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1 Introduction

(3+1)-dimensional SU(Nc) Yang-Mills (YM) theory has an infinite number of degenerate

classical vacua distinguished by a topological invariant, the Chern-Simons number, NCS.

Normalizing the YM kinetic term as − 1
4g2

tr[FµνF
µν ], NCS is

NCS ≡ 1

8π2

∫

d3x ǫijk tr

[

Ai∂jAk −
2ig

3
AiAjAk

]

, (1.1)

where i, j, k = 1, 2, 3 and the trace is over gauge indices. A change in the Chern-Simons

number is thus

∆NCS =

∫

d4x q(xµ), (1.2a)

q(xµ) ≡ 1

16π2
tr [F ∧ F ] =

1

64π2
ǫµνρσtrFµνFρσ, (1.2b)

where xµ = (t, ~x). In a state invariant under translations in space and time, the rate of

change of NCS per unit volume V per unit time t is called the Chern-Simons diffusion rate,

denoted ΓCS,

ΓCS ≡ 〈(∆NCS)
2〉

V t
=

∫

d4x 〈q(xµ)q(0)〉W , (1.3)

where the subscript W denotes the Wightman function. In an equilibrium state with

non-zero temperature T , let GR(ω,~k) denote the retarded Green’s function of q(xµ) in

Fourier space, with frequency ω and spatial momentum ~k. In such states, eq. (1.3) can be

rewritten as

ΓCS = − lim
ω→0

2T

ω
ImGR(ω,~k = 0). (1.4)

Gauge field configurations for which
∫

d4x q(xµ) is non-zero produce a non-zero ∆NCS.

At zero temperature, such gauge field configurations, called instantons, represent quantum
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tunneling events between vacua. At both zero and non-zero T , the contribution of in-

stantons to ΓCS is exponentially suppressed [1, 2]. When T is non-zero, however, classical

thermal fluctuations can also produce a non-zero ∆NCS, for example by exciting unsta-

ble gauge field configurations called sphalerons [3, 4] which generate non-zero ∆NCS upon

decay. Such classical thermal processes are not exponentially suppressed [5–7]: in YM

perturbation theory ΓCS ∝ λ5
t log(λt)T

4, where λt ≡ g2Nc is the ’t Hooft coupling [8–11].

In YM coupled to fundamental-representation fermions,
∫

d4x q(xµ) also contributes to

chiral anomalies in global symmetries. In the electroweak theory, gauge field configurations

with non-zero
∫

d4x q(xµ) play a role in electroweak baryogenesis [12, 13], while in Quantum

Chromodynamics (QCD), for sufficiently high T they may play a role in generating bubbles

of net chirality (more left-handed than right-handed quarks, for example), in which parity,

P, and charge conjugation times parity, CP, are broken [14].1

Such CP-odd domains in hot QCD may have observable consequences in heavy ion col-

lisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).

These collisions produce a hot soup of QCD matter with T on the order of two to four

times the QCD crossover temperature. The resulting state behaves as a nearly-ideal fluid

of strongly-interacting quarks and gluons, the quark-gluon plasma (QGP) [15–17]. A non-

central collision may produce a QGP with non-zero angular momentum and hence a mag-

netic field, both pointing perpendicular to the reaction plane (spanned by the beam axis

and impact parameter). In the presence of a magnetic field, a net chirality will produce an

electric current parallel to the magnetic field, due to the axial anomaly. This is the Chiral

Magnetic Effect (CME) [18, 19]. A detection of the CME in heavy ion collisions would

thus be a detection of CP-odd processes in QCD.

One observable consequence of the CME in a heavy ion collision is charge separation:

positive charges will move to one side of the reaction plane, negative charges to the other.

We know from experiment that the strong interactions preserve P and CP, however, so

any charge separation from CP-odd sources will, over many events, average to zero. An

observable that could serve as a “smoking gun” for the CME is thus hard to find. For

heavy ion collsions at RHIC and LHC the focus so far has been on three-particle correla-

tions [20–22], which indeed indicate that charge separation occurs in heavy ion collisions.

These correlations are sensitive to event-by-event charge separation from both CP-odd and

CP-even processes, however, making a positive identification of a signal from the CME

difficult [23]. In short, to date the experimental evidence for the detection of the CME in

heavy ion collisions at RHIC and LHC is inconclusive.

The experimental situation raises a number of urgent questions for theorists. Can we

compute the size of the signal from the CME, relative to backgrounds? How will that signal

depend on temperature, magnetic field, centrality, etc.? Clearly an auxiliary question is:

how big is the rate of chirality production, which is ∝ ΓCS, in a heavy ion collision?

Unfortunately, ΓCS is difficult to calculate for the QGP, for the same reasons that the

shear viscosity, η, is difficult to calculate. The quarks and gluons are strongly-interacting,

1Sometimes ΓCS is also called the “sphaleron transition rate” or, in the context of electroweak baryoge-

nesis, the “baryon number violation rate.”
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so perturbation theory is a priori unreliable. Calculating transport coefficients, such as

ΓCS and η, from lattice QCD requires a problematic analytic continuation from Euclidean

signature.2 Currently no reliable technique exists to compute ΓCS or η for QCD at the

temperatures reached in the QGP.

An alternative approach is holography [26–28], which equates certain strongly-coupled

gauge theories in the large-Nc limit with weakly-coupled theories of gravity in spacetimes

of one higher spatial dimension. A deconfined thermal state of the gauge theory is dual

to a black hole spacetime [29], and transport coefficients are relatively straightforward to

calculate [30–32]. Remarkably, the ratio of η to entropy density, s, for any theory dual to

higher-dimensional Einstein gravity is η/s = 1/(4π) [33], which is close to the estimate for

η/s for the QGP extracted from data [34]. Such universality serves as encouragement for

computing other transport coefficients, like ΓCS, from holography.

Previous calculations of ΓCS in holography employed “top-down” models, i.e. models

descending from a known string theory or supergravity construction. The best-understood

example is N = 4 supersymmetric YM (SYM) with large Nc and large λt, dual to super-

gravity in an Anti-de Sitter (AdS) space, for which ΓCS ∝ λ2
t T

4 [30]. Other holographic

calculations included the effects on ΓCS due to a magnetic field [35] or confinement [36]. To

our knowledge, in all previous cases the holographic results for ΓCS were ultimately fixed

by some underlying (perhaps “hidden” [36]) conformal symmetry.

In this paper we compute ΓCS in Improved Holographic QCD (IHQCD) [37–44], a

holographic model of large-Nc YM theory. The model is “bottom-up,” i.e. does not descend

from a known string theory or supergravity construction, but is tailored to model string

theory systems very closely, unlike other bottom-up models. The bulk theory is Einstein-

dilaton gravity, where the dilaton Φ is dual to trFµνF
µν . A non-trivial dilaton solution will

describe non-trivial running of the YM coupling, hence the choice of dilaton potential is

crucial. The simplest choice involves only two free parameters, which can be adjusted such

that the model reproduces both the T = 0 glueball spectrum and the thermodynamics of

large-Nc YM, including a first-order deconfinement transition at a critical temperature Tc.

In particular, the model has no (hidden) conformal symmetry. We briefly review IHQCD

in section 2.

In IHQCD the operator q(xµ) is dual holographically to an axion field in the bulk [37,

38, 40, 42, 44]. Defining for convenience a holographic ’t Hooft coupling λ ≡ eΦ, the

normalization of the axion’s kinetic term includes a dilaton-dependent factor, Z(λ). In

principle, Z(λ) could be fixed by matching to lattice results for the Euclidean correlator of

q(xµ), as we explain in section 2. We work instead with several simple choices for Z(λ), in

part to study the generic behavior of ΓCS in holographic models. Specifically, we consider a

Z(λ) with two free parameters, which we fix by demanding that the model match large-Nc

YM lattice results for the topological susceptibility and for axial glueball mass ratios to

within one sigma.

