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Abstract. Given a semantic constraint specified by a logical formula,
and a syntactic constraint specified by a context-free grammar, the
Syntax-Guided Synthesis (SyGuS) problem is to find an expression that
satisfies both the syntactic and semantic constraints. An enumerative
approach to solve this problem is to systematically generate all expres-
sions from the syntactic space with some pruning, and has proved to
be surprisingly competitive in the newly started competition of SyGuS

solvers. It performs well on small to medium sized benchmarks, produces
succinct expressions, and has the ability to generalize from input-output
examples. However, its performance degrades drastically with the size
of the smallest solution. To overcome this limitation, in this paper we
propose an alternative approach to solve SyGuS instances.

The key idea is to employ a divide-and-conquer approach by sepa-
rately enumerating (a) smaller expressions that are correct on subsets of
inputs, and (b) predicates that distinguish these subsets. These expres-
sions and predicates are then combined using decision trees to obtain an
expression that is correct on all inputs. We view the problem of com-
bining expressions and predicates as a multi-label decision tree learning
problem. We propose a novel technique of associating a probability dis-
tribution over the set of labels that a sample can be labeled with. This
enables us to use standard information-gain based heuristics to learn
compact decision trees.

We report a prototype implementation eusolver. Our tool is able
to match the running times and the succinctness of solutions of both
standard enumerative solver and the latest white-box solvers on most
benchmarks from the SyGuS competition. In the 2016 edition of the
SyGuS competition, eusolver placed first in the general track and the
programming-by-examples track, and placed second in the linear integer
arithmetic track.

1 Introduction

The field of program synthesis relates to automated techniques that attempt to
automatically generate programs from requirements that a programmer writes.
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It has been applied to various domains such as program completion [21], program
optimization, and automatic generation of programs from input-output exam-
ples [7], among others. Recently, Syntax-Guided Synthesis (SyGuS) has been pro-
posed as a back-end exchange format and enabling technology for program syn-
thesis [2]. The aim is to allow experts from different domains to model their syn-
thesis problems as SyGuS instances, and leverage general purpose SyGuS solvers.

In the SyGuS approach, a synthesis task is specified using restrictions on both
the form (syntax) and function (semantics) of the program to be synthesized:
(a) The syntactic restrictions are given in terms of a context-free grammar
from which a solution program may be drawn. (b) The semantic restrictions
are encoded into a specification as an SMT formula. Most SyGuS solvers operate
in two cooperating phases: a learning phase in which a candidate program is
proposed, and a verification phase in which the proposal is checked against the
specification. SyGuS solvers can be broadly categorized into two kinds: (a) black-
box solvers, where the learning phase does not deal with the specification directly,
but learns from constraints on how a potential solution should behave on sample
inputs points [2,18,23]; and (b) white-box solvers, which attempt learn directly
from the specification, generally using constraint solving techniques [3,17].

The enumerative solver [2] placed first and second in the SyGuS competition
2014 and 2015, respectively. It maintains a set of concrete input points, and in
each iteration attempts to produce an expression that is correct on these concrete
inputs. It does so by enumerating expressions from the grammar and checking if
they are correct on the input points, while pruning away expressions that behave
equivalently to already generated expressions. If an expression that is correct on
the input points is found, it is verified against the full specification. If it is
incorrect, a counter-example point is found and added to the set of input points.

Though the enumerative strategy works well when the solutions have small
sizes, it does not scale well. The time take to explore all potential solutions up to
a given size grows exponentially with the size. To overcome this scalability issue,
we introduce a divide-and-conquer enumerative algorithm.

The divide-and-conquer enumerative approach is based on this insight: while
the full solution expression to the synthesis problem may be large, the important
individual parts are small. The individual parts we refer to here are: (a) terms
which serve as the return value for the solution, and (b) predicates which serve
as the conditionals that choose which term is the actual return value for a given
input. For example, in the expression if x ≤ y then y else x, the terms are x and
y, and the predicate is x ≤ y. In this example, although the full expression has
size 6, the individual terms have size 1 each, and the predicate has size 3. Hence,
the divide-and-conquer enumerative approach only enumerates terms and pred-
icates separately and attempts to combine them into a conditional expression.

To combine the different parts of a solution into a conditional expression, we
use the technique of learning decision trees [4,16]. The input points maintained
by the enumerative algorithm serve as the samples, the predicates enumerated
serve as the attributes, and the terms serve as the labels. A term t is a valid
label for a point pt if t is correct for pt. We use a simple multi-label decision tree
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learning algorithm to learn a decision tree that classifies the samples soundly,
i.e., for each point, following the edges corresponding to the attribute values
(i.e., predicates) leads to a label (i.e., term) which is correct for the point.

To enhance the quality of the solutions obtained, we extend the basic divide-
and-conquer algorithm to be an anytime algorithm, i.e., the algorithm does not
stop when the first solution is found, and instead continues enumerating terms
and predicates in an attempt to produce more compact solutions. Decomposing
the verification queries into branch-level queries helps in faster convergence.

