Cost Analysis of Java Bytecode

E. Albert!, P. Arenas!, S. Genaim?, G. Puebla?, and D. Zanardini?

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Cost analysis of Java bytecode is complicated by its unstruc-
tured control flow, the use of an operand stack and its object-oriented
programming features (like dynamic dispatching). This paper addresses
these problems and develops a generic framework for the automatic cost
analysis of sequential Java bytecode. Our method generates cost relations
which define at compile-time the cost of programs as a function of their
input data size. To the best of our knowledge, this is the first approach
to the automatic cost analysis of Java bytecode.

1 Introduction

Cost analysis has been intensively studied in the context of declarative (see, e.g.,
[I7UTOITRIT2I5] for functional programming and [I0/TI] for logic programming)
and high-level imperative programming languages (mainly focused on the esti-
mation of worst case execution times and the design of cost models [23]). Tradi-
tionally, cost analysis has been formulated at the source level. However, there are
situations where we do not have access to the source code, but only to compiled
code. An example of this is mobile code, where the code consumer receives code
to be executed. In this context, Java bytecode [I3] is widely used, mainly due to
its security features and the fact that it is platform-independent. Automatic cost
analysis has interesting applications in this context. For instance, the receiver of
the code may want to infer cost information in order to decide whether to reject
code which has too large cost requirements in terms of computing resources (in
time and/or space), and to accept code which meets the established requirements
[81213]. In fact, this is the main motivation for the Mobile Resource Guaran-
tees (MRG) research project [3], which establishes a Proof-Carrying Code [15]
framework for guaranteeing resource consumption. Furthermore, the Mobility,
Ubiquity and Security (MOBIUS) research project [4], also considers resource
consumption as one of the central properties of interest for proof-carrying code.
Also, in parallel systems, knowledge about the cost of different procedures can
be used in order to guide the partitioning, allocation and scheduling of parallel
processes.

The aim of this work is to develop an automatic approach to the cost anal-
ysis of Java bytecode which statically generates cost relations. These relations
define the cost of a program as a function of its input data size. This approach
was proposed by Debray and Lin [I0] for logic programs, and by Rabhi and
Manson [16] for functional programs. In these approaches, cost functions are ex-
pressed by means of recurrence equations generated by abstracting the recursive

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 157{172,[2007.
© Springer-Verlag Berlin Heidelberg 2007

158 E. Albert et al.

structure of the program and by inferring size relations between arguments. A
low-level object-oriented language such as Java bytecode introduces novel chal-
lenges, mainly due to: 1) its unstructured control flow, e.g., the use of goto
statements rather than recursive structures; 2) its object-oriented features, like
virtual method invocation, which may influence the cost; and 3) its stack-based
model, in which stack cells store intermediate values. This paper addresses these
difficulties and develops a generic framework for the automatic cost analysis of
Java bytecode programs. The process takes as input the bytecode corresponding
to a method and yields a cost relation after performing these steps:

1. The input bytecode is first transformed into a control flow graph (CFG).
This allows making the unstructured control flow of the bytecode explicit
(challenge 1 above). Advanced features like virtual invocation and exceptions
are simply dealt as additional nodes in the graph (challenge 2).

2. The CFG is then represented as a set of rules by using an intermediate
recursive representation in which we flatten the local stack by converting its
contents into a series of additional local variables (challenge 3)[1

3. In the third step, we infer size relations among the input variables for all calls
in the rules by means of static analysis. These size relations are constraints
on the possible values of variables (for integers) and constraints on the length
of the longest reachable path (for references).

4. The fourth phase provides, for each rule of the recursive representation, a
safe approximation of the set of input arguments which are “relevant” to the
cost. This is performed using a simple static analysis.

5. From the recursive representation, its relevant arguments, and the size re-
lations, the fifth step automatically yields as output the cost relation which
expresses the cost of the method as a function of its input arguments.

We point out that computed cost relations, in many cases, can be simplified to
the point of deriving statically an upper and lower threshold cost for the input
size arguments and/or obtaining a closed form solution. Such simplifications
have been well-studied in the field of algorithmic complexity (see e.g. [22]).

2 The Java Bytecode Language

Java bytecode [13] is a low-level object-oriented programming language with
unstructured control and an operand stack to hold intermediate computational
results. Moreover, objects are stored in dynamic memory (the heap). A Java
bytecode program consists of a set of class files, one for each class or inter-
face. A class file contains information about its name ¢ € Class Name, the
class it extends, the interfaces it implements, and the fields and methods it
defines. In particular, for each method, the class file contains: a method signa-
ture m € Meth Sig which consists of its name name(m) € Meth Name and its

! Note that this is possible since in every walid bytecode program the height of the
local stack at each program point is fixed and therefore can be computed statically.

Cost Analysis of Java Bytecode 159

type type(m) = 71,...,7n — T € Meth Type where 7,7; € Type; its bytecode
bem = (pegibo, - - -, pCy, bn,,), Where each b; is a bytecode instruction and pc; is
its address; and the method’s exceptions table. When it is clear from the context,
we omit bytecode addresses and refer to a method signature as method.

