
Distributed Cross-Domain Configuration

Management

Liliana Pasquale1, Jim Laredo2, Heiko Ludwig2, Kamal Bhattacharya2,
and Bruno Wassermann3

1 Politecnico di Milano, Italy
pasquale@elet.polimi.it

2 IBM TJ Watson Research Center, USA
{laredoj,hludwig,kamalb}@us.ibm.com

3 University College London, UK
b.wassermann@cs.ucl.ac.uk

Abstract. Applications make extensive use of services offered by dis-
tributed platforms ranging from software services to application
platforms or mere computational resources. In these cross-domain en-
vironments applications may have dependencies on services or resources
provided by different domains. A service management solution based on
a centrally managed configuration management database (CMDB) is not
viable in these environments since CMDB federation does not scale well
to many domains. In this paper we propose a distributed configuration
management approach by applying standard technologies (e.g., REST
services, ATOM feeds) to provide access to and distribution of config-
uration information. A domain exposes individual configuration items
as RESTful web service resources that can be referred to and read by
other domains in the context of service management processes. Using this
distributed approach, organizations can engage in effective service man-
agement practices avoiding the tight integration of CMDBs with their
service providers and customers.

1 Introduction

Applications make extensive use of services offered by distributed platforms
hosted in different domains. These platforms range from software services (Soft-
ware-as-a-Service, SaaS), to application platforms (e.g., facebook.com) to mere
computational resources (e.g., Amazon Elastic Compute Cloud). Often, appli-
cations make use of different services from different providers, e.g., for storage
and application platforms, and may be also integrated with in-house, dedicated
software. Hence applications may depend on services or resources provided by dif-
ferent organizational domains. In such a loosely-coupled environment, providers
are not even aware of the set of other organizations currently using their ser-
vices. Furthermore, the wide adoption of web standards to consume and provide
services facilitates the easy establishment and the change of these cross-domain
configuration relationships. If providers conduct changes independently of their

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 622–636, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Cross-Domain Configuration Management 623

clients, the clients services may be disrupted. For this reason clients need to
understand on which external configurations they depend on.

Configuration management plays a crucial role for other service management
processes, e.g. incident management, change management, or process manage-
ment, whose activities depend on configuration information of the environment.
Hence, management activities have to take into account the distribution of con-
figuration information across organizational boundaries due to the presence of
inter-domain dependencies. Moreover, when a configuration changes it is neces-
sary to provide some mechanisms to manage these changes, notifying interested
clients. This becomes of high importance especially in those environments in
which an outage caused by an unmanaged configuration change may be propa-
gated along a chain of dependencies.

Current service configuration management approaches rely on a centrally
managed configuration management database (CMDB) [1], which collects the
state of hardware and software entities, represented by Configuration Items (CIs)
[2]. When changes happen in a CI, specific operations need to be performed on
other CIs that depend on it. A service management solution based on a central
CMDB is not viable in cross-domain environments since CMDB federation does
not scale well to many domains and different organizations are often reluctant
to provide direct access to their CMDBs.

In general there are different issues configuration management must address
for distributed, loosely coupled environments:

– Discovery: The lack of scope and access to resources of other domains
makes hard to discover CIs outside ones’ own management domain.

– Dependency management: Detect the management domains an CI de-
pends on is not an easy task.

– Cross-Domain configuration analysis: It is not always feasible to ag-
gregate and combine configuration information of different domains in a
straightforward way, to ease management activities.

In this paper we propose a distributed configuration management approach by
applying standard Web technologies (e.g., REST services, ATOM feeds) to help
to solve the issues described above and provide access and distribution of config-
uration information. A domain exposes individual CIs as RESTful web service
resources that can be referred to and read by other domains in the context of
service management processes. Domains can manage dependencies on outside
resources in the form of URLs. Using this distributed approach, organizations
can engage in effective service management practices while not requiring tight
integration with their service providers and customers. This approach and the
specific application to change management has been shown in [3] and [4].

The paper is organized as follows. Section 2 analyzes the problems of cross-
domain configuration management using an example. Section 3 gives an overview
of the architecture of our solution. Section 4 explains the approach of Smart Con-
figuration Items, including their publication, consumption, and format. Subse-
quently, section 5 illustrates how configuration information can be aggregated

624 L. Pasquale et al.

across domains. Finally, section 6 discusses implementation, section 7 summa-
rizes related approaches, and section 8 concludes the paper.

