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1 Introduction

Axions are hypothetical particles introduced to solve the Strong CP problem in QCD [1–8].

Axions are self-adjoint bosons, with no conserved discrete quantum numbers to guarantee

particle number conservation. The axion potential can be written in terms of an angular

variable with a 2π shift symmetry. Axion-like scalar particles also appear in a variety

of models beyond QCD, especially in low-energy limits of string theories [9–11]. Those

axions have properties similar to QCD axions, but their mass scales and decay constants

are vastly different.

Axion-like particles are among the prime candidates for the composition of dark mat-

ter [12–17]. Axions, being scalar bosons, can condense. Axion condensates have been

discussed by numerous groups, with condensate sizes ranging from galaxy or galaxy clus-

ter scale [18, 19], down to stellar size and smaller (termed “axion stars”) [20–25], all the

way to radii of a few meters [26, 27]. Also of interest is the cosmological evolution of the

axion field, which has been worked on extensively in [28–32], but this will not be disussed

further here.

Uncondensed QCD axions are not stable, as they can decay to photons through a

process a → 2 γ, but the decay rate is slow enough such that most axions created after

the Big Bang would survive many Hubble times [33]. Axion condensates, however, may

also decay slowly due to the self-interaction of axions [34, 35]. The self-interaction term of

their Lagrangian (for both the instanton [36, 37] and chiral [37, 38] cases) have only terms

containing an even number of axion fields. Thus, disregarding the rare decay into photons,

the axion number is conserved only modulo 2.
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In a recent paper [34] we have investigated the decay of weakly bound axion stars due to

the self-interaction of axions. The decay proceeds mostly through a sequence of processes,

AN → AN−3 + ap, (1.1)

where Ak is an axion star, which is a condensate containing k axions, and ap denotes an

axion in a scattering state with the magnitude of the momentum p. The process (1.1) is

the simplest of many possible decay modes responsible for the decay of axion stars.1 This

process is allowed by energy-momentum conservation, provided the binding energy of a

bound axion is small enough that a relativistic particle can be produced: δE < 2m/ 3,

where m is the mass of a free axion.

In [34] we used an axion field operator, which was the generalization of the field

proposed by Ruffini and Bonazzola [39]. To facilitate the decay process, terms creating and

annihilating axions in the continuum of scattering states were included in the quantum field

of axions, in addition to terms creating and annihilating bound axions [39]. The Ruffini-

Bonazzola method is based on taking the expectation value of the quantum Einstein and

Klein-Gordon equations in the condensate to derive equations of motion for the metric

components and the scalar field. We solved the equations of motions numerically in the

weak gravity and weak binding (δE � m) limits, to find the wave function of axions in

the condensate [24].

The bound axions are not in momentum eigenstates. They have definite energies, but

their wave functions extend over the size of the axion star. Accordingly, the bound axions

have an extended momentum distribution as well. In the recent publications [35, 40],

the authors questioned the validity of the decay mechanism proposed in [34], arguing that

momentum is not conserved in (1.1), and that the decay rate through this process is exactly

zero by the Optical Theorem. These authors have further suggested that one can show

the rate to be zero by the classical equation of motion for the condensate. We will address

these issues and explain our response in appendix A.

In the present paper we will apply our method of discussing the decay of dilute axion

stars [34] to condensates of cosmological size; such models have been referred to previously

as Fuzzy Dark Matter (FDM) [41]. Condensates of galactic sizes have been considered by

a number of authors, and typically correspond to a scalar particle mass of m ∼ 10−22 −
10−21 eV [19, 41–50].2 When such condensates are formed from real scalars, a version of

the decay analysis of [34] applies, and we will investigate whether interesting bounds can

be placed on these models by taking decays into account. As we will explain in the next

section, we will utilize the axion potential with a cosine dependence on the field; other

proposals, for example a cosh potential [52, 53], have been investigated in the context of

ultralight scalars as well.

It is also an aim of this paper to emphasize the inclusion of axion self-interactions in

investigations of axion condensates. Although the self coupling λ ∼ m2/f2 ∼ 10−95 ≪ 1

for typical FDM models (f is the axion decay constant), the astronomical number of

1The decay rates via processes AN → AN−5 +ap or AN → AN−4 +ap1 +ap2 are significantly lower and

unlikely to have any cosmological significance [34].
2For a brief but recent review of ultralight scalar field dark matter models, see [51] and references therein.
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axions in a condensate participating in these interactions could lead to large corrections

to certain important physical quanties. We investigate the macroscopic properties of these

condensates using the fully self-interacting analysis and emphasize the differences from the

non-interacting limit.

In the next section, we give a more detailed explanation of how axion star decay

through the process (1.1) can be calculated. In section 3, we will outline the calculation

of the wavefunction, following largely [24]. In section 4, we apply the formulas for the

macroscopic properties and decay rates to condensates formed from ultralight axion-like

particles. We conclude in section 5.

We will use natural units throughout, where ~ = c = 1.

2 Decay through self interaction

There is a variety of methods for the quantitative investigation of axion condensates, as

classical [20, 21, 33, 54, 55], quantum mechanical [25, 56–61], and field theoretic [24, 26,

27]. Our field theoretic discussion of the decay of an axion condensates into relativistic

axions [34] was based on an extension of the Ruffini-Bonazzola operator [39], by the addition

of scattering state contributions.3 Thus, we proposed to extend the expansion of the boson

field using the form [34]

Φ(r, t) = R(r) e−i E0 t a0 +R(r) ei E0 t a†0 + ψf (r, t) + ψ†f (r, t), (2.1)

where E0 is the energy eigenvalue of a single bound axion, and where R(r) and a0 are

the wave function and annihilation operator of the axions in the condensate (respectively).