Evaluation. We implemented the proposed algorithm in a tool eusolver and
evaluated it on benchmarks from the SyGuS competition. The tool was able to per-
form on par or better than existing solvers in most tracks of the 2016 SyGuS com-
petition, placing first in the general and programming-by-example tracks, and
second in the linear-integer-arithmetic track. In the general and linear-integer-
arithmetic tracks, eusolver’s performance is comparable to the state-of-the-art
solvers. However, in the programming-by-example track, eusolver performs
exceptionally well, solving 787 of the 852 benchmarks, while no other tool solved
more than 39. This exceptional performance is due to eusolver being able to
generalize from examples like other enumerative approaches, while also being
able to scale to larger solution sizes due to the divide-and-conquer approach.

Further, to test the anytime extension, we run eusolver on 50 ICFP bench-
marks with and without the extension. Note that no previous solver has been
able to solve these ICFP benchmarks. We observed that the anytime extension
of the algorithm was able to produce more compact solutions in 18 cases.

2 Illustrative Example

Fig. 1. Grammar for linear integer
expressions

Consider a synthesis task to generate an
expression e such that: (a) e is generated by
the grammar from Fig. 1. (b) e when substi-
tuted for f , in the specification Φ, renders it
true, where Φ ≡ ∀x, y : f(x, y) ≥ x∧f(x, y) ≥
y ∧ (f(x, y) = x ∨ f(x, y) = y). Note that the
specification constrains f(x, y) to return maximum of x and y. Here, the smallest
solution expression is if x ≤ y then y else x.

Basic Enumerative Strategy. We explain the basic enumerative algo-
rithm [23] using Table 1. The enumerative algorithm maintains a set of input
points pts (initially empty), and proceeds in rounds. In each round, it proposes
a candidate solution that is correct on all of pts. If this candidate is correct on all
inputs, it is returned. Otherwise, a counter-example input point is added to pts.

The algorithm generates the candidate solution expression by enumerating
expressions generated by the grammar in order of size. In the first round, the
candidate expression proposed is the first expression generated (the expression
0) as pts is empty. Attempting to verify the correctness of this expression, yields
a counter-example point {x �→ 1, y �→ 0}. In the second round, the expression
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Table 1. Example run of the basic enumerative algorithm

Round no Enumerated expressions Candidate expression Point added

1 0 0 {x �→ 1, y �→ 0}
2 0, 1 1 {x �→ 0, y �→ 2}
3 0, 1, x, y, . . ., x + y, x + y {x �→ 1, y �→ 2}
. . .

n 0, . . . , if x ≤ y then y else x if x ≤ y then y else x

0 is incorrect on the point, and the next expression to be correct on all of
pts (the expression 1) is proposed. This fails to verify as well, and yields the
counter-example point {x �→ 0, y �→ 2}. In the third round, all expressions of
size 1 are incorrect on at least one point in pts, and the algorithm moves on
to enumerate larger expressions. After several rounds, the algorithm eventually
generates the expression if x ≤ y then y else x which the SMT solver verifies to
be correct. In the full run, the basic enumerative strategy (algorithm presented
in Sect. 3.1) generates a large number (in this case, hundreds) of expressions
before generating the correct expression. In general, the number of generated
expressions grows exponentially with the size of the smallest correct expression.
Thus, the enumerative solver fails to scale to large solution sizes.

Divide and Conquer Enumeration. In the above example, though the solu-
tion is large, the individual components (terms x and y, and predicate x ≤ y) are
rather small and can be quickly enumerated. The divide-and-conquer approach
enumerates terms and predicates separately, and attempts to combine them into
a conditional expression. We explain this idea using an example (see Table 2).

Similar to the basic algorithm, the divide-and-conquer algorithm maintains
a set of points pts, and works in rounds. The first two rounds are similar to
the run of the basic algorithm. In contrast to the basic algorithm, the enumer-
ation stops in the third round after 0, 1, x, and y are enumerated – the terms
1 and y are correct on {x �→ 1, y �→ 0} and {x �→ 0, y �→ 2}, respectively, and
thus together “cover” all of pts. Now, to propose an expression, the algorithm
starts enumerating predicates until it finds a sufficient number of predicates to

Table 2. Example run of the divide-and-conquer enumerative algorithm

Round no Enumerated
terms

Enumerated
predicates

Candidate
expression

Point added

1 0 0 ∅ {x �→ 1, y �→ 0}
2 0, 1 1 ∅ {x �→ 0, y �→ 2}
3 0, 1, x, y 0 ≤ 0, . . . 0 ≤ y,

1 ≤ 0, . . . 1 ≤ y
if 1 ≤ y then y else 1 {x �→ 2, y �→ 0}

4 0, 1, x, y 0 ≤ 0, . . .x ≤ y if x ≤ y then y else x



Scaling Enumerative Program Synthesis via Divide and Conquer 323

generate a conditional expression using the previously enumerated terms. The
terms and predicates are combined into conditional expression by learning deci-
sion trees (see Sect. 4.2). The candidate expression proposed in the third round
is if 1 ≤ y then y else x and the counter-example generated is {x �→ 2, y �→ 0}
(see table). Proceeding further, in the fourth round, the correct expression is
generated. Note that this approach only generates 4 terms and 11 predicates in
contrast to the basic approach which generates hundreds of expressions.

