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1 Introduction

Extracting classical gravitational physics from quantum field theories has a long his-

tory [2–4]. More recently the modern on-shell scattering amplitudes program has provided

a number of tools that can be used to greatly simplify calculations of gravitational quan-

tities, notably the KLT relations and the BCJ double copy [5–9], as well as those related

specifically to classical observables [10–12]. While the original aim of the double copy

program was to simplify loop computations in gravity, it has found many uses in classical

gravity, from metric reconstruction [13–20] to gravitational wave physics [21–24]. In partic-

ular, the introduction of a formalism to compute amplitudes of arbitrary mass and spin [25]

has provided a powerful way to investigate spin effects in classical observables [24, 26–29].

Calculations involving spin effects in gravity are often computed in the post-Newtonian

(small velocities v � c) or post-Minkowskian (expansion in G) frameworks [30–38], how-

ever there have also been calculations involving loop amplitudes via standard Feynman

diagram techniques and form factors [39, 40]. Moreover, recent work by a number of au-

thors have shown that such calculations can be efficiently streamlined by using modern

amplitude techniques, often combined with the tools of effective field theory [34, 41–46].

In four dimensions, black holes are classically described only by their mass, angular

momentum and charge by the no hair theorem. In particular, the unique stationary,

asymptotically flat black hole with all of these properties (with non-degenerate horizons)
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Figure 1. Gravitational probe of charged, spinning particles.

is the Kerr-Newman black hole [47, 48], making it the most general black hole in our

universe. From far enough away, any black hole can be treated as a point particle, and as

such can be given an effective one-body description. The proposed on-shell avatar of the

no-hair theorem is that black hole solutions should be obtainable from minimal coupling,

with deviations describing finite-size effects given by non-minimal deformations [1, 27].

The construction of classical and quantum black hole metrics using loop amplitudes has

been a fruitful endeavour, using everything from form factors [49, 50] to unitarity based

methods [13] and more recently with leading singularities [27, 51, 52]. In this paper, we show

that all four-dimensional black hole solutions at order G and charge α are obtainable from

minimal coupling via the tree-level and one-loop triangle leading singularities. Furthermore,

we show explicitly that the relevant amplitudes themselves factorise into a spin-independent

piece and a spin factor, as was demonstrated in the case of Kerr black holes in refs. [1,

27, 52]. Very recently, it was shown that this factorization, in the infinite spin limit, is

the on-shell avatar of the Janis-Newman algorithm [1], which utilises a complex coordinate

transformation of the Schwarzchild (Riessner-Nordström) solution leading directly to the

Kerr (Kerr-Newman) solution [53, 54]. We will show that the Kerr-Newman solution can

be derived in precisely this way from Reissner-Nordström by simply attaching a spin-factor

to the relevant minimally coupled three-point amplitudes.

We will consider a scalar test particle p1 gravitationally probing a heavy, charged,

spinning source with momentum p3, as in figure 1. We will take particles p1, p2 to be

massive particles with mass mA, and particles p3, p4 to be spinning with mass mB and spin

s.

2 Scattering amplitudes and spin operators

In the textbook formulation of quantum field theory, the familiar Gordon decomposition

identity is given by

ū(p1)γµu(p2) = ū(p1)

[
pµ1 + pµ2

2m
+
iσµν(pµ1 − p

µ
2 )

2m

]
u(p2). (2.1)

This identity has many uses, e.g. expressing the vertex function of a massless photon

interacting with two massive fermions in terms of form factors, one corresponding to spin-
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independent and spin-dependent parts. In [25], it was shown that the on-shell avatar of

this identity is that one can expose the spin-dependence of an on-shell ‘vertex’ by choosing

a purely chiral spinor basis.

Suppose we want to express everything in an anti-chiral basis. Using the formalism

of [25], we find that the three particle amplitude in the undotted frame is given by

Mf̄fγ = ū1��ε3v2 = xεα1α2 . (2.2)

Converting between bases is done with the operator p/m, which means that for this am-

plitude in the dotted frame we find

Mf̄fγ = xεα1α2 = x
εα1α2p1α1α̇1p2α2α̇2

m2
= xεα̇1α̇2 +

λ̃3α̇1 λ̃3α̇2

m
, (2.3)

where we have used the identities

Oαβ :=
p α̇

1α p2βα̇

m2
= εαβ − x

λ3αλ3β

m
, Oα̇β̇ := εα̇β̇ +

1

x

λ̃3α̇1 λ̃3α̇2

m
. (2.4)

To see how this relates to the spin, we consider the Pauli-Lubanski pseudo-vector

