
Dynamic Service Discovery Through
Meta-interactions with Service Providers�

Tomas Vitvar, Maciej Zaremba, and Matthew Moran

Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway

{tomas.vitvar,maciej.zaremba,matthew.moran}@deri.org

Abstract. Dynamic discovery based on semantic description of services
is an essential aspect of the Semantic Web services integration process.
Since not all data required for service discovery can always be included
in service descriptions, some data needs to be obtained during run-time.
In this paper we define a model for service interface allowing required
data to be fetched from the service provider during discovery process. We
also provide a specification of such interface for WSMO and demonstrate
the model on a case scenario from the SWS Challenge implemented us-
ing WSMX – a middleware platform built specifically to enact semantic
service oriented architectures.

1 Introduction

The Web has a volatile nature where there can only be a limited guarantee of
being able to access any specific service at a given time. This leads to a strong
motivation for discoverying and binding to services at run-time (late binding).
Existing XML-based WSDL descriptions of data, messages, or interfaces are
insufficient or provide limited expressivity for machines to understand. Service
discovery operating on semantic descriptions offer the potential of flexible match-
ing that is more adaptive to changes over services’ lifetime. In general, discovery
matches definitions of user requests (goals) with those of offered services. Dif-
ferent levels of match are possible e.g. subsumption match, plug-in match, exact
match etc.[13,4]. Semantic discovery works on the abstract definitions of services
and goals (containing no instance data). This needs to be further elaborated to
achieve more accurate results. For example, a request to “buy a Harry Pot-
ter book” involves first searching for descriptions of services that sell books, but
which then determining if the service sells Harry Potter books and if those books
are in stock. Taking Amazon as an example, it is clearly unfeasible to include
data for the entire catalogue and its availability directly in the service descrip-
tion. Such information has a dynamic character and therefore should only be
fetched from the service at discovery-time.
� This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/

I131, and the EU projects Knowledge Web (FP6-507482), DIP (FP6-507483) and
SUPER (FP6-026850).

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 84–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Service Discovery 85

For this purpose, we propose a general mechanism enabling the definition
of an interface on the service to allow the fetching of required data from the
service during the late binding phase (e.g during service discovery, contract-
ing/negotiation, selection etc.). These tasks are performed in a semantic service
environment in a (semi) automated fashion by means of the “intelligence” of
intermediary (middleware) services. We define a model for the service interface
which provides a mechanism to fetch data from the service provider during the
discovery process. Choosing the Web Service Modeling Ontology (WSMO) as
our conceptual model, we define an extension for this interface and demonstrate
this work through a case scenario of the SWS Challenge1 implemented using
WSMX – a middleware platform built specifically to enact semantic service ori-
ented architectures.

In section 2 we introduce the underlying specifications for our work, namely
WSMO, WSML and WSMX providing a conceptual framework, ontology lan-
guage and execution environment for Semantic Web services. In section 3 we
define a model for a service interface and algorithm to fetch data for service dis-
covery and further show how this model can be specified using WSMO service
model. In section 4 we illustrate the model on the case scenario implemented in
the WSMX environment and describe the evaluation for the implementation. In
section 5 we describe related work and in section 6 we conclude the paper and
indicate our future work.

2 Semantic Web Services and WSMO

A general aim of Semantic Web Services is to define a semantic mark-up for Web
services providing the higher expressivity then traditional XML-based descrip-
tions. One of the initiatives in the area is the Web Service Modeling Ontology
(WSMO)[11]. WSMO provides a conceptual model describing all relevant as-
pects of Web services in order to facilitate the automation of service discovery,
composition and invocation. The description of WSMO elements is represented
using the Web Service Modeling Language (WSML)[11] – a family of ontology
languages – which consists of a number of variants based on different logical
formalisms and different levels of logical expressiveness. WSMO also defines the
conceptual model for WSMX[9], a Semantic Web Services execution environ-
ment. Thus, WSMO, WSML and WSMX form a coherent framework for mod-
eling, describing and executing Semantic Web Services. The WSMO top-level
conceptual model consists of Ontologies, Web Services, Goals, and Mediators.

