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Abstract. Content Delivery Networks (CDNs) are commonly believed
to offer their customers protection against application-level denial of ser-
vice (DoS) attacks. Indeed, a typical CDN with its vast resources can
absorb these attacks without noticeable effect. This paper uncovers a
vulnerability which not only allows an attacker to penetrate CDN’s pro-
tection, but to actually use a content delivery network to amplify the
attack against a customer Web site. We show that leading commercial
CDNs — Akamai and Limelight — and an influential research CDN — Coral
— can be recruited for this attack. By mounting an attack against our
own Web site, we demonstrate an order of magnitude attack amplifica-
tion though leveraging the Coral CDN. We present measures that both
content providers and CDNs can take to defend against our attack. We
believe it is important that CDN operators and their customers be aware
of this attack so that they could protect themselves accordingly.

1 Introduction

Content Delivery Networks (CDNs) play a crucial role in content distribution
over the Internet. After a period of consolidation in the aftermath of the .com
bust, CDN industry is experiencing renaissance: there are again dozens of content
delivery networks, and new CDNs are sprouting up quickly.

CDNs typically deploy a large number of servers across the Internet. By do-
ing this, CDNs offer their customers (i.e., content providers) large capacity on
demand and better end-user experience. CDNs are also believed to offer their
customers the protection against application-level denial of service (DoS) at-
tacks. In an application-level attack, the attacker sends regular requests to the
server with the purpose of consuming resources that would otherwise be used to
satisfy legitimate end-users’ requests. These attacks are particularly dangerous
because they are often hard to distinguish from legitimate requests. Since CDNs
have much larger aggregate pool of resources than typical attackers, CDNs are
supposed to be able to absorb DoS attacks without affecting the availability of
their subscribers’ Web sites.

However, in this paper, we describe mechanisms that attackers can utilize
to not only defeat the protection against application-level attacks provided by
CDNs but to leverage their vast resources to amplify the attack. The key mech-
anisms that are needed to realize this attack are as follows.
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— Scanning the CDN platform to harvest edge server IP addresses. There are
known techniques for discovering CDN edge servers, based on resolving host
names of CDN-delivered URLs from a number of network locations [16].

— Obtaining HTTP service from an arbitrary edge server. While a CDN per-
forms edge server selection and directs HT'TP requests from a given user to
a particular server, we show an easy way to override this selection. Thus, the
attacker can send HTTP requests to a large number of edge servers from a
single machine.

— Penetrating through edge server cache. We describe a technique with which
the attacker can command an edge server to obtain a fresh copy of a file
from the origin even if the edge server has a valid cached copy. This can
be achieved by appending a random query string to the requested URL
(“<URL>?<random string>"). Thus, the attacker can ensure that its re-
quests reach the origin site.

— Reducing the attacker’s bandwidth expenditure. We demonstrate that at
least the CDNs we considered transfer files from the origin to the edge server
and from the edge server to the user over decoupled TCP connections. Thus,
by throttling or dropping its own connection to the edge server, the attacker
can conserve its own bandwidth without affecting the bandwidth consump-
tion at the origin site.

Combining these mechanisms together, the attacker can use a CDN to amplify its
attack. To this end, the attacker only needs to know the URL of one sizable object
that the victim content provider delivers through a CDN. Then, the attacking
host sends a large number of requests for this object, each with a different
random query string appended to the URL, to different edge servers from this
CDN. (Different query strings for each request prevent the possibility of edge
servers fetching the content from each other [9] and thus reducing the strength
of the attack.) After establishing each TCP connection and sending the HTTP
request, the attacker drops its connection to conserve its bandwidth.

Every edge server will forward every request to the origin server and obtain the
object at full speed. With enough edge servers, the attacker can easily saturate
the origin site while expending only a small amount of bandwidth of its own.
Furthermore, because the attacker spreads its requests among the edge servers,
it can exert damage with only a low request rate to any given edge server.
From the origin’s perspective, all its requests would come from the edge servers,
known to be trusted hosts. Thus, without special measures, the attacker will
be hidden from the origin behind the edge servers and will not raise suspicion
at any individual edge server due to low request rate. The aggregation of per-
customer request rates across all the edge servers could in principle detect the
attacker, but doing this in a timely manner would be challenging in a large
globally distributed CDN. Hence, it could help in a post-mortem analysis but
not to prevent an attack. Even then, the attacker can use a botnet to evade
traceability.

While our attack primarily targets the origin server and not the CDN itself
(modulo the cache pollution threat to the CDN discussed in Section[), it is likely
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to disrupt the users’ access to the Web site. Indeed, a Web page commonly
consists of a dynamic container HTML object and embedded static content -
images, multimedia, style sheets, scripts, etc. A typical CDN delivers just the
embedded content, whereas the origin server provides the dynamic container
objects. Thus, by disrupting access to the container object, our attack will disable
the entire page.

