Model Checking Durational Probabilistic Systems
(Extended Abstract)*

Francois Laroussinie! and Jeremy Sproston?

'Lab. Spécification & Verification, ENS Cachan — CNRS UMR 8643, France
2Dipartimento di Informatica, Universita di Torino, 10149 Torino, Italy
fl@lsv.ens-cachan. fr
sproston@di.unito.it

Abstract. We consider model-checking algorithms for durational probabilistic
systems, which are systems exhibiting nondeterministic, probabilistic and
discrete-timed behaviour. We present two semantics for durational probabilis-
tic systems, and show how formulae of the probabilistic and timed temporal logic
PTCTL can be verified on such systems. We also address complexity issues, in
particular identifying the cases in which model checking durational probabilistic
systems is harder than verifying non-probabilistic durational systems.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model of
a system satisfies a formula representing a desired property [7]. Many real-life systems,
such as multimedia equipment, communication protocols, networks and fault-tolerant
systems, exhibit probabilistic behaviour, leading to the study of probabilistic model
checking of probabilistic and stochastic models [19, 13,8, 5,4, 3, 14]. Similarly, it is
common to observe complex real-time behaviour in such systems. Model checking of
discrete-time systems against properties of timed temporal logics, which can refer to
the time elapsed along system behaviours, has been studied extensively in, for example,
[11,6,16].

In this paper, we aim to study model-checking algorithms for discrete-time proba-
bilistic systems, which we call durational probabilistic systems. Our starting point is
the work of Hansson and Jonsson [13], which considered model checking for discrete-
time Markov chains (in which transitions always take duration 1) against properties of
a probabilistic, timed temporal logic, and that of de Alfaro [10], which extended the
approach of Hansson and Jonsson to Markov decision processes in which transitions
can be of duration 0 or of duration 1. We extend this previous work by considering
systems in which state-to-state transitions take arbitrary, natural numbered durations,
in the style of durational transition graphs [16, 17]. We present two semantics for dura-
tional probabilistic systems: the continuous semantics considers intermediate states as
time elapses, whereas the jump semantics does not consider such states. In this paper,

* Supported in part by MIUR-FIRB Perf.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 140-[T54] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model Checking Durational Probabilistic Systems 141

we restrict our attention to strongly non-Zeno durational probabilistic systems, in which
positive durations elapse in all loops of the system.

The temporal logic that we use to describe properties of durational probabilistic sys-
tems is PTCTL (Probabilistic Timed Computation Tree Logic). The logic PTCTL includes
operators that can refer to bounds on exact time, expected time, and the probability of
the occurrence of events. For example, the property “a request is followed by a response
within 5 time units with probability 0.99 or greater” can be expressed by the PTCTL
property request — P>q.99(trueU<sresponse). Similarly, the property “the expected
amount of time which elapses before reaching an alarm state is not more than 60”
can be expressed as D<go(alarm). The logic PTCTL extends the probabilistic temporal
logic PCTL [13, 5], the real-time temporal logic TCTL [1], and the performance-oriented
logic of de Alfaro [10] (a similar logic has also been studied in the continuous-time
setting [15]).

After introducing durational probabilistic systems and PTCTL in Section 2, we
present model-checking algorithms for both of the aforementioned semantics in Sec-
tion 3. The novelty of these algorithms is that their running time is independent of the
timing constants used in the description of the durational probabilistic system, and their
program complexity is polynomial. Instead, to apply the previous methods of de Alfaro,
Hansson and Jonsson to durational probabilistic systems, we would have to model ex-
plicitly intermediate states as time passes (even for the jump semantics), hence resulting
in a blow-up of the size of the state space. The presented algorithms are restricted to tem-
poral modalities with upper or lower time bounds; we show in Section 4 that the problem
of model checking durational probabilistic systems against PTCTL formulae in which
exact time bounds are used (that is, of the form = ¢) is PSPACE-hard, even for “qualita-
tive” probabilistic properties in which the probability thresholds refer to 0 or 1 only. We
also show the NP-hardness and co-NP-hardness of model checking fully probabilistic
durational systems against general “quantitative” probabilistic properties including ar-
bitrary probability thresholds and upper time bounds (of the form < ¢). On the positive
side, model checking qualitative probabilistic properties of fully probabilistic, strongly
non-Zeno durational probabilistic systems is Ab-complete and PSPACE-complete for
the jump and continuous semantics, respectively, and model checking qualitative proper-
ties excluding exact time bounds is in PSPACE for general strongly non-Zeno durational
probabilistic systems with the jump semantics.

2 Durational Probabilistic Systems

2.1 Syntax of Durational Probabilistic Systems

Let AP be a countable set of atomic propositions, which we assume to be fixed through-
out the remainder of the paper. Let Z be the set of finite intervals over N. Given a set X,
Dist(X') denotes the set of discrete probability distributions over X.

Definition 1. A durational probabilistic system (DPS) D = (Q, Ginit, D, L) comprises
a finite set of states QQ with an initial state q;n;; € Q; a finite durational probabilistic,
nondeterministic transition relation D C Q) X T x Dist(Q) such that, for each state q €
Q, there exists at least one tuple (q, _, -) € D; and a labelling function L : Q) — 24P

142 F. Laroussinie and J. Sproston

Intuitively, the behaviour of a durational probabilistic system comprises of repeatedly
letting time pass then taking a state-to-state transition (which we sometimes call an
action transition). The interval p of some (g, p, u) € D specifies the duration of the
corresponding transition. On entry to a state ¢ € (), there is a nondeterministic choice of
atriple (¢, p,) € D. Then the system chooses, again nondeterministically, the amount
of time that elapses, where the chosen amount must belong to p. Finally, the system
moves probabilistically to a next state ¢’ €) with probability r(q’).