3 Problem Statement and Background

Let us fix the function to be synthesized f and its formal parameters params.
We write range(f) to denote the range of f . The term point denotes a valuation
of params, i.e., a point is an input to f .

Example 1. For the running example in this section, we consider a function to
be synthesized f of type Z×Z → Z with the formal parameters params = {x, y}.
Points are valuations of x and y. For example, {x �→ 1, y �→ 2} is a point.

Specifications. SMT formulae have become the standard formalism for speci-
fying semantic constraints for synthesis. In this paper, we fix an arbitrary theory
T and denote by T [symbols], the set of T terms over the set of symbols symbols.
A specification Φ is a logical formula in a theory T over standard theory symbols
and the function to be synthesized f . An expression e satisfies Φ (e |= Φ) if
instantiating the function to be synthesized f by e makes Φ valid.

Example 2. Continuing the running example, we define a specification Φ ≡
∀x, y : f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ f(x, y) = x ∨ f(x, y) = y. The specifica-
tion states that f maps each pair x and y to a value that is at least as great as
each of them and equal to one of them, i.e., the maximum of x and y.

Grammars. An expression grammar G is a tuple 〈N , S,R〉 where: (a) the set
N is a set of non-terminal symbols, (b) the non-terminal S ∈ N is the initial
non-terminal, (c) R ⊆ N ×T [N ∪params] is a finite set of rewrite rules that map
N to T -expressions over non-terminals and formal parameters. We say that an
expression e rewrites to an incomplete expression e′ (written as e →G e′) if there
exists a rule R = (N, e′′) ∈ R and e′ is obtained by replacing one occurrence of
N in e by e′′. Let →∗

G be the transitive closure of →. We say that an expression
e ∈ T [params] is generated by the grammar G (written as e ∈ [[G]]) if S →∗

G e.
Note that we implicitly assume that all terms generated by the grammar have
the right type, i.e., are of the type range(f).

Example 3. For the running example, we choose the following grammar. The
set of non-terminals is given by N = {S, T,C} with the initial non-terminal
being S. The rules of this grammar are {(S, T ), (S, if C then S else S)} ∪
{(T, x), (T, y), (T, 1), (T, 0), (T, T +T )}∪{(C, T ≤ T ), (C,C ∧C), (C,¬C)}. This
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is the standard linear integer arithmetic grammar used for many SyGuS problems.
This grammar is equivalent to the one from Fig. 1.

The Syntax-Guided Synthesis Problem. An instance of the SyGuS problem
is given by a pair 〈Φ,G〉 of specification and grammar. An expression e is a
solution to the instance if e |= Φ and e ∈ [[G]].

Example 4. Continuing the running example, for the specification Φ from Exam-
ple 2 and the grammar from Example 3, one of the solution expressions is given
by f(x, y) ≡ if x ≤ y then y else x.

From our definitions, it is clear that we restrict ourselves to a version of the
SyGuS problem where there is exactly one unknown function to be synthesized,
and the grammar does not contain let rules. Further, we assume that our speci-
fications are point-wise. Intuitively, a specification is point-wise, if it only relates
an input point to its output, and not the outputs of different inputs.

Here, we use a simple syntactic notion of point-wise specifications, which we
call plain separability, for convenience. However, our techniques can be general-
ized to any notion of point-wise specifications. Formally, we say that a specifi-
cation is plainly separable if it can be rewritten into a conjunctive normal form
where each clause is either (a) a tautology, or (b) each appearing application of
the function to be synthesized f has the same arguments.

Example 5. The specification for our running example Φ ≡ f(x, y) ≥ x ∧
f(x, y) ≥ y ∧ f(x, y) = x ∨ f(x, y) = y is plainly separable. For exam-
ple, this implies that the value of f(1, 2) can be chosen irrespective of the
value of f on any other point. On the other hand, a specification such as
f(x, y) = 1 ⇒ f(x + 1, y) = 1 is neither plainly separable nor point-wise. The
value of f(1, 2) cannot be chosen independently of the value of f(0, 2).

The above restrictions make the SyGuS problem significantly easier. However,
a large fraction of problems do fall into this class. Several previous works address
this class of problem (see, for example, [3,13,17]).

Plainly separable specifications allow us to define the notion of an expression
e satisfying a specification Φ on a point pt. Formally, we say that e |= Φ �
pt if e satisfies the specification obtained by replacing each clause C in Φ by
PreC(pt) ⇒ C. Here, the premise PreC(pt) is given by

∧
p∈params ArgC(p) = pt[p]

where ArgC(p) is the actual argument corresponding to the formal parameter p
in the unique invocation of f that occurs in C. We extend this definition to sets
of points as follows: e |= Φ � pts ⇔

∧
pt∈pts e |= Φ � pt.