2 Problem Analysis

In this section we discuss the main challenges of cross-domain configuration
management using an example scenario, shown in Figure 1. A startup company,
E-Shop, integrates different retailers, to advertise and sell their products. E-Shop
relies on a distributed application infrastructure whose elements are owned and
managed by different organizations. In our example, Domain A provides an
application server (AS-A1), hosting the service which advertises the products to
sell (Advertise). Domain A also hosts a database management system (DBMS-
A1) which controls several databases (e.g., DB-A1, etc.). Both the application
server and the DBMS are hosted on a virtual machine, represented through its
address (131.34.5.20). Each machine can provide one or more file systems. The
same situation holds for Domain B, which provides the service that performs
payments (Payment), and some storage facilities.

Fig. 1. Running Example

In the scenario we have intra-domain dependencies between CIs, represented
through straight arrows, and inter-domain dependencies, represented through
dashed arrows. For example, services provided by Domain A depend on the
application server on which they are deployed. While file systems, application
servers and DBMSs depend on the machine in which they are installed. Moreover,
databases depend on the DBMS by which they are managed and application
servers depend on local/remote DBs used by applications deployed on them
(e.g., through a Web services connection). Furthermore each application may
depend on services of another domain. In our example, application Sell depends
on service Payment, provided outside its domain.

Finally, E-Shops marketing campaign is carried by several business services
that can be considered as “abstract” CIs relying on “concrete” elements of the

Distributed Cross-Domain Configuration Management 625

infrastructure. Figure 1 shows a business service (BS-A1) that depends on those
CIs that implement it (service Advertise, application server AS-A1 and the ma-
chine 131.34.5.20). This case highlights the need to trace properties and depen-
dencies of CIs that do not correspond to an element provided by the underlying
infrastructure (e.g., business services), since changes on the infrastructure may
also impact on these abstract elements.

This example illustrates the main functional issues that need to be addressed
by a cross-domain configuration management approach:

– Publication of configuration information: Management domain must
select internal CIs relevant for other domains and provide them in a conve-
nient way.

– Identification of cross-domain dependencies: When performing dis-
covery in a domain, a configuration management system must identify those
CIs that depend on external CIs and manage the dependency (e.g., receiving
notifications when external CIs change).

– Multi-domain configuration analysis: In the course of service manage-
ment processes, analysis is conducted through entire configurations, e.g., for
root cause analysis. Organizations must be able to aggregate configuration
information from multiple domains.

These functions enable a management domain to conduct configuration manage-
ment in a multi-domain environment involving multiple service providers.

3 Overview of the Approach

Our approach deals with configuration information for each single domain of the
infrastructure. This information is published on one or more web servers author-
itative for a domain and can be consumed in a standard way through REST and
ATOM [5] protocols. Local configuration management also provides distributed
and cross-domain benefits, since information about the overall infrastructure can
be easily published and obtained aggregating that available for each local do-
main. Figure 2 shows the application of our solution for our running example. It
provides two main functionality: Smart Configuration Management and Cross
Domain Aggregation.

Smart Configuration Management. All CIs are detected for each resource
of a domain, through a discovery process (1). We call these configuration items
Smart Configuration Items (SCIs): they represent the properties and the inter-
and intra-domain dependencies of an element of the infrastructure. Our discovery
process is also able to resolve cross-domain dependencies, that in general are hard
to identify, through the DSM Registry (2.b). SCIs and their dependencies may
also be established manually, when elements they represent cannot be detected
through the discovery mechanisms (e.g., the business service we adopted in our
example). Each SCI is associated with a feed document carrying on its changes.
SCIs and feed documents generated after the domain configuration discovery

626 L. Pasquale et al.

nimbus01.watson.ibm.com nimbus06.watson.ibm.com

Fig. 2. Solution Architecture

are periodically published (2.a) on a authoritative web server known as Domain
Service Manager (DSM), which serves local information via REST or as ATOM
feeds to interested parties.