2In fact, ΓCS may be more difficult to calculate from lattice QCD than other transport coefficients. The

operator q(xµ) obeys various constraints. For example, ∆NCS =
∫
d4x q(xµ) must be an integer, the second

Chern character. Defining a lattice version of the operator q(xµ) that obeys all of the constraints can be

difficult, as discussed for example in refs. [11, 24, 25].
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In section 3 we compute ΓCS in the high-temperature, deconfined phase of IHQCD.

Letting s denote the entropy density and λh the value of λ at the black hole horizon, our

result for ΓCS is of the form

ΓCS =
1

N2
c

sT

2π
Z(λh). (1.5)

figures 4, 5, and 6 show our numerical results for ΓCS/(sT/N
2
c ) = Z(λh)/(2π). For our

choices of Z(λ), the value of Z(λh) is bounded from below as a function of T by its value in

the T → ∞ limit, and increases monotonically as T approaches Tc from above, with most

of the increase occurring between 2Tc and Tc. We will argue that such behavior is generic

in a large class of confining theories with classical gravity duals. In a scan through various

choices of Z(λ), each of which reproduces the first two axial glueball mass ratios to within

one sigma, we find that the increase can be as large as 60%. For our optimal choice of

Z(λ), which provides the best fit to the lattice results for the first two axial glueball mass

ratios, the increase is only 0.01%.

To obtain ΓCS, we compute the low-frequency limit of GR(ω,~k = 0) holographically. In

section 4 we initiate the study of GR(ω,~k) at non-zero ω and |~k|, in the T ≥ Tc regime. We

focus in particular on ImGR(ω,~k), which is proportional to the spectral function of q(xµ).

After suitably subtracting the high-frequency asymptotics, by computing the difference

in the value of the correlator at two temperatures, our results suggest the presence of a

reasonably long-lived excitation with energy on order of the lightest axial glueball mass at

T = 0. That is sufficiently light to prompt the speculation that perhaps such an excitation

could dominate many CP-odd phenomena in the QGP created in heavy ion collisions.

In section 5 we summarize our results and discuss directions for future research.

2 Improved holographic QCD

The holographic model that we consider as the dual to pure large-Nc YM is (4+1)-

dimensional Einstein-dilaton gravity with a well-chosen dilaton potential [37–44]. In terms

of the holographic ’t Hooft coupling λ ≡ eΦ, the bulk action is

S = M3
pN

2
c

∫

d5x
√−g

[

R− 4

3

(∂λ)2

λ2
+ V (λ)

]

+ Sbdry, (2.1)

where Mp is the Planck Mass, related to the (4+1)-dimensional Newton’s constant G5 as

M3
p = 1/(16πG5N

2
c ), g and R are the determinant and Ricci scalar of the bulk metric, V (λ)

is the dilaton potential, and Sbdry represents all boundary terms, including the Gibbons-

Hawking term as well as the counterterms needed for holographic renormalization [45].

If V (λ) = 12/ℓ2 with a constant length scale ℓ, then the equations of motion aris-

ing from eq. (2.1) admit a solution with constant λ and an AdS metric with radius of

curvature ℓ,

ds2AdS =
ℓ2

r2
(

dr2 − dt2 + d~x2
)

, 0 < r < ∞. (2.2)

Here r is the holographic radial coordinate, dual to the field theory energy scale: the region

near the AdS boundary at r → 0 is dual to the ultra-violet (UV) of the field theory, while
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the region near the Poincaré horizon at r → ∞ is dual to the infra-red (IR). Such a solution

describes a conformal field theory.

For non-trivial V (λ), the equations of motion admit vacuum solutions in which λ

depends only on r and the metric takes the form

ds2 = b0(r)
2(dr2 − dt2 + d~x2), 0 < r < ∞, (2.3)

with warp factor b0(r). In IHQCD we demand that as r → 0 the metric approach that of

AdS, b0(r) → ℓ/r (up to corrections logarithmic in r) and that λ vanish logarithmically,

λ → −1/ log r, to mimic the running of the large-Nc YM coupling.

Large-Nc YM approaches a free theory in the UV, so we expect the holographic dual

in the r → 0 region to be a string theory, not just a classical gravity theory like IHQCD.

On the other hand, in large-Nc YM, λt diverges in the IR, so a classical gravity theory may

be a reliable description in the r → ∞ region. IHQCD is intended to be such a low-energy

effective description of large-Nc YM, reliable in the r → ∞ region. In practice, the role

of the r → 0 region in IHQCD is simply to provide boundary conditions for the fields in

the r → ∞ region. We impose those boundary conditions at a cutoff, i.e. at some small

but finite r = ǫ. We then compute low-energy quantities that are insensitive to the cutoff,

some of which we match to large-Nc YM, while the rest are predictions of the model. A

more detailed discussion of these issues appears for example in ref. [41].

Using classical gravity in the r → 0 region has an important consequence, however:

IHQCD will actually be dual to a theory that flows to a non-trivial UV fixed point. Gener-

ically, the UV physics of large-Nc YM and IHQCD will thus be different. For example,

in IHQCD, η/s = 1/(4π) [33], which is much smaller than the high-T perturbative result

for η/s in large-Nc YM [46]. Nevertheless, in order to match IHQCD to known results for

IR quantities in large-Nc YM, we must match some quantities in the UV. For example, to

reproduce lattice results for the free energy of large-Nc YM for T & Tc with the correct

normalization, we must demand that at high T the free energy of IHQCD obey a Stefan-

Boltzmann law. That requirement fixes the value of ℓ in the asymptotic AdS region in

units of the Planck mass: (Mpℓ)
−3 = 45π2 [39, 40].

By matching to another UV quantity, the perturbative large-Nc YM β-function, we

can also constrain V (λ). In the r → 0 region, where λ is small, V (λ) has a regular

series expansion

V (λ) =
12

ℓ2
(

1 + v0λ+ v1λ
2 +O

(

λ3
))

. (2.4)

Committing to an identification of the field theory renormalization scale E ≡ E0 b0(r),

where E0 can be fixed by matching to the lowest glueball mass or to the result for Tc from

lattice large-Nc YM, we can fix the coefficients v0 and v1 in terms of the coefficients of the

perturbative large-Nc YM β-function [37, 38, 40, 44, 45]:

β(λt) = −β0λ
2
t − β1λ

3
t +O(λ4

t ), β0 =
22

3(4π)2
, β1 =

51

121
β2
0 , (2.5a)

v0 =
8

9
β0, v1 =

4

9
β1 +

23

81
β2
0 . (2.5b)
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In the vacuum solutions, generically λ diverges as r → ∞. The large-λ expansion of

V (λ) must take the form V (λ) ∝ λ
4

3

√
log λ in order for the glueball spectrum to be gapped

and discrete with asymptotically linear trajectories [37, 38, 41, 44]. With this asymptotic

form for V (λ), as r → ∞ the warp factor and λ(r) take the form

b0(r) ∝ e−(r/L)2 , λ(r) ∝ r

L
e

3

2
(r/L)2 , (r → ∞) (2.6)

where L is a length scale determined by the value of λ at r = ǫ. The form of b0(r) in

eq. (2.6) is sufficient to guarantee that the dual field theory is confining [37, 38]. The

metric actually has a mild singularity3 at r = ∞ that can be cloaked by a regular horizon

and hence is a “good” singularity [47]. Moreover, the singularity is repulsive [38, 40], which

guarantees that the low-energy spectrum and other observables are insensitive to the details

of the resolution of the singularity.

