the linearized Einstein equations.

5 Linearized equations in general theories of gravity

In this section, we review the formalism used by Iyer and Wald to prove a version of the

first law of black hole thermodynamics in general theories of gravity (section 5.1), and

apply it in section 5.2 to construct a form χ with the properties outlined in section 4.3.

We also argue in section 5.3 that the energy for a perturbed AdS-Rindler spacetime as

defined by Iyer and Wald is equivalent to the energy defined using the holographic stress

tensor in eq. (2.10).

5.1 The covariant formalism for entropy and conserved charges

We begin by introducing notation and setting up the Iyer-Wald formalism [26, 28]. A

helpful general discussion motivating this formalism can be found in [48].

13Here, Eg
ab is defined by varying the action with respect to gab and dividing by

√−g, as usual.
14For the case of Einstein gravity, we have δEzz ∝ Hµ

µ and δEg
zµ ∝ ∂µH

µ
ν −∂νH

µ
µ = 0 so the vanishing

of these expressions at z = 0 follows immediately from the tracelessness and conservation of the holographic

stress tensor, using (4.13).

– 18 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
1

Basic definitions

Let L be any gravitational Lagrangian, viewed as a d+ 1-form

L = L ε , (5.1)

where L is constructed from the metric, curvature tensors, and their covariant derivatives.

Here, ε is the volume form15

ε =
1

(d+ 1)!
εa1···ad+1

dxa1 ∧ · · · ∧ dxad+1 . (5.2)

For later convenience, we also define:

εa =
1

d!
εab2···bd+1

dxb2 ∧ · · · ∧ dxbd+1 , εab =
1

(d− 1)!
εabc3···cd+1

dxc3 ∧ · · · ∧ dxcd+1 . (5.3)

Denoting the dynamical fields collectively by φ = {gµν , . . . }, the variation of L under a

general variation of the fields takes the form

δL = Eφδφ+ dΘ(δφ) (5.4)

where Eφ = 0 are the equations of motion for the theory, and Θ is called the symplectic po-

tential current.16 In the first term, a sum over fields φ with indices contracted appropriately

is implied.

Definition of Wald entropy from the Noether current

For a spacetime with a bifurcate Killing horizon associated to a Killing vector ξ, the Wald

entropy can be defined in terms of the Noether current associated with ξ, as we now review.

Starting with an arbitrary vector field ξ, the variation of the Lagrangian under a

diffeomorphism generated by ξµ is

δξL = d(ξ · L) (5.5)

where the dot denotes the usual inner product of ξµ with the form L.17 Since this represents

a local symmetry of a Lagrangian field theory, Noether’s theorem guarantees that we can

associate to it a current Jµ[ξ] that is conserved when the equations of motion are satisfied.

This Noether current (expressed as a d-form) is given by

J[ξ] = Θ(δξφ)− ξ · L . (5.6)

Using eqs. (5.5) and (5.4), we can check that

dJ[ξ] = −Eφδξφ , (5.7)

so J is conserved on shell as promised.

15Note that εa1···ad+1
is an antisymmetric tensor, and our sign convention is εzti1···id−1

= +
√−g .

16This potential Θ, and similarly the Noether charge form Q below, have ambiguities related to boundary

terms in the Lagrangian and shifting by an exact form. Implicitly, these ambiguities, discussed in [27, 28],

have been fixed to simplify our formulae here but would not affect our arguments.
17That is, given an n-formN = 1

n!
Na1a2···an

dxa1∧dxa2∧· · ·∧dxan , ξ·N = 1
(n−1)!

ξbNba2···an
dxa2∧· · ·∧dxan .
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Because eq. ( 5.7) holds for all vector fields ξ, it follows [49] that we can find a (d− 1)-

form Q such that

J[ξ] = dQ[ξ] (on shell) . (5.8)

Recalling that the Noether charge associated with the diffeomorphism ξ is the integral of J

over a spacelike hypersurface Σ, we see that the existence of Q (called the Noether charge

form) allows us to express this charge as an integral over the boundary of Σ.

As shown in [28], Q can be written as

Q[ξ] = Wc ξ
c +Xcd∇[cξd] , Xcd = −Eabcd

R εab , (5.9)

where Eabcd
R is the ‘equation of motion’ for the Riemann tensor, derived as if it were an

independent field in the Lagrangian:

Eabcd
R =

δL
δRabcd

≡ ∂L
∂Rabcd

−∇a1

∂L
∂∇a1Rabcd

+ · · · . (5.10)

eq. (5.8) only defines Q on shell. It is always possible to define Q off shell so that

J[ξ] = dQ[ξ] + ξaCa , (5.11)

where Ca are the constraint equations on a fixed-time slice. That is,

Ca =
∑

φ

[

r
∑

i=1

(Eφ)b1···bsc1···a···crφ
c1···ci···cr
b1···bs

εci −
s

∑

i=1

(Eφ)b1···bi···bsc1···cr φc1···crb1···a···bs
εbi

]

, (5.12)

where φ is a type (r, s) tensor, and the dots indicate that the indices appear in the ith

position. This is shown in [46] and reviewed in appendix B. Note that only the equations

of motion of non-scalar fields appear in Ca.

In a spacetime with a bifurcate Killing horizon, the Wald entropy (1.5) is now defined as

SWald = 2π

∫

H
Xcdncd , (5.13)

where H is the bifurcation surface and ncd is the binormal to H. This definition also applies

to linearized excitations of a stationary background. It is related to the Noether charge

as follows. Let ξ be the Killing vector that generates the horizon and vanishes on H. In

general, ∇[cξd] = κncd on the horizon, where κ is the surface gravity. If we normalize ξ so

that κ = 2π, then the Wald entropy equals the Noether charge

SWald =

∫

H
Q[ξ] . (5.14)

On the stationary background, this agrees with (5.13) because ξ = 0 on the bifurcation sur-

face. It was argued in [26, 28] that eqs. (5.14) and (5.13) also agree for linearized excitations.
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Definition of energy

For perturbations of the background spacetime, we can define an energy canonically asso-

ciated to a Killing vector ξ. Defining the symplectic current

ωωω(δ1φ, δ2φ) = δ2Θ(δ1φ)− δ1Θ(δ2φ) , (5.15)

the Hamiltonian that generates translations along ξµ is obtained by integrating ωωω over a