Cross-Domain Aggregation. Information about the overall infrastructure is
obtained querying to an Aggregator that is in charge to communicate to all DSMs
of the infrastructure (3). This information is provided through a REST or an
ATOM aggregation. The first one is synchronous and offers information about
all SCIs of the infrastructure or all SCIs of a particular type. While, the latter
is asynchronous and generates notifications if some changes happened in one or
more SCIs that comply to specific features. Aggregation provides configuration
information in a flexible way and eases the adoption of this information to per-
form several kinds of analysis (e.g. dependency, consolidation, impact analysis,
compliance analysis) or to perform service management operation (e.g., change
management, incident management, etc.).

The basic tenet of our approach is to use Web-based techniques for dealing
with cross-domain management issues. The flexibility of the REST-based ap-
proach and the wide availability of tooling to create/consume SCIs and their
associated feeds makes possible to easily manage configuration information also
for cross-domain environments. For example, we can hypothesize to have lis-
teners from Domain A for a change in service Payment of Domain B. In this
case, after a feed listener in Domain A is notified about the change of parame-
ter AcceptedPayments of service Payment it can trigger a new internal change
process (supposed that this change is relevant), resulting in the participation of
Domain A in Domain B ’s change process.

Distributed Cross-Domain Configuration Management 627

4 Smart Configuration Items

DSM is the enabling element for domain configuration management. It tracks in
its internal registry all available SCIs in a domain. Each SCI is associated with
a unique id, a set of properties/dependencies (address, port, type, etc.) able to
unambiguously identify it and two paths in the domain file system pointing re-
spectively to the location of the SCI document and the feed document containing
configuration changes. We also provide a DSM Registry, which associate each
DSM with the hosts it is authoritative for. A DSM Registry may be available
in a single domain and is in charge to communicate with other DSM Registries
provided by other domains. The DSM offers RESTful services to retrieve, create,
modify or delete discovered SCIs. Users can access to SCI information through
a simple GET operation on the SCI URL constructed as follows:

http://<DSM_HostName>:8080/sci?id=<id>

where <DSM HostName> is the address of the DSM and <id> is the identifier
of the requested SCI. While the feed document associated with an SCI can be
retrieved at the following URL:

http://<DSM_HostName>:8080/feed?id=<id>

Feeds can also be consumed through a standard feed reader. DSM also provides
a graphical interface system administrators can use to perform several opera-
tions on local SCIs. It allows to visualize information about all SCIs available
in a domain (URL, type, properties and dependencies). It also permits to re-
cursively traverse the dependency chain of an SCI, with the possibility to reach
SCIs involved in a inter-domain dependency, which are not local. For example,
from the SCI associated with application Payment of Domain A, it is possible
visualize information about its application server (AS-A1). This is still valid if
the requested SCI is managed by another DSM, e.g., belonging to Domain B.

We also allow domain administrators to add a new SCI to represent config-
uration information that is not discovered automatically. This functionality is
adopted when we need to add SCIs representing business services (e.g., BS-B1,
in our example) that rely on infrastructural resources, but cannot be detected
through the standard configuration discovery algorithms. The interface also per-
mits to manually modify an existing SCI e.g., adding inter-domain dependencies
when they cannot be discovered automatically.

4.1 Configuration Data Model

An SCI status is represented through an extensible XML document, able to
address the descriptive requirements of different configuration domains.

In Figure 3 on the left we show the SCI logic schema, while on the right we
propose an example of SCI document associated with application Sell of the pro-
posed scenario. Each SCI is described through a set of mandatory attributes: uri,
which represents the URL that uniquely identifies the SCI (on the DSM which is
actually keeping it); type, which is the type of the represented item (DBMS, ap-
plication server, database, etc.). In Figure 3 attribute type is set to application

628 L. Pasquale et al.

<sci:SmartConfigurationItem

 xsi:schemaLocation="com.watson.ibm.tlaloc.sci"

 uri="http://nimbus01.watson.ibm.com:8080/sci?id=18"

 type="application">

 <Properties>

 <Property name="application-name">

 <prop:application-name>

 Sell

 </prop:application-name>

 </Property>

 </Properties>

 <Dependencies>

 <Dependency type="Uses">

 <OtherSci_id>

 http://nimbus06.watson.ibm.com:8080/sci?id=0

 </OtherSci_id>

 </Dependency>

 <Dependency type="ManagedApplication">

 <OtherSci_id>

 http://nimbus01.watson.ibm.com:8080/sci?id=1

 </OtherSci_id>

 </Dependency>

 </Dependencies>

</sci:SmartConfigurationItem>

Fig. 3. SCI document schema and example

and attribute uri indicates that the SCI is kept in the DSM authoritative for
Domain A, since it starts with hostname nimbus01. watson.ibm.com. SCIs can
also have optional attributes (e.g., description, which gives a human readable
description of the SCI).

