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Abstract. This article describes a framework for the deep and dynamic integration of learning strategies. The 
framework is based on the idea that each single-strategy learning method is ultimately the result of certain elementary 
inferences (like deduction, analogy, abduction, generalization, specialization, abstraction, concretion, etc.). Con- 
sequently, instead of integrating learning strategies at a macro level, we propose to integrate the different inference 
types that generate individual learning strategies. The article presents a concept-learning and theory-revision method 
that was developed in this framework. It allows the system to learn from one or from several (positive and/or 
negative) examples, and to both generalize and specialize its knowledge base. The method integrates deeply and 
dynamically different learning strategies, depending on the relationship between the input information and the 
knowledge base. It also behaves as a single-strategy learning method whenever the applicability conditions of 
such a method are satisfied. 
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1. Introduct ion 

Research in machine learning has elaborated and investigated in detail several single-strategy 
learning methods such as empirical induction, explanation-based learning, learning by abduc- 
tion, learning by analogy, case-based learning, and others (Michalski, Carbonell & Mitchell, 
1983, 1986; Kodratoff & Michalski, 1990; Shavlik & Dietterich, 1990). However, as this 
field evolves and concentrates more and more on solving complex real-world learning prob- 
lems, it becomes more and more clear that the single-strategy learning methods provide 
solutions to overly simplified problems. One kind of oversimplification consists of specific 
requirements imposed on the input information and on the content of  the KB. For instance, 
empirical induction requires many input examples and a small amount of background knowl- 
edge. Explanation-based learning requires one input example and a complete background 
knowledge. Learning by analogy and case-based learning require background knowledge 
analogous with the input. Learning by abduction requires causal background knowledge 
related to the input. Another kind of  oversimplification consists of  the limited result of 
the single-strategy learning process. This is a hypothetical generalization of several input 
examples (in the case of empirical induction), or an operational generalization of an input 
example (in the case of  explanation-based learning), or new knowledge about the input 
(in the case of  learning by analogy or case-based learning), or new background knowledge 
(in the case of learning by abduction). 
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From the above characterization, however, one may notice the complementarity of the 
requirements and of the results of the single-strategy learning methods. This complementar- 
ity naturally suggests that by properly integrating these methods, one could obtain a syner- 
gistic effect in which different strategies mutually support each other and compensate for 
each other's weaknesses. This hypothesis has been confirmed by the many multistrategy 
learning methods and systems that have been developed in the past several years (e.g., 
Bergadano & Giordana, 1990; Cox & Ram, 1991; Danyluk, 1987; DeRaedt & Bruynooghe, 
1991; Flann & Dietterich, 1989; Genest, Matwin, & Plante, 1990; Hirsh, 1989; Lebowitz, 
1986; Minton & Carbonell, 1987; Mooney & Ourston, 1991; Morik, 1993; Pazzani, 1988; 
Reich, 1991; Saitta & Botta, 1993; Shavlik & Towell, 1990; Tecuci & Kodratoff, 1990; 
Whitehall, 1990; Widmer, 1991; Wilkins, 1990). 

After the development of many methods and techniques for the integration of learning 
strategies, the research in multistrategy learning started to address the problem of defining 
general principles and frameworks for the design of advanced multistrategy learning systems 
(Michalski, 1993; Tecuci & Michalski, 1991). One such framework for a multistrategy learn- 
ing system consists of a cascade of single-strategy learning modules, in which the output 
of one module is an input to the next module. Another framework consists of a global 
control module and a tool box of single-strategy learning modules, all using the same 
knowledge base. The control module analyzes the relationship between the input and the 
knowledge base and decides which learning module to activate. 

In this article we propose another general framework for multistrategy learning. This 
framework is based on the idea that each single-strategy learning method is ultimately the 
result of certain elementary inferences (such as deduction, analogy, abduction, generaliza- 
tion, specialization, abstraction, concretion, etc.). As a consequence, instead of integrating 
learning strategies at a macro level, we propose to integrate the different inference types 
that generate individual learning strategies. By this we achieve a deep integration of the 
learning strategies. The article presents a concept learning and theory revision method that 
was developed in this framework. It allows the system to learn from one or from several 
(positive and/or negative) examples, and to both generalize and specialize its knowledge 
base. The method integrates deeply and dynamically different learning strategies, depend- 
ing on the relationship between the input information and the knowledge base. It is therefore 
a multistrategy task-adaptive learning (MTL) method (Michalski, 1990, 1993; Tecuci & 
Michalski, 1991a,b). An important feature of this MTL method is that it is also a generaliza- 
tion of the integrated single-strategy methods in that it behaves like any of these methods 
whenever their applicability conditions are satisfied. 

This article is organized as follows. Section 2 defines and illustrates the general learning 
task of the MTL method. Section 3 contains a general presentation of the proposed MTL 
method. Sections 4, 5, and 6 present in more detail and illustrate the main stages of the 
MTL method. Next, section 7 presents the cases in which the MTL method behaves as 
a single-strategy learning method. The last section of the article analyzes the strength and 
the limitations of our approach to multistrategy learning and indicates what we consider 
to be the most promising directions of the future research. 
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2. The learning task 

The learning task of a system is defined by the input information, the background knowledge, 
and the learning goal. We are considering a general learning task for multistrategy learn- 
ing that subsumes the learning tasks of  the integrated single-strategy methods. In particular, 
it is both a theory revision task and a concept learning task, as indicated in table 1. 

By generalization of the KB we mean any transformation that results in an increase of 
knowledge inferable from the KB. The KB may be generalized by generalizing knowledge 
pieces or by simply adding new knowledge pieces. Similarly, by specialization of the KB 
we mean any transformation that results in a decrease of knowledge inferable from the 
KB. The KB may be specialized by specializing knowledge pieces or by simply removing 
knowledge pieces from the KB. These operations are also associated with an increase in 
the plausibility of the knowledge pieces inferable from the KB. 

As stated in the above formulation of the learning task, our approach is based on the 
following assumptions: 

• The input to the learning system consists of concept examples that are noise-flee. However, 
the system may learn from a single positive example, or from a sequence of positive 
and negative examples. 

• The KB is considered to be both incomplete and partially incorrect. It may also contain 
different types of knowledge pieces expressed as first-order predicate formulas. 

