
Dealing with Multi-policy Security in Large Open
Distributed Systems

Christophe Bidan 1 and Val~rie Issarny 2

1 Distributed Software Engineering Section,
Department of Computing,

Imperial College, London SW7 2BZ, UK,
c. bidan~doc, ic. ac .uk

2 IRISA / INRIA Rennes,
Campus Universitaire de Beaulieu,

35042 Rennes Cedex, France,
Valerie. Issarny@irisa. fr

A b s t r a c t . From the security point of view, one challenge for today's
distributed architectures is to support interoperation between applica-
tions relying on different possibly inconsistent security policies.
This paper proposes a practical solution for dealing with the coexistence
of different security policies in distributed architectures. We introduce
a model for specifying security policies in terms of security domains,
access control and information flow rules. Then, we identify the set of
operators for combining the specifications of sub-policies and we address
the validity of the resulting policy according to the security properties
of the sub-policies.

1 I n t r o d u c t i o n

Object-based distributed computing architectures 1 like CORBA (Common Ob-
ject Request Broker Architecture) defined by the Object Management Group
(OMG) [24], and the Telecommunication Intelligent Network Architecture pro-
posed by the TINA consortium [26] are promising approaches to support large
open distributed systems. Goals of these architectures include interoperability
between software components in heterogeneous distributed environments, where
components may appear and disappear dynamically, as the result of individual
and autonomous actions. From the security point of view, the interoperability
promoted by the above architectures stresses the complexity of security policies
which have to be implemented [15,10], as well as the necessity to cope with the
coexistence of multiple security policies. This coexistence results from the inter-
operation between systems (or software components) having different security
requirements, possibly at different granularity levels.

For evaluating the security of open distributed systems, security oj~icers
should be able to reason about the composition of the interoperating systems'

1 From the security point of view, an object-based distributed computing architecture
is viewed as multiple interconnected systems [23].

52 Christophe Bidan and Val@rie Issarny

security policies. We identify two different approaches for the composition of
security policies: policy interoperation and policy combination. Using policy in-
teroperation, the composed policy should not violate the security of the sub-
policies, and should guarantee their autonomy [14]. On the other hand, with
policy combination, the composed policy may be inconsistent with both sub-
policies, but must be secure in the given context. Hence, security combination
allows to compose conflicting policies in a secure and controlled manner [3]. In
the context of large open distributed architectures, we assert that policy combi-
nation is better suited than policy interoperation. In this paper, we introduce a
model that forms the basis for dealing with security in heterogeneous distributed
architectures, allowing to specify and to combine a wide variety of security poli-
cies. In particular, the proposed model is useful to security officers by supplying
a practical set of combination operators.

This paper is structured as follows: the next section presents related work and
gives our standpoint concerning policy composition. Section 3 presents our model
for the specification and combination of access control policies 2. In particular,
it gives the notion of complete and sound combination. Section 4 extends this
model so as to deal with combination of information flow policies. Finally, we
draw some conclusions in section 5 and present current status and future work.

2 T o p i c s f o r P o l i c y C o m b i n a t i o n

Various models have been proposed in order to reason about security policies
(e.g., see an overview of security models by Landwehr [18], the Bell-LaPadula
model [4], the information flow model from Bieber [8], the Clark-Wilson model
for commercial security constraints [9], and the McLean model [20]). These mod-
els are introduced to check whether a policy verifies given security properties like
the nondeducibility property [25] or the noninterference property [13]. However,
these models do not deal with the composition of policies.

Concerning the definition of a security policy resulting from the composition
of policies, we identify two different approaches:

- policy interoperation which infers the composed policy based on the security
properties of the sub-policies, and

- policy combination which specifies the composed policy based on the speci-
fications of the sub-policies.

The former approach relies on the principles of autonomy and of security of
sub-policies [14]: during the interoperation of two different security policies, any
access authorized within an individual policy must also be authorized within the
composed policy; and dually, any access denied within an individual policy must
also be denied within the composed policy. Abadi et al. [1] propose a general

2 In this paper, an access control policy is defined as a security policy that only checks
the accesses between entities, without verifying the information flow resulting from
access operations.

Dealing with Multi-Policy Security in Large Open Distributed Systems 53

solution to the inference of execution properties of interoperating components
from the components' specification, which can be adapted to security policies.
More recently, McLean [21] has presented an approach which allows to reason
about security properties of composed information flow policies. Finally, Gong
et al. discuss computational issues concerning the general secure interoperation
problem [14].

The above proposals allow to verify tha t interoperation preserves the sub-
policies' security properties under certain conditions. However, the undertaken
approach to the definition of policy composition is restrictive; the security prop-
erties of the composed policy must be the same as those of the sub-policies (the
principles of autonomy and security must be guaranteed). In consequence, the
sub-policies have to be compatible. In large open distributed system, this is not
always the case, since the properties of a policy resulting from the composition
of two incompatible sub-policies can be an extension or a restriction of those
sub-policies. We illustrate this through two examples.