This paper makes the following main contributions:

— We present a DoS attack against CDN customers that penetrates CDN
caches and exploits them for attack amplification. We show that customers
of three popular content delivery networks (two leading commercial CDNs
— Akamai and Limelight — and an influential research CDN — Coral) can be
vulnerable to the described attack.

— We demonstrate the danger of this vulnerability by mounting an end-to-
end attack against our own Web site that we deployed specially for this
purpose. By attacking our site through the Coral CDN, we achieve an order of
magnitude attack amplification as measured by the bandwidth consumption
at the attacking host and the victim.

— We present a design principle for content providers’ sites that offers a defini-
tive protection against our attack. With this principle, which we refer to as
“no strings attached”, a site can definitively protect itself against our attack
at the expense of a restrictive CDN setup. In fact, Akamai provides an API
that can facilitate the implementation of this principle by a subscriber [12].

— For the cases where these restrictions prevent a Web site from following the
“no strings attached” principle, we discuss steps that could be used by the
CDN to mitigate our attack.

With a growing number of young CDN firms on the market and the crucial
role of CDNs in the modern Web infrastructure (indeed, Akamai alone claims to
be delivering 20% of the entire Web traffic [2]), we believe it is important that
CDNs and their subscribers be aware of this threat so that they can protect
themselves accordingly.

2 Background

In this section we outline the general mechanisms behind content delivery net-
works and present some background information on the CDNs used in our study.

2.1 Content Delivery Networks

A content delivery network (CDN) is a shared infrastructure deployed across the
Internet for efficient delivery of third-party Web content to Internet users. By
sharing its vast resources among a large number of diverse customer Web sites,
a CDN derives the economy of scale: because different sites experience demand
peaks (“flash crowds”) at different times, and so the same slack capacity can be
used to absorb unexpected demand for multiple sites.
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Fig. 1. Content Delivery Network

Most CDNs utilize domain name system (DNS) to redirect user requests from
the origin Web sites hosting the content to the so-called edge servers operated by
the CDN. The basic mechanism is illustrated in Figure[Il If content provider firm-
x.com wants to deliver HTTP requests for images.firm-x.com, the provider con-
figures its DNS server to respond to queries for images.firm-x.com not with the
IP address of the server but with a so-called canonical name, e.g., “images.firm-
x.com.CDN-name.net”. The user would now have to resolve the canonical name,
with a query that will arrive at the DNS responsible for the CDN-name.net
domain. This DNS server is operated by the CDN; it can therefore select an ap-
propriate edge server for this client and respond to the query with the selected
server IP address. Note that the content provider can selectively outsource some
content delivery to a CDN while retaining the responsibility for the remaining
content. For example, the content provider can outsource all URLs with host-
name “images.firm-x.com” as described above while delivering content with URL
hostnames “www.firm-x.com” from its own origin site directly.

When an edge server receives an HT'TP request, it fetches the indicated object
from the origin site and forwards it to the client. The edge server also caches the
object and satisfies subsequent requests for this objects locally, without contact-
ing the origin site. It is through caching that a CDN protects the origin Web
site from excessive load, and in particular from application-level DoS attacks.

2.2 Akamai and Limelight

Akamai [I] and Limelight [T1] are two leading CDN providers representing two
basic approaches to content delivery. Akamai attempts to increase the likelihood
of finding a nearby edge server for most clients and thus deploys its servers
in a large number of network locations. Its platform comprises 40,000 servers
in 950 networks in 70 countries. Limelight concentrates its resources in fewer
“massively provisioned” data centers (around 18 according to their map) and
connects each data center to a large number of access networks. This way, it
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also claims direct connectivity to nearly 900 networks. The two companies also
differ in their approach to DNS scalability, with Akamai utilizing a multi-level
distributed DNS system and Limelight employing a flat collection of DNS servers
and TP anycast [13] to distribute load among them.

Most importantly, either company employs vast numbers of edge servers,
which as we will see can be recruited to amplify a denial of server attack on
behalf of a malicious host.

2.3 Coral

Coral CDN [8/4] is a free content distribution network deployed largely on the
PlanetLab nodes. It allows any Web site to utilize its services by simply ap-
pending a string ".nyud.net" to the hostname of objects’ URLs. Coral servers
use peer-to-peer approach to share their cached objects with each other. Thus,
Coral will process a request without contacting the origin site if a cached copy
of the requested object exists anywhere within its platform. Coral currently has
around 260 servers world-wide.

