
Controller Synthesis from LSC Requirements�

Hillel Kugler1, Cory Plock1, and Amir Pnueli2

1 Computational Biology Group, Microsoft Research, Cambridge, UK
{hkugler,v-coploc}@microsoft.com

2 Computer Science Department, New York University, New York, NY, USA
amir@cs.nyu.edu

Abstract. Live Sequence Charts (LSCs) is a visual requirements language for
specifying reactive system behavior. When modeling and designing open reac-
tive systems, it is often essential to have a guarantee that the requirements can
be satisfied under all possible circumstances. We apply results in the area of con-
troller synthesis to a subset of the LSC language to decide the realizability of LSC
requirements. If realizable, we show how to generate system responses that are
guaranteed to satisfy the requirements. We discuss one particular implementation
of this result which is formulated as an extension of smart play-out, a method for
direct execution of scenario-based requirements.

1 Introduction

Going directly from requirements to a correct implementation has long been a “holy
grail” for system and software development. According to this vision, instead of imple-
menting a system and then working hard to apply testing and verification methods to
prove system correctness, a system is rather built correctly by construction. Synthesis
is particularly challenging for reactive systems, in which the synthesized system must
satisfy the requirements for any possible behavior of an external environment [2,25].

One formal specification language for reactive systems is Live Sequence Charts
(LSCs) [4]. LSCs is a visual language, extending the classical message sequence charts
with the ability to specify both safety and liveness properties. A methodology called
the play-in/play-out approach was described in [11] as part of a tool called the Play-
Engine. Play-in provides an intuitive means of capturing requirements by interacting
with a graphical representation of the system, while play-out executes the scenarios in
a way that gives a feeling of running an implementation of the system.

An improvement to play-out called smart play-out is introduced in [9]. This approach
uses verification methods—in particular, model-checking—to run LSC specifications
and avoid certain violations that may occur in the original version of play-out. Unfortu-
nately, smart play-out cannot avoid all possible violations [7]. This paper addresses an
improvement to smart play-out which guarantees non-violation over all computations,
provided that the requirements are realizable. To accomplish this, we reformulate the
previous model checking problem instead as a synthesis problem.

� This research was supported in part by NIH grant R24-GM066969 and a donation by Robert
B. K. Dewar and Edmond Schonberg.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 79–93, 2009.
© Springer-Verlag Berlin Heidelberg 2009

80 H. Kugler, C. Plock, and A. Pnueli

We view the problem as a two-player open game between the system and the envi-
ronment. The system refers to the components of an executable program we wish to
construct; the environment represents external entities which produce system inputs.
The system attempts to win the game by satisfying the LSC requirements, whereas the
environment’s goal is to foil the system by steering the game into a violating state.
The game is carried out using a special transition system called a game structure that
encodes the logic of user-supplied LSC requirements.

Given a game structure, the work of [24,23] provides a means of deciding realiz-
ability, which amounts to determining if a reactive system is capable of avoiding vio-
lation over all inputs and across all runs. If so, a transition system called a controller
is extracted. The controller encodes the so-called winning strategy as the original input
transition system with non-winning transitions removed to avoid violating the safety
properties, and guards (possibly) added to certain edges to ensure satisfaction of the
liveness properties. By following the transitions of the resulting controller, satisfaction
of the complete requirements is guaranteed.

In this paper, we describe how to construct a game structure that expresses the be-
havior of a subset of the LSC language. We apply the results of [24], with certain mod-
ifications that allow us to deal with some advanced LSC constructs in a natural way,
to determine realizability and extract the controller, provided it exists. If so, we use
the winning strategy to choose correct system responses to every environment input.
Responses are guaranteed to exist, provided the requirements are realizable.

The paper is organized as follows. Related work is discussed in section 2. We discuss
the contributions and shortcomings of smart play-out in greater detail in section 3 and
motivate the need for this work in section 4. We provide definitions in section 5 and a
description of our synthesis methodology in section 6. Our main result is discussed in
section 7 and conclusion in section 8.

2 Related Work

In recent years there have been considerable research efforts on synthesizing executable
systems from scenario-based requirements [15,16,20,17,31,30,28,21,12]. In many of
these papers, the requirements are given using a variant of classical message sequence
charts and the synthesized system is state-based. Although there are many common
aspects to our work and these papers, the main distinguishing feature of LSCs is that
they are more expressive than most of the classical MSC variants.