Example 6. For the specification Φ of the running example, the function given
by f(x, y) ≡ x + y is correct on the point {x �→ 0, y �→ 3} and incorrect on the
point {x �→ 1, y �→ 2}
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3.1 The Enumerative Solver

Algorithm 1 Enumerative Solver
Require: Grammar G = 〈N , S, R〉
Require: Specification Φ
Ensure: e s.t. e ∈ [[G]] ∧ e |= Φ

1: pts ← ∅
2: while true do
3: for e ∈ enumerate(G, pts) do

4: if e �|= Φ � pts then continue

5: cexpt ← verify(e, Φ)
6: if cexpt = ⊥ then return e

7: pts ← pts ∪ cexpt

The principal idea behind the enumera-
tive solver is to enumerate all expressions
from the given syntax with some pruning.
Only expressions that are distinct with
respect to a set of concrete input points
are enumerated.

The full pseudo-code is given in Algo-
rithm1. Initially, the set of points is set
to be empty at line 1. In each iteration,
the algorithm calls the enumerate pro-
cedure1 which returns the next element

from a (possibly infinite) list of expressions such that no two expressions in this
list evaluate to the same values at every point pt ∈ pts (line 3). Every expression
e in this list is then verified, first on the set of points (line 4) and then fully
(line 5). If the expression e is correct, it is returned (line 6). Otherwise, we pick
a counter-example input point (i.e., an input on which e is incorrect) and add
it to the set of points and repeat (line 7). A full description of the enumerate
procedure can be found in [2] and [23].

Theorem 1. Given a SyGuS instance (Φ,G) with at least one solution expres-
sion, Algorithm1 terminates and returns the smallest solution expression.

Features and Limitations. The enumerative algorithm performs surprisingly
well, considering its simplicity, on small to medium sized benchmarks (see [2,23]).
Further, due to the guarantee of Theorem1 that the enumerative approach pro-
duces small solutions, the algorithm is capable of generalizing from specifications
that are input-output examples. However, enumeration quickly fails to scale with
growing size of solutions. The time necessary for the enumerative solver to gen-
erate all expressions up to a given size grows exponentially with the size.

4 The Divide-and-Conquer Enumeration Algorithm

Conditional Expression Grammars. We introduce conditional expression
grammars that separate an expression grammar into two grammars that gener-
ate: (a) the return value expression, and (b) the conditionals that decide which
return value is chosen. These generated return values (terms) and conditionals
(predicates) are combined using if-then-else conditional operators.

A conditional expression grammar is a pair of grammars 〈GT , GP 〉 where:
(a) the term grammar GT is an expression grammar generating terms of type
range(f); and (b) the predicate grammar GP is an expression grammar generating

1 Note that enumerate is a coprocedure. Unfamiliar readers may assume that each
call to enumerate returns the next expression from an infinite list of expressions.
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boolean terms. The set of expressions [[〈GT , GP 〉]] generated by 〈GT , GP 〉 is the
smallest set of expressions T [params] such that: (a) [[GT ]] ⊆ [[〈GT , GP 〉]], and (b)
e1, e2 ∈ [[〈GT , GP 〉]] ∧ p ∈ [[GP ]] =⇒ if p then e1 else e2 ∈ [[〈GT , GP 〉]]. Most
commonly occurring SyGuS grammars in practice can be rewritten as conditional
expression grammars automatically.

Example 7. The grammar from Example 3 is easily decomposed into a condi-
tional expression grammar 〈GT , GP 〉 where: (a) the term grammar GT contains
only the non-terminal T , and the rules for rewriting T . (b) the predicate gram-
mar GP contains the two non-terminals {T,C} and the associated rules.

Decision Trees. We use the concept of decision trees from machine learning
literature to model conditional expressions. Informally, a decision tree DT maps
samples to labels. Each internal node in a decision tree contains an attribute
which may either hold or not for each sample, and each leaf node contains a
label. In our setting, labels are terms, attributes are predicates, and samples are
points.

To compute the label for a given point, we follow a path from the root of the
decision tree to a leaf, taking the left (resp. right) child at each internal node if
the attribute holds (resp. does not hold) for the sample. The required label is
the label at the leaf. We do not formally define decision trees, but instead refer
the reader to a standard text-book (see, for example, [4]).

Example 8. Figure 2 contains a decision tree in our setting, i.e., with attributes
being predicates and labels being terms. To compute the associated label with
the point pt ≡ {x �→ 2, y �→ 0}: (a) we examine the predicate at the root node,
i.e., y ≤ 0 and follow the left child as the predicate hold for pt; (b) examine the
predicate at the left child of the root node, i.e., x ≤ y and follow the right child
as it does not hold; and (c) return the label of the leaf x + y.