3 The Attack Components

This section describes the key mechanisms comprising our attack and our
methodology to verify that CDNs under study support these mechanisms.

3.1 Harvesting Edge Servers

CDN edge server discovery is based on resolving hostnames of CDN-delivered
URLs from a number of network locations. Researchers have used public plat-
forms such as PlanetLab to assemble large numbers of edge servers for CDN
performance studies [I6]. An attacker can employ a botnet for this purpose.

We previously utilized the DipZoom measurement platform [5] to harvest
around 11,000 Akamai edge servers for a separate study [I8]. For the present
study, we used the same technique to discover Coral edge servers. We first
compile a list of URLs cached by Coral CDN. We then randomly select one URL
and resolve its hostname into an IP address from every DipZoom measurement
point around the world. We repeat this process over several hours and discover
263 unique IPs of Coral cache servers. Since according to Coral website, there
are around 260 servers, we believe we essentially discovered the entire set.

3.2 Overriding CDN’s Edge Server Selection

To recruit a large number of edge servers for the attack, the attacker needs to
submit HTTP requests to these servers from the same attacking host, overriding
CDN’s server selection for this host. In other words, the attacker needs to bypass
DNS lookup, i.e., to connect to the desired edge server directly using its raw IP
address rather than the DNS hostname from the URL. We found that to trick
this edge server into processing the request, it is sufficient to simply include the
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HTTP host header that would have been submitted with a request using the
proper DNS hostname.

One can verify this technique by using curl - a command-line tool for HTTP
downloads. For example, the following invocation will successfully download the
object from a given Akamai edge server (206.132.122.75) by supplying the ex-
pected host header through the “-H” command argument:

curl -H Host:ak.buy.com http://206.132.122.75/.../207502093. jpg

We verified that this technique for bypassing CDN’s server selection is effective
for all three CDNs we consider.

3.3 Penetrating CDN Caching

The key component of our attack is to force the attacker’s HTTP requests to
be fulfilled from the origin server instead of the edge server cache. Normally,
requesting a cache server to obtain an object from its origin could be done by
using HTTP Cache-Control header. However, we were unable to force Akamai
to fetch a cached object from the origin this way: adding the Cache-control did
not noticeably affect the download performance of a cached object.

As an alternative, we exploit the following observation. On one hand, mod-
ern caches use the entire URL strings, including the search string (the op-
tional portion of a URL after “?”) as the cache key. For example, a request for
foo.jpg?randomstring will be forwarded to the origin server because the cache is
unlikely to have a previously stored object with this URL. On the other hand,
origin servers ignore unexpected search strings in otherwise valid URLs. Thus,
the above request will return the valid foo.jpg image from the origin server.

Verification. To verify this technique, we first check that we can download a
valid object through the CDN even if we append a random search string to its
URL, e.g., 7ak.buy.com/db assets/ large images/093/207502093.jpg?random”.
We observed this to be the case with all three CDNs.

Next, we measure the throughput of downloading a cached object from a given
edge server. To this end, we first issue a request to an edge server for a regular
URL (without random strings) and then measure the download throughput of
repeated requests to the same edge server for the same URL. Since the first
request would place the object into the edge server’s cache, the performance of
subsequent downloads indicates the performance of cached delivery.

Finally, to verify that requests with random strings are indeed forwarded to
the origin site, we compare the performance of the first download of a URL with
a given random string (referred to as “initial download” below) with repeated
downloads from the same edge server using the same random string (referred
to as “repeat download”) and with the cached download of the same object.
The repeat download would presumably be satisfied from the edge server cache.
Therefore, if changing the random string leads to distinctly worse download
performance, while repeat downloads show similar throughout to the cached
download, it would indicate that the initial requests with random strings are
processed by the origin server.
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Table 1. The throughput of a cached object download (KB/s). Object requests have
no appended random string.

Trial Number 1 2 3 4 5 6 7 8 9 10 Average
Limelight 775 1028 1063 1009 958 1025 941 1029 1019 337 918
Akamai 1295 1600 1579 1506 1584 1546 1558 1570 1539 1557 1533

Table 2. Initial vs. repeat download throughput for Akamai (KB/s). Requests include
appended random strings.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Initial Download 130 156 155 155 156 155 156 147 151 156 152
Repeat Download 1540 1541 1565 1563 1582 1530 1522 1536 1574 1595 1555

Table 3. Initial vs. repeat download throughput for Limelight (KB/s). Requests in-
clude appended random strings.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Initial Download 141 111 20 192 196 125 166 128 18 140 124
Repeat Download 611 876 749 829 736 933 765 1063 847 817 828

We select one object cached by each CDN: a 47K image from Akamaill and a
57K image from Limelight@. (The open nature of Coral allows direct verification,
which we describe later.) Using a client machine in our lab (129.22.150.231), we
resolve the hostname from each URLs to obtain the IP address of the edge
server selected by each CDN for our client. These edge servers, 192.5.110.40 for
Akamai and 208.111.168.6 for Limelight, were used for all the downloads in this
experiment.