In this work we consider a subset of the JVM [I3] language which is able to
handle operations on integers, object creation and manipulation (by accessing
fields and calling methods) and exceptions (either generated by abnormal ex-
ecution or explicitly thrown by the program). We omit interfaces, static fields
and methods and primitive types different from integers. Methods are assumed
to return an integer value. Thus, our bytecode instruction set (bclnst) is:

belnst ::= push x | istore v | astore v | iload v | aload v | iconst a | iadd | isub | imul

| idiv | ifo pc | goto pc | new Class Name | invokevirtual Class Name.Meth Sig

| invokespecial Class Name.Meth Sig | athrow | ireturn

| getfield Class Name.Field Sig | putfield Class Name.Field Sig
where ¢ is a comparison operator (ne,le, icmpgt, etc.), v a local variable, a an
integer, pc an instruction address, and x an integer or the special value NULL.

3 From Bytecode to Control Flow Graphs

This section describes the generation of a control flow graph (CFG) from the
bytecode of a method. This will allow transforming the unstructured control
flow of bytecode into recursion. The technique we use follows well-established
ideas in compilers [I], already applied in Java bytecode analysis [19].

Given a method m, we denote by G, its CFG, which is a directed graph
whose nodes are referred to as blocks. Each block Block;q is a tuple of the form
(id, G, B, D) where: id is the block’s unique identifier; G is the guard of the
block which indicates under which conditions the block is executed; B is a se-
quence of contiguous bytecode instructions which are guaranteed to be executed
unconditionally (i.e., if G succeeds then all instructions in B are executed before
control moves to another block); and D is the adjacency list for Block;q, i.e.,
D contains the identifiers of all blocks which are possible successors of Block;q,
ie., id" € D iff there is an arc from Block;q to Block;y. Guards originate
from bytecodes where the execution might take different paths depending on
the runtime values. This is the case of bytecodes for conditional jumps, method
invocation, and exceptions manipulation. In the CFG this will be expressed by
branching from the corresponding block. The successive blocks will have mutu-
ally exclusive guards since only one of them will be executed. Guards take the
form guard(cond), where cond is a Boolean condition on the local variables and
stack elements of the method. It is important to point out that guards in the
successive blocks will not be taken into account when computing the cost of a
program.

A large part of the bytecode instruction set has only one successor. However,
there are three types of branching statements:

Conditional jumps: of the form “pc, : ife pc;”. Depending on the truth value of
the condition, the execution can jump to pc; or continue, as usual, with pc; ;.

160 E. Albert et al.

The graph describes this behavior by means of two arcs from the block containing
the instruction of pc; to those starting respectively with instructions of pc; and
pc; 1. Bach one of these new blocks begins by a guard expressing the condition
under which such block is to be executed.

Dynamic dispatch: of the form “pe, : invokevirtual c.m”. The type of the object o
whose method is being invoked is not known statically (it could be ¢ or any sub-
class of ¢); therefore, we cannot determine statically which method is going to be
invoked. Hence, we need to make all possible choices explicit in the graph. We
deal with dynamic dispatching by using the function resolve virtual(c,m),
which returns the set ResolvedMethods of pairs (d,{c1,...,cr}), where d is a
class that defines a method with signature m and each ¢; is either ¢ or a sub-
class of ¢ which inherits that specific method from d. For each (d, {c1,...,cx}) €
ResolvedMethods, a new block Blockl,” is generated with a unique instruction
invoke(d:m) which stands for the non-virtual invocation of the method m
that is defined in the class d. In addition, the block has a guard of the form
instanceof(o, {c1,...,cx}) (o0 is a stack element) to indicate that the block is
applicable only when o is an instance of one of the classes c¢1, ..., cg. An arc from
the block containing pc; to Blockflci is added, together with an arc from Blockflci
to the block containing the next instruction at pc;,, (which describes the rest
of the execution after invoking m). Note that the invokevirtual is no longer
needed in the CFG since it was split into several invoke instructions which cover
all the possible runtime scenarios. Yet, in order to take into account the cost of
dynamic dispatching, we replace the invokevirtual by a corresponding call to
resolve virtual. Fields are treated in a similar way.

Exceptions: Asregards the structure of the CFG, exceptions are not dealt with in
a special way. Instead, the possibility of an exception being raised while executing
a bytecode statement b is simply treated as an additional branching after b. Let
Block, be the block ending with b; arcs exiting from Block, are those originated
by its normal behavior control flow, together with those reaching the sub-graphs
which correspond to exception handlers.

Describing dynamic dispatching and exceptions as additional blocks simplifies
program analysis. After building the CFG, we do not need to distinguish how
and why blocks were generated. Instead, all blocks can be dealt with uniformly.

Ezample 1 (running example). The execution of the method add(n, o) shown in
Fig. [l computes: X7 i if o is an instance of A; E}g(/)% 2¢ if o is an instance of
B; and E};L(/)SJ 3i if o is an instance of C. The CFG of the method add is de-
picted at the bottom of the figure. The fact that the successor of 6: if icmpgt 16
can be either the instruction at address 7 or 16 is expressed by means of two
arcs from Block;, one to Blocks and another one to Blocks, and by adding the
guards icmpgt and icmple to Blocks and Blocks, respectively. The invocation
13: invokevirtual A.incr: (I)I is split into 3 possible runtime scenarios de-
scribed in blocks Block,, Blocks and Blockg. Depending on the type of the ob-
ject o (the second stack element from top, denoted s(top(1)) in the guards),