– Ontologies provide the formal definition of the information model for all
aspects of WSMO. Two key distinguishing features of ontologies are, the
principle of a shared conceptualization and, a formal semantics (defined by
WSML in this case). A shared conceptualization is one means of enabling
information interoperability across independent Goal and Web service de-
scriptions.

1 http://sws-challenge.org

86 T. Vitvar, M. Zaremba, and M. Moran

– Web Services are defined by the functional capability they offer and one
or more interfaces that enable a client of the service to access that capa-
bility. The Capability is modeled using preconditions and assumptions, to
define the state of the information space and the world outside that space
before execution, and postconditions and effects, defining those states after
execution. Interfaces are divided into choreography and orchestration. The
choreography defines how to interact with the service while the orchestration
defines the decomposition of its capability in terms of other services.

– Goals provide the description of objectives a service requester (user) wants
to achieve. WSMO goals are described in terms of desired information as
well as “state of the world” which must result from the execution of a given
service. The WSMO goal is characterized by a requested capability and a
requested interface.

– Mediators describe elements that aim to overcome structural, semantic or
conceptual mismatches that appear between different components within a
WSMO environment. Although WSMO Mediators are essential for address-
ing the requirement of loosely coupled and heterogeneous services, they are
out of the scope of our work at this point.

In this paper, we will elaborate on WSMO service definition and in particular
on its service interface. The service interface defines choreography as a formal
description of a communication pattern the service offers. Two types of such
choreography interfaces are defined: (1) execution choreography used during the
execution phase where the functionality of the service is consumed by a service
requester and (2) meta-choreography used during late binding to get additional
information necessary for communication with the service. Since the WSMO
model is open, such definitions may be extended to be used for the particular
tasks of the late binding phase. We focus on the definition of one such extension
for use for the service discovery phase.

3 Data Fetching for Discovery

A Web service capability can be described in terms of results potentially delivered
by the service. A goal describes its capability as the information the user wants
to achieve as a result of service provision. We denote the description of the Web
service and the goal as W and G respectively. For the W and G we also introduce
the data of these descriptions which we denote DW and DG respectively and
which is provided directly as part of their respective descriptions.

For purposes of our work and based on grounds of [4,13], we define the fol-
lowing three basic steps when the matching of a goal G and a Web service W
needs to be performed: (1) Abstract-level match, (2) Instance-level Match, (3)
Data Fetching. Abstract-level Match operates on abstract descriptions of G and
W without their data being taken into account. The matching is defined by
the following set-theoretic relationships between objects of G and W : (1) exact
match, (2) subsumption match, (3) plug-in match, (4) intersection match and

Dynamic Service Discovery 87

(5) disjointness. If the goal and the Web service match (relationships 1-4), it is
further checked if the service can provide a concrete service by consulting the
data of the goal and the service (Instance-level Match). If all data is not avail-
able for step 2, the data needs to be obtained from the service (Data Fetching).
Later in this section we further formalize these steps and define the algorithm.
For step 1 and step 2, we define a matching function as follows:

s ← matching(G, W , Bgw), (1)

where G and W is a goal and a service description respectively and Bgw is a
common knowledge base for the goal and the service. The knowledge base con-
tains data which must be directly (through descriptions G and W) or indirectly
(through data fetching) available so that the matching function can be evalu-
ated. The result s of this function can be: (1) match when the match was found
at both abstract and instance levels (in this case all required data in Bgw is
available), (2) nomatch when the match was not found either at abstract level
or at instance level (in this case all required data in Bgw is available), or (3)
nodata when some required data in Bgw is not available and thus the matching
function cannot be evaluated.

We further assume that all data for the goal is directly available in the de-
scription G. The data fetching step is then performed for the service when the
matching function cannot be evaluated (the result of this function is nodata).
We then define the knowledge base as:

Bgw = DG ∪ DW ∪ {y1, y2, ..., ym}, (2)

where {yi} is all additional data that needs to be fetched from the service in
order to evaluate the matching function.

