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1 Introduction

Increasing attention to relativistic hydrodynamics from the experimental point of view

is due to the fact that after the collision of heavy ions a quark-gluon plasma cluster is

formed. At the theoretical level, different remarkable effects associated with the properties

of relativistic fluids are discovered. The two most famous effects of this kind are the Chiral

Magnetic (CME) [1–5] and the Chiral Vortical Effect (CVE) [2–12], which will be discussed

below. The search for chiral effects is carried out on existing colliders of particles, such

as Relativistic Heavy Ion Collider (RHIC) at BNL and Large Hadron Collider (LHC) at

CERN [13, 14], and is also being discussed as an important task for future accelerator

facilities, such as Nuclotron-Based Ion Collider Facility (NICA) at JINR [15–18]. The

appearance of baryon polarization in collisions of heavy ions can be one of the important

experimental consequences of generation of vorticity and CVE in reactions with elementary

particles, as was shown in [15–18] and [19–21]. The manifestations of chiral effects in

condensed matter physics are also discussed [22].

Various theoretical methods for investigation of the chiral effects associated with the

nonuniform motion of the medium have been developed: within the framework of field

theory at finite temperatures in rotating systems [6], in the framework of hydrodynamics

with the axial anomaly [2], from an axial anomaly in effective field theory [3, 4], etc.

All of these approaches show the existence of CVE, which is thus a well-theoretically

grounded effect.

However, the issue of higher-order corrections with respect to derivatives to this effect

remains open. It is extremely important to determine the exact structure of the current,

since it is closely related to quantum anomalies. If the first-order term (temperature-

independent part) with respect to the angular velocity is related to the axial electromagnetic
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anomaly [2–4], then higher-order terms should be related to other anomalies in quantum

field theory, in particular, to the gravitational anomaly [23, 24]. Thus, the study of correc-

tions of higher orders will make it possible to improve our understanding of the effect of

the anomalies of quantum field theory to relativistic hydrodynamics.

Another open question relates to the study of effects associated with acceleration in

chiral phenomena. In particular, these effects were discussed in [10–12, 24–28]. In [25] it

is shown that their occurrence is dictated by the principle of equivalence. In [12, 27, 28]

the relationship of these effects to the Unruh effect is found. In particular, it is shown

in [12, 27, 28] that Unruh temperature appears as a boundary temperature for chiral

effects. In [12] it is shown that instabilities occur in the behavior of physical quantities

below the Unruh temperature, apparently related to the radiation of thermal bosons.

In this paper we will touch on both of these issues. We will be interested in two

recently developed methods for investigation of chiral effects: the first of them is based

on the ansatz of the Wigner function [11, 12, 28–30] (recently in [30] it was shown that

this Wigner function satisfies the zeroth-order kinetic equation with the vanishing collision

term), the second approach is based on the equilibrium quantum statistical density oper-

ator [10, 26, 27, 31–36]. The purpose of this paper is to compare these two approaches in

describing higher order effects at the equilibrium mean value of the axial current.

In [29] an ansatz of the Wigner function was proposed, taking into account the effects

associated with thermal vorticity. In [10–12] an axial current was calculated on the basis

of this Wigner function, and the resulting expression for the current exactly coincides with

the standard formula for CVE. In particular, in [12] the exact nonperturbative expression

for the axial current was obtained. In this expression, the angular velocity and accel-

eration play the role of additional chemical potentials, and the acceleration corresponds

to an imaginary chemical potential. In particular, with parallel vorticity and accelera-

tion, a combination of the form µ ± (Ω ± i|a|)/2 (where Ω and |a| are the modules of the

three-dimensional angular velocity and acceleration, respectively, in the comoving frame of

reference) appeared in Fermi distribution. Indications that the angular velocity plays the

role of an additional chemical potential were also obtained in [24, 37].

In [11, 12], corrections of higher orders to CVE were investigated, and it was shown

that the axial current contains a third-order term with respect to the angular velocity. The

corresponding term with the same coefficient appeared in [6, 7]. It is also shown that the

current contains third-order terms with respect to derivatives, quadratic in terms of local

acceleration. Note that the third order was the highest - all higher-order terms are zero.