Cost Analysis of Java Bytecode 161

class A{ 0: iconst O
int incr(int i){ é 13232: g
return i+1;3}}; 0: iload 1 3: istore 4
class B extends A{ bch — 1: iconst 1 4: iload 4
int incr(int i){ mer 2: iadd 5: iload 1
return i+2; }}; 3: ireturn 6: if_icmpgt 16
class C extends B{ 7: iload gg
int incr(int i){ 0: iload 1 8: iload 4
return i+3; }}; B _)1t dcomst 2,) g0 jl4q4
class Main { mer 2: iadd e 10: istore 3
1n§nidgéél=lg.n,f\- o){ 3: ireturn 11: aload 2
int i=0: 0: iload 1 ig ?1°a§ 4 tual
o i ¢ J1: icomst 3 : invokevirtua
: b, = o A.incr: (DI
res=res+ij; 2: iadd 14: istore 4
i=o.incr(i);} 3: ireturn 15: goto 4
return res;l}}; 16: iload 3
ek 17: ireturn
lOC)
: iconst 0
sistore 3 [¢ res=0;
ciconst 0 | ¢ i=0;

: istore 4

Block 3

Block 1

_guardticmpst) i d:iload 4 |i<zn| __ Svardlemple)
7:il
16: iload 3 S:iload 1 fload 3 res=res+i; Block exc

17: ireturn 8:iload 4
return res; e s EXCEPTION
11: aload 2 Block 7
ret

12:iload 4 guard(instanceof(s(top(1)),NULL))
RETURN resolve_virtual(A,incr) throw NullPointerException

\

J
Block4 o.ner(i); ks l \ Block 6

o.incr(i);

14: istore 4

Block 8

i=o.incr(i);

Fig. 1. The running example in source code, bytecode, and control flow graph

only one of these blocks will be executed and hence one of the definitions for
incr will be invoked. Note that the invokevirtual bytecode is replaced by
resolve virtual. The exception behavior when o is a NULL object is described
in blocks Block; and Blockg.. O

4 Recursive Representation with Flattened Stack

In this section, we present a method for obtaining a representation of the code
of a method where 1) iteration is transformed into recursion and 2) the operand

162 E. Albert et al.

stack is flattened in the sense that its contents are represented as a series of local
variables. The latter is possible because in valid bytecode the maximum stack
height ¢ can always be statically decided. For the sake of simplicity, exceptions
possibly occurring in a method will be ignored. Handling them introduces more
branching in the CFG and also requires additional arguments in the recursive
representation. This could influence the performance of the cost analysis.

Let m be a method defined in class ¢, with local variables I = lo,...,lx;
of them, [y contains a reference to the this object, l1,...,l, are the n in-
put arguments to the method, and l,,41,...,l; correspond to the £ — n local
variables declared in m. In addition to these arguments, we add the variables
st = 8o, .. .,St—1, which correspond to the stack elements, with sy and s;_1 being
the bottom-most and top-most positions respectively. Moreover, let h;q be the
height of the stack at the entry of Block;q, and s¢|p,, be the restriction of s; to
the corresponding stack variables. The recursive representation of m is defined
as a set of rules head <« body obtained from its control flow graph G, as follows:

(1) the method entry rule is c:m(1l,, ret) < c:m®(1y, ret), where ret is a variable

for storing the return value,
(2) for each Blockiq = (id, G, Bp,{id1, ... ,id;}) € Gm, there is a rule:

cm®(1y, s¢|n,, Tet) G’7B;(ca111d1 ;... cally)

where {G'} U B; is obtained from {G} UBp, and calliq, ;...; callie, are

[I%]

possible calls to blocks (“;” means disjunction), as explained below.

Each b; € {G}UB, is translated into b, by explicitly adding the variables
(local variables or stack variables) used by b; as arguments. For example, iadd is
translated to iadd(s;_1, s, s;_l)7 where j is the index of the top of the stack just

before executing iadd. Here, we refer to the j—1" stack variable twice by differ-
ent names: s;_1 refers to the input value and s’;_; refers to the output value. The
use of new names for output variables, in the spirit of Static Single Assignment
(SSA) (see [9] and its references), is crucial in order to obtain simple, yet effi-
cient, denotational program analyses. In Fig. [l we give the translation function
for selected bytecodes; among them, the one for iadd works as follows. Func-
tion translate takes as input the name of the current method m, the program
counter pc of the bytecode, the bytecode (in this case iadd), the current local
variable names 1y, and the current stack variable names s¢. In line 1, we retrieve
the index of the top stack element before executing the current bytecode. In line
2, we generate new stack variable names s’y by renaming the output variable
of iadd in s;. As notation, given a sequence a,, of elements, a,[i — b] denotes
the replacement in a,, of the element a; by b. In line 3, we return (ret()) the
translated bytecode together with the new stack variable names. Assume that
G=pcy:bo and By=(pc,:by,. .. 7pcp:bp>. The translation of all bytecodes is done
iteratively as follows:
fori=0top {(b, 111{+1, sit!) = translate(m, pc,, b, 11 st)}

We start from an initial set of local and stack variables, 1§:1k and s=s;; in
each step, translate takes as input the local and stack variable names which