The size |D| of D is |Q| + | D| plus the size of the encoding of the timing constants
and probabilities used in D. The timing constants (lower and upper bounds of transitions’
intervals) are written in binary, and where, for each (g, p, ;1) € D, the values p(q’) are
written as fixed-precision binary numbers.

Durational fully probabilistic systems. A durational fully probabilistic system (DFPS)
is a DPS where there is exactly one tuple (g, p,-) € D for any state ¢, and where p is a
singleton. In such a system there is no non-deterministic choice.

Strong non-Zenoness. A DPS D = (Q, qinit, D, L) is strongly non-Zeno if, for each
state ¢ € (, there does not exist a sequence of transitions (qo, po, £0)---(Gns Prs fin) OF
D such that gy = ¢, 1i(gi+1) > 0forall 0 < i < n, u,(go) > 0, and p; is of the form
[0;] for all 0 < ¢ < n. Note that this property can easily be checked for a DPS. The
concept of strong non-Zenoness is taken from previous work for timed automata [18].
The algorithms and the complexity results we show in this paper only deal with strongly
non-Zeno DPSs.

2.2 Semantics of Durational Probabilistic Systems

We give a formal semantics to durational probabilistic system in terms of timed Markov
decision processes.

Definition 2. A timed Markov decision processes (TMDP) M = (S, Sinit, —, lab) com-
prises a finite set of states S with an initial state s;n;; € S; a finite timed probabilistic,
nondeterministic transition relation —C S x N x Dist(S) such that, for each state s € S,
there exists at least one tuple (s, _,) €—; and a labelling function lab : S — 24F

A special case of a timed Markov decision process is a timed Markov chain (TMC),
in which, for each state s € S, there exists exactly one tuple (s,_,_) €—. The size
of TMDPs and the notion of strong non-Zenoness are defined as for DPSs, because a
TMDP can be regarded as a DPS for which the intervals labelling transitions are all
singletons.

The transitions from state to state of a TMDP are performed in two steps: given that
the current state is s, the first step concerns a nondeterministic selection of (s, d,v) €—,
where d corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution v, as to which state to make the
transition to (that is, we make a transition to a state s’ € S with probability v(s")). We

.. d, . d, .. .
often denote such a transition by s Rl , and write s 2, to indicate that there exists

d, . S . d
(s,d,v) e—.1f s =% § is such that v(s’) = 1, then for simplicity we write s = 5.

Model Checking Durational Probabilistic Systems 143

An infinite or finite path of the timed Markov decision process M is defined as an
infinite or finite sequence of transitions, respectively, such that the target state of one
transition is the source state of the next. We use Pathg, to denote the set of finite
paths of M, and Pathy,; the set of infinite paths of M. If w is finite, we denote by
last(w) the last state of w. For any path w, let w(7) be its (i 4 1)th state. Let Path ,;(s)

refer to the set of infinite paths commencing in state s € S . For an infinite path

do, i, . .)
w = s % g %, ... the accumulated duration along w until the ith state,

denoted Time(w,), is equal to 3 o ; d;.

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally,
an adversary of a timed Markov decision process M is a function A mapping every finite
pathw € Path g, to atransition (last(w), d, v) €—.Let Adv be the set of adversaries of
M. For any adversary A € Adwv, let Pathﬁ ; denote the set of infinite paths resulting from
the choices of distributions of A, and let Path}il(s) = Pathﬁl N Path gy (s). Then, for

a state s € S, we define the probability measure Prob? over Path}zl(s) in the standard
way [19].

Note that, by defining adversaries as functions from finite paths, we permit adver-
saries to be dependent on the history of the system. Hence, the choice made by an
adversary at a certain point in system execution can depend on the sequence of states
visited, the nondeterministic choices taken, and the time elapsed in each state, up to that
point.

As for non-probabilistic systems [17], we can define several semantics of time for
DPSs. Consider a transition of duration d between two DPS states ¢ and ¢’. The first
semantics, called the jump semantics, assumes that moving from ¢ to ¢’ takes d time units
and that there are no intermediate states: if the systemis in ¢ at time ¢, then itis in ¢’ at time
t + d and there is no position for time ¢ + 1...7 4+ d — 1. This semantics corresponds to a
kind of cost or reward automata where every transition has a weight. We will also consider
the continuous semantics, which involves waiting in d — 1 intermediate positions, each
corresponding to the passage of one time unit, before performing the action transition
and arriving in ¢’. This last semantics is close to the one used for timed automata and
is generally more natural to model systems; for example, it is more convenient when
considering parallel composition because time progresses smoothly.

Jump semantics. The jump semantics of a DPS D = (Q, ¢init, D, L) is defined as the
TMDP M, (D) = (S, Sinit, —, lab), where:

- 8§ =Q and sinit = Ginit;
- (s,d,) €— if and only if there exists (s, p,) € D and d € p;
— lab(s) = L(s) forall s € S.

Continuous semantics. Let dax(q) be the maximal delay possible in state g of a dura-
tional probabilistic system. The continuous semantics of a DPS D = (Q, ginit, D, L) is
defined as the TMDP M. (D) = (S, Sinit, —, lab), where:

- S = {(q>7/) ‘ 0 S 1 < 6max(q)} and Sinit = (Q'Lnitao);
— — is the smallest set of transitions satisfying the following rules:

144 F. Laroussinie and J. Sproston

e (q, 0¥, if there exists (¢, p, i) € D such that 0 € p, and where v(¢’,0) =

(4,0)

wu(q’) for each ¢’ € Q;

(q,1) = (q, i+ 1)if i+ 1 < max(q);
&

e (q, LY, if there exists (¢, p,) € Dsuchthati+1 € p, and where v(¢’,0) =

u(q’) foreach ¢’ € Q;
c

Hg
— foreach (q,7) € S, let lab(q,) = L(q).