Fig. 2. Sample decision tree

The expression expr(DT ) corresponding to a deci-
sion tree DT is defined as: (a) the label of the
root node if the tree is a single leaf node; and (b)
if p then expr(DTL) else expr(DTY ) where p is
the attribute of the root node, and DTL and DTY

are the left and right children, otherwise.
Decision tree learning is a technique that learns

a decision tree from a given set of samples. A decision tree learning procedure
is given: (a) a set of samples (points), (b) a set of labels (terms), along with a
function that maps a label to the subset of samples which it covers; and (c) a
set of attributes (predicates). A sound decision tree learning algorithm returns
a decision tree DT that classifies the points correctly, i.e., for every sample pt,
the label associated with it by the decision tree covers the point. We use the
notation LearnDT to denote a generic, sound decision tree learning procedure.
The exact procedure we use for decision tree learning is presented in Sect. 4.2.
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4.1 Algorithm

Algorithm 2 presents the full divide-and-conquer enumeration algorithm for syn-
thesis. Like Algorithm 1, the divide-and-conquer algorithm maintains a set of
points pts, and in each iteration: (a) computes a candidate solution expression
e (lines 3–10); (b) verifies and returns e if it is correct (lines 10 and 11); and (c)
otherwise, adds the counter-example point into the set pts (line 12).

However, the key differences between Algorithms 2 and 1 are in the way
the candidate solution expression e is generated. The generation of candidate
expressions is accomplished in two steps.

Term Solving. Instead of searching for a single candidate expression that is
correct on all points in pts, Algorithm 2 maintains a set of candidate terms
terms. We say that a term t covers a point pt ∈ pts if t |= Φ � pt. The set of
points that a term covers is computed and stored in cover[t] (line 15). Note that
the algorithm does not store terms that cover the same set of points as already
generated terms (line 16). When the set of terms terms covers all the points in
pts, i.e., for each pt ∈ pts, there is at least one term that is correct on pt, the
term enumeration is stopped (while-loop condition in line 4).

Unification and Decision Tree Learning. In the next step (lines 6–9), we
generate a set of predicates preds that will be used as conditionals to combine the
terms from terms into if-then-else expressions. In each iteration, we attempt to
learn a decision tree that correctly labels each point pt ∈ pts with a term t such
that pt ∈ cover[t]. If such a decision tree DT exists, the conditional expression
expr(DT ) is correct on all points, i.e., expr(DT ) |= Φ � pts. If a decision tree does
not exist, we generate additional terms and predicates and retry.

Algorithm 2 DCSolve: The divide-and-conquer enumeration algorithm
Require: Conditional expression grammar G = 〈GT , GP 〉
Require: Specification Φ
Ensure: Expression e s.t. e ∈ [[G]] ∧ e |= Φ
1: pts ← ∅
2: while true do
3: terms ← ∅; preds ← ∅; cover ← ∅;DT = ⊥
4: while

⋃
t∈terms cover[t] �= pts do � Term solver

5: terms ← terms ∪ NextDistinctTerm(pts, terms, cover)

6: while DT = ⊥ do � Unifier

7: terms ← terms ∪ NextDistinctTerm(pts, terms, cover)
8: preds ← preds ∪ enumerate(GP , pts)
9: DT ← LearnDT(terms, preds)

10: e ← expr(DT ); cexpt ← verify(e, Φ) � Verifier

11: if cexpt = ⊥ then return e

12: pts ← pts ∪ cexpt

13: function NextDistinctTerm(pts, terms, cover)
14: while True do

15: t ← enumerate(GT , pts); cover[t] ← {pt | pt ∈ pts ∧ t |= Φ � pt}
16: if ∀t′ ∈ terms : cover[t] �= cover[t′] then return t
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Remark 1. In line 7, we generate additional terms even though terms is guar-
anteed to contain terms that cover all points. This is required to achieve semi-
completeness, i.e., without this, the algorithm might not find a solution even if
one exists.

Theorem 2. Algorithm2 is sound for the SyGuS problem. Further, assuming a
sound and complete LearnDT procedure, if there exists a solution expression,
Algorithm2 is guaranteed to find it.

The proof of the above theorem is similar to the proof of soundness and partial-
completeness for the original enumerative solver. The only additional assumption
is that the LearnDT decision tree learning procedure will return a decision tree
if one exists. We present such a procedure in the next section.

4.2 Decision Tree Learning

The standard multi-label decision tree learning algorithm (based on ID3 [16]) is
presented in Algorithm 3. The algorithm first checks if there exists a single label
(i.e., term) t that applies to all the points (line1). If so, it returns a decision
tree with only a leaf node whose label is t (line 1). Otherwise, it picks the best
predicate p to split on based on some heuristic (line 3). If no predicates are left,
there exists no decision tree, and the algorithm returns ⊥ (line 2). Otherwise, it
recursively computes the left and right sub-trees for the set of points on which
p holds and does not hold, respectively (lines 4 and 5). The final decision tree
is returned as a tree with a root (with attribute p), and positive and negative
edges to the roots of the left and right sub-trees, respectively.

