Invisible Modification of the Palette Color Image
Enhancing Lossless Compression”

Jaroslav Fojtik, Vaclav Hlavag
Crech Technieal University, Faculty of Electrical Engincering
Center for Machine Perception
121 35 Prague 2, Karlovo ndmeésti 13, Czech Republic
{fojtik, hlavac}@vision. felk.cvut.cz

Abstract. We address the problem of pseudocolor image compression. Image
values represent indices into a look up table (paletie). Due to quantization,
the ueighbouring pixel values (indices) change too much. This deteriorates
performance of both lossless and lossy image compression methods,

We suggest a preprocessing phase that {a) analyses statistics of the adjacency
relations of index values, (b} performs palette optimization, and (¢} permutes
indices to palette to achieve more smooth image. The smoother image causes
that the lossless image compression methods yield less oulput data.

The task to optimally permute palette indices is a NP complete combinatorial
optimization. Instead of checking all possibilities, we suggest a reasonable initial
guess and a fast suboptimal hill climbing optimization.

The proposed permutation of indices should enhance performance of most loss-
less compression method used after it. To our knowledge, the proposed re-
ordering followed by our own nonlinear compression technique [HF97b, HF97a]
yields the best compression. Experiments with various images show that the
indices reordering provides data savings from 10% to 50%.

1 Introduction

Let us assume that the palette image (image with a palette) is mapping color =
[R, G, B} = palette(f(zx, y}), where [R, G, B are individual color components i.e. three
intensity images. The output of the function f{z,y) is an index. This is a reason why
we call this function paleite index function in sequel. The palette is the look up table
with [R,G,B] entries.

This paper discusses a lossless compression of pseudo color iinages. Some redun-
dancies must be found in the iinage for doing so. The lossless compression methods
for gray level images (including our method [HF97b, HF97a), which is based on the
original Schlesinger’s idea [Schi89]) are usually based on the assumption about the con-
tinuity of the image function. This assumption cannot be used for pseudocolor images
because a typical palette functions break this assumption, The basic idea of our ap-
proach is to re-establish the smoothness of the palette index function f{z,y) so that it
can be compressed in the same way as image function of gray level images. Both newly
created palette index function f'(z,y) and the look up table palette’ are modified in
the way that the resulting colors, i.e. [R, G, B] values, remain the same for all pairs of
corresponding pixels from both images: palette(f(z,y)) = palette’ (f'(x,y)).

* This research was supported by the Czech Ministry of Education grant V396049, the Grant
Agency of the Czech Republic 102/97/0480, 102/97/0855.

1030

The palette is usually created from the true color RGB image (camera, color scan)
or by an interactive painting program. The algorithm that quantizes the original true
color image causes discontinuities in its output palette index function f(z,y). This
effect can significantly decrease the compression ratio.

2 Related works

There are many available compression algorithms for gray level images. Pseudo color
images are usually compressed by the same algoritluns as gray level ones. The com-
pression ratio depends on a first order entropy (we will call it smoothness in the sequel)
in these cases.

The reordering of palette is useful mainly in two cases mentioned in [HS94] (a) Sort
indices to increase available compression ratio. (b) Sort indices in order to enhance hu-
man perception. The requirements for these approaches are not fully in contradiction.
In this paper we will discuss the first case only.

The most related work to our contribution is [MV96]. The lincar predictor is used
as a lossless compression technique. Indices reordering is formulated as an optimization
task. Three heuristic solutions are proposed to it. Two of themn are very expensive due
to used simulated annealing and third, based on a greedy algorithm, produces worse
results.

The paper [A1.93] describes lossy compression of palette images. Proposed method
starts with construction of the optimal shortest route among colors in the RGB {or
LUV) color space. Colors close each other are grouped into clusters. Each cluster
corresponds to just one new color.

3 Creating neighbourhood relations table

Let u, v be two values (i.e. indices into palette) of
f(x-1,y) f(x,y) | the palette index function f(z,y) in two different but
o——e neighboring pixels. The used neighborhood of the cur-

rent pixel (z,y) is shown on Fig. 1{a). The symmetric

T relation clasp(u,v) = dasp(v,u) tells whether two in-
/ l dices u, v are adjacent. Let us call clasp the index adjo-

cency relation. We use the intuitive name clasp as the
notion of a thing that fastens two regions with intensi-
fx-Ly-1) | f(xy-1) ties u, v (index values) together. Simple statistics of the
local index adjacency relation will serve as a measure of
Fig.1. Evaluating a neigh- the smoothness of the palette index function f(x,y).
bourhood relations. We are interested in the number of occurrences of in-
dices adjacency relations rel in the whole image f(x,y).
This information is stored in the index adjacency table S(7, 7). The table S(i,j) has
the same number of rows and columns that is equal to range (number of valucs) of
the palette index function f(z,y). The size of S(i,7) is 256 x 256 for typical palette

1031

images. The table entries tell us how many times indices u and v are adjacent in the im-
age. The statistical information stored in S(3, §) resembles more general co-occurrence
matrix used often in the texture analysis [HS92].