Observe that the semantics of a DFPS is a TMC, and that the semantics of a strongly
non-Zeno DPS is also strongly non-Zeno. The size of the transition relation of M; (D)
may be exponential in | D| because it is linearly-dependent on the magnitude of the timing
constants (encoded in binary) of the DPS. However, the number of states of M; (D) and
D is the same. This contrasts with M. (D), where the number of states and the number
of transitions may be exponential in |D|. Another difference between the semantics is
that the TMDP M. (D) only contains durations in {0, 1}.

2.3 Probabilistic Timed Temporal Logic

In this section, we recall how the branching-time temporal logic CTL can be extended
with constraints on time, probability and expected time. First we recall the probabilistic
temporal logic PCTL [13, 5], in which the standard universal and existential path quanti-
fiers A and Ep of CTL are replaced with a probabilistic quantifier of the form Pyqy (),
where ¢ is a formula interpreted over paths, <€ {<, <, >, >} is a comparison operator
and A\ € [0;1] is a probability. Timing constraints, expressed using subscripts on “un-
til” path formulae (with the syntax U.., where ~€ {<, =, >}), were introduced in the
temporal logics RTCTL [11] and TCTL [1]. Finally, an expected-time operator Dy (D),
where e {<, <, >, >} is a comparison operator and ¢ € Rx(is a non-negative real,
was studied in the discrete-time context by de Alfaro [10] and Andova et al. [2].

We combine the above mentioned temporal logics to obtain the temporal logic PTCTL
(Probabilistic Timed Computation Tree Logic), which extends the identically-named
logic of [15] with the “next” temporal modality and the expected-time operator.

Definition 3. The formulae of PTCTL are given by the following grammar:
Pu=P|PND| D | Por(XD) | Por(PU D) | D (@)

where P € AP is an atomic proposition, <€ {<, <, >, >}, ~€ {<,=,>} are com-
parison operators, A € [0;1] is a probability, ¢ € N is a natural number, and { € R>
is a positive real.

We define PTCTL[<, >] as the sub-logic of PTCTL in which subscripts of the form
= ¢ are not allowed in “until” modalities U... The size |®| is defined in the standard
way, with constants written in binary.

Given an infinite path w of a TMDP and a PTCTL formula @, let T}, 4 = min{i |

w(i) = @} be the index of the first state of w which satisfies @, and let T, 3 = o0
if w(i) £ @ for all ¢ € N. Then, for a given adversary A € Adv and state s € S of
the TMDP, we let ExzpectedTime2 (®) = BA{ Time(w, T, ¢)}, where EA{-} is the

expectation, defined in the standard way, with respect to the probability measure Probf.

Model Checking Durational Probabilistic Systems 145

Definition 4. Given a TMDP M = (S, $;nit, —, lab) and a PTCTL formula ®, we define
the satisfaction relation =y of PTCTL as follows: !

skEm P iff P € lab(s)
skEM P ADy iff sEm P and s Em P
5 M P iff s Fm @
5 =m Doac () iff EapectedTimel (®) = ¢, YA € Adv
s =m Poar() iff ProbMw e Pathﬁl(s) |wEm @} A, VA € Adv
wEMXE iff w(l) @
wEM P1UDs iff 3i € Ns.t. Time(w,i) ~ ¢, w(i) Em P2
andw(j) Em @1 YO < j<i.

Model checking. The model-checking problem for a PTCTL formula ¢ and a TMDP M
with initial state s;,,;; is to decide whether s;,;; F=m @, which we abbreviate to M |= @.
The model-checking problem for @, a DPS D and a semantics sem € {j, ¢} is to decide
whether Mg, (D) = @. The complexity results will be expressed in terms of the size
|D| + |®|. However, we will also consider the program complexity where one fixes the
formula and measures the complexity as a function of the size | D| only. As the system is
assumed to be large whereas the formula is assumed to be small, the program complexity
is often considered to be a more significant estimate of the feasibility of verification in
practice.

3 Model Checking for Durational Probabilistic Systems

Our approach is to introduce in Section 3.1 a model-checking algorithm for strongly
non-Zeno timed Markov decision processes, which will then be used in Section 3.2 as a
basis for model-checking algorithms for durational probabilistic systems.

3.1 Model Checking Timed Markov Decision Processes

Although our model-checking algorithm for TMDPs presented below uses the analogous
algorithm of de Alfaro [9] in order to verify the expected-time operator, the methods and
complexities for the probabilistic, time-bounded operators are new, and, for strongly
non-Zeno TMDPs, improve on previous results [13, 10] as their running time is not
dependent on the magnitude of the time constants used in the transitions of the TMDP.
More precisely, the previous methods are defined for systems in which the maximal
time duration is 1, necessitating the modelling of longer time durations via intermediate
states, hence blowing-up the size of the state space.

Before presenting the algorithm, we introduce some notation. The algorithm relies
on computing a topological order on the states of the TMDP, so that reachability via 0
transitions is reflected in the order: for two states s, s’ € S, let s = s’ if and only if

! When clear from the context, we omit the M subscript from =p.