In both example, we consider a file system where we have two sets of users,
A and C, and two sets of files, B and D. We say that an user u is authorized
to access the file f if and only if u is authorized to access f ' s data. We specify
only authorized accesses, and all accesses that are not specifically authorized,
are denied. We define the security policy P l (resp. P2) managing A users and B
files (resp. C users and D files): P l (resp. 7~2) authorizes users in A (resp. in C)
to access files in B (resp. in D).

First, let us combine 7~1 with P2 to build the following composed policy: the
users belonging to both sets A and C (denoted as AAC) are authorized to access
the files in B N D, users in A but not in C (denoted as A - C) are authorized
to access the files in B - D, and finally, users in C - A are authorized to access
the files in D - B.

As a second example, we combine P l and P2 so as to obtain the following
policy: all the users belonging to sets A or C (denoted as A U C) are authorized
to access all the files in B U D. Notice that this policy may be viewed as the
federation of the sub-policies.

The composed policy of the first example is a restriction of the participating
sub-policies, whereas the composed policy in the second example is an extension
of the participating sub-policies (for instance, A users are authorized to access
D files). However, these two composed policies are secure in the context in which
they are specified, nevertheless they cannot be obtained by policy interoperation.

The specification of a policy based on the specifications of its sub-policies allows
to combine possibly inconsistent policies. In particular, a combined policy does
not necessarily guarantee all the properties of the sub-policies. However, notice
tha t the combined policy may keep the principles of autonomy and secrecy of
the sub-policies.

McLean [19] seems to be the first to propose a formal approach including com-
bination operators: he introduces an algebra of security which enables to reason

54 Christophe Bidan and Valdrie Issarny

about the problem of policy conflict. However, even though this approach per-
mits to detect conflicts between policies, it does not propose a method to resolve
the conflicts and to construct a security policy from inconsistent sub-policies.
Hosmer [16] has introduced the notion of metapolicies, or "policies about poli-
cies", an informal framework for combining security policies. Following Hosmer's
work, Bell formalizes the combination of two sub-policies with a function (policy
combiner), and introduces the notion of policy attenuation to allow the compo-
sition of conflicting security policies [3].

Our work is placed in the framework of policy combination, and it is close to
Bell's approach. More specifically, our model is a practical alternative solution to
Bell's proposal: we clearly identify the set of combination operators enabling se-
curity officers to combine security policies in a controlled and secure way. Briefly,
our model allows to specify the general behavior of sub-policies. Based on these
specifications, we introduce combination operators for combining policy speci-
fications. Finally, we verify tha t the behavior of the composed policy is secure
and conforms with sub-policies specifications. The following sections introduce
our model to deal with access control policies and flow policies.

3 Specifying Access Control Policies

In this section, we concentrate on the following type of access control: is an entity
el authorized to access an entity e2 in the context of a given policy, regardless
of the information flow that is implied by this access ?

Our solution to policy composition relies on the definition of a set of com-
bination operators. A policy is specified either as an elementary policy or a
combined policy built from existing sub-policies through the use of combina-
tion operators. The next sub-section addresses the specification of access control
policies and is followed by the definition of the operators allowing to combine pol-
icy specifications. Finally, we address the completeness and soundness of policy
specifications.

3.1 E l e m e n t a r y a c c e s s c o n t r o l p o l i c y

An access control policy defines a set of rules that specify for each pair of object
and subject, whether the subject is allowed to access the object 's state or not 3.
Since in an open distributed architecture, an access control policy cannot be
defined for the whole set of the system's entities, we take an approach which
allows to specify the sensitive entities for each policy. In other words, an access
control policy is defined not solely in terms of its access control rules but also
in terms of its access control domain [22], that determines the system's objects
and subjects to which the policy applies.

The access control domain of a policy is subdivided into the set of the system's
entities called object domain, that contains sensitive information for this policy,

3 We define the subjects as active entities, and the objects as passive or active entities
[11].

Dealing with Multi-Policy Security in Large Open Distributed Systems 55

and the set of the system's entities called subject domain, that gives the subjects
belonging to the policy domain. These two sets are defined formally in terms of
security classifications 4. Given a security property P (i.e. a predicate) defined
on the set $ of the system's entities, the set of entities verifying this property is
termed the P classification, noted Clp:

CIp = {r e C I P(c) ~ true} = {~ e ~ [P}
Given the definition of classification, an access control domain is defined as a set
of classifications:

�9 n Dora = {CI,}~=I,
where, for each i = 1, ..., n, Cli is the classification defined by a security property
P~.

Each access control rule A of a given policy defines the set of subject and
object couples tha t verify a given security property Px (called access control
predicate), and an access control operator. The access control operator is noted
,-~> for authorization, ~> for denial, and the 4-> operator will be used to denote
,~> or ~>5. Formally, an access control rule)~ takes the form:

= {(s e Cll) ,(o e Cl2) [Px(s,o) ;s+>o}.
In other words, we say that a pair (s, o) belongs to)~ if the access control pred-
icate Px(s, o) holds ; then, the access control operator of)~ define whether s is
authorized or not to access o.

