
Integrating Xen with the Quattor Fabric
Management System

Stephen Childs and Brian Coghlan

Department of Computer Science, Trinity College Dublin
childss@cs.tcd.ie

Abstract. While the deployment of virtual machines (VMs) within the
high-performance computing (HPC) community is proceeding at a great
pace, tools for system management of VMs are still lagging behind those
available for physical machines. In order to make further progress, VM
management must be fully integrated with existing fabric management
infrastructure. We present the results of work done to integrate Xen [4]
with the Quattor [15] fabric management suite. The principal contribu-
tions are the development of a network bootloader for para-virtualised
Xen VMs and a Quattor management component for setting up hosted
VMs. The combination of these tools allows for full unattended installa-
tion of Xen VMs and the automatic configuration of services, all from a
single configuration database.

1 Introduction

Deployment of virtual machines (VMs) in the high-performance computing com-
munity is taking off rapidly. The past few years have seen the use of virtualisation
for Grid service nodes [8], training infrastructures [5,6], dynamic clusters [11],
and middleware certification. Initially most projects took an ad hoc approach to
the creation and management of virtual machines, developing small tools as nec-
essary. However, as virtualisation becomes mainstream and starts to be deployed
in production environments, the need to integrate VMs into existing manage-
ment infrastructure has become apparent: it should be possible to use existiing
installation and configuration mechanisms to install virtual machines.

The term fabric management system is used to describe an integrated suite
of tools used to install, configure and monitor the various service and com-
pute nodes that make up a Grid or HPC infrastructure. Quattor [15] is a fab-
ric management system originally developed as part of the European DataGrid
[17] project, and now developed as a community effort with contributions from
various sites, mostly within the high-energy physics community. It is currently
deployed at over forty sites managing over 10,000 nodes. It is a modular system
designed to manage all stages of a machine’s lifecycle from initial installation on
the bare metal to configuration (and reconfiguration) of complex software such
as Grid middleware.

Quattor configurations are written in Pan [9], a powerful declarative language
allowing complex compositions of configuration templates, and are compiled to

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 214–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Integrating Xen with the Quattor Fabric Management System 215

XML profiles that contain a complete configuration tree for the machine. Con-
figuration profiles for a site are stored in a configuration database, and the client
machines pull profiles from this database at regular intervals. Programs running
on the client (known as components) read the relevant sections of the config-
uration profile and generate configurations for the services they manage. For
example, the ncm-accounts component manages user accounts, and ncm-ssh
manages secure shell (ssh) services.

Quattor also includes a subsystem for configuring a network boot infrastruc-
ture. The Automated Installation Infrastructure (AII) uses the information from
machine profiles to generate configuration entries for DHCP and pxelinux [3] run-
ning on an installation server. AII allows machines to be installed from scratch
using Kickstart[1]: once the server and client are configured correctly for network
booting, installation of a new node is as simple as switching it on. The aim of
this work is to fully integrate Xen virtual machines with AII and Quattor so
that they can be automatically installed in the same way as physical machines.

2 Design

The aim of this work is to integrate VMs fully into the fabric management
system so that the complete lifecycle can be managed automatically via the
configuration database and installation servers. Once correct profiles have been
configured for a VM and its host, it should be as easy to install the VM as it is
to install a physical machine.

Integrating Xen with Quattor required three main areas of work: i) design of
appropriate Quattor data structures to represent Xen VMs and global config-
uration options, ii) development of a Quattor management component for Xen
(ncm-xen), and iii) development of a bootloader for para-virtualised Xen do-
mains that was compatible with automatic network installation. While the first
two items are specific to Quattor, the bootloader we have developed is useful for
other systems that use network booting (especially those using pxelinux).

