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Abstract .  We address the problem of pseudocolor image compression. Image 
values represent indices into a look up table (palette). Due to quantization, 
the neighbouring pixel values (indices) change too much. This deteriorates 
performance of both lossless mid Iossy image compression methods. 
We suggest a preprocessing phase that (a) analyses statistics of the adjacency 
relations of index values, (b) performs palette optimization, and (c) pcrnmtes 
indices to palette to achieve more smooth image. The smoother image causes 
that the lossle~ image (:ompression methods yield less oul,put data. 
The. task to optimally l)ermute palette indices is a NP c(unl)lctc combinatorial 
optimization. Instead of checking all possibilities, we suggest a reasonable initial 
guess and a fast suboptimal hill climbing optimization. 
The proposed permutation of indices shouhl enhance performance of most loss- 
less compression method used after it. To our knowledge, the proposed re- 
ordering followed by our own nonlinear compression technique [HF97b, HF97a] 
yields the best comprcssion. Experiments with various images show that the 
indices reordering provides data savings from 10% to 50%. 

1 Introduction 

Let us assume that the palette image (image with a palette) is mapping color = 
JR, G, B] = palette(f (x, y)), where JR, G, B] are individual color components i.e. three 
intensity inmges. Tile output of the function f(x, y) is an index. This is a reason wily 
we call this function palette index function in sequel. The palette is the look up table 
with [R,G,B] entries. 

This paper discusses a lossless compression of pseudo color images. Some redun- 
dancies must be found in the image for doing so. The losstess compression methods 
for gray level images (including our method [HF97b, HF97a], which is l)~e(1 on the 
original Schlesinger's idea [Sch89]) are usually based on the assumption about the con- 
tinuity of the image function. This assumption cannot be used h)r pseudocolor images 
because a typical palette flmctions break this assumption. The basic idea of our ap- 
proadl is to re-establish the smoothness of thc palette index function f(x,  y) so that it 
can be compressed in the same way as image function of gray level images. Both newly 
created palctte index function ]'(x,y) and the look up table palette'are modified in 
tile way that the resulting colors, i.e. JR, G, B] values, remain the same for all pairs of 
corresponding pixels from both images: palette(f (x, y) ) = palette' (f' (x, y) ). 

* This research was supported by the Czech Ministry of Education grant VS96049, the Grant 
Agency of the Czech Republic 102/97/0480, 102/97/0855. 
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The palette is usually created from tim true color RGB image (camera, color scan) 
or by an interactive painting program. The algorithm that quantizes the original true 
color image causes discontinuities in its output palette index function f (x,  y). This 
effect can significantly decrease the compression ratio. 

2 Re la ted  works 

There are many available compression algorithms for gray level images. Pseudo color 
inmges are usually compressed by the stone algorithms as gray level ones. The com- 
l)ressiou ratio det)e, nds on a first order entropy (we will call it smoothness in the sequel) 
in these cases. 

The reordering of palette is usefld mainly in two c~es mentioned in [HS94] (a) Sort 
indices to increase available compression ratio, (b) Sort indices in order to enhance hu- 
man perception. The requirements for these approaches are not fully in contradiction. 
In this paper we will discuss the first case only. 

The most related work to our contrilmtion is [MV96]. The linear predictor is used 
as a lossless compression technique. Indices reordering is fornmlated ,as a.n optimization 
task. Three heuristic solutions are proposed to it. Two of them are very expensive due 
to used simulated annealing and third, based on a greedy algorithm, produces worse 
results. 

The paper [AL93] describes lossy compression of palette images. Proposed method 
starts with construction of the optimal shortest route among colors in the RGB (or 
LUV) color space. Colors close each other are grouped into clusters. Each cluster 
correstmnds to just one new color. 

3 Creat ing ne ighbourhood  relations table  

f(x- 

r(x-l,y-l) I f(x,y-l) 
Fig. 1. Evahtating a neigh- 
bourhood relations. 

Let u, v be two vahms (i.e. indices into palette) of 
the palette index function f (x ,  y) in two different but 
neighboring pixels. The used neighborhood of the cur- 
rent pixel (x,y) is shown on Fig. l(a). The symmetric 
relation clasp(u, v) = clasp(v, u) tells whether two in- 
dices u, v are adjacent. Let us call clasp the index adja- 
cency relation. We use the intuitive nmnc clasp as the 
notion of a thing that fastens two regions with intensi- 
ties u, v (index values) together. Simple statistics of the 
local index adjacency relation will serve as a measure of 
the smoothucss of the palette index function f(x,  y). 