Based on the representation of service interface using abstract state machines
[12], we define the data fetch interface for service W as

IW = (in(W), out(W), L), (3)

where in(W) and out(W) denotes input and output vocabularies which corre-
spond to input and output data of the interface in(IW) and out(IW) respectively,
and L is a set of transition rules. The matching function can be then evaluated
if

∀yi ∈ out(IW) : ∃x ∈ Bgw ∧ x ∈ in(IW) i = 1, 2, . . . , m. (4)

According to 4, data {yi} can be fetched from the service through the data fetch
interface if input data in(IW) is either initially available in the knowledge base
Bgw (data directly available from the goal or web service descriptions) or the
input data becomes available during the processing of the interface. For a rule
r ∈ L we denote r.ant and r.con as the rule antecedent and the rule consequent
respectively. The antecedent r.ant defines an expression which if holds during
run-time in the memory2, the memory is modified according to the definition
2 We use the term memory to denote a processing memory through which states of

an abstract state machine are maintained during its processing.

88 T. Vitvar, M. Zaremba, and M. Moran

of an action in r.con (i.e. specified data is added, updated or removed from the
memory) (see the algorithm in section 3.1). Please note that each concept of
the vocabulary in(W) and out(W) has defined grounding to respective message
in WSDL. Through this grounding definition it is possible to invoke WSDL
operation when instance data of the concept is to be added or updated in the
memory (and thus the data is fetched from the service). This definition of the
grounding is described in [6].

3.1 Algorithm

In algorithm 1, the matching function is integrated with data fetching. The
algorithm operates on inputs, produces outputs and uses internal structures as
follows:

Input
– Repository Q = {W1, W2, ..., Wn}, where W ∈ Q is the web service descrip-

tion. For each web service W we denote DW as data of the web service and
IW as data fetching interface of the web service with rule base L. This in-
terface is defined according to definition 3 and its description is optional for
the web service. In addition, for each rule r ∈ L we denote action of the rule
consequence as r.con.action and its corresponding data as r.con.data.

– Goal description G for which we denote DG as data of the goal.

Output
– List E = {W1, W2, ..., Wm}, where Wi ∈ Q and Wi matches G (the result of

the matching function for Wi and G is match).

Uses
– Processing memory M containing data fetched during processing of the rules

of the data fetching interface.
– Knowledge base Bgw which contains data for processing of the matching

function.
– Boolean variable modified indicating whether the knowledge base has been

modified or not during the processing.

The algorithm performs the matching of the goal with each Web service in
the repository using the matching function (line 7). If the matching cannot
be evaluated (the result is nodata), the algorithm tries to fetch data from the
service by processing the service’s data fetch interface. Whenever the new data
is available from the service, the algorithm updates the knowledge base and
process the matching again. This cycle ends when no data can be fetched from
the interface or matching can be evaluated (the result is match or nomatch).
In case the matching is evaluated as match, the web service is added to the
list of matched services and the cycle is performed for the next service in the
repository.

Dynamic Service Discovery 89

Algorithm 1. Data Fetching for Discovery
1: E ← ∅
2: for all W in Q do
3: Bgw ← DG ∪ DW

4: M ← Bgw

5: repeat
6: modified ← false
7: s ← matching(G, W,Bgw)
8: if s = nodata and exists(Iw) then
9: while get r from L: holds(r.ant, M) and not modified do

10: if r.con.action = add then
11: add(r.con.data,M)
12: add(r.con.data,Bgw)
13: modified ← true
14: end if
15: if r.con.action = remove then
16: remove(r.con.data,M)
17: end if
18: if r.con.action = update then
19: update(r.con.data,M)
20: update(r.con.data,Bgw)
21: modified ← true
22: end if
23: end while
24: end if
25: until s �= nodata or not modified
26: if s = match then
27: E ← E ∪ W
28: end if
29: end for

During the processing of the interface, the algorithm allows to hook in a match-
ing function which is called whenever the new data is available from the service.
The algorithm uses independent memory (memory M) from the knowledge base
(Bgw) for processing of the data fetching interface. This allows that already-
obtained data cannot be removed from the knowledge base while, at the same
time, correct processing of the interface is ensured. The memory M is used not
only for data but also for control of interface processing (in general, the content
of the memory does not need to always reflect the content of the knowledge base).
According to the particular interface definition, the data can be fetched step-wise
allowing minimizing of the interactions with the service during discovery. This
also follows the strong decoupling principle when services are described semanti-
cally and independently from users’ requests. For example, during service creation
phase a service provider (creator) does not know which particular data will be re-
quired for particular data fetching (in general, matching with a goal could require
some or all defined data which depends on the definition of the request). The in-
terface defined using rules allows to get only data which is needed for the matching

90 T. Vitvar, M. Zaremba, and M. Moran

(for example in some cases only price is needed, in some cases price and a location
of selling company could be needed if offered by the service).