• The goal of  the learning system is to learn as much as possible from any input it receives. 
This is a general goal that consists in learning different types of concept definitions, and 
in performing different types of improvements of the KB. In a specific application of 
this learning method, this goal would need to be specialized. For instance, some of the 
learnable concept definitions may not be useful and, consequently, will not be learned. 

In order to illustrate this learning task and the corresponding learning method, we shall 
consider the case of a learning system in the area of geography. The purpose of the system 
is that of acquiring geographical data and rules in order to answer questions about geography. 
Throughout this article, we use :: > to denote concept assignment, = to denote certain 
(deductive) implication, ~ to denote plausible implication, and - - >  to denote plausible 
determination (see section 4.3). 

Table 1. The learning task. 

Input: one or several (positive and/or negative) examples of  a concept. 
The examples are represented as conjunctions of first-order predicates, are considered noise-free, and are presented 
in sequence. 

Background knowledge: incomplete and partially incorrect knowledge base (KB). 
The KB may include a variety of knowledge types (facts, examples, implicative or causal relationships, determina- 
tions, etc.), represented with first-order predicates. 

Goal: learn different concept definitions from the input example(s) and improve the KB. 
The learned concept definitions may be operational or abstract, and the KB is improved by both generalizing 
and specializing it, so as to entail these definitions. 
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Let us consider, for instance, that the knowledge base is the one shown in table 2. It 
contains several ground facts, two examples of fertile soil, a plausible determination rule, 
and three deductive rules. 

Let us also consider that the input consists of the sequence of examples shown in table 3. 
The left-hand side of each positive example (negative example) is the description of a country 
that grows rice (does not grow rice), and the right-hand side is the statement that the respec- 
tive country grows rice (does not grow rice). 

The different types of knowledge pieces learned from the above KB and input examples 
are presented in table 4. 

One result of learning consists of several concept definitions (Michalski, 1990): 

• The first definition in table 4 is an operational definition of "grows(x, rice)," expressed 
with the features present in the input examples. 

• The second definition is an abstract definition of "grows(x, rice)," expressed with more 
general features, derived from those present in the input examples (since this rule was 
already known, the new knowledge is just that it represents an abstract definition). 

• The third definition is an abstraction of example 1 that was obtained by instantiating the 
previous abstract definition. 

Table 2. A sample of an incomplete and partially incorrect KB. 

Facts: 
Terrain(Philippine, flat), rainfall(Philippine, heavy), water-in-soil(Philippine, high) 

Examples (of fertile soil): 
soil(Greece, red-soil) :: > soil(Greece, fertile-soil) 
terrain(Egypt, fiat)& soil(Egypt, red-soil) :: > soil(Egypt, fertile-soil) 

Plausible determination: 
rainfall(x, y) - - >  water-in-soil(x, z) 

Deductive rules: 
¥ x, soil(x, loamy) = soil(x, fertile-soil) 
¥ x, climate(x, subtropical) ~ temperature(x, warm) 
¥ x, water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil) = grows(x, rice) 

Table 3. Positive and negative examples of "grows(x, rice)." 

Positive Example 1: 
rainfall(Vietnam, heavy) & climate(Vietnam, subtropical) & soil(Vietnam, red-soil) & 
terrain(Vietnam, fiat) & location(Vietnam, SE-Asia) :: > grows(Vietnam, rice) 

Positive Example 2: 
rainfall(Madagascar, heavy) & climate(Madagascar, subtropical) & soil(Madagascar, loamy) & 
terrain(Madagascar, flat) & in(Madagascar, Pacific-Ocean) :: > grows(Madagascar, rice) 

Negative Example 3: 
rainfall(Nepal, heavy) & climate(Nepal, subtropical) & soil(Nepal, loamy) & 
terrain(Nepal, abrupt) & location(Nepal, Central-Asia) :: > --grows(Nepal, rice) 
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Table 4. The learned knowledge. 

Concept definitions 

Operational definition of "grows(x, rice)": 
{rainfall(x, heavy) & terrain(x, flat) & climate(x, subtropical) & (soil(x, red-soil) V soil(x, loamy))} 

:: > grows(x, rice) 

Abstract definition of "graws(x, rice)": 
water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil) :: > grows(x, rice) 

Abstraction of Example 1: 
water-in-soil(Vietnam, high) & temperature(Vietnam, warm) & soil(Vietnam, fertile-soil) 

:: > grows(Vietnam, rice) 

Improved KB 

New facts: 
water-in-soil(Vietnam, high), water-in-soil(Madagascar, high) 

New rule: 
¥ x, soil(x, red-soil) ~ soil(x, fertile-soil) 
with the positive examples: (x<-Greeee), (x< -Egypt), (x < -Vietnam). 

Improved (specialized) plausible determination: 
rainfall(x, y) & terrain(x, flat) - - >  water-in-soil(x, z) 
with the positive examples: (x <-Philippine, y <-heavy, z <-high), 

(x < -Vietnam, y<-heavy, z<-high), 
(x < -Madagascar, y <-heavy, z < -high). 

with the negative example: (x<-Nepal, y<-heavy). 

The other result of learning is the improvement of the KB so as to entail the learned 
concept definitions: 

• The KB was generalized by learning two new facts and a rule. 
• It was also specialized, by conjunctively adding a literal to the left-hand side of the plausible 

determination. 

As indicated in table 4, the system also keeps all the examples of the learned knowledge 
pieces in order to update them when new knowledge becomes available. These instances 
have been generated through different forms of  plausible reasoning and have been validated 
during the learning process. Therefore, they also constitute an improvement of the KB. 

3. General presentation of the learning method 

The learning method consists in building, generalizing, and/or specializing plausible justifi- 
cation trees of  the input examples, and in generalizing and/or specializing the KB so as 
to entail these trees. 
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A plausible justification tree is a demonstration that the input is a plausible consequence 
of the KB. It is like a proof tree, except that the inference steps that compose it may be 
the result of different types of reasoning (not only deduction, but also analogy, inductive 
prediction, abduction, etc). For instance, a plausible justification tree of example 1 in table 
3 is the one from figure 1. It shows that, in the context of the current KB, example 1 is 
indeed a positive example of "grows(x, rice)." 