Cost Analysis of Java Bytecode 163

translate(m, pc,iadd, 1k, s¢) := translate(m, pc, iload(v), 1, s¢) :=
let j = top stack index(pc,m) in let j = top stack index(pc,m) in
sl = s¢[j—1m— sg,l] s’y = s¢[j+1 — sg+1]
ret(iadd(s;j_1,sj,8j 1), 1k, s't) ret (iload(ly,s;4), Lk, s't)
translate(m, pc, guard(icmpgt), 1k, S¢) := translate(m, pc, invoke(bm’), L, s¢) :=
let j = top stack index(pc,m) in let j = top stack index(pc,m),
ret (guard(icmpgt(sj—1,s;)), lx, st) n = number of arguments(b,m’) in
translate(m, pc, ireturn(v), 1y, s¢) = s’y = se[j—n — sj_]
ret(ireturn(so,ret), Lk, st) ret (b:m'(sj_n,...,S;,8; n), Lk, s't)

Fig. 2. Translation of selected bytecode instructions

were generated by translating the previous bytecode. At the end of this loop, we
can define each callig, 1 < i < j, as cmid (127" gPT* hi, » T€t), meaning that

we call the next block with the last local and (restricted) stack variable names.

Ezample 2. Consider the CFG in Fig.[Il The translation of Blocks and Block,
works as shown below. For clarity, in the block identifiers we have not included
the class name for the add method. Also, we ignore the exception branch from
Blocks to Blocks.

add®(14, 8o, 51, TEt) — add4(14, So, S1, ret) «—
guard (icmple(so,s1)), guard (instanceof(so, {B})),
iload(1s,sq), iload(ls,s}),iadd(sg,s:,ss), B:incr(so, s1,sq),
istore(sy,15),aload(1l,,s4"), iload(1s, sY), add® (14, sg, ret).

resolve virtual(A, incr),

(add*(1o,11, 12,15, 14,84, 87, ret) ;
add®(1o,11, 1,15, 14,80, 87, Tet) ;
add®(1o,11,1s,1%,1a, 50, 87, ret))

In the add® rule, dynamic dispatch is represented as a disjunction of calls to
add*, add® or add®. Thus, in the rule for add*, we find a call to (the translation
of) incr from class B which corresponds to the translation of invoke(B:incr);
arguments passed to incr are the two top-most stack elements; the return value
(the last argument) goes also to the stack. Note the change in the superscript
when a variable is updated. O

Several optimizations are applied to the above translation. An important one
is to replace (redundant) stack variables corresponding to intermediate states
by local variables whenever possible. This can be done by tracking dependencies
between variables, which stem from instructions like iload and istore. The fact
that the program is in SSA form makes this transformation relatively straight-
forward. However, note that, in order to eliminate stack variables from the head
of a block, we need to consider all calling patterns to the block.

164 E. Albert et al.

Example 3. After eliminating redundant variables, the optimized version of rules
3 and 4 from Ex.[2is as follows:

add®(1s, ret) «— add* (14, ret) «—

guard(icmple(ls, 11)), guard(instanceof(lz, {B})),

iload(1ls, sq), iload (14, s}), iadd(1s, 14,1}), B:incr(1s, 14, 85),

istore(sy,13),aload(1ls,s5’), iload(ls,sY), add®(1s,s), ret).

resolve virtual(A, incr),

(add*(1o,11,12,1%, 14, ret)
add®(1o,11, 12, 15, 14, Tet)
add®(1o, 11, 15,15, 14, Tet)

)

The underlined instructions have been used to discover equivalences among stack
elements and local variables. For example, all the arguments of iadd have been
replaced by local variables. However, eliminating stack variables is not always
possible. This is the case of sf in the rule add®*, as it corresponds to the return
value of B:incr. After these optimizations, the underlined instructions become
redundant and could be removed. However, we do not remove them in order to
take their cost into account in the next sections. a

5 Size Relations for Cost Analysis

Obtaining size-relations between the states at different program points is in-
dispensable for setting up cost relations. In particular, they are essential for
defining the cost of one block in terms of the cost of its successors. In general,
various measures can be used to determine the size of an input. For instance, in
symbolic languages (see, e.g., [10]), term-depth, list-length, etc. are used as term
sizes. In Java bytecode, we consider two cases: for integer variables, size-relations
are constraints on the possible values of variables; for reference variables, they
are constraints on the length of the longest reachable paths.

Ezample 4. Consider the two loops below, written in Java for simplicity:
while(i>0) { i--; } while(1 != null) { 1 = l.next; }

A useful size-relation for cost analysis is that the value of i is always greater
than 0 and decreases by 1 in each iteration, and that the longest path reachable
from 1 is decreasing by 1 in each iteration. |

Inferring size-relations is not straightforward: such relations might be the result
of executing several statements, calling methods or loops. For instance, in our
running example, the size relation for variable i is the result of executing the
method incr and is propagated through the loop in the procedure add. Fixpoint
computation is often required. Fortunately, there are several abstract interpre-
tation based approaches for inferring size-relations between integer variables [7],
as well as between reference variables (in terms of longest path length) [20].

Cost Analysis of Java Bytecode 165

5.1 The Notion of Size Relation

In order to set up cost relations, we need, for each rule in the recursive represen-
tation, the calls-to size-relations between the variables in the head of the rule
and the variables used in the calls (to rules) which occur in the body. Note that,
given a rule p(%) <« G, By, (q1;.-.;9a), each by € By is either a bytecode or a call
to another rule (which stems from the translation of a method invocation). We
denote by calls(Bg) the set of all b; corresponding to a method call, and by
bytecode(By) the set of all b; corresponding to other bytecodes.