It should be noted that there was no need to modify core Quattor services.
The aim was to make VMs behave as much like physical machines as possible,
rather than adapting the core services to treat VMs specially. The combination
of a configuration component running on the hosting machine and enhancements
to the VM boot process made this possible. This approach results in a simpler
system: the installation procedure for VMs is very similar to that of physical
machines, and so the normal debugging procedures used by administrators ap-
ply. Also, once a VM has been successfully booted and configured, day-to-day
management via Quattor is exactly the same as for a physical machine.

2.1 VM Configuration

In Quattor, the configuration state of a physical machine can be entirely en-
capsulated in its configuration profile. In contrast, there are two aspects to the
configuration of a virtual machine: firstly, the configuration of the VM itself, and



216 S. Childs and B. Coghlan

secondly the information needed by the host machine to set up the VM correctly.
The first category includes the same information as for a physical machine (e.g.
user accounts, service parameters, etc.) The second category includes all the in-
formation needed by the host machine to set up the virtual machine: location of
storage, network configuration (including MAC address to be assigned), amount
of memory to be assigned, method of booting, etc. None of this information is
visible within the VM, and so must be included in the configuration of the host
machine.

"/software/components/xen/domains" = push(nlist(
"memory", value("//cagnode50/hardware/ram/0/size"),
"name", "cagnode50.cs.tcd.ie",
"disk",list(nlist

("type",’file’,
"path",’/var/xen-grid/cagnode50/fs/disk’,
"device",’sda’,
"size",value("//cagnode50/hardware/harddisks/sda/capacity"),
"rw",’w’),

nlist("type",’lvm’,
"hostdevice",’xenvg’,
"hostvol", ’cagnode50-swap’,
"size", 6*GB,
"device",’hda3’,"rw",’w’)),

"vif",list(’mac=’+value(//cagnode50/hardware/cards/nic/eth0/hwaddr)),
"bootloader","/usr/bin/pypxeboot",
"bootargs","vif[0]",
"auto", true
));

Fig. 1. Example domain configuration

In Quattor, the configuration for a particular component is normally located
under the location /software/components. So the configuration for ncm-xen
is located under /software/components/xen. The profile of a host machine
includes a list (called domains) of data structures for the VMs that it hosts.
Figure 1 shows an example of this data structure. Most of the entries are simple
strings that will be directly translated to entries in the Xen configuration file. The
exception is the disk entry, which is a more complex data structure incorporating
information needed to create the physical filesystem (i.e. the size) as well as that
needed for VM configuration. Much of the information needed to create the
VM can be extracted from the VM’s own profile (e.g. RAM size, disk capacity,
MAC address). The auto flag determines whether ncm-xen will set up the links
necessary to make the VM run automatically on host system startup.

In addition to the data structures representing domains, there are other vari-
ables that control the global configuration of Xen on the host, and the operation
of ncm-xen. For example, ncm-xen can optionally create storage for guest VMs:



Integrating Xen with the Quattor Fabric Management System 217

this is controlled by the create filesystems variable. The create domains
variable determines whether VMs are automatically started when ncm-xen de-
tects that they are not running.

When ncm-xen is run on the host machine, it extracts this list of data struc-
tures representing VMs from the machine’s profile. ncm-xen uses this information
to generate Xen configuration files for VMs and to set up storage. Once the VM
has been installed successfully, it will retrieve its own profile and invoke the
Quattor configuration components to configure services.

3 Implementation

3.1 Network Bootloader

Preboot Execution Environment (PXE) is a standard for automatically retriev-
ing operating system kernels and configuration information over the network at
boot time. It is widely used for installation of nodes within the high-performance
computing community. When a machine configured for PXE boots up, its net-
work card broadcasts a request for an IP address. A DHCP server will respond
with an IP address and the address of the server holding the configuration and
OS kernel for that machine. The PXE client server then downloads the OS kernel
and uses it to boot the machine.

PXE booting is often used in conjunction with an automatic system installa-
tion program such as Kickstart [1]. Kickstart reads a configuration file, sets up
filesystems and installs a basic set of packages to get the OS up and running.

