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Abstract. Test evaluation and test assessment is a time consuming and
resource intensive process. More than ever this holds for testing complex
systems that emanate continuous or hybrid behavior. In this article we
introduce an approach that eases the specification of black box tests for
hybrid or continuous systems by means of signal properties applied for
evaluation. A signal property allows the characterization of individual
signal shapes. It is determined by the examination of the signal’s value
at time, the application of pre-processing functions (like first or higher
order derivatives), and the analysis and detection of sequences of values
that form certain shapes of a signal (e.g. local minima and maxima).
Moreover we allow the combination of properties by logical connectives.

The solution provided in this paper is based on terms and concepts
defined for Continuous TTCN-3 (CTTCN-3) [12, 11], an extension of
the standardized test specification language TTCN-3 [4]. Thus, we treat
signals as streams and integrate the notion of signal properties with the
notion of stream templates like they are already defined in CTTCN-3.
Moreover, we provide a formal foundation for CTTCN-3 streams, for a
selected set of signal properties and for their integration in CTTCN-3.

1 Introduction

TTCN-3 [4, 6, 5] is a procedural testing language. In its current(and stan-
dardized) state TTCN-3 provides powerful means to test message-based and
procedure-based system interactions. As such it is not capable of testing system
that emanates continuous or hybrid behavior. To fill the gap and to transmit
parts of the approved TTCN-3 methodology to continuous and hybrid systems as
well, we introduced Continuous TTCN-3 (CTTCN-3) [12, 11] and enhanced the
TTCN-3 core language to the requirements of continuous and hybrid behavior
while introducing:

– the notions of time and sampling,
– the notions of streams, stream ports and stream variables, and
– the definition of an automaton alike control flow structure to support the

specification of hybrid behavior.
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While [12] concentrates on system stimulation and the integration of the newly
introduced concepts with the existing TTCN-3 core language, the systematic
evaluation of system reaction was not discussed in depth. In this article we
will catch up and work out the notion of signal properties and property based
stream templates. A signal property addresses a certain but abstract aspect of
a signal shape (i.e. the signal’s value at a certain point in time, the derivative
of the signal, and certain behavioral aspects like rising edges, extremal values
etc.). A property based stream template constitutes a predicate that is based on
signal properties and can be used to specify the expected system behavior for a
test run.

The specification of formal properties to denote the requirements on a hybrid
system is well known from the theory of hybrid automata [1]. Given a set of
formal system properties denoted in a temporal logic calculus, the reachability
and liveness of the properties can by automatically checked if an appropriate
system model exists [7, 8]. The Reactis tool environment [13] provides a similar
approach to derive test cases from models that can be applied to the system
under test (SUT).

In [3, 14] such predicates are used as an explicit part of a test specification
to ease the assessment of a hybrid system’s reaction. In [14] a systematic ap-
proach for the derivation of so called validation functions from requirements is
described. The approach introduces the notion of signal properties and their re-
spective concatenations to detect certain — sometime very complex — signal
characteristics (e.g. value changes, increase and decrease of a signal as well as
signal overshoots) during the execution of a black box test run. The solution
is based on Matlab/Simulink. In [3] a graphical modeling tool is outlined that
is dedicated to ease the specification of signal properties for the off-line evalua-
tion of tests. Both approaches aim to systematically denote signal properties. In
this article we concentrate on a proper integration of signal properties with the
existing means for testing hybrid behaviour in CTTCN-3.

In Section 2 we will give a short overview of CTTCN-3. This includes the ex-
planation of the concepts stream, stream port and stream template. Moreover,
the overview includes the definition of a formal semantics for streams, which
will be used later on to properly integrate the notion of signal properties. In
Section 3 we will describe a guiding example to motivate our approach. In Sec-
tion 4 we will introduce the term signal property and a suitable classification
of signal properties, in Section 5 we will introduce the integration of property
based stream templates with CTTCN-3, and Section 6 concludes the paper.