Algorithm 3 Learning Decision Trees
Require: pts, terms, cover, preds
Ensure: Decision tree DT

1: if ∃t : pts ⊆ cover[t] then return LeafNode[L ← t]

2: if preds = ∅ then return ⊥
3: p ← Pick predicate from preds
4: L ← LearnDT({pt | p[pt]}, terms, cover, preds \ {p})
5: R ← LearnDT({pt | ¬p[pt]}, terms, cover, preds \ {p})
6: return InternalNode[A ← p, left ← L, right ← R]

Information-Gain Heuristic. The choice of the predicate at line 3 influences
the size of the decision tree learned by Algorithm3, and hence, in our setting,
the size of the solution expression generated by Algorithm2. We use the classical
information gain heuristic to pick the predicates. Informally, the information
gain heuristic treats the label as a random variable, and chooses to split on
the attribute knowing whose value will reveal the most information about the
label. We do not describe all aspects of computing information gain, but refer
the reader to any standard textbook on machine learning [4]. Given a set of



Scaling Enumerative Program Synthesis via Divide and Conquer 329

points pts′ ⊆ pts the entropy H(pts′) is defined in terms of the probability
Ppts′(label(pt) = t) of a point pt ∈ pt′ being labeled with the term t as

H(pts′) = −
∑

t

Ppts′(label(pt) = t) · log2 Ppts′(label(pt) = t)

Further, given a predicate p ∈ preds, the information gain of p is defined as

G(p) =
|ptsy|
|pts| · H(ptsy) +

|ptsn|
|pts| · H(ptsn)

where ptsy = {pt ∈ pts | p[pt]} and ptsn = {pt ∈ pts | ¬p[pt]}. Hence, at line 3,
we compute the value G(p) for each predicate in preds, and pick the one which
maximizes G(p).

We use conditional probabilities Ppts′(label(pt) = t | pt) to compute the prob-
ability Ppts′(label(pt) = t). The assumption we make about the prior distribution
is that the likelihood of a given point pt being labeled by a given term t is pro-
portional to the number of points in cover[t]. Formally, we define:

Ppts′(label(pt) = t | pt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if pt /∈ cover[t]
|cover[t] ∩ pts′|

∑

t′|pt∈cover[t′]

|cover[t′] ∩ pts′|
if pt ∈ cover[t]

Now, the unconditional probability of an arbitrary point being labeled with t is
given by Ppts′(label(pt) = t) =

∑
pt Ppts′(label(pt) = t | pt) · Ppts′(pt). Assuming a

uniform distribution for picking points, we have that

Ppts′(label(pt) = t) =
1

|pts| ·
∑

pt

Ppts′(label(pt) = t | pt)

4.3 Extensions and Optimizations

The Anytime Extension. Algorithm 2 stops enumeration of terms and pred-
icates as soon as it finds a single solution to the synthesis problem. However,
there are cases where due to the lack of sufficiently good predicates, the decision
tree and the resulting solution can be large (see Example 9). Instead, we can
let the algorithm continue by generating more terms and predicates. This could
lead to different, potentially smaller decision trees and solutions.

Example 9. Given the specification (x ≥ 0∧y ≥ 0) ⇒ (f(x, y) = 1 ⇔ x+y ≤ 2)
and a run of Algorithm2 where the terms 0 and 1 are generated; the terms fully
cover any set of points for this specification. Over a sequence of iterations the
predicates are generated in order of size. Now, the predicates generated of size 3
include x = 0, x = 1, x = 2, y ≤ 2, y ≤ 1, and y ≤ 0. With these predicates, the
decision tree depicted in Fig. 3a is learned, and the corresponding conditional
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expression is correct for the specification. However, if the procedure continues
to run after the first solution is generated, predicates of size 4 are generated.
Among these predicates, the predicate x + y ≤ 2 is also generated. With this
additional predicate, the decision tree in Fig. 3b is generated, leading to the
compact solution f(x, y) ≡ if x + y ≤ 2 then 1 else 0.

Fig. 3. Initial decision tree and the
more compact version learned with the
anytime extension for Example 9

Decision Tree Repair. In Algorithm 2,
we discard the terms that cover the same
set of points as already generated terms in
line 16. However, these discarded terms
may lead to better solutions than the
already generated ones.

Example 10. Consider a run of the algo-
rithm for the running example, where the
set pts contains the points {x �→ 1, y �→ 0}
and {x �→ −1, y �→ 0}. Suppose the algo-
rithm first generates the terms 0 and 1.
These terms are each correct on one of
the points and are added to terms. Next,
the algorithm generates the terms x and y.
However, these are not added to terms as
x (resp. y) is correct on exactly the same
set of points as 1 (resp. 0).

Suppose the algorithm also generates the predicate x ≤ y and learns the
decision tree corresponding to the expression e ≡ if x ≤ y then 0 else 1. Now,
verifying this expression produces a counter-example point, say {x �→ 1, y �→ 2}.
While the term 0, and correspondingly, the expression e is incorrect on this
point, the term y which was discarded as an equivalent term to 0, is correct.