PXE clients are usually located either in a boot ROM on the network interface
or on the motherboard itself. Boot images loaded from a floppy disk or other
bootable media are also sometimes used. This option would be possible for fully
virtualised VMs running on machines with hardware support, but could not be
used with the para-virtualised (PV) VMs that are currently widely deployed. As
a PV Xen virtual machine does not have physical hardware, some other solution
is required. Various approaches have been suggested in discussions on the Xen
developer list: we have taken the simple approach of writing a program that runs
on the host VM and performs a simulated PXE boot process on behalf of its
guest VMs.

Xen supports the use of a ”bootloader” for guest VMs. This is simply a pro-
gram that is run on the host VM (as part of the VM boot process) to retrieve
a kernel for a guest VM. This scheme has been used by others to implement
pygrub, a program that looks inside the guest’s filesystem, works out which ker-
nel to use, and copies it back out to the host’s filesystem to boot the VM. We
have implemented a network bootloader, pypxeboot, that takes a similar ap-
proach but which retrieves the configuration and kernel over the network rather
than from the guest’s filesystem. The Trivial File Transfer (TFTP) [18] protocol
is used for downloads.

pypxeboot is invoked as part of Xen’s VM creation procedure, and performs
the following steps (illustrated in Figure 2) to retrieve a boot kernel:



218 S. Childs and B. Coghlan

Fig. 2. Pypxeboot network boot cycle

1. Make a DHCP request using the MAC address that will be assigned to the
guest VM.

2. Extract the address of the TFTP server and download the configuration for
the guest VM.

3. Read the configuration received. If the VM is set to network boot, then
download the kernel for the VM over the network. If the VM is set to local
boot, drop back to a bootloader that will load the kernel from the VM’s own
filesystem. In either case, the location of the kernel retrieved is passed to
Xen, which uses it to boot the VM.

DHCP client software normally reads the MAC address from a physical interface
and uses that directly. With pypxeboot, the host VM will need to make a request



Integrating Xen with the Quattor Fabric Management System 219

on behalf of the guest VM using the guest’s MAC address. We modified the udhcp
[10] client to read a user-specified MAC address from the command line, allowing
us to send a DHCP request that appears to come from the guest VM. udhcp also
retrieves other parameters provided by the server, the most important being the
location of the server holding the node’s boot configuration and kernel image.
pypxeboot parses the output from udhcp to determine which server to use, and
then downloads the configuration using a TFTP client.

In order for a Kickstart installation to succeed, installation tools such as
Anaconda must be modified to run on the Xen virtual hardware. We are currently
using images created by Linux Support at CERN [16] which include modified
partitioning and hardware detection code that is compatible with Xen virtual
hardware.

3.2 Quattor Management Component

We have implemented ncm-xen, a management component that runs on the
host machine to translate the configuration specified in a machine’s profile into
a valid Xen configuration. This requires Xen global configuration options to be
set, and also configuration files to be created for the guest VMs. ncm-xen can also
create storage to be used by guest VMs and start VMs: these optional features
are required to enable full unattended installation of Xen hosts and VMs from
scratch.

Quattor components are normally written in Perl, and use the Configuration
Cache Management (CCM) API to access the Quattor profile for the machine
on which they are running. As shown above, most of the parameters for a VM
can be translated directly into Xen configuration parameters: ncm-xen extracts
these entries from the profile and writes them out to a configuration file for the
VM.

A little more work is necessary to correctly configure the filesystems for a
VM. In addition to creating the appropriate configuration entries describing
the storage to be used by the VM, ncm-xen also supports the creation of file-
backed storage and logical volumes. If a file or logical volume is specified in
the VM’s configuration entry but does not exist, ncm-xen will create it. This
is particularly useful when host and guests are being installed from scratch:
ncm-xen can automatically set up backing storage for a VM prior to its first
instantiation. The details from the profile are also used to generate entries in
the correct format for the Xen configuration file.