146 F. Laroussinie and J. Sproston

]PSA(@IUSC@Q) : fori:=0toc
forj:=0ton
if s; |= 2 thenlet f(s;,1) :==1
else
if Sj I# D1 V P then let f(S]', Z) =0
else let f(s;,1) := (sjzl,%icea SZG:SV(S,) S f(s',i—d)
P (@1U=c®P2) : foreach s = Ps let f(s,0) :=1
fori:=0toc
forj:=0ton
if Sj b& @1 Vv @2 then let f(S]',i) =0
else let f(sj,17) := (Sj,%lji{eﬂé%:s v(s") - f(s',i—d)
PSA(@1UZC@2) : foreachs € S
let f(s,0) := sup Prob{{w € Pathjy(s) | w = $,1Uds}
cAdv
fori:=0toc
forj:=0ton
if sj = @1V Py then let f(s;,4) :=0

else let f(sj,i) := max v(s') - f(s',max(0,i — d
Fopi) = s 3) S0 a0~

Fig. 1. The algorithms for computing P< 5 (#1U~.P2)

there exists a transition s’ =% where v(s) > 0. Then we order the states in .S according
to > to obtain a sequence s¢s1...s, Where n = S| —1, s,4; %o s; foreach0 <i < n,
1 < j < n —1i, and each state in S appears exactly once in the sequence. The fact
that such a sequence sgs; ...s,, exists follows from the fact that M is strongly non-Zeno.
Computing the order can be done in time O(| S| +| —— |) where | —— | = Disome—v
and [v| = [{s'|v(s") > 0}|. In the algorithm below, we will always iterate over the states
of the TMDP in such a way as to respect the topological order, in order to propagate the
computed probabilities correctly through the states.

Proposition 1. Ler M = (S, s;pit, —, lab) be a strongly non-Zeno TMDP and ® be
a PTCTL formula in which the maximal constant in its time-bound subscripts is Cpqz-
Deciding whether M |= @ can be done in time O(|P]- ((|S]] = | ¢maz) + poly(|M]))).

Proof. The cases for the atomic propositions, Boolean combinations and next formulae
are standard, and therefore we concentrate on the model-checking algorithm for PTCTL
formulae of the form Py (91 U..P2) and Do (). We restrict our attention to the cases
in which < is <. The cases for > are obtained directly by substituting min for max, and
inf for sup in the following procedures, and the cases for <€ {<, >} follow similarly.
We assume that arithmetical operations can be performed in constant time.

Until formulae. We consider three different procedures (see Figure 1) depending on
the form of ~. Recall that we use a topological order for enumerating the states s¢$1...5x,
in order to respect .

Model Checking Durational Probabilistic Systems 147

In each of the procedures, a function of the form f : S x Z — [0; 1] is utilized, with
the intuition that, for 0 < i < ¢, the state s satisfies the path formula ;U ;®> with
maximum probability f(s,?). Naturally, the aim is to calculate f(s,c) for each state
s € S.Ineach of the three cases, for each 7 < 0 and each s € S, we assume that we have
f(s,i) = 0. One can prove by induction over i that f(s,i) = Sup ¢ 4q, Probi {w €
Path}zl(s) | w | @1U; P2} for each state s € S and each 0 < ¢ < ¢. Hence, we
conclude that s |= P<y(P1U.P2) if and only if f(s,c) < . The complexity of the
first two procedures, where ~ is < or =, is O(c - |S| - | — |).

When ~ is >, our algorithm first requires that we compute, for each state s €
S, the probability sup 4 44, Probs {w € Pathf,(s) | w |= ®1U®s} (the maximum
probability of satisfying the un-subscripted formula ¢, U®,). Following Bianco and de
Alfaro [5], these probabilities can be computed in O(poly(|M|)) time. Therefore, the
complexity of the third procedure is O((c - |S| - | — |) + poly(|M|)).

Expected-time formulae. For formulae of the form Dy (®'), we can utilize the algo-
rithm of de Alfaro [9] (TMDPs are a special case of de Alfaro’s model), which reduces
to a linear programming problem, with time complexity poly(|M]).

Overall complexity. We obtain an overall time complexity of O(|®| - ((|S] | — | -
Cmaz) + poly(|M]))). Note that the time complexity can be expressed in terms of the
maximum branching degree of the transitions of the TMDP. More precisely, if b,,4, =
max(__,ye— [{s | v(s) > 0}| then we can write the complexity as O(|?| - ((bmaz -
‘ - ‘cmaw)+p0ly<‘M|))) o

3.2 Extension to Strongly Non-Zeno Durational Probabilistic Systems

We now show how the algorithms of Section 3.1 can be used to define PTCTL model-
checking algorithms for DPSs. One idea would be to apply these algorithms directly to
the semantic TMDP of a DPS; however, in both semantics, the corresponding TMDPs
are exponential in the size of original DPS . We avoid this in the case of PTCTL[<, >]
by utilizing specific TMDP constructions for both of the semantics.

Proposition 2 (DPS with jump semantics). Let D = (Q, ¢init, D, L) be a strongly
non-Zeno durational probabilistic system and ® be a PTCTL[<, >| formula in which the
maximal constant in the subscripts is ¢,qq. Deciding whether M (D) = @ can be done
in time O(|2| - ((|Q[- |D| - ¢maz) + poly(|D]))).

Proof (sketch). We define a TMDP M’(D) = (S, sinit, —", lab) corresponding to a
restricted version of the jump semantics of D where .S, s;,,4;, and lab are defined as for the
standard jump semantics, and (s, d, u) €—" if and only if there exists (s, [[;u], u) € D
and either d = [or d = u. Then, for any state s € S, we can show that s }:Mj (D)]
if and only if s \ZM;'(D) @: the minimum and maximum probabilities and expectations
depend only on the minimum and maximum durations on transitions. a

Proposition 3 (DPS with continuous semantics). Ler D = (Q, qinit, D, L) be a
strongly non-Zeno durational probabilistic system and ¢ be a PTCTL[<, >] formula
in which the maximal constant in the subscripts is ¢y, q.. Deciding whether M .(D) = @
can be done in time O((|®| - |DJ? - ¢z) + poly(|®| - |D| - |D|)).

