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Abstract. We are reporting on consolidated results obtained with a
new user authentication system based on combined acquisition of online
handwriting and speech signals. In our approach, signals are recorded
by asking the user to say what she or he is simultaneously writing. This
methodology has the clear advantage of acquiring two sources of bio-
metric information at no extra cost in terms of time or inconvenience.
We are proposing here two scenarios of use: spoken signature where the
user signs and speaks at the same time and spoken handwriting where
the user writes and says what is written. These two scenarios are imple-
mented and fully evaluated using a verification system based on Gaus-
sian Mixture Models (GMMs). The evaluation is performed on Myldea,
a realistic multimodal biometric database. Results show that the use of
both speech and handwriting modalities outperforms significantly these
modalities used alone, for both scenarios. Comparisons between the spo-
ken signature and spoken handwriting scenarios are also drawn.

1 Introduction

Multimodal biometrics has raised a growing interest in the industrial and sci-
entific communities. The potential increase of accuracy combined with better
robustness against forgeries makes indeed multimodal biometrics a promising
field. In our work, we are interested in building multimodal authentication sys-
tems using speech and handwriting as modalities. Speech and handwriting are
indeed two major modalities used by humans in their daily transactions and
interactions. Also, these modalities can be acquired simultaneously with no in-
convenience, just asking the user to say what she/he is signing or writing. Finally,
speech and handwriting taken alone do not compare well in terms of performance
against more classical biometric systems such as iris or fingerprint. Merging both
biometrics will potentially lead to a competitive system.

1.1 Motivations

Many automated biometric systems based on speech alone have been studied and
developed in the past, as reviewed previously [I]. Numerous biometric systems
based on signature have also been studied and developed in the past [2][3].
Likewise biometric systems based on online handwriting were not so numerous,
however, we can refer to [4] or [5] as examples of state-of-the-art systems.
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Our proposal here is to record speech and handwriting signals where the user
reads aloud what she or he is writing. Such acquisitions are referred here and in
our related works as CHASM for combined handwriting and speech modalitied].
In this work, we have been defining two scenarios. In the first one, called spoken
signatures, a bimodal signature with voice is acquired. In this case, the user is
simply asked to say the content of the signature, corresponding in most of the
case to his or her name. This scenario is similar, in essence, to text-dependent
password based systems where the signature and speech content remains the
same from access to access. Thanks to the low quantity of data requested to
build the biometric templates, this scenario would fit in commercial applications
running, for example, in banks. In the second scenario, called spoken hand-
writing, the user is asked to write and read synchronously the content of several
lines of a given random piece of text. This scenario is less applicable in the case
of commercial applications because of the larger quantity of data requested to
build models. However, it could be used for forensic applications. Comparisons
that we will draw between these scenarios will, of course, have to be weighted
due to the difference of quantity of data.

Our motivation to perform a synchronized acquisition is multiple. Firstly, it
avoids doubling the acquisition time. Secondly, the synchronized acquisition will
probably give better robustness against intentional imposture. Indeed, imitating
simultaneously the voice and the writing of somebody has a much higher cogni-
tive load than for each modality taken separately. Finally, the synchronization
patterns (i.e. where do users synchronize) or the intrinsic deformation of the in-
puts (mainly the slowdown of the speech signal) may be dependent on the user,
therefore bringing an extra piece of useful biometrics information.

1.2 Related Work

Several related works have already shown that using speech and signature modal-
ities together permits significant improvements in authentication performances
in comparison to systems based on speech or signature alone. In [6], a tablet PC
system based on online signature and voice modalities is proposed to ensure the
security of electronic medical records. In [7], an online signature verification sys-
tem and a speaker verification system are also combined. Both sub-systems use
Hidden Markov Models (HMMs) to produce independent scores that are then
fused together. In [§], tests are reported for a system where the signature veri-
fication part is built using HMMs and the speaker verification part uses either
dynamic time warping or GMMs. The fusion of both systems is performed at the
score level and results are again better than for the individual systems. In [9],
the SecurePhone project is presented where multimodal biometrics is used to
secure access and authenticate transactions on a mobile device. The biometric
modalities include face, signature and speech signals.