In the following, we shall associate with each elementary inference step from a plausible 
justification tree (for instance, from A infer B), an implication (A -~ B or A = B, depend- 
ing on whether the inference is plausible or certain). 

The main steps of the learning method are the following ones (more details are given 
in the next sections): 

• For the f i r s t  positive example I1: 
1. Build a plausible justification tree T o f  11 

The plausible justification tree T demonstrates that the input I1 is a plausible conse- 
quence of the knowledge from the KB. The inference steps in the tree T may be the 
result of different types of inference: deduction, analogy, inductive prediction, abduc- 
tion, etc. 

2. Build the plausible generalization T u o f  T 
First build an explanation structure ES by replacing each implication from T with 
a plausible generalization of it. The generalization of each implication will depend 
on the type of inference, and on the knowledge used to derive it. It will correspond 
to the least general generalization of all the similar implications that the system would 
consider plausible. 

Then determine the most general unification of the general implications from ES. 
The obtained tree Tu is the most general plausible generalization of T. 

3. Generalize the KB so as to entail T u 
Introduce into the KB the knowledge pieces hypothesized (through analogy, inductive 
generalization and prediction, abduction, etc.) during the building of the plausible 
justification tree T and the explanation structure ES. 

• For each new positive example li: 

1. Generalize T u so as to cover a plausible justification tree o f  Ii 
Determine the instance T i of Tu (which, in general, is an AND/OR tree) correspond- 
ing to the current input I i. Analyze the leaf predicates and the implications from T i 
and remove the false ones. If the resulting T i is a plausible AND/OR tree (i.e., it 
contains a plausible justification of Ii),  then T u already covers a plausible justification 
tree of I i. This ends the processing of the current example. Otherwise, make mini- 
mum modifications to Ti,  so that it contains a plausible justification of the current 
positive example, and generalize Tu, as little as possible, so as to cover the updated 
justification tree T i. 

2. Generalize the KB so as to entail the new T u 
Introduce into the KB the knowledge pieces hypothesized (through analogy, inductive 
generalization and prediction, abduction, etc.) during the updating of the plausible 
justification trees T i and Tu. 
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• For each new negative example li: 
1. Specialize Tu so as not to cover any plausible justification tree o f  Ii 

Determine the instance T i of T u corresponding to the current input I i. Analyze the 
leaf predicates and the implications from T i and remove the false ones. If  the resulting 
T i is not a plausible AND/OR tree (i.e., it does not contain any plausible justification 
of Ii) then T u does not cover any plausible justification tree of I i. This ends the proc- 
essing of the current example. Otherwise, T i is a wrong AND/OR justification tree 
that is covered by T u. Indeed, T i "proves" that the current input is a positive exam- 
ple, although it is known that it is a negative example. Hypothesize that the implica- 
tions Rka, . . . ,  Rkn from T i are false. The selection of the implications Rkl . . . . .  R~n 
is based on the following criteria: 
- -  if  all the implications Rk~, . • . ,  R ~  are false, then T i is not a plausible AND/OR 

tree (i.e., it does not contain any plausible jusitification of li); 
- -  prefer the weakest implications (first abduction, then inductive prediction, then 

analogy, and then deduction); 
- -  prefer the implications for which the specializations of the KB and of Tu cause 

the minimum loss of coverage of previous examples; 
- -  prefer the implications for which the specializations of the KB and of Tu produce 

a minimum increase in the complexity of  the modified knowledge pieces. 
Specialize Tu as little as possible, so as no longer to cover the implications R~a, . . . ,  
Rk.. 

2. Specialize the KB so as to entail the new Tu without entailing the previous T u 
Specialize, as little as possible, the knowledge pieces from the KB that generated the 
implications R~a . . . . .  R~n, so as no longer to entail them. 

• Learn different concept definitions 
Extract several knowledge pieces from the tree T u, such as operational definitions of 
the concept illustrated by the input examples, abstract definitions of the concept illustrated 
by the input examples, or abstractions of different input examples. 

4. L e a r n i n g  f r o m  the  f irst  e x a m p l e  

4.1. Building the plausible justification tree 

In order to determine a plausible justification of the input, the system builds an AND/OR 
tree by conducting a top-down uniform-cost search (Nilsson, 1971). 

The developed AND/OR tree contains several AND trees, each having a cost that estimates 
its global plausibility. The cost of a partial AND tree is computed as a tuple (m, n), where 
m represents the number of the deductive inference steps in the tree, and n represents the 
number of the non-deductive inference steps (which, in the present verison of the MTL 
system, could be made by analogy, inductive prediction, or abduction). The ordering rela- 
tionship for the cost function is defined as follows: 

(ml,  n l )  < (m2, n2) if  and only if  nl  < n 2 o r ( n l  = n 2 a n d m l  < m2) 
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This cost function guarantees that the system will find the justification tree with the fewest 
number of non-deductive inference steps. In particular, it will find a deductive tree (if one 
exists) and the deductive tree with the fewest inference steps (if several exist). 

As a general strategy, the system always tries to justify a given predicate (for instance, 
"grows(Vietnam, rice)" in figure 1) by deduction. If it succeeds, then it tries to justify 
the resulting predicates ("water-in-soil(Vietnam, high)," "temperature(Vietnam, warm)," 
and "soil(Vietnam, fertile-soil)"). However, if it fails, then it tries to justify the predicate 
by using as many plausible reasoning methods as possible. It will try these methods in 
order: first analogy, then inductive prediction, and lastly abduction. If one of them pro- 
duces a plausible inference step, then the system tries the remaining ones in order to con- 
firm or to contradict it. If no contradiction is found, the inference step is accepted. This 
method (although quite simple, and definitely a necesssary topic of future research) is related 
to that employed by humans (Collins & Michaiski, 1989). Indeed, Collins and Michalski 
argue that people solve problems by pursuing different "lines of reasoning." They estimate 
the "strength" of each line of reasoning, and make their conclusion on the basis of this 
evaluation. If  the lines lead to the same conclusion, they have a strong belief in the result. 
If the lines lead to different conclusions, and the associated "strengths" are roughly similar, 
people refrain from making any decisive conclusion. 