We are interested in the number of occurrences of in- 
dices adjacency relations tel in the whole image f(:r, y). 

This information is stored in the index adjacency table S(i, j) .  The table S(i, j)  has 
the same number of rows and cohmms that is equal to range (number of values) of 
the palette index function f(x,  y). The size of S(i , j)  is 256 x 256 for typical palette 
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images. The table entries tell us how many times indices u and v are adjacent in the im- 
age. The statistical infornmtion stored in S(i, j )  resembles more general co-occurrence 
matrix used often in the texture analysis [HS92]. 

The indices adjacency table S is symmetric and only lower (or upper) triangular 
part of it needs to be stored. The vahms on the main diagonal (identity relation) are 
not needed I)y tile 1)roposed algorithm. 

Tile indices adjacency t~fl)le S is created by one pass traversal of the image accord- 
ing to the neighl)orhood mask. The statistics stored in the intensity adjacency table 
S will be used to find optimal palette index function fr(x, y). 

4 Formulation of the optimization task 

Let us start with an informal description of the optimization task that should be 
performed. A pseudocolor image depicting a t)ark with a lake was chosen as an example, 
see first cohmm in Fig. 3, where the pseudocolor image is shown in intensity values 
only. The difficulty with the losstess COml)ression algorithms fl)r l)seudocolor images is 
that there are too many discontinuities in corresponding indices in the l)alette index 
flmction f(x,y). Let us show them in indivi(lu~d I)it planes of f(:r.,y) fi)r the l)ark 
image. Three bit t)lanes #8, #5 and #1 from all eight lilt planes of the pal(,tte index 
['unction f(x,  y) are displayed in the top row of the Fig. 3. Even the most significant 
bit plane #8  changes often too. 

Our aim is to reorder indices of the palette index function f(x, y) in such a manner 
that resulting binary images in individual bit planes will consist of the smallest number 
of large regions. Larger and smoother regions ease the filrther image compression. 
Number of possible indices rearrangements is huge - hi, where n is a numlwx of indices. 

The top bit plane is most significant and thus it is processed first. Our algorithm 
is (lesigned in such a way that lower ])it planes could be modified simiblrly but the 
already modified bit planes above it should renmin intact. 

Processing of bit planes is a combinatorial optimization problenl. To simplify it, wc 
assume tlmt all K indices are divided into two grout)s G1 and G2 consisting of half of 
the entries, i.e. k = ~ each. The nmnber of possible combinations is still tremendous, 
i.e. 1076 in typical case of 256 indices and the top bit plane. 

5 Initial guess 

Let us assume that there is some initial division of indices into two groups G1 and 
G2. A single candidate index in both groups is found that fits the least to tile current 
group than other indices. These two found indices are swapped between groups. The 
process is repeated until the the global criterion describing division into two groups 
is ininimized. Theoretically, this minimization would perform perfectly if we had a 
space without a tot of local extrema. Unfortunately, it seems that the number of 
local extrema is very high for real images and our optimization space. The algorithm 
may get stuck in a local minimuin. On the other hand, experiments have shown that 
even this simple minimization yields much smoother palette index function fr('v,, y). 
Moreover we use additional heuristic rules to avoid local minima. 
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The good initial estimate of the division of indices k into groups G1 and G2 helps us 
to be quite near to the global minimum. The initial division is based on the strategy 
that light colors create one group and dark colors the second one. Therefore such 
initial division is very close to the situation when indices are sorted according to their 
intensity. 

The adjacency relations between values of palette index function in the local n(,igh- 
borhood (recall Fig. 1) are used to define the optimization criterion. The index adja- 
cency relation was denoted clasp(u, v) in Section 3. Indices are split into two disjoint 
groups Gl and G2 with the same cardinality. 

The munber of relations clasp(u, v), u E G1, v E G2, u ¢ v informs how ma,ny re- 
lations are between (in our case two) distinct groups. Tim number of existing relations 
clasp(u, v), u E Gl,  v E G1, u ~ v tells how many relations are within group the. G1, 
sinfilarly for G2. All three numbers can build up a quality measure of the grouping of 
in(lices into Gl and G2, They hell) to find best candidates for swaI)I)iug between G, 
and G2. The good news is that all needed statistics can be efficiently extracted fi'om 
the indices adjacency table S. 