The main difference between these works and our CHASM approach lies in
the acquisition procedure. In our case, the speech and signature data streams

1 'We note here that such signals could also be used to recognize the content of what
is said or written. However, we focus here on the task of user authentication.
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are recorded simultaneously, asking the user to actually say the content of the
signature or text. Our procedure has the advantage of shortening the enroll-
ment and access time for authentication and will potentially allow for more
robust fusion strategies upstream in the processing chain. This paper is actu-
ally reporting on consolidated evaluation results of our CHASM approach. It
presents novel conclusions regarding comparison of performance of spoken sig-
nature and spoken handwriting. Individual analysis and performance evaluation
of spoken signatures and spoken handwriting have been presented in our related
works [T0][TT][12].

The remainder of this paper is organized as follows. In section 2, we give
an overview of MylIDea, the database used for this work and of the evaluation
protocols. In section 3 we present our modelling system based on a fusion of
GMDMs. Section 4 presents the experimental results. Finally, conclusions and
future work are presented.

2 CHASM Database

2.1 MylIDea Database

CHASM data have been acquired in the framework of the MylIDea biometric
data collection [I3][I4]. MyIDea is a multimodal database that contains many
other modalities such as fingerprint, talking face, etc. The ”set 1”7 of MyIDea is
already available for research institutions. It includes about 70 users that have
been recorded over three sessions spaced in time. This set is here considered as a
development set. A second set of data is planned to be recorded in a near future
and will be used as evaluation set in our future workd.

CHASM data have been acquired with a WACOM Intuos2 graphical tablet
and a standard computer headset microphone (Creative HS-300). For the tablet
stream, (z,y)-coordinates, pressure, azimuth and elevation angles of the pen
are sampled at 100 Hz. The speech waveform is recorded at 16 kHz and coded
linearly on 16 bits. The data samples are also provided with timestamps to
allow a precise synchronization of both streams. The timestamps are especially
important for the handwriting streams as the graphical tablet does not send
data samples when the pen is out of range.

In [T5], we provide more comments on spoken signature and spoken handwrit-
ing data and on the way users synchronize their acoustic events with signature
strokes. In [16], we report on a usability survey conducted on the subjects of
MyIDea. The main conclusions of the survey are the following. First, all recorded
users were able to perform the signature or handwriting acquisition. Speaking
and signing or writing at the same time did not prevent any acquisition from
happening. Second, the survey shows that such acquisitions are acceptable from
a usability point of view.

2 The data set used to perform the experiments reported in this article has been given
the reference MYIDEA-CHASM-SET1 by the distributors of MyIDea.
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2.2 Recording and Evaluation Protocols

Spoken signatures. In MylDea, six genuine spoken signatures are acquired
for each subject per session. This leads to a total of 18 true acquisitions after the
three sessions. After acquiring the genuine signatures, the subject is also asked to
imitate six times the signature of another subject. Spoken signature imitations
are performed in a gender dependent way by letting the subject having an access
to the static image and to the textual content of the signature to be forged. The
access to the voice recording is not given for imitation as this would lead to a
too difficult task considering the high cognitive load and would be practically
infeasible in the limited time frame of the acquisition. This procedure leads to a
total of 18 skilled forgeries after the three sessions, i.e. six impostor signatures on
three different subjects. Two assessment protocols have been defined on MyIDea
with the objective of being as realistic as possible (see [I6] for details). The
first one is called without time variability where signatures for training and
testing are taken from the same session. The second protocol is called with time
variability where the signatures for training are taken from the first session
while for testing they are taken from a different session. To compare with the
skilled forgeries described above, we also test with random forgeries taking the
accesses from the remaining users. These protocols are strictly followed here.