2 Continuous TTCN-3

CTTCN-3 is an extension of TTCN-3 that is properly specified in [12] and as
yet a theoretical prototype. In the following we will provide a short introduction
to the syntax and semantics of the main constructs in CTTCN-3.
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2.1 Time

For CTTCN-3 we adopted the concept of a global clock and enhance it with
the notion of sampling and sampled time. As in TTCN-3, all time values in
CTTCN-3 are denoted as float values and represent time in seconds. For sam-
pling, the discrete time model t = k ∗ Δ is used. It has a fixed step size Δ with
t, Δ ∈ R

+, k ∈ N. Relative time, which is used for the definition of streams and
templates, is considered to be completely synchronized to the global clock.

2.2 The Test System

The SUT is represented in terms of its interface — the so called test interface.
A test interface is defined by a set of input and output ports. Each port can
be characterized by its direction of communication (i.e. unidirectional input or
output, or bidirectional), the data types being transported (e.g. boolean, integer,
float, etc.), and its communication characteristics (i.e. message-based, procedure-
based, or stream-based). In this article, we denote the input ports of a SUT as an
n-tuple x = (x1, x2, .., xn) and the output ports as an m-tuple y = (y1, y2, .., ym)
with m, n ∈ N (see Figure 1)1. Moreover, we define a set of data types called �

to specify the information structure transferrable via ports. For each port xn, ym

there is a set Xn, Ym ∈ � defining the domain of the port.
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Fig. 1. An Black-box test system enclosing a SUT

System behavior is defined in terms of the given allocation of ports. Reactive
system behavior can be denoted as an operator T [·] that continuously operates
on the inputs of the system [10]. The allocation of individual ports are defined by
a function fxi(t) over time. The complete System inputs over time — reflecting
our definition of an SUT — are defined as an n-tuple,

x(t) := (fx1(t), fx2(t), ..., fxn(t)) with x(t) ∈ Xε
1 × Xε

2 × ... × Xε
n.

The output of a system is defined by an equation system using the behavior
operator TSUT [·].

y(t) := TSUT [x(t)] with y(t) ∈ Y ε
1 × Y ε

2 × ... × Y ε
m.

1 A bidirectional port contributes both to the input and the output tuple of ports.
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2.3 Streams

In contrast to scalar values, a stream [2, 9] represents the whole allocation history
applied to a port. In CTTCN-3 the term stream is used to denote the data
structure s ∈ (STRM)T that describes the complete history of data that yield
as allocation of a certain port xn, ym. The index T denotes the type of a stream.
It is defined as a cross product between a value domain d ∈ � and the step size
Δ ∈ R

+ with T ∈ �×R
+. In the following we only consider discrete (i.e. sampled)

streams s ∈ (DSTRM)T ⊂ (STRM)T . A discrete stream s is represented by a
structure s := (Δ, 〈mk〉) where Δ represents the sample time, 〈mk〉 a sequence
of values (messages), and s ∈ (DSTRM)T . The sequence of values is defined as
follows:

〈mk〉 := {fxi(0), fxi(1 ∗ Δ), ..., fxi((k − 1) ∗ Δ)}

To obtain basic information on streams and their content we provide sim-
ple access operations. We distinguish between time-related and non-time-related
access operations.

– For non-time-related access operations we use #s for the number of values
and with s[i], i ∈ N we denote the ith value in a stream s.

– Time-related access operations rely on a timing function τs(i) := (i− 1) ∗Δ
with i ∈ [1..(#s)[ that returns a time value for an arbitrary index value of a
stream s. The operation dur(s) returns the length of time for a stream s and
is defined as dur(s) = τs(#s). Further on we provide the operation s@t to
obtain the value m associated with an arbitrary point in time with t ∈ R

+.
The operation s@t is defined as s@(t) = s.i when t ∈ [τs(i), τs(i + 1)[.

In CTTCN-3 we are able to explicitly declare stream ports and stream vari-
ables by the notion of stream types T . The step size Δ is defined using the
keyword sample. Listing 1 shows the declaration of a sample and the decla-
rations of a stream type, of two stream ports, as well as of a stream variable.
Moreover the stream variable is initialized with a stream of infinite length.