The indices adjacency table S is symnetric and only lower (or upper) triangular
part. of it needs to be stored. The values on the main diagonal (identity relation) are
not needed by the proposed algorithm.

The indices adjacency table S is created by one pass traversal of the image accord-
ing to the neighborhood mask. The statistics stored in the intensity adjacency table
S will be used to find optimal palette index function f'(z,y).

4 Formulation of the optimization task

Let us start with an informal description of the optimization task that should be
performed. A psendocolor image depicting a park with a lake was chosen as an example,
see first column in Fig. 3, where the psendocolor image is shown in intensity values
ouly. The difficulty with the lossless compression algorithins for pseudocolor images is
that there are 0o many discontinuities in corresponding indices in the palette index
function f(x,y). Let us show them in individual bit planes of f(x,y) for the park
image. Three bit planes #8, #5 and #1 from all cight bit plancs of the palette index
function f(,y) are displayed in the top row of the Fig. 3. Even the most significant
bit plane #8 changes often too.

Our aim is to reorder indices of the palette index function f(z,y} in such a manner
that resulting binary images in individual bit planes will consist of the smallest number
of large regions. Larger and smoother regions ease the further image compression.
Number of possible indices rearrangements is huge - nl, where n s a number of indices,

The top bit plane is most significant and thus it is processed first. Our algorithm
is designed in such a way that lower bit planes could be modified similarly but the
already modified bit plancs above it should remain intact.

Processing of bit plancs is a combinatorial optimization problem. To simplify it, we
assune that all K indices are divided into two groups G and G consisting of half of
the entries, i.e. k = ’2—‘ each. The number of possible combinations is still tremendous,
i.e. 1079 in typical case of 256 indices and the top bit plane.

5 Initial guess

Let us assume that there is some initial division of indices into two groups G and
(;. A single candidate index in both groups is found that fits the least to the current
group than other indices. These two found indices are swapped botween groups. The
process is repeated until the the global criterion describing division into two groups
is minimized. Theoretically, this minimization would perform perfectly if we had a
gpace without a lot of local extrema. Unfortunately, it seems that the number of
local extrema is very high for real images and our optimization space. The algorithm
may get stuck in a local minimum. On the other hand, experiments have shown that
cven this simple minimization yields much smoother palette index function f'(x,y).
Moreover we use additional heuristic rules to avoid local minima.

1032

The good initial estimate of the division of indices k into groups G; and G5 helps us
to be quite near to the global minimum. The initial division is based on the strategy
that light colors create one group and dark colors the second one. Therefore such
initial division is very close to the situation when indices are sorted according to their
intensity.

The adjacency relations between values of palette index function in the local neigh-
borhood (recall Fig. 1) are used to define the optimization criterion. The index adja-
cency relation was denoted elasp(u,v) in Section 3. Indices are split into two disjoint
groups G; and G, with the same cardinality.

The number of relations clasp{u,v), u € Gy, v € G2, v # v informs how many re-
lations are between (in our case two) distinct groups. The number of existing relations
clasp(u,v), u € Gy, v € Gy, u # v tells how many relations are within group the Gy,
similarly for Gg. All three numbers can build up a quality measure of the grouping of
indices into @) and Gy. They help to find best candidates for swapping between G
and G3. The good news is that all neceded statistics can be efficiently extracted from
the indices adjacency table §

5.1 Quality of the index k.

Each index k has associated a quality wg. The quality wy can be calculated as a
number of adjacent indices wk in its own group minus the number of adjacent indices
wy, in the other group. We call numbers wk and w;, as components of wy.

If the index k belongs into the group Gy:

—~wy = Y. 8@k~ Y S(G,k); ke€Gi. (1)

ieGy; igk iEQy; itk

wy = w,j’

It can be seen that wg‘ is a number of clasps {satisfied index adjacency relations)
within own group G for index k, w is number of clasps between own group G and
the alien group G,. Their difference wy, is a relative measure of the index k quality.
The index with minimal quality within group G; will be selected as a candidate for
swapping. Similar equation holds, if the the index k belongs to Gs.

