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Abstract. Properly addressing the discretization process of continuos valued 
features is an important problem dtu~g decision tree learning. This paper 
describes four multi-interval discretization methods for induction of decision 
trees used in dynamic fashion. We compare two known discretization methods 
to two new methods proposed in this paper based on a histogram based method 
and a neural net based method (LVQ). We compare them according to accuracy 
of the resulting decision tree and to compactness of the tree. For our 
comparison we used three data bases, IRIS domain, satellite domain and OHS 
domain (ovariel hyper stimulation). 

1 Introduction 

Decision tree learning is a widely used method for pattem recognition and image 
interpretation [10][11][13]. 
Properly addressing the discretization process of continuous-valued features is an 
important problem during decision tree learning. 
Decision tree learning algorithms like ID3 [8], C4.5 [9] and CART [1] use binary 
discretization for continuous-valued features. However, sometimes multi-interval 
discretization seems to be better than only binary diseretization. It can lead to more 
compact and more accurate decision trees whereas the explanation capability of  the 
decision tree to the user might be better. 
In the paper we describe several multi-interval discretization methods and compare 
them to binary discretization methods used in C4.5 according to accuracy of the 
resulting decision tree and compactness of the tree. We focus our work to dynami- 
cally and supervised discretization methods [2]. 
We use entropy-based multi-interval discretization method introduced by Fayyad and 
Irani [3] and ChiMerge method described by Kerber [6]. Two new methods are 
introduced: the first one is based on Learning Vector Quantization (LVQ) described 
by Kohonen [7] and the second one is based on histogram evaluation. 
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2 Mult i -Interval  Discret izat ion Methods  

2.1 Entropy-Based Discretization Method (A) 

Such algorithms like ID3 and C4.5 use a minimal entropy heuristic for discretization 
continuous attributes. These methods try to find a binary cut for each attribute. 
Following a method introduced by Fayyad and Irani [3], the minimal entropy criteria 
can also be used to find multi-level cuts for each attributes. 
The algorithm use the class information entropy of candidate partitions to select 
binary boundaries for discretization. If  there is a given set of instances S, a feature A, 
and a partition boundary T, the class information entropy of the partition induced by 
T, denoted E(A, T, S) is given by: 

Is, I E,,t(s Is2[ ent(s E ( A , T , S ) = v z -  , 1, ~ , 2,. (1) 
P f  

For a given feature A, the boundary Tin,n, which minimizes the entropy function over 
all possible partition boundaries, is selected as a binary discretization boundary. This 
method can be applied recursively to both of the partitions induced by Tm~,, until some 
stopping condition is achieved, thus creating multiple intervals on feature A. 
Whereas Fayyad and Irani make use of a Minimal Description Length Principle to 
determine a stopping criteria for their recursive discretization process, we predefme 
the number of cuts (2 and 3 cuts) allowed for each attribute. 
One of the main problems with this discretization criteria is that it is relatively 
expensive. It must be evaluated N-1 times for each attribute (with N the number of 
attribute values). Typically, N is very large. Therefore, it would be good to have an 
algorithm which uses some assumption in order to reduce the computation time. Such 
an algorithm is described in Section 2.4. 

2.2 ChiMerge Discretization Method (B) 

The ChiMerge algorithm introduced by Kerber [6] consists of an initialization step 
and a bottom-up merging process, where intervals are continuously merged until a 
termination condition is met. Kerber used the ChiMerge method static. In our study 
we apply ChiMerge dynamically to discretization. The potential cut-points are 
investigated by testing two adjacent intervals by the ~2 independence test. The 
statistical test values is: 

3 2  = (2) 

~=1 = E o 

where m=2 (the intervals being compared), k - number of classes, Aij - number of 
examples in i-th interval and j-th class, Ri - number of examples in i-th interval 
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= E AV ; Cj- number of examples in j-th class Cj = ~j ; 
j= l  i=1 

k 

N -total number of examples N = E Cj ; Eij -expected frequency E0. - 
j=I N 

Firstly, all boundary points will used for cut-points. In the second step for each pair of 
adjacent intervals one compute the Z2-value. The two adjacent intervals with the low- 
est Z2-value will merge together. This step is repeated continuously until all ZZ-value 
exceeding a given threshold. The value for the threshold is determined by selecting a 
desired significance level and then using a table or formula to obtain the Z 2. 