ψf (r, t) is the annihilation part of a complete system of free axion operators expanded in

scattering states,

ψf (r, t) =
1

2π2

∑
l,m

Y m
l (r̂)

∫ ∞
0

dp p

2ωp
jl(p r) e

−i ωp talm(p), (2.2)

where ωp and alm(p) are the energy eigenvalue and the annihilation operator of the scat-

tering state axion, with quantum numbers l and m, respectively. The functions jl(x) and

Y m
l (x̂) are spherical Bessel functions and spherical harmonics, respectively.

The annihilation operator in the spherical wave basis is defined by

alm(p) = il p

∫
dΩp Y

m∗
l (p̂) a(~p), (2.3)

where a(~p) is the annihilation operator for a particle which is the eigenstate of the mo-

mentum operator with eigenvalue ~p (i.e. a plane wave). This annihilation operator and its

adjoint, the creation operator, satisfy the commutation relation

[alm(p), a†l′m′(p
′)] = 2ωp (2π)3 δ(p− p′) δll′δmm′ . (2.4)

3Appendix B we will discuss why a continuous spectrum of scattering state solutions can be added to

the boson field operator. Furthermore, we will also discuss why using free spherical wave scattering states

is quite sufficient in our calculations.
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Note that (2.2) is exactly equal to the negative frequency part of a complete system of free

axion states given by
1

(2π)3

∫
d3p

2ωp
ei(~p·~r−ωp t)a(~p), (2.5)

which was used in [34] to investigate the decay of QCD axion stars.

We will see later that the bosons produced by the decay of a weakly bound boson

condensate are relativistic. Therefore, we have chosen to use free particle states to approx-

imate the scattering states. For the purposes of this calculation, this choice is admissible,

because the energy level of produced axions is sufficiently high compared to the effective

depth of the potential created by gravitation and self-interactions. This is explained in

greater detail in appendix B. In a future work we will take into account corrections to this

approximation.

Let us consider now (1.1) in the Born approximation. The axion self-interaction po-

tential can be approximated by the so-called instanton potential [36, 37]

V (Φ) = m2 f2

[
1− cos

(
Φ

f

)]
, (2.6)

where m and f are the axion mass and decay constant (respectively). In the Ruffini-

Bonazzola paradigm, one finds the expectation value of eq. (2.6) transforms the cosine

into a Bessel function J0 [24].4 One also finds that the transition matrix element for the

process (1.1) is

M3 =

∫
dt d3r 〈N |V (Φ)|N − 3, φ(p)〉

= −im2 f

∫
dt dr r2 J3 [X(r)] e3 i E0 t

∫
dΩr〈0|ψf (r, t)|φ(p)〉 (2.7)

where X(r) = 2
√
N R(r) / f is the rescaled wave function of the condensate which, as we

will see in section 3, can be obtained by solving the equations of motion [24]. We are

considering transitions of the form (1.1), where 〈N | is the initial N particle condensate

(the left hand side of (1.1)), and |N − 3, φ(p)〉 is the direct product of the final state N − 3

particle condensate and a scattering state φ(p) of momentum magnitude p (the right hand

side of (1.1)).

We restrict this work to non-rotating axion condensates; the reason for this is twofold.

First, for the potential in eq. (2.6) and the parameters we use here, only the inner cores of

galaxies composed of axion particles can be described as a condensate; outside of this inner

region, the dark matter halo is described by a virialized gas of particles [19] and cannot

participate in the decay processes we describe here.5 Because the condensed core is small

compared to the full radius of the halo, it carries at most a tiny fraction of the angular

momentum of the galaxy, so as a first approximation we believe restricting to ` = 0 angular

4More generally, the annihilation process for k bound axions generates an effective potential proportional

to the Bessel function Jk, as explained in the appendix of [34].
5For ultralight bosons with repulsive self-interaction, like those presented in e.g. [45, 48], the condensates

can be much larger, and can even constitute the entire dark matter halo.
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momentum states is appropriate. The second reason is that a full treatment of rotating

axion condensates has not yet been done, though slowly rotating condensates were analyzed

in a particular limit by [14]. This is a topic we hope to return to in the near future.

Because we work in the limit of zero angular momentum, annihilation processes of the

form a a→ G, where G is a spin-2 graviton [62, 63], have a rate of zero. Such an interaction

would require the participating axions to have at least ~ of angular momentum each; and

even if we accounted for the nonzero rotation speed of the galaxy, by our estimation the

vast majority of axions in a galactic condensate would have far less angular momentum

than what would be necessary for this process to occur.