It should be noticed that, although at the level of a given inference step, the current MTL 
system applies the different reasoning methods in a predefined order, globally (at the level 
of the resultant justification tree) there is no predefined order. For instance, in the case of 
the justification tree in figure 1, the order of the inference steps was deduction, analogy, 
deduction, inductive prediction, and abduction. In general, this order depends on the rela- 
tionship between the KB and the input. Therefore, the MTL method is an example of a 
dynamic and deep (i.e., at the level of individual inference steps) integration of single- 
strategy learning methods (each learning method corresponding to a specific type of 
inference). 

The next sections present briefly the way the different inference steps in figure 1 have 
been made. 

grows(Vietnam, rice) 

d e d  u t i o  n 

water-in-soil(Vietnam, high) temperature(X(.ietnam, warm) soil(Vietnam, fertile-soil) 

inductive ~rediction 
a gy on abduction 

rainfall(Vietnam, heavy) climate(Vietnhm, subtropical) soil(Vietnarx~, red-soil) 

Figure 1. A plausible justification of example 1. 
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Table 5. The justifications of the deductive steps in figure 1. 

Deduction 1." 
V x, water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil) = grows(x, rice) 
water-in-soil(Vietnam, high) & temperature(Vietnam, warm) & soil(Vietnam, fertile-soil) 

grows(Vietnam, rice) 

Deduction 2: 
¥ x, climate(x, subtropical) ~ temperature(x, warm) 
climate(Vietnam, subtropical) 

temperature(Vietnam, warm) 

4.2. Deduction 

Two inference steps in figure 1 are the results of  deductions based on the deductive rules 
in table 2, as shown in table 5. 

4.3. Analogy 

Analogical inference is the process of transferring knowledge from a known entity S to 
a similar but less known entity T. S is called the source since it is the entity that serves 
as a source of knowledge, and T is called the target since it is the entity that receives the 
knowledge. The central intuition supporting this type of inference is that if two entities, 
S and T, are similar in some respects, then they could be similar in other respects as well. 
Therefore, if S has some feature, then one may infer by analogy that T has a similar feature. 

In the present version of  MTL we use a simple form of analogy based on plausible deter- 
minations defined as follows: 

P(x, y) - - >  Q(x, z) (P plausible determines Q) meaning 
¥S, Y T  {If 3y [P(S, y) & P(T, y)] then it is probably true that 3z [Q(S, z) & Q(T, z)]} 
where P and Q are first-order logical expressions. 

Otherwise stated, if the source S and the target T are characterized by the same feature 
P (i.e., P(S, Y0) = true and P(T, Y0) = true), then it is probably true that they are also 
characterized by a same feature Q. Therefore, if Q(S, Zo) = true, then one may infer by 
analogy that Q(T, z0) = true. 

We use the term "probably true" to express that the determination-based analogy we 
are considering is a weak method that does not guarantee the truth of the inferred knowledge. 
This is similar to the mutual dependency rules introduced by Collins and Michalski (1989) 
and Michalski (1993), but different from the determination rules introduced by Davies and 
Russell (1977), which guarantee the truth of the inferred knowledge. 

The analogical inference step in figure 1 was made by using the plausible determination 

rainfall(x, y) - - >  water-in-soil(x, z) 
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Analogy: 

rainfall(Philippine, heavy) ~ similar 

determines ~ similar 
water-in-soil(Philippine, high) ~ 

~ rainfallfVietnam, heavy) 

deterrnines ? 

~- water-in-soil(Vietnam, high) 

Figure 2. Hypothesizing Vietnam's water-in-soil through analogy. 

(i.e., the rainfall of an area determines the quantity of water in the soil of that area) as 
illustrated in figure 2. 

As can be seen in figure 2, the Philippines and Vietnam are similar from the point of 
view of "rainfall" (in both cases this is heavy). Therefore, one may infer by analogy that 
the two countries are also similar from the point of view of "water-in-soil." Thus, the system 
concluded that "water-in-soil(Vietnam, high)" from the fact "water-in-soil(Philippine, 
high) ." 

One should notice that a plausible determination rule indicates only what kind of knowl- 
edge could be transferred from a source to a target (knowledge about "water-in-soil," in 
the case of the considered determination), and in what conditions (the same type of "rain- 
fall"). It does not indicate, however, the exact relationship between the type of the rainfall 
(for instance, "heavy") and the quantity of water in soil ("high"). The exact relationship 
is indicated by the source entity ("Philippine"). Therefore, a plausible determination rule 
alone (without such a source entity) cannot be used in the inference process. 

The determination rules have been previously used in an explanation-based learning 
framework by Mahadevan (1989) and Widmer (1989). In MTL, however, these are only 
one way of implementing analogical reasoning. In general, the MTL method is intended 
to incorporate different forms of analogy, based on different kinds of similarities, such 
as similarities among causes, relations, and meta-relations (Carbonell, 1986; Gentner, 1983; 
Kedar-Cabelli, 1985; Kodratoff, 1990; Michalski, 1993; Porter, Bareiss, & Holte, 1990; 
Winston, 1986). 

4.4. Inductive prediction 

Inductive prediction consists in finding an inductive generalization of a set of examples 
of a concept and in applying it in order to predict whether a new instance is (or is not) 
a positive example of the concept. 

The generalization of the examples could be obtained through a process of empirical 
or constructive generalization. The generalization process is empirical if it involves only 
descriptors from the description space of the examples, and is constructive if it introduces 
new descriptors that do not belong to the description space of the examples. A detailed 
characterization of empirical and constructive generalization is given in Michalski (1993). 

In the current verison of MTL, we use an inductive generalization method that deter- 
mines the most specific generalization of a set of positive examples that does not cover 
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Table 6. Making an inference through inductive prediction. 

Examples from KB: 
soil(Greece, red-soil) :: > soil(Greece, fertile-soil) 
terrain-type(Egypt, fiat) & soil(Egypt, red-soil) :: > soil(Egypt, fertile-soil) 

Inductive generalization: 
v x, soil(x, red-soil) -* soil(x, fertile-soil) 
with the positive examples: (x <-Greece)(x < -Egypt) 

Predicted inference: 
soil(Vietnam, red-soil) ~ soil(Vietnam, fertile-soil) 

any of the negative examples. In general, the result will be a disjunction of conjunctive 
expressions. Moreover, the system is keeping all the examples in order to update the gen- 
eralization when new examples become available. 