In this paper, we will use an independent approach based on the quantum statistical

density operator for a medium with thermal vorticity [10, 26, 27, 31–36] using the calcu-

lation technique developed in [10, 26]. In [10, 26, 27, 31–36] it is shown, that a moving

medium is described by a density operator containing an additional term, in comparison

with a grand canonical distribution. Compared to the usual grand canonical distribution,

terms with the boost and angular momentum operators appear [38]. This density oper-

ator was used to calculate the effects of medium motion in various quantities [10, 26], in

particular, it was recently used to consider the effects associated with axial chemical po-

tential [39]. In [10] the mean value of the axial current in the linear approximation in the
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thermal vorticity for free Dirac fields was calculated and it was shown that it coincides with

the prediction resulting from the Wigner function [11, 12, 29], that is, both these methods

lead to a standard formula for CVE. We will see later that these two methods coincide in

describing the effects associated with rotation separately, but differ in describing the mixed

effects associated with acceleration and rotation.1

We calculate the hydrodynamic coefficients in the third order of perturbation theory

following [10, 26] for free Dirac fields and compare the resulting expression with the result

of the approach based on the Wigner function. The two methods accurately agree with each

other when considering the rotation of the system without acceleration in the comoving

reference system in the general case of massive fermions in the third order in thermal

vorticity and differ when considering mixed effects associated with acceleration and rotation

simultaneously.

Though this paper is devoted to the refinement of the theoretical aspects of chiral

effects, at the end, we will consider whether the new effects under discussion are currently

relevant in terms of the experiment.

The system of units ~ = c = k = 1 is used.

2 Analysis of the effects of non-uniform motion of the medium in the

axial current on the basis of the equilibrium density operator

Following [10, 26, 27, 31–36] a medium in the state of local thermodynamic equilibrium is

described by the covariant quantum density operator of the next form

ρ̂ =
1

Z
exp

{
−
∫

Σ
dΣµ[T̂

µν(x)βν(x)− ζ(x)ĵµ(x)]

}
, (2.1)

where the integration over the 3-dimensional hypersurface Σ is performed. Here βµ =
uµ

T

is the 4-vector of the inverse temperature, T is the temperature in the comoving frame,

ζ = u
T is the ratio of the chemical potential in the comoving reference system to the

temperature, T̂µν and ĵµ are the energy-momentum tensor and current operators. The

general conditions of the global thermodynamic equilibrium for a medium with rotation

and acceleration, under which the density operator (2.1) ceases to depend on the choice of

the hypersurface Σ, over which the integration takes place, have the form [10, 26, 30, 33, 40]

βµ = bµ +̟µνxν , bµ = const , ̟µν = const , ̟µν = −1

2
(∂µβν − ∂νβµ) , (2.2)

where ̟µν is the thermal vorticity tensor. The thermal vorticity tensor ̟µν contains

information about local acceleration and rotation in the system, which corresponds to

its expansion into the thermal acceleration vector αµ and the pseudovector of thermal

vorticity wµ

̟µν = ǫµναβw
αuβ + αµuν − ανuµ . (2.3)

1We are grateful to E. Grossi who pointed out this fact.
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In the state of global equilibrium (2.2) the thermal acceleration and vorticity become

proportional to the corresponding kinematic acceleration aµ and vorticity ωµ

wµ =
ωµ

T
=

1

2T
ǫµναβu

ν∂αuβ , αµ =
aµ
T

=
1

T
uν∂νuµ . (2.4)

Under the condition (2.2) the density operator (2.1) takes the form of an equilibrium

density operator [10, 26, 27]

ρ̂ =
1

Z
exp

{
− βµ(x)P̂

µ +
1

2
̟µν Ĵ

µν
x + ζQ̂

}
, (2.5)

where P̂ is the 4-momentum operator, Q̂ is the charge operator, and Ĵx are the generators

of the Lorentz transformations displaced to the point x

Ĵµν
x =

∫
dΣλ

[
(yµ − xµ)T̂ λν(y)− (yν − xν)T̂ λµ(y)

]
. (2.6)

The technique for calculating the mean values of physical quantities on the basis of (2.5)

was developed in the papers [10, 26], in which hydrodynamic coefficients were calculated in

the second order in the thermal vorticity tensor in various observables for scalar and Dirac

fields. We will follow the calculation algorithm proposed in [10, 26] and obtain third-order

corrections in the thermal vorticity tensor. Note that according to [6, 7, 11, 12] in the

massless limit, all the terms in the axial current above third-order in the thermal vorticity

tensor are canceled (at least at a temperature above Unruh temperature); therefore, it is

possible that the expression which we find to be accurate in the massless limit.

The mean value of an operator of a physical quantity can be calculated using (2.5)

according to formula

〈Ô(x)〉 = tr{ρ̂Ô(x)}ren , (2.7)

where “ren” denotes the renormalization procedure. Following [10] and expanding (2.5)

into a series in thermal vorticity, we obtain the following expression for the axial current

in the third order of perturbation theory

〈ĵλ5 (x)〉 =
̟µν

2|β|

∫ |β|

0
dτ〈Tτ Ĵ

µν
−iτuĵ

µ
5 (0)〉β(x),c + (2.8)