Cauchy surface C,
δHW [ξ] =

∫

C
ωωω(δφ, δξφ) . (5.16)

This can be rewritten using

δJ[ξ] = δΘ(δξφ)− ξ · dΘ(δφ) (5.17)

= ωωω(δξφ, δφ) + d(ξ ·Θ(δφ)) (5.18)

where we used the background equations of motion Eφ = 0 and the formula for the Lie

derivative of a form,

δξu ≡ Lξu = ξ · du+ d(ξ · u). (5.19)

Therefore using eqs. (5.11) and (5.18), we have

δHW [ξ] = δ

∫

C
ξaCa +

∫

∂C
(δQ[ξ]− ξ ·Θ(δφ)) . (5.20)

Thus, H reduces to a boundary term when the equations of motion are satisfied. We

define the energy δE[ξ] for an arbitrary (i.e. not necessarily on-shell) perturbation of the

background spacetime as this contribution at the asymptotic boundary,18

δE[ξ] =

∫

∂C
(δQ[ξ]− ξ ·Θ(δφ)) . (5.21)

5.2 Definition of χ

Using the notation above, we can now define the form χ described in section 2.3 as

χ = δQ[ξB]− ξB ·Θ(δφ) . (5.22)

As an example, the covariant formalism is applied to Einstein gravity plus a scalar field

in appendix C, leading to (4.26). In the rest of this section, we will demonstrate that χ

obeys the equations (4.14) and (4.15) that were needed to derive the equations of motion

from δSgrav
B = δEgrav

B . That χ also obeys eq. (4.16) will be shown in the next section. We

emphasize that it is the existence of a form χ with these properties that guarantees that

the linearized equations of motion are equivalent to δSgrav
B = δEgrav

B . Thus, starting from

only the entropy functional SWald, it should be possible to recover the linearized equations

even if we do not know χ, L, Θ, or Q.

18As discussed in [28], this definition can be extended to general spacetimes with the same asymptotic

behavior provided that there exists a form B such that δ
∫

∂C
ξ ·B =

∫

∂C
ξ ·Θ. In this case, we can define

E[ξ] =
∫

∂C
(Q[ξ]− ξ ·B) .
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The first property in eq. (4.14) follows directly from our definition (5.21) and the

equivalence of δE[ξB] and δE
grav, to be shown in the next section. The second property

follows from

δSgrav
B = δSWald =

∫

B̃

δQ[ξB] =

∫

B̃

χ . (5.23)

The first equality was discussed in section 2.3, the third equality follows from the definition

of χ since ξB vanishes on B̃, and the second equality was proved in [46], as discussed in

the previous section. The proof in [46] does not use the equations of motion, so it holds

off shell if we define the entropy as in eq. (5.13).

To show eq. (4.15) note that for ξ a Killing vector of the background, eq. (5.18) implies

δJ[ξ] = d(ξ ·Θ). Therefore

dχ = δ(dQ[ξB]− J[ξB]) = −ξaB δCa = −2ξaB δE
g
ab ε

b (5.24)

where Eg
ab is the equation of motion derived by varying the action with respect to gab.

Note that fields vanishing on the background do not contribute to the first variation of Ca,

which is why our derivation always gives the gravitational equations rather than the some

combination of gravitational and matter equations.

5.3 Equivalence of the holographic and the canonical modular energy

For arbitrary perturbations to AdS, we now have two definitions of modular energy asso-

ciated to a given boundary region B: the “canonical” energy (5.21)

δEgrav
(1) ≡ δE[ξB] ≡

∫

B

(δQ[ξB]− ξB ·Θ(δφ)) (5.25)

associated with the bulk Killing vector ξB that asymptotes to ζB, and the “holographic”

energy (2.10)

δEgrav
(2) =

∫

B

dΣµ δT grav
µν ζνB (5.26)

defined in terms of the holographic stress tensor (4.13).

In order to complete our story, we must show that these two definitions of energy agree,

without assuming the equations of motion. This is not to say that the formulae agree for

arbitrary hµν — they do not. However, equivalence follows from the restrictions on the

asymptotic metric implied by δSgrav
B = δEgrav

(2) . Note that the purely gravitational result of

this paper — that the linearized equations of motion are equivalent to δSgrav
B = δEgrav

(1) —

does not require the results of this subsection; it is needed only to map the CFT problem

to the gravity problem.

Consistency of the AdS/CFT dictionary requires the two definitions to agree, since

both should equal the CFT energy. This is confirmed for Einstein gravity in [50, 51], and

rather generally in [52], but these discussions rely on the equations of motion. Here we will

demonstrate the equivalence explicitly, at the linearized level, in a way that makes clear

that we do not need to start from the equations of motion. For simplicity, we assume in

this calculation that matter fields are not coupled to curvature, so only the metric appears

in the linearized energy.
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As we discussed in section 4.1 and will show in more detail in section 6, metric pertur-

bations for which the first law is satisfied at leading order in the R expansion behave near

the boundary as

hµν = zd−2h(d)µν + . . . (5.27)

where the dots indicate terms at higher order in z. Other fall-offs, with δSgrav
B = 0, are

also allowed; these are addressed below. The holographic stress tensor is proportional to

h
(d)
µν , so

δEgrav
(2) = C2

∫

B

dd−1x uµ h(d)µν ζ
ν
B . (5.28)

On the other hand, if we plug in the asymptotic expansion (5.27) into eq. (5.25), we find

δEgrav
(1) = C1

∫

B

dd−1xuµ h(d)µν ζ
ν
B (5.29)

for some coefficient C1, as shown in appendix D. One should in principle be able to verify

that C1 = C2 by an explicit computation. However, since this can be a bit tedious in an

arbitrary higher derivative gravity theory, we present below a slightly indirect but simpler

argument that the two constants must be the same.