In the remainder, f o r /) being an access control policy, its domain is noted
DomT~, the notation Dome, (resp. Dome,) is used to designate the sub-domain
of DomT) that defines 7)'s objects (resp. subjects). Finally, R~, is the set of access
control rules of the policy 7 ~.

E x a m p l e . We now illustrate our model for policy specification with the example
of a file system expressed as a distributed architecture. Let ~ '8 be the set of
software components accessing files. Let further R E A D C :F$ and W R I T E C
,%'8 be respectively the set of software components allowed to read and to write
files. We also consider two sets of users, A and C, and two sets of files, B and
D. We introduce the predicate Owner(sc, U) which, given a software component
sc, holds if the owner of sc (i.e. the user executing sc) belongs to the set U of
users (i.e. A or C). In the following, we do not specify reflexive accesses. Given
the above definitions, we define the/)1 and 7)2 access control policies introduced
in w as follows:

- The subject domain of the policy Pl is the set of components READ (Dom~ =
READ) , and :Pl's object domain is the set of files B (Dom~ = B). The pol-
icy :Pl has a single access control rule:

)h = {(s E READ), (0 E B) I Owner(s,A);s,,~>o},
tha t authorizes subjects of A to access objects of B.

4 We use the term classification for both object classification and subject clearance.
5 We consider that an access corresponds to the execution of an operation (e.g. read

access corresponds read method). This enables us to use a single access operator.

56 Christophe Bidan and Val~rie Issarny

- The subject domain of the policy P2 is the set of components W R I T E
(Dom~ = W R I T E) , and :P2's object domain is the set of files D (Dom~ =
D). The policy P2 has a single access control rule:

)~2 = {(s E W R I T E) , (o e D) I Owner(s, C); s,,~>o},
that authorizes subjects of C to access objects of D.

3.2 C o m b i n i n g access contro l pol ic ies

A combined access control policy is built by combining two sub-policies. The
domain and rules of the combined policy are defined in terms of the combination
of its sub-policies' domains and rules.

C o m b i n i n g access contro l d o m a i n s Given two classifications, four types of
combination can be implemented: the union, intersection, product of classifica-
tions, and the denial of classification combination.

Let Cll = {~ E E I P1} and C12 = {E E E I P2} be two classifications. We
formally define their union and intersection as: Cll U Cl2 = {~ E ~ I P1 V P2}
and Cll A Cl2 = {~ E E I P1 A P2} respectively. Concerning the product of
Cll and el2 (noted Cll t~ Cl2), three separate classifications are computed: the
classifications defined by the access control predicates P1 A -~P2, -~P1 A P2 and
P1 A P2 respectively. Finally, to forbid the combination of two classifications, we
introduce the operator /2 defined by: Cll)5 Cl2 = 0.

The U operator allows to extend the sub-classifications. On the other hand,
the classification obtained by A operator is a restriction of the sub-classifications.
Finally, the +~ operator permits to distinguish the entities belonging to a single
sub-classification from the entities belonging to both sub-classifications.

The formal definition for combining domains directly follows: it amounts to
specifying the type of combination for each pair of classifications of the sub-
policies' domains. Let Dotal = (Cl~}'~= 1 and Dora2 = (Clj}~= 1 be two access
control domains. Let A = {Si,j E {U, N, ~, ~) , i = 1, ..., n, j = 1, ..., m} be the
set specifying the operator for combining the classifications Cli of Dotal and
Clj of Dora2. The combined access control domain Dam resulting from the
combination of Dotal with Dora2 with respect to A is given by:

Dora = {V i = 1, . . . ,n ,V j = 1,...,m, Cl i j = Cli ~i,j Clj}.
We bring to the reader 's at tention that a combined domain can itself be combined
with another domain.

C o m b i n i n g access contro l rules. Because both ,~> and ~> access operators
exist, the combination of access control rules raises the problem of conflicts
among rules. Thus, we distinguish between combination of non-conflicting rules
and combination of conflicting rules.

Combination of non-conflicting rules. Let us first consider the combination of
non-conflicting rules. Given two non-conflicting access control rules, their com-
bination results from the combination of their classifications and of their access
control predicate.

Dealing with Multi-Policy Security in Large Open Distributed Systems 57

Let A1 and)~2 be two access control rules specifying either authorization for
both or denim of access for both:

~1 = {(S �9 Cll),(O �9 Cl'l)] Pl(s,o) ; s+>o} and
A2 = {(s �9 C12),(o �9 Cl~2) I P2(s,o) ;s+>o}.

Let us first suppose that Cll = Cl2 and Cl' 1 = Cl' 2. Then, combining A1 and
)~2 consists of combining the access control predicates P1 and P2. With respect
to existing work (e.g. [2]), we identify two types of combination: the logical and
(A) and the logical or (V) between P1 and P2. Then, the A access control rule
resulting from the combination of A1 and As takes one of the following forms:

A = {(s �9 Cll),(o �9 Cl~) I (Pl(s,o) YP2(s,o)) ; s+>o}, or
A = {(s �9 Cl l) , (o � 9 Cl '~)l(P~(s,o)/ \P2(s,o)); s+>o}.