+
̟µν̟ρσ̟αβ

48|β|3
∫ |β|

0
dτ1dτ2dτ3〈Tτ Ĵ

µν
−iτ1u

Ĵρσ
−iτ2u

Ĵαβ
−iτ3u

ĵλ5 (0)〉β(x),c +O(̟5) ,

where all operators must be expressed through Dirac fields using standard formulas. In (2.8)

only connected correlators enter, since all disconnected correlators are canceled due to the

contribution of the denominator 1/Z in (2.5). This fact is shown in the lower index c, the

lower index β(x) means that the mean values are taken at ̟ = 0, that is, the averaging

is performed over the grand canonical distribution. Tτ means the ordering of operators

with respect to the imaginary time τ , and |β| = 1
T . The contributions of the zero and the
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second order in (2.8) are zero, which is connected with the requirement of parity equality

in both parts of the equation, therefore in the third order of perturbation theory

〈ĵλ5 (x)〉 = 〈ĵλ5 (x)〉(1) + 〈ĵλ5 (x)〉(3) +O(̟5) . (2.9)

The first-order contribution to (2.9) was calculated in [10] eq. (7.4)

〈ĵλ5 (x)〉(1) = − 1

2π2

∫ ∞

0
dp p2

(
n′
F (Ep − µ) + n′

F (Ep + µ)
)
ωλ , (2.10)

where the energy derivative is taken d
dEp

and Ep =
√
p2 +m2 as usual and p2 = p2. Let

us calculate the third-order corrections in (2.9). Parity allows the appearance of terms of

three types

〈ĵλ5 (x)〉(3) = A1w
2wλ +A2α

2wλ +A3(wα)α
λ . (2.11)

We note that in the presence of an axial chemical potential, additional tensor structures

appear, not included in (2.11), according to [39]. In what follows it is convenient to

introduce the operators of boost K̂ and angular momentum Ĵ

Ĵµν = uµK̂ν − uνK̂µ − ǫµνρσuρĴσ . (2.12)

Substituting (2.12) and (2.3) into (2.8), and again using the parity arguments, we get

〈ĵλ5 (x)〉(3) = − 1

6|β|3
(
αµwναρ

∫ |β|

0
dτ1dτ2dτ3〈Tτ

{
K̂µ

−iτ1u
, Ĵν

−iτ2u

}
K̂ρ

−iτ3u
ĵλ5 (0)〉β(x),c +

+αµανwρ

∫ |β|

0
dτ1dτ2dτ3〈Tτ K̂

µ
−iτ1u

K̂ν
−iτ2uĴ

ρ
−iτ3u

ĵλ5 (0)〉β(x),c +

+wµwνwρ

∫ |β|

0
dτ1dτ2dτ3〈Tτ Ĵ

µ
−iτ1u

Ĵν
−iτ2uĴ

ρ
−iτ3u

ĵλ5 (0)〉β(x),c
)
. (2.13)

Comparing (2.13) with (2.11), and taking into account the independence of the coef-

ficients A1, A2, A3 from the choice of the frame of reference and the specific form ̟ (or

using the expansion for correlators [10]), it is possible to express the coefficients in terms

of quantum correlators of boost, angular momentum and axial current operators

A1 = − 1

6|β|3
∫ |β|

0
dτ1dτ2dτ3〈Tτ Ĵ

3
−iτ1uĴ

3
−iτ2uĴ

3
−iτ3uĵ

3
5(0)〉β(x),c ,

A2 = − 1

6|β|3
(∫ |β|

0
dτ1dτ2dτ3〈Tτ

(
K̂1

−iτ1uĴ
3
−iτ2u + Ĵ3

−iτ1uK̂
1
−iτ2u

)
K̂1

−iτ3uĵ
3
5(0)〉β(x),c +

+

∫ |β|

0
dτ1dτ2dτ3〈Tτ K̂

1
−iτ1uK̂

1
−iτ2uĴ

3
−iτ3uĵ

3
5(0)〉β(x),c

)
,

A3 = − 1

6|β|3
(∫ |β|

0
dτ1dτ2dτ3〈Tτ

(
K̂3

−iτ1uĴ
3
−iτ2u + Ĵ3

−iτ1uK̂
3
−iτ2u

)
K̂3

−iτ3uĵ
3
5(0)〉β(x),c +

+

∫ |β|

0
dτ1dτ2dτ3〈Tτ K̂

3
−iτ1uK̂

3
−iτ2uĴ

3
−iτ3uĵ

3
5(0)〉β(x),c

)
−A2 . (2.14)
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Expressing the operators K̂ and Ĵ in terms of the energy-momentum tensor T̂µν using

the formulas (2.12), (2.6), we reduce the calculation of the coefficients in (2.14) to the

calculation of correlators of the form

Cα1α2|α3α4|α5α6|λ|ijk =
1

|β|3
∫

dτxdτydτzd
3xd3yd3z〈Tτ T̂

α1α2(X)×

×T̂α3α4(Y )T̂α5α6(Z)jλ5 (0)〉β(x),cxiyjzk , (2.15)