5.1 Qual i ty  of  the  index k. 

Each index k has associated a quality wk. The quality Wk can be calculated as a 
+ in its own group minus the number of adjacent indices number of adjacent indices w k 

w~ in the other group. We call numbers w + and w~7 as components of wk. 
If the index k belongs into the group GI: 

, v k = w  + - w ~ 7 =  E S ( i , k ) -  E S(i ,k) ;  k e G , .  (1) 
ieGl; iCk i~G1; iCk 

It can be seen that w + is a nmnber of clasps (satisfied index adjacency relations) 
within own group GI for index k, w k is number of clasps between own group GI and 
the alien group G2. Their difference wk is a relative measure of the index k qu~dity. 
The index with minimal quality within group G1 will be selected as a candidate for 
swapping. Similar equation holds, if the the index k belongs to G2. 

Qualities of all indices constitute a indices quality vector w = (wi, w2 .... wk). 

5.2 Global optimization cr i te r ion  

We have seen how quality wk enables to find candidates for swapping. A global opti- 
mization criterion is needed to know when to stop swapping iterations. We use slightly 
modified hill climl)iug optimization. 

The pre-calculated indices adjacency table S(i, j)  contains needed information, see 
Fig. 2(a), where four distinct parts W1, W21, WI~, and W2 are illustrated. Not(, that 
WI: = W21 due to the symmetry of the table S. All entries of the table S(i , j )  with 
same labeling are summed together: 

iEG1 tEG1 iEG2 lEG2 
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If rely labeling occurs more than once in the table S then its value is a sum of all 
areas with this label into tile matrix. This situation occurs in the case of bit planes 
below the top one. 

When we klmw a quality of each isolated index, we can compute a quality of the 
whole group of indices as a stun of qualities of their nmml)el's. The qualit,y of whole 
groul) of indices, i.e. Q(Gt) and Q(G2) is defined as: 

Q(Gl) = get - Wi2, Q(G2) = W2 -1Y21. (3) 

The global optinfization criterion, i.e. tile overall quality Q of splitting indices into 
two groups GI and G2 is ([efined as 

Q = Q(Gt) + Q(G2) = Wt - W21 + W.2 - I¥12. (4) 

The global optimization criterion Q is tile the sum of qualities of all indices in both 
groups. It is evaluation of the whole area of the index adjacency table S with same 
labeling. 

5.3 A l g o r i t h m  for s w a p p i n g  indices  

The worst index in each group (with tile lowest value wt:) is found. The worst indices 
are swapped between groups. Let us suppose that we have two indices, each one from 
different group a E G1 and b E G2. We want to swap them. 
New values of qualities of swapped indices are: 

w~=w 2-w~a - =-Wb--2S(a,b); w;=w; +-w;- =-wa-2S(a,b). (5) 

All actions which must be done after swapping two 
indices are called transactions. The transaction includes 
t, he recomImtation of the indices quality vector w and 
global critcrion Q. 

If the transaction decreases the global criterion then 
( Q ' < Q  -4 A = Q n - Q < 0 ) . T h e A v a l u e m e a n s  
how many clasps will appear when A > 0 or disappear 
when A < 0 in tim image. 
The value A for swapping indices a and b is: 

(Q, - Q) 
= A = w. + wb + 2 S(a, b), (6) 

4 
When indices are swapped, all items in the indices 

quality vector w must be updated too. 

I 

' \ ' X  

,:Xx. W 2 

: W21 

Fig.  2. Created domains m 
S 

5.4 Lower bit planes 

The algorithm proceeds from tile highest to less significant bit planes. The task is 
to split both groups G1 and G2 into four groups in the bit plane below the top one. 
The approach is similar to that  described al)ove. The computation is slightly more 
complicated. 