An SCI can have any number of properties, defined by a name and an XML
value. The property name is equal to the local name of the XML tag enclosing
the property value. This mechanism allows users to define their own properties
that can have values compliant to an arbitrary schema. In the proposed example
the application is described through property: application-name.

An SCI has zero or more dependencies, specified by a type and a list of URLs
identifying SCIs on which the item depends. Extension points are provided to
insert new attributes and elements describing the nature of the dependency. In
our example we have two kinds of dependencies: ManagedApplication and Uses.
The first is on the SCI representing the application server in which application
Sell is deployed. While the latter indicates a dependency on the adopted service
(Payment). This last dependency is not local since the corresponding SCI is
available on the DSM authoritative for Domain B (nimbus06.watson.ibm.com).

Besides the representation of the current SCI in the DSM, the discovery pro-
cess produces a feed outlining SCI changes compared to the previous discov-
ery. Possible changes are: add/delete/modify property, add/delete dependency,
or add/delete a SCI pointer into a dependency. An example of the feed doc-
ument associated to web service Payment is shown in Figure 4. It is updated
after the input message of operation PayOrder change type from tns:RPType

Distributed Cross-Domain Configuration Management 629

to tns:RPAllowedType. Change descriptions are enclosed into element <entry>
in the feed document. In the example we have two entries. The first is created
when an SCI associated with web server Payment is added for the first time to
the authoritative DSM, while the second one advertises the change of operation
PayOrder. Change information is carried on by element <property-change> and
is described through the following attributes: type that represents the kind of
change happened (ChangePropertyValue); xpath, which points to the modified
property/dependency (in this case, property alias-name); uri, that is the url
of the corresponding SCI; and feed-uri that is the feed url. Each change is
described through two sub-elements: <old>, which contains the previous value
of the property/dependency and <new>, which contains the new value of the
considered property/dependency. If the change is an addition or a deletion of a
property/dependency, element <old> or <new>, respectively, are not inserted in
the change description.

<entry>

 <title>SCI Added</title>

 <id>random id</id>

 <updated>2008-12-14T18:30:02Z</updated>

 <content type="TEXT">

 A new service was added to DSM nimbus06.watson.ibm.com;

 </content>

</entry>

<entry>

 <title>Modify Property Entry</title>

 <id>random id</id>

 <updated>2008-12-14T19:30:02Z</updated>

 <content type=”XHTML”>

 <!-- the element Property is modified -->

 <pc:property-change xmlns:pc="com.ibm.tlaloc.propEntryContent"

 type="ChangePropertyValue"

 xpath="//Property[@name='operationq']"

 uri="nimbus06.watson.ibm.com:8080/sci?id=0"

 feed-uri="nimbus06.watson.ibm.com:8080/feed?id=0"

 propertyName=”operations”>

 <pc:old>

 ...

 <wsd:operation name="PayOrder">

 <wsdl:input message="RequstPayment" type="tns:RPType"/>

 ...

 </pc:old>

 <pc:new>

 <wsd:operation name="PayOrder">

 <wsdl:input message="RequstPayment" type="tns:RPAllowedType"/>

 ...

 </pc:new>

 </pc:property-change>

 </content>

 </entry>

Fig. 4. An example of configuration change

4.2 Domain Configuration Discovery

SCIs rely on a local discovery mechanism to report the dependencies and proper-
ties of each CI. The local discovery gives us another level of granularity removing
the need of any centralized repository, ideally for a more distributed approach,

630 L. Pasquale et al.

yet given the complexity of comprehensive discovery mechanisms it is necessary
to make trade-offs as to how close to the CIs we can place the discovery engine
given their resource requirements.