here X = (τx,x). The corresponding expressions for the coefficients

A1 = −1

6

{
C02|02|02|3|111 + C02|01|01|3|122 + C01|02|01|3|212 + C01|01|02|3|221 −

−C01|01|01|3|222 − C01|02|02|3|211 − C02|01|02|3|121 − C02|02|01|3|112
}
,

A2 = −1

6

{
C02|00|00|3|111 + C00|02|00|3|111 + C00|00|02|3|111 − C01|00|00|3|211 −

−C00|01|00|3|121 − C00|00|01|3|112
}
,

A3 = −A2 −
1

6

{
C02|00|00|3|133 + C00|02|00|3|313 + C00|00|02|3|331 −

−C01|00|00|3|233 − C00|01|00|3|323 − C00|00|01|3|332
}
. (2.16)

Thus, the calculation of the coefficients in (2.11) reduces to calculation of correlators

of the form (2.15). Correlators (2.15) can be calculated by analogy with the way it was

done in [10] in calculating first-order and second-order hydrodynamic coefficients. The

derivation of the formulas (2.17), (2.18) is given in appendix A

Cα1α2|α3α4|α5α6|λ|ijk = − i

128π3|β|3
∫ ∑

s1,s2,s3,

s4=±1

dτxdτydτzp
2dp sin(θ)dθdϕ×

×
[(

∂3

∂rk∂kj∂pi
+

∂3

∂rk∂kj∂ki

)
Bα3α4α1α2α5α6λ

−+−+,(τx−τy),(τx−τz)
(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃) +

+

(
∂3

∂rk∂ki∂pj
+

∂3

∂rk∂ki∂kj

)
Bα5α6α3α4α1α2λ

+−+−,(τx−τy),(τx−τz)
(R̃, R̃,−Q̃, Q̃, Q̃, P̃ ,−P̃ ,−P̃ , K̃,−K̃) +

+

(
∂3

∂rk∂kj∂pi
+

∂3

∂rk∂kj∂ki

)
Bα5α6α1α2α3α4λ

+−+−,(τx−τy),(τx−τz)
(R̃, R̃,−Q̃, Q̃, Q̃, P̃ ,−P̃ ,−P̃ , K̃,−K̃) +

+

(
∂3

∂ri∂kj∂pk
+

∂3

∂ri∂kj∂kk

)
Bα3α4α5α6α1α2λ

−+−+,(τx−τy),(τx−τz)
(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃) +

+

(
∂3

∂rk∂ki∂pj
+

∂3

∂rk∂ki∂kj

)
Bα1α2α3α4α5α6λ

−+−+,(τx−τy),(τx−τz)
(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃) +

+

(
∂3

∂rj∂ki∂pk
+

∂3

∂rj∂ki∂kk

)
Bα1α2α5α6α3α4λ

−+−+,(τx−τy),(τx−τz)
(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃)

]
×

× 1

EpEqEkEr

e(τx−τy)s1Ep+(τx−τz)s2Eq+τys3Ek+τzs4Er

∣∣∣∣
q=−p
k=p
r=−p

. (2.17)
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Here, following [10], we introduce the notation P̃ = P̃ (s1) = (−is1Ep,p), and accordingly

we have Q̃ = Q̃(s2), K̃ = K̃(s3), R̃ = R̃(s4). The derivatives act on the whole expression

to the right of them. The quantities Bα1α2α3α4α5α6λ
g1g2g3g4,τ1,τ2 ({P}), are defined by the formula

Bα1α2α3α4α5α6λ
g1g2g3g4,τ1,τ2 ({P}) = 1

64
iδ0α1

+δ0α2
+δ0α3

+δ0α4
+δ0α5

+δ0α6
+δ0λ−1Sα1α2

Sα3α4
Sα5α6

×

×(iPα2

3 − iPα2

2 )(iPα4

6 − iPα4

5 )(iPα6

9 − iPα6

8 )
[
iPα7

1 iPα8

4 iPα9

7 iPα10

10 tr7,1,8,3,9,5,10,λ5 +

+m2iPα7

1 iPα8

4 tr7,1,8,3,5,λ5 +m2iPα7

1 iPα9

7 tr7,1,3,9,5,λ5 +m2iPα7

1 iPα10

10 tr7,1,3,5,10,λ5 +

+m2iPα8

4 iPα9

7 tr1,8,3,9,5,λ5 +m2iPα8

4 iPα10

10 tr1,8,3,5,10,λ5 +m2iPα9

7 iPα10

10 tr1,3,9,5,10,λ5 +

+m4tr1,3,5,λ5

]{
θ(−s1τ1)− nF (Ep + s1g1µ)

}{
θ(−s2τ2)− nF (Eq + s2g2µ)

}
×

×
{
θ(−s3)− nF (Ek + s3g3µ)

}{
θ(−s4)− nF (Er + s4g4µ)

}
. (2.18)

Here we have introduced the operator Sαβ , which symmetrizes the expression following it,

so that Sαβfαβ = fαβ +fβα. The trace of an arbitrary number of Euclidean Dirac matrices

γ̃µ = i1−δ0µγµ [41] we denoted by tr(γ̃αn1 γ̃αn2 . . . γ̃αnN γ̃λγ̃5) = trn1,n2,...,nN ,λ
5 .