Spoken handwriting. For each of the three sessions, the subject is asked to
read and write a random text fragment of about 50 to 100 words. The subject is
allowed to train for a few lines on a separated sheet in order to be accustomed
to with the procedure of talking and writing at the same time. After acquiring
the genuine handwriting, the subject is also asked to imitate the handwriting
of another subject (same gender) and to synchronously utter the content of the
text (skilled forgeries). In order to do this, the imitator has access to the static
handwriting data of the subject to imitate. The access to the voice recording is
also not given for imitation. This procedure leads to a total of three impostor
attempts on different subjects after the three sessions. An assessment protocol
for spoken handwriting is also available with MyIDea [16] and is followed for the
realization of the tests in this paper. In short, this protocol trains the models
on data from session one and test it on data from sessions two and three. As for
spoken signatures, we also test against skilled forgeries and random forgeries. It
actually corresponds to a text-prompted scenario where the system prompts
the subject to write and say a random piece of text each time an access is
performed. This kind of scenario allows the system to be more secure against
spoofing attacks where the forger plays back a pre-recorded version of the genuine
data. This scenario also has the advantage of being very convenient for the
subject who does not need to remember any password phrase.

3 System Description

As illustrated on Fig. [I], our system models independently the speech and hand-
writing signals to obtain a score that is finally fused.
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Fig.1. CHASM handwriting system

3.1 Feature Extraction

For each point of the handwriting, we extract 25 dynamic features based on
the x and y coordinates, the pressure and angles of the pen in a similar way as
in [I7] and [I0]. This feature extraction was actually proposed to model signa-
tures. However it can be used without modification in the case of handwriting
as nothing specific to signature was included in the computation of the features.
The features are mean and standard deviation normalized on a per user basis.

For the speech signal, we compute 12 Mel Frequency Cepstral Coefficients
(MFCC) and the energy every 10 ms on a window of 25.6 ms. We realized that
the speech signal contains a lot of silence which is due to the fact that writing is
usually more slow than speaking. It is known, in the speech domain, that silence
parts impair the estimation of models. We therefore implemented a procedure to
remove all the silence parts of the speech signal. This silence removal component
is using a classical energy-based speech detection module based on a bi-Gaussian
model. MFCC coefficients are mean and standard deviation normalized using
normalization values computed on the speech part of the data.

3.2 GMDMs System

GMDMs are used to model the likelihoods of the features extracted from the
handwriting and from the speech signal. One could argue that GMMs are actu-
ally not the most appropriate models in this case as they are intrinsically not
capturing the time-dependent specificities of speech and handwriting. However,
a GMM is well appropriated to handle the text-independent constraint of the
spoken handwriting scenario. We also wanted to have similar types of models for
both scenarios to draw fair comparisons. Furthermore, GMMs are well-known
flexible modelling tools able to approximate any probability density function.

With GMMs, the probability density function p(z,|Meiient) or likelihood of a
D-dimensional feature vector x,, given the model of the client M jens, is esti-
mated as a weighted sum of multivariate Gaussian densities

I
p($n|Mclient) = Z sz(xna iy Ez) (1)
i=1
in which I is the number of mixtures, w; is the weight for mixture ¢ and the

Gaussian densities A/ are parameterized by a mean D x 1 vector p;, and a
D x D covariance matrix, Y;. In our case, we make the hypothesis that the
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features are uncorrelated and we use diagonal covariance matrices. By making
the hypothesis of observation independence, the global likelihood score for the
sequence of feature vectors, X = {x1, z2,...,zn} is computed with

N
Sc = p(X|Mclient) = H p(mn‘Mclient) (2)

n=1

The likelihood score Sy, of the hypothesis that X is not from the given client
is here estimated using a world GMM model My, ,r1q or universal background
model trained by pooling the data of many other users. The decision whether to
reject or to accept the claimed user is performed comparing the ratio of client
and world score against a global threshold value T'. The ratio is here computed
in the log-domain with R, = log(S.) — log(Sy). The training of the client and
world models is usually performed with the Expectation-Maximization (EM)
algorithm that iteratively refines the component weights, means and variances
to monotonically increase the likelihood of the training feature vectors. Another
way to train the client model is to adapt the world model using a Maximum A
Posteriori criterion (MAP) [I§].