3.2 WSMO Service Interface for Data Fetching

As stated in [11], Web Service interface defines choreography and orchestration
allowing the modeling of external and internal behavior of the service respec-
tively. In this respect, the interface for data fetching follows the WSMO service
interface describing a meta-choreography which allows additional data to be
obtained from the service for the discovery process. WSMO service will thus
have additional interface defined (WSMO service allows multiple interface def-
initions). This interface will however only use the choreography describing a
meta-choreography for obtaining additional data for the discovery process. We
do not specify orchestration for this interface as the logic of how data fetch is
performed by the service (how data is obtained out of aggregation of other ser-
vices) is not of interest for discovery and we do not use it in our algorithm. In
order to distinguish between the interface used for data fetching and the inter-
face used for execution (defining how actual service is consumed by the service
requester), we use non-functional property. For purposes of our work we further
use non-functional property interfacePurpose with values execution and discov-
ery. Another possibilities for distinguishing both interfaces would be to define
data-fetch interface as specialization of WSMO service interface. The decision
on whichever approach will be used will be done in the context of the WSMO
WG.

4 Implementation and Evaluation

The model introduced in this paper has been implemented and evaluated through
the SWS Challenge discovery scenario. The scenario introduces five different ser-
vice providers offering various purchasing and shipment options. They provide
different availability and pricing for their services with constraints on package
destination, weight, dimension and shipment date. Service requesters with differ-
ent requirements search for the best offers with packages of different weight and
shape. Our model for data fetching for discovery fits well into this scenario since
not all information can be provided in service descriptions meaning they must be
dynamically obtained at discovery-time. In this section we base examples on the
Mueller service whose price information is not available in the service description
and needs to be fetched during the service discovery via data fetching interface.
In section 4.3 we further describe the evaluation of our implementation from the
broader context of the SWS Challenge requirements.

4.1 Scenario and Assumptions

In the scenario depicted in figure 1, a user accesses the e-marketplace called
Moon where a number of companies such as Mueller or Racer have registered

Dynamic Service Discovery 91

their services. The Moon runs a (1) Web portal through which it provides services
to users and (2) the WSMX middleware system through which it facilitates the
integration process between users and service providers.

WSMX middleware

Execution Semantics

Discovery

Selection

Choreography
Engine

h

h

Service

Repository

select from L

Portal

WSMO

Goal

Execution
Interface

Data Fetch
Interface

Capability

User

h

h

invoke G, S

description

implementation

Publish

descriptions

data fetching

invocation

W
S

e
n
d
p
o

in
ts

Moon e-marketplace

Request

Response

Racer

Mueller

Fig. 1. Architecture for the Scenario

For this scenario and the aims of this paper we make the following assumptions.

• Service providers and Moon use the WSMO formalism for Web service de-
scription. We assume that service requesters maintain their own adapters
to their back-end systems while at the same time providing lifting/lowering
functionality between their existing technology (e.g. WSDL, XML Schema)
and WSML.

• All service providers adopt a common ontology maintained by the Moon e-
marketplace. Handling data interoperability issues, where service providers
and Moon use different ontologies, is out of the scope of this paper.

• During execution, interactions between the user and the Moon are simplified
to a single request-response exchange. Either the user submits a goal (our
scenario) or a pre-selected service for invocation. Meta-interactions between
users and the middleware system are not of our interest in this work.

In our scenario, a user defines her requests through the Web portal’s user in-
terface. The Web portal generates a WSMO goal corresponding to the request,
sends it to WSMX, receives the response and presents the result back to the
user. The execution process, run in WSMX after the receipt of the goal, includes
discovery (with data-fetching from services), selection of the best service and
invocation. Although the whole process of this scenario is implemented, the con-
tribution of this paper lies in the integration of data fetching with discovery.
Other parts, i.e. selection and invocation are not described in detail here.