Definition 1 (calls-to size-relations). Let R, be the recursive representation
of a method m, where each rule takes the form p(%) « G, By, (q1(¥); - ; qu(¥))-
The calls-to size-relations of R, are triples of the form

(p(%),P'(2),) where p'(2) € calls(By) U {p cont(y)}
describing, for all rules, the size-relation between X and z when p'(Z) is called,
where p cont(§) refers to the program point immediately after By. The size-
relation ¢ is given as a conjunction of linear constraints ap+a1vi+- - -4ayvy, op 0,
where op € {=,<,<}, each a; is a constant and vy € XU Z for each k.

Note that in the definition above there is no need to have separate relations for
each q;(§) as, in the absence of exceptions, size relations are exactly the same
for all of them, since they correspond to the same program point.

5.2 Inferring Size Relations

A simple, yet quite precise and efficient, size-relation analysis for the recursive
representation of methods can be done in two steps: 1) compiling the bytecodes
into the linear constraints they impose on variables; and 2) computing a bottom-
up fixpoint on the compiled rules using standard bottom-up fixpoint algorithms.
Compilation into linear constraints is done by an abstraction function ag;,.
which basically replaces guards and bytecodes by the constraints they impose
on the corresponding variables. In general, each bytecode performing (linear)
arithmetic operations is replaced by a corresponding linear constraint, and each
bytecode which manipulates objects is compiled to linear constraints on the
length of the longest reachable path from the corresponding variable [20]. Here
are some examples of abstracting guards and bytecodes into linear constraints:

Qisize(1load(11, s0)):=(11=so) Qisize (guard(icmpgt(si, so))):=(s1>80)
(isize(iadd(s1, 80, 85)):=(86=50 + 81) Qsize(getfield(ss,f,s})):=(s1<s1)

It is important to note that as;j,e uses the same name for the original variables
in order to refer to their sizes. Compiling the rules of Ex. [results in:

add® (14, ret) —
B:incr(1z, 14, 9),
add® (14, sg, ret).

add®(ls,ret) «1s < 15,15 = 15 + g,
resolve virtual(4, incr),
(add*(12,1%, 1a, ret); add® (15,15, 14, ret); add® (12, 15, 1a, ret))

166 E. Albert et al.

Ezample 5. Compiling all the rules corresponding to the program in Fig. [Tl and
computing a bottom-up fixpoint over an appropriate abstract domain [7] would
result in the following calls-to size-relations for rules from Ex.

(add®(10,11, 1,15, 1a, ret), add® cont(lo,11,12,15, s, Tet), {1a<1y, L5=13+14s})
(add*(1o, 11, 1,13, 1a, ret), B:incr(1y, 14, ret), {})
(add*(10,11, 12,13, 14, ret), add* cont(lo,11, 12,13, 1a, 85, ret), {so=1a+2})

6 Cost Relations for Java Bytecode

We now present our approach to the automatic generation of cost relations which
define the computational cost of the execution of a bytecode method. They are
generated from the recursive representation of the method (Sec.H]) and by using
the information inferred by the size analysis (Sec. Bl). An important issue in
order to obtain optimal cost relations is to find out the arguments which can be
safely ignored in cost relations.

6.1 Restricting Cost Relations to (Subsets of) Input Arguments

Let us consider Block;q in a CFG, represented by the rule c:m*® (1, ret) « G, By,
(callig, 5 ... ; callidj) in which local and stack variables are no longer distin-
guishable. The cost function for Block;q takes the form Ciq : (Z)" — Ny, with
n < k argument positions, and where Z is the set of integers and N, is the set
of natural numbers augmented with a special symbol co, denoting unbounded.

Our aim here is to minimize the number n of arguments which need to be
taken into account in cost functions. As usual in cost analysis, we consider that
the output argument ret cannot influence the cost of any block, so that it can
be ignored in cost functions. Furthermore, it is sometimes possible to disregard
some input arguments. For instance, in our running example, 13 is an accumu-
lating parameter whose value does not affect the control flow nor the cost of the
program: it merely keeps the value of the temporary result.

Given a rule, the arguments which can have an impact on the cost of the
program are those which may affect directly or indirectly the program guards
(i.e., they can affect the control flow of the program), or are used as input
arguments to external methods whose cost, in turn, may depend on the input
size. Computing a safe approximation of the set of variables affecting a series of
statements is a well studied problem in static analysis. To do this, we need to
follow data dependencies against the control flow, and this involves computing
a fixpoint. Our problem is slightly simpler than program slicing [21], since we
do not need to delete redundant program statements; instead, we only need to
detect relevant arguments. Given a rule p(x) < body (p for short), 1, C x is the
sub-sequence of relevant variables for p. The sequence 1p, obtained by union of
sequences {ip}pe p for a set P of rules, keeps the ordering on variables.