Table [l shows the throughput of ten repeated downloads of the selected ob-
ject from each CDN, using its regular URL. These results indicate the cached
download performance. Tables 2 and [B] present the throughput of initial and
repeat downloads of the same objects with ten different random strings.

The results show a clear difference in download performance between initial
and repeat downloads. The repeat download is over 10 times faster for the Aka-
mai case and almost 7 times faster for Limelight. Furthermore, no download with
a fresh random string, in any of the tests, approaches the performance of any
repeat downloads. At the same time, the performance of the repeat download
with random strings is very similar to the cached download. This confirms that a
repeat download with a random string is served from the cache while appending
a new random string defeats edge server caching in both Akamai and Limelight.

In the case of Coral CDN, we verify its handling of random search strings di-
rectly as follows. We setup our private Web server on host saiyud.case.edu (129.22.
150.231) whose only content is an object http://saiyud.case.edu/pic01.jpg. Given

! 7 ak.buy.com/db assets/large images/093,/207502093.jpg”
2 " modelmayhm-8.vo.llnwd.net /d1/photos/081120/17/4925ea2539593.jpg”
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Fig. 2. Decoupled File Transfers Experiment

the open nature of Coral CDN;, a client can now download this object through
Coral by accessing URL ”http://saiyud .case.edu.nyud.net/pic01.jpg”. Next, we
obtain the edge server selected by Coral for our client by resolving the hostname
saiyud.case.edu.nyud.net. Then, we use this server (155.246.12.164) explicitly for
this experiment with the technique from Section 3.2

To check that Coral caches our object, we requested pic01.jpg from the above
edge server three times without a random search string and verified that the log
on our web server recorded only one access of picOl.jpg. This means the other
downloads were served from the edge server cache. Then, we again issued three
requests of pic0l.jpg to this edge server, but now with a different random search
string in each request. This time, our Web server log recorded three accesses of
pic0l.jpg from the edge server. We conclude that appending a random string
causes Coral edge server to fetch the file from the origin regardless of the state
of its cache, as was the case with Akamai and Limelight.

3.4 Amplifying the Attack: Decoupled File Transfers

We showed in Section that one can manipulate a CDN edge server to down-
load the file from the origin server regardless of the content of its cache and
therefore penetrate CDN’s protection of a Web site against a DoS attack. We
now show that the attacker can actually recruit an edge server to consume band-
width resources from the origin site without expending much of the attacker’s
own bandwidth.

In particular, we will show that edge servers download files from the origin
and upload them to the client over decoupled TCP connections, so that the file
transfer speeds over both connections are largely independentﬁ. In fact, this is
a natural implementation of an edge server, which could also be rationalized by
the desire to have the file available in the cache for future requests as soon as
possible. Unfortunately, as we will see, it also has serious security implications.

Verification. To demonstrate the independence of the two file transfers, we setup
two client computers, a prober and a monitor as shown in figure[2l The prober has

3 We do not claim these are completely independent: there could be some interplay at
the edge server between the TCP receive buffer on the origin-facing connection and
the TCP send buffer on the client-facing side. These details are immaterial to the
current paper because they do not prevent the attack amplification we are describing.
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Table 4. The download throughput (KB/s) of the monitor client. The monitor request
is sent 0.5s after the probing request.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Limelight 1058 1027 721 797 950 759 943 949 935 928 907
Akamai 1564 1543 1560 1531 1562 1589 1591 1600 1583 1544 1567

the ability to shape its bandwidth or cut its network connection right after sending
the HTTP request. The monitor runs the regular Linux network stack.

The prober requests a CDN-accelerated object from an edge server E with an
appended random string to ensure that E obtain a fresh copy from the origin
server. The prober shapes its bandwidth to be very low, or cuts the connection
altogether after sending the HTTP request. While the prober is making a slow (if
any) progress in downloading the file, the monitor sends a request for the same
URL with the same random string to £ and measures its download throughput.
If the throughput is comparable to the repeat download throughput from Sec-
tion B3] it means the edge server processed the monitor’s request from its cache.
Thus, the edge server must have completed the file transfer from the origin as
the result of the prober’s access even though the prober has hardly downloaded
any content yet. On the other hand, if the throughput is comparable to that of
the initial download from Section [B:3] then the edge server has not acquired the
file and is serving it from the origin. This would indicate that the edge server
matches in some way the speed of its file download from the origin to the speed
of its file upload to the requester.