In our experiments we used the EM algorithm to build the word model by
applying a simple binary splitting procedure to increase the number of Gaus-
sian components through the training procedure. The world model is trained by
pooling the available genuine accesses in the databasdl. In the results reported
here, we used MAP adaptation to build the client models. As suggested in many
papers, we perform only the adaptation of the mean vector p;, leaving untouched
the covariance matrix Y; and the mixture coefficient w;.

3.3 Score Fusion

We obtain the spoken handwriting (sh) score by applying a weighted summa-
tion of the handwriting (hw) and speech (sp) log-likelihood ratios with R, s, =
WepRe,sp + WhwRe hw. This is a reasonable procedure if we assume that the
local observations of both sub-systems are independent. This is however clearly
not the case as the users are intentionally trying to synchronize their speech
with the handwriting signal. Time-dependent score fusion procedures or feature
fusion followed by joint modelling would be more appropriate than the approach
taken here. More advanced score recombination could also be applied such as,
for example, using classifier-based score fusion. We report here our results with
or without using a z-norm score normalization preceding the summation. The
z-norm is here applied globally on both speech and signature scores for all test
accesses, in a user-independent way. As the mean and standard deviation of the
z-norm are estimated a posteriori on the same data set, z-norm results are of
course unrealistic but give an optimistic estimation of what could be the fusion
performances with such a normalisation.

3 The skilled forgeries attempts are excluded for training the world model as it would
lead to optimistic results. Ideally, a fully independent set of users would be preferable,
but this is not possible considering the small number of users (= 70) available.
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4 Experimental Results

We report our results in terms of Equal Error Rates (EER) which are obtained
for a value of the threshold T" where the impostor False Acceptation and client
False Rejection error rates are equal.

4.1 Spoken Signature

Table [[] summarizes the results with our best MAP system (128 Gaussians for
the client and world models) in terms of ERR for the different protocols. The
following conclusions can be drawn. The speech modelisation performs equally
well as the signature in the case of single session experiments (without time vari-
ability). However, when multi-session accesses are considered, signature performs
better than speech. Signature and speech modalities suffer from time-variability
but in different degrees. It is probable that users show a larger intra-variability
for the speech than for the signature modality. This could be here even more
amplified as users are probably not used to slow down the speech to the pace
of handwriting. Another explanation could be in the acquisition conditions that
are more difficult to control in the case of the speech signal: different position
of the microphone, environmental noise, etc. Another conclusion from Table [Tl is
that skilled forgeries decrease systematically and significantly the performance
in comparison to random forgeries. For the protocol with time variability, a drop
of about 200% relative performance is observed for the signature modality and
about 50% for the speech modality. We have to note here that the skilled forgers
do not try to imitate the voice of the user but actually say the genuine verbal
content which is very probably the source of the loss of performance. Also from
Table [Il, we can conclude that the sum fusion, although very straightforward,
brings systematically a clear improvement in the results, in comparison to the
modalities taken alone. Interestingly, the z-norm fusion is better than the sum
fusion for the protocol without time variability and is worse in the case of the
protocol with time variability. An interpretation of this is proposed in [I1].