Synthesis from LSCs was first studied in [8], and is tackled there by defining consis-
tency, showing that LSC requirements are consistent iff they are satisfiable by a state-
based object system. A satisfying system can then be synthesized. This line of work
was continued in [10], which includes an implementation of a sound but not complete
algorithm for Statechart synthesis. A game theoretic approach to synthesis from LSCs
involving a reduction to parity games is described in [3]. Synthesis from LSCs using
a reduction to CSP appears in [27]. All the above papers were either theoretical and
did not include an implementation, or the synthesis approach was sound but not com-
plete, or the synthesis time complexity was not encouraging. An alternative strategy for

Controller Synthesis from LSC Requirements 81

synthesis from LSCs is to use a translation from LSCs to temporal logic [18,5] or au-
tomata [14] and then apply existing synthesis algorithms, e.g., [25,29].

In [24] a controller synthesis implementation for generalized Büchi winning condi-
tions in the language of TLV-BASIC [26] is presented. The work is later extended in
[23] to include Reactive(1) designs, or generalized Streett winning conditions. Neither
of the results are specific to LSC requirements, but we utilize a modified version of the
former implementation for our present work. In recent work [19], a compositional syn-
thesis approach for a core subset of LSCs containing only messages is presented. The
main contribution of [19] is the compositional approach, whereas this paper focuses on
the basic synthesis algorithm for a wider LSC subset.

3 Smart Play-Out

Smart play-out [9] is a method for direct execution of scenario-based requirements,
which allows a user to interact with an executing reactive system whose behavior was
specified using Live Sequence Charts [4]. The user first creates the LSC requirements
using play-in by manipulating the user interface of the target application (e.g., by press-
ing buttons, rotating knobs, etc.)

Once the requirements have been specified, smart play-out allows the user to play
the role of the environment by injecting input events and then observe system responses
that follow according to the requirements. More specifically, smart play-out accepts
input events only when the Play-Engine is in a so-called stable state. Whenever an in-
put (environment) event is injected within a stable state, smart play-out formulates a
response— a sequence of outputs events called a superstep—which leads the computa-
tion to another stable state, provided a superstep exists. The main contribution of smart
play-out is the means through which supersteps are identified and executed.

Smart play-out finds supersteps by first encoding the logic of LSCs into a transition
system and then formulating a model checking problem for the specified environment
input. Roughly speaking, smart play-out tries to verify the property “no superstep lead-
ing to a stable state exists” with the hope that the property is false. If it is indeed false,
the model checker produces a counterexample as a witness to the existence of the su-
perstep. Smart play-out then feeds the counterexample to the Play-Engine so that the
user may witness the superstep being carried out graphically.

One limitation of smart play-out is that the model checking procedure explores the
state space only to the extent necessary to identify a superstep leading to some successor
stable state. The procedure disregards whether any supersteps exist from the successor
stable state, or any stable state thereafter. Therefore, smart play-out may blindly lead
the system into a state from which no superstep exists—a violation of the requirements,
since reactive systems must supply a (correct) response to every environment input.

When the user sees the violation, they may arrive at an inaccurate conclusion that
something is wrong with the requirements, when in fact the violation was due to the
Play-Engine’s poor choice of supersteps. Better selection of supersteps could have
yielded non-violation instead. The main problem is that the supersteps (i.e., counter-
examples) seem to be chosen arbitrarily by the model checker. By choosing supersteps
more wisely, it is possible to identify a priori whether supersteps exist for all possible

82 H. Kugler, C. Plock, and A. Pnueli

LSC1User

wake

fall make

Tree Noise

sleep

fall

LSC2User

make

Tree Noise

SYNC

SYNC

FALSE

Fig. 1. LSC Requirements

sequences of inputs. To achieve this, we use synthesis techniques to perform a complete
analysis of the state space. This allows for forward-looking decisions and complete
avoidance of violations, provided the requirements are realizable.

4 Example

To solidify the above discussion with an example, consider LSC requirements consist-
ing of the two LSCs shown in Fig. 1. Both scenarios include USER as an environment
instance, and both TREE, NOISE as system instances. Accordingly, the behaviors of
TREE and NOISE are within the control of the system we intend to construct, whereas
the behaviors of the USER are assumed to be external.

According to LSC1, whenever USER sends the wake message, the controller must
respond with a non-deterministic ordering of message fall and make in order to satisfy
the main chart. Therefore, the traces wake, fall, make or wake, make, fall are both ac-
ceptable for satisfying LSC1. On the other hand, LSC2 is an anti-scenario that specifies
the sequence make, fall, sleep cannot ever occur. The synchronizing conditions remove
the otherwise non-deterministic ordering of make, fall, sleep to ensure that only traces
with this precise ordering will satisfy the prechart.

