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Abstract. A new method is presented for fully automated regional
quantification of human neo-cortical thickness from 3-D MR images. The
method does not require explicit extraction of the cortical surface, but
instead is based on a geodesic distance transform of the binarized 3-
D volumetric gray matter map obtained by automated segmentation.
Regional cortical thickness distributions are derived by atlas-based par-
titioning of the brain. Results for 64 normal controls are presented that
show very good agreement with published reference values.

1 Introduction

A pathological change in the thickness of the human cerebral cortex is associated
with a wide variety of neurological and pathological disorders. The motivation
for this work is focal cortical dysplasia (FCD), which is a malformation of cortical
development (MCD) characterized by dyslamination, abnormal cortical compo-
nents, blurring of the gray/white matter interface, and an increase in cortical
thickness at the site of the lesions [T0]. A typical case is illustrated in figure [II
Because subtle FCD lesions may not be noticed with standard radiological ex-
amination, we are working towards a method that is able to accurately detect
and localize FCD lesions automatically from MR images, based on the detection
of regions with abnormal thickness values.

In this paper, we focus on reliable, automated measurement of cortical thick-
ness in normal brains within various regions of interest. Most of the approaches
for cortical thickness measurement from 3-D images that have been proposed in
the literature require an explicit reconstruction of the geometry of the cortical
surface [6] and rely on accurate segmentation of the inner and outer cortical
surfaces, which is error prone. In contrast, the method we propose in this paper
does not require explicit cortical surface segmentation, but instead is based on
a geodesic distance transform acting directly on gray matter (GM) segmenta-
tion map represented as a 3-D voxel volume, as described in Section [2I Section
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Fig. 1. (a)Patient MR image with a subtle FCD lesion marked; (b): Intensity histogram
of the lesion in relation to those of gray and white matter. The inset shows a magnified
view of the lesion intensity histogram. (c) :Binarized segmented gray matter tissue map
of (a), which shows that the lesion has been classified as gray matter.

Bl describes how regional cortical thickness distributions are extracted by auto-
mated and consistent atlas-based partitioning of the brain using non-rigid atlas-
to-patient image matching. Regional thickness values from 64 normal controls
are presented in Section M and compared with published reference values.

2 Cortical Thickness Measurement

Our approach for cortical thickness measurement in the scope of FCD lesion
detection is based on two assumptions. Firstly, we assume that the intensity of
range of the FCD lesions in T1-weighted MR images largely overlaps with that
of gray matter itself, such that the FCD lesions are labeled as gray matter by
an intensity-based tissue classification algorithm. Figure [I]illustrates a typical
case that justifies this assumption. Consequently, with the lesions completely
included in the segmentation of the cortex, FCD lesions can be detected as ar-
eas within the segmented cortex with abnormal thickness. Secondly, we assume
that the segmented outer cortical layer or neo-cortex (which excludes the deep
gray matter structures) is locally topologically equivalent to the spherical shell,
whose thickness is small compared to its inner radius. The thickness of the cor-
tex can therefore be measure by propagating distances from the outer cortical
surface (the GM/CSF interface) within the domain of interest (GM) towards
and onto the inner surface (GM/WM interface), or vice-versa. Our approach for
FCD lesions detection thus consists of two steps: (1) segmentation of the cortex
from T1-weighted MR images by intensity-based pixel classification; (2) thick-
ness measurement of the cortex by a distance transform of the binary cortical
region obtained by segmentation.

The cortex is segmented using the fully automated model-based MR brain
image segmentation algorithm proposed by Van Leemput et. al. [5]. This seg-
mentation algorithm assigns each voxel a probability to belong to a particular
brain tissue type (WM, GM, CSF or other) based on its intensity and spatial
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context, after bias field correction to account for possible MR intensity inhomo-
geneity. The intensity histogram of each tissue class is modeled as a Gaussian
distribution with unknown mean and spread, which are estimated from the data
simultaneously with the classification and the bias field. Starting from an initial
classification provided by a digital atlas that is matched to the patient images
by image registration [7], the algorithm uses an Expectation- Maximization ap-
proach to maximize the likelihood of the image data given the model parameters,
iteratively alternating between estimating the model parameters and recomput-
ing the classification using updated parameters. The resulting probabilistic tissue
maps are subsequently binarized by assigning each voxel to its most likely tissue
type. A typical segmentation result is illustrated in figure 2l