The black hole solutions of the model defined by the action in eq. (2.1) have non-trivial

λ(r) and a metric of the form [39, 40]

ds2 = b(r)2
(

dr2

f(r)
− f(r)dt2 + d~x2

)

, 0 < r < rh. (2.7)

The surface r = rh is the horizon, where f(rh) = 0, and the corresponding Hawking

temperature is T = 4πf ′(rh). Black hole solutions only exist for temperatures above a

value Tmin, and in fact two branches of solutions exist, the large and small black holes

(comparing rh to ℓ). Figure 1 depicts the typical form of T as a function of rh, including

the two branches of black hole solutions. For both large and small black holes, as r → rh,

the warp factor b(r) asymptotes to a constant whose value determines the entropy density,

s = b(rh)
3/(4G5), and as r → 0, b(r) → r/ℓ, up to O(r4) (times logarithmic) corrections,

indicating that in the field theory the thermal energy density and pressure are both of

order N2
c .

In large black hole solutions, λ(r) decreases monotonically as T increases, so that λ → 0

as T → ∞. In small black hole solutions, λ(r) increases as T increases. In particular, as

discussed in refs. [40, 42], the value of λ(r) at the horizon, λh ≡ λ(rh), is a monotonically

increasing function of rh, so a plot of T versus λh is qualitatively similar to figure 1: in the

T → ∞ limit, λh → 0 on the large black hole branch and λh → ∞ on the small black hole

branch (see for example figure 2 (a) of ref. [40]).

If we Wick-rotate to a compact Euclidean time direction of length 1/T , then for T ≥
Tmin three bulk solutions exist: the Wick-rotated version of eq. (2.3), which describes a

thermal gas of gravitons and is dual to a confined state, and the Wick-rotated large and

small black holes, which are dual to deconfined states. To determine which solution is

thermodynamically preferred at any given T , we must determine which has the smallest

on-shell Euclidean action, dual to the field theory’s free energy (times 1/T ). As shown

in refs. [39, 40, 42], the small black hole solutions are never thermodynamically preferred,

but at some Tc > Tmin the large black hole solutions become thermodynamically preferred.

3On the other hand, in the string frame, where the metric scale factor is λ2/3(r)b0(r), the curvature

approaches zero as r → ∞.
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Big black holes Small black Holes

0 rmin
rh

Tmin

T

Figure 1. Schematic plot for the typical form of the black hole Hawking temperature T as a

function of the horizon position rh, for a generic choice of V (λ) (with the correct small- and large-λ

asymptotics). The temperature exhibits a minimum, Tmin, at rmin, which separates the large black

hole (rh < rmin) from the small black hole (rh > rmin) branches.

Indeed, the system exhibits a first-order Hawking-Page type transition at Tc, dual to a

confinement-deconfinement transition.

In general, for a given potential V (λ) we cannot solve the equations of motion arising

from eq. (2.1) exactly, so we resort to numerics. Here we will only sketch our numerical

procedure, which is described in detail for example in ref. [42]. At the cutoff r = ǫ we

impose a Dirichlet condition on each field, and in particular we demand that the metric

take the AdS form. We then fix the remaining integration constants, including λh, by

a shooting algorithm. Given a choice of V (λ) and the Dirichlet conditions at r = ǫ, we

obtain a one-parameter family of solutions labeled by T , or equivalently by λh. Following

refs. [42, 43], in our numerics we use a simple form for V (λ) with the correct small- and

large-λ asymptotics,

V (λ) =
12

ℓ2

[

1 + V0λ+ V1λ
4/3
√

log
(

1 + V2λ4/3 + V3λ2
)

]

. (2.8)

Expanding eq. (2.8) about λ = 0 and matching to eq. (2.4), we find v0 = V0 and v1 = V1

√
V2.

The coefficients V0 and V2 can be determined in terms of V1 by imposing the conditions

in eq. (2.5b). The potential thus has two free parameters, V1 and V3. We fit these two

parameters by matching to lattice results for two thermodynamic quantities in large-Nc

YM: the latent heat of the deconfinement transition, which is proportional to the entropy

density at the transition, s(Tc)/(N
2
c T

3
c ) ≃ 0.31 [48], and the pressure at T = 2Tc [48–50].

Upon fixing V1 and V3 in this fashion, IHQCD describes very well both the T = 0 glueball

spectra (0++ and 2++) as well as the finite T thermodynamics of large-Nc YM [42, 51].

– 7 –



J
H
E
P
0
2
(
2
0
1
3
)
1
1
9

The instanton number density operator, q(xµ) in eq. (1.2b), is dual to a bulk pseu-

doscalar, the axion α (as in many top-down models). In the field theory, the source for

q(xµ) is an angular variable, the θ-angle. As a result, the action of the bulk axion must

be invariant under shifts of α, and hence must depend only on derivatives4 ∂α. General

arguments in string theory and in YM theory, including the argument that θ dependence

should appear in the YM vacuum energy only at order one in the large-Nc limit rather

than at order N2
c [52], imply that the axion action is suppressed by O(1/N2

c ) compared to

the action S in eq. (2.1) [37, 38, 41, 44]. We thus add to the model an axion with an action

Sα of the form [37, 38, 41, 44]

Sα = −1

2
M3

p

∫

d5x
√−g Z(λ)(∂α)2, (2.9)

where, following the rules of effective field theory, we have included a dimensionless, λ-

dependent normalization function, Z(λ), consistent with the symmetries.

Being a massless pseudo-scalar, in an expansion of α(r) about r = 0, the leading,

non-normalizable term is a constant, which is proportional to the YM θ-angle defined in

the UV,

α(r = 0) = κ θ, (2.10)

where in top-down models the proportionality constant κ will be fixed, but not in bottom-

up models. In other words, in our model the normalization of the operator dual to α is

ambiguous: α is dual to q(xµ)/κ. Nevertheless, by fixing the normalization of the topolog-

ical susceptibility we will be able to compute two-point functions of q(xµ) unambiguously,

as we explain below.

To specify Sα completely we must specify Z(λ). In principle, Z(λ) can be fixed as

follows. First, perform a lattice calculation of the Euclidean two-point function of q(xµ)

with non-zero T for some set of frequencies. Second, compute the same Euclidean two-point

function holographically for all frequencies for some choice of Z(λ). A least squares fit of

the holographic results to the lattice results should then determine Z(λ). To study generic

behavior of holographic models, we will instead proceed by using simple forms for Z(λ)

that we constrain by matching to lattice results for the topological susceptibility and axial

glueball mass spectrum. Notice that matching to any lattice data will always have room

for improvement: lattice definitions of q(xµ) generically suffer from power-law divergences

that dominate in the continuum limit, making lattice calculations of correlators of q(xµ)

noisy [24]. Accurate calculations may be possible in the near future.5

We can constrain Z(λ) as follows. Since Z(λ) is the coefficient of a kinetic term, we

demand that Z(λ) ≥ 0. We can also constrain Z(λ)’s small- and large-λ asymptotics [37,

38, 41, 44]:

Z(λ) ∝







Z0 +O(λ), λ → 0,

λ4 +O(1/λ), λ → ∞,
(2.11)

4Instanton effects may produce a non-trivial axion potential, such as a term cosα. These instanton

effects are exponentially suppressed in the large-Nc limit, however.
5We thank F. Bruckmann, H. Panagopoulos, and A. Schäfer for discussions on this issue.
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where Z0 is a dimensionless constant. The small-λ form follows from the rules of effective

field theory: a constant is the most general allowed term. The large λ behavior is fixed by

glueball universality [38]. Various towers of glueballs have linear asymptotic trajectories:

for large excitation number n, their squared masses go as (mi
n)

2 = cin+ · · · , with constants

ci, where the integer i labels different towers. Glueball universality is the statement that

all the slopes ci are similar, i.e. do not depend on i. That is automatic for the 0++ and 2++

glueballs. Requiring the same for the 0−+ glueballs forces Z(λ) to go as λ4 at large λ [38].