One inference step in figure 1 was the result of inductive prediction. Indeed, in order 
to prove that "soil(Vietnam, fertile-soil)" is true, the system looked into the KB for exam- 
pies of "fertile-soil?' Then it inductively generalized them to a rule that was used to predict 
the inference step from figure 1, as indicated in table 6. 

It is important to stress that the system keeps the learned rule in the KB as an inductive 
generalization. Therefore, future applications of this rule are also inductive predictions. 
Let us also notice that the rule in table 6 was obtained through an empirical generalization 
process because it is expressed only in terms of  the descriptors used in the examples. 

4.5. Abduct ion  

In general, abduction is defined as follows (Josephson, 1991): 

D is a collection of  data; 
H explains D; 
No other hypothesis is able to explain D as well as H does; 

Therefore, H is probably true. 

In general, abduction involves two steps: generation of explanatory hypotheses and selec- 
tion of  the "best" hypothesis. 

In the current version of MTL we consider two forms of  abduction: 

a) tracing backward a deductive rule 
I f  D is to be explained and H = D, then hypothesize H. 
In particular, i f  H = H1 & H2 & . •. & Hn and HE & • •. & Hn is true, then hypothe- 
size H 1. 

b) hypothesizing an ISA relationship (i.e., dl ISA de) 
I f  P(a,  de) is to be explained and P(a,  dl) is true, then hypothesize that P(a,  d~) ~ 

e (a ,  de). 
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Table 7. Abducing an ISA relationship. 

Abduction: soil(Vietnam, red-soil) --, soil(Vietnam, fertile-soil) 

Choosing the "best" abductive hypothesis is the most difficult problem of abductive learn- 
ing. This is somewhat simplified in the context of MTL because the system is trying to 
make an inference step through as many plausible inference methods as possible, and abduc- 
tion is the last one to try (as shown in section 4.1). Therefore, if an inference "H ~ D" 
has been made through some other form of reasoning, abduction is used only to confirm 
this inference or to contradict it (i.e., to prove "H ~ C," where D & C = false). 

In the absence of the above criterion, the system chooses among the abductive hypotheses 
in the following order: 

- -  prefer the ISA abductions; 
- -  prefer to backtrace the rule H 1 & Ha & . . .  & Hn = D with the highest number of 

true antecedents; 
- -  prefer to backtrace the rule that has the highest number of known instances; 
- -  prefer the simplest hypothesis. 

In the case of the plausible justification tree in figure 1, the system made an ISA abduction 
confirming the previously made inductive prediction from table 6. Indeed, "soil(Vietnam, 
fertile-soil)" needed to be proven and "soil(Vietnam, red-soil)" was known to be true. 
Therefore, the system abduced the ISA relationship from table 7. 

4.6. Generalization of the plausible justtfication tree 

Once a justification tree was successfully created, the system analyzes the individual impli- 
cations associated with the elementary inference steps to determine if these implications 
could be locally generalized within the constraints of the KB that were used to make the 
inference steps. After the implications are generalized locally, the system unifies them glo- 
bally, and builds a generalized justification tree. This technique is an extension of the one 
elaborated by Mooney and Bennet (1986). The extension concerns the way individual impli- 
cations are generalized, by using the knowledge from which they were derived. The idea 
is to replace each implication A ~ B (or A = B) with the least general generalization 
of all the similar implications that could be obtained from the knowledge that produced 
it (Tecuci & Michalski, 1991b). 

A deductive implication is replaced by the deductive rule that generated it. This is a 
deductive generalization. 

An analogical implication is generalized by considering the knowledge used to derive 
it. In our example, the implication 

rainfall(Vietnam, heavy) --, water-in-soil(Vietnam, high) 

was obtained by analogy with "rainfall(Philippine, heavy)" and "water-in-soil(Philippine, 
high)," based on the determination 
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rainfall(x, y) - - >  water-in-soil(x, z). 

Because the system would infer "water-in-soil(x, high)" for any x such that "rainfall(x, 
heavy)," the analogical implication is generalized to 

¥, rainfall(x, heavy) ~ water-in-soil(x, high). 

This is a generalization based on analogy. 
An implication obtained through inductive prediction is generalized to the rule that pro- 

duced it. Therefore, the implication from table 6 obtained through inductive prediction 
would be replaced with the inductive generalization from table 6. 

An abductive implication obtained by tracing backward a deductive rule would be gener- 
alized to that rule. However, for an abduced ISA relationship there is no knowledge that 
could be used to generalize it. Therefore it would remain unchanged in the explanation 
structure. 

An implication obtained through several forms of reasoning is generalized to the least 
general expression that covers the generalizations corresponding to individual reasoning 
methods. Therefore, the implication from figure 1, which was obtained both through induc- 
tive prediction and abduction, is generalized to 

V x, soil(x, red-soil) - '  soil(x, fertile-soil) 

which is the least general generalization of the rule in table 6 and the abduced ISA rela- 
tionship in table 7. 

The generalization of the implications from figure 1 form the explanation structure shown 
in figure 3. 

The most general unification of the connection patterns in figure 3 is (xl = x2 = x3 = 
x4 = x). By making these unifications, one obtains the tree in figure 4, which represents 
the most general plausible generalization of the justification tree from figure 1. 

An interesting research direction suggested by the generalization of the plausible justifica- 
tion tree is to investigate different forms of generalizations, not only deductive and induc- 
tive, but possibly also analogical, abductive, etc. 

grows(x 1, rice) 

water-in-soil(xl, high) temperatur~l/x , warm) soil(xl, fertile-soil) 
water-in-so,x3, high) temperaturelx2, warm) soil(x4, fel~ile-soil) 

generalization breed on analogy deductive generalization inductive ge~ralization 
rainfall(x3, heavy) climate(x2, subtropicS) soil(x4, red-soil) 

Figure 3. Explanation structure. 
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water-in-soil(x,~ h i g h )  temperatu~(x, warm) soil(x, fe~-u d'le-soil) 

rainfall(x, heavy) climate(x, subtropical) soil(x, -soil) 

Figure 4. A generalization of the plausible justification tree from figure 1. 

4.7. Generalization of the KB 

As indicated in table 1, the system may improve the KB by learning different types of 
knowledge. 