A discovery process must detect the main SCIs available on those virtual ma-
chines that it covers and, for each of them, it must find their main properties
and dependencies on other SCIs (that can belong to that domain or to other do-
mains). For example, it must discover the basic properties of virtual machines,
e.g., their operating system and the hostnames associated with them. Moreover,
a discovery process must find the servers installed on each host (e.g., DBMSs,
application servers, http servers), their main properties (e.g., for a DBMS, the
ports it listens to, its type and version), and dependencies (e.g. a DBMS is as-
sociated with the host in which it is installed). A discovery process must also
detect SCIs managed by the servers installed on a host (e.g., applications man-
aged by an application server). From the discovered properties and dependencies
we also want to identify each SCI uniquely, among other SCIs of the same type.
For example, a DBMS can be uniquely identified through the host in which it
is installed and the ports it listens to. Finally we also require discovery to be
performed periodically and automatically upon configuration change (e.g., with
a specific periodicity or when something happens, for example a new component
is installed or an existing one is upgraded).

Taking into account these requirements we demonstrated our approach using
Galapagos [6], a lightweight discovery mechanism acting on a per virtual node
basis. In particular we embedded in our discovery agent the Galapagos capa-
bility. The agent converts information discovered by Galapagos into several SCI
state representations. The adoption of Galapagos satisfies our requirements since
it is able to detect all basic elements provided by common virtual machines (file
systems, http servers and their virtual hosts, databases, DBMSs, application
servers, etc.). Furthermore, Galapagos is primarily tailored for IBM software
(e.g., DB2, IBM HTTP Server, WebSphere Application Server, etc.), for which
it can discover a wider set of properties. Finally we allow to perform discov-
ery periodically depending on specific needs in terms of times and frequency of
scans, or it can be triggered by particular events, like failures, software/hardware
upgrades, etc.

4.3 SCI Dependency Resolution and Management

The discovery agent inspects all CIs starting from those that have no dependen-
cies (e.g. a virtual machine) up to those that may have numerous dependencies
(e.g. application servers, applications).

If we consider host 131.34.5.20 of Domain A, discovery will follow the follow-
ing steps:

1. host (mandatory): It leverages data describing the host 131.34.5.20 in
which discovery is performed to create an SCI of type host which has no
dependencies and has at least two properties: os, which represents its oper-
ative system, with a name (Linux) a version (2.6.18 - EL5.02), etc., and lan,

Distributed Cross-Domain Configuration Management 631

which carries on hostnames associated with that host (nimbus03.watson-
.ibm.com).

2. File Systems (mandatory): It transforms information regarding mounted
file systems into an SCI of type file system, which is described by the fol-
lowing properties: fs-device (file system device), fs-mount-point (mount
point), name (file system name), fs-mode (read only/write mode). It also
depends on the host providing its mount point, represented by dependency
HostedBy. This dependency is within the domain and the corresponding SCI
is detected at step 1.

3. DBMSs: An SCI of type dbms is created for DBMS-A1, found during dis-
covery. It is characterized by a hostname (property host-name) and a set
of ports it listens to (property ports). Each dbms depends on the SCI cre-
ated at step 1 and associated with the host in which it is actually installed
(dependency HostedBy).

4. Databases: Database DB-A1 found during discovery is transformed into an
SCIs of type db, described through a database name (property databasename)
and an alias name (property alias-name). It also depends on the SCI asso-
ciated with its DBMS (DBMS-A1). For this reason, dependency ManagedDB is
created: it is within the domain and the corresponding SCI is created at step 3.
DiscoveredDBs may also depend on other databases they refer to (dependency
Uses) which can be managed on other hosts (this last case is not illustrated in
our scenario).

5. Application Servers: Application server AS-A1 found during discovery
is associated with an SCI of type application server, we already shown
in Section 4. This SCI also has an inter-domain dependency on databases
hosted on other domains of the cloud.

6. Applications: Applications Advertise and Sell found during discovery are
associated with an SCI of type application. They are described through
their name (property application name). Furthermore they may be com-
posed of several ejb/java/web modules (dependency ComposedOf). They de-
pend on the application server on which they are deployed (dependency
ManagedApplication). Both these dependencies are within the domain and
the corresponding SCIs are created in the previous steps.

During discovery it is necessary to identify URLs of SCIs that are referenced
in the dependencies. These SCIs can be local to the domain or they can belong
to other domains. An SCI URL can be automatically constructed knowing the
hostname of its authoritative DSM and the id through which the DSM reference
it in its internal table. Hence, when a dependency refers to a local SCI (which
has the same authoritative DSM of the depending item) it is only needed to
know its id. This id can be retrieved from the local DSM giving in input some
properties/dependencies inferred during discovery. The DSM searches in its table
the rows that have properties/dependencies matching those given as input and
returns the associated ids. When an SCI is not local, it is also necessary to know
what DSM maintains it.