We will use the simplest form of Z(λ), also used for example in ref. [42],

Z(λ) = Z0(1 + c4λ
4), (2.12)

where c4 is a dimensionless constant. To fix Z0 we match to the large-Nc YM lattice result

for the Euclidean topological susceptibility, χ, defined in terms of the T = 0 vacuum energy

density E(θ) as
χ ≡ d2E(θ)

dθ2
=

∫

d4x 〈q(xµ)q(0)〉E , (2.13)

where the subscript E denotes the Euclidean correlator. The holographic result for χ

is6 [38],

χ =
κ2M3

p
∫∞

0
dr

b3
0
(r)Z(λ(r))

. (2.14)

Clearly χ will be proportional to κ2Z0. Thus, for any given value of the parameter c4,

matching the holographic result for χ to the lattice result, χ ≈ (191MeV)4 [24, 53], fixes

the product κ2Z0. On the other hand, since the locations of poles in the two-point function

of q(xµ) are independent of the overall normalization κ2Z0, we can fix c4 independently by

matching the mass of the lowest 0−+ glueball to the lattice result of ref. [54],7

m0−+/m0++ = 1.50(4). (2.15)

The resulting values are8 [42]

κ2Z0 = 33.25, c4 = 0.26. (2.16)

These values can then be used to predict the masses in the full tower of 0−+ glueballs. As

shown in refs. [37, 38, 41, 44], the holographic result for the first excited 0−+ glueball mass,

m0∗−+ , agrees very well with the lattice result [54],

m0∗−+/m0++ = 2.11(6). (2.17)

Crucially, notice that by fixing the normalization of χ we have fixed the normalization

of any two-point function of q(xµ), and thus have eliminated the normalization ambiguity

6The holographic calculation of χ in ref. [38] assumed κ = 1. Here we allow for arbitrary κ.
7For a recent lattice study of the glueball spectrum at large N , see [55]. However we have preferred to

use the older results of [54] as in the latter work an excited state of the 0−+ tower is given.
8The result for κ2Z0 in ref. [42] was too large by a factor of four, producing an erroneous result,

κ2Z0 = 133. In eq. (2.16) we present the correct value, κ2Z0 = 133/4 = 33.25.
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Figure 2. The normalizable solution α(r) for the axion at T = 0, expressed as a running θ-angle

normalized to the UV value, as a function of the energy scale, E(r) = E0b(r). We fix E0 by

matching our holographic result for Tc to the large-Nc YM lattice result.

mentioned below eq. (2.10). In other words, the holographic calculation of the two-point

functions of q(xµ) will only depend on the combination κ2Z0 (as we will see explcitly in

section 3), which we have fixed to the value in eq. (2.16).

Solutions for α as a function of T were studied in refs. [40, 42]. When T = 0, a non-

trivial UV θ-angle forces α(r) to be non-trivial. The resulting normalizable solution then

indicates that the non-zero UV θ-angle flows to zero in the IR, as shown in figure 2, and

additionally triggers a non-zero 〈q(x)〉/κ. The T = 0 solution for α(r) is unchanged when

T < Tc: Wick-rotating the metric in eq. (2.3) to a compact Euclidean time does not affect

the static solution α(r). Such behavior is expected in a confined phase at leading order in

Nc, due to large-Nc volume independence. When T > Tc, however, the only non-singular

solution for the axion is a constant, α(r) = κ θ, indicating that 〈q(x)〉 = 0, in agreement

with evidence from lattice data for large-Nc YM [24].

What is the behavior of the topological susceptibility as a function of temperature,

χ(T )? When T < Tc, χ(T ) is independent of T , i.e. takes the same value as at T = 0,

eq. (2.14), again due to large-Nc volume independence. When T > Tc, the holographic

result for the topological susceptibility is

χ(T ) =
κ2M3

p
∫ rh
0

dr
b3(r)f(r)Z(λ(r))

. (T > Tc) (2.18)

The denominator on the right-hand-side of eq. (2.18) diverges at the black hole horizon, so

in fact χ(T ) = 0 when T > Tc, up to O(e−Nc) corrections [40, 42].

We will also consider a form for Z(λ) more general than that of eq. (2.12). On the

large black hole branch, if T is large then λ is small, in which case we expect the largest

polynomial correction to the Z(λ) in eq. (2.12) to be a term linear in λ, hence we consider

Z(λ) = Z0

(

1 + c1λ+ c4λ
4
)

, (2.19)

where c1 is a dimensionless constant, which we choose to be positive. If we continue

to fit only to the lattice result for the lowest 0−+ glueball mass, we find a substantial
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Figure 3. Our holographic results for the masses of the 0−+ glueball states with excitation number

n, normalized to the lowest 0++ glueball mass, obtained by varying the coefficients c1 and c4 in

the Z(λ) in eq. (2.19). From the top (red) dots (visible only for n = 2 and n = 4) to the bottom

(blue) dots, (c1, c4) = (0, 0.26), (0.5, 0.87), (1, 2.2), (5, 24), (10, 75), (20, 230), (40, 600). The lowest

axial glueball mass, n = 1, is always fixed to be the value in eq. (2.15). The two horizontal blue

lines with surrounding blue bands indicate the results and errors, respectively, of the large-Nc YM

lattice calculations for the masses of the lowest and first excited states, n = 1 and n = 2 (see

eqs. (2.15) and (2.17)) [54]. Only the mass of the n = 2 state is appreciably sensitive to changes of

c1 and c4, differing from the lattice result by 3% at most.

degeneracy (which is not surprising, given that we have introduced an additional parameter,

c1). Specifically, for any positive value of c1, a value of c4 exists such that, upon matching to

the lowest axial glueball mass in eq. (2.15), the value of the first excited axial glueball mass

is in rough agreement with the value in eq. (2.17), exhibiting at most a 3% discrepancy,

as shown in figure 3. To constrain c1 we will demand that our holographic results for the

axial glueball masses fall within one sigma of the lattice values in eqs. (2.15) and (2.17).

That results in the constraints

0 . c1 . 5, 0.06 . c4 . 50. (2.20)

In fact, the optimal values, which provide the best fit, are the ones in eqs. (2.12) and (2.16):

(c1, c4) = (0, 0.26).

As we have seen, the function Z(λ) must be non-negative and is constrained in the

λ → 0 and λ → ∞ limits. For intermediate values of λ, the most natural assumption is that

Z(λ) is monotonic. At least, we are not aware of any compelling evidence for the existence

of maxima or minima in Z(λ). Our choices for Z(λ) were thus monotonic functions of λ,

namely polynomials in λ with strictly positive coefficients. To test the effect of maxima

and minima in Z(λ), we considered two changes to the Z(λ) in eq. (2.19). First, we allowed
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slightly negative c1, while maintaining Z(λ) ≥ 0. Second, we introduced a maximum by

a adding a Gaussian peak to Z(λ). In each case we computed the axial glueball mass

spectrum. After matching to the lattice result for the lowest axial glueball mass, we found

that the fit to the first excited axial glueball mass was worse, deviating from the lattice

result by about 10%. We consider that a preliminary indication that monotonic Z(λ) may

indeed be the best choice. We leave more thorough tests for future research.

Our assumption that Z(λ) is monotonic in λ determines the qualitative behavior of

Z(λ) as a function of T . On the large black hole branch, as T → ∞, λ → 0, and as T

decreases towards Tc, λ increases monotonically. As a result, for our choices of Z(λ) —

simple polynomials in λ with positive coefficients — when T → ∞, Z(λ) → Z0, and when

T → Tc, Z(λ) will increase monotonically. As functions of T , our Z(λ) are thus bounded

from below by their value in the T → ∞ limit: Z(λ) ≥ Z0. The behavior of Z(λ) as a

function of T will translate directly into the behavior of ΓCS as a function of T , as we will

show in the next section. In particular, the dimensionless combination ΓCS/(sT ) will be

bounded from below by its value in the T → ∞ limit, and will increase as T → Tc. In the

next section we will also present a more general argument that ΓCS/(sT ) must increase as

T approaches Tc from above.