To show that the coefficients C1 and C2 are equal, we use the fact that, according to

our definition, the entanglement first law is

δSgrav
B = δEgrav

(2) . (5.30)

What we have shown in the previous section is that

δEgrav
(1) − δSgrav

B = 2

∫

Σ
ξaB δE

g
ab ε

b . (5.31)

Plugging eq. (5.30) into eq. (5.31), we find

δEgrav
(1) − δEgrav

(2) = (C1 − C2)

∫

B

dd−1xh
(d)
tt ζtB = 2ℓd−1

∫

Σ
dz dd−1x z1−dδEg

tt ξ
t
B (5.32)

As R → 0, the middle term in this equation is proportional to (C1 − C2)R
d. On the

other hand, the term on the right-hand side starts at O(Rd+2), because h
(d)
µν satisfies the

linearized equations of motion at leading order, as can be explicitly checked. Thus

δEgrav
(1) = δEgrav

(2) (5.33)

for these modes.

As we discuss in section 6.3, the other fall-offs allowed by first law are those for which

δSgrav
B = 0 as R→ 0. These behave near the boundary as

hµν = z∆−2h∆µν + · · · (5.34)

for particular values of ∆ > d − 2, given in eq. (6.37). These modes do not appear in

the holographic stress tensor, so do not contribute to δEgrav
(2) . Their contribution to δEgrav

(1)
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is proportional to z∆−d as z → 0, and thus vanishes if ∆ > d. This means that our

entire analysis applies to modes with ∆ > d, so the linearized equations of motion hold

everywhere. Furthermore, since ∆ depends on the parameters in the Lagrangian, and

δEgrav
(1) must also depend smoothly on these parameters, this conclusion also applies to

modes with ∆ < d. Alternatively, it can be checked explicitly that such modes obey the

leading equations of motion near the boundary (there is a single term to check because

∆ > d− 2) so eq. (5.32) implies δEgrav
(1) = δEgrav

(2) .

Applying this discussion in an arbitrary frame, we have now established that, at the

boundary, χ is equal to the conserved current that appears in the modular energy:

χ|∂M = dΣµ T grav
µν ζν . (5.35)

Conservation and traceless of the CFT stress tensor therefore imply dχ|∂M = 0, completing

the derivation in section 4.

6 Application: the holographic dictionary in higher curvature gravity

In section 4.1, we have argued that in the limit R→ 0, the entanglement first law, together

with the holographic entanglement functional, yields the holographic dictionary for the

stress tensor. As a concrete and non-trivial application of this observation, in this section

we derive the holographic dictionary for the case when the entanglement entropy is given

by a Wald functional that is polynomial in the Riemann tensor — in other words, for

a higher derivative gravity theory whose action is constructed from arbitrary powers of

the Riemann tensor, but no derivatives thereof. The analysis including derivatives of the

Riemann tensor is similar — and straightforward in any particular example — but we leave

it to future work. As we will show, in this case the entanglement first law allows one to

derive holographic dictionary not only for the stress tensor, but also for the other operators

that couple to the metric in the context of higher derivative gravity.

The usual procedure for finding the holographic dictionary for an arbitrary gravita-

tional theory in AdS is holographic renormalization [40–45]. This technique provides full

information about the holographic dictionary, allowing both arbitrary sources and expec-

tation values. One can thus compute, in principle at least, any desired correlator of the

stress tensor and the other operators that couple to classical fields in the bulk. Neverthe-

less, computations that use this method can become extremely tedious in the context of

higher derivative gravity. The reason is that a necessary first step in holographic renormal-

ization is to render the variational principle at the spacetime boundary well-defined, and

this can be rather difficult in a general higher derivative gravity theory (e.g. [52, 53]).

However, if one is only interested in computing the expectation value of the stress tensor

in higher derivative gravity rather than its general correlation functions, the “entanglement

first law” method for deriving the holographic dictionary can provide an easy alternative.

The reason for this simplification — besides not having to deal with the variational principle

— is that one can perform all calculations at linearized level, where all higher derivative

gravity theories effectively reduce to R2 theories. A scaling argument can then be used to

argue that the linearized answer holds quite generally.
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6.1 General results

We begin with the general result derived in section 4.1

δT grav
tt (x0) =

d2 − 1

2πΩd−2
lim
R→0

(

1

Rd
δSgrav

B(R,x0)

)

. (6.1)

For a general theory of gravity, we have

δSgrav
B = δSWald

B = δ

(

−2π

∫

B̃

Eabcd
R εab ncd

)

= −2π

∫

B̃

(

δEabcd
R εab ncd + Eabcd

R δεab ncd + Eabcd
R εab δncd

)

(6.2)

The binormal ncd is defined as

ncd = n1an
2
b − n2an

1
b (6.3)

where n1 and n2 are unit vectors normal to each other and to the bifurcation surface B̃.

To linearized order in the perturbation, they are given by

n1adx
a = − ℓ

z

(

1− z2

2ℓ2
htt

)

dt , n2adx
a =

xAℓ

R z

(

1 +
z2

2ℓ2R2
hij x

ixj
)

dxA (6.4)

where xA = xA = {xi, z}.
Next, from the definition of εab in eq. (5.3), we have

δεab =
1

2
h εab , h ≡ gcdhcd . (6.5)

Substituting all these expressions into eq. (6.2), we find

δSWald
B =

4πℓd+1

R

∫

B

dd−1x

zd+2
xAxB

[

−2ℓ2

z2
δEtAtB

R + EtAtB
R

(

2htt − hijδ
ij − hij

xixj

R2

)]

(6.6)

For a general Lagrangian built from curvatures but no covariant derivatives of curvatures,

Eabcd
R is a function of gab and Rabcd. Evaluated on an AdS background, which is maximally

symmetric and thus satisfies

Rabcd = − 1

ℓ2
(gac gbd − gad gbc) , (6.7)

the Wald functional takes the following simple form

Eabcd
R = c1 g

〈abgcd〉 (6.8)

for some constant c1. The indices inside the 〈 , 〉 brackets are (anti)symmetrized so that

the resulting object has the same symmetries as the Riemann tensor, as in [53].