We now consider how smart play-out might respond to an input message wake ex-
ecuted by the USER. After formulating a model-checking problem that checks for the
non-existence of a satisfying trace, the resulting counter-example yields one of the two
possible event sequences above. Supposing that smart play-out executes the sequence:
make, fall, LSC1 would be satisfied, but the prechart of LSC2 would advance such that
the next enabled message is sleep. The USER could then execute sleep and violate the
requirements. This illustrates the inability of smart play-out to look ahead into the future
by more than one superstep.

Using synthesis, it is possible for the controller to decisively choose an alternative
sequence that would not allow the environment to violate the requirements. In response

Controller Synthesis from LSC Requirements 83

to the message wake, the synthesis algorithm would have removed the transitions that
permit the sequence make, fall to occur, leaving fall, make as the only existing path.

5 Game Structures

A game structure (GS) is defined by G : 〈V, X, Y, Θ, ρe, ρs, ϕ〉 consisting of:

– V , a finite set of typed state variables. We define s to be an interpretation of V ,
assigning to each variable v ∈ V a value s[v] ∈ Dv within its respective domain.
We denote by Σ the set of all states. We extend the evaluation function s[·] to
expressions over V in the usual way. An assertion is a Boolean formula over V .
A state s satisfies an assertion ϕ, denoted s |= ϕ, if s[ϕ] = T. We say that s is a
ϕ-state if s |= ϕ.

– X ⊆ V is a set of input variables controlled by the environment. Let X̄ denote the
set of all input variable valuations.

– Y = V \ X is a set of output variables controlled by the system. Let Ȳ denote the
set of all output variable valuations.

– Θ is the initial condition characterizing all initial states of G.
– ρe(X̄, Ȳ , X̄ ′, Ȳ ′) is the transition relation of the environment. This is an assertion

relating state s ∈ Σ to a possible input value �x′ ∈ X̄ by referring to unprimed
and primed copies of X̄ and Ȳ . The transition relation ρe identifies valuation �x′ as
a possible input in state s, if for some output �y′, (s, �x′, �y′) |= ρe(X̄, Ȳ , X̄ ′, Ȳ ′).
where (s, �x′, �y′) denotes a transition from state s to state (�x′, �y′).

– ρs(X̄, Ȳ , X̄ ′, Ȳ ′) is the transition relation of the system. This is an assertion relat-
ing state s ∈ Σ to a possible output value �y′ ∈ Ȳ by referring to unprimed and
primed copies of X̄ and Ȳ . The transition relation ρs identifies valuation �y′ as a
possible output in state s, if for some input �x′, (s, �x′, �y′) |= ρs(X̄, Ȳ , X̄ ′, Ȳ ′).

– ϕ is the winning condition, given by an LTL (linear temporal logic) formula.

As can be seen, changes in state are characterized by changes in the variable valuations.
We partition variables into those controlled by the environment (input variables) and
those by the system (output variables). Each player may then observe and modify the
valuations of its own variables, but can only observe the valuations of the opponent’s.

5.1 Dependent vs. Independent Moves

We say that a player moves from a state whenever it modifies the variable valuations
according to its transition relation. In most game settings, including [24], players strictly
alternate between moving: a predesignated player moves first according to the current
valuation of the input and output variables. The second player then observes the same
valuations as the first and also the first player’s move and then moves herself.

A different approach is presented in [6], whereby both players move simultaneously
and independently. That is, they move at the same instant and both moves are a function
of the current variable valuations only—a player can’t observe the opponent’s move.
According to our approach, the players move simultaneously as before, but both players

84 H. Kugler, C. Plock, and A. Pnueli

are permitted to move dependently or independently. A player’s move is dependent if
it is a function of the current variable valuations and the opponent’s move. If it is a
function of only the current variable valuations, then it is an independent move, as
above.

We adopt this approach because LSCs inherently require the system and environment
to synchronize during certain points during the execution. This happens, for example,
when system and environment instances arrive on an LSC condition. Our definition
lends itself to modeling this type of behavior quite naturally. Although it is possible to
simulate this type of synchronous behavior using the alternating-turn approach, extra
memory and logic seems to be required.

To illustrate the above concepts, consider the following SMV [22] code:

1 n e x t (env) := c a s e
2 s y s =0 & env =0 & n e x t (s y s)= 1 : 2 ;
3 s y s =0 & env =0 : 3 ;
4 1 : env ;
5 e s a c ;
6
7 n e x t (s y s) := c a s e
8 s y s =0 & env =0 : {1 , 2} ;
9 1 : s y s ;

10 e s a c ;

Listing 1.1. Example SMV Code

The example depicts the transition relation for environment input variable env be-
tween lines 1-5, and system output variable sys on lines 7-10. Elsewhere, variable sys
is defined to range over 0, . . . , 2 and env over 0, . . . , 3.