Because edge servers may react differently to different behavior of the clients,
we have experimented with the prober (a) throttling its connection, (b) going
silent (not sending any acknowledgements) after sending the HTTP request,
and (c) cutting the connection altogether, with sending the reset TCP segment
to the edge server in response to its first data segment. We found that none
of three CDNs modify their file download behavior in response to any of the
above measures. Thus, we present the results for the most aggressive bandwidth
savings technique by the requester, which includes setting the input TCP buffer
to only 256 bytes — so that the edge server will only send a small initial amount
of data (this cuts the payload in the first data segment from 1460 bytes to at
most 256 bytes), and cutting the TCP connection with a reset after transmitting
the HTTP request (so that the edge server will not attempt to retransmit the
first data segment after timeouts).

The experiments from the previous subsection showed that both Akamai and
Limelight transferred their respective object from origin with the throughput of
between 100 and 200KB/s (an occasional outlier in the case of Limelight notwith-
standing). Given that either object is roughly 50K in size, we issue the monitoring
request 0.5s after the probing request, so that if our hypothesis of the full-throttle
download is correct, each edge server will have transferred the entire object into
the edge server cache by the time of the monitoring request arrival.

The results are shown in Table @l It shows that the download through-
puts measured by the monitor matches closely those for repeat downloads from
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Section B3l Thus, the monitor obtained its object from the edge server cache.
Because the edge server could process this request from its cache only due to
the download caused by the request from the prober, and the latter downloaded
only a negligible amount of content, we have shown that, with the help of the
edge server, the prober can consume (object-size)/0.5s, or roughly 100KB/s, of
the origin’s bandwidth while expending very little bandwidth of its own.

4 End-to-End Attack

This section demonstrates the end-to-end attack that brings together the vul-
nerabilities described in the previous section. To do so, we setup our own web
server as a victim and use the Coral CDN to launch the amplified DoS attack
against this server. This way, we can show the effusiveness of our attack without
affecting any existing Web site; further, due to elaborate per-node and per-site
rate controls imposed by Coral [4] we do not affect the Coral platform either.
In fact, our experiments generate only roughly 18Kbps of traffic on each Coral
server during the sustained attack and under 1Mbps during the burst attack
- hardly a strain for a well-provisioned node. Our results show that even our
modest attempt resulted in over an order of magnitude attack amplification and
two-three orders of magnitude service degradation of the web site.

We should note that after a number of attacks, Coral apparently was able to
correlate our request pattern across their nodes and block our subnet from fur-
ther attacks. This, however, happened only after a number of successful attacks.
The mitigation methods we describe in Section [6] would allow one to prevent
these attacks before they occur. Furthermore, a real attacker could use a botnet
to change the attacking host at will and negate the benefit of even post-mortem
detection. We discuss data-mining-based protection in more detail in Section [£4]

4.1 The Setup

Figure B] shows our experimental setup. The victim web server hosts a single
100K target object. The attacker host issues a number of requests for this object
with different random strings to each of the Coral cache servers. To reduce its

WEB
SERVER

MONITOR

Fig. 3. DoS Attack With Coral CDN
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traffic load, the attacker sets an artificially small input TCP buffers of 256 bytes
for its HTTP downloads and terminates its connections upon the arrival of the
first data packet. The monitor acts as a regular client. It downloads the object
directly from the victim web site once a second to measure the performance
perceived by an end-user.

We use the identical machines for both the victim web server and the attacker:
a dual core AMD Opteron 175 CPU with 2 GB memory and a gigabit link. The
Web server is Apache 2.2.10 with the number of concurrent clients set to 1000 to
increase parallelism. The monitor is a desktop with Intel P4 3.2GHz CPU, 1GB
memory and a gigabit link. We use a set of 263 Coral cache servers to amplify
the attack in our experiment.

4.2 A Sustained Attack

To show the feasibility of sustaining an attack over a long period of time, we
let the attacker send 25 requests to each of the 263 Coral cache servers every
two minutes, repeating this cycle 20 times. Thus, this is an attempt to create a
40-minute long attack. The effects of this attack are shown in Figure [

Figures and depicts the in-bound and out-bound per-second traffic
on the web server and the attacker before, during, and after the attack. Table
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Table 5. Average traffic increase during the attack period

In-Bound (B/s) Out-Bound (B/s) Total (B/s)
Server 40,528 515,200 555,728
Attacker 13,907 31,759 45,666

shows the average increase of traffic during the attack on the server and the
attacker. As seen from this table, the attack increases overall traffic at the origin
site by 555, 728 Byte/s (4.45 MBps), or almost almost half of the 10Base Ethernet
link bandwidth. Moreover, this load is imposed at the cost of only 45, 666 Byte/s
traffic increment to the attacker, or a quarter of a T1 link bandwidth. Thus, the
attacker was able to use a CDN to amplify its attack by an order of magnitude
over the entire duration of the attack.