To compute δEabcd
R , we use the chain rule

δEabcd
R =

∂Eabcd
R

∂gef
δgef +

∂Eabcd
R

∂Refgh
δRefgh . (6.9)
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The partial derivatives above are to be evaluated on the background AdS, so using eq. (6.7),

they can be expressed entirely in terms of products of the unperturbed AdS metric, with

various contractions and symmetrizations. Letting

δgab = −hab , δRabcd = Rabcd (6.10)

the general form of the linearized δEabcd
R is then

δEabcd
R = −c2 g〈abgcd〉 h− c3 h

〈abgcd〉 + ℓ2c4 g
〈abgcd〉R+ ℓ2c5R〈abgcd〉 + ℓ2c6Rabcd (6.11)

where the first two terms come from the partial derivative of Eabcd
R with respect to gef , and

the last three from the partial derivative with respect to the Riemann tensor, evaluated on

AdS. All indices are raised and contracted with the background metric gab. Note that not

all coefficients ci introduced above are independent, but rather they satisfy

c2 = −2d c4 − c5 , c3 = 2 c1 − (d− 1) c5 − 4 c6 . (6.12)

These constraints follow from the fact that the most general Wald functional that is linear in

the Riemann tensor takes the form (6.27) — see below — which is parametrized by just four

constants. Eq. (6.28) then shows that the six coefficients ci satisfy two additional relations.

To finalize our computation of the linearized Wald functional, we only need to evaluate

the linearized Riemann tensor, given by

Rabcd =
1

2
(∇c∇bhad −∇d∇bhac +∇d∇ahbc −∇c∇ahbd) +

1

2
(Raecdh

e
b +Re

bcdhae) . (6.13)

For the computation of the holographic stress tensor (6.1), we only need the leading be-

haviour of the Riemann tensor as R → 0. This can be easily evaluated by noting that

z ∝ R and z-derivatives of the metric perturbation dominate over xµ-derivatives as z → 0.

More explicitly, near the boundary we can write

hµν(z, x
λ) = z∆−2h(∆)

µν (xλ) + · · · (6.14)

for some ∆ to be determined, where the dots indicate terms at higher order in z. Then, we

can replace ∂zhµν = (∆ − 2)z−1hµν and ignore all xµ-derivatives, because ∂µ ∼ O(1) will

always be subleading in the R expansion, as compared to ∂z ∼ O(R−1). Consequently, in

taking R→ 0, we can approximate19

Rµνρσ|R→0 =
∆− 2

2ℓ2
(hµρgνσ + hνσgµρ − hµσgνρ − hνρgµσ) (6.15)

and

Rµzνz|R→0 =
1

2z2
[2(∆− 1)−∆2]hµν . (6.16)

19It is not hard to see that if we had also allowed derivatives of the Riemann tensor into the Wald

functional, their linearized leading contribution to the entropy as R → 0 would also be linear in hµν with

no derivatives, due to the above scaling argument. Their contribution would typically be of the same order

as the polynomial one, and straightforward if a bit tedious to compute.
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We can then substitute this simplified expression into20 eq. (6.11) and further into eq. (6.6).

Upon contracting with xA xB, the integrand will contain terms proportional to htt, δ
ijhij

and hijx
ixj ; using spherical symmetry, the latter can be replaced by ~x2 δijhij/(d − 1).

Furthermore, we can write hijδ
ij = hµνη

µν + htt. The final answer takes the form

δSWald
B =

4πℓd−3

R

∫

B

dd−1x

zd−2
(Ahtt +B ηµνhµν) (6.17)

where the coefficients A and B are given by

A =

( |~x|2
d− 1

−R2

)[

c1
2

− c3
2

+
c5
4
(2− 2d+∆d−∆2) + (∆2 − d∆2 + d∆− 2)c6

]

−R2∆(∆− 1)(d− 2)c6

B =
|~x|2
d− 1

[

c1
2

− c3
2

+
c5
4
(2− 2d+∆− 2∆2 + d∆2) + c6(∆− 2)

]

+R2

[

c1
2

− c2 + c4(∆ + d∆− 2d−∆2) +
c5
4
(3∆− 4−∆2)

]

. (6.18)

Using eq. (6.14), it is not hard to verify that the leading contribution in eq. (6.17) scales

as R∆, so we must choose ∆ = d to obtain a finite result in eq. (6.1). Thus, we find again,

as in Einstein gravity, that in order for the first law of entanglement to be satisfied, the

asymptotic expansion of the metric should start at order zd−2. Performing the integral in

eq. (6.17) with ∆ = d, we find that

δT grav
tt = αh

(d)
tt + β ηtt h

(d)
µ

µ (6.19)

where the indices on h(d) are now raised with ηµν , and the two coeffcients are given by

α = d(−c1 + c3 + (d− 1)c5 + 2dc6) ℓ
d−3 (6.20)

β = [−(d+ 2)c1 + 2(d+ 1)c2 + c3 + 2d(d+ 1)c4 + (d+ 1)c5 − 2(d− 2)c6] ℓ
d−3 (6.21)

Generalizing the calculation to an arbitrary Lorentz frame as in section (4.1), we con-

clude that

δT grav
µν = αh(d)µν + β ηµνh

(d)
α

α (6.22)

20The explicit expression for eq. (6.11) is

δE
µνρσ
R =

[

(∆d− 2d−∆2 +∆) c4 +
c5

2
(∆− 2)− c2

]

h g
〈µν

g
ρσ〉

+
[

2(∆− 2)c6 − c3 +
c5

2
(∆d− 2d+ 2−∆2)

]

h
〈µν

g
ρσ〉

δE
µzρz
R =

[

c6

2
(2∆− 2−∆2) +

c5

8
(∆d− 2d+ 2−∆2)− c3

4

]

h
µν

g
zz

+
[

c4

2
(∆d− 2d−∆2 +∆) +

c5

8
(3∆− 4−∆2)− c2

2

]

h g
µν

g
zz
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As in Einstein gravity, tracelessness and conservation of Tµν imply that21

h(d)µµ = 0 , ∂µh(d)µν = 0 (6.23)

so we have

δT grav
µν = d ℓd−3[−c1 + c3 + (d− 1) c5 + 2d c6]h

(d)
µν

= dℓd−3[c1 + 2(d− 2)c6]h
(d)
µν . (6.24)

This gives the holographic stress for a theory in which the Wald entropy is an arbitrary

function of the Riemann tensor, but not its covariant derivatives. The coefficients ci are

defined in eqs. (6.8) and (6.11).