Example 6. Given p;, corresponding to Block; in the graph of the running exam-
ple, we are interested in computing which variables in this rule are relevant to
program guards or external methods. For example, 1) when the execution flow

Cost Analysis of Java Bytecode 167

reaches ps, we execute the unconditional bytecode instructions in ps and move
to the final block. As a result, there are no relevant variables for po, since none
can have any impact on its cost, and py does not reach any guards nor methods.
2) On the other hand, p3 can reach the guards in p4, ps and pg, which take the
form instanceof() and involve 1,. Also, the guard in ps itself, involving 1; and
14, can be recursively reached via the loop. Moreover, the call to the external
method incr involves 15 and 14. After computing a fixpoint, we conclude that
1ps = {11,15,14}. 3) We have 1, = {11, 12, 50}; here, s, is also relevant since it
affects 14 (which in turn is involved in the guard of ps, reachable from pg). O

6.2 The Cost Relation

Herein, we define the cost function Cyg : (Z)™ — N, for a Block;y by means of a
cost relation which consists of a set of cost equations. It will allow us to reason
about the computational cost of the execution of the block i¢d. The intuitive idea
is that, given the rule p(%) < G,B, (qu;...;qa) associated to Block;q, we generate:

— one cost equation which defines the cost of p as the cost of the statements
in B, plus the cost of its continuation, denoted p cont;

— another cost equation which defines the cost of p cont as either the cost of
q1 (if its guard is satisfied), ..., or the cost of q, (if its guard is satisfied).

We specify the cost of the continuation in a separate equation because the con-
ditions for determining the alternative path q; that the execution will take (with
i=1,...,n) are only known at the end of the execution of B; thus, they cannot
be evaluated before B is executed. In the definition below, we use the function
Qguard to replace those guards which indicate the type of an object by the ap-
propriate test (e.g., aguara(guard(instanceof(so, {B}))) := so¢ € B). For guards
on size relations, it is equivalent to ;..

Definition 2 (cost relation). Let R,, be the recursive representation of a
method m where each block takes the form p(X) < Gp,B, (q1(¥);--- ;9a(¥)) and
1, be its sequence of relevant variables. Let ¢ be the calls to size relation for R,

where each size relation is of the form (p(%),p'(2), ¢ P (z > for allp’(z) € calls(B)

U{a(§)} such that q(§) refers to the program point immediately after B. Then,
we generate the cost equations for each block of the above form in R, as follows:

D= Tt S CrLe) + Cp cont(Ufy14,) N (@) A
bebytecode(B) r(z)EcallE(B) r(z)€Ecalls(B)
Cth (lth) aguaTd<GtI1)

Cp cont(Uyzliqq‘,) = e
Co.(1q,) guard(Gy,)
where Ty, is the cost unit associated to the bytecode b. The cost relation associated
to Ry, and ¢ is defined as the set of cost equations of its blocks.

Let us notice four points about the above definition. 1) The size relationships
between the input variables provided by the size analysis are attached to the

168 E. Albert et al.

cost equation for p (in Sect.[7 we discuss how to apply them). 2) Guards do not
affect the cost: they are simply used to define the applicability conditions of the
equations. 3) Arguments of the cost equations are only the relevant arguments
to the block. In the equation for the continuation, we need to include the union
of all relevant arguments to each of the subsequent blocks q;.

The cost T, of an instruction b depends on the chosen cost model. If our
interest is merely on finding out the complexity or on approximating the number
of bytecode statements which will be executed, then T} can be the same for all
instructions. On the other hand, we may use more refined cost models in order to
estimate the execution time of methods. Such models may assign different costs
to different instructions. One approach might be based on the use of a profiling
tool which estimates the value of each T} on a particular platform. (see, e.g., an
application [I4] for Prolog). It should be noted that, since we are not dealing
with the problem of choosing a realistic cost model, a direct comparison between
the result of our analysis and the actual measured run time (e.g., in milliseconds)
cannot be done; instead, in this paper we focus only on the number of instructions
to be executed.

Ezample 7. Consider the recursive representation in Ex. [(without irrelevant
variables, as explained in Ex.[f]). Consider the size relations derived in Ex.[Bl by
applying Def. 2l we obtain the following cost relations:

Caaa(11,12) Chawo (11,12)

Clagao (11,12) = To+ Char(11,12,1}) 1,=0
Cadd1(l1,12,14) = Ti+4 Cuyat Cont(11,12,14)

Caae () 1> 14
Caat cont(11,12,14) = { Chaae (11, 12, 14) 1, <1
Caae () = T
Cadd3 (11, 12, 14) = T3 + Cadd3 cont (117 12, 14)

Claat (11,12, 14) 1, €B
Clad® cont (117 1o, 14) = Claas (117 Lo, 14) 1l eC

Clgas (11,12, 14) 1, €A
Cadd4 (117 127 14) = T4+ CB:incr(127 14) + Cadd3 (11, 12, So) so =144+ 2
Cadd5 (117 127 14) = Ts+ CC:incr(127 14) + Cadds (11, 12, So) so =144+ 3
Chaas (11,12, 1) = Té + Chiiner(12,14) + Claee (11,12, 80) So=1s+1
Cadd8 (11,12,50) = Ts =+ Cadd1 (11,12,50)

Tg, denotes the sum of the costs of all bytecode instructions contained in Block;.
For brevity, as the blocks 0, 2, 4, 5, 6, and 8 have a single-branched continuation,
we merge their two equations. Note that the cost relation for the external method
incr does not include the third argument since it is an output argument. a

Demonstrating the correctness of our approach to cost analysis requires: (1)
Defining the meaning of cost in terms of the Java bytecode operational seman-
tics; (2) Inheriting that definition to a corresponding (equivalent) operational a
semantics of the recursive representation. (3) Demonstrating that the cost rela-
tions describe the cost as defined in step 2. The first two steps are straightforward
as the CFG and the recursive representation describe the behavior of the original
program, in particular at each branching point we have several possibilities from

Cost Analysis of Java Bytecode 169

which only one will be executed. The correctness of the third step stems from
the facts that the cost relations are obtained from the recursive representation
by replacing each bytecode by its cost, and that the size analysis provides us
with information that can be used to compute (or approximate) the number of
times we visit in each program point during the execution.