The Euclidean distance transform of the binary object X assigns to each point
x of X its distance Dy (z) = minyex-||z — y|| to the background X°. When ap-
plied to segmented GM object G directly, a medial axis transform of the cortex
is obtained, which is not desired, as it fails to assign the largest values to the
FCD lesion itself and therefore does not allow to discriminate the lesion. BY
constructing the union of the binarized GM and WM objects G and W, a dis-
tance map Dguyy relative to the GM/CSF interface is obtained, from which
cortical thickness values Ty 1 = Dguw X G can be extracted by masking with
the GM object itself. Similarly, distance values relative to the GM/WM inter-
face can be obtained within the cortical domain by considering the white matter
object W as the background and its complement WW¢ as the object of interest:
Tg,2 = Dye x G. However, considering G U W or W¢ obliterates the cortical
features at the GM/WM or GM/CSF interface respectively. The propagation
of distance values when calculating 7 ; of Ty 2 is not restricted to the cortical
domain G only, such that the thickness values obtained at the inner or the outer
cortical surface respectively are likely to be underestimated. Hence a geodesic
distance transform (see [I] and references therein) within the object G is re-
quired, that computes distances from the inner to the outer cortical surfaces
or vice-versa along paths that are entirely contained in G. The algorithm that
we used to calculate the geodesic distance transform was presented by Cuise-
naire [1]], which is fast and accurate and can handle regions of sharp bends and
corners, which are features that appear frequently in the cortical object. The al-
gorithm is based on morphological dilation of the inner towards the outer surface
(referred to as Mode 2 propagation) or vice-versa (Mode 1 propagation) using
a ball shaped structuring element By of radius d. Locally, within the neighbor-
hood By, Euclidean distances are computed along straight lines, while structures
at scales larger that d may reorient the direction of distance propagation. The
pseudo-code for the algorithm can be found in [I], which we implemented in
C on a Linux workstation. Results for both modes of propagation are shown in
figure

To quantify geodesic distance error propagation with successive dilations, a
2-D software phantom was created with surface undulations similar to that of
the cortical layer and with sufficient thickness variation along its surface. The
phantom is specified mathematically by (z,y) = ¢+ (r + ysin(ad)).(cosb, sind),
which represents family of curves parameterized by € and centered at c¢. o and
7 control the frequency and height of the undulations of the curve around the
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Fig. 2. (a) Axial slice of a 3-D weighted MR image, (b,c) Binary GM and WM obtained
by tissue classification; (d) Euclidean unconstrained distance transform Tg,; of the
union of (b) and (c), masked by (b); (e,f) Geodesic distance transform of (b) obtained
with outside to inside and inside to outside propagation respectively.

circle with radius r. Figure [3(a) shows 2 members of this family, labeled R; and
Ry, with identical ¢, o and ~, but different r. The curves are first binarized on
a discrete pixel grid, by setting all pixels hit by the curve to 1. The By geodesic
distance transform with d = 1 of the annular region A in between both curves
is then computed by successive dilations of the inner curve R; outwards into A
and onto the outer curve Ry. Because R; and R differ by a scaling factor only,
the propagation of distances proceeds along straight lines trajectories. Hence,
for each pixel in A, we compare the distance value generated by the geodesic
distance transform with its true euclidean distance to the binarized curve R,
calculated by an exhaustive search over all pixels of R;. As shown in figures
Blb,c), the average error increases as the size |R; — Ra| of the phantom increases
and the distances need to be propagated further, but the average error is smaller
than 0.3 pixels for all the cases considered. For | Ry — Rs| up to 6 pixels, which is
the expected thickness range of the cortex in 1 mm isotropic MR images, almost
all pixels have errors less than 0.2 pixels. Similar results were obtained when
reversing the propagation direction, using successive dilations of the outer curve
Ry inwards into A and onto the inner curve R;. A detailed error analysis of the
distance transform algorithm can be found in [1].
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Fig. 3. (a) 2-D phantom mimicking the undulations of the cortex used for validation
of the distance transformation; (b) Mean value and 25, 50 and 75% percentiles for the
error between the estimated and the true distances to the inner curve R in the annular
region between R1 and Ra, for various phantom sizes |R1 — R2|. (c) Fraction of pixels
with errors in ranges [0,0.2],[0.2,0.4] and [0.4,1.0] pixels for various phantom sizes.

3 Regional Cortical Thickness of Normal Controls

We applied our algorithm to measure cortical thickness in 64 normal controls
from 1 mm isotropic high resolution T1-weighted images. In all cases, Mode 2
propagation was used. A regional analysis of cortical thickness was performed
after partitioning the distance map in various cortical regions. Partitioning is
performed automatically by atlas-based segmentation of each subject’s MR im-
age by non-rigid registration with a pre-segmented template brain image pro-
vided by Hammers [3], in which 49 volumes of interest (VOI) are individually
labelled. The template is spatially normalized in Talairach space and is aligned
with SPM99 [8] MR brain template. Each subject MR is first affinely registered
to atlas by maximization of mutual information [7] and subsequently non-rigidly
matched to atlas using non-linear spatial normalization routines of SPM99 [§].
The resulting deformation is inverted using the Deformations Tolbox provided
with SPM99 [8], and the inverse transformation is applied to the VOI template
to warp it to the space of the subject’s MR. Nearest neighbor interpolation is
used to reformat the VOI template to the domain of the subject MR to ensure
that each voxel is assigned to a unique VOI label. With Mode 2 propagation,
the geodesic distance map needs to be sampled at the outer cortical layer within
each region to obtain regional thickness distributions. The outer cortical layer is
extracted as the set of all voxels that are assigned a distance between 0 and 1
voxels in Mode 1 propagation. These voxels are then masked by the VOI template
in the space of the subject MR to obtain per-region thickness distributions.