Informally, the logical or operator allows to combine two access control rules in
such a way that the resulting access control rule preserves the authorized accesses
of the sub-rules (principle of autonomy). On the other hand, the access control
rule resulting from the logical and operator authorizes (resp. denies) access if
both sub-rules authorize (resp. deny) the access.

Let us now suppose that Cll ~ Cl2 and Cl~ ~ Cl~. Then, the set of access
control rules resulting from the combination of)h and)~2 depends not only on
the operator for combining access control predicates, but also on the operators
for combining classifications. Let 61,2 (resp. 5~,2) be the operator defined for the
combination of the Cll and C12 (resp. Cl~ and Cl~) classifications. Then, the
set A of access control rules takes one of the following forms, depending on the
operators used for combining classifications:

- if 51, 2 ---~ /2 or 5~, 2 = /J, then A = 0 (the empty set), i.e. the combination is
forbidden.

- if 61,2 E {U, M} and 5~, 2 E {U, M}, then A consists of a single access control
rule:

)~ = {(s E el l 51,2 el2), (0 E Cl[5'1, 2 Cl~2) I (Pl(S,O) op P2(s,o)) ; s+>o},
where o~ E {V, A}.

- if 51,2 = t~, we only combine the access control predicates for subjects be-
longing to Cll M Cl2, and we keep unchanged the rules for the other entities.
In other words, A consists of three separate access control rules:

= {(8 E (e l l - Cl2)),(o e (Cl i 5' Cl~))lPl(S,O) ;8+>0}, 1,2
)r = {(s E (el2 - Cll)),(o E (Cl~ 5~, 2 elL)) I P2(s,o) ; s+>o}, and
)~H = {(8 �9 (CllNel2)) , (0 �9 (Vi i 6' Cl~)) I (P1 (8, o) op P2(s, o)) ; s+>o}, 1,2

where o~ �9 {V, A}. If 5 ~ = 5 ~ 1,2 = t~ or 51,2 1,2 = ~, the set A of access control
rules is equivalent to the one computed for 51,2 = ~.

Coupling the operators for combining classifications and the ones for com-
bining access control predicates, allows either to restrict or to extend the access
control rules of the sub-policies. In particular, using 51,2 = 5[,2 = M and the A
operator for combining access control predicates, the access control rule)~ result-
ing from the composition of A1 and)~2, verifies that: (s,o) E)~ ~ (s,o) E A1

58 Christophe Bidan and Val~rie Issarny

and (s, o) E As, i.e. the access is authorized (resp. denied) if and only if it is
authorized (resp. denied) by both A1 and As (A is more specialized than A1 and
A2 in the sense that it provides finest classifications). In this case, the composed
policy keeps the principles of autonomy and secrecy of the sub-policies [14]: the
combined policy is identical to the one obtained with policy interoperation.

Combination of conflicting rules. Let us now examine the combination of con-
flicting rules. Let A1 and A2 be two access control rules specifying respectively
access authorization and access denial:

)~1 ---- {(8 e Cll),(o E Cl~) [Pl(8,0) ;8,,~>0} and
As = {(s e Cl2), (0 e Cl~) [P2(s,o) ; s r

Let 51,2 (resp. 5~,2) be the operator defined for the combination of the classifi-
cations Cll and Cl2 (resp. Cl~ and Cl~). Let further C11,2 = Cll 51,2 Cl2 and
Cl~, 2 = Cl[5'1,2 Cl~. The A + and A- operators allow to combine two conflict-
ing rules: A1 A + As and A1 A- A2. The result of the combination of A1 and A2
consists of three separate rules A, A I and A" defined by:

-- {(s e vii ,s), (o e cll ,s) I (f l(s,o)A-nPs(s,o)) ;s ,'-) o}
= { (s e Cll,s),(o e ell ,s) I (-,Pl(s,o) APs(s,o)) ;s o}

)~1! ---- { (8 E ell,2), (o ~ Clll,2) I (Pl(s,o) A Ps(s,o)) ; sac o}
with (ac = ,~>) for the operator A +, and (ac = ~>) for the operator A- .

The A and A ~ rules are coherent with both sub-rules. On the other hand, the
A" rule is clearly inconsistent with either A1 or As. The A + operator favors access
authorization whereas the A- operator favors access denial. Notice that the A +
and A- operators are close to the notion of strong and weak authorizations
introduced in database systems to support multiple access control policies [5].

As with the composition of non-conflicting rules, coupling the operators for
combining classifications and the ones for combining access control rules allows
either to restrict or to extend the sub-rules.