Sµ = − 1
2mε

µνρσpνσρσ, where

(σµν) β
α =

i

2
(σ[µσ̄ν])

β
α , (σ̄µν)α̇

β̇
= − i

2
(σ̄[µσν])

α̇
β̇
. (2.5)

For chiral SL(2,C) representations of massive states, we can write a general spin-s generator

σ̄µν in a simpler form, due to the fact that the external polarization tensors are always

built from symmetrized massive spinors, meaning we can write

(σ̄µν)α̇1···α̇2s

β̇1···β̇2s
=
∑
i

(σµν)α̇i

β̇i
Īi, (2.6)

where Īi = δα̇1

β̇1
· · · δα̇i−1

β̇i−1
δ
α̇i+1

β̇i+1
· · · δα̇2s

β̇2s
, with σµν and Ii given analogously. We can there-

fore write

(Sµ)α̇
β̇

=
i

m
pν(σ̄µν)α̇

β̇

=
1

4m
[(p · σ)σ̄µ − σµ(p · σ̄)]α̇

β̇
, (2.7)

where we have used the identity σµν = − i
2ε
µνρσσρσ. We can generalise this for any spin s

by noting that
∑

i(σ̄µν)α̇i

β̇i
Īi = 2s(σ̄µν)α̇1

β̇1
Ī1 to find, in spinor helicity notation,

(Sµ)α̇1···α̇2s

β̇1···β̇2s
=

s

2m
(〈p|σµ|p] + [p|σ̄µ |p〉) Ī1. (2.8)

Contracting this with an external massless momentum p3, we then find

(p3 · S)α̇
β̇

= −|3][3|
2x

(2.9)

where we have used (p · σ)αα̇ = − |p〉α [p|α̇ and (p · σ̄)α̇α = −|p]α̇ 〈p|α.
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Figure 2. Tree Level Diagram.

We can now establish the spin-dependence of a three particle amplitude with two

spinning particles coupled to a massless particle of (positive) helicity h

Ms,h
3 = g(mx)h

〈12〉2s

m2s
= −g(mx)h

[
[1|
(

1− |3][3]

mx

)
|2]

]2s

. (2.10)

We will be interested in computing leading singularities (LS) throughout the rest of this

paper and as such we will strip off the external spinors, expressing amplitudes in a basis

of un-contracted purely anti-chiral indices, as is suited for LS calculations [10, 55]. While

there can be additional spin-dependence coming from these external wavefunctions, we

will see that these can be restored after the fact by considering the contributions from the

non-chiral or ‘polarization tensor’ basis.

3 Tree-level leading singularity

At tree level, the only possible diagram that we can consider is that of figure 2. Since there

is no electromagnetic interaction, this will simply produce a purely gravitational interaction

at order G, and has been calculated many times in the literature [1, 27, 28]. However for

completeness, and in order to set notation, we will briefly review the calculation of this

piece here.

In this paper, we are only going to concern ourselves with the classical effects, and as

such to greatly simplify calculations we will appeal to the Holomorphic Classical Limit [10].

This allows us to parametrise our scattering amplitudes in such a way that the classical

limit can be taken cleanly. While we will not require much of the technical machinery of

the holomorphic classical limit in this section, we will implicitly drop any terms that don’t

survive in the holomorphic classical limit.

The minimal coupling two spin-s one graviton amplitude is given by

M3[1, 2,K+2] =
κ

2
(mx12)2 〈12〉2s

m2s
, M3[1, 2,K−2] =

κ

2

(
m

x12

)2 [12]2s

m2s
(3.1)
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Stripping off the external wavefunctions and bearing in mind the discussion in the last

section, we can rewrite the three-point amplitudes as

ML[1, 2,K+2] =
κ

2
(mx12)2

(
1 +

K · a
s

)2s

, ML[1, 2,K−2] =
κ

2

(
m

x12

)2(
1− K · a

s

)2s

,

(3.2)

where we have defined the anti-chiral, spin-s mass-rescaled Pauli-Lubanski pseudovec-

tors as1

(ai,µ)α̇1···α̇2s

β̇1···β̇2s
= −2is

m2
i

(P νi σ̄µν)α̇i

β̇i
Īi, (3.3)

where Īi = δα̇1

β̇1
· · · δα̇i−1

β̇i−1
δ
α̇i+1

β̇i+1
· · · δα̇2s

β̇2s
and where xij is defined via

xijλ
α
i =

λ̃iα̇P
α̇α
j

m
,

λ̃α̇i
xij

=
pα̇αj λiα

m
. (3.4)

Choosing to work in the anti-chiral basis means we only consider the spin factor of positive

helicity amplitudes. Making this choice, we can glue together two three-points in the t

channel to find

M4[1, 2, 3s, 4s] =
(κ

2

)2 m2
Am

2
B

t

(
x2

34

x2
12

(
1 +

K · a
s

)2s

+
x2

12

x2
34

)
, (3.5)

where any other pieces that contribute to the amplitude vanish in the holomorphic classical

limit. We note that we have stripped off the Kronecker deltas that carry the explicit anti-

chiral indices, following the conventions of the holomorphic classical limit set out in [10].