3 The Chern-Simons diffusion rate

We will compute ΓCS using eq. (1.4), rewritten as

ΓCS = −κ2 lim
ω→0

2T

ω
Im ĜR(ω,~k = 0), (3.1)

where ĜR(ω,~k) is the retarded two-point function of q(xµ)/κ, the operator dual to our

axion α.

In holography, the on-shell bulk action is the generating functional for field theory

correlation functions [27, 28]. To compute the two-point function ĜR(ω,~k) in the high-

temperature, deconfined phase of IHQCD, we must solve the linearized equation of motion

of the axion in the black hole spacetime with metric in eq. (2.7), with T ≥ Tc. We thus

introduce a fluctuation of the axion, δα(r, xµ), where xµ = (t, ~x). When T ≥ Tc, the

background solution for the axion is trivial, hence the linearized equation of motion for

δα(r, xµ) is simply

1

Z(λ(r))
√−g

∂r
[

Z(λ(r))
√−g grr∂rδα(r, x

µ)
]

+ gµν∂µ∂ν δα(r, x
µ) = 0, (3.2)

where the metric is that of eq. (2.7). Notice in particular that δα will not couple to

the fluctuations of any other fields because the background solution preserves CP and the

axion is the only CP-odd field in the bulk. We must solve eq. (3.2) with Dirichlet boundary

condition at the asymptotically AdS boundary and with in-going wave boundary condition

at the horizon [30]. The solution takes the form

δα(r, xµ) =

∫

d4k

(2π)4
eikx δα(r, kµ) a(kµ), (3.3)
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where kµ = (ω,~k) and where a(kµ) is fixed by the Dirichlet boundary condition,

lim
r→0

δα(r, xµ) =

∫

d4k

(2π)4
eikx a(kµ), (3.4)

while δα(r, kµ) obeys the equation

1

Z(λ(r))
√−g

∂r
[

Z(λ(r))
√−g grr∂rδα(r, k

µ)
]

− gµνkµkν δα(r, k
µ) = 0, (3.5)

with unit normalization at the asymptotically AdS boundary, limr→0 δα(r, k
µ) = 1, and

in-going wave boundary condition at the horizon. The on-shell axion action is then

Son-shell
α =

∫

d4k

(2π)4
a(−kµ)F(r, kµ) a(kµ)

∣

∣

∣

∣

rh

0

, (3.6)

where

F(r, kµ) ≡ −
M3

p

2
δα(r,−kµ)Z(λ(r))

√−g grr ∂rδα(r, k
µ). (3.7)

The retarded Green’s function is then [30]

ĜR(ω,~k) = −2 lim
r→0

F(r, kµ). (3.8)

To compute ΓCS, we need to solve eq. (3.5) with ~k = 0 and with small ω. We will do so

in two ways, first using near-horizon matching and second using the membrane paradigm,

following ref. [32]. In each case we can determine ΓCS analytically, essentially because δα

is a massless fluctuation.

In the near-horizon matching technique, we first solve eq. (3.5) with ω = 0 and then

expand the solution near the horizon. We then reverse the order of operations, solving

the equation in the near-horizon region and then expanding the solution in ω. Finally, we

match the two solutions to obtain F(r, kµ).

When ~k = 0 and ω = 0 the solution of eq. (3.5) is

δα = C1 + C2

∫ r

0

dr′

Z(λ(r′))b(r′)3f(r′)
, (3.9)

with constant coefficients C1 and C2. The second term on the right-hand side of eq. (3.9)

diverges as r → rh. As a result, when ω = 0 a normalizable solution must have C2 = 0.

When ω is small but non-zero, a normalizable solution may have C2 ∝ ω. Plugging eq. (3.9)

into eq. (3.7), we find

lim
r→0

F(r, kµ) = −
M3

p

2
C1C2. (ω ≪ T,~k = 0) (3.10)

We will choose C1 = 1 so that our δα has unit normalization at the asymptotically AdS

boundary. Our task is thus to determine C2. Expanding the solution in eq. (3.9) around

the horizon, we find

δα = C1 +
C2

Z(λh) b(rh)3 f ′(rh)
log(rh − r) +O(rh − r), (3.11)
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where f ′(rh) = 4πT . Now we reverse the order of operations. Expanding eq. (3.5) in

(rh − r), we find the solution in the near-horizon region,

δα = C+(rh − r)
iω

4πT + C−(rh − r)−
iω

4πT , (3.12)

with coefficients C± that depend on ω but not on r. We set C+ = 0 so that the near-horizon

solution is an in-going wave [30]. Now we expand the solution in eq. (3.12) for small ω:

δα = C− − i
ω

4πT
C− log(rh − r) +O(ω2/T 2). (3.13)

By matching the constant and logarithmic terms in eqs. (3.11) and (3.13), we find

C1 = C−, C2 = −iω Z(λh) b(rh)
3C−. (3.14)

Setting C1 = 1, we obtain limr→0F(r, kµ) via eq. (3.10) and then ĜR(ω,~k) via eq. (3.8),

ĜR(ω,~k = 0) = −i ωM3
p Z(λh) b(rh)

3. (ω ≪ T ) (3.15)

We thus obtain our main result for ΓCS,

ΓCS = −κ2 lim
ω→0

2T

ω
Im ĜR(ω,~k = 0) =

1

N2
c

sT

2π
κ2Z(λh), (3.16)

where we have used M3
p = 1/(16πG5N

2
c ) and where s = b3(rh)

4G5
is the entropy density.

Notice that the normalization of this result is fixed by the product κ2Z0, which we fixed

in section 2 by matching to the topological susceptibility at T = 0.

The second equivalent, but more efficient, method that we will use to obtain ĜR(ω,~k)

is the membrane paradigm [32]. Kubo’s formula for the retarded Green’s function is

Π(ω,~k) = ĜR(ω,~k)δα(ω,~k), (3.17)

where Π(ω,~k) is the one-point function of q(xµ)/κ in Fourier space. Following ref. [32], we

extend eq. (3.17) into the bulk by defining an r-dependent response function,

ζ(r, ω,~k) ≡ Π(r, ω,~k)

ωM3
p δα(r, ω,

~k)
, (3.18)

where Π(r, ω,~k) is the canonical momentum of δα(r, ω,~k) with respect to the r-foliation of

the bulk space-time,

Π(r, ω,~k) ≡ δSα

δ∂rδα
= −M3

p Z(λ(r))
√−g grr ∂rδα(r, ω,~k). (3.19)

The retarded Green’s function is then proportional to the boundary value of ζ:

ĜR(ω,~k) = −M3
p ω lim

r→0
ζ(r, ω,~k). (3.20)
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An equation of motion for ζ is straightforward to derive using eq. (3.19) and δα’s equation

of motion, eq. (3.5),

∂rζ =
ω

Z(λ(r))
√−g grr

[

ζ2 + Z(λ(r))2g grrgtt

(

1 +
gxx

gtt

~k2

ω2

)]

=
ω

Z(λ(r))b(r)3f(r)

[

ζ2 + Z(λ(r))2b(r)6

(

1− f(r)
~k2

ω2

)]

. (3.21)

To obtain the retarded Green’s function ĜR(ω,~k), we must impose regularity at the horizon,

meaning ∂rζ is finite there [32], hence the term in brackets in eq. (3.21) must vanish9

at r = rh:

ζ(rh) = +iZ(λh)b(rh)
3. (3.22)

We can now easily derive ΓCS. In eq. (3.21) we take ~k = 0 and observe that if ω → 0 then

ζ becomes independent of r. The value of ζ for all r is then the same as the value at the

horizon, eq. (3.22), and via eq. (3.20) we trivially obtain ĜR(ω,~k = 0), which is identical

to eq. (3.15). We thus find again

ΓCS = −κ2 lim
ω→0

2T

ω
Im ĜR(ω,~k = 0) =

1

N2
c

sT

2π
κ2Z(λh). (3.23)

Our result suggests a natural dimensionless quantity to study,

ΓCS

sT/N2
c

=
κ2Z(λh)

2π
, (3.24)

which has implicit dependence on T through Z(λh), and is constant in T if and only if

Z(λ) is a constant in λ, that is, if the axion does not couple to the dilaton. Indeed, as we

mentioned at the end of section 2, the behavior of Z(λ) as a function of T determines the

behavior of ΓCS/(sT/N
2
c ) as a function of T . In particular, on the large black hole branch,

ΓCS/(sT/N
2
c ) is bounded from below by its value in the T → ∞ limit,

lim
T→∞

ΓCS

sT/N2
c

=
κ2Z0

2π
. (3.25)

If we use the preferred value κ2Z0 = 33.25 [42] then κ2Z0/(2π) ≃ 5.29. Moreover,

ΓCS/(sT/N
2
c ) will increase monotonically as T approahces Tc from above.