The transition relation for each variable is expressed by a case statement. Each line
of the case statement takes the form expr : val where expr is an expression over the
variables and val is a legal next value (or set of values) when expr is true. Each line is
evaluated in the order appearing in the input. If expr does not hold, then the next line
is evaluated and so on, until one of the expressions holds. Expression “1” is a catch-all
expression referring to all cases not covered by the expressions appearing above it.

For example, according to line 8, if sys and env are both 0 in the current state, then
sys can nondeterministically choose between 1 or 2 in the next state. Line 9 states that
the value of sys remains unchanged for all other cases. Lines 8 and 9 are examples of
independent moves, since neither relies on the environment’s move (the value of env
in the next state.)

As for the transition relation of env, line 2 states that if sys and env are 0 and,
furthermore, sys is 1 in the next state, then env is 2 in the next state. Line 2 is an
example of a dependent move, since the case only holds with the cooperation of the
system. Line 3 is also dependent since it implies that next(sys) is not equal to 1.
However, line 4 is independent because it does not depend on any particular value of
next(env).

Controller Synthesis from LSC Requirements 85

5.2 Deadlock

Conceptually, each round of play proceeds as follows: from a given state, both players
each choose among any available move which is legal according to their own transi-
tion relation. If both moves are independent then neither player risks interference from
their opponent. If a player chooses a dependent move, then the set of allowable moves
becomes restricted according to the opponent’s move. Both players may also choose
dependent moves. However, when at least one of the moves is dependent, there exists
a possibility that moves which were legal according to each player’s own transition
relation may no longer be legal once combined. Such moves are said to be deadlocked.

To illustrate deadlock in this context, consider the following contrived example:

1 n e x t (s y s) := c a s e
2 s y s =0 & env =0 & n e x t (env) = 1 : 1 ;
3 1 : s y s ;
4 e s a c ;
5
6 n e x t (env) := c a s e
7 s y s =0 & env =0 & n e x t (s y s)= 1 : 0 ;
8 1 : env ;
9 e s a c ;

Listing 1.2. Deadlock Example

First note that lines 2 and 7 both refer to dependent transitions, since the transition
relation for each player’s variable depends on the opponent’s move. Now consider the
state where sys=env=0 holds. According to line 2, if env is 1 in the next state,
then sys must be 1 in the next state. However, according to line 7, if sys is 1 in
the next state, then env must be 0 in the next state. The system’s move on line 2 and
the environment’s move on line 7 are deadlocked because there will never be a way to
proceed using this combination. Note that there could exist other moves that do work.
For instance, both players may move from sys=env=0 to state sys=env=0.

Although not shown in this example, there could generally exist states from which
all moves are deadlocked, leaving no possible next move. We refer to these states as
fully deadlocked.

The presence of deadlocks, or even fully deadlocked states, in a transition system is
not necessarily forbidden. For example, one may intentionally introduce deadlocks into
a transition system to model some kind of real life dead-end situation, with the idea of
having synthesis generate the strategy to avoid the deadlocks. In contrast with previous
synthesis work based on the turn-based approach, such as [24], additional consideration
is required for handling (fully) deadlocked states in the case of games with simultaneous
transitions.

6 Synthesis

Let G be a game structure and s and s′ be states of G. We say s′ is a successor of s if
(s, s′) |= ρe ∧ ρs. We freely switch between (s, �x′, �y′) |= ρe and ρe(s, �x′, �y′) = 1 and
similarly for ρs.

86 H. Kugler, C. Plock, and A. Pnueli

A play σ of G is a maximal sequence of states σ : s0, s1, . . . satisfying initiality
(s0 |= Θ) and consecution (for each i ≥ 0, si+1 is a successor of si). Let σ be a play
of G. From state s, the environment chooses an input �x′ ∈ X and system chooses an
output �y′ such that ρe(s, �x′, �y′) = 1 and ρs(s, �x′, �y′) = 1.

We say that play σ is winning for the system if it is infinite and satisfies the winning
condition ϕ. Otherwise, σ is winning for the environment.

Let σ = s0, . . . , sn. A strategy for the system is a function f : Σ+ × X̄ �→ Ȳ where
for every �x′ ∈ X̄ such that ρe(sn, �x′, f(σ, �x′)) = 1, we have ρs(sn, �x′, f(σ, �x′)) = 1.
A play s0, s1, . . . is said to be compliant with strategy f if for all i ≥ 0 we have
f(s0, . . . , si, si+1[X̄]) = si+1[Ȳ], where si+1[X̄] and si+1[Ȳ] are the restrictions of
si+1 to variable sets X and Y , respectively.