For example, in our scenario we need to identify URL of the SCI associated
with service Payment on which application Sell depends. Information retrieved

632 L. Pasquale et al.

during discovery about service Payment is its endpoint http://131.34.5.25/-
FlexPayService.wsdl. From this property we know the host on which service
Payment is deployed (131.34.5.25). At this point the discovery needs to know
what is the DSM authoritative for the SCIs of host 131.34.5.25. Discovery
process gets this information from DSM Registry, issuing the query below:

http://nimbus06.watson.ibm.com:8081/machine?address=131.34.5.25

It is worth to note that each host of the domain knows the address of the author-
itative DSM Registry, since it is given to the discovery process as a configuration
parameter.

The DSM Registry returns the hostname of the required DSM (nimbus06-
.watson.ibm.com) that keeps the SCI of service Payment. Finally, what the
discovery needs to do is to request to the DSM the SCI id of service Payment
through a query of this type (single URI):

http://nimbus06.watson.ibm.com:8080/

sciRegistry?type=web_service&

properties=<property name=ws-endpoint>

<prop:ws-endpoint>

http://131.34.5.25/FlexPayService.wsdl

</prop:ws-endpoint>

</property>

The DSM Manager returns the id of the SCI associated to service Payment
(i.e., 0). This way the discovery process is able to construct the URL of the SCI
associated with service Payment as follows:

http://nimbus06.watson.ibm.com:8080/sci?id=0

Before terminating discovery the set of detected SCIs is given as input to the DSM
authoritative for that domain. DSM keeps the set of SCIs already detected in the
previous discovery phase. Hence it compares discovered SCIs with the previous
ones grouping them into three sets: ADDED (new SCIs that were not discovered
previously),DELETED(old SCIs that arenot detected in the last discoveryphase)
and MODIFIED (pairs of SCIs detected in two subsequent discovery phases). As-
sociationbetween SCIs that refer to the same component in two subsequent discov-
ery phases are detected as follows: the DSM checks if the properties/dependencies
that allow to uniquely identify an SCI are still the same. For example, to uniquely
identify an SCI associated with a db among all SCI of type db, we need property
database-name and dependency ManagedDB (the corresponding dbms). If a pre-
vious SCI is detected with properties/ dependencies matching those given as in-
put, both the previous SCI and the new one are inserted in the set MODIFIED.
Otherwise the new SCI is put in the set ADDED. Old SCIs that do not have a
corresponding new SCI, are put in set DELETED.

For each SCI in set ADDED the DSM adds a new entry in its internal table
with a unique id, the discovered attributes that allow to uniquely identify it
and the paths to the locations of the configuration information. A new feed
document is also created and associated to that SCI, with an entry that advertise

Distributed Cross-Domain Configuration Management 633

its creation. For all SCIs in set DELETED, DSM adds a new entry in their
feed documents to advertise their deletion. DSM also marks as “deleted” the
row state in its internal table pointing to that SCI. Configuration files will be
deleted after a certain time for space reasons. All couples of SCIs put in the set
MODIFIED are compared to find differences in the SCI documents that reveal
possible modifications. If a modification is detected a suitable entry is added to
the feed document associated with that SCI to advertise the change.

5 Cross Domain Aggregation

SCIs availability in each domain via the authoritative DSM allows all interested
stakeholders to get higher level views on the configuration of the overall in-
frastructure according to specific needs. These views transcend the perspective
of a particular domain and are created through the combination and the re-
interpretation of existing SCIs or feed documents. Cross-domain aggregation is
enabled by the adoption of mashups relying on one or more Aggregators, which
collects and aggregates the information exposed by each DSM. To aggregate SCIs
and feeds coming from the whole distributed platform, Aggregators ask the DSM
Registry what are the hostnames of all DSMs available in the infrastructure.

Aggregators provide overall information about items configuration and their
changes through respectively a REST or an ATOM aggregation. REST aggre-
gation allows to combine several SCIs according to some criteria. In our current
prototype we provide the following aggregations we considered significant for
service management processes:

All SCIs available in the infrastructure. It provides a global view of all items
available in all domains of the distributed platform. For example, it can be useful
when a cloud provider receives a request from a user who wants to deploy his/her
applications. In this case, the provider needs a global overview of all SCIs of the
infrastructure to know which machines of its cloud are more suitable to host
those applications.