We omit the fillt description of this due to the lack of space. The more detailed 
description cml be found ill [FH98]. 
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6 Experimental  results 

Tim proposed method was tested on six pseudocolor images obtained from the web, 
The results are smnmarized in Table 1. First column gives image names. Second col- 
mnn shows image sizes of inlmt mmompressed images, i.e. rows x cohnnns x nmnl)er 
of lilts per pixel. The third cohmm depicts numlmr of bytes of uncoml~resscd images 
including palette stored in BMP format. The fourth column with header FH gives 
the nmnber of bytes after our own FH compression [HF97b, HF97a] w&s applied. The 
fifth column gives the size of images if palette wins first reordered according to inten- 
sity [Fry93]. The sixth column shows the influence of indices and palette modification 
that is the contritmtion of the palette rearranging method suggested in this paper. 
The length of the files is in bytes including palette after palette modification and 
FH comt)ression. Gain of our method according to the equation (7) is written in the 
rightmost column. 

h,,age namellh,,,~ge sizeiU,,~Oml,ressed ] FItlY + FHlOl, t. + FH I g,~i,, 
Descent 
Garfield 
L(ma, color 
Lymm ' 
Peppers 
Tartan 

320x200x8 
64{}x480'x4 
512x512x8 
320x200x8 
512x512x8 
256x256x4! 

65078 24334 
153718 3323 
263222 235579 
65078 59016 

263222 206349 
3 2 8 8 6  1596 

27115 21132 13.6% 
2955 13.4% 

185275 154401 52.2% 
43506 38769 52.2% 

165315 129513 59.3% 
1478 11.0% 

Table 1, Compression performance oil palette colour images. 

The gain in compression for palette color images is measured as a ratio: 

Gain = t°tal-°utlmt-bytes (no_optimization) - total_output_bytes (optimal) . 100% (7) 
total_outpuLbytes (optimal) 

Let us visualize results of the proposed palette modification algorithm in pictorial 
form. The image called park with a lake was chosen as an example for filrther process- 
ing. Three different palette index fimetions are shown in the first column of Figure 3. 
These images were obtained by truncating palette and adding monotonic gray lm]ette. 
The gray level image that looks most similarly to the original pseudocolor image is dis- 
played in Figure 3(b), first column. Colors were converted to intensities Y = R + G + B  

and the palette index function was sorted according to intensity Y. Figure 3(a), first 
column, illustrates the original l)alettc index fimction. Notice very many changes i n it. 
The palette index flmction that is the outcome of the proposed optimization algorithm 
is shown in Figure 3(c), first column. 

Nine binary inmges in Figure 3, cohmms 2 + 4 provi(le more intuitive insight into 
results. Bit planes #8, #5, #1 corresponding to intensity image.s in the lirst cohmm 
in Figure 3 are shown in each row. The top row (a) shows three bit planes of tlle 
patette index function. The middle row (b) visualizes performance of the much sim- 
pler re-arrangement of the palette according to intensity Y [Fry93]. The bottom row 
(c) visually demonstrates results of the palette optimization described in this paper. 
Notice that even bit plane #5 is relatively smooth if our modification was used. Do 
not forget that these three images produce the same color image. 
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(a) Original ](x,y) 

As intensity image Bit. l)lmm #8 Bit plane ~5 Bit plane #1 

(b) J(x, V) sorted by Y 

As intensity image BiL plane #8 Bit plane #5 Bit l)l;tne #1 

(c) O1)timized .f ( x, y) 

As intensity image Bit plane #8 Bit plane #5 Bit plane #1 

Fig. 3. Three modifications of palette index function ](x, y) compared. 

The proposed palette index function optimization algorithm is reasonably fast. 
It runs slightly around one second for an 512x512x8bit I)seudocolor image on Intel 
Pentium with 200 MHz clock frequency. 

7 Conclusion 

The method that optimizes palette index function of the pseudocolor image was de- 
scribed. Tile proI)osed method can be used prior rely lossless compression technique is 
aI)plied. We believe that tile suggested optimization of the palette index fimction can 
bc easily incorporated into standard losstess pseudocolor images compression meth- 
ods. The reverse step is not imeded during decompression phase. Thus no additional 
software is needed in image viewers. 

The method can be practically used for 4, 16 and 256 color palette images of any 
size. If there are many more colors (e.g. 16 bits per pixel) the indices adjacency table S 
would be huge to be stored in the memory. Theoretically, the proposed method should 
work even in this case. 
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Tests on real images demonstrate compression improvement between 10% - 50%. 
The actual improvement depends how the original color image was quantized when 
pseudocolor image was created and of course on the used compression method. 

If the reader wants to test the method then she/he is advised to consult www page 
http:/ /cmp.felk.cvut .cz/~/oj t ik/ for our implementation. 

The planned fllture work is to: (a) study more careflfity the optimization and learn 
if there is not a coml)utationally plausil)le way how to overcome local minima; (b) to 
formalize a good initial guess that  is used prior the iterative optimization starts. 
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