Strategy f is winning for the system from state s ∈ Σ if all s-plays (plays departing
from s) which are compliant with f are winning for the system. We denote by Wc the set
of states from which there is a winning strategy for the system. G is said to be winning
for the system if all initial states of G are winning for the system. In this case, we say G
is realizable and we synthesize a winning strategy which is a working implementation
for the system. Otherwise G is unrealizable.

6.1 Controllable Predecessors

States from which the system can force the game into p are referred to as controllable
predecessors of p, denoted p, where p is an assertion over the state space (X̄, Ȳ).
The main idea is that the system, from a controllable predecessor of p, can choose a
move for which all remaining environment moves lead to p—or—for each possible
environment move, can choose at least one move leading to p. That is, the system can
take either an independent or dependent move. Our controllable predecessor formula is
a disjunction of two parts, Φ1 and Φ2. We have:

Φ1 = ∃�y′[[∃�x′ρ] ∧ [∀�x′ρe → [ρs ∧ (�x′, �y′) ∈ ‖p‖]]]
where ‖p‖ denotes the set of states characterized by assertion p and ρ = ρe∧ρs is the set
of joint moves. Formula Φ1 states that for some system move �y′, any legal environment
move �x′ must lead to p. The left side of the conjunction assures the absence of fully
deadlocked predecessors. Next we have:

Φ2 = [∃�x′∃�y′ρ] ∧ ∀�x′[[∀�y′¬ρe] ∨ [∃�y′ρ ∧ (�x′, �y′) ∈ ‖p‖]]
The right side requires that for every environment input �x′, either there are no environ-
ment moves available or there must exist some system move �y′ leading to p. The left
side of the conjunction assures the absence of fully deadlocked predecessors.

Putting it all together, we compute the set of controllable predecessors of p with:

‖ p‖ = {s | Φ1 ∨ Φ2}

6.2 Realizability and Winning Strategy

Once the notion of controllable predecessor is in place, the decision procedure for re-
alizability and the extraction of the winning strategy proceeds according to [24], which

Controller Synthesis from LSC Requirements 87

focuses on winning conditions which are recurrence properties, i.e., LTL formulas of
the form � � q for an assertion q. We restrict our attention to formulas of this form
for the purposes of this paper.

A state satisfies p (for some assertion p) if the system can force the environment
to reach a p-state in a single step. Based on this pre-image operator, a set of winning
states is computed according to the following fix-point equation:

Wc = νZμY. Y ∨ q ∧ Z (1)

Given a game structure G, we can check realizability of G by testing Wc ∩ Θ = ∅.
If G is winning for the system, a winning strategy is extracted by removing controllable
transitions which lead to states outside of Wc.

7 Main Result

We now present a method for constructing a game structure from LSC requirements.
Some of the LSC logic necessary for this result is already incorporated into smart
play-out: whenever the user injects an input event, smart play-out constructs an LSC
transition system. We avoid redundancy here by focusing most of our attention on the
extensions necessary for synthesis. The interested reader can consult [9] for the specifics
of the smart play-out construction.

On a high level, smart play-out defines one SMV module for every object in the
requirements and composes the modules asynchronously for program executions and
model-checking. In contrast, the synthesis algorithm of [24] requires precisely two tran-
sition systems—one for the system and one for the environment. One of our goals is
therefore to express the collection of asynchronous transition systems as a game struc-
ture. Secondly, we add additional logic over and above that supplied by smart play-out
which is necessary for synthesis. We begin by first introducing the variables used in our
construction and then describe the transition relation for each.

7.1 Variables

Let O be an object system and let LR = L1, . . . , Ln over O be a set of LSC re-
quirements. We construct a game structure G with a set of input variables belonging
to the environment and output variables belonging to the system. We now specify the
set of variables V by defining the input variables X and output variables Y . The input
variables are as follows:

1. actLi is 1 when the main chart of LSC Li is active, and 0 otherwise.
2. msgs

Oj→Ok
denotes the sending of a message from object Oj to object Ok in which

Oj .own = env (Oj belongs to the environment.) The value is set to 1 at the occur-
rence of the send and is changed to 0 at the next state.

3. msgr
Oj→Ok

denotes the receipt of a message by object Ok from object Oj in which
Ok.own = env . As in the case of sending, the value is 1 at the instant the message
is received and changes to 0 in the next state.