Hence, for a practical implementation of the algorithm we do not discard
these terms and predicates, but store them separately in a map Eq : terms →
[[GT ]] that maps the terms in terms to an additional set of equivalent terms. At
lines 16, if the check for distinctness fails, we instead add the term t to the Eq
map. Now, when the decision tree learning algorithm returns an expression that
fails to verify and returns a counter-example, we attempt to replace terms and
predicates in the decision tree with equivalent ones from the Eq map to make
the decision tree behave correctly on the counter-example.

Example 11. Revisiting Example 10, instead of discarding the terms x and y,
we store them into the Eq array, i.e., we set Eq(0) = {y} and Eq(1) = {x}.
Now, when the verification of the expression fails, with the counter-example
point {x �→ 1, y �→ 2}, we check the term that is returned for the counter-
example point–here, 0. Now, we check whether any term in Eq(0) is correct on
the counter-example point–here, the term y. If so, we replace the original term
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with the equivalent term that is additionally correct on the counter-example
point and proceed with verification. Replacing 0 with y in the expression gives
us if x ≤ y then y else 1. Another round of verification and decision tree repair
will lead to replacing the term 1 with x, giving us the final correct solution.

Branch-Wise Verification. In Algorithm 2, and in most synthesis techniques,
an incorrect candidate solution is used to generate one counter-example point.
However, in the case of conditional expressions and point-wise specifications,
each branch (i.e., leaf of the decision tree) can be verified separately. Verifying
each branch involves rewriting the specification as in the point-wise verification
defined in Sect. 3 – but instead of adding a premise to each clause asserting that
the arguments to the function are equal to a point, we add a premise that asserts
that the arguments satisfy all predicates along the path to the leaf. This gives
us two separate advantages:

– We are able to generate multiple counter-examples from a single incorrect
expression. This reduces the total number of iterations required, as well as
the number of calls to the expensive decision tree learning algorithm.

– It reduces the complexity of each call to the verifier in terms of the size of
the SMT formula to be checked. As verification procedures generally scale
exponentially with respect to the size of the SMT formula, multiple simpler
verification calls are often faster than one more complex call.

This optimization works very well along with the decision tree repair described
above as we can verify and repair each branch of the decision tree separately.

Example 12. Consider the verification of the expression if x ≤ y then 0 else 1
for the running example. Instead of running the full expression through the ver-
ifier to obtain one counter-example point, we can verify the branches separately
by checking the satisfiability of the formulae x ≤ y ∧ f(x, y) = 0 ∧ ¬Φ and
¬(x ≤ y) ∧ f(x, y) = 1 ∧ ¬Φ. This gives us two separate counter-example points.

5 Evaluation

We built a prototype SyGuS solver named eusolver that uses the divide-and-
conquer enumerative algorithm. The tool consists of 6000 lines of Python code
implementing the high-level enumeration and unification algorithms, and 3000
lines of C++ code implementing the decision tree learning. The code is written to
be easily extensible and readable, and has not been optimized to any degree. All
experiments were executed on the Starexec platform [22] where each benchmark
is solved on a node with two 4-core 2.4 GHz Intel processors and 256 GB of RAM,
with a timeout of 3600 s.
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Fig. 4. Number of benchmarks solved
per track for eusolver (red), CVC4
(blue), and esolver (green) (Color
figure online)

Goals. We seek to empirically evaluate
how our synthesis algorithm compares to
other state-of-the-art synthesis techniques
along the following dimensions: (a) Per-
formance: How quickly can the algorithms
arrive at a correct solution? (b) Qual-
ity: How good are the solutions produced
by the algorithms? We use compactness
of solutions as a metric for the quality
of solutions. (c) Effect of anytime exten-
sion: How significant is the improvement
in the quality of the solutions generated if
the algorithm is given an additional (but
fixed) time budget?

Benchmarks. We draw benchmarks
from 3 tracks of the SyGuS competition
2016:2

(a)General track. The general track contains 309 benchmarks drawn from a
wide variety of domains and applications.

(b) Programming-by-example track. The PBE track contains 852 benchmarks
where, for each benchmark, the semantic specification is given by a set of input-
output examples.

(c)Linear-integer-arithmetic track. The LIA track contains 73 benchmarks,
each over the linear integer arithmetic theory, where the grammar is fixed to a
standard grammar that generates conditional linear arithmetic expressions.

5.1 Discussion

Figures 5 and 4 plot the full results of running eusolver on the benchmarks
from the three categories. The plots also contain the results of 2 other state-of-
the-art solvers: (a) the white-box solver CVC4-1.5.1 based on [17], and (b) the
enumerative black-box solvers esolver described in [2]

Performance. eusolver was able to solve 206 of the 309 benchmarks in the
general track and 72 of the 73 benchmarks in the PBE track. CVC4 solves 195
and 73 benchmarks in these categories, while esolver solves 139 and 34. As
Fig. 5 shows, the performance is comparable to both CVC4 and esolver in
both tracks, being only marginally slower in the LIA track. However, eusolver
performs exceptionally well on the PBE benchmarks, solving 787 while CVC4
solved 39 and esolver solved 1. PBE benchmarks require the solver to gen-
eralize from input-output examples—eusolver inherits this ability from the
enumerative approach.
2 The SyGuS competition 2016 included an addition track – the invariant genera-

tion track. However, the specifications in this track are not simply separable, and
eusolver falls back to the standard enumeration algorithm instead of the divide-
and-conquer techniques described in this paper.
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Fig. 5. Running times for esolver (dotted), CVC4 (dashed), and eusolver (solid).