Note that to this point, we have only been considering the leading contribution to the

expectation value of the stress tensor. That is, as noted in footnote 4, we are considering

a one-parameter family of states |Ψ(λ)〉 with |Ψ(0)〉 = |0〉 and within this family, δ〈Tµν〉 ≡
∂λ〈Tµν〉|λ=0. However, we will now argue that our result extends beyond this leading

order to give a general prescription for 〈Tµν〉. In particular, the fact that 〈Tµν〉 ∝ h
(d)
µν

simply follows from conformal invariance: there is no other field in spacetime that has

the correct tensor structure and transformation properties under rescalings.22 Thus, the

above expression for the stress tensor holds even when h
(d)
µν is finite. Another way to see

this fact is to note that since the theory is conformal, the only dimensionless number that

characterizes the perturbation is ε = c−1
T 〈Tµν〉Rd in the CFT, or h

(d)
µνRd in spacetime.

Applicability of the first law only requires that ε≪ 1, see also the appendix of [17]. Thus,

we can either have 〈Ttt〉 small and R finite, or 〈Ttt〉 finite and R→ 0. In the first case, we

can derive the linearized gravitational equations in the entire bulk, by taking the amplitude

of the perturbation to be small and using the Wald functional method. In the second case,

we can derive the leading asymptotic expansion of the metric (as z → 0) for a general

non-linear solution.

6.2 Examples

We now give some explicit examples employing the general formula (6.24) and compare

with known results in the literature.

6.2.1 The holographic stress tensor in R2 gravity

To begin, consider the case of an arbitrary R2 gravity theory in d + 1 dimensions, which

contains all possible contractions of the Riemann tensor but no derivatives thereof. It is

21When α + β d = 0, the vanishing of the trace of the stress tensor no longer implies h(d)µ
µ = 0. Using

our results from section 6.3, it is easy to check that precisely at this value of the ci, the additional scalar

operator present in higher curvature gravity — which couples to the trace of the metric — has dimension

∆ = d, and thus appears at the same order in the asymptotic z expansion as the traceless mode that couples

to the CFT stress tensor.
22There are a few exceptions to this, such as a gauge field in three space-time dimensions, which can

contribute to the stress tensor at quadratic order, or when fields have finely-tuned dimensions that can add

up to d.
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convenient to write the most general Lagrangian of such a theory as

L =
1

16πGN

[

d(d− 1)

ℓ̃2
+R+ a1ℓ̃

2RabcdR
abcd + a2ℓ̃

2RabR
ab + a3ℓ̃

2R2

]

, (6.25)

where ℓ̃ is the scale parametrizing the (negative) cosmological constant. We also use ℓ̃ to

set the scale in the curvature-squared terms, which leaves ai as dimensionless couplings

controlling the strength of these interactions. We assume that the parameters are chosen

such that the theory admits an AdSd+1 vacuum solution of radius ℓ. In fact, it is straight-

forward to show the AdS radius is determined by the parameters in the Lagrangian (6.25)

by the following quadratic equation

ℓ4

ℓ̃4
− ℓ2

ℓ̃2
+
d− 3

d− 1
(2 a1 + d a2 + d(d+ 1) a3) = 0 . (6.26)

Of course, ℓ = ℓ̃ when the ai are set to zero. To construct the Wald entropy (1.5), we

consider the variation of the Lagrangian with respect to the curvature, as in eq. (5.10)

Eabcd
R =

1

16πGN

[(

1

2
+ a3ℓ̃

2R

)

(gacgbd − gadgbc)+ (6.27)

+2a1ℓ̃
2Rabcd +

1

2
a2ℓ̃

2
(

Racgbd −Rbcgad −Radgbc +Rbdgac
)

]

The coefficients ci defined in eq. (6.11) are given by

c1 =
1

16πGN

[

1− 2 (2a1 + da2 + d(d+ 1)a3)
ℓ̃2

ℓ2

]

, c2 = −2(a2 + 2d a3)

16πGN

ℓ̃2

ℓ2
,

c3 =
1

8πGN

[

1− (8a1 + (3d− 1)a2 + 2d(d+ 1)a3)
ℓ̃2

ℓ2

]

c4 =
a3

8πGN

ℓ̃2

ℓ2
, c5 =

a2
8πGN

ℓ̃2

ℓ2
, c6 =

a1
8πGN

ℓ̃2

ℓ2
(6.28)

which one can verify satisfy the constraints in eq. (6.12). Hence our general expres-

sion (6.24) gives

〈Tµν〉 =
d ℓd−3

16πGN

[

1 + (4(d− 3)a1 − 2d a2 − 2d(d+ 1)a3)
ℓ̃2

ℓ2

]

h(d)µν (6.29)

We have checked that eq. (6.29) agrees perfectly with previous results in the literature that

used more standard holographic techniques: see, for example, equation (51) of [54] for the

case d = 3. We have also checked that in general d our answer agrees with the holographic

stress tensor of [53], when the results of that paper are applied to a flat boundary metric

and the volume divergences are subtracted. Note that the covariant expression of [53] for

the holographic stress tensor in terms of induced fields at the boundary obscures somewhat

the simplicity of the final answer (6.29) for 〈Tµν〉, which is dictated by scaling.23

23This scaling property might be more obvious if one used instead the Hamiltonian method for holographic

renormalization [45]. Nevertheless, one would still need to deal with the variational principle with that

approach.
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6.2.2 An R4 example

As an example where higher powers of curvature appear, consider the theory

I =
1

16πGN

∫

dd+1x
√−g

[

d(d− 1)

ℓ̃2
+R+ αℓ̃6 (RµνρσR

µνρσ)2
]

. (6.30)

This particular example has been studied previously in section 3.4 of [54], for the case

d = 3. The authors of that paper were investigating black hole thermodynamics in the

above theory, and found that in order for the first law to hold, the mass of the black hole

had to be independent of the coefficient of the R4 term. In this subsection, we will use

the holographic entanglement method for computing the stress tensor expectation value to

confirm their result.