2.3 LVQ-based Discretization Method (C) 

Vector quantization is also related to the notion of discretization. We use Learning 
Vector Quantization (LVQ) [9] for our experiment. LVQ is a supervised learning 
algorithm. This method attempts to define class regions in the input data space. 
Firstly, a number of codebook vectors Wi labeled by a class are placed into the input 
space. Usually several codebook vectors are assigned to each class. 
The learning algorithm is realized as follow: After an initialization of the neural net, 
each learning sample is presented one or several times to the net. The input vector X 
will be compared to all codebook vectors W in order to fred the closest codebook 
vector We. The learning algorithm will try to optimize the similarity between the 
codebook vectors and the learning samples by shifting the codebook vectors in the 
direction of the input vector if the sample represents the same class as the closest 
codebook vector. In case of the codebook vector and the input vector having different 
classes the codebook vector gets shifted away from the input vector, so that the 
similarity between these two decrease. All other code book vectors remain un- 
changed. The following equations represent this idea: 

for equal classes: Wc(t + 1) = W~(t) + a(t).[X(t)-W~(t)] 

for different classes: W~(t + 1) = W~(t)-oc(t).[X(t)-W~(t)] 

(3) 

(4) 

For all other: Wj(t + 1) = Wg(t) (5) 

This behavior of the algorithms we can employ for discretization. A potential cut 
point might be in the middle of the learned codebook vectors of two different classes. 
Figure 1 shows this method based on one attribute of the IRIS domain. For our ex- 
periment we use the LVQ 2.1 algorithm. 
Since this algorithm tries to optimize the misclassification probability we expect to 
get good results. However, the proper initialization of the codebook vectors and the 
choice of learning rate or(t) is a crucial problem. 
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Fig. 1. Class Distribution of an Attribute and Codebook Vectors 

2.4 H i s t o g r a m - B a s e d  Discret izat ion M e t h o d  (D) 

A histogram-based method has been suggested first by Wu et al. [12]. They used this 
method in an interactive way during top-down decision tree building. By observing 
the histogram, the user selects the threshold which partitions the sample set in groups 
containing only samples of one class. In our experiment we use a histogram-based 
method in an automatic fashion as follows: 
The distribution p(alaEC~)P(Ck) of one attribute a according to classes Ck is 
calculated. The curve of the distribution is approximated by a first order polynom and 
the minimum square error method is used for calculating the coefficients: 

E = £ ( a l x  i +a o _y~)Z 
i = 1  

£ x ,  . i  
i = l  

a t - - -  

i = I  

(6) 

The cut points are selected by finding two maxima of different classes situated next to 
each other. 
We used this method in two ways: First, we used the histogram-based discretization 
method as described before. Second, we used a combined discretization method based 
on the distribution p(alas&)P(S ~ and the entropy-based minimization criteria. We 
followed the corollary derived by Fayyad and Irani [3], which says that the entropy- 
based discretization criteria for finding a binary partition for a continuous attribute 
will always partition the data on a boundary point in the sequence of the examples 
ordered by the value of that attribute. A boundary point partitions the examples in two 
sets, having different classes. Taking into account this fact, we determine potential 
boundary points by finding the peaks of the distribution. If  we found two peaks 
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belonging to different classes, we used the entropy-based minimization criteria in 
order to find the exact cut point between these two classes by evaluation each 
boundary point K with P~_<K -<P~+I between this two peaks. 

i l .  • | 

m ~  

I 

p~t~l  l en0 th  

Fig. 2. Examples sorted by attribute values for attribute A and labelled peaks 

This method is not as time consuming like the other ones. We wanted to see if this 
method can be an alternative to the methods described before and if we can find a 
hybrid version which combines the advantages of the low computation time of the 
histogram-based method with the entropy minimization heuristic in the context of 
discretizafion. 

3 R e s u l t s  

In our experimental study, we used discretization methods during decision tree 
learning process. Therefore, we refer to the discretization methods used in this study 
as dynamically methods. During a decision tree learning process, the attribute gets 
discretized according to one of the above described methods first. Then the best 
attribute is selected according to the attribute selection criteria used in the C4.5 
algorithm. Afterwards the splitting of the nodes takes place. This process repeats until 
no attribute can be selected and the tree building process stops. We compare the 
different method heuristically to the standard C4.5 method. We choose 3 data sets. 
Two standard domains: the IRIS domain and satellite images [5]. The satellite 
domain represented a 1907"1784 pixel TM-satellite image (Technical Mapping) of a 
340 m 2 area of the Colorado. Each pixel (example) represented a 10 m 2 area and is 
labeled into 14 different classes of vegetation groups like water, grass, trees and so 
on. Each example is described by 6 different frequencies (red, green, blue .... ). There 
are 3.402.088 samples contained in the data set. 
The third data set, called OHS domain, is a medical domain and contains a data set of 
155 samples describing the over stimulation syndrome of the female menstruation 
cycle during the IVF-Therapy (In-Vitro-Fertilization) [4]. The Features are taken from 
ultra sonic images (like number of follicle, size and so one) and blood values of the 
patient. It is a two class problem: over stimulation syndrome is possible or not. 
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Fig. 3. Satellite Image Fig. 4. Ultra Sonic Image from Medical Domain 

Table t shows the accuracy. For evaluation of  accuracy we used cross validation 
method for IRIS- and OHS-domain and the test-and-train method for the satellite do- 
main (train=15000 and test=3387088 examples). 