Listing 1. Stream Types and Variables

sample( t )=1;
type stream float FloatStrm ( t ) ;

3type port FloatOut stream {out FloatStrm}
type port FloatIn stream { in FloatStrm}

6type component MyComponent {
port FloatOut p1 ;
port FloatIn p2 ; }

9

var FloatStrm myStrm:= s in ( t ) ;
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2.4 Stream Templates

In TTCN-3, especially for the definition of the expected system reaction, the use
of templates is encouraged. In [12] we advanced the notion of templates to be
applicable to streams. We confined ourselves to templates for numerical streams
and to the definition of upper and lower bounds only.

Similar to streams, stream templates tp ∈ (TP )T are classified by stream
types T . Templates are generally applicable to streams of the same type or of
compatible type2. In CTTCN-3 the application of a template to a stream or a
stream port is carried out by either a sense statement (for the on-line evaluation
of ports) or a match statement (for the offline evaluation of the data structure
stream). The result of the application is dependent on the execution context.
Inside the carry−until statement, the template evaluation is carried out sample-
wise, that is, it is defined as a function χtp : (DSTRM)T → (DSTRM)B where
r ∈ (DSTRM)B is a stream of boolean values true or false.

Outside the carry-until construct the evaluation of a stream template is cal-
culated as a whole, that is the complete stream is evaluated and the evaluation
is defined as a function χtp : (DSTRM)T → B where r ∈ B is one of the boolean
values true or false. In both cases the function χtp(s) is determined by the tem-
plate definition TP . For more details concerning the meaning of stream template
please refer to [12].

3 Guiding Example

The main objective of this article is to ease the specification of expected system
behavior through the notion of signal properties (i.e. predicates) that, on the
one hand can be used to closely describe the shape of individual signals, but
also provide means to flexible address abstract characteristics of a signal. In
order to motivate the concepts and constructs we present in this article we will
start with a typical scenario that emanates from ECU testing in the automotive
domain. In a drive case the tester activates the gas pedal, releases the pedal, and
after a while he activates the break pedal. In the context of this example we are
interested in the velocity control. Concerning the velocity, we expect a nearly
linear increase at the beginning. That followed, the velocity remains constant
for a short while to start slightly decreasing, and in the end it slows down to 0.
Figure 2 shows a simple outline of our expectations.

In the following, we are looking for a feasible, that is abstract but exact, way
to formerly describe our expectations. The crucial property we are interested in,
is the signal’s slope. Being more precisely, we expect the slope being nearly lets
say 2.0 [m/s2] or nearly 0 or roughly -2.0 [m/s2]. Moreover, we would like to
address the respective durations and sequencing.
2 Compatibility between stream types is dependent of the value domain d ∈ � and

the sampling domain Δ ∈ R
+. For the value domain we consider the given TTCN-3

compatibility rules. For the time domain we consider two types compatible when
they obey the same sampling or one is a down sample of the other one.
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Fig. 2. Simple Shape of a Signal

In order to asses a concrete test result w.r.t. to our expectations, we have
to denote our expectation in form of predicates, that closely characterizes the
possible outcomes. Using the formalism sketched in the former paragraph, we
end up with the following situation. The possible test outcome for some ECU
is described by a real valued stream, i.e. the velocity measured at the sample
times of our test run. The expectation that at the beginning the increase will be
nearly linearly and we must check for it. We can formulate such predicates in
terms of templates3. Heuristically we define:

Listing 2. Heuristic: Linear Increase

// in the time i n t e r v a l [ 0 s , 10 s ] ,
2// the d e r i v a t i v e o f the v e l o c i t y i s in [ 1 . 7 5 . . 2 . 2 5 ]

template FloatStrm linearSlope_0_135@t :={
5@[ 0 . 0 . . 1 0 . 0 ] := ( d i f f e r e n t i a t e ( cu r r en t ) in [ 1 . 7 5 . . 2 . 2 5 ] ) } ;

That is, the derivative in the time interval [0 s,10 s] is nearly constant. Regard-
ing this example, one can obviously distinguish two different parts, the proper
predicate and the time scope, that is the time interval the predicate is applied
for. We could intuitively split this up and rewrite the expressions to:

Listing 3. Heuristic: Linear Increase, Time Scope and Predicate

1template FloatStrm l inearS lope@t :={
( d i f f e r e n t i a t e ( cu r r en t ) in [ 1 . 7 5 . . 2 . 2 5 ] ) }

4template FloatStrm linearSlope_0_10@t :={
@[ 0 . 0 . . 1 0 . 0 ] : = l in earS lope@t } ;

Furthermore, we would like to address the temporal segmentation of the signal.
That is, after the part of linear increase the signal will remain nearly constant. We
3 The introduced syntax is in fact an anticipation of means we will systematically

introduce later.
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may revert to the heuristic from above in order to characterize the signal’s shape
but we are not able to address the sequential split up, which is determined by the
validity of properties. To address the activation and deactivation of time scopes
w.r.t. to the evaluation results of templates applied before, we need to refer to the
begin of the phase a signal, a property is valid for, and the respecting end of the
phase. During on-line analysis the carry until construct in CTTCN-3 already pro-
vides means to realize the detection of such phases. In this article we concentrate
on templates and provide a declarative approach. That is, we introduce the func-
tion start of and end of to address the points in time that represent the beginning
and the end of the valid phase of a predicate (i.e. template).

Listing 4. Start and End Marks

1s o f ( l i n e a r S l o p e )
// s t a r t time , from where the proper ty ho l ds f o r the stream
eo f ( l i n e a r S l o p e )

4// end time o f t h i s property , a f t e r which the proper ty
// doesn ’ t ho ld anymore

By use of such functions we can now define how properties depend and evolve:

Listing 5. Heuristic Example

1template FloatStrm constantS lope@t:={
( d i f f e r e n t i a t e ( cu r r en t ) in [ − 0 . 1 . . 0 . 1 ] ) }

4template FloatStrm linear_and_ConstSlope@t:={
@[ 0 . 0 . . 1 0 . 0 ] := l inearS lope@t ,
@[ e o f ( l i n e a r S l o p e )+1 . . e o f ( l i n e a r S l o p e )+5]:= constan tS lope } ;

It is obvious, that the provided means could be extended to achieve a proper
description of the expected velocity curve in our automotive example. The crucial
ingredients could be identified as

– templates on streams, which mimick properties resp. predicates of signal
outcomes,

– time scope restrictions of such templates, and
– start and end markings of the durations limits.

In this article we will mainly focus on the necessary extensions of templates
and show how they naturally integrate these with CTTCN-3.

4 Evaluation of Signals

A signal property is a formal description of certain defined attributes of a signal.
This subsumes the signal value at a certain point in time, the increase and
decrease of a signal, or the occurrence of extrema. Table 1 shows a selection of
basic properties adopted from [3].
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Table 1. Signal Properties

Property Name Characteristic Description Locality
Signal Value value = exp the signal value equals exp local

value in [range exp] the signal value is in [range exp] local
Value Change no a constant signal frame-local

increase an increasing signal frame-local
decrease an decreasing signal frame-local

Extremal Value minimum the signal has frame-local
a local minimum

maximum the signal has frame-local
a local maximum

Signal Type step-wise a step function global
linear a partially linear signal global
flat a partially flat signal global

While the actual signal value is a property that is completely local (i.e. it
is quantifiable without the history of the signal) the other properties are only
allocatable when the predecessor values are considered. The latter is named
frame-local, when the history can be limited to a certain frame and global when
not. Local properties are adequate for on-line analysis in any case, frame-local
properties are adequate, but only in consideration of the frame size. Large frames
may constrain the real time capabilities of the test environment. Global prop-
erties are normally not meaningful applicable for on-line analysis because they
depend on the complete signal. In this article we confine ourselves to local and
frame-local properties.

To address frequencies, monotony and the exact amount of decrease or in-
crease a signal has, we introduce the notion of preprocessing functions. A pre-
processing function obtain a signal as input and provides a transformed signal as
output. In systems engineering multiple meaningful preprocessing functions (e.g.
derivation, high-pass filters, fourier transformation etc.) exist. In this article we
only consider the derivation of a signal.