All SCIs a business application relies on. It is useful for business analysts who
may want to retrieve SCIs a specific business application relies on.

All SCIs associated with items of the same type. It is useful for administrators
who need to perform maintenance on items of the same type. For example, an
administrator may ask for all SCIs of type dbms when he/she has to perform
an upgrade to a next version of DB2, to all DBMS of the infrastructure. In fact
he/she needs to view the version of all DBMS available in the infrastructure to
know which of them has to be upgraded.

A specific SCI together with those SCIs referenced in its dependencies. During
incident management processes, detecting the cause of a failure in an CI may
require to inspect the configuration of other items it depends on.

ATOM cross-domain aggregation allows stakeholders to subscribe on changes
that can affect any item of the overall infrastructure, without knowing the URLs
of the feeds associated with each SCI. We provide some predefined criteria to
aggregate feeds:

634 L. Pasquale et al.

– All feeds available in the infrastructure. It eases change management pro-
cesses. For example, interested users may be notified when an item in the
infrastructure changes (e.g. service Payment) and, if this change is relevant
for their business, they can perform maintenance actions on the affected
items (e.g., change the parameters adopted to invoke service Payment).

– All feeds associated with items of the same type. It is useful, for example,
when an administrator is interested in knowing all changes affecting all
DBMS of the infrastructure, to perform suitable corrective actions.

– A specific feed together with those feeds associated with SCIs an items depends
on. It shows configuration and changes relative to a specific SCI and its
dependencies. If we consider a business service, it may be necessary to know
changes in all items it depends on to perform impact analysis or activate
change management processes.

Other SCI/feed aggregations may be offered easily since the infrastructure al-
ready provides all necessary configuration information. For example we may
support aggregation that collects SCI/feeds of a component having particular
properties, e.g., all DBMSs of type DB2, or we may want to collect feeds carrying
specific kinds of changes to apply a suitable patch. We also provide a graphical
interface to view aggregated SCI and feed documents.

Even if each DSM only keeps the current SCI version it is possible to go
back to previous versions inspecting the corresponding feed document. This is
important for incident management processes where stakeholders want to inspect
configurations before a failure happened and analyze the cause of a problem. It is
possible to retrieve the last SCI configuration, inspect the changes that happened
after a particular time instant (that in which the failure happened), starting from
the last one up to the first one and apply these changes in a backward way. For
example, if an entry advertises a change in a property/dependency, it is sufficient
to substitute the XML value of the property/dependency with that carried on
by element <old> in the entry content. We may need to get the SCI version
associated with service Payment, before its signature for operation PayOrder is
changed. In this case we have to change the input parameter is changed from
tns:RPType to tns:RPAllowedType (see second feed entry in Figure 4).

6 Implementation

The viability of the SCI approach was validated by implementing a prototype
comprising the following components: the configuration discovery agent, the feed
generator, the DSM, the DSM Registry and the Aggregator. The domain dis-
covery process is a script that triggers the execution of Galapagos discovery and
translates its results into a set of SCIs, and generates the ATOM feed entries
associated to the detected changes. The DSM, the Aggregator and the DSM
Registry are implemented through WebSphere sMash [7], a development and
runtime environment for RESTful services and mash-ups.

The platform was tested in a laboratory environment using scenarios like that
outlined in section 2. The tests showed that the platform permits to maintain

Distributed Cross-Domain Configuration Management 635

configuration information automatically. Configuration exchange among differ-
ent domains takes place easily, by simply retrieving or aggregating XML doc-
uments using Web browsers and feed readers. Service management processes
or interested stakeholders can access configuration information using common
tools. Finally, the application of filters to customize the SCIs/feeds aggregation
offers to service management processes the information they exactly need.