148 F. Laroussinie and J. Sproston

Proof (sketch). We write the continuous semantics of D as M.(D) = (S, sinit, —»
lab). Our aim is to label every state (g,7) of M.(D) with the set of subformulae of ¢
which it satisfies. For each state ¢ € @, we construct a set Sat[q, £] of intervals such
that o € Sat[g, £] if and only if (¢, o)) = . For reasons of space, we explain only the
general ideas behind the verification of subformulae ¥ of the form Py (@1 U..$2) and
Dy (P'). For this, we assume that we have already computed the sets Sat|[_, | for @1,
@5 and 9'.

As in Proposition 2, we construct a restricted TMDP which represents partially the
states and transitions of M.(D) but which will be sufficient for computing the sets
Sat[q, ¥]. The size of the restricted TMDP will ensure a procedure running in time
polynomial in |D|.

For the interval p = [I;u], let p — 1 be the interval [max (0,7 — 1); max(0,u — 1)].
For each state ¢ € @, we build the minimal set of intervals Int(q) = U,_, ,[a;:05))
such that:

— for any 4, we have ¢ € Int(q) if and only if i € Sat[g, $1] U Sat[q, P2], and every
interval of Int(q) verifies either @1 A @o, @1 A =Dy or =P A Do;

— forany j, we have a; < Bj,and 3; < oy if j +1 < k3

— the intervals are homogeneous for action transitions: for any (q, p,) € D, we have
[a]ﬁﬁj) Cp—1lor [Oé_j,ﬁj) Np—1= 0;

— the interval [0; 1) is treated separately: if 0 € Sat[q, 1] U Sat[q, P2], then [0;1) is
the first interval of Int(q).

Letting D = {(q,-,-) | (¢,-,-) € D}, we clearly have |Int(q)| < 2 - (|Sat[q, P1]| +
|Sat[q, @2]| + |D?|) + 1. Let v be a sub-distribution on a set S if v : S — [0;1]
and) __gv(s) < 1, and let SubDist(S) be the set of all sub-distributions on the set
S. Next, we build M; = (Qr, -, —1, laby), which is a variant of a TMDP in which
sub-distributions may be used in addition to distributions. The set of states of My is
Qr = {(¢,[;8)) | ¢ € Qand [; 3) € Int(q)}, and the set of timed probabilistic,
nondeterministic transitions —;C S x N x SubDist(S) is the smallest set defined as
follows.

(Action transition) For any (¢, p, x) € D and [«; §) € Int(q), if [a; 3) C p — 1, then:

if [a; 0) = [0;1): we have the transition (g, [a; 3)) O¥,Lif0 € p, and the transition

1,v

(¢; [) ——rif 1 € p;
if [o; B) # [0;1): we have the transitions (g, [«; 3)) =¥, rand (q, [3)) frav, .
where v € SubDist(Q7) is the (sub-)distribution such that, for each (¢', [o/; 3)) €

Q1, we have:

(e ol 8) = {g(q’) i}giwﬂl;i: [0;1) and [0 1) € Int(q)

(Time successor) For any [o;3) and [o/; ') in Int(q), if 3 = o' then we have

(a, [0, 8)) 21 (g, [03 8)).

Model Checking Durational Probabilistic Systems 149

Finally, for each (¢, [a; 8)) € Qr, we let labs(q, [co; B)) C {P1, P2} depending the
inclusion of [«; 3) w.r.t. Sat[q, @1] and Sat[q, P2].

The TMDP M7 has the following important property: for any state (g, [cv; 3)) of
Mz, we have that (¢,) [Em.(p) Poarx(®1U~cP2) if and only if (q,[c; 3)) Fwm,
Poor (P1UP2). This can be shown by using the same kind of arguments we used
for proving Proposition 2.

Then using the above construction of M, we can apply the algorithm of Section 3.1
to decide, for each (¢, [a; 3)) € Q1, whether (¢, @) Fm, (D) Poar (P1U~ P2) (the pres-
ence of sub-distributions does not affect the results of the algorithm). Now note that, for
each function f considered in Section 3.1, we compute a value for each state (g, [a; 3))
and each 0 < ¢ < c. Hence we can decide whether (¢, a) Fm, (p) Poax(P1U~iP2)
also for all 0 < 7 < c¢. We can use these results to compute the satisfaction sets
Sat[q, Pear (@1U.P2)] for each state ¢ € Q.

One approach would be, for each point & < v < 3, and for each state (¢, [«; 3)), to
iterate over the individual values of +y; however, the size of intervals [«; 3) in Int(g) for
a given state g are dependent on the size of constants appearing in the time intervals p
of the transitions (g, p, -) € D. We instead iterate over the size of the subscript ¢ used
in the temporal logic formula. More precisely, for each state (g, [«; 5)) of My, we have
two cases.

(g, [o; B)) has a time-successor state. (.e. there exists a state (¢, [3; 3')) € @.) Then
deciding whether v € Sat[q, Pugr (P1U.P2)] for each o < v < [can depend
both on whether Py (91U P2) is satisfied in (¢, @) and on the satisfaction of
Poar (P1U;P2) (for some ¢) in (g,). For each 1 < j < min(c, f — «), we let
B — j € Sat[q, Poar (®1U~.P2)] if and only if ((¢, @) Fm, (D) Poar(P1U~c®P2)) V
((¢,8) FEm.(0) Poar(@1U~c—jP2)). Intuitively, the second conjunct corresponds
to letting time pass and eventually moving to (g, 3): if the formula with a subscript
c— j is satisfied j time units in the future, then the analogous formula with subscript
c will be satisfied now. The first conjunct corresponds to taking an action transition:
from the homogeneity of intervals with respect to action transitions, such a transition
is available throughout the interval.