For static condensates, note that the integration over Ωr in eq. (2.7) vanishes for all

but s-wave axions.6 In that case, the scattering state axion is described by the zero angular

momentum contribution only, |φ(p)〉 = a†00(p)|0〉. Then the wave function of the emitted

axion is

φ(r, t) = 〈0|ψf (r, t)|φ(p)〉 =
√

4π
e−i ωp t sin(p r)

r
. (2.8)

The integration over t also fixes the energy of the outgoing axion to ωp = 3E0. The matrix

element takes the form [34]

M3 = −4π2
√

4π f δ(3E0 − ωp) I3(p), (2.9)

where the dimensionless integral is

I3(p) = m2

∫ ∞
−∞

dr r ei p r J3 [X(r)]

≈ m2

48

∫ ∞
−∞

dr r ei p rX(r)3. (2.10)

The symmetry of the integrand for the substitution r → −r has been used to extend the

integration region to all real values of r, and to switch from sin(p r) to ei p r in the integrand.

In the second equality, we expanded the Bessel function J3 to leading order, an appropriate

limit for dilute axion stars.

Now observe that for dilute axion stars the radius of the star R is very large. In

other words, X(r) has a large coordinate uncertainty, δr ∼ R ∼ (m∆)−1, where ∆ =√
1− (E0 /m)2 � 1 [24, 34]. As a result, the range of p, as represented by the momentum

uncertainty δp ∼ m∆ � m, is very small. Then due to the delta function in eq. (2.9),

enforcing energy conservation, the emitted axion has a momentum peaked at a very large

value, p '
√

8m; as a result, the matrix element (2.9) is very small for weak binding.

However, as the binding energy δE increases, M3 will take larger values and the decay

rate Γ ∼ |M3|2 also increases.

Now to bring out issues related to momentum conservation, we can define the momen-

tum representation wave function as

Ξ(q) =
1

(2π)3

∫
d3r X(r) ei ~q·~r. (2.11)

6Should we consider rotating axion stars, higher angular momentum scattering states would also con-

tribute.
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Then we can rewrite eq. (2.9) as

M3 = −π
2
√

4πm2 f

12
δ(3E0 − ωp)

∫
δ3(~p− ~q1 − ~q2 − ~q3)

3∏
k=1

Ξ(qk) d
3qk. (2.12)

Since for weakly bound condensates p '
√

8m, the magnitude of the transition matrix

depends crucially on the large q tail of momentum distribution Ξ(q). However, for calcula-

tional purposes, it is still advantageous to use (2.9) rather than (2.12). One can rely on the

numerical solution of the equations of motion, as explained below, using a simple approach

to estimate approximate behavior of Ξ(q) at large q [34].

Note that the process (1.1) is not the only possible channel through which decay can

proceed; however, it is by far the dominant process. First, we have shown previously [34]

that processes of the form AN → AN−(2 j+1) + ap, are suppressed by higher powers of ∆

for each higher j > 1. In the weak-binding limit, where ∆ � 1, these corrections are

completely negligible. On the other hand, this argument breaks down for dense axion

stars [27, 64], where ∆ = O(1); we will return to this case in a future publication.

Second, there are processes of the form AN → AN−k + µap, where µ > 1 axions are

emitted at once. Unlike the process (1.1), the emission of µ > 1 axions from a condensate

can proceed on-shell, implying that the corresponding decay rate has a weak dependence

on ∆. Nonetheless, as shown in [34], these processes are suppressed by the very small factor

m2/f2 for each additional axion in the final state. Since in FDM m2/f2 ∼ 10−95 ≪ 1, we

can safely neglect these corrections as well. We conclude that (1.1) is by far the dominant

contribution to the decay of axion condensates.

3 The calculation of the wave function of the condensate

We review here the calculation of the condensate wavefunction X(r) [24]. The matrix

elements of the rr and tt components of the Einstein equation, along with the Klein-

Gordon equation, form a closed set of equations for the metric and the axion field, X(r):

A′

A
=

1−A
r

+ 2π r δ A

{
E0

2X2

B
+
X ′2

A
+m2X2 − m2

16
X4

}
, (3.1)

B′

B
=
A− 1

r
+ 2π r δ A

{
E0

2X2

B
+
X ′2

A
−m2X2 +

m2

16
X4

}
, (3.2)

X ′′ = −
[

2

r
+

B′

2B
− A′

2A

]
X ′ −A

[
E0

2X

B
−m2X +

m2

8
X3

]
, (3.3)

where the metric is

ds2 = −B(r) dt2 +A(r) dr2 + r2 dΩ2, (3.4)

with δ = f2/MP
2 and MP = 1 /

√
G = 1.22 × 1019 GeV (the Planck mass). As above,

we have taken only the leading contribution to the Bessel function which represents the

self-interaction potential; doing so preserves the leading attractive X(r)4 interaction term.

Assuming that δ � 1, a condition satisfied in applications where gravity is weak

(Newtonian limit), we can write A = 1 + δ a and B = 1 + δ b, where a, b = O(1). Further-

more using the large radius approximation and the definition of the scale parameter ∆ =

– 6 –
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√
m2 − E0

2/m, we can introduce dimensionless radial coordinate as x = mr∆. In that

case the axion field also scales with its engineering dimension, such that X(r) = ∆Y (x),

leading to the following system of equations for a, b, and Y in leading order of ∆ and δ [24]:

Y ′′(x) = [1 + κ b(x)]Y (x)− 2

x
Y ′(x)− 1

8
Y (x)3,

a′(x) =
x

2
Y (x)2 − 1

x
a(x),

b′(x) =
1

x
a(x), (3.5)

where7 κ = 8πδ /∆2. Since b(x) is proportional to the Newtonian gravitational potential,

κ ∼ G is the effective coupling constant of the field Y (x) to gravity. Further details, and a

more comprehensive justification of this double expansion of the equations, can be found

in [24].