We now define the variables

u = mAmB
x34

x12
, v = mAmB

x12

x34
. (3.6)

Using these definitions, we can derive the following useful identities

uv = m2
Am

2
B, u+ v = 2p1 · p3. (3.7)

We can use this system of equations to derive the individual expressions for u and v

2u = s−m2
A −m2

B +
√

((mA −mB)2 − s) ((mA +mB)2 − s)

= 2mAmB(ρ+
√
ρ2 − 1) (3.8)

2v = s−m2
A −m2

B −
√

((mA −mB)2 − s) ((mA +mB)2 − s)

= 2mAmB(ρ−
√
ρ2 − 1), (3.9)

where we have defined ρ := p1·p3
mAmB

. With this notation, taking the non-relativistic limit

coincides with taking ρ −→ 1. However, taking this limit naively typically obscures the

1We note that the classical value of the spin is obtained by taking s → ∞ while keeping s~ fixed,

meaning we take the spin vector to contain a factor of 2s~.
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spin dependence, and hence we will need to consider higher orders, expanded around ρ = 1.

In the classical potential, the spin dependence is expected to show up as [40]

εµνρσp
µ
1p

ν
3K

ρSσ = mB(EA + EB)(a · p× q). (3.10)

We note that here in the centre of mass frame, p1 = −p3 = p + 1
2q, meaning we can freely

exchange p with p1 or −p3 in the above expression.

Expressing the Gram determinant above in terms of more familiar variables, we find

iεµνρσp
µ
1p

ν
3K

ρSσ =
1

2
K · S

√
((mA −mB)2 − s) ((mA +mB)2 − s)

= mAmB

√
ρ2 − 1K · S. (3.11)

Thus, as promised, we will need to keep up to at least O(
√
ρ2 − 1) in the expansion of u, v

and make the above identification before taking the ρ −→ 1 limit. The strategy to obtain

spin-dependence at all orders is to expand u, v in powers of
√
ρ2 − 1, matching order by

order with eq. (3.11).

With this in mind, the tree-level leading singularity is

Ms
4 =

(κ
2

)2 1

t

(
u2

(
1 +

K · a
s

)2s

+ v2

)
, (3.12)

where we have defined a = 2sã.

4 One-loop leading singularity

So far we have only considered a purely gravitational interaction, but ultimately we wish

to consider black holes that carry charge, and as such we require there to be both a

gravitational and an electromagnetic interaction between the scattered objects. There

is no tree-level scattering amplitude that can achieve this, and so we must consider at

minimum a one-loop process. Since we are not interested in quantum effects at this stage,

we consider only the triangle leading singularity (LS) which is expected to give us a multiple

discontinuity in the t-channel leading to classical effects [55]. The only diagram we need

consider is the one in figure 3, where the two massless exchange particles are photons with

opposite helicity2 coupled to a graviton. The LS is then given by

I =
∑
h=±

∮
Γ

d4L

(L2 −m2)k2
3k

2
4

M3[ps3,−L, kh3 ]M3[L, ps4, k
−h
4 ]M4[−k−h3 ,−kh4 , p1, p2], (4.1)

where k3 = −L+ p3 and k4 = L− p4.

We define the exchanged momentum as

K = |λ] 〈λ| = (0,q), K2 = t = −|q|2, (4.2)

2Two same-helicity photons do not contribute to the LS as they have zero residue.
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Figure 3. LS Triangle Diagram.

which, along with the results and notation from [10, 25, 56], allow us to express the required

tree-level amplitudes as

M3[1s, 2s,K+1] =
√

2emx12

(
1 +

K · a
s

)2s

, M3[1s, 2s,K−1] =
√

2e

(
m

x12

)
, (4.3)

M4[k−1
3 , k+1

4 , 1, 2] = −
(κ

2

)2
(
m2xk3p2

xk4p1

)
= −

(κ
2

)2
(
m2xk3p1

xk4p2

)
(4.4)

M4[k+1
3 , k−1

4 , 1, 2] = −
(κ

2

)2
(
m2xk4p2

xk3p1

)
= −

(κ
2

)2
(
m2xk4p1

xk3p2

)
(4.5)

To make this problem tractable, we work in a parametrisation that makes the classical

pieces explicit, e.g. the one given in [10]:

p3 = |η]〈λ|+ |λ]〈η| ,

p4 = β|η]〈λ|+ 1

β
|λ]〈η|+ |λ]〈λ| ,

t

m2
b

=
(β − 1)2

β
,

〈λη〉 = [λη] = mB .