The Wald functional for this theory reads

Eabcd
R =

1

16πGN

[

1

2
(gacgbd − gadgbc) + 4αℓ̃6Rabcd(RαβγδR

αβγδ)

]

(6.31)

The four independent coefficients ci are given by

c1 =
1

16πGN

(

1− 16d(d+ 1)α
ℓ̃6

ℓ6

)

, c4 =
2α

πGN

ℓ̃6

ℓ6
, c5 = 0 , c6 =

d(d+ 1)α

2πGN

ℓ̃6

ℓ6

(6.32)

so our general expression (6.24) gives

〈Tµν〉 =
dℓd−3

16πGN

(

1 + 16d(d+ 1)(d− 3)α
ℓ̃6

ℓ6

)

h(d)µν (6.33)

Thus, precisely in d = 3 we have 〈Ttt〉 = 3h
(3)
tt /(16πGN). The explicit solution (142)-(143)

in [54] for the metric of the black hole in presence of the R4 term shows that h00 = m is

uncorrected by the higher derivative term. Hence we also conclude that the mass of the

black hole is uncorrected, in agreement with the expectation of [54].

6.3 Other terms in the FG expansion

A feature of higher derivative gravity is the existence of additional degrees of freedom

contained in the metric. This occurs because the equations of motion are no longer second

order. These new degrees of freedom will appear as new terms in the asymptotic FG

expansion, which according to the usual AdS/CFT lore will represent new operators in the

dual CFT. Here we show how the entanglement first law can be used to derive the FG

expansion for these new modes, including a derivation of the conformal dimensions of the

CFT operators to which they couple.

Of course, the physical interpretation of these modes is unclear. First, they typically

have negative norm indicating that the boundary theory is no longer unitary [55], and

second, their masses are typically at the string scale where the low energy effective field

theory is unreliable. Nonetheless, they do satisfy the equations of motion, so we can ask

how they fit mathematically into our discussion of the first law.
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These new modes appear as additional solutions to the first law constraint δSgrav
B =

δEgrav
B . Previously, we argued that a metric perturbation of the form (6.14) that satisfies

the first law relation must have ∆ = d and be related to the stress tensor expectation value

as we described in the preceding section. Nevertheless, perturbations with ∆ 6= d, with ∆

an arbitrary real number, are also allowed, as long as they satisfy δSgrav
B = 0.

To show how this works explicitly, we consider the example of general R2 gravity, with

Lagrangian given by eq. (6.25). We consider a metric perturbation of the form (6.14). The

x integral in eq. (6.6) is convergent as long as ∆ > d− 2. Performing this integral, we find

δSgrav =
ℓd−3R∆Ωd−2

2GN

Γ
(

d−1
2

)

Γ
(

1
2(∆− d) + 1

)

2Γ
(

∆+1
2

)

(

ĥ
(∆)
00 aT + h(∆) aS

)

(6.34)

where we have defined

h(∆) ≡ h(∆)i
i − h

(∆)
00 and ĥ(∆)

µν ≡ h(∆)
µν − 1

d
h(∆) . (6.35)

Further the constant factors are given by

aT =
ℓ̃2∆

4ℓ2(1 + ∆)

[

2d(a2 + a3 + d a3) + a2(d−∆)∆+ 4a1
(

3− d+ d∆−∆2
)

− ℓ2

ℓ̃2

]

aS =
ℓ̃2∆

4dℓ2(1 + ∆)

[

2(d− 3)d(a2 + a3 + d a3)− (a2 + d a2 + 4d a3)(d−∆)∆+

−4a1
(

3− d+ d∆−∆2
)

− (d− 1)
ℓ2

ℓ̃2

]

. (6.36)

We can then satisfy the equation δSgrav
B = 0 at leading order in R, the radius of the

ball, by demanding that the constants aT , aS vanish. This is the case for ∆ = 0 and

∆ = ∆T,S , where
24

∆±
T =

d

2
±

√

d2

4
+

2a3d(d+ 1) + 2da2 − 4a1(d− 3)− ℓ2/ℓ̃2

4a1 + a2

∆±
S =

d

2
±

√

d2

4
+

(d− 1)ℓ2/ℓ̃2 − 2(d− 3)[2a1 + a2d+ d(d+ 1)a3]

4a1 + a2(d+ 1) + 4a3d
(6.37)

We have checked that these expressions agree with the coefficients of the asymptotic falloffs

of solutions to the equations of motion in R2 gravity.25 Also, for d = 3, ∆+
S agrees with the

operator dimension that was obtained in [54], also by solving the asymptotic equations of

motion. Therefore, imposing δSgrav
B = 0 as R → 0 ensures that the asymptotic equations

of motion are satisfied, a claim which we use in section 5.3.

24Of course, only the ∆+
S,T solutions are physical, since only for them does the x integral converge. It is

interesting though that the δS
grav
B = 0 constraint also knows about the non-normalizable modes in gravity,

including the perturbation of the boundary metric, with ∆ = 0.
25For completeness, we reproduce the equations of motion that follow from the Lagrangian (6.25):

σ

ℓ̃2
Gµν − d(d− 1)

2ℓ̃4
gµν =

1

2

[

a1RµνρσR
µνρσ + a2RµνR

µν + a3R
2 − (a2 + 4a3)�R

]

gµν − 2a1RµαβγRν
αβγ

−(2a2 + 4a1)RµανβR
αβ − 2a3RRµν + 4a1RµαRν

α + (2a3 + a2 + 2a1)∇µ∇νR− (a2 + 4a1)�Rµν

On the AdS solution of radius ℓ, the relationship between ℓ and ℓ̃ is given in eq. (6.26).
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7 Discussion

In this paper, we have seen that a universal relation between entanglement entropy and

‘modular’ energy for small perturbations to the vacuum state of a CFT leads, in the

holographic context, to a nonlocal constraint on the dual spacetimes, which is exactly

equivalent to the linearized gravitational equations. Thus, given any holographic CFT,

we can derive the linearized bulk equations knowing only the entanglement functional.

Moreover, as we showed in sections 4.1 and 6, we can also derive the asymptotic boundary

conditions for the metric perturbation, as well as an expression for the holographic stress

tensor. When matter couplings to curvature vanish, these results taken together imply that

from the entanglement functional, we can derive the complete map from states to metrics

at the linearized level about the vacuum.