Using the formulas (2.17), (2.18), we can now calculate the coefficients A1, A2, A3,

performing the remaining operations of integration and differentiation explicitly. Omitting

the intermediate calculations, we give the final result in the general case m 6= 0

A1 =
1

48π2|β|3
∫ ∞

0
dp

(
n′′′
F (Ep − µ) + n′′′

F (Ep + µ)
)
p2 ,

A2 =
1

16π2|β|3
∫ ∞

0
dp

(
n′′′
F (Ep − µ) + n′′′

F (Ep + µ)
)(

p2 +
m2

3

)
,

A3 = 0 , (2.19)

where the derivative of the third order in energy is taken d3

dE3
p
. In the limit m → 0 (2.19)

reduces to

A1 → − 1

24π2|β|3 , A2 → − 1

8π2|β|3 , A3 = 0 . (2.20)

Taking into account the first-order term [10] eq. (7.5) and (2.20) we can write the

formula for the axial current (2.9) for case m = 0 in the following form

〈j5µ〉 =
(
1

6

[
T 2 − ω2

4π2

]
+

µ2

2π2
− a2

8π2

)
ωµ +O(̟5) . (2.21)

Note again that according to [6, 7, 11, 12] the third order in (2.21) can be the last nonzero

term. Since A3 = 0, then, using the formulas for differentiation from [10, 11], we get

for (2.21)

∂µ〈j5µ〉 = 0 . (2.22)

Thus, the axial charge in this approach is conserved in the massless limit, in contrast to [11].
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3 The density operator vs Wigner function

In [11, 12], based on the Wigner function [29], the following general formula for the axial

current in a nonstationary medium of massive fermions was obtained

〈j5µ〉W =
ωµ + i sgn(ωa)aµ

2(gω − iga)

∫
d3p

(2π)3

{
nF (Ep − µ− gω/2 + iga/2)−

−nF (Ep − µ+ gω/2− iga/2) + nF (Ep + µ− gω/2 + iga/2)−
−nF (Ep + µ+ gω/2− iga/2)

}
+ c.c. , (3.1)

where

gω =
1√
2

(√
(a2 − ω2)2 + 4(ωa)2 + a2 − ω2

)1/2
,

ga =
1√
2

(√
(a2 − ω2)2 + 4(ωa)2 − a2 + ω2

)1/2
. (3.2)

The formula (3.1) was derived outside the perturbation theory. In the limit m = 0 for

T > ga
2π (this boundary temperature at ωµ = 0 or a ||Ω is equal to Unruh temperature

|a|
2π

,

look [12] for the details), (3.1) leads to

〈j5µ〉W =

(
1

6

[
T 2 +

a2 − ω2

4π2

]
+

µ2

2π2

)
ωµ +

1

12π2
(ωa) aµ . (3.3)

For aµ = 0 and passing to the comoving reference system, we obtain from (3.1)

〈j5〉W =

∫
d3p

(2π)3

{
nF

(
Ep − µ− Ω

2

)
− nF

(
Ep − µ+

Ω

2

)
+

+nF

(
Ep + µ− Ω

2

)
− nF

(
Ep + µ+

Ω

2

)}
eΩ , (3.4)

where eΩ = Ω
Ω is a unit vector along angular velocity. Let us first compare the formu-

las (2.21) and (3.3), which determine the axial current in the case of massless fermions.

We see that the terms of the first order in ω coincide with each other and the standard

formula for CVE, also the term ω2ωµ has the same coefficient, which also coincides with

the result of [6, 7]. At the same time, the term a2ωµ enters with different coefficients, and

the term (ωa) aµ in (2.21) is absent. Due to this, the axial charge is conserved for (2.21)

and is not conserved for (3.3), where

∂µ〈j5µ〉W = ∂µ

[
1

12π2
(ωa) aµ

]
=

1

6π2
(ωa)(a2 + ω2) . (3.5)

On the other hand, in formula (3.3), unlike (2.21), the combination of the form µ ±
(Ω± i|a|)/2 appears, since (3.3) in the comoving frame of reference and for parallel angular

velocity and acceleration Ω ||a gives

〈j5〉W =

(
T 2Ω

6
+

(
µ+ Ω

2 + i|a|
2

)3

12π2
−

(
µ− Ω

2 − i|a|
2

)3

12π2
+

(
µ+ Ω

2 − i|a|
2

)3

12π2
−

−
(
µ− Ω

2 + i|a|
2

)3

12π2

)
eΩ , (3.6)
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which is a manifestation of the fact that the angular velocity and acceleration play the role

of chemical potentials, the latter being an imaginary one.