(4.6)

In addition, we parametrise the loop momentum L as

L = z`+ ωK, |`] = |η] +B|λ], 〈`| = 〈η|+A 〈λ| . (4.7)

Demanding the on-shell cut conditions k2
3,4 = L2 − m2

B fixes ω = −1
z with A = −B =

−1
z

2β
1+β . This fixes the integration to become

β

8(β2 − 1)m2
B

∮
Γ

dy

y
=

1

16
√
−tmB

∮
Γ

dy

y
, (4.8)

where we have taken the β −→ 1 limit.
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The chosen parameters also induces a convenient parametrisation for k3,4

|k3] =
1

β + 1

(
|η](β2 − 1)y + |λ](1 + βy)

)
,

〈k3| =
1

β + 1

(
〈η|(β2 − 1)− 1

y
〈λ|(1 + βy)

)
,

|k4] =
1

β + 1

(
−β|η](β2 − 1)y + |λ](1− β2y)

)
,

〈k4| =
1

β + 1

(
1

β
〈η|(β2 − 1) +

1

y
〈λ|(1− y)

)
. (4.9)

When required, we can also evaluate these directly in the holomorphic classical limit β → 1,

finding

|k3] =
1

2
|λ](1+y), 〈k3| =

1

2y
〈λ| (1+y), |k4] =

1

2
|λ](1−y), 〈k4| = −

1

2y
〈λ| (1−y).

(4.10)

In order to perform the contour integral we need to make all factors of y explicit. Conve-

niantly, in this parametrisation, we find that

xkipj = −y 〈λ| pj |η]

mjmB
,

1

xkipj
= −1

y

〈η| pj |λ]

mjmB
, (4.11)

meaning that xk3p3 = xk4p4 = −y.

With this set of parameters in place, we can express the product of three particle

amplitudes as

M3[ps3,−Ls,−k±1
3 ]M3[−ps4, Ls,−k∓1

4 ] = 2e2m2
B

(
1± (1± y)2

2y
K · a

)2s

. (4.12)

The four particle amplitude is given by

M4[k−1
3 , k+1

4 , p1, p2] = −
(κ

2

)2 〈k4| p1|k3]2

t

= −
(κ

2

)2
((

1− y2
)

(v − u)

4y
+

1

2
u(1− y) +

1

2
v(y + 1)

)2

(4.13)

' −
(κ

2

)2
m2
A

(
1− ε(1 + y)2

2y

)2

,

where ε =
√
ρ2 − 1.

We find the LS that we need to evaluate is then

Is =
gm2

AmB

16
√
−t

∮
Γ

dy

y

[(
1− ε(1 + y)2

2y

)2(
1 +

(1 + y)2

4y

K · a
s

)2s
]
, (4.14)

where the sign difference that would come from the spin factor being attached to the oppo-

site vertex is account for by evaluating the residue at both y = 0 and y =∞. This explicit
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Figure 4. Diagrams contributing to the classical potential at order G and α.

form makes it obvious that one has to evaluate u, v beyond the simple non-relativistic limit

(for finite spin s) in order to observe spin effects, as discussed previously.

5 Classical potential

Now that we have computed the order O(G) and order O(e2) leading singularities, we

can proceed to compute the classical potential from the holomorphic classical limit. This

will allow us to compute the spin-dependent parts of the potential from the sum of the

two LS’s, diagrammatically given by figure 4. At this point, it is pertinent to explain how

working in the chiral basis obscures certain factors that would be observed otherwise, e.g.

if we were to work in the non-chiral (polarisation) basis. In ref. [28] it was proposed that

these additional terms could be exposed by considering the Generalised Expectation Value,

which amounts to normalising the LS in such a way that the information is restored. It was

shown that the normalisation that one needs to take into account is given by the product

of massive polarization tensors of the external particles. For our purposes, since we have

stripped external spinors, we will simply use the perturbative exponential normalisation

given in [28], namely that we need to include a factor of e−K·a for each positive helicity

particle. Purturbatively expanding this exponential (for small transfer momentum K) to

the required order and matching with
√
ρ2 − 1 to determine the spin contributions will

restore the information obscured by working in the purely chiral basis. We note that we

drop all terms not linear in K ·a after the spin identification has been made. This was also

shown in [52] as being the factor that one picks up when comparing the residue calculated

in the polarization tensor basis with one in the anti-chiral basis. Furthermore, we note

that an additional spin-dependent term can be picked up from the product of polarisation

tensor contractions that we are missing working in an unpolarised expansion. This was

calculated in [27] and found, to first order, to be

ε?(p3)ε(p4) = ε?(p)

[
1− i

2mB
(a · (p× q))

]
ε(p), (5.1)

where p = 1
2(p3 + p4) is the average momentum.