Finally, the combination of two sets of access control rules R1 i n -- {A1}i= 1 and
J m = ()~1, A2), the oper- R2 {As}~= 1 amounts to specifying, for each pair of rules i J

ators for combining their classifications and their access control predicate. Let
us remark that the proposed combination model applies recursively: a combined
policy can be combined with another policy.

E x a m p l e . We now illustrate the use of combination operators with the example
of the file system given in w Given the component classifications R E A D and
W R I T E , the two sets of users A and C, and the file classifications B and D,
we define the following access control policy P: the (A - C) users are authorized
to read files in (B - D), (A Cl C) users can read and write files in (B Cl D), and
(C - A) users are authorized to write files in (D - B).

Using the bJ operator for combining classifications, we are able to differentiate
components that only allow to read files (R_ONLY = (READ - W R I T E)) ,
components that only allow to write files (W_ONLY = (W R I T E - READ)) ,
and components that allow to read and to write files (R_and_W = (READ gl

Dealing with Multi-Policy Security in Large Open Distributed Systems 59

W R I T E)) . The operator t~ further allows to differentiate the following sets of
files: B - D, B M D and D - B. Finally, using the operator A for combining
access control rules, we are able to get the specifications of 7):

= {(s E R _ O N L Y) , (o e B - D) I Owner(s , A) ; s,~>o),
~' = ((s E W _ O N L Y) , (o E D - B) I Owner(s , C) ; s,,~>o}, and
)~" = ((s e R_and_W), (o E (BMD)) I (Owner(s , A) AOwner (s , C)) ;s,~>o}.

3.3 C o m p l e t e a n d s o u n d a c c e s s c o n t r o l p o l i c y

We have proposed a model for the specification of access control policies as well
as a set of combination operators allowing to compose these specifications. Now,
we define the notion of secure access control policy in the context of our model:
the policy is secure if and only if its specification is complete and sound. Let us
precisely define the completeness and soundness of policy specifications.

De f in i t i on 1. (C o m p l e t e pol icy) An (access control) policy 7) is complete
(from the standpoint of its specification) if and only if: (1) there exists an access
control rule for every object and subject of 7 ~ 's domain, and (2) in the case that
7) is a combined (access control) policy, its sub-policies are also complete.

In an open distributed architecture, an access control policy cannot be defined
for the whole set of the system's entities. The above definition states that a
complete access control policy ensures access control for any entity belonging
to the policy's object domain, and for entity belonging to the policy's subject
domain 6.

De f in i t i on 2. (S o u n d pol icy) An (access control) policy 7) is sound (from the
standpoint of its specification) if and only if: (1) given a subject s and an object o
belonging to the policy's domains, all the access control rules specifying whether
s can access o or not, have the same access control operator, and (2) in the case
that 7) is a combined (access control) policy, its sub-policies are sound.

Given two sound sub-policies, if both specify only access authorization (or
only denial) then for all combination operators, the combined policy is sound.
On the opposite, when at least one of them specifies both authorized and denied
accesses, the soundness of the combined policy may not be guaranteed. However,
given two complete and sound access control policies, we have the following result
which guarantees that there exists a secure policy resulting from the combination
of these policies.

T h e o r e m 1. E x i s t e n c e o f s e c u r e c o m b i n e d a c c e s s c o n t r o l pol icy Let 7)1
and 7)2 be two secure access control policies. There exists a set of operators for
combining classifications and for combining access control rules such that, if 7)
is the policy resulting from the combination of 7)1 and 7)2 according to these sets,
then 7) is secure.

6 In general, the completeness of a given policy can be guaranteed by specifying default
access control rules.

60 Christophe Bidan and Val~rie Issarny

Proof: Let Dotal = {Cli}~.=l (resp. Dom2 = {Clj}~=l) be 791's (resp. 792's) access
control domains. Let A = {Ji,j = N,i = 1, . . . ,n , j = 1, ...,m} be the set of opera-
tor for combining classifications. Let R1 = {A~}n=l (resp. R2 = {A~}~=I) be 791's
(resp. 792's) sets of access control rules. Let ~ = {ai,j E { V, A +, A- }, 1, ..., n, j =
1, ..., m} be the set of operator for combining access control predicates, with: (1)
c~i,j = V if A~ and A~ are non-conflicting rules; (2) ai,j = A + if A~ and A~ are
conflicting rules and A~ is an access authorization rule; and (3) c~i,j = A- if A~
and A S are conflicting rules and A] is an access denial rule. It is trivial to show
that the policy 7 9 resulting from the composition of 791 and 792 according to the
sets A and ~ is a complete and sound policy (i.e. 79 is secure). []

E x a m p l e . Let us now address the completeness and soundness of policies spec-
ified in the file system example. The policies 791 and 792 are not complete. For
instance, there are not access control rules concerning software components not
belonging to subject's classifications and which require to access B or D files.
If we specify default rules which deny all accesses between entities in 791 (resp.
792) security domain and the other entities, 791 (resp. 792) becomes complete. By
giving priority to the access control rules over the default rules, the soundness of
the policies 791 and 792 is also verified. Finally, by using the same default rules,
the combined policy 79 is secure.