4 Results

The cortical thickness map for a single subject is illustrated in figure H{(a), while
the cortical thickness distribution for the entire brain obtained by pooling all
measurements over all 64 controls is shown in figure [Ei(b). The mean cortical
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Fig. 4. (a) Cortical thickness map for a single subject with thickness values projected
on the outer cortical surface using Mode 2 propagation, and color coded according to
color map (c). (b) Thickness distribution for the whole brain, accumulated over all 64
controls. Values larger than 6 mm were accumulated and labeled as such.

thickness was 2.74 mm, with a standard deviation of 1.8 mm and a median
value of 2.5 mm. These values agree very well with the measurements of von
Economo [11], who reports cortical thickness to be between 1.2 and 4.5 mm
with a mean value of 2.5 mm. 95.7% of the cortical thickness distribution of
figure Hlis contained within 6 mm, and 92.2% of the distribution is contained
within 5 mm, which is also in close agreement with the values reported in [2].
Mean and Median regional thickness values over all subjects for some of the 49
VOI included in the atlas are tabulated in Table [

Table [2] compares our results with the measurements reported in the refer-
ence work on cyto-architectonics of the cerebral cortex by von Economo [IT],
and with the results of Kabani et. al. [4], who validated the automated method
of [6] by comparisons with manual measurements. We have presented results
only for those regions for which Hammers [3] parcellation overlaps with those of
von Economo [11] and Kabani et. al. [4]. A column labeled ”corrected” has also
been added to correct for 25% volume shrinkage (10% thickness shrinkage) for
post-mortem studies [9], by adding 10% to the values reported by von Economo.
Our results agree with those of von Economo for all regions, except for Occipital
Lobes. The thickness values for the insular region, reported as a difficult struc-
ture to measure [4] is also closer to von Economo’s values than those of Kabani
et. al.
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Table 1. Mean and median of the thickness (in mm) some of the cortical regions of
interest.

Region Mean (mm)|Median (mm)
R Frontal Lobe 2.80 2.50
L Frontal Lobe 2.97 2.65
R Parietal Lobe 2.58 2.33
L Parietal Lobe 2.67 2.50
R Temporal Gyri Middlelnferior 3.22 3.15
L Temporal Gyri Middlelnferior 3.19 3.15
R Lateral Anterior Temporal Lobe 3.84 3.68
L Lateral Anterior Temporal Lobe 3.82 3.68
R Superior Temporal Gyrus 3.47 3.36
L Superior Temporal Gyrus 3.28 3.15
R Occipital Lobe 3.24 2.91
L Occipital Lobe 3.43 3.15
R Lateral Occipitotemporal Gyrus 3.21 3.15
L Lateral Occipitotemporal Gyrus 3.23 3.15
R Insula 3.70 3.36
L Insula 3.67 3.36
R Cerebellum 3.72 3.36
L Cerebellum 3.82 3.47

Table 2. Comparison of thickness values obtained by our method with those of von
Economo [II] and Kabani et. al. [4]. The column labeled ” corrected” are von Economo’s
measurement corrected for 10% shrinkage

Region von Economo|Corrected|Our Method|Kabani
Insula 2.8-3.5 3.0-3.9 3.36 4.9
Post Cingulate 2.5-3.0 [2.75-3.3 2.95 3.9
Anterior Temporal Lobe 3-4 3.3-44 3.68 —
Occipital Lobe 1.2-25 [1.3-275 3.03 —

5 Discussion

We present an efficient and completely automated method for the accurate quan-
tification of the human cerebral cortical thickness from 3-D MR images, based
on a geodesic distance transform of the binarized gray and white matter ob-
ject extracted by intensity-based brain tissue segmentation. Regional analysis
of cortical thickness is performed by atlas-based partitioning of the brain after
non-rigid registration with a VOI template.

The main source of error in our approach stems from segmentation errors.
Misclassified partial volume pixels result in violation of topological assump-
tion, leading to a local underestimation of thickness. For regions that are nor-
mally thin, like the occipital lobes, partial volume may cause overestimation of
thickness values for these regions. Further, inaccuracies in the VOI template-
to-subject warping affects the accuracy with which the VOI template covers
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the subject brain. In addition to these, regions which show large variation in
thickness values along their extent can not be well represented by a single value.

We presented results for regional cortical distribution in 64 normal subjects.
A fundamental problem is the lack of a proper ground truth for validation. The
most widely used and well documented methods are on post-mortem brains,
using Cavelieri sections, which, however, can not exploit 3D connectivity. Never-
theless, our results are in close agreement with those reported by von Economo
when accounting for brain shrinkage due to fixation, and seem more accurate
than other published results []. Future work will focus on detecting and accu-
rately localizing FCD lesions by comparison of regional cortical thickness values
of patients with the normal distributions presented in this paper.
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