We need to consider this additional term at each order, however it mostly does not

contribute beyond the leading term.
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With this in mind, the fully normalised contribution to the classical potential is then

given by

〈Ms〉 = −
(κ

2

)2 e−K·a

t

(
u2

(
1 +

K · a
s

)2s

+ v2

)
(5.2)

− (κe)2mAe
−K·a

32
√
−t

∮
Γ

dy

y

[(
1− ε(1 + y)2

2y

)2(
1 +

(1 + y)2

4y

K · a
s

)2s
]
,

where the brackets signify that we have taken the expectation value.

With this in hand, we can now compute various pieces of the classical potential, match-

ing to the literature where possible.

The classical potential V (r) for a gravitomagnetic system is of the form

V (r) = m (Φ(r) + ϕ(r)a ·B) , (5.3)

where Φ is the gravitational potential and B is gravitomagnetic field Bi = εijk∂jwk. We

note that to identify wi, it will enter the momentum space potential with a factor of p/m.

In order to construct the potential from the scattering amplitudes, we construct the

momentum space potential as a function of transfer momentum q and then Fourier trans-

form to find

V (r) =

∫
d3q̂eiq·rV (q) =

∫
d3q̂eiq·r

M
4EAEB

. (5.4)

We can also construct the metric by relating its components with the potential. The

standard decomposition of the metric into its component representations is given by

h00 = 2Φ, h0i = −wi, hij = 2Φδij , (5.5)

where we have assumed that the scalar components are equal to one another since we are

interested in the non-relativistic limit. To identify the scalar part of the metric from the

potential with probe mass m, we can take

Φ = lim
m−→0,a−→0

1

m
V (r). (5.6)

5.1 Spin-independent potential

The simplest place we can start is with the spin-independent contribution to the momentum

space potential, from which we can derive the Reissner-Nordström metric. We begin by

noting that the spinless limit is arrived at easily, taking the limit of u, v −→ mAmB and

s→ 0 in eq. (5.2), finding

〈M0〉 = −
(
κ2

2

)
m2
Am

2
B

t
− (κe)2m

2
AmB

16
√
−t
. (5.7)

We can now compute the momentum space potential for a given spin.

V (q)s=0 =
〈M0〉

4mAmB
=

4πGmAmB

q2
− GmAπ

2α

|q|
, (5.8)
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where the first term is nothing more than the standard Newtownian potential in momen-

tum space.

In position space, this is given by

V (r) =
GmAmB

r
− GmAα

2r2
, (5.9)

from which we identify a metric of the form

g00 = 1− 2GmB

r
+
Gα

r2
+O(G2, α2)

g0i = 0, (5.10)

gij = δij − δij
2GmB

r
+ δij

Gα

r2
+O(G2, α2)

which is precisely the Reissner-Nordström metric.

5.2 Spin-orbit potential

We now consider a non-zero spin s external particle in order to extract a spin-dependent

piece of the potential. While the universality of gravity dictates that the potential be

the same for any spin s, for simplicity we choose s = 1. We have checked explicitly that

universality of this piece of the potential holds at least up to s = 8. We find that for s = 1

the expectation value of the amplitude is

〈M1〉 = κ2 (mAmB)2

2q2
− (κe)2m

2
AmB

16|q|

+

(
κ2mAmB(mA +mB)

q2
− (κe)2mA(mA +mB)

16|q|

)
(ia · (p× q)), (5.11)

where we have taken the ρ→ 1 limit after identifying the relevant spin interactions.

The first thing to note is that the first two terms are the universal spin-independent

pieces, as anticipated due to the equivalence principle. The second two terms are the first-

order in spin-orbit corrections. However, while this amplitude is correct, at this order we

will also need to include the additional piece that comes from eq. (5.1). This effectively

means we need to add the following term to the potential

4πGmAmB

q2
ε?3 · ε4

∣∣∣∣∣
spin

∼ −2πGmA

q2
(ia · (p× q)). (5.12)

Putting this all together, the momentum space potential is then given by

V (q) =
4πGmAmB

q2
− π

2GmAα

|q|
+

(
2πG(3mA + 4mB)

q2
− π2Gα(mA +mB)

mB|q|

)
(ia · (p×q)).