4 Extension for Information Flow Policies

In this section, we extend the proposed model for specifying and combining access
control policies to introduce the notion of information flow. Then, we address
completeness and soundness of the resulting specifications, hence defining secure
information flow policy according to our model.

4.1 Information flow pol icy

The previous model allows to describe access control policies but does not inte-
grate any notion of information flow. Therefore, it does not meet the specification
of information flow. In order to deal with flow policies, we extend the previous
model as follows: (1) the specifications of access control rules are enriched with
the notion of information flow, and (2) rules that control the transitive informa-
tion flow (by denying some information flows) are introduced.

I n p u t a n d o u t p u t flows. For specifying the information flow that is associated
to an access control rule, let us distinguish the access control rules for input flow
(e.g. the read accesses) from the access control rules with output flow (e.g. the
write accesses). We extend our definition of access control rules given in w by
specifying the flow associated to the access operation thanks to the operators
<--, and ,-~>.

Dealing with Multi-Policy Security in Large Open Distributed Systems 61

Definit ion 3. (R u l e s fo r input and o u t p u t f low) An access control rule
for input flow takes the form: ~ = {(s e Cl), (0 E Cl') I P(s, o) ;s<--~o).
An access control rule for output flow takes the form: ~ = {(s e C1), (o e
Cl') l P(s ,o) ;s,~>o}.

Given two entities el and e2, the expression el <,--e2 specifies that el is authorized
to access e2, and this access produce a flow from el to e2. Dually, the expression
el-,,>e2 specifies tha t el is authorized to access e2, and this access produce a flow
from e2 to el. Note that we only specify the information flow for the authorized
accesses.

Information flow ru les . The information flow resulting to accesses is transi-
tive: let el, e 2 and e3 be system entities, if e l~>e 2 and e2,-.~>e3 then el r,~>s 3. In
order to specify information flow policies, we specify the information flows which
are denied, i.e. the information flow rules.

Definit ion 4. (I n f o r m a t i o n flow ru l e) An information flow rule is defined
as r : {(el e e l) , (e2 E Cl') I P(Q,e2) ;el ~ e2}.

The rule r specifies that the information flow from C! entities to Cl' entities
verifying the predicate P is denied. Then, an information flow policy is defined
as follows:

Definit ion 5. (I n f o r m a t i o n flow po l i cy) An information flow policy is an
access control policy for which the access control rules are enriched according to
the definition 3, and which defines a set of information flow rules.

E x a m p l e . In order to illustrate our model, we describe a simple multilevel se-
curity policy [4], called ~s - We consider a distributed military system consisting
of a set of software components (i.e. programs representing users), and a set of
files that the components manipulate. Suppose that we have two security levels
for both files and components: Secret and Unclassi f ied 7 such that Secret >
Unclassi f ied (i.e. the Secret information is more sensible than the Unclassified
information).

A software component can use a set of methods (e.g. read, write, execute, etc)
to access files. In the following, we only consider the read and write methods.
We define the R E A D (resp. W R I T E) classification to be the set of software
components allowed to read (resp. write) files. We introduce the predicate (cl >
e2) which, given two entities el and c2, holds if and only if the security level of
el dominates, i.e. is greater than or equal to the security level of e2. We define
the following information flow policy ~s :

- The subject domain consists of the R E A D and W R I T E classifications, and
the object domain consists of files belonging to Secret or Unclassified clas-
sifications.

7 The Secret and Unclassified terms are used for denoting both the security level,
the classifications and the predicate.

62 Christophe Bidan and Val~rie Issarny

- A component belonging to R E A D is authorized to access a file if and only
if its security level dominates the one of the file, and the flow resulting to
such access is an input flow:

A1 = {(s E R E A D) , (0 E (Secret U Unclass i f ied)) [s > 0 ;s<~,o}.
- A component belonging to W R I T E is authorized to access an file if and

only if the file security level dominates the one of the component, and the
flow resulting to such access is an output flow:

A2 = {(s E W R I T E) , (0 e (Secret [J Unclass i f ied)) [s >_ 0 ;s,~>o}.
- All the accesses not authorized previously are denied through a default rule.
- Unc lass i f i ed entities are not authorized to access Secret information:

r = {(el E R E A D) , (e2 E (SecretUUnclass i f ied)) [(~2 _> el) ;el ~/+ e2}.

4 . 2 C o m b i n e d i n f o r m a t i o n f l o w p o l i c y

Let us now address the combination of information flow policies. Given two
information flow policies, we distinguish three steps for the combination of these
policies: (1) the combination of these policies according to the operators for
combining access control policies (see w (2) the combination of the <~, and
,~> operators in order to specify the information flow of each combined access
control rule, and (3) the combination of information flow rules.

The first step allows to obtain the access control rules of the combined flow
policy. During this step, the information flow sub-policies are viewed as ac-
cess control policies, and the combination is carried out from the standpoint of
combination of access control policies. The second step permits to specify the
information flow within the combined access control policy obtained at the first
step. Informally, the combination of two rules for input flow (resp. rules with
output flow) is a rule for input flow (resp. rule with output flow). In the other
case, the combined rule is a rule for both input and output flow (<~> operator).