In this case it generalized the KB by learning a new fact (by analogy) 

water-in-soil(Vietnam, high), 

positive examples of the determination 

rainfall(x, y) - - >  water-in-soil(x, z) 
(x < -Philippine, y <-heavy, z < -high), 
(x <-Vietnam, y <-heavy, z < -high). 

and a rule (by empirical generalization) 

v x, soil(x, red-soil) ~ soil(x, fertile-soil) 
with the positive examples: (x <-Greece), (x <-Egypt),  (x <-Vietnam). 

If example 1 is the only input, then the system also extracts several concept definitions 
from the trees in figures 1 and 4. For instance, it stores the leaves of the general tree in 
figure 4 as an operational definition of the concept "grows(x, rice):" 

rainfall(x, heavy) & climate(x, subtropical) & soil(x, red-soil) :: > grows(x, rice) 

It also stores the upper part of the tree as the abstract definition of "grows(x, rice):" 

water-in-soil(x, high) & temperature(x, warm) & soil(x, fertile-soil) :: > grows(x, rice) 

Finally, it stores the upper part of the tree in figure 1 as an abstraction of example 1: 

water-in-soil(Vietnam, high) & temperature(Vietnam, warm) & soil(Vietnam, fertile-soil) 
:: > grows(Vietnam, rice) 
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5. Learning from a new positive example 

5.1. Generalization of the plausible justtfication tree 

Let us now consider that the system receives example 2 in table 3. As indicated in section 
3, the system tries to generalize the current justification tree T u in figure 4 so as to cover 
a justification of the new positive example. At the same time, it may also generalize the 
KB if this is needed in order to entail the new T u. 

First of all, the system determines the instance of the general tree in figure 4, correspond- 
ing to example 2 in table 3 (see figure 5). 

Then the system analyzes the leaf predicates and the inference steps from this proof tree. 
If the leaf predicates are true and the inference steps are plausible, then the tree in figure 
5 is a plausible justification of the new positive example that is already covered by the 
general justification tree in figure 4. This ends the processing of the current example. 

However, the tree in figure 5 is not a correct justification of example 2 because the leaf 
predicate "soil(Madagascar, red-soil)" is not true. Therefore, the system uses the deductive 
rule "vx, soil(x, loamy) ~ soil(x, fertile-soil)" from table 2, and builds the plausible justi- 
fication tree in figure 6. 

It is important to notice that the plausible justification tree of example 2 has been built 
by using the plausible justification tree of the previous example. This not only facilitates 
the process of building the justification tree, but also the process of generalizing the general 

grows(Madagascar, rice) 

water-in-soil(Madagascar, high) temperature(Ma~lagascar, warm) soil(Madagascar, fertile-soil) 

ana~gy ded~tion inductive~rediction 
I I false I 

rainfall(Madagascar, heavy) climate(Madagascar, subtropical) soil(Madagascar, red-soil) 

Figure 5. Instance of the general justification tree corresponding to example 2 in table 3. 

grows(Madagascar, rice) 

water-in- s o i l ( M a ~ e 2  ~0fl)'~ 

rainfall(M?d~ g~as cgYar, heavy)climate(Mada~ gda s~cff~su,~tropical)I ~p~C~y~i!tc.i°~i.~)....~ 

Figure 6. Plausible justification of example 2 in table 3. 
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grows(xl, rice) 

water-in-soil(xl, high) t e m p e r a t u r e ~ e r t i l e - s o i l )  

~ ~ soil(x2, f~rfile-soil) ~, soil(x3, ~rtile-soil) 
rainfall(x 1, heavy) climate(xl, subtropical) 

soil(x2, red-soil) soil(x3, loamy) 

Figure 7. Explanation structure covering the plausible justification in figure 6. 

water- n-so  x, 

rainfall(x, heavy) climate(x, subtropical) soil(x, red-soil) soil(x, loamy) 

Figure & General justification tree covering the justifications of example 1 and example 2. 

tree Tu, as will be shown in the following. Moreover, it shows some similarities between 
our method and human learning, which involves the use of the explanations of previous 
examples in the process of building an explanation for a new example (Wisniewski & Medin, 
1991). 

The next step of the learning process is to build the explanation structure (shown in figure 
7), which has three general components to be unified: 

- -  the part of the tree in figure 4 that covers part of the tree in figure 6, 
- -  the part that is specific to the tree in figure 4, and 
- -  the generalization of the part of the tree in figure 6 that is specific to it (this generaliza- 

tion being made according to the procedures described in section 4.6). 

As the result of the unification of the connection patterns in figure 7, one obtains the 
general justification tree in figure 8 that covers the justification trees of both example 1 
and example 2. It should be noticed that, although the justification trees of individual positive 
examples are AND trees, the generalization of these trees is, in general, an AND~OR tree. 
This is also the case with the tree in figure 8. Indeed, "grows(x, rice)" is an AND node 
and "soil(x, fertile-soil)" is an OR node. 

5.2. Generalization of the KB 

The result of learning from example 2 consists of a new fact, 

water-in-soil(Madagascar, high), 
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and a new positive example of the determination "rainfall(x, y) - - >  water-in-soil(x, z)," 

(x < -Madagascar,  y < - h e a v y ,  z < - h i g h ) .  

I f  example 2 is the last example, then the system extracts the abstract and operational 
definitions of  "grows(x, rice)" from the tree in figure 8. In particular, the operational defini- 
tion would be 

terrain(x, flat) & climate(x, subtropical) & (soil(x, red-soil) or soil(x, loamy)) 
:: > grows(x, rice) 

6. Learning from negative examples 

6.1. Specialization o f  the general justification tree 

Let us now consider that the system receives Negative Example 3 from table 3. As indicated 
in section 3, the system tries to specialize the general justification tree Tu so as not to cover 
any justification of the negative example. At the same time, it may need to specialize the 
KB so as to entail the new T u while rejecting the previous Tu. 