We have also shown that this non-local gravitational constraint is precisely the first

law of black hole thermodynamics (in the form proved by Iyer and Wald) applied to certain

Rindler patches of pure AdS that can be also interpreted as zero-mass hyperbolic black

holes. Thus, we have a result that holds purely in classical gravity: in any classical gravita-

tional theory for which anti-de Sitter space is a solution and for which the first law of black

hole thermodynamics holds for some Wald functional SWald, small perturbations about the

AdS vacuum solution are governed by the linearized gravitational equations obtained from

varying the Lagrangian associated to SWald. This provides a converse to the theorem of

Iyer and Wald, but also a microscopic understanding of the origin of the Iyer-Wald first

law for AdS-Rindler horizons.

Relation to the work of Jacobson

The results in this paper are reminiscent of (and partly motivated by) the work of Jacob-

son [29] (see also [56–58]). There, it was shown that if the first law of thermodynamics —

governing the local change in entropy (defined to be horizon area) as a certain bulk energy

flows through the horizon — is assumed to hold for an arbitrary Rindler horizon, then

the full nonlinear Einstein equations must be satisfied. In Jacobson’s case, there was no

microscopic understanding of the meaning of the entropy, and thus no fundamental under-

standing of why the thermodynamic relation should hold. By contrast, in our case there is

a precise microscopic understanding of both the energy and the entropy appearing in our

relation δSB = δEB, and a proof of the first law at the microscopic level. Also, our gravity

analysis applies to an arbitrary higher curvature theory, a scenario that is problematic

with Jacobson’s approach [57]. On the other hand, because our proof is based on global

rather than local Rindler horizons, we were only able to obtain the gravitational equations

of motion at the linearized level.

Deriving the nonlinear equations?

It is obviously interesting to ask whether we can extend our results to the nonlinear level.

On the CFT side, the entanglement entropies for finite perturbations to the vacuum state

are still constrained by the modular energies, but the constraint is the inequality ∆SA ≤
∆〈HA〉 following from the positivity of relative entropy. For any ball-shaped region, we
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can still translate this inequality to a constraint on the bulk metric. The set of all such

constraints should significantly restrict the allowed bulk spacetimes, but it seems unlikely

that these restrictions will fully determine the bulk equations at the nonlinear level. In

particular, the nonlinear gravitational equations are sensitive to all the other fields present

in the classical bulk theory, including the components of the metric along any extra compact

directions. These additional degrees of freedom depend significantly on which holographic

CFT we are considering. Thus, starting from the universal relation ∆SA ≤ ∆〈HA〉 (or any
other universal relation for holographic CFTs) one might realistically expect to recover

only a part of the constraints implied by the full non-linear equations; for example, one

might obtain Einstein’s equations with the additional assumption that no other matter

fields are turned on in the bulk.

Another interesting possibility is that one might be able to obtain some constraints

at the nonlinear level in the bulk even from the linearized entanglement first law, by

considering bulk perturbations which are kept finite but taken to be localized closer and

closer to the AdS-Rindler horizon. In such a limit, the energy perturbation in the CFT

vanishes due to gravitational redshift effects. By considering infinitesimal perturbations

away from this limit, the linearized CFT first law should apply, but on the gravity side,

it would appear that we will obtain constraints on a finite perturbation localized near the

horizon. This may be closely related to the approach of Jacobson.

Quantum first law in the bulk.

Finally, it would be interesting to understand the implications of the entanglement first

law (in its infinitesimal form) beyond the classical level on the gravity side. Since the

entanglement first law is an exact relation, it can also be used to study subleading quantum

gravitational corrections to the classical results that we have derived, or CFT states that

do not have a classical bulk interpretation. These quantum states/corrections can be easily

identified by the scaling of their energy and entropy with the central charge in the CFT:

while the classical contributions are proportional to the central charge, the quantum ones

scale with a lower power of it. Thus, the first law should place constraints on the quantum

behaviour of the bulk gravitational theory and will likely also involve an understanding of

the quantum corrections to the Ryu-Takayanagi formula as discussed recently in [59–61].
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A Vanishing of the integrand

Suppose
∫

Σ
dd−1x dz f(~x, z) = 0 ∀R, ~x0 (A.1)

where Σ(R, ~x0) is the region z ≥ 0, |~x− ~x0|2 + z2 ≤ R2. We would like to show that (A.1)

implies that f = 0. To prove this, differentiate the integral, and define

IR = ∂R

∫

Σ
dd−1x dz f = 0 , Ii = ∂xi

0

∫

Σ
dd−1x dz f = 0 . (A.2)

These are the average and the first moment of f on the hemisphere B̃(R, x0),

IR =

∫

B̃

dA f = 0 , Ii =

∫

B̃

dA xi f = 0 (A.3)

where dA represents the area element on B̃. Now we can repeat the argument replacing

f → xif in (A.1), and deduce that all moments of f vanish on every hemisphere B̃. We

conclude that f = 0, as we needed to show.

An alternative argument for the vanishing of f is to note that the integral in (A.3),

viewed as a map from B̃ to R, defines the “hyperbolic Radon transform” of the function f ,

whose vanishing implies the vanishing of the function, assuming that f is continuous [62].

B Noether identities and the off-shell Hamiltonian

In this section, we derive the Noether identities for diffeomorphism invariance, and show

that J[ξ] = dQ[ξ] + ξaCa as claimed in (5.11).

Under a diffeomorphism, the variation of the action I is

δξI =

∫

ε(Eφδξφ) (B.1)

with the sum over fields φ implicit. The integrand for a field of rank r is

ε (Eφ)b1···bsa1···ar δξφ
a1···ar
b1···bs

= ε (Eφ)b1···bsa1···ar

(

ξb∇bφ
a1···ar
b1···bs

−
r

∑

i=1

∇λξ
aiφa1···λ···arb1···bs

+
s

∑

i=1

∇biξ
λφa1···arb1···λ···bs

)

= εξb(Eφ)b1···bsa1···ar∇bφ
a1···ar
b1···bs

+ εξb
r

∑

i=1

∇λ

[

(Eφ)b1···bsa1···b···ar
φa1···λ···arb1···bs

]

−εξb
s

∑

i=1

∇bi

[

(Eφ)b1···bsa1···arφ
a1···ar
b1···b···bs

]

− d(ξaCa) (B.2)
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where the dots indicate that indices appear in the ith position, and the constraints Ca

are defined in eq. (5.12). If ξ has compact support, then the total derivative does not

contribute and since δξI = 0 for any ξ, we have the following identity for the integrand,

∑

φ

(

(Eφ)b1···bsa1···ar∇bφ
a1···ar
b1···bs

+
r

∑

i=1

∇λ

[

(Eφ)b1···bsa1···b···ar
φa1···λ···arb1···bs

]

−
s

∑

i=1

∇bi

[

(Eφ)b1···bsa1···arφ
a1···ar
b1···b···bs

]

)

= 0 . (B.3)

This is the Noether identity.