Finally, we compute the combined information flow rules by composing the
information flow rules of the sub-policies, in a way similar to the combination
of non-conflicting rules (see w Informally, the logical or operator allows to
combine two information flow rules so as to generate a unique rule that provides
the information flow control of the sub-policies. On the other hand, the infor-
mation flow rule resulting from the logical and operator denies the information
flow if and only if both sub-rules deny the flow.

E x a m p l e . Let us combine the information flow policy 5us introduced in w
with another policy having different classifications. Suppose that we have two
classifications in terms of mili tary domains for both files and software compo-
nents (e.g. users): Nuclear and Conventional classifications such as Nuclear >
Conventional. Similarly, we define the information flow policy 3rD, except for
the set of information flow rules that we define as an empty set.

By using the M operator for combining classifications, and the A operator for
combining access control predicates, we obtain the policy 9 r depicted in figure
1. For simplifying the figure, we do not distinguish components and files, and

Dealing with Multi-Policy Security in Large Open Distributed Systems 63

we do not show neither the denial accesses nor the implied transitive accesses.
The specification of the information flow in the combined access control rules
are immediate according to the sub-policies' specifications (i.e. the read access
produces input flow whereas the write access generates output flow). The infor-
mation flow rule of the combined policy is the one of the policy :Fs:

r = {(Cl e READ), (e2 e (Secret U Unclassified)) I (e2 > el) ;cl ~-~ c2}.

t'Z,
~ Secret r Nuclear ~,r Secret n Conventional

r t
[~ Unclas~ified n Nuclear]] Unclass~fied ~ Conventlonal

Read access - - - I~ Write access

Fig. 1. Combined multilevel policies

4.3 Complete and sound information flow policy

Given the specifications of information flow policies in our model, we now focus
on the notion of secure information flow policy by addressing the completeness
and soundness properties.

In our model, we only specify the information flows which are denied. In
other words, any information flows that are not denied are authorized, and the
problem of conflicts among information flow rules does not exists. Based on
this remark, an information flow policy /F is complete (from the standpoint of
its specification) if and only if ~ is complete as an access control policy (see
definition 1). In the same way, an information flow policy ~- is sound (from the
standpoint of its specification) if and only if 9 ~ is sound as an access control
policy (see definition 2).

A secure information flow policy is a policy for which the specifications in our
model are complete and sound. In the case of a combined policy, the secure prop-
erty implies that the policy's specifications are coherent with the specifications
of the sub-policies according to the combination operators that are used. Like
in w given two information flow policies, there exists operators for combining
classifications and rules such that the combined policy is secure.

Notice that a policy being secure according to our model does not imply
that the policy have no covert channels. For example, the write access is an
access having output flow, but, when the file does not exist, the information
flow induced by the write method is an input flow: after the operation, the user

64 Christophe Bidan and Val@rie Issarny

have information concerning the file's existence. Such covert channels do not
invalidate the secure property. However, our secure property ensure that the
policy's specifications are defined without ambiguity for any entity belonging to
the policy's domain.

Example . Let us address the completeness and the soundness of the multilevel
policies iTs and ~-D. Let us consider that the classifications in terms of security
level or in terms of military domains are both complete classifications, i.e. any
entity of the system has a (unique) security level and belongs to a (unique)
military domains. Then the flow policies iTs and ,~F D becomes complete and
sound access control policies. In the same way, the combined flow policy iT is
complete and sound as an access control policy. Finally, the soundness of the
policy iT is trivial, and iT is a secure flow policy.

5 C o n c l u s i o n

In this paper, we have proposed a practical solution for reasoning about the
coexistence of different security policies. Our approach relies on the specifica-
tion of security policies and on the definition of operators for combining these
specification. We have also addressed the completeness and the soundness of the
(combined) security policy according to its specification.

Our model can be viewed as an implementation design of the Bell's model.
We have introduced a set of combination operators enabling security officers
to specify and to combine security policies in a controlled and secure manner.
In addition, we assert that the dissociation between the combination domains
and the combination rules permits to get a simplified and growing vision of
security policies in open distributed systems. Finally, the distinction between
access operations and the generated information flows gives to our model a useful
approach, information flow policies being considered as an extension of access
control policies.

We have illustrated our approach through two different examples of file sys-
tems in an distributed architecture. In particular, the multilevel security policy
example enables us to demonstrate the strength for specifying security policies
and the ease for combining security policies.