Again the system builds the instance of the general justification tree in figure 8, corre- 
sponding to this new example (see figure 9). This tree would lead to the wrong conclusion 
that the current input is a positive example of "grows(x, rice)." Therefore, the tree must 
contain some false leaf facts or false implications. These have to be detected, and both 
the general justification tree in figure 8 and the KB should be specialized, so as no longer 
to contain them. One should notice that this is a limited specialization of the KB. Further 
specializing the KB so as no longer to entail any plausible justification of the negative ex- 
ample does not seem to be an obvious goal for a plausible reasoner that, by definition, 
may also reach some false conclusions. 

Because the tree in figure 9 is an AND/OR tree, one should make sure to prove that 
enough of the leaf facts and implications are false. For instance, "soil(Nepal, red-soil)" 
in figure 9 is false. However, because the node "soil(Nepal, fertile-soil)" is an OR node, 
the tree may still entail "grows(Nepal, rice)." Therefore, one should show that an implica- 
tion is false. 

grows(Nepal, rice) 

water-kn-soil(Nepal, high) temperature(Nepal, warm) soil(Nepal, fertile-soil) 

4 - a gy ded ion fal.s,e,, p, re~,go.n,, .a,e,~t~,n, , 
rainfall(Nepal, heavy) climatefNepal, subtropical) soutr~epat, reck-soul so~tt;~epat, ~oamy) 

Figure 9. The instance of the justification tree in figure 8, which is a wrong proof tree. 
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Deciding which is the false implication is a difficult problem. In the current version 
of MTL, the implications hypothesized to be false are selected according to the following 
criteria: 

- -  select the weakest implications (first abduction, then inductive prediction, then analogy, 
and lastly deduction); 

-- among the selected implications select those for which the corrections of the KB and of the 
general justification tree cause the minimum loss of coverage of the known instances; 

--  among the selected ones, select those for which the corrections produce a minimum 
increase in the complexity of the modified knowledge pieces; 

-- choose arbitrarily from the remaining hypotheses. 

In the considered example, hypothesizing which is the false implication was simple because 
the justification tree from figure 9 contains one analogical implication and three deductive 
implications. Therefore, the analogical implication was considered to be the false one: 

rainfall(Nepal, heavy) - / - >  water-in-soil(Nepal, high) (1) 

The corresponding implication from the current general justification tree is 

rainfall(x, heavy) ~ water-in-soil(x, high) (2) 

which was derived from the determination 

rainfall(x, y) - - >  water-in-soil(x, z) (3) 

Consequently, the system will try to specialize rule (3) so as no longer to cover implica- 
tion (1), by taking into account the known instances of rules (2) and (3): 

rainfall(Philippines, heavy) ~ water-in-soil(Philippines, high) 
rainfall(Vietnam, heavy) -~ water-in-soil(Vietnam, high) 
rainfall(Madagascar, heavy) -~ water-in-soil(Madagascar, high) 

together with the known properties of the involved objects (Nepal, Philippine, Vietnam, 
and Madagascar). 

The inductive learner of MTL will suggest, in this case, to specialize the determination 
(3) by adding the left-hand side predicate "terrain(x, fiat):" 

rainfall(x, y) & terrain(x, fiat) - - >  water-in-soil(x, z) 

The same specialization is applied to the implication (2). Thus, the general justification 
tree in figure 8 is specialized, as indicated in figure 10. 

6.2. Specialization of KB 

As a result of learning from the Negative Example 3, the system discovered a negative 
example of the plausible determination rule in table 2, and specialized it, by conjunctively 
adding a left-hand-side predicate: 
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water-in-soil(x, high) 

rainfall(x, heavy) terrain(x, flat) 

temperatu~(x, warm) 

climate(x, subtropical) soix,xi   ,   ooy l 
Figure 10. Specialization of the general justification tree. 

rainfall(x, y) & terrain(x, fiat) - - >  water-in-soil(x, z) 
with the positive examples: (x <-Philippine, y <-heavy, z <-high), 

(x <-Vietnam, y <-heavy, z < -high), 
(x <-Madagascar, y <-heavy z < -high). 

with the negative example: (x<-Nepal, y<-heavy).  

It has also specialized accordingly the general justification tree T u. 
Because Negative Example 3 is the last input example, the system extracts from the tree 

Tu the operational and abstract definitions indicated in table 4. 

7 .  B a s i c  c a s e s  

An important feature of the presented method is that it behaves as a single-strategy learning 
method whenever the applicability conditions of such a method are satsified, and the learn- 
ing task of MTL is specialized to the learning task of the single-strategy method. 

This feature is important because it shows that the MTL method is a generalization of 
the integrated learning strategies that not only takes advantage of the complementarity of 
the integrated strategies (as has been shown in the previous sections), but also inherits the 
features of these strategies. 

The next sections show that the MTL method may behave as 

- -  explanation-based learning, learning by abduction, or learning by analogy, when the 
input consists of only one positive example; 

-- multiple-example explanation-based generalization, when the input consists of a sequence 
of positive examples; 

- -  empirical or constructive inductive generalization when the input consists of a sequence 
of positive and negative examples. 

7.1. Explanation-based learning 

Let us suppose that, in addition to the rules in table 2, the KB also contains the following 
deductive rules: 

Yx, rainfall(x, heavy) = water-in-soil(x, high) 
Yx, soil(x, red-soil) = soil(x, fertile-soil) 
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In such a case, the justification trees in figures 1 and 4 become logical proofs, and the 
result of learning from example 1 is an operational definition of "grows(x, rice)," Thus, 
the MTL method reduces to explanation-based learning (DeJong & Mooney, 1986; Mitchell, 
Keller, & Kedar-Cabelli, 1986). 

7.2. Learning by abduction 

Let us now suppose that the relationship between "rainfall" and "water-in-soil" is not a 
determination, but a deductive implication 

Yx, rainfall(x, heavy) = water-in-soil(x, high) 

and the KB does not contain examples of the predicate "soil." In this case, in order to 
build the justification tree of example 1, the system needs only to create the explanatory 
hypothesis 

soil(Vietnam, red-soil) ~ soil(Vietnam, fertile-soil) 

as shown in figure 11. Therefore, the result of learning is the created explanatory hypothesis, 
and the MTL method reduces to abductive learning. 