Finally, we distinguish basic properties that address one and only one of the
characteristic from Table 1 and complex properties that address a combination
of characteristics. Complex properties are constructed by use of logical connec-
tives (e.g. negation (¬), conjunction (∧), disjunction (∨), and implication (→)).
Moreover we aim to address the temporal evolution of a signal along the time
axis. Hence, the specification of temporal order and temporal dependencies are
necessary.

5 The CTTCN-3 Solution

CTTCN-3 already provides a limited set of means to check the properties of a
signal. Signals are represented as streams and predicates that check properties,
which are specified by use of so called stream templates. The respective concepts
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are introduced in [12] in detail and summarized in 2.4. To systematically meet
the requirements from above these means have to be enhanced.

– To provide transformations that are needed for pre-processing of streams (see
Section 5.2) we introduce so called predefined transformation functions on
streams and show how they integrate in the definition of stream templates.

– To model templates that address the properties of streams (as well as for
their pre-processed derivation) we propose to enhance the syntax of template
definitions. We introduce the notion of a predicate expressions to closely
specify values and time scopes to restrict the application of a predicate in
time. The original form of a stream template definition is short form of the
one we introduce in this paper.

– For the logical and temporal combination of predicates we will introduce
the construction of complex templates by use of logical connectives and the
ability to trigger on the activation and deactivation of templates.

We start with the definition of predefined transformation function to realize
the pre-processing of streams to be analyzed. Afterwards, we emphasize on the
construction of complex templates (i.e. on time scopes, predicate expressions and
the syntactical integration of transformation functions in the definition), and on
the specification of temporal dependencies between templates.

5.1 Pre-processing Functions

We propose to specify the basic pre-processing functions as so called predefined
functions. Predefined functions are defined as part of the core language [4] and
are meant to be provided by the CTTCN-3 runtime environment.

The function differentiate returns the first order derivative of a signal. In
CTTCN-3 signals are represented as streams. The derivative s′=differentiate(s)
of a given source stream s is — similar to the source stream — defined by a struc-
ture s′ := (Δ, 〈m′

k〉) where Δ represents the sample time, 〈m′
k〉 a sequence of

values, and s′ ∈ (DSTRM)T . The sequence of values is defined as a left side
derivative:

〈m′
i〉 := {m′

1, m
′
2, m

′
3, ..., m

′
k}

and

m′
i =

{
0 when i = 1
mi−m(i−1)

Δ when i > 1

Please note that m′
1 = 0 due to the fact that mi is not defined for i = 0. In

CTTCN-3 the function differentiate is specified with the following signature.

differentiate(numeric_stream_type value) numeric_stream_type
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5.2 The General Setup of Stream Templates

While Section 2.4 provides a short overview over the notion of stream templates
like they are already defined in [12], this section revises the initial design and
provides a much more detailed insight in the underlying concepts. We start with
the description of the general setup of a stream templates. On basis of this
we will systematically introduce new features to enhance the expressiveness of
stream templates to become a powerful instrument for the evaluation of system
response in hybrid system testing.

Nevertheless, as mentioned before, a template generally consists of a time
scope and a predicate expression. The time scope constitutes the validity of the
predicate in respect to timing. The predicate expression constraints the value
side of a stream.

Listing 6. Stream Templates

template FloatStrm t4@:={
@[ 0 . 0 . . 3 0 . 0 ] := [ 0 . 0 . . 5 5 . 0 ] } ;

3

template FloatStrm t5@t :={
@[ 0 . 0 . . 1 0 . 0 ) := [2∗ t ] ,

6@[ 1 0 . 0 . . 1 8 . 0 ) := [ 1 9 . 0 . . 2 1 . 0 ] ,
@[ 1 8 . 0 . . 2 8 . 0 ) := [20 −(0.2∗ t ) ] } ;

The templates in Listing 6 consist of time scopes (at the left hand side e.g.
[0.0..30.0]) and predicates expressed by values or value ranges (at the right
hand side e.g. [0.0..55.0]). The predicates address the evolution of signal values
only, which is obviously not enough to properly meet the requirements from
Section 3.

Moreover a template may be defined segment-wise, that is, it may have dif-
ferent predicates for different segments of time, each defined by time scopes that
precede the respective predicate (see t4 in Listing 6). A segment definition may
override a precedent segment definition when the respective time scopes overlap.