7 Solving and Approximating Cost Functions

The cost relations we presented in Sect. [allow reasoning about the computa-
tional cost of methods, provided that size analysis was effective. However, such
cost relations generally depend on the cost of other calls (i.e., they are often
recursive). It is thus convenient to obtain a closed form solution for the function
which corresponds to the cost of the method. This can be done in two steps. The
first one involves eliminating existential variables, i.e., those which do not occur
in the left hand side, thus obtaining recurrence equations. The second step
involves using existing tools for solving recurrence equations and/or computing
upper or lower bounds for them.

7.1 Obtaining Recurrence Equations

First, we consider size relations which only contain equalities. Given an existen-
tial variable y, a size relation ¢ and a sequence of (input) variables =, we denote
by solve(y, ¢, x) the operation which returns an expression e, with Vars(e) C z,
such that ¢ = (y = e). The result can be possibly y itself if no other e is found.
For instance, for @2 in Ex.[the operation solve(s(, @2, (l1,12,14)) returns Iy + 2.
This allows replacing equation (1) by equation (2):

Cagar(11,12,14) = Ta + Chiiner (12, 1a) + Cagas (11, 12, s0) (1)
Cagar(11,12,14) = Ta + Chiiner (12, 1a) + Cagas (11,12, 14 + 2) (2)

where sy is replaced by its solved form 14 + 2. Similarly, we can obtain recurrence
equations for the cost of blocks add®, add®, and add®. This way, all cost equations
in Ex. [d are converted into recurrence equations.

There exist more complicated situations, in which size analysis needs to ap-
proximate information and it is only able to provide intervals in which the values
of a variable may range, rather than equalities. Given a variable y, a size relation
© and a sequence of variables x, the operation interval(y, y, z) returns:

— An interval [e, eo] with (Vars(e1) U Vars(ez)) C z, s.t. ¢ = (e1 <y < e3).
— Otherwise, the same variable y.

For instance, consider the cost relation Cp,(z) = > T,+Cy(y) ¢, where [e1,e2] =
interval(ip, y,). As y can vary within an interval, we can only now estimate upper
and lower bounds for C)(z). To do so, we have to cover all possible variations of
y (i.e., the situation in which the value of y moves faster and the one in which
it moves slower). For this purpose, we can generate the following relation:

_ ZT +Cq(e)
Crlr) = {ZTZ%‘q(e;)

170 E. Albert et al.

and then mazimize or minimize the cost relation, depending on whether we want
to approximate the upper or lower bound, respectively, as we explain below. In
a more complicated case, the cost of ¢ might depend on a sequence of variables
y rather than a single y, and the size analysis might provide intervals (not only
equalities) for several of them. This leads to a more complex formalization not
included due to lack of space.

7.2 Approximating Recurrence Equations

Algorithms for approximating recurrence equations have been studied by a num-
ber of researchers (see, e.g., [22]) and there are several systems available (e.g.,
Mathematica, Maxima, Maple, Matlab, CASLog). As already mentioned, it is
not always possible to find closed form solutions for a set of recurrence equations.
However, it turns out that it is quite often possible to find a closed form which
is not a solution to the set of equations, but is guaranteed to be an upper (or
lower) bound of the cost function. In many cases, finding an upper (or lower)
bound can be sufficient. In particular, in the cost relations presented in Sect. [
it is interesting to compute upper or lower bounds in two situations:

— when we have alternative branches corresponding to the second cost equation
in Def. 2] (which represent a dynamic dispatch or a conditional branching),

— when we have intervals (rather than equalities) for the size relations of some
variables, as explained in Sect. [[1l

For the estimation of upper and lower bounds in such cases, we provide a mod-
ified version of the second equation in Def.] (the first one remains identical):

Cq () Go Cql () Go
Co(z) = e Cy? (x) = max o

Can() G, el () Ga,
(a) Cost recurrence equation Cp (b) Upper bound of recurrence equation

Similarly, the lower bound C’é"w(m) of Cp(z) is defined as Cy?(x) but computing
mins rather than maxs.

Ezample 8. Consider the upper bound City(11,15), obtained from the cost rela-
tion Chaa(l1,1s) in Ex. [0l We only show the cost equations for Cpggs:

(11,12, 1a) = Ts + CLP, (11,12, 14)

add4(11’12’14) 1, €B
Cadd3 cont<117 1a, 14) =maxq C dd5(11a 1, 14) L,eC
Cadd6(11’12’14) 1, €A

In this case, we can easily find the following closed form solution by isolating
each of the dlfferent branches in C'*?

add® cont”

(a) iflo €A CYB(11,12) = (11 4+ 1)(T1 + T3 + Ta + Taviner + Tg) +To + T1 + To
(b) if1,€B Cadd(h,lz) (11/24 1)(T1 + T3 + Ta + Teiiner + Te) + To + T1 + T2
(¢) ifloec Cofi(11,15) = (11/34+ 1)(T1 + Ts + Ta + Tciiner + Ts) + To + T1 + T2

Cost Analysis of Java Bytecode 171

We use Ta:incr to denote the constant cost A:incr. The upper bound is max(a, b, c) and
the lower bound is min(a,b,c). In any case, the cost is linear with the size of 1;. If
Ta:iner =TB:incr =Tc:iner then a is the upper bound and ¢ the lower bound. O

Unfortunately, it is rather difficult to syntactically characterize the class of pro-
grams whose cost relations can be expressed in a closed form.