If 5 — a > ¢, then for each o < j < B — c we let j € Sat[q, Pogr (P1UD2)] if
and only if (¢, @) F=m, (D) Poar (P1U~cP2).

(g, [a; B)) does not have a time-successor state. In this case, for each oo < j < 3, we
let j € Sat[q, Poax (P1U~cP2)] if and only if (¢,) Fm, (D) Poar (P1U~cP2).

We then merge adjacent intervals in Sat[q, Puqx (21U .. P2)]. Analogously to the non-
probabilistic case [17], the size of this setis bounded by |Sat[q, &1]|+ |Sat[q, §2]|+| D?
and one can show that |Sat[q, ¥]| < |¥| - |DY| for any PTCTL[<, >] formula ¥.

Observe that [Q] < > o lInt(q)] < [Poan(P1U~c®P2)| - D], and | —; | <
|Q1|-(1+|D]). Recalling that the algorithm of Section 3.1 runs in time O(c-| Q|| =7 |)
when ~ is <, we conclude that properties of the form Pyqy (P4 Ugcﬁpg) can be verified in
time O(c:|Pyay (@1 U<.P2)|?-| D|?). Similarly, when ~ is >, the corresponding algorithm
of Section 3.1 runs intime O((c-|Q|-| —1 |)+poly(|M(|)). The size of the TMDP My is
no greater than |Q;| -2 |D|, and hence is no greater than [P<(?1U>.P2)|-|D|-2-|D|.
Hence, the algorithm when ~ is > runs in time O((c - |Pur(P1U>.P2)|? - |D|?) +
poly(|Poax (@1U3.02)] - D] - [D))).

s

150 F. Laroussinie and J. Sproston

These arguments can also be adapted for formulae Dy (P’). For a state s of a
TMDP with a set of adversaries Adv, let e} (&') = sup 4 44, Expected Time? (9') and

let e (¥') = inf sc aqw ExpectedTime? (#'). In analogy with the case of properties

of the form Py (P1U.P2), for each state (g, [a; 8)) € Qr, we have ez; [aﬂ))(gﬁ’) =

e(fm) (@') and e([B))@/) €(q) (@'). We apply the algorithm of de Alfaro [9] to
M/ to compute e(qya (') in the case of D<(¢') and €(g.0) (9') in the case of D> (9').

To determine the values ezr)(é’) and e((m)(sl5) for each a < v < [, we have
two cases as above. If ([cv; 3)) has a time-successor state, then for each 1 < j <
min(e, 5 — a), we let e(qﬁ j)(é) = max(e ZI@) (@), et €(0d) (@) + j), and similarly

€(q.f—])(45’) = min(e (q a)(QZS), e €,)(45’)+]) If 5—a > ¢, thenforeacha < j < f—c
we let e(q H(@) = e(q (@) ande (D) =eq ().

On the other hand, if (g, [o; ﬁ)) does not have a time-successor state, then for each
a < j<pf,welet e(q])(é’) = e(q a)(é) and e(qj)(@’) €. a)((l)/)'

Then we can compare the obtained values of e and e~ to the threshold ¢ to decide
whether j € Sat[g, Diqc (9')]. We merge adjacent intervals in Sat[g, D¢ ()] to obtain
the final satisfaction sets; as in the non-probabilistic case [17], the size of this set is
bounded by |D?| 4 |Sat[g, ?']| + 1.

Verification of the Dy (¢') operator can be done in polynomial time in the size of
My, and therefore our procedure takes time poly(|Dyec (') - |D| - |DJ)).

Overall complexity. We obtain an overall time complexity of O((|®|3-|D|?- ¢naz) +
poly(@] - |D| - D). 0

These two propositions imply that the program complexity of model checking
PTCTL[<, >] for the jump and continuous semantics is in P. This contrasts with the
case of timed automata (with or without probability), where algorithms are based on the
region graph and are exponential in the size of the system.

4 Complexity of Model Checking Durational Probabilistic
Systems

In this section we consider upper and lower bounds on the complexity of model checking
strongly non-Zeno DPSs. In particular we aim at comparing these results with those
obtained for (non-probabilistic) durational systems, namely durational transition graphs
(DTG) [17]. A DTG consists of a state set .S, initial state s;,,;;, and a labelling function /;
in contrast to a DPS, however, the transition relation is of the form —C S x Z x S. We
know that model checking TCTL over DTGs is Ab-complete (resp. PSPACE-complete)
with the jump semantics (resp. continuous semantics). Furthermore, model checking
TCTL[<, >] can be done in polynomial time for both semantics. We now identify cases
in which the addition of probability makes model checking harder than in the non-
probabilistic case, even for restricted sub-logics of PTCTL.

Complexity with probabilities 0/1. First we consider PTCTLY/!, the “qualitative” sub-
logic of PTCTL in which we allow Py operators with A € {0, 1} only, and in which
the Dy operator is excluded.

Model Checking Durational Probabilistic Systems 151

Theorem 1 (Durational fully probabilistic systems). Model checking PTCTL/! over
a strongly non-Zeno durational fully probabilistic system is a Ab-complete (resp.
PSPACE-complete) problem for the jump (resp. continuous) semantics.