92 T. Vitvar, M. Zaremba, and M. Moran

4.2 Modeling Ontologies, Goals and Services

In order to implement the scenario, we first need to create semantic models for
ontologies, goals and services. We describe these models in the following sub-
sections. We present examples of ontologies, services and goals definitions in
WSML using the following prefixes to denote their respective namespaces: mo –
common ontology, gl – goal ontology.

Ontologies describe concepts used for the definition of goals and services. In
our scenario we use a common scenario ontology with additional ontologies to
define specific axioms or concepts used by the descriptions of services and/or
goals.

The common ontology defines shared concepts used in the description of the
goal and services, such as Address, ShipmentOrderReq, Package, etc. In ad-
dition, we use the common ontology to specify named relations for services and
goals. Specific ontologies for goals and services declare axioms that define the re-
lations to represent their conditions. An analogy for this approach are interfaces
in programming labguages like Java. The interface declares some functionality
but does not say how this should be implemented. Using this approach, we de-
fine a set of relations in the common ontology which represent the axioms that
a service may need to define. Listing 1.1 shows the simple definition for the
isShipped relation from the common ontology and its implementation in the
Mueller’s ontology.

� �

1 /∗ isShipped relation in the common ontology ∗/ relation
2 isShipped(ofType mo#ShipmentOrderReq)
3

4 /∗ implementation of the isShipped relation in the Mueller’s ontology ∗/
5 axiom isShippedDef
6 definedBy
7 ?shipmentOrderReq[mo#to hasValue ?to, mo#package hasValue ?package] memberOf mo#
8 ShipmentOrderReq and
9 ?to[mo#city hasValue ?city] and

10 isShippedContinents(?city, mo#Europe, mo#Asia, mo#Africa) and
11 ((?package[mo#weightKg hasValue ?weightKg] memberOf mo#Package) and (?weightKg<50))
12 implies
13 mo#isShipped(?shipmentOrderReq).
� �

Listing 1.1. isShipped relation

The relation isShipped is true if the service provider can ship products according
to the shipment order request (ShipmentOrderReq). In the second part of the
listing 1.1, isShipped is defined such that the destination city for the shipment
must be in Europe, Asia or Africa and the weight of the package is less then
50kg. This forms part of the Mueller service description.

Services. We focus on the description of the data-fetching interface of the
Mueller service showing how and which data can be fetched during discovery.

Dynamic Service Discovery 93

� �

1 interface WSMullerDataFetchInterface
2 nfp
3 ”interfacePurpose” hasValue ”discovery”
4 ...
5 endnfp
6

7 choreography WSMullerDataFetchChoreography
8 ...
9 transitionRules WSMullerDataFetchTransitionRules

10 /∗ Rule 1: Request for product quote ∗/
11 forall {?purchaseQuoteReq} with (
12 ?purchaseRequest memberOf mo#PurchaseQuoteReq
13) do
14 add(# memberOf mo#PurchaseQuoteResp)
15 endForall
16

17 /∗ Rule 2: Request for shipment quote ∗/
18 forall {?shimpmentQuoteReq} with (
19 ?purchaseQuoteResp[mo#package hasValue ?package] memberOf mo#

PurchaseQuoteResp and
20 ?shipmentQuoteReq[mo#to hasValue ?to] memberOf mo#ShipmentOuoteReq and
21 mo#isAvailable(?purchaseQuoteResp) and mo#isShipped(?to, ?package)
22) do
23 add(# memberOf mo#ShipmentQuoteResp)
24 endForall
� �

Listing 1.2. Mueller data fetching interface

In listing 1.2, the first rule (line 6) describes how to get the price and the
product availability information (the quote request data is part of the goal
description). The second rule (line 13) describes how to get a quote for ship-
ment. This rule will be only used if requested product is available (determined
through relation isAvailable) and Mueller can ship to specified address (deter-
mined through relation isShipped). Here, shipment address (to variable) is taken
from the shipment quote request and packaging information (package variable)
is taken from purchase order response. According to this definition, the first rule
is used independently (and could be the only rule used where the user does not
request shipment) while for the second rule, the first rule need to be executed
first (the rule can be executed if the product is available and shippable which
is determined through results of the first rule). Concepts PurchaseQuoteReq,
ShipmentOuoteReq and PurchaseQuoteResp, ShipmentQuoteResp are defined
as input and output vocabularies respectively (including grounding mechanism)
(for brevity, this is not shown in the listing).