Figure shows the dynamics of the download performance (measured as
throughput) as seen by the monitor, representing a regular user to our web site.
The figure indicates a dramatic degradation of user-perceived performance dur-
ing the attack period. The download throughput of the monitor host dropped by
71.67 times on average over the entire 40-minute attack period, from 8824.2KB/s
to 123.13KB/sf

In summary, our attack utilized a CDN to fill half of the 10Base Ethernet link
of its customer Web site at the cost of a quarter of T1 link bandwidth for 40
minutes. A more aggressive attack (using more edge servers and a larger target
file) would result in an even larger amplification.

4.3 A Burst Attack

A CDN may attempt to employ data mining over the arriving requests to de-
tect and block our attack. While we discuss in Section 4] why this would be
challenging to do in a timely manner, we also wanted to see what damage the
attacker could inflict with a single burst of requests to minimize a chance of
detection. Consequently, in this experiment, the attacker sends a one-time burst
of 100 requests to each of the 263 Coral servers. This apparently tripped Coral’s
rate limiting, and only around a third of the total requests made their way to
the victim Web server. However, as we will see below, these requests were more
than enough to cause damage.

The dynamics of this attack are shown in Figure Bl We should mention that
this experiment was performed with the attacker host going completely silent in-
stead of resetting the connection right after receiving the first data packet. With
this setup, the Coral servers performed multiple retransmission attempts for the
unacknowledged first data packet of the response. This lead to a slight increase
of the attacker bandwidth consumption. However, even with this increase, the

4 We should note that the absolute performance numbers regarding the web server per-
formance should be taken with a grain of salt because they depend on server tuning.
Tuning a web server, however, is not a focus of this paper, and our measurements
reflect a typical configuration.
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Fig. 5. The effects of a burst DoS attack

attacker achieves an effective attack amplification, by more than the factor of 50
at its peak.

As one can see from Figure Bl a single burst attack can have a long-lasting
effect on the web site. Its bandwidth consumption increased by an order of
magnitude or more for 85 seconds. The attack amplification of at least an order
of magnitude lasted for almost two minutes (114 seconds). The average download
performance seen by the monitor dropped three orders of magnitude, from the
average of 8.6 MB/s during the normal period to 8.4 KB/s for over three minutes.
These long-lasting effects are caused by the pending requests accumulated at the
server, which take a long time to resolve and prolong the the attack.

We conclude that a burst attack can cause a significant temporary disruption
of a Web site. By repeating burst attacks from random botnet nodes at random
times, the attacker can lead to intermittent availability and erratic performance
of its victim site.

4.4 Discussion: Extrapolation to Commercial CDNs

We have shown above the end-to-end effect of our attack with Coral CDN. Since
we can only assess the effect by observing a degraded performance, we could
not perform a similar demonstration with commercial CDNs without launching
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a DoS attack against the affected content provider. We considered to try to
degrade the performance of the content provider “just a bit”, but realized that
either this degradation would be in the noise, in which case our demonstration
would be inconclusive, or the degradation would be noticeable, in which case it
is a DoS attack unless the content provider consented to our experiment.
While we could not safely replicate our Coral attack with commercial CDNs,
we conclusively showed that an attacker could make the origin site consume
almost 1Mpbs of its bandwidth (i.e., transmit a file of roughly 50K in at most
0.5s — see Section [B.4)), at the expense of negligible bandwidth of its own. Simply
replicating this action, using different random strings and different edge servers,
would allow the attacker to saturate the content provider bandwidth or other
resources. In theory, one could imagine a CDN to use some clever data mining to
detect and block the attacker that replicates these actions. However, such data
mining would be challenging and at best only provide partial protection. Indeed:

— It cannot protect against a burst attack. Because the attack consumes very
little resources on the attacking host, the attacker can send a large number
of requests to a large number of edge servers almost instantaneously. As we
saw in Section 3] because of queuing of pending requests, a single burst
can affect the content provider for a long time.

— A CDN cannot perform this data mining at individual edge servers or even
data centers because each server will only see a very low request rate from
the attacker. For example, to saturate a T3 line, the attacker must send only
45 requests per second (less if a larger than 50K object were used in the
attack). Assuming a CDN with 500 locations, this translates into less than
one request per ten second to each data center. Thus, the data mining by a
CDN has to be centralized.