3.3 Putting It All Together

Having presented all the components of our integrated system, we can now de-
scribe a complete usage scenario where a combination of host and guest VMs,
each with its own profile, are automatically installed on a physical machine.

Figure 3 shows the complete automatic installation of a host and guest VMs,
from bare metal to a fully-configured set of VMs. The first step is to set up
the DHCP entries and pxelinux configuration on the installation server: the AII



220 S. Childs and B. Coghlan

Fig. 3. Complete installation cycle

program provides options to translate information from machine profiles into
DHCP entries, and then to set up the pxelinux configuration for the machines
to cause a network installation.



Integrating Xen with the Quattor Fabric Management System 221

The next stage of the process starts when the physical machine is powered on
for the first time. The machine then boots into Kickstart via PXE and instal-
lation starts. Once a minimal set of packages has been installed, the machine
restarts and boots from local disk. At this stage, Quattor packages are installed,
the machine’s profile is downloaded and a configuration run begins. As part of
this configuration run, ncm-xen will be invoked to configure guest VMs. It will
read the entries from the host’s profile and then create filesystems and Xen con-
figuration files according to this information. The guest VMs are configured to
use pypxeboot as their bootloader, and when they are started they determine
which kernel to boot via PXE, then boot into the same Kickstart installation
procedure used by the host. They then reboot, download their Quattor profile
and begin a configuration run to set up their own services. Once this completes,
the host and guest VMs are all under Quattor control and future configuration
changes can be made by deploying new profiles.

4 Related Work

The need to integrate VMs with existing management systems has been ad-
dressed by others. The developers of OSCAR [12], have presented the results
of a project [2] to add support for Xen guests. However, as they did not solve
the problem of network booting para-virtualised Xen guests, they were forced
to use a cumbersome solution involving a two-stage install. In Xen-OSCAR, the
guest VM initially boots into an install image that sets up the real filesystem for
the VM and installs into it. As our installation uses a native network boot, the
process is much simpler. The installation process for a VM is also very similar
to a standard network installation, making it easier to debug.

XenSource provide the XenEnterprise [14] management suite for deployment
and control of Xen VMs. Enomaly’s enomalism Virtualized Management Dash-
board provides similar functionality [13]. Both of these products provide a GUI-
driven interactive management methodology, rather than the fine-grained,
automated control provided by the Pan language and configuration database
in Quattor. We see the two modes of management as complementary: in fact, we
are also developing an interactive management interface targeted at the creation
of custom test environments. This tool, known as GridBuilder, [7] uses template
FS images and copy-on-write techniques to rapidly create transient VMs whose
configuration need not be stored permanently in a central database. We hope
to investigate closer integration of GridBuilder and Quattor in the future: for
example, experimental configurations created in GridBuilder could be translated
into Quattor configurations for deployment in a production environment.

5 Conclusion

The integration of Xen with a fabric management suite overcomes a significant
obstacle to further deployment of VMs within the HPC community. Previously,
those wishing to deploy VMs needed to develop their own tools, or to interface



222 S. Childs and B. Coghlan

external VM management tools to their existing fabric management system. The
tools we have developed allow for seamless integration of VMs into an existing
Quattor infrastructure, providing for unified management of physical and virtual
machines.

ncm-xen is currently being used by Grid-Ireland to install Gird infrastructure
servers hosted on VMs, and has been released to the Quattor community for
testing. pypxeboot has been submitted for inclusion in the Xen release.

Future work will focus on extending the functionality of ncm-xen. For example,
support for downloading and customising pre-installed images would allow for
faster startup compared to from-scratch installation. It would also be good to
modify the schema so that it is compatible with other VM technologies such as
VMWare, qemu, and kvm.

This work makes use of results produced by the Enabling Grids for E-sciencE
project, a project co-funded by the European Commission (under contract num-
ber INFSO-RI-031688) through the Sixth Framework Programme. EGEE brings
together 91 partners in 32 countries to provide a seamless Grid infrastructure
available to the European research community 24 hours a day. Full information
is available at http://www.eu-egee.org.