Solutions of the equations of motion (3.5) correspond to ground-state configurations

of axions, which can be stable or metastable. In [24], we solved these equations and found

a spectrum of solutions which were parameterized by κ (or, equivalently, by ∆). When

applied to QCD axion parameters m = 10−5 eV and f = 6×1011 GeV, we found a maximum

gravitationally stable mass of Mc ∼ 1019 kg.8 By rescaling these solutions to values of m

and f appropriate for FDM, we can analyze the properties of galactic-size condensates in

a way that includes the self-interaction term in the potential. The physical interpretation

of these condensates is that they form the cores of FDM halos; they are surrounded by a

virialized distribution of axions which extend to the outer edge of the dark matter halo.

To analyze the decay of these condensates through processes like (1.1), we investigate

the singularity structure of solutions of (3.5). Now, (3.5) is a system of equations with

two singular points, x = 0 and x = ∞. Using boundary conditions we require that the

solutions are regular at x = 0 and decrease exponentially at x → ∞. The solutions are

even functions of x, so they also approach zero at x → −∞. Then they are real analytic

functions at −∞ < x <∞ and can be continued into the complex plane of x. As they fast

vanish at infinity, the contour of integration can be moved up along the imaginary axis in

the rescaled version of the integrals in eqs. (2.9) and (2.10), until we reach a singularity in

the complex plane. The contribution of that singularity dominates the decay rate integrals

at large momentum.

It is easy to show that the Klein-Gordon equation (3.5), in which the leading order

singular terms are retained, is9

Y ′′(x) +
2

x
Y ′(x) +

1

8
Y (x)3 = 0. (3.6)

Near the singular point x = i ρ, this has a solution of the form

Y (x) =
8 ρ

x2 + ρ2
− 2

3 ρ
− 1

18 ρ3
(x2 + ρ2) +O([x2 + ρ2]2). (3.7)

7This definition of κ appears to differ by a factor of 8π compared with [34], because in that work we

wrote δ in terms of the reduced Planck mass. In fact, the two definitions of κ are equivalent.
8The maximum masses for attractive interactions were discussed by Stoof [68] in the context of condensed

matter BECs, and in the context of boson stars by Chavanis and Delfini [56, 57].
9In fact, this expression contains the next to leading order term proportional to Y ′(x).
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The parameter ρ is an integration constant, having a one-to-one relationship with the

rescaled central density of the axion field Y (0)2, and in turn, with mass and the radius of

the condensate. In fact, high order Taylor series expansion of equations around x = 0 show

that the singularity closest to the origin is indeed of the form (3.7), connecting the value

of Y (0) with ρ [34]. In principle, gravitational interactions have an effect on the solutions

Y (x). In practice, however, the term in the equations of motion (3.5) which couple Y (x)

to gravity give a subleading contribution to the singularity. We can therefore solve the

equations in the limit κ � 1, i.e. where gravity decouples. In that limit, the nontrivial

solution has Y (0) = 12.268, which implies a fixed value ρ = .603156.

Finally, we can rewrite the Fourier transform of eq. (2.11) as

Ξ(q) =
1

(2π)2 i q m2 ∆

∫ ∞
−∞

dxx exp

(
i q x

m∆

)
Y (x). (3.8)

In this form, it is clear that at small ∆ the singular term of (3.7) term dominates the

integral. To calculate the decay rate, we follow the procedure of [34]: we take the leading

order solution for Y (x) near the singularity x = i ρ, given by eq. (3.7), and evaluate I3(p)

in the matrix element of eq. (2.9). The result is

I3(p0) ' 32 i π

3

ρ

∆
exp

(
−2
√

2 ρ

∆

)
, (3.9)

where p0 =
√

9E0
2 −m2 '

√
8m.

The decay rate for the process (1.1) is then

Γ3 =
1

T

∫
dp

(2π)32ωp

∣∣∣M3

∣∣∣2 =
2π f2

p0

∣∣∣I3(p0)
∣∣∣2, (3.10)

where T is the duration of the decay process. Then the lifetime of the condensate through

this decay process is

dτ

dN
' m dτ

dM
' − 1

3 Γ3
. (3.11)

Further details regarding the evaluation of eq. (3.11) can be found in [34]; the result for

the process (1.1) is

τ =
3 yM ∆2

4096π3 ρ3m
exp

(
4
√

2 ρ

∆

)
, (3.12)

where yM ' 75.4 is determined by the relationship between M and ∆ in the large ∆

region [24]. The lifetime is a monotonically decreasing function of ∆ in the relevant range;

in the case of QCD axions, we found in [34] that above a value ∆ ' .05 − .06, axion

condensates become very unstable to decay to relativistic axions, their lifetimes becoming

shorter than the age of the universe. We will examine the consequences of this fact in the

context of ultralight axions in the next section.
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Figure 1. The allowed masses for condensates of axion particles in FDM, as a function of the bind-

ing energy parameter ∆; these condensates constitute the cores of FDM halos. Axion condensates

in the shaded region are unstable to decay to relativistic axions with a very short lifetime. Here

we have used the model parameters m = 10−22 eV, and f in the range between 1014 and 1018 GeV;

increasing the particle mass m merely shifts these curves down proportionally to 1/m.