— Performing centralized data mining over global request rates requires trans-
ferring large amounts of data, in real time, to the central location. Although
CDNs do provide global usage reports to their customers, detecting our at-
tack requires data at the fine granularity of individual clients’ requests to
individual URLs. As an example, Akamai’s EdgeSuite service provides usage
reports only at 1-minute granularity and with aggregated information such
as numbers of clients accessing various Akamai locations and their overall
request rates to the subscriber’s content. The timeliness with which they can
“drill down” to individual clients and URLs is unclear.

— Even if real-time centralized data mining were possible, the attacker can fur-
ther complicate the detection by using a botnet and/or employing multiple
objects in the attack.

In summary, while data mining detection of a sustained attack is theoretically
possible, we believe (a) a far better protection is to prevent amplified malicious
requests and/or provide enough data to subscribers to let them perform their
own site-specific detection (see Section[dl), and (b) content delivery networks and
their subscribers must be aware of this dangerous attack regardless, to make sure
they are protected.
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5 Implication for CDN Security

Although this paper focuses on the threat to CDN customers, the vulnerabilities
we describe also pose security issues for the CDN itself. We demonstrated in
Section that edge servers view each URL with an appended random string
as a unique URL, and cache it independently. Thus, by requesting an object
with multiple random strings, the attacker can consume cache space multiple
times. Furthermore, by overriding CDN’s edge server selection (Section [3.2)), the
attacker can employ a botnet to both target strategically selected edge servers
and to complicate the detection. Constructing its requests from several base
URLSs can further complicate the detection of this attack.

In principle, the attacker can attempt to pollute the CDN cache even with-
out the random strings, simply by requesting a large number of distinct CDN-
accelerated URLs. However, unlike forward caches, edge servers only accelerate a
well-defined set of content which belongs to their customers, limiting the degree
of cache pollution that could be done with legitimate URLs. The random string
vulnerability removes this limit.

Detailed evaluation of this attack is complicated and is outside the scope of
this paper. We only note that the countermeasure described in Section will
protect against this threat as well.

6 Mitigation

The described attack involves several vulnerabilities, and different measures can
target different vulnerabilities. In this section, we describe a range of measures
that can be taken by content providers and by CDNs to protect or mitigate our
attack. However, we view our most important contribution to be in identifying
the attack. Even the simple heuristic of dropping URLs in which query strings
follow file extensions that indicate static files, such as “html”, “.gif”, “.pdf”,
would go a long way towards reducing the applicability of our attack. Indeed,
these URLs should not require query strings.

6.1 Defense by Content Provider

Our attack crucially relies on the random string vulnerability, which allows the
attacker to penetrate the protective shield of edge servers and reach the origin.
Content providers can effectively protect themselves against this vulnerability by
changing the setup of their CDN service as described below. We will also see that
some types of CDN services are not amenable to this change; in these cases, the
content provider cannot protect itself unilaterally and must either forgo these
services or rely on CDN’s mitigation described in the next subsection.

To protect against the random string vulnerability, a content provider can
setup its CDN service so that only URLs without argument strings are accel-
erated by the CDN. Then, it can configure the origin server to always return
an error to any request from an edge server that contains an argument string.
Returning the static error message is done from main memory and consumes
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few resources from both the server and network. In fact, some CDNs customize
how their URLs are processed by edge servers. In particular, Akamai allows a
customer to specify URL patterns to be dropped or ignored [12]. The content
provider could use this feature to configure edge servers to drop any requests
with argument strings, thus eliminating our attack entirely. The only exception
could be for query strings with a small fixed set of legitimate values which could
be enumerated at edge servers. We refer to this approach of setting up a CDN
service as “no-strings-attached”.

The details how no-strings-attached could be implemented depend on the in-
dividual Web sites. To illustrate the general idea, consider a Web site, foo.com,
that has some dynamic URLs that do require seemingly random parameters. A
possible setup involves concentrating the objects whose delivery is outsourced
to CDN in one sub-domain, say, outsourced.foo.com, and objects requiring ar-
gument strings in another, such as self.foo.com. Referring back to Figure [T
foo.com’s DNS server would return a CNAME record pointing to the CDN net-
work only to queries for the former hostname and respond directly with the
origin’s IP address to queries for the latter hostname.

Note that the no-strings-attached approach stipulates a so-called “origin-first”
CDN setup [14] and eliminates the option of the popular “CDN-first” setup.
Thus, the no-strings-attached approach clearly limits the flexibility of the CDN
setup but allows content providers to implement the definitive protection against
our attack.