(5.13)

Performing the Fourier transforms, we then find

V (r) =
GmAmB

r
− GmAα

2r2
−
(
G(3mA + 4mB)

2r3
+
Gα(mA +mB)

mBr4

)
(a · (p× r)), (5.14)
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from which we can identify the components of the metric

g00 = 1− 2GmB

r
+
Gα

r2
+O(G2, α2)

g0i =

(
2GmB

r3
− Gα

r4

)
(a× r)i +O(G2, α2), (5.15)

gij = δij − δij
2GmB

r
+ δij

Gα

r2
+O(G2, α2),

which is the Kerr-Newman metric at order O(G,α). We see then that the relation between

the Reissner-Nordström metric and the Kerr-Newman metric at this order is precisely given

by exposing the spin dependence of the minimally coupled three-point amplitudes of the

spinning particles, specifically giving rise to the g0i terms in the metric. In order to sharpen

this point, in the next section we will take the infinite spin limit and compute the classical

impulse imparted to the probe particle.

5.3 Infinite spin limit

While we could continue to compute higher order in spin corrections, if we were so inclined,

we will instead take a slightly different path in this section, and simply take the infinite

spin limit. The intrinsic angular momentum of a spin s particle scales like 〈aµ〉 ∝ s~.

This means that, when considering spin, a fully consistent classical limit is only reached

by taking s −→ ∞ as ~ −→ 0 keeping s~ (and therefore 〈aµ〉) finite [12]. We now make a

further identification for the variables u and v as being

u = mAmBγ(1 + v) = mAmBe
w, v = mAmBγ(1− v) = mAmBe

−w, (5.16)

where w is the rapidity and γ the usual Lorentz factor. Plugging this into the four-point

amplitude eq. (4.13) and taking the infinite spin limit we find

I∞ =
gm2

AmB

16
√
−t

∮
Γ

dy

y

[(
coshw − (1 + y2)

2y
sinhw

)2

eK·a
∞∑

n=−∞
In(K · a)yn

]
, (5.17)

and therefore

〈I∞〉=
gm2

AmB

16
√
−t

(5.18)

×
[

1

2

(
2cosh2w−sinh2w

)
I0(K ·a)−2coshw sinhwI1(K ·a)+

1

2
sinh2wI2(K ·a)

]
where we recognise the generating function e

1
2
z(y+1/y) =

∑
In(z)yn, where In is the modi-

fied Bessel function.

Similarly, we can do the same for eq. (3.12) which gives

〈M∞4 〉 =
(κ

2

)2 1

t

(
u2eK·a + v2e−K·a

)
(5.19)

=
(κ

2

)2 m2
Am

2
B

t

(
e2weq·a + e−2we−q·a

)
. (5.20)
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This allows us to cast the infinite-spin amplitude into the form

〈M∞〉=
gm2

AmB

16
√
−t

×
[

1

2

(
2cosh2w−sinh2w

)
I0(K ·a)−2coshw sinhwI1(K ·a)+

1

2
sinh2wI2(K ·a)

]
+
(κ

2

)2 m2
Am

2
B

t

(
e2weq·a+e−2we−q·a

)
. (5.21)

We now move on to compute the impulse of our scalar probe particle as a result its inter-

action with the spinning particle. A very careful analysis of the classical impulse in terms

of scattering amplitudes was carried out in [11], however for our purposes we simply need

the formula

∆pµ1 =
1

4mAmB

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u3)e−iq̄·biq̄µ 〈M∞〉 . (5.22)

The impulse is given in terms the incoming probe particle momentum p1 = mAu1 and its

colliding partner p3 = mBu3, and is simply a measure of the total change in momentum of

particle 1 as a result of the collision.

The pure gravity minimally-coupled piece was computed in ref. [1] and found to be

∆pµ
1,κ2

=
1

4mAmB

∫
d̂4q̄δ̂(q̄ ·u1)δ̂(q̄ ·u3)iq̄µ

ieiq̄·(b−iΠa)

q̄2
(q̄µ cosh2w+2icoshwεµνρσ q̄

νuρ1u
σ
3 ).