7.3. Learning by analogy 

If the only background knowledge that is related to example 1 is 

Facts: 
rainfall(Philippine, heavy), 
water-in-soil(Philippine, high) 

Determination: 
rainfall(x, y) - - >  water-in-soil(x, z) 

then the system can only infer that "water-in-soil(Vietnam, high)," by analogy with "water- 
in-soil(Philippine high)," as shown in figure 2. Thus, in this case, the MTL method reduces 
to analogical learning. 

water-in- soil~Vietnam, high) 

rainfall(Vietnam, heavy) 

temperature(~iemam, warm) 

climate(Vietnam, subtropical) 

soil(Vietnan% fertile-soil) 
"9 abduction 

soil(Vietnan~, red-soil) 

Figure 11. Using abduction to build a justification tree of the input. 
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7.4. Multiple-example explanation-based generalization 

If the input of the system consists only of positive examples that are deductively entailed 
by the KB, then the presented MTL method behaves as the multiple example explanation- 
based generalization (mEBG) that was developed, among others, by Hirsh (1989), Kedar- 
Cabelli (1985), and Pazzani (1988). 

7.5. Empirical and constructive inductive generalization 

Finally, let us assume that the KB does not contain the determination and the deductive 
rules shown in table 2, and the input consists of all the examples from table 3. In this case, 
each input is new, neither confirming nor contradicting the KB. Therefore, each example 
is interpreted as representing a single inference step that define a tree, as shown in the 
top part of figure 12. 

The MTL method will compute the least general generalization of the trees correspond- 
ing to the positive examples, a generalization that does not cover the trees corresponding to 
the negative examples (see the bottom of figure 12). The result of learning is therefore an 
operational definition of "grows(x, rice)" that represents the common properties of the posi- 
tive examples that are not properties of the negative examples. Thus, in this case, the MTL 
method behaves like an empirical or constructive inductive generalization (Michalski, 1993). 

Positive Example: grows(Vietn , rice) 

rainfall(Vie~am, heavy) / [ ~ location(Vietnam, SE-Asia) 
~ a m ,  subtropical) ~ soil(Vietnam, red-soil) 

terrain(Vietnam, flat) 

Positive Example: grows(Madagascar, rice) 

rainfall ( M a d a g ~ a c i f i c - O c e a n )  
~ o '  (Mal dag~scar, loamy) 

terrain(Madagascar, flat) 

Negative E x a ~  

rainfall(Nep"~, heavy) J [ ~ location(Nepal, Central-Asia 
~ ,  tro ipcal 1 )  soil(Nepal, loamy) 

terrain(Nepal, abrupt) 

Generalization: grows(x, rice) 

r a i n f a l l ( ~ o r  soil(x, loamy) 

Figure 12. Empirical (or constructive) inductive generalization of examples. 
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8. D i s c u s s i o n  a n d  c o n c l u s i o n  

In this article we have proposed a general framework for multistrategy learning that is based 
on a dynamic integration of the elementary inference steps employed by the single-strategy 
learners. This framework was illustrated with a specific multistrategy task-adaptive learning 
(MTL) method. There are several dimensions of generality of this framework. First of all, 
it is extensible in that new types of inference, and therefore learning strategies, could naturally 
be added to the MTL method. Secondly, it allows the use of different search strategies 
in the process of building plausible justification trees. The strategy employed in the current 
MTL method is a uniform-cost search of an AND-OR tree. However, one could employ 
any other search strategy (not only exhaustive but also heuristic). Thirdly, it is general 
with respect to the knowledge representation, allowing learning from a great variety of 
knowledge pieces. Finally, it is not only a framework for the integration of single-strategy 
learning methods, but also for the generalization of these strategies, due to the following 
reasons: 

- -  the learning task subsumes the learning tasks of the integrated learning strategies; 
-- the MTL method behaves as a single-strategy learning method, whenever the applicability 

conditions for such learning are satisfied. 

This approach to multistrategy learning has also revealed a new research direction in 
the theory of generalization by suggesting that a certain type of generalization may be asso- 
ciated with each type of inference. Consequently, one could perform not only deductive 
and inductive generalizations, but also generalizations based on analogy, on abduction, etc. 

The presented framework and method is also an illustration of a synergistic combination 
of learning strategies. Indeed, the MTL method may learn in situations in which none of 
the integrated single-strategy methods would be sufficient. 

Obviously, humans learn through a kind of multistrategy method. Although we do not 
claim that the presented method is a model of human learning, some features are similar 
to those employed by humans. These are the building of the justification tree of an example 
by using the justification trees of the previous examples (Wisniewski & Medin, 1991), and 
the use of multiple lines of reasoning in the justification of a plausible inference step (Collins 
& Michalski, 1989). 

There are also several limitations and necessary developments of the presented framework 
and method that need to be addressed by the future research. One limitation has already 
been mentioned in section 6.1: during learning from a negative example, the KB is not 
specialized enough to be able to guarantee that it no longer entails any justification tree 
that would prove that the example is positive. Also, the presented method does not yet 
deal with noisy input. This is an intrinsically difficult problem for a plausible reasoner 
that may itseif make wrong inferences. However, because the MTL method is a generalization 
of methods that could deal with noisy input, it inherits these capabilities. For instance, 
as in EBL, it may reject as noisy a negative example if it can build a deductive proof show- 
ing that the example is positive. Or, it may reject the negative example if the required 
specializations of the KB would determine a significant loss of coverage of instances of 
the knowledge pieces to be specialized. 
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The present versions of  the integrated learning strategies (especially learning by analogy) 
are simple and should be replaced by more powerful ones. Also new symbolic and even 
subsymbolic methods (as, for instance, reinforcement learning or neural network learning) 
should be integrated into the MTL method. This will also require elaboration of generaliza- 
tion techniques specific to each new strategy. The method may also be extended so that 
to learn also from other types of input (like general pieces of knowledge, or input already 
known). 

Another important research direction regards the extension and the application of the 
MTL method to the problem of knowledge acqusition from a human expert. In this case, 
the method would be extended with an important interactive component that would allow 
the system to ask different questions to the human expert, in order to decide on the best 
learning actions to take (Tecuci, 1991, 1992). In general, the human expert would be asked 
to solve the problems that are intrinsically difficult for a learning system such as the credit- 

assignment problem (i.e., assigning credit or blame to the individual decisions that led 
to some overall result) and the new terms problem (i.e., extending the representation language 
with new terms when this cannot represent the concept or the rule to be learned). 
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