6.2 Mitigation by CDN

Although the no-strings-attached approach protects against our attack, it limits
the flexibility of a CDN setup. Moreover, some CDN services are not amenable to
the no-strings-attached approach. For example, Akamai offers content providers
an edge-side includes (ESI) service, which assembles HTTP responses at the
edge servers from dynamic and static fragments [6]. ESI reduces bandwidth con-
sumption at the origin servers, which transmit to edge servers only the dynamic
fragments rather than entire responses. However, requests for these objects usu-
ally do contain parameters, and thus no-strings-attached does not apply. In the
absence of the no-strings-attached, a CDN can take the following steps to miti-
gate our attack.

To prevent the attacker from hiding behind a CDN, the edge server can pass
the client’s IP address to the origin server any time it forwards a request to the
origin. This can be done by adding an optional HT'TP header into the request.
This information will facilitate the identification of, and refusal of service to,
attacking hosts at the origin server. Of course, the attacker can still attempt
to hide by coming through its own intermediaries, such as a botnet, or public
Web proxies. However, our suggestion will remove the additional CDN-facilitated
means of hiding. Coral CDN already provides this information in its x-codemux-
client header. We believe every CDN must follow this practice.

Further, the CDN can prevent being used for an attack amplification by throt-
tling its file transfer from the origin server depending on the progress of its own
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file transfer to the client. At the very least, the edge servers can adopt so-called
abort forwarding [7], that is, stop its file download from the origin whenever
the client closes its connection. This would prevent the most aggressive attack
amplification we demonstrated in this paper, although still allow the attacker
to achieve significant amplification by slowing down its transfer. More elaborate
connection throttling is not such a clear-cut recommendation at this point. On
one hand, it would minimize the attack amplification with respect to bandwidth
consumption. On the other hand, it would tie other server resources (e.g., server
memory, process or thread, etc.) for the duration of the download and delay
the availability of the file to future requests. We leave a full investigation of
connection throttling implications for future work.

7 Related Work

Most prior work considering security issues in CDNs focused on the vulnerabili-
ties and protection of the CDN infrastructure itself and on the level of protection
it affords to its customers [20T7IT0J9]. In particular, Wang et al consider the how
to protect edge servers against break-ins [20] and Su and Kuzmanovich discover
vulnerabilities in Akamai’s streaming infrastructure [I7]. Our attack targets not
the CDN but its customer Web sites.

Lee et al. propose a mechanism to improve the resiliency of edge servers to
SYN floods, which in particular prevents a client from sending requests to unin-
tended edge servers [10]. Thus, it would in principle offer some mitigation against
our attack (at least in terms of detection avoidance) because it would disallow
the attacking host to connect to more than one edge server. Unfortunately, this
mechanism requires the CDN to know the client IP address when it selects the
edge server, the information that is not available in DNS-level redirection.

Jung et al. investigated the degree of CDN’s protection of a Web site against
a flash crowd and found that cache misses from a large number of edge servers
at the onset of the flash event can overload the origin site [9]. Their solution —
dynamic formation of caching hierarchies — will not help with our attack as our
attack penetrates caching. Andersen [3] mentions a possibility of a DoS attack
that includes the amplification aspect but otherwise is the same as flash crowds
considered in [9] (since repeated requests do not penetrate CDN caches); thus
the solution from [9] applies to this attack also. We experimentally confirm the
amplification threat and make it immune to this solution by equipping it with
the ability to penetrate CDN caches.

The amplification aspect of our attack takes advantage of the fact that HTTP
responses are much larger than requests. The similar property in the DNS pro-
tocol has been exploited for DNS-based amplification attacks [T9I15].

Some of the measures we suggest as mitigation, namely, abort forwarding and
connection throttling have been previously suggested in the context of improving
benefits of forward Web proxies [7]. We show that these techniques can be useful
for the edge servers as well.
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8 Conclusion

This paper describes a denial of service attack against Web sites that utilize a
content delivery network (CDN). We show that not only a CDN may not protect
its subscribers from a DoS attack, but can actually be recruited to amplify
the attack. We demonstrate this attack by using the Coral CDN to attack our
own web site with an order of magnitude attack amplification. While we could
not replicate this experiment on commercial CDNs without launching an actual
attack, we showed that two leading commercial CDNs, Akamai and Limelight,
both exhibit all the vulnerabilities required for this attack. In particular, we
showed how an attacker can (a) send a request to an arbitrary edge server
within the CDN platform, overriding CDN’s server selection, (b) penetrate CDN
caching to reach the origin site with each request, and (c) use an edge server to
consume full bandwidth required for processing a request from the origin site
while expending hardly any bandwidth of its own. We describe practical steps
that CDNs and their subscribers can employ to protect against our attack.

Content delivery networks play a critical role in the modern Web infrastruc-
ture. The number of CDN vendors is growing rapidly, with most of them being
young firms. We hope that our work will be helpful to these CDNs and their
subscribers in avoiding a serious security pitfall.
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