4.2 Spoken Handwriting

Table Pl summarizes the results with our best MAP system (256 Gaussians for
the client and world models), comparing random versus skilled forgeries. The

Table 1. Summary of spoken signature results in terms of terms of Equal Error Rates.
Protocol with and without time variability, skilled and unskilled forgeries.

time variability without with

forgeries random skilled random skilled
signature 04% 39% 27% 73%
speech 08 % 27% 124 % 171 %

sum fusion (.5/.5) 0.2% 09% 1.7% 5.0%
z-norm fusion (.5/.5) 0.1 % 0.7 % 2.3 % 8.6 %
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Table 2. Spoken handwriting results in terms of terms of Equal Error Rates, with
time variability. Comparison of random versus skilled forgeries.

forgeries random skilled
handwriting 4.0% 13.7%
speech 1.8% 69 %

sum fusion (.5/.5) 0.7 % 6.9 %
z-norm fusion (.5/.5) 0.3 % 4.0 %

following conclusions can be drawn. For the handwriting, skilled forgeries de-
crease the performances in a significant manner. This result is actually under-
standable as the forger is intentionally imitating the handwriting of the genuine
user. For the speech signal, skilled forgeries also decreases the performance. As
the forger do not try to imitate the voice of the genuine user, this result can be
surprising. However, it can be explained as the forger is actually saying the exact
same verbal content as the one used by the user at training time. When building
a speaker model, the characteristics of the speaker are of course captured, but
also, to some extent, the content of the speech signal itself. Results using the
z-norm fusion are also reported in Table 2] showing an advantage against the
sum fusion.

As a conclusion of these experiments with spoken handwriting, we can rea-
sonably say that the speech modelisation performs on average better than the
handwriting. Intuitively, one could argue that this is understandable as the hand-
writing is a gesture that is more or less fully learned (behavioral biometric) while
speech contains information that are dependent on learned and physiological fea-
tures (behavioral and physiological biometric).

4.3 Comparison of Spoken Signatures and Spoken Handwriting

We are able here to do a comparison of results obtained with spoken signatures
and spoken handwriting data as our experiments are performed using the same
database, with the same users and the same acquisition conditions. Results of
spoken handwriting in Table 2] can be compared with results of spoken signa-
tures in Table [ for the protocol with time variability. The signature modality
of spoken signatures provides better results than the handwriting modality of
spoken handwriting. This can be explained in the following way. Handwriting
is a taught gesture that is crafted to be understood by every person. In school,
every child learns in more or less the same way to write the different characters.
In contrast, a signature is built to be an individual characteristic of a person
that should not be imitable and that is used for authentication purposes. A
comparison of the speech modality of Table [Il and B shows that spoken hand-
writing provides better results than spoken signatures. An explanation for this
lies in the quantity of speech data available. While the average length of the
speech is about two seconds for signature, spoken handwriting provides about
two minutes of speech. The speech model is therefore more precise for spoken
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handwriting than for spoken signature. Now, if we compare the z-norm fusion
of Table[[l and 2 we can observe that spoken handwriting performs better than
spoken signatures. However, we should pay attention that this conclusion is also
dependent on the quantity of data. If we would have less handwriting data, the
conclusion may also be reversed.

5 Conclusions and Future Work

We presented consolidated results obtained with a new user authentication sys-
tem based on combined acquisition of online handwriting and speech signals.
It has been shown that the modelling of the signals can be performed advanta-
geously using GMMs trained with a MAP adaptation procedure. A simple fusion
of GMM scores lead to significant improvements in comparison to systems where
the modalities would be used alone. From a usability point of view, this gain of
performance is obtained at no extra cost in terms of acquisition time, as both
modalities are recorded simultaneously. The proposed bi-modal speech and hand-
writing approach seems then to be a viable alternative to systems using single
modalities. In our future work, we plan to investigate the use of more robust
modelling techniques against time variability and forgeries. We have identified
potential directions such as HMMs, time-dependent score fusion, joint modelling,
etc. Also, as soon as an extended set of spoken signature data will be available,
experiments will be conducted according to a development/evaluation set frame-
work. We will also investigate if the biometrics performances are impaired due
to the signal deformations induced by the simultaneous recordings.
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