Predicates: A predicate is dedicated to characterizes the values of a stream on
different levels of abstraction. In [12] we confined the notion of predicates to be
simple relational expressions that are expressed by values or value ranges (e.g.
[0.0..55.0] or [20-(0.2*t)] in Listing 6). In this article we enhance the notion
of predicates to be more efficient in terms of signal properties and introduce the
notion of predicate expressions (i.e. more complex relational expressions, tem-
plates itself and the logical composition of templates and relational expressions).

Time Scopes: The application of a time scope restricts the evaluation of pred-
icates in time. It consists of a start event φstart ∈ Σ, that activates the eval-
uation of a predicate and an end event φend ∈ Σ that deactivates the evaluation.
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Moreover we consider a timing function τφ : Σ → R that returns the point in time
when an event has occurred. Please note, for events the accuracy of the timing
function is restricted by sampling. Hence, events are considered time-consuming
and lasts for exactly one step size.

Concerning time scopes we distinguish between templates having a global time
scope and templates having a local time scope. A template has a global time
scope, when the time scope specification is omitted or when τΣ(φstart) = 0.0
and φend does not occur (e.g. @[0.0..infinity]). A time scope is identified local
when the time scope defines a finite time period or when τΣ(φstart) > 0.0 (e.g.
@[0.2..10.0)). The syntactical structure to denote time scopes is similar to the
structure of value ranges already defined in Continuous TTCN-34.

5.3 Evaluation of Templates

The evaluation of streams is carried out by the application of a template to a
stream or a stream port. The result of a stream evaluation is affected by the time
scope and the predicate of the applied template as well as by the application
statement. While match initiates a global evaluation of a stream, the sense
operator allows the sample-wise evaluation (see Section 2.4).

Concerning the calculation of match and sense results, we propose a
tolerant evaluation of templates. A tolerant evaluation only checks the de-
fined time scope of a template. Hence, a template with a local time scope is
evaluated to boolean values true as long the analysis affects samples that are
outside the template’s time scope. Regarding samples that are covered by the
time scope, the result of the evaluation is determined by predicate. That is, it
yields true when the predicate matches and false when the predicate does not
match. Let us consider r ∈ B to be the result of a template application to a
stream s ∈ (DSTRM)T . Moreover we define χp : T → B the evaluation of a
stream value at a certain point in time t by a predicate p. We define tolerant
evaluation with:

r@t =

{
χp(s@t) when t ∈ [τΣ(φstart), τΣ(φend)]
true else

Please note, the tolerant evaluation of templates is caused by the match or by
the sense operation and is not a property of the templates itself. Thus, complex
predicates that themselves may consists of multiple embedded templates are
internally calculated in a strict mode, that is the undefined segments remain
undefined. Tolerant mode is only used when the outermost template is applied
to a stream.

4 That is, the outer bound of a time scope is denoted by “[“ or ”(“ and ”)“ or ”]”.
With “(“ we define a left side open time scope, that is the occurrence time of an
event itself is not included in the time scope. With “[“ we define a left side closed
time scope that includes the occurrence time of event. The meaning of ”)” or ”]” is
analogue.
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5.4 Complex Predicates

Unlike the original version of CTTCN-3 the revised version provides predicate
expressions. A complex predicate may consists of:

– relational expressions,
– templates or template references, and
– templates or template references connected by logical connectives.

We start with the presentation of how relational expression integrate in our
conception of predicates and continue with an explanation on how already de-
fined and named templates can be used and combined to form more complex
predicate.

Relational Expressions: The original form of a stream template comprise
a predicate that consists of a simple relational expression (i.e. a stream value
equals a template value or is in a range of values). The subject of predication is
naturally the (current) stream to which the template is applied (i.e. by means
of a CTTCN-3 match or sense statement). If we intend to use pre-processing
functions inside the definition of templates, the subject of predication may not
be the current stream under analysis but one of its pre-processed derivation. To
be able to distinguish between different subjects we propose to explicitly denote
a subject and to provide means to relate a given subject to a value predicate
(e.g. a value expressions or a range expression). Precisely because a subject is
always defined as a transformation on the current stream, we need a symbol
that represents the access to the current stream and that can be used inside a
template definition.