Fig. 6. Scatter plot of
eusolver and esolver
solution sizes.

However, the standard enumerative solver esolver
is unable to solve these benchmarks due to the large
solution sizes—eusolver overcomes this hurdle with
the divide-and-conquer approach.

Quality of Solutions. Figure 6 highlights the solu-
tion sizes produced by eusolver and esolver for
the commonly solved benchmarks in the general track.
eusolver often matches the solution sizes produced
by esolver (108 of the 112 benchmarks). esolver
is guaranteed to produce the smallest solution possi-
ble. This shows that the divide-and-conquer approach
does not significantly sacrifice solution quality for bet-
ter performance.

Fig. 7. Scatter plot of first
vs. minimum size solutions
with the anytime extension.
Points below x = y benefit
from the anytime extension.

Effect of Anytime Extension. We selected 50
ICFP benchmarks from the general track and use
them to test the anytime extension described in
Sect. 4.3. The ICFP benchmarks are synthesis tasks
that were first proposed as a part of the ICFP pro-
gramming contest 2013, which were then adapted to
the SyGuS setting. To the best of our knowledge, no
other SyGuS solver has been able to solve the ICFP
benchmarks satisfactorily. For 18 of the 50 ICFP
benchmarks, we were able to obtain a more compact
solution by letting the algorithm continue execution
after the first solution was discovered (Fig. 7). Fur-
ther, the difference in the first and smallest solutions
is sometimes significant—for example, in the case of
the “icfp 118 100” benchmark, we see a reduction of
55%. An interesting phenomenon that we observed was that while the size of
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the decision tree almost always went down with time, the size of the solutions
sometimes increased. This is because the algorithm generated larger terms and
predicates over time, increasing the size of the labels and attributes in each node
of the decision tree.

Overall, our experiments suggests that: (a) The DCSolve algorithm is able to
quickly learn compact solutions, and generalizes well from input-output exam-
ples. (b) The anytime nature of DCSolve often reduces the size of the computed
solution; (c) The DCSolve algorithm works competently on problems from differ-
ent domains.

6 Concluding Remarks

Related Work. Program synthesis has seen a revived interest in the last decade,
starting from the sketch framework [20,21] which proposed counterexample
guided inductive synthesis (CEGIS). Most synthesis algorithms proposed in
recent literature can be viewed as an instantiation of CEGIS. Synthesis of string
manipulating programs using examples has found applications in Microsoft’s
FlashFill [7], and the ideas have been generalized in a meta-synthesis framework
called FlashMeta [15]. Other recent work in the area of program synthesis have
used type-theoretic approaches [9,14] for program completion and for generating
code snippets. Synthesis of recursive programs and data structure manipulat-
ing code has also been studied extensively [1,5,12]. Lastly, synthesis techniques
based on decision trees have been used to learn program invariants [6].

In the area of SyGuS, solvers based on enumerative search [23], stochastic
search [2,19] and symbolic search [8,11] were among the first solvers devel-
oped. The sketch approach has also been used to develop SyGuS solvers [10].
Alchemist [18] is another solver that is quite competitive on benchmarks in
the linear arithmetic domains. More recently, white box solvers like the CVC4
solver [17] and the unification based solver [3] have also been developed.

The enumerative synthesis algorithm used by esolver [2,23] and the work
on using decision trees for piece-wise functions [13] are perhaps the most closely
related to the work described in this paper. We have already discussed at length
the shortcomings of esolver that our algorithm overcomes. The approach for
learning piece-wise functions [13] also uses decision trees. While the presented
framework is generic, the authors instantiate and evaluate it only for the linear
arithmetic domain with a specific grammar. In DCSolve, neither the decision tree
learning algorithm, nor the enumeration is domain-specific, making DCSolve a
domain and grammar agnostic algorithm. The algorithm presented in [13] can
easily learn large constants in the linear integer domain. This is something that
enumerative approaches, including DCSolve, struggle to do. The heuristics used for
decision tree learning are different; in [13], the authors use a heuristic based on
hitting sets, while we use an information gain heuristic with cover-based priors.

Conclusion. This paper has presented a new enumerative algorithm to solve
instances of the Syntax-Guided Synthesis (SyGuS) problem. The algorithm over-
comes the shortcomings of a basic enumerative algorithm by using enumeration
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to only learn small expressions which are correct on subsets of the inputs. These
expressions are then used to form a conditional expression using Boolean com-
binations of enumerated predicates using decision trees. We have demonstrated
the performance and scalability of the algorithm by evaluating it on standard
benchmarks, with exceptional performance on programming-by-example bench-
marks. The algorithm is generic, efficient, produces compact solutions, and is
anytime — in that continued execution can potentially produce more compact
solutions.
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