Qualities of all indices constitute a indices quality vector w = (w;,wa, ... wr).

5.2 Global optimization criterion

We have seen how quality wy enables to find candidates for swapping. A global opti-
mization criterion is needed to know when to stop swapping iterations. We use slightly
modified hill climbing optimization.

The pre-calculated indices adjacency table S(7, 7) contains needed information, see
Fig. 2(a), where four distinct parts Wy, Way, Wiy, and W are illustrated. Note that
Wis = Wy due to the symmetry of the table S. All entries of the table S(i,j) with
same labeling are sumsmed together:

lez:wf; Wm:Zw{; Wg:ZwQL; W2l=Zw[. 2)

i€EG) H={eN i€G2 i€Gy

1033

If any labeling occurs more than once in the table S then its value is a sum of all
areas with this label into the matrix. This situation occurs in the case of bit planes
below the top one.

When we know a quality of each isolated index, we can compute a guality of the
whole group of indices as a sum of qualitics of their members. The quality of whole
group of indices, i.e. Q(G,) and Q(Gy) is defined as:

QUG =W, = Wia, Q(G2) =Wy —-Wy . (3)

The global optimization criterion, i.e. the overall quality @ of splitting indices into
two groups @G, and G, is defined as

Q=Q(G1)+Q(G2) =W — Wy + Wy — Wiy (4)

The global optimization criterion Q is the the sum of qualities of all indices in both
groups. It is evaluation of the whole area of the index adjacency table S with same
labeling.

5.3 Algorithm for swapping indices

The worst index in each group (with the lowest value wy) is found. The worst indices
are swapped between groups. Let us suppose that we have two indices, cach one from
different group a € Gy and b € G,. We want to swap them.
New values of qualities of swapped indices are:

wh = wit —w = —wy ~28(a,b); wy =wpt —w,” = —w, ~28(a,b). (5)

All actions which must be done after swapping two
indices are called transactions. The transaction includes
the recomputation of the indices quality vector w and
global criterion Q.

If the transaction decreases the global criterion then |
(@ <@ - A=Q -Q <0). The A value means
how many clasps will appear when A > 0 or disappear
when A < 0 in the image.

The value 4 for swapping indices a and b is: 2

Q-0 _ 4 = 1w +wy +28(a,0). (6) :
4 ! Fig. 2. Created domains in
When indices are swapped, all items in the indices S

quality vector w must be updated too,

5.4 Lower bit planes

The algorithm proceeds from the highest to less significant bit planes. The task is
to split both groups Gy and G into four groups in the bit plane below the top one.
The approach is similar to that described above. The computation is slightly more
complicated.

We omit the full description of this due to the lack of space. The more detailed
description can be found in [FH98].

1034

6 Experimental results

The proposed method was tested on six pseudocolor images obtained from the web.
The results are summarized in Table 1. First column gives image names. Secoud col-
umn shows image sizes of input uncompressed images, i.c. rows x columns x munber
of bits per pixel. The third column depicts number of bytes of uncompressed images
including palette stored in BMP format. The fourth column with header FH gives
the number of bytes after our own FH compression [HF97b, HF97a] was applied. The
fifth column gives the size of images if palette was first reordered according to inten-
sity [Fry93]. The sixth column shows the influence of indices and palette modification
that is the contribution of the palette rearranging method suggested in this paper.
The length of the files is in bytes including palette after palefte modification and
FH compression. Gain of our method according to the equation (7) is written in the
rightmost colurmn.

{Image name[linage size[Uncompressed] FH[Y + FH|Opt. + FH| gain|

Descent, 320x200x8 65078] 24334 27115 21132|13.6%
Garfield 640x480x4 153718} 3323 - 2955/13.4%
Lena, color |[512x512x8 2632221235579 185275 154401152.2%
Lynue 320x200x8 65078 59016 43506 38769152.2%
Peppers 512x512x8 2632221206349 165315 129513{59.3%
Tartan 256x256x4 32886) 1596 - 1478111.0%

Table 1. Compression performance on palette colour hmages.
The gain in compression for palette color images is measured as a ratio:

Gai total_ontput.bytes (no_optimization) — total_output_bytes (optimal)
Tain =

[})
total_output.bytes (optimal) +100% (7)

Let us visualize results of the proposed palette modification algoritlun in pictorial
form. The image called park with a lake was chosen as an example for further process-
ing. Three different palette index functions are shown in the first column of Figure 3.
These images were obtained by truncating palette and adding monotonic gray palette.
The gray level image that looks most similarly to the original pseudocolor image is dis-
played in Figure 3(b}, first column. Colors were converted o intensities Y = R+ G+ D
and the palette index function was sorted according to intensity Y. Figure 3(a), first
columnn, illustrates the original palette index function. Notice very many changes in it.
The palette index function that is the outcome of the proposed optimization algorithm
is shown in Figure 3(c), first column.