– Hence, we introduce the keyword current to represent the stream the tem-
plate is currently applied to, and

– we introduce the operators ”in” and ” = ”, that relate a subject (e.g. current
or pre-processed derivations of current) to concrete value expression.

The operator ” = ” relates a given subject (Listing 6 the subject current)
to a concrete value or a stream definition. The operator ”in” does the same for
ranges.

The significance of the new statements become clear regarding the templates
t6 and t7 from Listing 7. Both integrate the application of the pre-processing
function differentiate. While template t4 or t5 in Listing 6 can only be used
to check whether the values of a stream are in a certain range, template t6 can
be used to check whether the values of the derivation of a stream are between
1.75 and 2.25 and template t7 can be used to do similar for the second order
derivation of a stream5.
5 The brackets that clasp around the predicate expressions are optional and are only

used to provide readability. Thus, the syntax of the original CTTCN-3 stream tem-
plate constructs can be considered as a short form of the new constructs exemplified
in Listing 7.
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Listing 7. Application of Pre-processing Functions

template FloatStrm t6@t :={
@[ 0 . 0 . . 1 0 . 0 ] := d i f f e r e n t i a t e ( cu r r en t ) in [ 1 . 7 5 . . 2 . 2 5 ] } ;

3

template FloatStrm t7@t :={
@[ 0 . 0 . . 3 0 0 . 0 ] :=

6d i f f e r e n t i a t e ( d i f f e r e n t i a t e ( cu r r en t ) ) in [ − 1 . 0 . . 1 . 0 ] } ;

The Composition of Predicates: Besides the specification of relational ex-
pressions we allow the construction of templates by means of already defined
templates and by logical expressions, which itself consist of logical connectives
(i.e. and, or, not, and implies), templates, and relational expressions. Listing 8
presents the composition of templates to ensure a certain increase of a signal
and also checks the allowed value domain.

Listing 8. Defining Complex Templates by Applying Logical Connectives

template FloatStrm t8@t := { t5 and t6 } ;

Please note, time scopes of enclosed template definitions remain valid. This
holds for references to individual templates as well as for logical expressions.
Nevertheless, we allow the restriction of enclosed time scopes by the application
of a new time scope for the enclosing template. Lets take a simple example6.
Template t10 in Listing 9 addresses the already time scoped template t9 and
restricts the resulting time scope to @[0.0..1.0]. In contrast to that, the en-
largement of time scopes is not possible, thus the absolute time scope of t11 is
not @[0.0..10.0] but @[0.0...6.0].

Listing 9. Reusing Time Scopes

template FloatStrm t9@t := {@[ 0 . 0 . . 6 . 0 ] : = 0 }

3template FloatStrm t10@t:= {@[ 0 . 0 . . 1 . 0 ] : = t9 } ;

template FloatStrm t11@t:= {@[ 0 . 0 . . 1 0 . 0 ] : = t9 } ;
6

template FloatStrm t12@t:= {@[ 2 . 0 . . 1 0 . 0 ] : = t9 } ;

Please also note, that the time expressions that are defined inside the embed-
ded template will be synchronized with the activation of the enclosing template.
That is, the absolute time scope of template t12 lasts from 2.0 to 8.0.

Due to the fact that time scopes are preserved, templates and logical ex-
pressions, which contain time scoped templates, already provide the ability to
specify the temporal evolution of complex properties. Nevertheless, we propose
a carefully reuse of time scoped templates to not get lost in complexity.
6 As from now we leave the automotive example, we will come back to it later.
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5.5 Complex Time Scopes

So far, time scope definitions rely on time events that are local to the template
definition only. To become more flexible in respect to the definition of time
scopes, we introduce flexible time scopes and the definition of time scopes that
are bounded by the result of template evaluations, that is the activation and
deactivation of a templates may rely on the evaluation of other templates.