Next, remember that the Noether current (5.6) satisfies dJ[ξ] = −εEφδξφ. Using (B.2)

and the Noether identity, this becomes

dJ[ξ] = d(ξaCa) (B.4)

for all diffeomorphisms ξ. It follows that [49]

J[ξ] = dQ[ξ] + ξaCa , (B.5)

for some Q, which we take to be the off-shell definition of the Noether charge Q.

C Example: Einstein gravity coupled to a scalar

In this appendix we review the covariant formalism applied to Einstein gravity coupled to

a scalar field. The Lagrangian is

L = ε

[

1

16πGN

R− 1

2
(∂ψ)2 − V (ψ)

]

. (C.1)

The cosmological constant is included in the scalar potential V (ψ). The definitions (5.4)

and (5.6) give

Θ =

[

1

16πGN

(

∇bδg
ab −∇aδg b

b

)

− δψ∇αψ

]

εa (C.2)

and

J =

[

1

8πGN

∇e

(

∇[eξd]
)

+ 2(Eg)deξ
e

]

εd (C.3)

where Eg is the gravitational equation of motion,

Eg
ab =

1

16πGN

(

Rab −
1

2
gabR

)

− 1

2
∂aψ∂bψ +

1

2
gab

[

1

2
(∂ψ)2 − V (ψ)

]

. (C.4)

The Noether current can be written

J = dQ+ 2ξaEg
abε

b (C.5)

where

Q = − 1

16π
∇aξbεab . (C.6)
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D Form of the bulk charge

In this appendix, we show that the linearized modular energy defined by the bulk Wald-

Noether procedure always take the simple form noted in eq. (5.29). We start with eq. (5.25),

reproduced here for convenience:

δEgrav
(1) =

∫

B

(δQ[ξB]− ξB ·Θ(δφ)) (D.1)

where the Killing vector ξB is given in eq. (3.1). Into this equation we would like to

substitute the asymptotic form of the metric perturbation (5.27), representing the stress

tensor perturbation. As we argued in the main text, modes with different falloffs will not

contribute, since they have the wrong scaling dimension.

As shown in [28], the most general form of Q[ξ] is

Q[ξ] = Xcd∇[cξd] +Wcξ
c +Y(φ,Lξφ) + dZ(ξ, φ) (D.2)

whereY is linear in Lξφ, Z is linear in ξ, and all forms are covariant expressions constructed

from the fields. We assume there is no matter with linear couplings to curvature. The

general covariant form of Xcd is

Xcd = Xabcdεab (D.3)

where Xabcd is antisymmetric in both is first two and last two indices. Using symmetry

and arguments similar to those in section 6, at zeroth and first order around AdS and to

leading in the z expansion, we must have (ignoring coefficients)

Xabcd
∣

∣

∣

AdS
∝ g〈abgcd〉 , δXabcd ∝ g〈abgcd〉h+ h〈abgcd〉 . (D.4)

The contribution of the first term in eq. (D.2) to δEgrav
(1) is then

IX =

∫

B

δ
(

Xabcdεab∇cξd

)

=

∫

B

(

δXabcd∇cξd +
1

2
hXabcd∇cξd +Xabcd δ(∇cξd)

)

εab

(D.5)

where the quantities without δ’s are evaluated on the background AdS solution. The

non-zero background components are

εab → εtz ∝
dd−1x

zd+1
, ∇[iξt] =

xi

Rz2
, ∇[zξt] =

R2 − |~x|2
2Rz3

, Xtzcd ∝ z4δ
[c
t δ

d]
z . (D.6)

Using eq. (D.4), the leading behaviour of the linearized quantities reads

δXtztz ∝ z6(htt + hµνη
µν) , δXtzti ∝ z7(∂ihtt + . . .) , δ(∇[zξt]) ∝ ζt∂zhtt (D.7)

It is clear from the above expressions that only the leading terms in Xtztz and δXtztz

will contribute as z → 0. Plugging in the z-dependence of hµν , one finds that all the

non-vanishing contributions are proportional to h
(d)
tt or h

(d)
i

i. Requiring moreover that

h
(d)
µ

µ = h
(d)
i

i − h
(d)
tt = 0, which follows from tracelessness of the CFT stress tensor, we

find that

IX ∝
∫

dd−1xh
(d)
tt ζ

t (D.8)

where we used the fact that limz→0 ξ
t = ζt.
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The contribution of the Wcξ
c = Wtζ

t term is easy to evaluate, taking into account

the fact that the d − 1 form Wc is a covariant expression constructed from hab, gab and

their background covariant derivatives. The most general form of Wc, linearized around

AdS, is thus

Wc = εabFab
c , Fab

c = f1(�)(∇ahbc −∇bhac) + f2(�)(δac∇bh− δbc∇ah) . (D.9)

The only non-zero contribution on B will be from F [tz]
t, and using tracelessness of the

leading term in h one can easily show that

∫

B

Wc ξ
c ∝

∫

B

dd−1xh
(d)
tt ζ

t . (D.10)

The ξ ·Θ term in eq. (D.2) has the same form as Wcξ
c so can be treated similarly.

The term Y in eq. (D.2) comes from the ambiguity Θ → Θ+dY(δφ). Together, these

terms contribute to χ in the combination

δY(δξφ)− δξY(δφ) . (D.11)

This vanishes for a background Killing vector.

Finally, the dZ term is an ambiguity that comes from the fact that Q is only defined

by its derivative. We fix this ambiguity to zero by requiring that there are no boundary

terms in the horizon entropy.

The overall conclusion is

δEgrav
(1) = C1

∫

B

dd−1xh
(d)
tt ζ

t , (D.12)

for some constant C1.
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