Nine binary images in Figure 3, colnmns 2 + 4 provide more intuitive insight, into
results. Bit plancs #8, #5, #1 corresponding to intensity images in the first column
in Figure 3 are shown in each row. The top row (a) shows three bit planes of the
palette index function. The middle row (b} visualizes performance of the much sim-
pler re-arrangement of the palette according to intensity Y [Fry93]. The bottomn row
{c) visually demonstrates results of the palette optimization described in this paper.
Notice that even bit plane #5 is relatively smooth if our modification was used. Do
not forget that these three images produce the same color image.

1035

As intensity inmage Bit. plane #8 Bit plane #5 Bit plane #1

As intensity image Bit plane #8 Bit plane #5 Bit plane #1

Fig. 3. Three modifications of palette index function f(z,y) compared.

The proposed palette index function optimization algorithm is reasonably fast.
It runs slightly around one second for an 512x512x8bit pseudocolor image on Intel
Pentium with 200 MHz clock frequency.

7 Conclusion

The method that optimizes palette index function of the pseudocolor image was de-
scribed. The proposed method can be used prior any lossless compression technique is
applied. We believe that the suggested optimization of the palette index function can
be casily incorporated into standard lossless pseudocolor images comptession meth-
ods. The reverse step is not needed during decompression phase. Thus no additional
software is needed in image viewers.

The method can be practically used for 4, 16 and 256 color palette images of any
size. If there are many more colors (e.g. 16 bits per pixel) the indices adjacency table S
would be huge to be stored in the memory. Theoretically, the proposed method should
work even in this case.

Tests on real images demonstrate compression improvement between 10% - 50%.
The actual improvement depends how the original color image was quantized when
pseudocolor image was created and of course on the used compression method.

If the reader wants to test the method then she/he is advised to consult www page
htip://cmp.felk.cout.cz/ " fojtik/ for our implementation.

The planned future work is to: (a) study more carefully the optimization and learn
if there is not a computatioually plausible way how to overcome local minima; (b) to
formalize a good initial guess that is used prior the iterative optimization starts.

References

[AL93] Zaccarin André and Bede Liu. A novel approach for coding color quantized images.
IEEE Transactions on Image Processing, 2(4):442-453, October 1993.

[F1198] Jaroslav Fojtfk and Vdclav [Havie. Invisible modification of palette color hmage
for increasiug compression ratio of lossless compression methods, Technical Report
K335/98/159, Czech Technical University, Faculty of Electrical Engincering, Karlovo
Namést{ 13, Prague 2, May 1998.

[Fry93] Michael Frydrych. Image compression. Master’s thesis, Charles University, Faculty
of Mathematics Physics, Prague, Czech Republic, 1993

[HF97a] V. Hlava¢ and J. Fojtik. Adaptive non-linear predictor for lossless image compres-
sion. In G. Sommer, K. Daniilidis, and J. Pauli, editors, Proceedings of the confer-
ence Compuler Analysis of Images and Patterns’97, Kiel, Germany, pages 279-288.
Springer-Verlag, LNCS 1296, September 1997,

[HF97b] V. Hlav4e and J. Fojtik. Predictor based on frequency analysis of the local config-
urations used for lossless image compression. In Proceedings of the 1st IAPR TC1
workshop on Statistical Technigques in Pattern Recognition, Prague, Czech Repub-
lie, June 9-11, 1997, pages 73-78, Prague, Czech Republic, June 1997, Institute of
Information Theory and Automation, Czech Academy of Sciences.

[HS94] Andrew C. Hadenfeldt and Khaid Sayood. Compression of color-mapped images.
IERE Transactions on Geoscience and Remote Sensing, 32(3):534-541, May 1994.

[HS92] R. M. Haralick and L. G. Shapiro. Compuier and Robot Vision, Volume I. Addison
Wesley, Reading, Ma., 1992

{MV96] Nasir D. Memon and Ayalur Venkateswaran. On ordering color maps for lossless pre-
dictive coding. IEEE Transactions on Image Processing, 5{11):1522-1527, November
1996.

[Sch89] M.L Schlesinger. Matematiceskie sredstva obrabotki izobrazenij, in Russian, (Math-
ematic tools for image processing). Naukova Dumka, Kiev, Ukraine, 1989.