88 H. Kugler, C. Plock, and A. Pnueli

4. lLi,Oj is the location of object Oj in the main chart of LSC Li where Oj .own =
env . The location number ranges over 0, . . . , lmax where lmax is the last location
of Oj in the main chart of LSC Li. This variable is meaningful only when actLi is
1.

5. lpch(Li),Oj
is the location of object Oj in the prechart of LSC Li where Oj .own =

env . Its value ranges over 0, . . . , lmax where lmax is the last location of Oj in the
prechart of LSC Li. This variable is meaningful only when actLi is 0.

6. gbuchi is an auxiliary variable used to reduce a Generalized Büchi winning condi-
tion to a Büchi winning condition.

7. envreq is a variable that determines which of the environment’s objects has control
in the next step.

The output variables belonging to the system are given by:

1. msgs
Oj→Ok

denoting the sending of a message from object Oj to object Ok in
which Oj .own = sys (Oj belongs to the system.)

2. msgr
Oj→Ok

denoting the receipt of a message by object Ok from object Oj in which
Ok.own = sys .

3. lLi,Oj is the location of object Oj in the main chart of LSC Li such that Oj .own =
sys .

4. lpch(Li),Oj
is the location of object Oj in the prechart of LSC Li such that Oj .own =

sys .
5. currobj is a number ranging over 1, . . . , |O|, referring to the object Ocurrobj that

currently has control of the execution.

The active flags, (actLi , for all i) and the auxiliary variable gbuchi are not prop-
erties of the environment specifically, although they are environment variables. These
are examples of bookkeeping variables, whose values are a function of the variables of
both players. The choice of ownership could therefore be arbitrary. However, we assign
ownership of these variables to the environment in order to be conservatively safe.

For example, if there exists a subtle error in the transition relation of any of these
variables, the environment would find a way to utilize the error to its advantage in order
to win the game and deem the requirements unrealizable. This is positive because we
are forced to deal with the error in such a case. We could have alternatively chosen
the system as the owner instead, in which case an error in the definitions could lead to
false realizability—a more dangerous situation, particularly in the case of safety critical
systems.

The purpose of the remaining variables, envreq and currobj are explained below.

7.2 Transitions

Smart play-out constructs a transition system comprised of an asynchronous composi-
tion of SMV modules. Generally speaking, each module defines the behaviors of one
object in the LSC requirements, consisting of a set of variables and a transition rela-
tion. When generating traces, the TLV-BASIC [26] model-checking routine arbitrarily
selects modules for execution one at a time. The corresponding variables are then up-
dated according to the transition relation of the selected module. Intuitively, each mod-
ule’s (i.e., object’s) transition relation permits the object to carry out the next behavior
on the object’s instance line, with respect to the object’s present LSC location.

Controller Synthesis from LSC Requirements 89

On the other hand, the current synthesis implementation requires a game structure
in which all objects (and associated transition relations) belonging to the system are
grouped into a single system module, and likewise for the environment. This raises the
question of how to deal with the multiple definitions for each variable. We now describe
the solution.

Let ϕi be any variable belonging to object Oi in the smart play-out construction. The
transition relation, according to [9], for ϕi takes on the form:

ϕ′
i =

⎧
⎪⎨

⎪⎩

ci
1 if Ωi

1
...

...
ci
n if Ωi

n

where ci
j is a constant, Ωi

j is a conditional expression over the variables of all objects
in O, and n is the number of SMV transition relation cases produced by smart play-out
for ϕi. In our synthesis construction, we have:

ϕ′ =

⎧
⎪⎨

⎪⎩

ϕ′
1 if currobj = 1
...

...
ϕ′

k if currobj = k

where k is the number of objects. Therefore, we may simulate the asynchronous behav-
ior of the smart play-out transition system by manipulating the variable currobj . This
variable is responsible for determining which object, among the system and environ-
ment objects, move in the next step.

Variable currobj must necessarily be owned by either the system or the environment.
It would seem that permitting just one player to determine the current objects for both
itself and its opponent could result in an unfair advantage. To level the playing field
according to our result, the system and environment choose among their respective
objects, but the decision of when each player gets their turn to decide goes to the system.
To prevent the system from starving the environment of any opportunity to move, we
will require the system to yield control to the environment infinitely often.

Formally, let O1, . . . , Oj be the set of objects belonging to the environment and
Oj+1, . . . , Ok be those of the system. We let:

envreq ′ ∈ {1, . . . j}

The environment uses envreq to non-deterministically choose which of its objects will
be the next to move once given a turn. With this in place, the system selects the current
object in the following way:

currobj ′ ∈ {envreq ′, j + 1, . . . , k}

Note that this permits the system to execute arbitrarily long supersteps, since it can just
keep selecting values between j + 1, . . . , k. However, the winning condition discussed
in the next section will require that currobj ′ ≤ j infinitely often, causing all supersteps
to be finite.