Proof. This result derives mainly from the complexity of model checking over DTGs. In-
deed, the general idea is to reduce model checking of PTCTL®/! over a strongly non-Zeno
DFPS D = (Q, qinit, D, L) to TCTL model checking over the DTG (S, s;pnit, —, 1) de-
fined as follows: S = @, Sinit = Qinit,! = Land (s, p,s’) €— iff we have (s, p, u) € D
and ;1(s’) > 0. Wereplace PTCTL®/! subformulae by TCTL counterparts in the following
way: P~ o(¢) isreplaced by Eg, while P> (X®) (resp. P>1 (@1 U< P2), P>1(P1U=.P2))
is replaced by AXP (resp. A(P1U<.P2), A(P1U=.P2)). Finally,
P>q(P1U Do) isreplaced by A(P1U>. Py, uas,), where Py, ya, 18 a new atomic propo-
sition that holds for states satisfying P> ($1U®,). The standard PCTL model-checking
algorithm [5], which runs in polynomial time, can be used to label states by Pgp,ya,-
Note that these reductions are possible because the DFPS is strongly non-Zeno. For
the remaining PTCTL?/! formulae, as we are considering fully probabilistic systems,
we have Pq1(¢) = —P>1(p) and P<o(¢) = —Pso(p). The overall transformation
provides Ab-membership (resp. PSPACE-membership) for the PTCTL model checking
over DPS in the jump semantics (resp. continuous semantics).

With regard to the hardness results, we adapt the proofs used for DTGs with the same
transformation of formulae as described above. ad

Note that, following the results of [17] and using the translations of the proof of
Theorem 1, we can find a polynomial-time algorithm for model checking DFPSs against
formulae of PTCTLY/! without subscripts = ¢ in until modalities, both for the jump and
continuous semantics.

Next, we address model checking of general, nondeterministic DPSs.

Theorem 2 (Durational probabilistic systems). Model checking strongly non-Zeno
durational probabilistic systems with the jump semantics is (1) PSPACE-hard for
PrcTL/Y, and (2) in PSPACE for PTCTLY/ 1<, >].

Proof. (1) We reduce a quantified version of the subset-sum problem, called Q-subset-
sum, to a PTCTLY/! model-checking problem on strongly non-Zeno DPSs. As QBF can
be reduced to Q-subset-sum, this suffices to show PSPACE-hardness. An instance [of
Q-subset-sum contains a finite sequence X of integers x1, ..., z,, an integer GG and a
sequence of quantifiers Q1, ..., Q, in {3,V}. The instance I is positive iff there exists
a set Z of subsets of X s.t. (I) Ypex/x = G forany X’ € Z and (I) for any Y € Z,
if Q; =V, then there exists Y’ € Z s.t. r; €Y & x5 € Y’ for any j < 7 and
z; €Y' & x; €Y. Assume w.l.o.g. that n is even and Qo1 = V, Qo;40 = 3 for
all0 < i < % Then we consider the DPS D; described in Figure 2. The dashed lines
correspond to non-deterministic choices, and the numbers in parentheses correspond to
the duration of the transitions which they label.

Now assume ¢y = "P.1(F—gP) (where F.._. = truelU.._, and where g, is the
only state labelled with P): that is, there exists an adversary such that the probability of
satisfying F—g P from qq is 1. In terms of I, for any existential quantifierin /, itis possible
to make a decision leading to a subset with exactly the sum G. Then ¢y = ~P.1(F_¢P)
if and only if the instance [is positive.

152 F. Laroussinie and J. Sproston

Fig. 2. The durational probabilistic system Dy

(2) The PSPACE membership is shown as follows. For reasons of space we consider
only the case P~.o (91 U<.P2). Because the DPS is strongly non-Zeno, it suffices to verify
that for any adversary there exists a path satisfying $1U<.P>. We use the following
algorithm which runs in polynomial space.

First note that ¢ |= P~o(®1U<4P2) entails ¢ = P~o(P1U<q41P2). For every state
g we will compute the minimal d s.t. P~ (1 U<4P2) holds for g. First we define T[¢]
as 0 (resp. o0) if ¢ |= @2 (resp. ¢ [~ P1). Then, forany j =0, 1,. .., ¢, we try to update
T|q] for g = q1, . .., qn if T[q] has not yet been defined (where we enumerate the states
in the topological order >-(). Updating T'[¢] to j is done if, for any (g, p, u) € D, there
exists at least one state ¢’ s.t. 1(q’) > 0 and T'[¢'] > j — d, where d, is the maximal
duration in p. Finally it remains to label a state ¢ by P (P1U<.P2) iff T[g] < ¢c. A
similar procedure can be used to verify the other properties. O

For the continuous semantics, it is clear that model checking PTCTL is PSPACE-
hard. These results show that strongly non-Zeno DFPSs are not harder to verify against
PTcTL?/! than non-probabilistic durational systems against TCTL, and that combining
probabilities and non-determinism induces a complexity blow-up for the jump semantics
compared to the non-probabilistic case.

Complexity of full PTCTL. If we move from the sub-logic PTCTLY/! to the logic in which
the operator Py is permitted to have rational A € [0; 1], we observe a complexity blow-
up. It is sufficient to consider the simple formula P> (F<.P) in the fully probabilistic
case with the jump semantics.

Proposition 4. Model checking P> 5 (F<.P) over durational fully probabilistic systems
with the jump semantics is NP-hard.