4 Stable spectrum of ultralight axion condensates

Very light axion fields can have de Broglie wavelengths as large as entire dark matter halos,

possibly implying a connection between these two scales. Ultralight bosons appear often in

theories of physics beyond the Standard Model, including those requiring compactification

of extra dimensions. Such models, termed “Fuzzy Dark Matter” (FDM) [41], have been

written about extensively [19, 41–50]. While there are significant constraints on these

models,10 they remain a viable alternative to WIMP or QCD axion models of dark matter.

We will consider an ultralight axion in this context, using the potential of eq. (2.6).

The mass of the ultralight axion in question will be taken to be m ∼ 10−22 eV, which gives

the right approximate scale for the size of dark matter halos [19],

λdB
2π

=
1

mv
= 1.92 kpc

(
10−22 eV

m

)(
10 km/sec

v

)
, (4.1)

where v is the velocity in the halo. This choice is also consistent with the known epoch of

matter-radiation equality. Further, a decay constant of f ∼ 5×1016 GeV naturally leads to

the correct relic density, and can thus account for the observed dark matter abundance [19];

however, to remain as general as possible, we allow f to deviate from this value by a few

10While this work was being finalized, a paper appeared suggesting a strong tension between the preferred

mass scale for FDM, m ∼ 10−22 − 10−21 eV, and data from Lyman-α forest simulations [65]. We will not

comment here about whether such constraints could rule out FDM as a viable paradigm.
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Figure 2. The allowed radii for condensates of axion particles in FDM, as a function of the binding

energy parameter ∆; these condensates constitute the cores of FDM halos. Axion condensates in

the shaded region are unstable to decay to relativistic axions with a very short lifetime. Here we

have used the model parameters m = 10−22 eV, and f in the range between 1014 and 1018 GeV;

increasing the particle mass m merely shifts these curves down proportionally to 1/m.

orders of magnitude. At the upper limit of what we consider, f = 1018 GeV is still below the

Planck scale, implying that the parameter δ = f2/M2
P ≈ .007� 1; thus, the weak-gravity

approximation holds reasonably well over our entire range.

In [24], we found numerically the solutions to the system (3.5) over a wide range of κ.

In the FDM picture, these solutions correspond to the cores of FDM halos discussed (most

recently) in [19]. We found that there exists a maximum mass at κ ≈ .34, above which

axion condensates are gravitationally unstable. On the stable branch of masses κ > .34,

the mass M and radius11 R99 of the condensate are fit by the functions [24]

M(κ) ≈ 8.75√
κ

MP f

m
, R99(κ) ≈ 1.15

√
κ
MP

f m
. (4.2)

We observe in figure 1 that at fixed m, the value of f determines the position of the

maximum mass, and thus the turnaround of the function M(∆). A similar structure can be

observed in figure 2 for the radius, where the position of the maximum mass corresponds to

a slight dip in the otherwise straight line representing R99(∆). Trading κ for ∆ in eq. (4.2),

we see that the lines

M(∆) ≈ 1.75 ∆
MP

2

m
R99(∆) ≈ 5.75

m∆
(4.3)

bound the full set of solutions from above.
11We use the common convention that R99, the radius inside which .99 of the mass of the condensate is

located, represents the “size” of the condensate.
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For the specific choice of FDM parameters m = 10−22 eV and f = 5 × 1016 GeV we

find the maximum mass Mc ≈ 6× 1010M�; this is lower than the value found in the non-

interacting limit of 8 × 1011M� [19] by about an order of magnitude, due to the inclusion

of attractive self-interactions. Our estimate of the maximum mass also agrees well with

the recent analysis of [66], which also includes the leading attractive self-interaction. More

generally, the mass and radius of FDM halo cores over a wide range of the scale parameter

∆ and at different values of f are illustrated in figures 1 and 2.

We can also analyze the relationship between M and R99, which were investigated

for both attractive and repulsive self-interactions in [56, 57]. In a recent paper [19], the

authors present a bound on the product

M R1/2 ≥ 3.925
MP

2

m2
(non-interacting bosons), (4.4)

where R1/2 is the radius inside which .5 of the mass of the condensate is contained; the

inequality is saturated for stationary, ground state configurations, i.e. for the condensates

considered here. In our calculation, on the stable branch of solutions (where κ > .34), we

find the product

M R99 = 10.06
MP

2

m2
, (4.5)

using eq. (4.2). To find the relationship between R99 and R1/2, we calculated their ratio

numerically and found that R99/R1/2 ≈ 3.65 holds within 1%, in a range of 1/∆ extending

over many orders of magnitude. This implies

M R1/2 = 2.76
MP

2

m2
(interacting axions). (4.6)

This product is below the lower bound (4.4) presented in [19] due to our inclusion of

self-interactions.

It is worth noting also that in the limit f ∼MP , the mass-radius relationship for axion

condensates approaches that of a black hole. This is easy to see using eq. (4.2):

GM

R99
=

1

MP
2

8.75√
κ
MP f
m

1.15
√
κMP
f m

=
7.6

κ

f2

MP
2
. (4.7)

Near κ = O(1) (the position of the maximum mass) and f ∼ MP , we find GM/R99 ∼ 1,

implying that R99 ∼ RS , the Schwarzschild radius.

We must also ensure that the weak-binding approximation, on which our analysis [34]

and the classical one of [19] depends, is also valid.12 We observe in figure 2 that cores of

radius R . 1 pc have ∆ & .3, and become relatively strongly bound. Such cores would not

be well-described by our weak-binding analysis.