For the simplest choice of Z(λ), given in eq. (2.12), ΓCS/(sT/N
2
c ) has extremely mild

dependence on T : as T approaches Tc from above, ΓCS/(sT/N
2
c ) is nearly constant, expe-

riencing an increase of only about 0.01%, mostly between 2Tc and Tc, as shown in figure 4.

In bulk terms, the reason for this mild T dependence is that between T → ∞ and T = Tc,

λh increases from zero up to only λh ≈ 0.14, which for the Z(λ) in eq. (2.12) translates

into a very small change in ΓCS/(sT/N
2
c ).

9When ~k 6= 0 but ω = 0, the boundary condition is modified from that in eq. (3.22), as discussed in

ref. [32]. In what follows, whenever we consider ~k 6= 0 we will work with ω 6= 0, hence we will use the

boundary condition in eq. (3.22).
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Figure 4. Our numerical result for ΓCS/(sT/N
2
c ), normalized to the T → ∞ value κ2Z0/(2π), as a

function of T/Tc for the Z(λ) given in eq. (2.12), with c4 = 0.26 [42]. As T decreases, ΓCS/(sT/N
2
c )

remains nearly constant, experiencing only an approximately 0.01% increase, mostly between 2Tc

and Tc.

On the other hand, for the Z(λ) in eq. (2.19), for different values of the coefficients c1
and c4 we find more variation in ΓCS/(sT/N

2
c ) as T approaches Tc from above, as shown

in figure 5. For example, if c1 = 40 and c4 = 600, then ΓCS/(sT/N
2
c ) increases near Tc

by more than a factor of six. For all values of c1 and c4 that we considered, most of

the increase occurs between 2Tc and Tc. Figure 6 shows ΓCS/(sT/N
2
c ), normalized to the

T → ∞ value κ2Z0/(2π), as a function of T/Tc for values of c1 and c4 that reproduce the

lattice results for axial glueball mass ratios to within one sigma, eq. (2.20). At the upper

limits of the allowed (c1, c4) values, namely (c1, c4) = (5, 50), we find that as T approaches

Tc from above, ΓCS/(sT/N
2
c ) increases by about 60%, with most of the increase occuring

between 2Tc and Tc.

In heavy ion collisions at RHIC and LHC, T reaches two to four times the QCD

crossover temperature. We would thus like to know the value of ΓCS in QCD near the

crossover temperature, which is a key ingredient determining the magnitude of any cur-

rent produced via the CME [18].10 No controlled calculation of ΓCS from QCD at these

temperatures exists, hence we turn to holography. Suppose we use N = 4 SYM as a holo-

graphic proxy for QCD near the crossover temperature. The result for ΓCS in large-Nc,

strongly-coupled N = 4 SYM is [30],

ΓN=4
CS =

λ2
t

28π3
T 4. (3.26)

Being a conformal field theory, N = 4 SYM has no phase transitions at non-zero T , so to

obtain a sensible result we should consider the dimensionless quantity ΓCS/T
4. As a crude

estimate we take αs ≡ g2/(4π) = 0.5 and we use Nc = 3, so that λt = 6π, in which case

we find

ΓN=4
CS /T 4 ≈ 0.045. (λt = 6π) (3.27)

10We thank D. Kharzeev for a discussion on this point.
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Figure 5. (a) Our numerical results for ΓCS/(sT/N
2
c ), normalized to the T → ∞ value

κ2Z0/2π, as functions of T/Tc, for the Z(λ) in eq. (2.19), for different choices of the dimen-

sionless parameters (c1, c4). From the bottom (red) curve to the top (blue) curve, (c1, c4) =

(0, 0.26), (0.5, 0.87), (1, 2.2), (5, 24), (10, 75), (20, 230), (40, 600). (b) Close-up of the curves for (from

bottom to top) (c1, c4) = (0, 0.26), (0.5, 0.87), (1, 2.2). In all of these cases, as T approaches Tc from

above ΓCS/(sT/N
2
c ) increases by anywhere from 0.01% up to a factor greater than six. The increase

occurs mostly between 2Tc and Tc.

1 2 3 4 5 6 7
T�Tc

0.5

1.0

1.5

2.0

GCS�IΚ2 Z0�2 ΠM

Is T�Nc
2M

Figure 6. Our numerical results for ΓCS/(sT/N
2
c ), normalized to the T → ∞ value κ2Z0/2π, as

functions of T/Tc, for the Z(λ) in eq. (2.19) with (c1, c4) constrained such that the holographic

model reproduces the lattice results for axial glueball mass ratios to within one sigma: 0 . c1 . 5

and 0.06 . c4 . 50. A generic choice of (c1, c4) within these limits will produce a curve inside

the shaded region. The lower bound of the shaded region, given by the solid pink curve, has the

lowest values, (c1, c4) = (0, 0.06), while the upper bound, given by the solid blue curve, has the

largest values, (c1, c4) = (5, 50). At the upper bound we see that as T approaches Tc from above,

ΓCS/(sT/N
2
c )× (2π)/(κ2Z0) increases by about 60%. The dashed line is the result for the optimal

values (c1, c4) = (0, 0.26), as shown also in figure 4.

For a better estimate, let us consider ΓCS(Tc)/T
4
c in IHQCD. As discussed above, if Z(λ)

is monotonic in λ, then ΓCS/(sT/N
2
c ) is bounded from below by its value in the T → ∞

limit, eq. (3.25). We can obtain a lower bound on ΓCS(Tc)/T
4
c by using the large-Nc YM

lattice result for the entropy density at Tc [48], s(Tc) = 0.31N2
c T

3
c . Letting λc denote the

value of λh at Tc, we find

ΓCS(Tc)/T
4
c = 0.31× κ2Z(λc)

2π
> 0.31× κ2Z0

2π
= 1.64, (3.28)
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which is about 36 times larger than the N = 4 SYM estimate, eq. (3.27). In fact,

eq. (3.28) is closer to the perturbative QCD result, if we näıvely extrapolate to αs = 0.5:

ΓCS(T )/T
4 ≈ 30α5

s ≈ 0.94 (up to logarithms) [8–11]. If we consider the Z(λ) in eq. (2.19),

and constrain c1 and c4 to the values in eq. (2.20), then we can also place an upper bound

on ΓCS(Tc)/T
4
c , given by the solid blue curve in figure 6. For these choices of Z(λ), we

thus find

1.64 ≤ ΓCS(Tc)/T
4
c ≤ 2.8. (3.29)

Finally, we have also calculated ΓCS using the small black hole solutions [39, 40, 42].