The fact that the imaginary chemical potential corresponds to acceleration leads, first,

to the absence of terms of odd order in the acceleration in (3.3), and also to the appearance

of the Unruh temperature as the boundary temperature in the axial current, according

to [12].

Thus, both approaches give the same answer in the massless limit for the case of pure

rotation aµ = 0 and diverge when describing mixed effects (the terms a2ωµ and (ωa) aµ).

In the more general case of massive fermions, the situation looks the same. In this

case, it is necessary to compare the formulas (3.4) and (2.9), (2.10), (2.19) at aµ = 0 (in

advance it is clear that for aµ 6= 0, (3.1) and (2.9) are different). To do this, it is necessary

to decompose (3.4) to the third order in Ω

〈j5〉W =
∂

∂Ω

[∫
d3p

(2π)3

{
nF

(
Ep − µ− Ω

2

)
− nF

(
Ep − µ+

Ω

2

)
+

+nF

(
Ep + µ− Ω

2

)
− nF

(
Ep + µ+

Ω

2

)}]

Ω=0

Ω+

+
∂3

∂Ω3

[∫
d3p

(2π)3

{
nF

(
Ep − µ− Ω

2

)
− nF

(
Ep − µ+

Ω

2

)
+

+nF

(
Ep + µ− Ω

2

)
− nF

(
Ep + µ+

Ω

2

)}]

Ω=0

1

6
Ω2Ω+O(Ω5) , (3.7)

It is easy to show that this formula corresponds exactly to the expression (2.9) obtained

on the basis of the density operator: the first-order term exactly coincides with (2.10), and

the third-order term with A1 from (2.19). Thus, (3.4) and (2.9) coincide for aµ = 0 in the

first two non-vanishing orders in ̟ also in the case of massive fermions.

Recall that formula (3.3) refers to case T > ga
2π . Making the transition m → 0 in (3.1)

in case T < ga
2π , additional terms will appear in formula (3.3) that contain a step func-

tion (look [12] for the corresponding full formula). There are no such terms in (2.21),

since (2.21) is obtained within the framework of perturbation theory. It should be ex-

pected that at temperatures below Unruh temperature, the behavior of the current either

changes qualitatively [12], or the Unruh temperature sets the lower temperature boundary

for accelerated moving systems according to [27, 28].

4 Discussion

The resulting formulas (2.21), (3.3), (3.4) describe new effects, the discovery of which is of

interest from an experimental point of view. The interactions of elementary particles at

high energy can be considered as the laboratory to study chiral effects. In particular, in non-

central collisions of heavy ions huge vorticity can appear. As we have seen, the correction

to the standard CVE in (2.21), (3.3) of the form − ω2

24π2ωµ is obtained in various theoretical

approaches and therefore is reasonably reliable. Since ω2 < 0, this correction should lead
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to the enhancement of CVE. Typical value of vorticity, achievable in the experiment, is of

the order ∼ 0.1 fm−1. Although this value is huge by the standards of macroscopic systems,

it is too small to fix the cubic term. Due to this, as well as the coefficient 1
24π2 , the effects

associated with the cubic term are strongly suppressed, and lead to an increase of the

axial current by an amount of the order of 1%, which is not yet achievable for experiment.

Therefore, at the moment it is too early to talk about experimental verification of cubic

vorticity correction to CVE.

Formulas (2.21), (3.1), (3.3) also contain effects associated with acceleration, although

as we have shown, there is still uncertainty on a theoretical level. In collisions of heavy

ions, acceleration can appear due to the rescatterings of hadrons and partons and stopping

phenomenon.

At the same time, if one follows the papers [43, 44], acceleration can also occur in the

processes such as e+e− annihilation or pp and pp̄ collisions due to string tension during

hadronization. In this case enormous acceleration may occur, which is related to the

universal hadronization temperature by means of the Unruh formula |a| ∼ 2πTH with

TH ∼ 150MeV. If this mechanism of the formation of acceleration takes place, then the

acceleration can be of order ∼ 1GeV and its contribution to (2.21), (3.1), (3.3) turns out

to be significant.

Therefore, one may try to separate the effects of acceleration and rotation experimen-

tally. The acceleration may be studied in the e+e− annihilation, while in the non-central

heavy-ion collision the impact parameter defines the orbital momentum and rotation effects.

5 Conclusions

Using the quantum statistical approach based on the equilibrium density operator (2.5)

from [10, 26] we calculated the hydrodynamic coefficients in the axial current in the third

order of perturbation theory in terms of the thermal vorticity tensor for the free Dirac

fields. Thus, we calculated the third-order corrections in the derivatives to the CVE.