7 Related Work

Distributed system management is the central focus of two standards: Web Ser-
vices Distributed Management (WSDM) [8] and Web Services for Management
(WS-M) [9]. Both propose the idea to expose management information as Web
services and represent resource information through extensible models. To trace
associations among resources WSDM provides the concept of relationship, which
includes our notion of dependency. While, even if WS-M proposes a rich con-
figuration model, i.e., CIM [10], it does not support dependencies. Furthermore,
WSDM and WS-M provide limited discovery capabilities. Our solution repre-
sent a significant improvement over these standards because it offers a global
approach that continuously maintains resources after they are discovered, up-
dates their configuration when changes are detected, and notifies interested users
about these changes. WSDM and WS-M support allow users to subscribe on
events generated after resources’ changes and being notified according to re-
spectively WS-Notification [11] or WS-Eventing [12] standards. These standards
do not provide a clear way to represent resources changes and their low dif-
fusion, discourages their adoption. Instead, our approach adopts ATOM/RSS
feeds, offering a standard way to represent changes (encoded into a feed entry),
and consume them through any feed reader, with the possibility to rely on its
subscription and filtering capabilities.

CMDB federations [1] are an approach to use CMDBs across domain bound-
aries, enabling access to information held in different CMDBs. This approach
has high setup costs since all parties must establish explicit relationships, which
it is not feasible in loosely coupled environments. Treiber et al. [13] proposed a
concrete information model to represent both static and dynamic changes in web
services and encapsulate them in atom feed entries. The authors also relate each
change to its cause and to the stakeholders who may be interested in. Despite
our approach focuses on static configuration properties, it has the main advan-
tage of dealing with cross-domain environments, representing intra- and inter-
domain dependencies among CIs. Moreover our solution keeps the information
model light, enabling different business analysis through several cross-domain
aggregations.

8 Conclusions

Loosely coupled applications spreading an SOA over multiple management do-
mains requires a configuration management approach that takes into account

636 L. Pasquale et al.

the the absence of central service management and a central CMDB. The SCM
approach proposes to decentralize configuration management in a way in which
service providers can expose configuration information to their users in a stan-
dard format based on domain discovery information while service users are able
to discover and trace CIs outside their own management domain boundaries.
The use of RESTful interfaces to CIs and ATOM feeds to distribute updates
on configuration changes enables the use of very commonly available tools to
expose and process configuration information. The feasibility of the approach
was demonstrated in a proof-of-concept implementation. As next steps we will
further validate the approach and work on improvements related to interaction
with existing discovery technology, selective publication of SCIs, and program-
ming models for aggregation. We also plan to remove the architectural bottleneck
generated by the DSM Registries organizing them in P2P networks.

References

1. Clark, D., et al.: The Federated CMDB Vision: A joint White Paper from BMC,
CA, Fujitsu, HP, IBM, and Microsoft, Version 1.0. Technical report

2. IBM: Tivoli: Change and Configuration Management Database,
http://www-01.ibm.com/software/tivoli/products/ccmdb/

3. Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., Wassermann, B.: REST-
based management of loosely coupled services. In: Proceedings of the 18th Inter-
national Conference on World Wide Web (2009)

4. Wassermann, B., Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L.: Dis-
tributed cross-domain change management. In: Proceedings of the International
Conference on Web Services (2009)

5. Network Working Group: The Atom Syndication Format (2005),
http://www.ietf.org/rfc/rfc4287.txt

6. Magoutis, K., Devarakonda, M., Joukov, N., Vogl, N.: Galapagos: Model-driven dis-
covery of end-to-end application-storage relationship in distributed systems. IBM
Journal of Research and Development (2008)

7. IBM: Projectzero, http://www.projectzero.org/
8. OASIS: Web services distributed management: Management using web services
9. DMTF: Web Services for Management (WS-Management)

10. DMTF: Common Information Model (CIM) Specification, Version 2.2
11. OASIS: Web Services Base Notification 1.3 (WS-BaseNotification) (2006)
12. Box, D., et al.: Web Services Eventing (WS-Eventing) W3C Member Submission
13. Treiber, M., Truong, H.L., Dustdar, S.: On analyzing evolutionary changes of web

services. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472,
pp. 284–297. Springer, Heidelberg (2009)

http://www-01.ibm.com/software/tivoli/products/ccmdb/
http://www.ietf.org/rfc/rfc4287.txt
http://www.projectzero.org/

	Distributed Cross-Domain Configuration Management
	Introduction
	Problem Analysis
	Overview of the Approach
	Smart Configuration Items
	Configuration Data Model
	Domain Configuration Discovery
	SCI Dependency Resolution and Management

	Cross Domain Aggregation
	Implementation
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