Flexible Time Scopes: Introducing flexible time scopes we provide the ability
to formulate a more flexible beginning and ending of a time scope. The bounds
of a flexible time scope are denoted as a range of possible time values. That
is, for both, the beginning and ending of a scope, two events are denoted. The
lower bound event denotes the first time point that is allowed for beginning or
ending and the second event denotes the last possible time point that is allowed
for beginning or ending. Listing 10 presents two examples.

Listing 10. Flexible Time Scopes

template FloatStrm t13@t :={
2@[ [ 0 . . 4 ] . . 8 ] := d i f f e r e n t i a t e ( cu r r en t ) = 0} ;

template FloatStrm t14@t :={
5@ [ [ 0 . . 4 ] . . [ 8 . . 1 0 ] ] := t9 } ;

The template t13 is activated between [0..4] and deactivated at 8. Applied to
a stream it evaluates to true when the predicate (differentiate(current) = 0)
at least is valid between 4 and 8. Please note, the time scope of embedded
templates affects the evaluation of their enclosing templates, when they obey
flexible time scopes, in a certain manner. Template t14 is activated between
0 and 4. The enclosed template (see Listing 9) exhibit a time scope with a
length of 6 seconds (@[0..6]). The absolute time scope of the enclosing template
depends on its actual activation. When it is activated between 0 and 2 the length
of the absolute time scope is completely determined by the enclosed template.
When the outer time scope is activated later, the enclosing time scope weakens
the condition for deactivation (by [8..10]) and hence the possible duration of
stream evaluation.

Dependent Time Scopes: With the means provided in the last two subsection
we are already capable to activate and deactivate templates by means of the time
scope of other templates. Nevertheless, the activation is directly connected to
time. This subsection provides means to relates the definition of a time scope to
the validation of templates. For this purpose we introduce the functions:

– start of or short sof(template) that fires an event when a template is eval-
uated to true for the first time and

– end of or short eof(template) that fires an event when a template was
already true and either is evaluated to false or is deactivated.
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Hence, we can define the activation of a template in dependence on other
templates. Listing 11 shows such an example. Template t17 is activated when
t15 switches becomes invalid and is deactivated when t16 becomes invalid. To
determine the sof() and eof() events the strict evaluation of the templates t15
and t16 is necessary.

Listing 11. Temporal Order

template FloatStrm t15@t :=0;
template FloatStrm t16@t :=10;

3

template FloatStrm t17@t{
@[ e o f ( t15 ) . . s o f ( t16 ) ] := s in ( t ) } ;

Moreover, we can combine the notion of flexible time scopes with the notion
of dependent time scopes and pick up the example from Listing 5 and provide a
more flexible version in Listing 12. Template t20 first checks for the phase with
linear slope and expects the constant phase to start at least one second and at
most 2 seconds after the first phase has ended.

Listing 12. Heuristic Example II

1template FloatStrm constantS lope@t:={
( d i f f e r e n t i a t e ( cu r r en t ) in [ − 0 . 1 . . 0 . 1 ] ) }

4template FloatStrm t20@t :={
@[ 0 . 0 . . 1 0 . 0 ] := l inearS lope@t ,
@[ [ ( e o f ( l i n e a r S l o p e )+1 . 0 ) . . ( e o f ( l i n e a r S l o p e ) + 2 . 0 ) ] . .

7( e o f ( l i n e a r S l o p e )+6 .0) ] := constantS lope@t } ;

6 Summary and Outlook

In this article we have discussed the application of predicates to characterize
the properties of a signal. By means of a simple scenario from the automotive
domain, we have illustrated the concepts that are needed to properly define such
predicates. Moreover, we provided a list of properties to be checked and examined
their adequacy for the on-line analysis of system reaction, that is the analysis
during test runtime. The second part of this article provides a simple integration
of the introduced concepts to CTTCN-3. We could show how signal predicates
can be realized by means of CTTCN-3 stream templates. Moreover we have
provided the necessary syntactical add-ons to denote complex templates, that
is templates that are build upon other templates, and to model the temporal
dependencies between template invocation.

More effective means like the introduction temporal logic operators (e.g. glob-
ally, exists, until, release etc.) and the specification of dependencies of templates
that relates the properties of different signals to each other will be subject of
further research.
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