Proof (sketch). The proof consists in reducing the K -th largest subset problem, which
is NP-hard [12—p. 225], to the problem of model checking a formula of the form
P> (F<cP) on a DFPS with the jump semantics. An instance I of K -th largest subset
problem is a finite set X = {z1,...,x,} of natural numbers and two integers K and
B. The problem consists in asking whether there are at least K distinct subsets X’ C X
s.t. > ,cxs < B. Consider an adaptation of the DPS of Figure 2 where we replace the
non-deterministic choices in states gz;41, for 0 < ¢ < % by distributions with proba-
bilities %, and recall that g, is the only state labelled with P. This provides a DFPS that
satisfies PP, X (F<pP) if and only if I is a positive instance. ad

A corollary is that model checking PTCTL[<, >] is NP-hard and coNP-hard over
durational fully probabilistic systems with the jump semantics. Note that this problem is

Model Checking Durational Probabilistic Systems

Table 1. Complexity results for model checking durational probabilistic systems

Fully prob. DPS DPS
jump sem. cont. sem. jump sem. cont. sem.
PrcTLY <, >]| P-complete P-complete P-hard P-hard

in PSPACE |in EXPTIME')

PtcTL’/!| Ab-complete| PSPACE-complete| PSPACE-hard| PSPACE-hard

in EXPTIME | in EXPTIME

PTCTL[<, >] NP-hard and coNP-hard
in EXPTIME")
PrcTL| Af-hard PSPACE-hard |PSPACE-hard| PSPACE-hard
in EXPTIME| in EXPTIME |in EXPTIME| in EXPTIME

153

the simplest problem within our framework referring to quantitative temporal properties.
It entails that considering simple timing constraints and quantitative probabilistic prop-
erties in the same model checking problem leads to NP-hardness, whereas considering
either simple timing constraints (as in [17]) or quantitative probabilistic properties (as
in [5]) allows for efficient model checking.

For the general case where we have non-determinism, probabilities and PTCTL for-
mulae, we conjecture that model checking is EXPTIME-complete. From the algorithms
of Section 3 and the complexity results for PTCTL®/!, we obtain the following corollary.
Note that the EXPTIME-membership comes from a direct application of the algorithm
described in Proposition 1 to M, (D) or M. (D).

Corollary 1. Model checking PTCTL over durational probabilistic systems in the jump
or continuous semantics is PSPACE-hard and it can be done in EXPTIME.

5 Conclusion

In this paper we introduced durational probabilistic systems, a model to describe prob-
abilistic, non-deterministic and timed systems. We showed how model checking can be
done over this model, paying attention to complexity issues. Table 1 summarizes the
results we presented in the paper. First, note that model checking can be done efficiently
for fully probabilistic systems and qualitative PTCTL?/! properties without the exact
time-bound subscript = c. However, as in the non-probabilistic case, adding the exact
time-bound induces a complexity blow-up. This motivates the use of PTCTL[<, >] where
the subscripts in until formulae are restricted to < ¢ and > ¢ constraints. For this logic,
even with quantitative properties, we have model checking algorithms running in time
polynomial in ||| D] and linear in ¢, 4., the maximal timing constant of the formula, as
described in Proposition 2 and Proposition 3, and indicated by the () superscripts in the
table. The precise polynomial depends on the kind of DPS and the choice of semantics.
The formula’s time constants are encoded in binary, and hence these algorithms belong
to EXPTIME; nevertheless the algorithms should be interesting in practice, because they
are polynomial in |D|. In future work, we will consider the precise complexity of the
non-complete model-checking problems listed in the table.

154

F. Laroussinie and J. Sproston

References

1.

2.

12.

13.

14.

15.

16.

17.

18.

19.

R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2-34, 1993.

S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked. In Proc.
Ist Int. Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS 2003),
volume 2791 of LNCS, pages 88—104. Springer, 2004.

. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for

continuous-time Markov chains. [EEE Transactions on Software Engineering, 29(6):524—
541, 2003.

. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with

fairness. Distributed Computing, 11(3):125-155, 1998.

. A.Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In

Proc. 15th Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’95), volume 1026 of LNCS, pages 499-513. Springer, 1995.

. S. Campos, E. M. Clarke, W. R. Marrero, M. Minea, and H. Hiraishi. Computing quantitative

characteristic of finite-state real-time systems. In Proc. IEEE Real-Time Systems Symposium
(RTSS’94), pages 266-270. IEEE Computer Society Press, 1994.

. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal

of the ACM, 42(4):857-907, 1995.

. L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,

Department of Computer Science, 1997.

. L. de Alfaro. Temporal logics for the specification of performance and reliability. In Proc.

14th Annual Symp. on Theoretical Aspects of Computer Science (STACS’97), volume 1200
of LNCS, pages 165-176. Springer, 1997.

. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.

Real Time Systems, 4(4):331-352, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512-535, 1994.

M. Kwiatkowska. Model checking for probability and time: From theory to practice. In Proc.
18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), pages 351-360.
IEEE Computer Society Press, 2003.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Theoretical Computer Science, 286:101-150,
2002.

F. Laroussinie, N. Markey, and P. Schnoebelen. On model checking durational Kripke struc-
tures (extended abstract). In Proc. 5th Int. Conf. Foundations of Software Science and Com-
putation Structures (FOSSACS 2002), volume 2303 of LNCS, pages 264-279. Springer, 2002.
F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for discrete
time systems. Submitted, 2004.

S. Tripakis. Verifying progress in timed systems. In Proc. 5th AMAST Workshop on Real-
Time and Probabilistic Systems (ARTS’99), volume 1601 of LNCS, pages 299-314. Springer,
1999.

M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
16th Annual Symp. on Foundations of Computer Science (FOCS’85), pages 327-338. IEEE
Computer Society Press, 1985.

	Introduction
	Durational Probabilistic Systems
	Syntax of Durational Probabilistic Systems
	Semantics of Durational Probabilistic Systems
	Probabilistic Timed Temporal Logic

	Model Checking for Durational Probabilistic Systems
	Model Checking Timed Markov Decision Processes
	Extension to Strongly Non- Zeno Durational Probabilistic Systems

	Complexity of Model Checking Durational Probabilistic Systems
	Conclusion
	References