Method 

A1 
A2 
A3 
A4 
B 
C1 
C2 
C3 
C4 
C* DI[ 
D2 

IRIS OHS Satellite Images 
...... unpruned pruned unpnmed pruned 

10.32% 10.97% 10,88% 22.53% 
8,39% 11.41% 21.80% 

unpruned pruned 
6.67% 4.67% 
6.67% 5.33% 
6.67% 5.33% 
4.00% 4,00% 

[ 7.33% 7.33% 
4.6"7% 4£7% 
5.33% 5:33% 
6.00% 6.00% 
4.00% 4.00% 

7.33% [ 7.33% 
6.00% 6.00% 

t0.32% 
18.06% 
8.39% 

! 20.65% 

16,13% 
8,39% 
17,42% 

12.37% 

[ 17.91%1 

26.17% 
t6.42% 
17.93% 

13.55% 13,55% 12.07% 
13,48% 15.48% 15.07% 16.95% 
13.55% 13,55% 12,37% 19.83% 

13.62% 18.92% 
11,56% 17.72% 

15.48% 15A8% 

13.55% 12.90% 
12.90% 12.90% 

19.77% 15.91% 
12.70% 13,50% 

A1-3 
A4 
B 
C1,2 
C3,4 
C* 
D1-2 

Table 1. Error rate for the four discretization method and three domains 

Entropy-based cut-point strategy with 1, 2, and 3 cut-points 
Entropy-based cut-point strategy with minimal description length principle 
Chi-Merge 
LVQ 10 codebook vec. without entropy (1), with entropy (2) 
LVQ 50 codebook vec. without entropy (3), with entropy (4) 
LVQ with entropy and minimal description length principle 
Histogram-based method without (1) and with (2) entropy criteria 
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4 Discussion 

The row A1 shows the accuracy for the standard C4.5 algorithm. The best accuracy 
for each domain is marked by the dotted pattern. The results show that the entropy- 
based cut-point strategy with minimal description length principle can outperform the 
C4.5 method. This method is able to produce decision trees which have cut-points 
varying in number on each level of the tree. These cut-points are adjusted to the real 
condition of the data set. The error rate is always better than the error rate obtained 
with C4.5 and C4.5 with fixed number multi-interval discretization, see Table 1 line 
A1-A4. Although, we expected the LVQ algorithm to fit best to our problem of local 
discretization, the algorithm did not show significant better results. Only, when we 
combined LVQ-based discretization method with the minimal description length 
principle, this method showed significant better results than the other ones. However, 
the method is difficult to handle. The initial number of code book vectors has no 
significant influence to the result. But the learning rate has a drastically influence. The 
experiments showed that the results strongly depend on the parameter settings of the 
LVQ algorithm. The ChiMerge method showed good results for static discretization 
in the experiment of Kerber [6]. It outperforms other static discretization methods like 
equal-width intervals and D2. But no comparison to C4.5 was given by Kerber. In 
our experiment we used ChiMerge in a dynamically fashion. The results show the 
least accuracy for all three domains. 
Although the histogram-based method is a very simple method, we obtained 
reasonable results. In case of the histogram-based method with entropy criteria, it 
produces sometimes better results than normal C4.5 algorithm. This shows that our 
rule for setting the cut point in variant D1, which is recently only finding the middle 
of two peaks, needs to be improved. The approximation error made by the description 
of the hull curve of the feature distribution is responsible for the slight shift in the 
position of the cut-points and it also causes that small peaks are not considered for 
cut-point selection. In case of the IRIS domain it happens that the decision tree 
building process stop while the other methods built the tree one level deeper with a 
partition into 47 data set on the one side and 2 data set on the other side. 
Generally, in case of small data sets the entropy-based discretization method works 
while the LVQ-based and histogram-based method fail. 

5 Conclusion 

In the paper, we addressed the problem of multi-level discretization during decision 
tree learning process. Four methods for discretization were described: entropy-based 
method, ChiMerge, LVQ-based method and histogram-based method. Our aim was to 
find more accurate and not so time consuming methods. Whereas Fayyad's entropy- 
based method combined with minimal description length principle showed good 
results, the ChiMerge method did not. The good results gained with Fayyad's 
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minimal description length principle showed the need for automatic determination of  
the number of cut points for multi-interval discretization method. 
The LVQ-based method in combination with the minimal description length principle 
showed the best results but it is difficult to handle since the accuracy depends on 
proper settings of the parameter of the LVQ algorithm. 
A simple and fast method is the histogram-based method. This method showed 
promising results. Further work should be done to improve this method by developing 
more specific rules for finding the right position of the cut-points. 
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