Goals. The goal for the scenario describes the user’s aim to buy certain products
and ship them to a specific location. In addition, the goal specifies a preference
that price be used for selection of the best service where multiple matching
services are discovered. The goal as in listing 1.3 is defined for our scenario
with respect to the implementation of the matching function from section 3
(we discuss this implementation in section 4.3). The goal defines the capability
postcondition specifying to get a quote for the product while at the same time the
product must be available and shippable to location specified by the shipment
order request.

94 T. Vitvar, M. Zaremba, and M. Moran

� �

1 Goal GoalPurchaseShip
2 nfp
3 ”preference” hasValue ”?price”
4 ...
5 endnfp
6 ...
7 capability GoalPurchaseShipCapability
8 postcondition
9 definedBy

10 (?x[mo#price hasValue ?price] memberOf mo#PriceQuoteResp and
11 mo#isAvailable(go#purchaseOrderReq) and
12 mo#isShipped(go#shipmentOrderReq)).
13 ...
� �

Listing 1.3. User Goal in WSMO

4.3 Implementation

The scenario is implemented as follows: when the goal is generated out of the
request specified by the user, it is sent to the WSMX system. The WSMX starts
a new operational thread (execution semantics) which first invokes the discovery
component which in turn returns a list of services matching the goal. This list
is passed to the selection component to select the service that best fits the user
request. Control passes to the choreography engine which uses the choreography
descriptions of the goal and service respectively, to drive the message exchange
with the discovered service. This section describes the implementation of the
algorithm from section 3 within the discovery component of WSMX. The de-
tails about other parts of the execution process can be found in our previous
work in [2].

Section 3 describes three steps for discovery. A prototype for the abstract-
level matching is under development in the WSMO working group. The imple-
mentation, described here, focuses on the steps of instance-level matching and
data-fetching. A match between the goal and Web services is determined on the
knowledge base created out of their descriptions, including instance data (both
available from the descriptions and fetched). The goal capability defines a query
(listing 1.3) which is used to query the knowledge base.

According to the algorithm 1 in section 3, the knowledge base Bgw is created
for every goal and web service from the repository as shown in figure 2. Initially,
the knowledge base imports all concepts from the common ontology and data
from both goal and web service descriptions. In order to evaluate the matching
function, we simply query the knowledge base using the goal postcondition. If
the result of the evaluation is true, we add the web service to the list E of
web services to the position determined by the preference. If the result of the
evaluation is false, we first try to fetch new data by processing the fetching
interface. If new data is available we evaluate the matching function again. If
new data is available, the matching function is evaluated again. Otherwise, the
cycle ends and the next service from the repository is processed. We briefly
discuss this implementation in the next section 4.4.

Dynamic Service Discovery 95

WSMO Goal (G)

Common
Ontology

Knowledge Base
(Bgw)

WSMO Service (W)

Execution
Interface

Capability

Data Fetching
interface

WSMO Ontology
Description and constrains

over provided functionality

Capability

Order Request
Interface

Queries

Provides

data

Imports

Provides data

WSMO Ontology
Data of Request

Imports Imports

Provides

data

Fig. 2. Knowledge Base Bgw

4.4 Evaluation

Our implementation has been evaluated according to the methodology defined
by the SWS Challenge. The SWS Challenge is an initiative led by a Seman-
tic Web Services community providing a standard set of increasingly difficult
problems, based on industrial specifications and requirements. Entrants to the
SWS Challenge are peer-evaluated to determine if semantically-enabled inte-
gration approaches reduce costs of establishing and maintaining the integration
between independent systems. In each SWS challenge workshop, the entrants
first address introduced initial scenario of particular problem (e.g. mediation,
discovery) in a testing environment prepared by the SWS Challenge organizers.
The organizers then introduce some changes to back-end systems of the testing
environment when the adaptivity of solutions is evaluated – solutions should han-
dle introduced changes by modification of declarative descriptions rather than
code changes. This evaluation is done by a methodology, developed by the SWS
Challenge organizers and participants, which identifies following so called success
levels. Success level 0 indicates a minimal satisfiability level, where messages be-
tween middleware and backend systems are properly exchanged in the initial sce-
nario. Success level 1 is assigned when changes introduced in the scenario require
code modifications and recompilation. Success level 2 indicates that introduced
changes did not entail any code modifications but only declarative parts had
to be modified. Success level 3 is assigned when changes did not require either
modifications to code or the declarative parts, and the system was able to auto-
matically adapt to the new conditions. Our implementation was evaluated to suc-
cessfully address the scenario based on the location, weight, dimensional weight
and price requirements, scoring success level 2. The implementation proved
to be generic where only modifications of the WSMO Goals were necessary