Our results for those cases appear in the appendix. Although the small black hole branch

is always thermodynamically disfavored, we can actually use the results for ΓCS/(sT/N
2
c )

on the small black hole branch to argue quite generally that on the large black hole branch

ΓCS/(sT/N
2
c ) should increase as T approaches Tc from above. A similar argument also

applies for the bulk viscosity, as discussed in ref. [43]. The key result, shown in figure 11

in the appendix, is that for T > Tmin ΓCS/(sT/N
2
c ) is larger on the small black hole

branch than on the large black hole branch, but the two branches meet at Tmin. On the

large black hole branch, then, ΓCS/(sT/N
2
c ) must increase as T → Tmin from above, in

order to meet ΓCS/(sT/N
2
c ) from the small black hole branch. In fact, we can show in full

generality that on the large black hole branch ΓCS/(sT/N
2
c ) must increase as T → Tmin: we

simply take (d/dT )(ΓCS/(sT/N
2
c )) = (dλh/dT )(d/dλh)(κ

2Z(λh)/2π) and observe that by

definition (dλh/dT ) diverges when T → Tmin, while (d/dλh)(κ
2Z(λh)/2π) remains finite.

Notice also that ΓCS/(sT/N
2
c ) itself remains finite when T → Tmin. Given that Tmin is

generally very close to Tc, we are then guaranteed that ΓCS/(sT/N
2
c ) will be increasing

as T → Tc from above, if we assume that Z(λ) is monotonic as a function of T between

Tmin and Tc. In principle, Z(λ) could exhibit maxima or minima for T ∈ (Tmin, Tc),

although such behavior seems un-natural. On the large black hole branch an increase of

ΓCS/(sT/N
2
c ) as T → Tc from above seems to be the generic behavior. We thus learn

that the increase in ΓCS/(sT/N
2
c ) in the vicinity of Tc on the large black hole branch is

tied to the existence of Tmin, and hence to the existence of small black hole solutions. As

argued in ref. [40], the existence of small black hole solutions follows from the fact that the

zero-temperature theory is confining. These arguments suggest that perhaps any confining,

strongly-interacting, large-Nc gauge theory with a (4+1)-dimensional holographic dual11

may exhibit an increase in ΓCS/(sT/N
2
c ) in the vicinity of Tc.

4 The spectral function

We now turn our attention to GR(ω,~k) with non-zero ω and ~k. Generically GR(ω,~k) is

a complex-valued function of the real variables ω and ~k. A pole in GR(ω,~k) indicates a

large response to an infinitesimal source for q(xµ), and is thus associated with a resonant

excitation of the system. Being complex-valued, GR(ω,~k) is not directly observable. To

11Our arguments may not apply for (3+1)-dimensional confining theories obtained from higher-

dimensional theories with compact spatial directions, such as the low-energy worldvolume theory on D4-

branes with one spatial direction compactified and anti-periodic boundary conditions for fermions [29].
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study the excitations of our system, we thus turn to the spectral function, −2 ImGR(ω,~k),

which is real and hence observable in principle.12 Typically, a pole in GR(ω,~k) produces

a peak in the spectral function. In this section we initiate the study of these peaks in

our system.

To be precise, we will compute ImGR(ω,~k). To do so, we will compute GR(ω,~k)

using the membrane paradigm [32], as explained in section 3. In particular, we must solve

eq. (3.21), which we reproduce here for convenience

∂rζ =
ω

Z(λ(r))b(r)3f(r)

[

ζ2 + Z(λ(r))2b(r)6

(

1− f(r)
~k2

ω2

)]

, (4.1)

with the boundary condition in eq. (3.22),

ζ(rh) = +iZ(λh)b(rh)
3, (4.2)

and then obtain GR(ω,~k) via eq. (3.20),

GR(ω,~k) = −κ2M3
p ω lim

r→0
ζ(r, ω,~k). (4.3)

We have not been able to solve eq. (4.1) exactly for all values of ω and ~k, hence we turn to

numerical solutions. In this section we exclusively use the Z(λ) in eq. (2.12), with c4 = 0.26.

We consider first the case ~k = 0. Figure 7 shows our numerical result for ImGR(ω,~k =

0)/(TcM
3
p ) at Tc as a function of ω/Tc. As we saw in section 3, for ω sufficiently

small, ImGR(ω,~k = 0) ∝ ω. On the other hand, at asymptotically large ω we expect

ImGR(ω,~k = 0) ∝ ω4 because in the UV the theory is conformally invariant and q(xµ) is

dimension four. Our results are consistent with that expectation: figure 7 shows that the

function (1.6× 10−7)× (ω/Tc)
4.051 provides an excellent fit to our data.

The ω4 scaling of ImGR(ω,~k = 0), and hence of GR(ω,~k = 0), at asymptotically

large ω is a divergence in the coincidence limit of the two-point function that prevents

the correlator from obeying the sum rules and dispersion relations typically used to give

physical meaning to the poles of GR(ω,~k) in the complex ω plane, which require GR(ω,~k)

to vanish at large frequency. Such a divergence may overwhelm peaks in ImGR(ω,~k),

rendering them practically invisible.

One way to improve the large-ω behavior of ImGR(ω,~k) is to consider subtracted cor-

relators. For example, one possible option is to determine the form of ImGR(ω,~k) at large

ω exactly by solving eq. (4.1) in a WKB approximation, and then subtracting that large-ω

form from all subsequent calculations of ImGR(ω,~k). That approach encounters ambigui-

ties in sub-leading divergences in ω, as discussed for example in ref. [56]. We will instead

eliminate the large-ω divergence by computing GR(ω,~k) at two different temperatures, T1

and T2, and then taking the difference,

∆GR(ω,~k;T1, T2) ≡ GR(ω,~k)
∣

∣

∣

T2

− GR(ω,~k)
∣

∣

∣

T1

. (4.4)

12Given ImGR(ω,~k) we can obtain ReGR(ω,~k) via a Kramers-Kroning relation, provided the large-ω

and large-|~k| asymptotics have been suitably regulated.
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Figure 7. Our numerical results for ImGR(ω,~k = 0)/(TcM
3
p ) as a function of ω/Tc, at Tc, for the

Z(λ) in eq. (2.12) with κ2Z0 = 33.25 and c4 = 0.26. The red dots are our numerical results while

the solid blue curve is the function (1.6 × 10−7) × (ω/Tc)
4.051. Our results are clearly consistent

with the expectation that ImGR(ω,~k = 0) ∝ ω4 at large ω.

We could also imagine subtracting the T = 0 result for GR(ω,~k), that is, by taking T1 = 0,

but that is difficult to do numerically. When T = 0, GR(ω,~k) is a sequence of delta-

functions whose locations and amplitudes correspond to the masses and wave-function

normalizations of axial glueballs. We would need to subtract the enveloping function of

this sequence of delta-functions, which is difficult to implement numerically. We will thus

always consider T1, T2 ≥ Tc. Fig 8 shows our numerical results for ImGR(ω,~k = 0) at

two different temperatures, Tc and 2Tc, while figure 9 shows our numerical results for

∆ImGR(ω,~k = 0;Tc, 2Tc). In each figure we observe that the difference in ImGR(ω,~k =

0) between Tc and 2Tc approaches zero as ω/Tc → ∞, at least within our numerical

precision. Our numerical subtraction thus appears to be reliable, so we may interpret

peaks in ImGR(ω,~k) as physical excitations.

From figures 8 and 9, we see that as T increases from Tc to 2Tc, ImGR(ω,~k = 0) changes

by at most 10%. Figure 9 also clearly reveals a minimum in ∆ImGR(ω,~k = 0;Tc, 2Tc) near

ω/Tc ≈ 10 and a maximum near ω/Tc ≈ 22, indicating a shift in spectral weight towards

higher ω as T increases. Indeed, figure 9 strongly suggests that a peak in the spectral

function is moving to higher ω as T increases. The location of the peak, at ω on the order

of twenty times Tc, is roughly the same as the scale of the lightest 0−+ glueball mass at

T = 0, around 2600MeV [54]. In other words, figure 9 provides evidence that the plasma

supports an excitation with roughly the same energy as the lightest 0−+ glueball at T = 0.