(5.23)

In order to derive the piece of the impulse that corresponds to the charged solution, we

first note a useful identity [1]

sinhwq̄µ = iεµνρσ q̄
νuρ1u

σ
3 . (5.24)

Defining dq = d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u3), we find

∆pµ
1,(κe)2

=
gm2

AmB

16

∫
dq

|q|
e−iq̄·b

[(
qµ +

i

2
sinhwζµ

)
I0 − i2 coshwζµI1 +

i

2
sinhwζµI2

]
=
gm2

AmB

16π

∫
dq

|q|

∫ π

0
dθe−iq̄·(b+ia cos θ)

×
[
qµ +

i

2
sinhwζµ − i2 coshwζµ cos θ +

i

2
sinhwζµ cos 2θ

]
(5.25)

=
gm2

AmB

16π

∫
dq

|q|

∫ π

0
dθe−iq̄·(b+ia cos θ)

[
qµ + i sinhwζµ cos2 θ − i2 coshwζµ cos θ

]
where ζµ := εµνρσqνu1ρu3σ.

The full impulse for the Kerr-Newman system, at order O(G,α), is therefore given by

∆pµ1 =<

[∫
dq

(
− 4πGmAmB

q̄2
(q̄µ cosh2w+2icoshwεµνρσ q̄

νuρ1u
σ
3 )

)
e−iq·(b+iΠa)

]
(5.26)

+4πGαm2
AmB

∫
dq

|q|

∫ π

0
dθ
[
qµ+isinhwζµ cos2 θ−i2coshwζµ cosθ

]
e−iq̄·(b+iacosθ).
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We see then that we can identify the shift in the Kerr-Newman solution as arising from

the exponentiation of minimal coupling amplitudes, as was pointed out in the Kerr case in

ref. [1]. We observe specifically that the impulse for Kerr-Newman is obtained when the

impact factor undergoes a complex shift.

Evaluating the Fourier and Elliptical integrals as in appendix A, we then find that the

impulse is

∆pµ1 = −2GmAmB

sinhw
<

[
b̃µ⊥ cosh 2w + 2i coshwεµνρσ b̃⊥νu1ρu3σ

|b̃⊥|2

]

+
4πGαm2

AmB

sinhw
<

[
b̂µ⊥ + i sinhwεµνρσ b̂⊥νu1ρu3σ

|b̃⊥|2

]
, (5.27)

where we have used the relation |βγ| = sinhw and b̃⊥ = b⊥ + iΠa = Π(b + ia), and the

hats indicate unit vectors.

6 Discussion

In this paper we have demonstrated that the leading singularity together with minimal

coupling can efficiently characterize all asymptotically flat four dimensional black hole

solutions at 1PN. Furthermore, we have shown that the exponentiation of minimally

coupled amplitudes (in the infinite spin limit) is the on-shell avatar of the Newman-Janis

algorithm that relates the Reissner-Nordstöm and Kerr-Newman solutions. Moreover, we

find that the spin-independent and spin-dependent parts of all black hole solutions factorise,

reflecting the universal nature of gravity.

In this work we have only considered a scalar probe particle, however it is almost trivial

to couple a spinning particle to a charged black hole using this formalism: we simply include

a spin factor for the gravitational three-point. Furthermore, giving the probe particle both

spin and charge would mean the scattering of two Kerr-Newman black holes could be

considered, as was done recently in the Kerr case [28, 29]. It would also be interesting to

derive the all order in spin potential using the holomorphic classical limit [52].

While we have focused on a conservative system here, the general formalism for ex-

tracting spin dependence in observables can be used for non-conservative systems [24]. One

could for example consider electromagnetic or gravitational radiation being emitted by the

charged/spinning particles during a scattering event and the results in this paper could be

adapted easily to such a situation. It is expected that nearly all realistic black holes in

the universe will be spinning, therefore these kinds of calculations would provide impor-

tant theoretical predictions that could then be compared with data from both current and

future gravitational wave experiments, along with their optical counterparts.

Another natural follow-up to this work is to explore higher order in G black hole

solutions that arise from non-minimal coupling, such as those that arise in Einsteinian

Cubic Gravity (ECG) [51, 57–59]. Intriguingly, no spinning solution currently exists in

ECG and in principle such a solution could easily be found via the leading singularity (as

was done in [51] for the static case). A compelling reason to carry out this study is to
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see whether or not deriving a solution via amplitudes will lead to a Newman-Janis type

complex coordinate deformation that relates the spinning and static cases. We leave these

explorations for the future.
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A Integral transforms

We collect here some useful integral transforms that were used throughout this paper.∫
d3q

(2π)3
eiq·r|q|n =

(n+ 1)!