96 T. Vitvar, M. Zaremba, and M. Moran

in order to correctly handle introduced changes. Discovery based on the location
was successfully resolved using the common isShipped relation (see listing 1.1).
Additional criteria imposed on the service such as weight and price have also
been evaluated to level 2. No changes in WSMX code or in the descriptions of
the services were required – only the Goal requests had to be changed. With
respect to the fully-fledged discovery, there are however some limitations. It
does not distinguish between the result nodata and nomatch (as defined in the
algorithm) while it treats both results as nodata. This means that the whole
fetching interface needs to be always processed until new data can be fetched
or unless the match is found. This is a forced limitation of our implementation
while at the same time it is a temporary solution for our environment before the
fully-fledged discovery component will be available. The algorithm presented
here however allows to use various implementations of matching functions which
adhere to its defined interface. As a consequence, our solution currently offers a
limited scalability. It might generate a significant network overhead in large-scale
discovery scenarios when detailed interactions with every potential web service
needs to be performed. We plan to address the optimality of our algorithm with
respect to scalability in our future work. Our current solution also does not
directly address security. It is important to ensure that information retrieved
from service provider can be accessed after authorization and that data is fetched
in a secure way. Such security aspects should be however implemented between
the e-marketplace and service providers transparently to data fetching.

5 Related Work

There is no directly comparable work in the extension of the interface description
in Web services to allow the fetching of additional data to aid discovery at run-
time. However, there are two topics that are closely related. The first is service
discovery based on semantic matchmaking which is the research area in which
this paper is set and the second is service contracting and negotiation. Research
into Goal-based discovery for WSMO and WSMX takes a step-wise approach
with both theoretical and implementation concerns addressed at each stage.
Three strategies have been investigated in this manner. The first is keyword-
based discovery [4], which uses an algorithm that matches keywords, identified
from the Goal description, with words occurring in various locations within the
Web service description. The second strategy is for a lightweight Semantic Web
Services discovery component for the WSMX platform and is described in [1].
This approach models a service in terms of the objects it can deliver. The term
object, in this sense, means something of value the service delivers in its do-
main of interest. A third strategy is based around the use of quality-of-service
attributes as described in [3] and implemented by the authors as a WSMX
component. Upper level ontologies describing various domains for quality-of-
service attributes are provided and non-functional properties are introduced to
the service descriptions whose meanings are defined in these QoS ontologies. The
approach in this paper is compatible with each of the matching strategies as it

Dynamic Service Discovery 97

extends the matching power by requesting data from the service that is not di-
rectly available in its description. In [7], contracting is identified as an activity
that may take place between the requester and provider once the initial discov-
ery has identified candidate services. The discovery mechanisms in OWL-S rely
on subsumption reasoning to match a service profile of service requesters with
candidate service profiles published by service providers ad described in [10].
As with the WSMO efforts, they acknowledge that a negotiation phase may be
necessary after discovery to allow requesters and providers agree on quality of
service issues. Automated negotiation of service provision is related to the topic
of this paper as, for negotiation to take place, it must be possible to determine
during discovery exactly the terms that are being offered by the service which
may be open to negotiation. A substantial body of work is devoted to the devel-
opment of negotiation systems ranging from the application of intelligent agents
for eCommerce in [8] through negotiation using Bayesian Learning [14] to using
Web services and BPEL for automated negotiations [5].