An estimate of the decay rate, obtained from the expression derived in [34], is given

in eq. (3.12); it is a one-to-one function of the binding energy parameter ∆ in the region

of interest. Because the condensate mass M is determined by the value of ∆, it is easy

12A stability analysis for very strongly-bound condensates, with ∆ = O(1), is a task we plan to undertake

in the near future.
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to connect τ to M as well. Following the analysis of [34], we find that axion condensates

with m ∼ 10−22 eV which have ∆ & 0.1 have lifetimes shorter than the age of the universe.

This region is represented by the shaded regions in figures 1 and 2. For f . 1018 GeV, the

transition to decay instability occurs on the gravitationally unstable branch of solutions;

however at f & 1018 GeV, the bounds from decay are as strong or stronger than those com-

ing from gravitational stability. This can be an important constraint on bound structures

originating in theories of Planck scale axions.

In figure 2, it is particularly striking that almost regardless of the value of f , conden-

sates with R . 2 pc lie in the unstable, shaded region. This implies a fundamental limiting

radius of Rmin ∼ 2 pc for FDM dark matter cores composed of axions. Observe also that,

in figure 1, it is easy to read off the maximum mass of FDM condensates for each value

of the decay constant f . For any axion theory with f � MP , no stable condensate exists

with a mass larger than about Mmax ≈ 1012M�.

5 Conclusions

In a previous publication [24] we established scaling relations for the mass and radius of

weakly bound condensates of interacting axions, as functions of the mass of the axion,

its decay constant, and the particle energy (or alternatively the central density). We also

found the maximum mass and size of the bound states as functions of those parameters. In

this paper we have applied those results to condensates of axions forming FDM, providing

corrections to similar calculations which neglect the self-interaction of axions [19, 41, 44,

45, 47, 49, 50].

In another publication [34] we developed methods to calculate the lifetime of axion

condensates due to their self-interaction, through the four-axion interaction term in which

three bound axions produce a single free relativistic axion. Here we have applied those

results to estimate the lifetime of condensates formed from FDM. We have found that,

provided the decay constant of FDM axions satisfies f . 0.05MP , all condensates having

binding energy smaller than that of those of maximal mass have lifetimes greater than the

age of the universe making them viable candidates for forming central regions of galactic

halos. We have also explained in details the decay mechanism described in [34] and further

clarified the justification of its validity.

The methods we have described here, based on previous work in [24, 34], rely on a

double expansion to leading order in δ and ∆. This is appropriate for so-called dilute

axion stars, which are weakly bound. However, it has been pointed out that an effective

short-distance repulsive interaction in the axion potential also gives rise to dense axion

stars [27, 64, 73], which are at least energetically stable. We plan to extend our methods

to this regime to analyze the properties of these states in the near future.

Collapsing boson condensates have been investigated by a number of groups [64, 67–

73]. Recently, we found that supercritical QCD axion condensates, having masses larger

than the maximal allowed stable mass, collapse towards the global minimum of the effective

axion potential [64, 73]. Similar arguments indicate that FDM axion condensates which

exceed the maximum mass Mc will also collapse in this way. Such supercritical condensates
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can form during galactic collisions, in a manner similar to the mechanism outlined in [74];

such events would lead to collapse, causing the condensate to emit a large number of

relativistic particles. Consequences of such events will be studied in a future publication.
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A The AN → AN−3 + ap decay

The results of our paper, “The Lifetime of Axion Stars” [34], have been called into question

in recent publications [35, 40]. Before discussing this issue in detail, we review the premises

of our work. We proposed a way to discuss the decay of axion stars through the repeated

elementary decay mode

AN → AN−3 + ap, (A.1)

where Ak denotes an axion star, which is a condensate of k axions and ap denotes a

(relativistic) free axion labeled by its momentum p. This calculation was performed using

an extended axion field operator, eq. (2.1), which included both bound and scattering state

contributions.

First of all, we need to establish the fact that there is no conservation law that would

forbid (A.1). Axions are real bosons, and consequently the axion number is not conserved.

Axions, being coupled to the electromagnetic field as ΦE ·B, can decay to photons through

the slow process a→ 2 γ, though this decay process does not significantly affect the lifetime

of axion stars [33]. Disregarding axion decay to photons, the axion number is conserved

modulo 2, as the self-interaction terms of the axion potential contains only even powers of

the axion field, through a dependence of cos(Φ / f) in eq. (2.6). Momentum and energy

conservation would allow the decay process to proceed even if the condensates were in

momentum eigenstates: a decay process is always allowed if the sum of the masses of the

decay products is smaller than the mass of the decaying object, unless the conservation of

discrete quantum numbers prevents it.

At any rate, the condensates represented in (A.1) are not in momentum eigenstates.

They are quantum objects, which have extended wave functions localized on a large radius

R. Consequently, though they have mean momentum of zero, their momentum distribu-

tions are smeared. In fact, the momentum distributions extend from zero to infinity, albeit

with fast decreasing amplitudes.
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We have to emphasize that a Gross-Pitäevskii approach, being the non-relativistic limit

of the relativistic quantum field theory, cannot be used to discuss particle number violating

processes. In the non-relativistic limit the axion number is conserved and process (A.1) is

forbidden. Note however that a method to adapt the Gross-Pitäevskii approach to these

processes was formulated by the authors of [75]. We also point out Gell-Mann’s totalitarian

principle [76], borrowed from T. H. White’s “The Once and Future King”, which when it

is applied to physics is: “Everything not forbidden is compulsory.” This principle implies

that the process (A.1) should exist. In the present context, this principle also implies

that taking the nonrelativistic limit discards important contributions that make such a

transition possible.