90 H. Kugler, C. Plock, and A. Pnueli

7.3 Initial and Winning Conditions

The initial condition, Θ, of our game structure is the set of states in which gbuchi =
0, actLi = 0 for all i, all message variables are set to 0, and all location variables are
set to 0. The initial value of envreq is not specified in Θ, so the choice is therefore
non-deterministic. The winning condition ϕ is the generalized Büchi LTL formula:

� �

n∧

i=1

actLi = 0 ∧ � � currobj ≤ j

which is equivalent to:
� � gbuchi = 0

where:

gbuchi ′ =

⎧
⎨

⎩

1 if gbuchi = 0
2 if gbuchi = 1 ∧ ∧n

i=1 actLi = 0
0 if gbuchi = 2 ∧ currobj ≤ j

The above winning condition ensures that a stable state—where all main charts are
simultaneously inactive—is visited infinitely often and that all supersteps are finite. It
assumes that no environment messages appear in a main chart. For this, a more expres-
sive winning condition beyond the scope of this paper is necessary.

7.4 Synthesis in the Play-Engine

When a Play-Engine user creates LSC requirements and wishes to perform synthesis,
the following steps occur: first, the LSC requirements are translated into a game struc-
ture according to the techniques of this section. Next, the synthesis algorithm described
in subsection 6.2 is executed. If the algorithm yields an unrealizable outcome, the pro-
cess terminates at this point and the user is notified. Otherwise, a single, synchronous,
transition system is constructed. We refer the interested reader to [24] for more details
on this construction, which we do not describe in this paper.

At this point, the Play-Engine user may act in the role of the environment by injecting
environment inputs and observing system responses, in a manner nearly identical to
smart play-out. Upon each input event, a model checking routine is executed on the
above output transition system. Since the winning condition guarantees that all LSCs
will infinitely often be simultaneously inactive for any realizable LSC requirements, it
is therefore also guaranteed that a valid super-step will exist for every reachable stable
state in the output transition system.

Note that while the model-checking procedure is executed each time the user injects
an input, the synthesis need only run once. Moreover, LSC requirements and the syn-
thesis algorithm need not exist on the same computer or platform as the application to
be deployed, since the only deliverable is the output transition system.

8 Conclusion

In this paper, we introduced a method for overcoming the limitations of smart play-
out by performing a complete analysis of the state space. We first described a modi-
fication to the previous turn-based approaches for synthesis which permits players to

Controller Synthesis from LSC Requirements 91

transition simultaneously in a dependent or independent fashion. We then showed how
to construct a game structure that expresses the behaviors of LSC requirements as a
two-player game between the reactive system and its environment. After invoking the
synthesis routine, the end result is a controller—a transition system—which consists
only of transitions that collectively satisfy the LSC requirements, provided a satisfy-
ing system exists. The controller, which encodes the winning strategy, can be used for
executing supersteps that satisfy the requirements.

We describe an implementation of the foregoing synthesis procedure as an exten-
sion to the Play-Engine’s smart play-out feature. With this implementation, the user
first plays in behavioral requirements, as before. Then the synthesis procedure may be
invoked from the Play-Engine’s user interface, which constructs the game structure,
checks realizability, and extracts a controller if the requirements are realizable. The
synthesis algorithm executes once, yielding a controller, from which supersteps may be
extracted using a superstep extraction process similar to that already present in smart
play-out.

We are currently implementing a new Scenario-Based Tool [1] with a special fo-
cus on scenario-based modeling of biological systems [13]. Consistency checking and
synthesis are important capabilities required for biological modeling, thus we are im-
plementing extensions and variants of the work described here. An experimental imple-
mentation of a new compositional synthesis algorithm was already implemented using
this new tool [19]. Independently of any specific tool or application domain, however,
we wish to place our current focus on a broader solution of synthesizing executable
programs from scenario-based requirements, whereby the controller generated by the
synthesis routine can be used to directly execute a general reactive system.