6 Conclusion and Future Work

Service discovery which operates on abstract descriptions of services needs to
be further elaborated in order to return results of concrete services satisfying
concrete goals. For this purpose, instance data needs to be used. Since all data
can not be included in service descriptions (usually for practical reasons) it
needs to be fetched from the service provider at discovery-time. In this paper we
presented an approach to model the service interface allowing such data to be
fetched from the service provider. We use the abstract state machine formalism
to model the interface allowing scalable interactions with a service provider for
specific discovery sessions. This approach allows the use of only the rules and
data required, by the service requester at discovery-time (and thus limit data
transmission or other costs) while at the same time it is possible to adapt the
interface for various purposes of the late binding phase, i.e. discovery, selection,
contracting/negotiation, etc. We also showed how, by extending WSMO service
interface, the WSMO service choreography definition can be used to implement
this interface. In a case scenario, we described the necessary semantic models and
presented the algorithm (including creation of the knowledge base, processing
the interface, and querying the knowledge base).

In our future work we plan to address the optimality for data fetching to
decide on preferences for those interactions which might lead to results without
processing all data fetching interface. In addition, we want to extend the data
fetching interface to support other parts of the late binding phase. For example,
negotiation building on data fetching might use interactions with specific mean-
ing, such as for bidding etc. Layering of specific late-binding interfaces on the
top of data fetching allows a modular approach to the definition of such inter-
actions. We also plan to improve the implementation of the matching function
for fully-fledged service discovery. In addition, we plan to incorporate run-time
data mediation aspects into the discovery process where service requester and
service providers use different ontologies.

98 T. Vitvar, M. Zaremba, and M. Moran

References

1. Andreas Friesen and Stephan Grimm. DIP WP4 Service Usage, D4.8 Discovery
Specification, available at http://dip.semanticweb.org/documents/D4.8Final.pdf.
Technical report, 2005.

2. Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran, Tomáš Vitvar, and Ma-
ciej Zaremba. Wsmx: A semantic service oriented middleware for b2b integration.
In ICSOC, pages 477–483, 2006.

3. Manfred Hauswirth, Fabio Porto, and Le-Hung Vu. P2P and QoS-enabled service
discovery specification available at http:/dip.semanticweb.org/documents/D4.17-
Revised.pdf. Technical report, 2006.

4. Uwe Keller, Ruben Lara, Holger Lausen, Axel Polleres, Livia Predoiu, and
Ioan Toma. WSMO D10.2 Sematic Web Service Discovery available at
http://www.wsmo.org/TR/d10/v0.2/d10.pdf. Technical report, 2005.

5. J.B. Kim, A.Segev, A.Patankar, and M.G.Cho. Web services and bpel4ws for
dynamic ebusiness negotiation processes,. In International Conference on Web
Services, Las Vegas, Nevada, USA, 2003.

6. Jacek Kopecký, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic
web services grounding. In AICT/ICIW, page 127, 2006.

7. Ruben Lara and Daniel Olmedilla. Discovery and Contracting of Semantic Web
Services. Technical report, 2005.

8. L.C. Lee. Progressive multi-agent negotiation. In International Conference on
Multi–Agent Systems. MIT Press, 1995.

9. Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the
gap - extending service oriented architectures with semantics. In ICEBE, pages
594–601. IEEE Computer Society, 2006.

10. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In 1st International Semantic Web Conference (ISWC), page
333347, 2002.

11. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontologies, 1(1):77 – 106, 2005.

12. Dumitru Roman, James Scicluna, Dieter Fensel, Axel Polleres, and Jos de Bruijn.
D14v0.3. Ontology-based Choreography of WSMO Services, available from
http://www.wsmo.org/TR/d14/v0.4/. Technical report, 2006.

13. A. Moormann Zaremski and J. M. Wing. Specification matching of software compo-
nents. ACM Transactions on Software Engineering and Methodology, 6(4):333–369,
1997.

14. D. Zeng and K. Sycara. Bayesian learning in negotiation. In Working Notes for
the AAAI Symposium on Adaptation, Co-evolution and Learning in Multiagent
Systems, pages 99 – 104, 1996.

	Introduction
	Semantic Web Services and WSMO
	Data Fetching for Discovery
	Algorithm
	WSMO Service Interface for Data Fetching

	Implementation and Evaluation
	Scenario and Assumptions
	Modeling Ontologies, Goals and Services
	Implementation
	Evaluation

	Related Work
	Conclusion and Future Work