8 Conclusion

We have presented an automatic approach to the cost analysis of Java bytecode,
based on generating at compile-time cost relations for an input bytecode pro-
gram. Such relations are functions of input data which are informative by them-
selves about the computational cost, provided an accurate size analysis is used
to establish relationships between the input arguments. Essentially, the sources
of inaccuracy in size analysis are: 1) guards depending (directly of indirectly) on
values which are not handled in the abstraction, e.g., non-integer values, numeric
fields or multidimensional arrays, cyclic data-structures; 2) loss of precision due
to the abstraction of (non-linear) arithmetic instructions and domain operations
like widening. In such cases, we can still set up cost relations; however, they
might not be useful if the size relationships are not precise enough.

To the best of our knowledge, our work presents the first approach to the
automatic cost analysis of Java bytecode. Related work in the context of Java
bytecode includes the work in the MRG project [3], which can be considered
complementary to ours. MRG focuses on building a proof-carrying code [15] ar-
chitecture for ensuring that bytecode programs are free from run-time violations
of resource bounds. Also, the resource which has been studied in more depth is
heap consumption, since applications to be deployed on devices with a limited
amount of memory, such as smartcards, must be rejected if they require more
memory than that available. Another related work is [6], where a resource usage
analysis is presented. Again, this work focuses on memory consumption and it
aims at verifying that the program executes in bounded memory by making sure
that the program does not create new objects inside loops. The analysis has been
certified by proving its correctness using the Coq proof assistant.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905 M OBIUS project, by the Spanish Ministry of Educa-
tion (MEC) under the TIN-2005-09207 MERIT project, and the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project. S. Genaim was
supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.
of LPAR’04, number 3452 in LNAI, pages 380-397. Springer-Verlag, 2005.

172

3.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.
23.

E. Albert et al.

D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In CASSIS’04, number 3362 in LNCS. Springer,
2005.

. G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Miiller, E. Poll,

G. Puebla, I. Stark, and E. Vétillard. Mobius: Mobility, ubiquity, security: Objec-
tives and progress report. In Trustworthy Global Computing’06, LNCS, 2007.

. R. Benzinger. Automated higher-order complexity analysis. Theor. Comput. Sci.,

318(1-2), 2004.

. D. Cachera, D. Pichardie T. Jensen, and G. Schneider. Certified memory usage

analysis. In FM’05, number 3582 in LNCS. Springer, 2005.

. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proc. POPL. ACM, 1978.

. K. Crary and S. Weirich. Resource bound certification. In POPL. ACM, 2000.
. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-

ciently computing static single assignment form and the control dependence graph.
TOPLAS, 13(4), 1991.

S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5),
1993.

S. K. Debray, P. Lépez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In Proc. ILPS’97. MIT Press, 1997.

G. Gomez and Y. A. Liu. Automatic time-bound analysis for a higher-order lan-
guage. In Proc. of PEPM. ACM Press, 2002.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

E. Mera, P. Léopez-Garcia, G. Puebla, M. Carro, and M. Hermenegildo. Combining
Static Analysis and Profiling for Estimating Execution Times. In PADL’07, LNCS.
Springer-Verlag, 2007. To appear.

G. Necula. Proof-Carrying Code. In POPL’97. ACM Press, 1997.

F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism
in Functional Programs. TR. CS-90-1, Dept. of C.S., Univ. of Sheffield, UK, 1990.
M. Rosendhal. Automatic Complexity Analysis. In Proc. FPCA. ACM, 1989.

D. Sands. A naive time analysis and its theory of cost equivalence. J. Log. Comput.,
5(4), 1995.

F. Spoto. JuLiA: A Generic Static Analyser for the Java Bytecode. In Proc. of the
7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005, Glasgow,
Scotland, July 2005. Available at www.sci.univr.it/~spoto/papers.html.

F. Spoto, P. M. Hill, and E. Payet. Path-length analysis for object-oriented pro-
grams. In Proc. EAAI 2006.

F. Tip. A Survey of Program Slicing Techniques. J. of Prog. Lang., 3, 1995.

H. S. Wilf. Algorithms and Complexity. A.K. Peters Ltd, 2002.

R. Wilhelm. Timing analysis and timing predictability. In Proc. FMCO, LNCS.
Springer-Verlag, 2004.

	Introduction
	The Java Bytecode Language
	From Bytecode to Control Flow Graphs
	Recursive Representation with Flattened Stack
	Size Relations for Cost Analysis
	The Notion of Size Relation
	Inferring Size Relations

	Cost Relations for Java Bytecode
	Restricting Cost Relations to (Subsets of) Input Arguments
	The Cost Relation

	Solving and Approximating Cost Functions
	Obtaining Recurrence Equations
	Approximating Recurrence Equations

	Conclusion