The width of the peak in figure 9 is about 10Tc ≈ 1300MeV, so the excitation is reasonably

long-lived.

Figure 10 shows our result for the subtracted correlator with non-zero ω and |~k|, using
the same two temperatures as above. We observe that as |~k| increases up to |~k|/Tc ≈ 10,

the largest peak shifts from ω/Tc ≈ 22 up to ω/Tc ≈ 30. Although this change in the
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Figure 8. Our numerical results for ImGR(ω,~k = 0)/(TcM
3
p ) as a function of ω/Tc, at Tc (lower

blue dots) and at 2Tc (upper red dots), for the Z(λ) in eq. (2.12) with κ2Z0 = 33.25 and c4 = 0.26.

A both Tc and 2Tc, for ω/Tc sufficiently large ImGR(ω,~k = 0) ∝ ω4.

10 20 30 40 50 60

Ω

Tc

-0.0010

-0.0005

0.0005

DHIm GRL
Tc Mp

3

Figure 9. Our numerical results for the difference ∆ImGR(ω,~k = 0;Tc, 2Tc)/(TcM
3
p ) as a function

of ω/Tc, for the Z(λ) in eq. (2.12) with κ2Z0 = 33.25 and c4 = 0.26. The difference goes to zero

(within our numerical precision) as ω/Tc → ∞, as expected. The prominent minimum at ω/Tc ≈ 10

and maximum at ω/Tc ≈ 22 indicate a shift in spectral weight with increasing T , presumably from

the motion of a peak in the spectral function.

position of the peak is roughly order one, the change in the shape of the peak is very mild.

In particular, the width of the peak changes very little, indicating that the lifetime of the

excitation stays nearly constant as |~k| increases.
The typical time scale for dynamical processes in the QGP created in heavy ion col-

lisions is about 1 fm/c ≈ (200MeV)−1. Our results suggest the existence of a relatively
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Figure 10. Our numerical results for ∆ImGR(ω,~k = 0;Tc, 2Tc)/(TcM
3
p ) as a function of ω/Tc

and |~k|/Tc, for the Z(λ) in eq. (2.12) with κ2Z0 = 33.25 and c4 = 0.26. As |~k| increases up to

|~k|/Tc ≈ 10, the largest peak shifts from ω/Tc ≈ 22 up to ω/Tc ≈ 30. The width of the peak

changes very little.

long-lived excitation with energy on the order of 2600MeV, corresponding to a time scale

of about 0.1 fm/c. We cannot resist speculating that perhaps such an excitation, if present

in the QGP, could dominate correlators of q(xµ) and hence many dynamical CP-odd phe-

nomena. Regrettably, we will leave a detailed analysis of this excitation, and its effect on

CP-odd physics, for the future.

5 Discussion and outlook

IHQCD is a state-of-the-art bottom-up holographic model for the low-energy physics of

(3+1)-dimensional large-Nc YM theory. In this paper we computed the retarded Green’s

function of the instanton density operator q(xµ) in the high-temperature, deconfined phase

of IHQCD. Our primary motivation was to compute the Chern-Simons diffusion rate, ΓCS,

with the result in eq. (1.5). In particular, our result for ΓCS is proportional to Z(λh),

where Z(λ) is the normalization factor of the bulk axion action, and λh is the value of the

holographic ’t Hooft coupling at the black hole horizon. A combination of available data

for the topological susceptibility and axial glueball spectrum of large-Nc YM, and glueball

universality, are sufficient to determine the small and large λ limits of Z(λ) [37, 38, 41, 44].

We considered several forms for Z(λ). Assuming that Z(λ) is a monotonic function of

λ, we found quite generally that ΓCS/(sT/N
2
c ) is bounded from below by its value in the

T → ∞ limit and increases monotonically as T → Tc from above. Indeed, we presented

an argument that the same will be true in many (3+1)-dimensional, confining, strongly-

coupled, large-Nc theories with holographic duals. For the Z(λ) producing our optimal fit

to the lattice results for the axial glueball spectrum, we found that the increase was only

0.01%. Fixing Z(λ) completely by a least-squares fit to lattice results for the Euclidean

two-point function of q(xµ), as explained in section 2, is an important task for the future.

We also presented evidence for a relatively long-lived excitation in the system with energy
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roughly on the order of the mass at T = 0 of the lightest 0−+ glueball, which prompted

us to speculate that perhaps such an excitation could dominate CP-odd phenomena in the

QGP created in heavy ion collisions.

IHQCD is dual to pure large-Nc YM, so an important goal for the future is to include

the effects of quarks in the holographic calculation of ΓCS. Some key questions are how

the quark mass and chiral symmetry breaking affect ΓCS. The axial and vector flavor U(1)

currents are dual to two U(1) Maxwell fields in the bulk, and the quark mass operator is

dual to a complex scalar field, a tachyon, that is bi-fundamental under these two gauge

fields. In the bulk, the axion couples to the axial U(1) gauge field and the to phase of the

tachyon, as explained in refs. [57, 58]. A solution for the tachyon describing either a non-

zero quark mass or chiral symmetry breaking can thus influence the axion and affect ΓCS.

Introducing flavors fields would also enable us to compute holographically the current

produced via the CME. A preliminary requirement is a bulk solution describing a magnetic

field and a net chirality.

We plan to study these and other related issues in the future.
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A The small black hole branch

As discussed in section 2, when T > Tmin IHQCD admits two branches of black hole

solutions, large black holes and small black holes [40]. In this appendix we compute ΓCS

using the small black hole solutions.

We can determine the dependence of ΓCS on T in the large-T limit of the small black

hole solutions as follows. For generality, we will consider a dilaton potential V (λ) whose

large-λ asymptotic form is V (λ) ∝ λ4/3 (log λ)P , with P a non-negative real number. In

the body of the paper we used P = 1/2. From figure 1, we observe that for the small black

hole solutions, when T is large, rh is also large. When rh is large, λh is also large, in which

case we can approximate Z(λh) ≈ Z0c4λ
4
h and hence ΓCS/(sT/N

2
c ) ≈ κ2Z0 c4 λ

4
h/(2π). As

shown in refs. [37, 38, 41, 44], in the r → ∞ limit, λ(r) ∝ exp(r1/(1−P )) r
3

4

P
1−P . Evaluating
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(a) (b)

Figure 11. (a.) Our numerical result for ΓCS/(sT/N
2
c ), divided by Z0κ

2/(2π), as a function of

T/Tc, for the Z(λ) in eq. (2.12) with c4 = 0.26. The upper dot-dashed blue curve is our result

obtained from small black hole solutions, while the lower solid blue curve is the result obtained

from large black hole solutions. Both curves begin at Tmin, indicated by the vertical dashed black

line, which is slightly below Tc. The result on the small black hole branch increases as T increases,

and in the T → ∞ limit approaches the form in eq. (A.1). (b.) Close-up of (a.) near Tmin.

at rh gives us λh in terms of rh. From ref. [40] we know rh in terms of T on the small black

hole branch in the rh → ∞ limit, rh ∝ T (1−P )/P . We thus find

ΓCS

sT/N2
c

∝ κ2Z0c4
2π

(T/Tc)
3 eC(T/Tc)

1
P , (A.1)

where C is a dimensionless positive constant that depends on the choice of V (λ).

To compute ΓCS in the entire range Tmin < T < ∞, we resorted to numerics. For the

Z(λ) in eq. (2.12) with c4 = 0.26, our results appear in figure 11, where we see clearly

that the result grows as T increases, and in the T → ∞ limit approaches the form in

eq. (A.1). Figure 11 also shows that the result for ΓCS/(sT/N
2
c ) is always larger on the

small black hole branch than on the large black hole branch, except at Tmin where the

two are equal. This result is important for our argument at the end of section 3 that

ΓCS/(sT/N
2
c ) computed on the large black hole branch will increase as T approaches Tc

from above.
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