C u r r e n t a n d f u t u r e w o r k

In open distributed systems, the coexistence of applications which have different
security constraints results from rich and complex interactions among software
components [15]. Integrating our model in the software architecture paradigm
provides an appealing solution to the sound development of applications with
security requirements [7]. More specifically, such a solution allows to specify the
security requirements, and to build systematically, from existing components,
the reference monitor that meet these requirements. One application area for
our results can be the World-Wide-Web (Www): we are currently examining

Dealing with Multi-Policy Security in Large Open Distributed Systems 65

the automatic selection of the components for ensuring information exchanges
in a secure way. We also consider the use of this solution for reasoning about
Java-applets, in order to customize the Java Virtual Machine in a controlled and
secure way.

From the implementation standpoint, we are currently integrating our model
in the Aster configuration-based distributed programming environment [6, 17].
The resulting framework allows the easy development of applications consist-
ing of heterogeneous software components, running on heterogeneous hardware
platforms, and having multiple security requirements. From the theoretical per-
spective, we are interested with the extension of our model in order to specify
security policies with dynamic relabeling [12].

References

1. M. Abadi and L. Lamport. Composing Specification. Technical Report 66, Digital
Systems Research Center, Oct. 1990.

2. M. Abrams, L. LaPadula, K. Eggers, and I. Olson. A Generalized Framework
for Access Control: an Informal Description. In Proceedings of the 13th National
Computer Security Conference, pages 134-143, Oct. 1990.

3. D. E. Bell. Modeling the Multipolicy Machine. In Proceedings of the New Security
Paradigm Workshop, pages 2-9, Aug. 1994.

4. D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition and
Multics Interpretation. Technical Report MTR-2997 Rev. 1, MITRE Corporation,
Bedford, Mass, 1976.

5. E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access Control
Policies in Database Systems. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 94-107, May 1996.

6. C. Bidan and V. Issarny. A Configuration-based Environment for Dealing with
Multiple Security Policies in Open Distributed Systems. In Proceedings of the 2nd
European Research Seminar on Advances in Distributed Systems, Mar. 1997. URL:
htZp ://www. irisa, fr/solidor/work/aster.

7. C. Bidan and V. Issarny. Security Benefits from Software Architecture. In Proceed-
ings 2rid International Conference on Coordination Models and Languages, pages
64-80, Sept. 1997. URL: http://w~w, i r i s a , f r / so l ido r /work /a s t e r .

8. P. Bieber and F. Cuppens. A logical view of secure dependencies. Journal of
Computer Security, 1(1):99-129, 1992.

9. D. Clark and D. Wilson. A Comparison of Commercial and Military Computer
Security Policies. In I. C. Society, editor, Proceedings of the IEEE Symposium on
Security and Privacy, 1987.

10. R. Deng, S. Bhonsle, W. Wang, and A. Lazar. Integrating Security in CORBA
Based Object Architectures. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 50-61, May 1995.

11. Department of Defense Standard. Trusted Computer System Evaluation Criteria.
Technical Report DoD 5200.28-STD, Dec. 1985.

12. S. Foley, L. Gong, and X. Qian. A Security Model of Dynamic Labeling Providing
a Tiered Approach to Verification. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 142-153, May 1996.

13. J. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 11-20, May 1982.

66 Christophe Bidan and Val~rie Issarny

14. L. Gong and X. Qian. Computational issue in secure interoperation. IEEE Trans-
actions on Software Engineering, 22(1):43-52, Jan. 1996.

15. OMG Security Working Group. White Paper on Security. TC Document 94.4.16,
OMG, Apr. 1994. Available by ftp at f tp .omg.org: /pub/docs .

16. H. Hosmer. Metapolicies II. In Proceedings of the 15th National Computer Security
Conference, pages 369-378, 1992.

17. V. Issarny, C. Bidan, and T. Saridakis. Achieving Midleware Customization in
a Configuration-Based Development Evironment: Experience with the Aster Pro-
totype. In Proceedings of the 4th International Conference on Configurable Dis-
tributed Systems, 1998. URL: http ://www. irisa, fr/solidor/work/aster.

18. C. E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247-278, Nov. 1981.

19. J. McLean. The Algebra of Security. In Proceedings of the 1988 IEEE Computer
Society Symposium on Security and Privacy, pages 2-7, Apr. 1988.

20. J. McLean. Security Models and Information Flow. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 180-187, May 1990.

21. J. McLean. A general theory of composition for a class of possibilistic properties.
IEEE Transactions on Software Engineering, 22(1):53-67, Jan. 1996.

22. J. D. Moffett, M. D. Sloman, and K. Twidle. Specifying Discretionary Access
Control Policy for Distributed Systems. Computer Communications, 13(9):571-
580, Nov. 1990.

23. National Computer Security Center. Trusted Network Interpretation of the TC-
SEC. Technical Report NCSC-TG-005, July 1987.

24. OMG. The Common Object Request Broker: Architecture and Specification -
Revision 2.0. Technical report, OMG Document, 1995.

25. D. Sutherland. A Model of Information. In Proceedings of the 9th National Com-
puter Security Conference, pages 2-12, Sept. 1986.

26. TINA-C. TINA Object Definition Language (TINA-ODL) Manual - Version 1.3.
Technical Report TR_NM.002_l.3_95, TINA-C Document, 1995.