Now the questions raised in [35, 40] have two sides: (a) microscopic, and (b) macro-

scopic. The microscopic argument (a) pertains to the question of momentum conservation

in the elementary process of three bound axions at rest turn into a moving axion. The

macroscopic argument (b) concerns the whole condensate, namely how momentum is con-

served in the overall process (A.1), i.e. how the momentum carried away by the produced

scattering state axion is transferred to the outgoing axion star, AN−3.

The argument of [35, 40] pertaining to the microscopic side (a) is that in the overwhelm-

ingly dominating Born approximation, the process around which the decay process (1.1) is

built is

3 ac → af (A.2)

where ac represents a bound axion and af represents the final state axion, is inadmissible

due to energy-momentum conservation. The total energy of the three bound axions is

Etot ' 3m, which is certainly sufficient to produce a free relativistic axion. However, if the

three axions were in momentum representation, having zero momentum in the rest system

of the axion star, then the axion in the final state would not have the required momentum

of p '
√

8m.

To resolve this problem, observe that the three axions contributing to the decay process

are not at rest. The notion of “rest” is tied to particles in momentum representation,

and for the axions in the axion star, this is not so. They have momentum space wave

functions, which, though peaked near zero, extend to large momenta (albeit with very

small probability). As we discussed above, the uncertainty of the momentum of each

axion is δp ∼ R−1. The probability that three of the bound axions have sufficient total

momentum to create a free axion, p =
√

9E0
2 −m2, decreases rapidly with the size of a

condensate, though it is never exactly zero. Consequently, local momentum conservation

always allows the decay of condensate. The question of whether this decay process affects

cosmology, due to the survival or non-survival of the condensate, is a question of numerical

calculations and depends on the parameters of the axion theory, as well as the size and

mass of the condensate.

Another argument presented in [35, 40] to the local momentum conservation is based

on the optical theorem. The argument invokes diagram

3 ac → af → 3 ac (A.3)
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claiming that the propagator of the axion af in the intermediate state does not have an

imaginary part, because presumably its denominator, E2
tot − p2 − m2 ' 8m2 6= 0. The

diagram having no imaginary part, the decay rate must vanish. However, this argument

is based again on the premise that the momentum of the condensed axions in the initial

and final states of the process (A.3) is zero. This is not a valid assumption, since those

particles are not in momentum eigenstates and with a tiny probability they can produce

sufficient momentum to allow the axion in the intermediate state to go on mass-shell. A

comprehensive discussion of how the imaginary part appears in a process like (A.3) for

particles in a condensate can be found in [75].

The macroscopic argument (b) claims that even if the above discussed elementary

process is possible, there is no mechanism by which the three axions participating in the

decay process transmit the momentum to the axion star as a whole; so (the argument goes)

contrary to the requirement of momentum conservation in (A.1) the recoil of the axion star

AN−3 in the final state of (A.1) is not possible.

Consider, however, that the condensate itself is not in momentum representation either,

unlike condensates in a container, for which the boundary conditions are set by the wall

of the container. Still, one could evoke the valid argument that just like the expectation

value of the coordinate, the expectation value of the momentum of the condensate must

be zero. Consequently, the only constraint we can impose on the decay process is the

conservation of the expectation value of the momentum. Now, the condensate of the final

state of (A.1) is not in momentum representation either, though its average momentum

is zero as well. Consider now the created scattering state axion. It is produced as a zero

angular momentum spherical wave, going with the same probability into every direction.

Though the magnitude of the momentum is sharply peaked at a particular value, the

spherical wave also has a vanishing average momentum. Thus, the average momentum is

conserved in (A.1).

One should not confuse the emission of the axion with its detection. Suppose we detect

an emitted axion, the decay product of (A.1). By performing a measurement we alter

the system. Just like in the case of the collapse of a simple wave packet by performing

a measurement, the conservation of the average momentum is valid only if we include

the measuring device, which absorbs the appropriate amount of momentum, to make the

average momentum of the complete system zero.

We turn now to the last critique presented in [35, 40], namely that the classical equation

of motion for the axion star precludes a linear coupling to a scattering state axion. In [35],

the authors write about our previous work [34] as follows:

They expanded the scalar axion field φ around the classical field φ0: φ = φ0 + φ̃,

where φ̃ is the quantum fluctuation field. The Hamiltonian includes a term

proportional to φ0
3 φ̃ from the axion interaction potential. They claimed that

this term produces transitions of 3 condensate axions into one relativistic axion

of energy 3ma. However, the sum of all terms in the Hamiltonian that are

linear in φ̃ is zero by the classical equations of motion for φ0. Thus the matrix

element for producing a single relativistic axion is 0.
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On the contrary, we have emphasized (and explain further in appendix B) that a

complete set of states satisfying the Klein-Gordon equation for the axion field contains

both bound and scattering state components, Φ = Φb + Φs. Our expansion does not

distinguish a classical and a quantum component, and as such, one cannot identify Φb as

φ0, a purely classical field. By direct calculation we see that the matrix element for (A.1)

is nonzero and is proportional to Φs〈N |Φb
3|N − 3〉.