2π2r3+n
sin

(
3πn

2

)
(A.1)∫

d3q

(2π)3
eiq·r

qj
|q|

=
irj
π2r4

(A.2)∫
d3q

(2π)3
eiq·r

qj
q2

=
irj

4πr3
(A.3)∫

d3q

(2π)3
eiq·r

qjqk
q2

=
1

3
δjkδ(r) +

1

4πr3
(δjk − 3

rjrk
r2

) (A.4)∫
d3q

(2π)3
eiq·r

qjqk
|q|

=
1

π2r4
(δjk − 4

rjrk
r2

) (A.5)∫ π

−π
dθ e−i|p||r| cos θ cos θ = −2πiJ1(|p||r|), (A.6)

where J1 is a Bessel function of the first kind.

The Hankel transform of rn is given by

Hν [rn] =

∫ ∞
0

rn+1Jν(kr) =
2n+1

kn+2

Γ(1
2(2 + ν + n))

Γ(1
2(ν − n))

(A.7)

A.1 Impulse Fourier transform

To compute the Fourier transform needed for the Kerr-Newman impulse, we need to eval-

uate the following integrals

F

[
qµ

|q|

]
=

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u3)

q̄µ

|q̄|
e−iq̄·b̃, b̃ = b+ iΠa (A.8)

F

[
qµ

q̄2

]
=

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u3)

q̄µ

q̄2
e−iq̄·b̃. (A.9)

We can evaluate these following ref. [11] by working in the rest frame of particle 1, meaning

we take

u1 = (1, 0, 0, 0), u3 = (γ, 0, 0, γβ). (A.10)
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In this frame, we find that the delta functions enforce q̄0 = q̄3 = 0 and that the integral

reduces to a two dimensional integral over the components orthogonal to u1 and u3, e.g.∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u3)

q̄µ

|q̄|
e−iq̄·b̃ =

∫
d̂4q̄δ̂(q̄0)δ̂(γq̄1 − βγq̄3)

q̄µ

|q̄|
e−iq̄·b̃

=
1

4π2|βγ|

∫
d̂2q̄⊥e

−iq̄⊥·b̃ q̄µ

|q̄⊥|
(A.11)

Evaluating these (in polar coordinates) we find

F

[
qµ

|q|

]
= − 1

4π2|βγ|

∫
d̂2q̄⊥e

−iq̄⊥·b̃ q̄µ

|q̄⊥|
(A.12)

= − 1

4π2|βγ|

∫ ∞
0

dχ

∫ π

−π
dθe−iχ|b̃| cos θ q̄µ (A.13)

= − i

2π|βγ|

∫ ∞
0

dχ χJ1(χ|b̃|)b̂ (A.14)

= − i

2π|βγ|
H1[1]b̂ (A.15)

= − i

2π|βγ|
b̂

|b̃|2
(A.16)

=
i

2π|βγ|
bµ

|b̃|3
, (A.17)

and

F

[
qµ

q̄2

]
= − 1

4π2

∫
d̂2q̄⊥e

−iq̄⊥·b̃ q̄
µ

q̄2
⊥

(A.18)

= − 1

4π2|βγ|

∫ ∞
0

dχ

∫ π

−π
dθe−iχ|b̃| cos θ q̄

µ

χ
(A.19)

= − i

2π|βγ|

∫ ∞
0

dχ J1(χ|b̃|)b̂ (A.20)

= − i

2π|βγ|
H1[χ−1]b̂ (A.21)

= − i

2π|βγ|
b̂

|b̃|
(A.22)

=
i

2π|βγ|
bµ

|b̃|2
. (A.23)

A.2 Elliptical integrals

After Fourier transforming the impulse, we are left with the following integral to evaluate∫ π

0
dθ

1

2π sinhw|b⊥ + ia cos θ|3
[
bµ⊥ + i sinhwζµ⊥ cos2 θ − 2i coshwζµ⊥ cos θ

]
. (A.24)

The θ dependence resides in the class of elliptical integrals

Ln =

∫ π

0
dθ

cosn θ

|b⊥ + ia cos θ|3
. (A.25)
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To compute this, we make the substitution u = cos θ to find

Ln =

∫ 1

−1
du

un√
1− u2(b2⊥ + a2u2)3/2

, (A.26)

which is an elliptical integral with well known solutions. Computing this for large impact

parameter (i.e. b� a), we find the asymptotic forms of the integrals are

L0 = L2 =
π

|b⊥||b⊥ + ia|2
+O

(
a2

b2

)
, L1 = 0. (A.27)

Plugging this in, we then find

∆pµ =
gm2

AmB

32π2 sinhw

(
bµ⊥ + i sinhwζµ⊥
|b⊥||b⊥ + ia|2

)
(A.28)

=
4πGαm2

AmB

sinhw

(
b̂µ⊥ + i sinhwζ̂µ⊥
|b⊥ + ia|2

)
. (A.29)
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