References

1. Kickstart installations. http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/custom-guide/ch-kickstart2.html

2. Vallée, G., Scott, S.L.: Xen-Oscar for cluster virtualization. In: Min, G., Di Martino,
B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331,
pp. 487–498. Springer, Heidelberg (2006)

3. Peter Anvin, H.: PXELINUX - SYSLINUX for network boot.,
http://syslinux.zytor.com/pxe.php

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, ACM, New York
(2003)

5. Berlich, R., Hardt, M.: Grid in a box - virtualisation techniques in Grid training.
In: EGEE conference, Athens (April 2005), Available via:
http://www.ep1.rub.de/∼ruediger/pandoraAthens.pdf

6. Cassidy, K., McCandless, J., Childs, S., Walsh, J., Coghlan, B., Dagger, D.: Com-
bining a virtual grid testbed and grid elearning courseware. In: Proc. Cracow Grid
Workshop 2006 (CGW 2006). Academic Computer Centre CYFRONET AGH,
Cracow, Poland (October 2006)

7. Childs, S., Coghlan, B., McCandless, J.: GridBuilder: A tool for creating virtual
Grid testbeds. In: 2nd IEEE Conference on eScience and Grid computing, Ams-
terdam (December 2006)

8. Childs, S., Coghlan, B., O’Callaghan, D., Quigley, G., Walsh, J.: A single-computer
grid gateway using virtual machines. In: Proc. AINA 2005, Taiwan, March 2005,
pp. 761–770. IEEE Computer Society, Los Alamitos (2005)

9. Cons, L., Poznanski, P.: Pan: A high-level configuration language. In: LISA 2002:
Sixteenth Systems Administration Conference, Usenix, pp. 83–98 (2002)

http://www.eu-egee.org
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://syslinux.zytor.com/pxe.php
http://www.ep1.rub.de/~ruediger/pandoraAthens.pdf


Integrating Xen with the Quattor Fabric Management System 223

10. Dill, R., Ramsay, M.: udhcp client/server package (2002),
http://udhcp.busybox.net/

11. Emeneker, W., Stanzione, D., Jackson, D., Butikofer, J.: Dynamic virtual clustering
with Xen and Moab. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G.
(eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 440–451. Springer, Heidelberg
(2006)

12. Open Cluster Group. Open source cluster application resources.,
http://oscar.openclustergroup.org

13. Enomaly Inc. enomalism virtualized management dashboard.,
http://www.enomalism.com

14. XenSource Inc. Xen Enterprise 3.1 datasheet.,
http://www.xensource.com/files/xenenterprise 3.1 datasheet.pdf

15. Garcia Leiva, R., Barroso Lopez, M., Cancio Melia, G., Chardi Marco, B., Cons,
L., Poznanski, P., Washbrook, A., Ferro, E., Holt, A.: Quattor: Tools and Tech-
niques for the Configuration, Installation and Management of Large-Scale Grid
Computing Fabrics. Journal of Grid Computing 2(4) (2004)

16. Jaroslaw Polok. Xenification of Scientific Linux CERN.,
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/XenificationOfSLC

17. Segal, B., Robertson, L., Gagliardi, F., Carminati, F.: Grid computing: The euro-
pean data grid project (2000)

18. Sollins, K.: The TFTP Protocol (Revision 2), RFC (1350) (July 1992)

http://udhcp.busybox.net/
http://oscar.openclustergroup.org
http://www.enomalism.com
http://www.xensource.com/files/xenenterprise_3.1_datasheet.pdf
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/XenificationOfSLC

	Integrating Xen with the Quattor Fabric Management System
	Introduction
	Design
	VM Configuration

	Implementation
	Network Bootloader
	Quattor Management Component
	Putting It All Together

	Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