The obtained expression exactly coincides with the prediction in [11, 12] based on

the ansatz of the Wigner function [29] in the first three orders of perturbation theory

(formulas (3.4), (3.7) and (2.9), (2.10), (2.19) in the case of massive fermions and (3.3)

and (2.21) in the massless limit) for aµ = 0 and differ for aµ 6= 0. This indicates the

correspondence of the method of Wigner function and equilibrium density operator in

describing the effects associated with pure rotation, and the discrepancy in describing

mixed effects, when both rotation and acceleration are significant.

Effects in an axial current related to acceleration were investigated. In the approach

with the Wigner function, as well as in the approach with the density operator, terms

quadratic in acceleration appear. In the case of the Wigner function this is explained

by the appearance of the combination µ ± (Ω ± ia)/2 - the appearance of an imaginary

chemical potential associated with acceleration forbids the appearance of odd acceleration

terms. However, this combination does not arise in the approach with the density operator.

The coefficients in front of the terms with acceleration in the two approaches differ. This

leads, in particular, to the fact that the axial charge is conserved for the statistical operator

– 10 –
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and is not conserved for the Wigner function if acceleration has a nonzero component along

the rotation axis in the system.

Note that the acceleration implies the non-equilibrium situation (cf. [30]) which might

explain the discrepancy between Wigner function and density matrix approaches, both be-

ing the equilibrium ones. This problem, as well as other consequences of possible emerging

instabilities and dissipation, require further investigation.

In reactions with elementary particles, a large vorticity may arise, which, however, is

too small to allow third-order corrections in vorticity to be observed at the current experi-

mental level. In the processes of collisions of heavy ions and electron-positron annihilation

or proton-(anti)proton collisions, tremendous accelerations can occur, which may open the

way for observing the effects associated with acceleration.

A Calculation of quantum correlators

Let’s derive formulas (2.17), (2.18) for quantities Cα1α2|α3α4|α5α6|λ|ijk. Following [10], we

represent all operators in (2.15) in a split form. The operator Dαβ
ab (∂X1

, ∂X2
), acting on

the product of two Dirac fields, gives Belinfante energy-momentum tensor in the limit

X1, X2 → X

T̂αβ(X) = lim
X1,X2→X

Dαβ
ab (∂X1

, ∂X2
)Ψ̄a(X1)Ψb(X2) ,

Dαβ
ab (∂X1

, ∂X2
) =

iδ0α+δ0β

4

[
γ̃αab(∂X2

− ∂X1
)β + γ̃βab(∂X2

− ∂X1
)α
]
, (A.1)

and the axial current is expressed in terms of the operator J λ
5 ab

jλ5 (X) = lim
X1,X2→X

J λ
5 abΨ̄a(X1)Ψb(X2) , J λ

5 ab = iδ0λ−1(γ̃λγ̃5)ab . (A.2)

Then taking into account (A.1) and (A.2) we get

〈Tτ T̂
α1α2(X)T̂α3α4(Y )T̂α5α6(Z)jλ5 (0)〉β(x),c = lim

X1,X2→X

Y1,Y2→Y

Z1,Z2→Z

F1,F2→F=0

Dα1α2
a1a2 (∂X1

, ∂X2
)×

×Dα3α4
a3a4 (∂Y1

, ∂Y2
)Dα5α6

a5a6 (∂Z1
, ∂Z2

)J λ
5 a7a8〈Tτ Ψ̄a1(X1)Ψa2(X2)Ψ̄a3(Y1)Ψa4(Y2)×

×Ψ̄a5(Z1)Ψa6(Z2)Ψ̄a7(F1)Ψa8(F2)〉β(x),c . (A.3)

Using Wick theorem, the calculation of averages in (A.3) can be reduced to

finding the mean values of the quadratic combinations of Dirac fields of the form

〈TτΨa1(X1)Ψ̄a2(X2)〉β(x), which are thermal propagators. Leaving only the connected cor-
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relators, we obtain

〈Tτ Ψ̄a1(X1)Ψa2(X2)Ψ̄a3(Y1)Ψa4(Y2)Ψ̄a5(Z1)Ψa6(Z2)Ψ̄a7(F1)Ψa8(F2)〉β(x),c =
−Ḡa1a4(X1, Y2)Ga2a5(X2, Z1)Ḡa3a8(Y1, F2)Ga6a7(Z2, F1) +

+Ḡa1a4(X1, Y2)Ga2a7(X2, F1)Ḡa3a6(Y1, Z2)Ḡa5a8(Z1, F2)−
−Ḡa1a6(X1, Z2)Ga2a3(X2, Y1)Ga4a7(Y2, F1)Ḡa5a8(Z1, F2)−
−Ḡa1a6(X1, Z2)Ga2a7(X2, F1)Ḡa3a8(Y1, F2)Ga4a5(Y2, Z1) +