References

1. Microsoft Research Cambridge, Scenario-Based Tool for Biological Modeling (2009),
http://research.microsoft.com/SBT/

2. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent program spec-
ifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

3. Bontemps, Y., Heymans, P., Schobbens, P.Y.: From live sequence charts to state machines
and back: A guided tour. IEEE Trans. Software Eng. 31(12), 999–1014 (2005)

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods
in System Design 19(1), 45–80 (2001); preliminary version appeared in: Proc. 3rd IFIP Int.
Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS 1999)

5. Damm, W., Toben, T., Westphal, B.: On the Expressive Power of Live Sequence Charts. In:
Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 225–246.
Springer, Heidelberg (2007)

6. de Alfaro, L., Henzinger, T., Majumdar, R.: From verification to control: dynamic programs
for omega-regular objectives. In: Proc. 16th IEEE Symp. Logic in Comp. Sci., pp. 279–290.
IEEE Computer Society Press, Los Alamitos (2001)

7. Harel, D., Kantor, A., Maoz, S.: On the Power of Play-Out for Scenario-Based Programs.
Technical report, Weizmann Institute (2009)

8. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifications. Int.
J. of Foundations of Computer Science (IJFCS) 13(1), 5–51 (2002); also in: Yu, S., Păun, A.
(eds.) CIAA 2000. LNCS, vol. 2088, pp. 1–51. Springer, Heidelberg (2001)

http://research.microsoft.com/SBT/

92 H. Kugler, C. Plock, and A. Pnueli

9. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral requirements.
In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 378–398.
Springer, Heidelberg (2002); also available as Tech. Report MCS02-08, The Weizmann In-
stitute of Science

10. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Models from
Scenarios-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393,
pp. 309–324. Springer, Heidelberg (2005)

11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, Heidelberg (2003)

12. Hennicker, R., Knapp, A.: Activity-Driven Synthesis of State Machines. In: Dwyer, M.B.,
Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 87–101. Springer, Heidelberg (2007)

13. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel, D., Stern, M.,
Hubbard, E.: A scenario-based approach to modeling development: A prototype model of C.
elegans vulval fate specification. Developmental Biology 323(1), 1–5 (2008)

14. Klose, J., Wittke, H.: An automata based interpretation of live sequence chart. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 512. Springer, Heidelberg (2001)

15. Koskimies, K., Makinen, E.: Automatic synthesis of state machines from trace diagrams.
Software — Practice and Experience 24(7), 643–658 (1994)

16. Koskimies, K., Mannisto, T., Systa, T., Tuomi, J.: SCED: A Tool for Dynamic Modeling of
Object Systems. Tech. Report A-1996-4, University of Tampere (July 1996)

17. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: Proc. Int. Work-
shop on Distributed and Parallel Embedded Systems (DIPES 1998), pp. 61–71. Kluwer Aca-
demic Publishers, Dordrecht (1999)

18. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for Scenario-Based
Specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
445–460. Springer, Heidelberg (2005)

19. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Sequence
Chart Specifications. In: Proc. 15th Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2009). LNCS. Springer, Heidelberg (2009)

20. Leue, S., Mehrmann, L., Rezai, M.: Synthesizing ROOM models from message sequence
chart specifications. Tech. Report 98-06, University of Waterloo (April 1998)

21. Liang, H., Dingel, J., Diskin, Z.: A comparative survey of scenario-based to state-based
model synthesis approaches. In: Proceedings of the International Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools (SCESM 2006), pp. 5–12 (2006)

22. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)
23. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

24. Pnueli, A.: Extracting controllers for timed automata. Technical report, New York University
(2005)

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp.
Princ. of Prog. Lang., pp. 179–190 (1989)

26. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic verification.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 184–195. Springer,
Heidelberg (1996)

27. Sun, J., Dong, J.S.: Synthesis of distributed processes from scenario-based specifications. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 415–431.
Springer, Heidelberg (2005)

Controller Synthesis from LSC Requirements 93

28. Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based specifications
and behavior models using implied scenarios. ACM Trans. Software Engin. Methods 13(1),
37–85 (2004)

29. Vardi, M.: An automata-theoretic approach to fair realizability and synthesis. In: Wolper, P.
(ed.) CAV 1995. LNCS, vol. 939, pp. 267–278. Springer, Heidelberg (1995)

30. Whittle, J., Saboo, J., Kwan, R.: From scenarios to code: an air traffic control case study.
In: 25th International Conference on Software Engineering (ICSE 2003), pp. 490–495. IEEE
Computer Society, Los Alamitos (2003)

31. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: 22nd Interna-
tional Conference on Software Engineering (ICSE 2000), pp. 314–323. ACM Press, New
York (2000)

	Controller Synthesis from LSC Requirements
	Introduction
	Related Work
	Smart Play-Out
	Example
	Game Structures
	Dependent vs. Independent Moves
	Deadlock

	Synthesis
	Controllable Predecessors
	Realizability and Winning Strategy

	Main Result
	Variables
	Transitions
	Initial and Winning Conditions
	Synthesis in the Play-Engine

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