We can see this more quantitatively by analyzing the equation of motion. The standard

procedure to calculate the equation of motion is to take the matrix element

〈N |KG[Φ]|N − 1〉 = 0 (A.4)

of the Klein-Gordon operator KG[Φ]. This is precisely what we have used in eq. (3.3) and

is equivalent to the Gross-Pitaevskii equation used by numerous other authors, e.g. [25, 27,

56]. In an “exact” field theory, any matrix element of the form 〈ψ|KG[Φ]|ψ′〉 = 0, including

〈N |KG[Φ]|N − 3〉 = 0. (A.5)

However, because this exact theory is not known, one is restricted to using some ansatz

for the field Φ. We have chosen the Ruffini-Bonazzola ansatz, expanded to include the

scattering state solutions, which was given in eq. (2.1). With this choice, the wavefunction

R(r) (which is equivalent to the Gross-Pitaevskii wavefunction), does not satisfy eq. (A.5),

and in this same parameterization, the matrix element for the process (A.1) is nonzero

as well.

We are working to extend the Ruffini-Bonazzola paradigm so that eq. (A.5), as well

as higher-order expressions in the operator Klein-Gordon equation, can be simultaneously

satisfied. In this extension, we find that the rate for the process (A.1) is still nonzero, and

is equal at leading order to the result we obtain here. We will present these and related

findings in a future publication.

B The continuous spectrum in the Ruffini-Bonazzola equations

The most general bound solution, discussed in [39], for a real scalar field in spherically

symmetric metric of eq. (3.4) and satisfying the non-interacting Klein-Gordon equation is

Φb =
∑
nlm

cnlmRnl(r)Y
m
l (θ, φ) e−i Enl t + c.c. (B.1)

where cnlm are arbitrary amplitudes of the nth bounds state solution with angular momen-

tum l. The wave functions Rnl(r) satisfy wave equations

R′′nl = −
(

2

r
+

B′

2B
− A′

2A

)
R′nl −A

(
Enl

2

B
−m2 − l(l + 1)

r2

)
Rnl. (B.2)

To be able to describe condensates of bosons, Ruffini and Bonazzola [39] introduced second

quantization by promoting coefficients cnlm to creation and annihilation operators cnlm →
anlm and c∗nlm → a†nlm; these operators satisfy

[anlm, a
†
n′l′m′ ] = δnn′δll′δmm′ . (B.3)
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Now notice that Φb is not the most general solution of the wave equation. Because the

attractive gravitational potential, which makes bound states solutions possible, vanishes at

large r, (B.2) has scattering state solutions as well. After quantization these states can be

written as

Φs =
1

2π2

∫
d3k

2ωk

∑
ml

[
fl(k)Y m

l (θ, φ) e−i ωk talm(k) + h.c.
]
, (B.4)

where k =
√
ω2
k −m2 is the momentum and

[alm(k), a†l′m′(k
′)] = (2π)32ωk δll′δmm′δ(k − k′). (B.5)

The complete set of solutions to the Klein-Gordon equation is Φ = Φb + Φs.

The Ruffini-Bonazzola method was used by Barranco and Bernal [26] and by us [24] to

describe axion stars. It is sufficient to use of quantized field Φb in leading order to describe

static axion stars. However, the term Φs becomes significant if we notice that in first order

of the expansion of the axion potential using Φ results in an operator

Li =
1

24

m2

f2
Φ3
bΦs +

(
terms higher order in

Φb

f

)
. (B.6)

This has been described in detail in [34] and also applied in the present paper.

The second subject we discuss in this appendix is the reason why free spherical waves,

fl(k) → jl(k r), can be used to calculate the decay rate of axion stars. This is the conse-

quence of the fact that dilute axion stars, those we consider in this work, are weakly bound.

In fact, only axion stars whose particle energy satisfies |E0 −m| . 0.002m, corresponding

to a value of ∆ ≈ .05, could survive from the big bang until the present epoch.

To further justify our use of free spherical waves in the final state, consider (3.3)

and (3.5). Using Y (x) = X(r)/∆ and x = mr∆, where ∆2 ' −2 (E0 − m)/m, the

Klein-Gordon equation in (3.5) can be rewritten as the nonlinear Schrödinger equation

(E0 −m)X(r) = − 1

2m

[
X ′′(r) +

2

r
X ′(r)

]
+ κ (E0 −m) b(r)X(r) +

m

16
X(r)3

≡ − 1

2m

[
X ′′(r) +

2

r
X ′(r)

]
+ Veff(r)X(r), (B.7)

where we defined an effective potential

Veff(r) ≡ κ (E0 −m) b(r) +
m

16
X(r)2

= (E0 −m)

[
κ b(r)− 1

8
Y (x)2

]
. (B.8)

Now considering that b(r) < 0, b′(r) > 0 and X ′(r) < 0 over the whole range of r, as shown

by the numerical calculations [24], the effective potential Veff satisfies

3 (E0 −m) . Veff(r) ≤ 0 (B.9)

The quantity 3 (E0 − m) & −0.006m at ∆ . .05. This shows that the depth of the

effective potential is of O(10−3m) or smaller, implying that produced relativistic axions,
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which have energy E ' 3m, can well be regarded as free. The situation would be different

in a discussion of dense axion star states, where the binding energy is much more significant;

we will return to this topic in a future work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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