+Ḡa1a8(X1, F2)Ga2a3(X2, Y1)Ga4a5(Y2, Z1)Ga6a7(Z2, F1)−
−Ḡa1a8(X1, F2)Ga2a5(X2, Z1)Ḡa3a6(Y1, Z2)Ga4a7(Y2, F1) , (A.4)

where the thermal propagators Ga1a2(X1, X2) = 〈TτΨa1(X1)Ψ̄a2(X2)〉β(x), and

Ḡa1a2(X1, X2) = 〈Tτ Ψ̄a1(X1)Ψa2(X2)〉β(x) have the standard form [10, 41, 42]

Ga1a2(X1, X2) =
∑∫

{P}

eiP
+(X1−X2)(−i /P

+
+m)a1a2∆(P+) , (A.5)

and, respectively, for Ḡ. In (A.5) we introduce the notation

P± = (p±n ,p) , p±n = π(2n+ 1)/|β| ± iµ ,
∑∫

{P}

=
1

|β|

∞∑

n=−∞

∫
d3p

(2π)3
,

∆(P ) =
1

P 2 +m2
. (A.6)

In ∆(P ) the square is taken with the Euclidean metrics, as in /P
+

= P+
µ γ̃µ (unlike from

P+(X1 −X2), where the metrics is non-Euclidean in accordance with [41]).

Now substitute (A.5) in (A.4) and then in (A.3). Then we differentiate in operators

Dαβ
ab (∂X1

, ∂X2
), group the matrices in the form of a trace, taking into account that in

the exponential factor we can cancel terms with chemical potential. For simplicity, let us

analyze the transformations for the first term in (A.4). After substituting to (A.3) we get

− lim
X1,X2→X

Y1,Y2→Y

Z1,Z2→Z

F1,F2→F=0

Dα1α2
a1a2 (∂X1

, ∂X2
)Dα3α4

a3a4 (∂Y1
, ∂Y2

)Dα5α6
a5a6 (∂Z1

, ∂Z2
)J λ

5 a7a8Ḡa1a4(X1, Y2)×

×Ga2a5(X2, Z1)Ḡa3a8(Y1, F2)Ga6a7(Z2, F1) = −
∑∫

{P,Q,K,R}

e−ip(x−y)−iq(x−z)−iky−irz ×

×eip
−
n (τx−τy)+iq+n (τx−τz)+ik−n τy+ir+n τz∆(P−)∆(Q+)∆(K−)∆(R+)×

×tr
[
(i /K

−
+m)Dα3α4(iK−,−iP−)(i /P

−
+m)Dα1α2(iP−, iQ+)(−i /Q+ +m)×

×Dα5α6(−iQ+, iR+)(−i /R
+
+m)J λ

5

]
. (A.7)

Summing over the Matsubara frequencies in (A.7) using the formula [10, 41]

1

|β|
∑

ωn

(ωn ± iµ)kei(ωn±iµ)τ

(ωn ± iµ)2 + E2
=

1

2E

∑

s=±1

(−isE)keτsE [θ(−sτ)− nF (E ± sµ)] , (A.8)
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we obtain

− 1

16

∫ ∑

s1,s2,s3,

s4=±1

d3pd3qd3kd3r

(2π)12EpEqEkEr
e(τx−τy)s1Ep+(τx−τz)s2Eq+τys3Ek+τzs4Er × (A.9)

×e−ip(x−y)−iq(x−z)−iky−irzBα3α4α1α2α5α6λ
−+−+,(τx−τy),(τx−τz)

(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃) ,

where the quantities B are given by (2.18). Substituting (A.9) in (2.15) and using formula

∫
d3pd3qd3kd3rd3xd3yd3z f(p,q,k, r)e−ip(x−y)−iq(x−z)−iky−irzxiyjzk

= i(2π)9
∫

d3p

(
∂3

∂rk∂kj∂pi
+

∂3

∂rk∂kj∂ki

)
f(p,q,k, r)

∣∣∣∣
q=−p
k=p
r=−p ,

(A.10)

following from the properties of the delta function, we finally obtain

− i

128π3|β|3
∫ ∑

s1,s2,s3,

s4=±1

dτxdτydτzp
2dp sin(θ)dθdϕ×

×
(

∂3

∂rk∂kj∂pi
+

∂3

∂rk∂kj∂ki

)
1

EpEqEkEr
e(τx−τy)s1Ep+(τx−τz)s2Eq+τys3Ek+τzs4Er ×

×Bα3α4α1α2α5α6λ
−+−+,(τx−τy),(τx−τz)

(K̃, K̃,−P̃ , P̃ , P̃ , Q̃,−Q̃,−Q̃, R̃,−R̃)

∣∣∣∣
q=−p
k=p
r=−p

, (A.11)

which corresponds to the first term in (2.17). Performing transformations from (A.7)

to (A.11) with other five terms in (A.4), we obtain (2.17).
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