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Abstract. In this paper, we prove decidability of the optimal condi-
tional reachability problem for multi-priced timed automata, an exten-
sion of timed automata with multiple cost variables evolving according
to given rates for each location. More precisely, we consider the problem
of determining the minimal cost of reaching a given target state, with
respect to some primary cost variable, while respecting upper bound
constraints on the remaining (secondary) cost variables. Decidability is
proven by constructing a zone-based algorithm that always terminates
while synthesizing the optimal cost with a single secondary cost variable.
The approach is then lifted to any number of secondary cost variables.

1 Introduction

Recently, research has been focused on extending the framework of timed au-
tomata (TA), [2], towards linear hybrid automata (LHA), [3], by allowing contin-
uous variables with non-uniform rates and maintaining a decidable reachability
problem.

One such class of models is that of priced (or weighted) timed automata
(PTA), [9LM], which are timed automata augmented with a single cost variable.
For this class of timed automata, the minimum-cost reachability problem, i.e.
finding the minimum cost of reaching some goal location, is decidable. The re-
striction with respect to linear hybrid automata is that the cost variable cannot
be tested in guards and invariant, it cannot be resetEl7 and it grows monotonically.

Ignoring the variable co, Figure [ depicts a PTA for which the rate of ¢; is,
respectively, 1 and 2 in locations [ and 5. The type of reachability question we
can ask for this model is: What is cheapest way of reaching the “happy” location.
The answer, in this case, is 3 which is achieved by delaying for 1 time unit in [y,
taking the transition to [y and delaying for 1 time unit before proceeding to I3.

A natural extension of PTA is to allow a secondary cost variable, thus arriv-
ing at dual-priced timed automata (DPTA), and pose reachability questions of
the type: What is the cheapest primary cost of reaching the “happy” location

! Variables with these two properties are sometimes referred to as observers in the
literature.
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Fig. 1. Example dual-priced timed automata

under some upper bound constraint on the secondary cost? We term this opti-
mal conditional reachability. There are three cases to consider, if the secondary
cost is time, if the primary cost is time, and if neither the primary nor the
secondary cost is time. In the first case, we can augment a PTA with time in-
variants corresponding to the upper bound constraint on all locations and then
use minimum-cost reachability for PTA. In the second case, we can combine
finding fastest traces in TA with minimum-cost reachability for PTA. The third
case is the topic of this paper. Figure [l provides a model with two cost variables
for which we can pose questions of the type: What is the minimum cost for ¢;
of reaching the “happy” location, while respecting ¢ < 4. The answer to this
question is % and is obtained by delaying for % time units in lo, then proceeding
to [ and waiting % time units before proceeding to I3. This example illustrates
that unlike minimum-cost reachability for PTA, optimal conditional reachability
with two cost variables may have non-integral solutiondd.

If we generalize DPTA to allow any finite number of cost variables, we arrive
at multi-priced timed automata (MPTA). Optimal conditional reachability for
MPTA concerns minimizing the first cost variable while respecting upper bound
constraints on the rest. The main contribution of this paper is the decidability
of optimal conditional reachability for MPTA.

Relevant work on MPTA include the model checking problem of MPTA with
respect to weighted CTL which has been studied by Brihaye et al., [6], and
proven undecidable, even with discrete time.

The discrete version of conditional reachability is called multi-constrained
routing and is well-known to be NP-complete, [7]. Recently, the problem has
been reconsidered by Puri and Tripakis in [II] where several algorithms are
proposed for solving the problem, both exactly and approximately.

For simplicity of the proofs, we prove decidability of optimal conditional
reachability for MPTA, by proving the decidability for the simpler DPTA model.
To show that the result can be lifted to from DPTA to MPTA, we provide,
throughout the paper, descriptions of how important aspects are extended from
pairs of costs to k-tuples of costs.

The rest of this paper is organized as follows. In Section 2] we give an abstract
framework for symbolic optimal conditional reachability in terms of dual-priced

2 The simple model in Figure [[lis acyclic, so optimal conditional reachability can be
reduced to linear programming.
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transition systems, including a generic algorithm for conditional optimal reach-
ability. In Section Bl we introduce dual-priced timed automata as a syntactic
model for dual-priced transition systems. In section [4 we introduce dual-priced
zones as the main construct for dual-priced symbolic states. In Section Bl we
define a successor operator on the constructs of the previous section. In Sec-
tion [Gl we discuss termination of our algorithm. Finally, we conclude the paper
in Section [ and point out directions for future research.

2 Conditional Optimal Reachability

The notation defined in this section aims at being consistent with that of [T1].
The partial order, <, over IR defined such that (a,b) < (¢, d) iff a < ¢ and
b < d is called a domination order. Given a set of points, A C ]Ri, an element,
(c,d) € A, is said to be redundant if there exists another element (a,b) € A such
that (a,b) < (¢,d). We extend domination to sets, A, B € 2R% guch that A < B
iff every (a,b) € B is redundant in A. Figure 2l depicts a set of points with black
and white bullets denoting, respectively, redundant and non-redundant nodes.

A dual-priced transition system is a structure
T = (5,50, %, —) where S is a, possibly infinite,
set of states, sg is the initial state, X' is an alpha-
bet of labels, and — is partial function with sig-
nature S x X x § — IRi. For brevity, we will use E ' :
the notation s — s’ to denote that Jcp,co,a :— T

a N N N
(s,a,s") = (c1,c2), we use s —— whenever — ESPRP RS R
c1,C2 C B :

. C1,C N
(s,a,s") = (c1,c2), the notation s —— s’ for ERT

Ja € ¥ : s —— &, and the notation s — s’ for

C1,C2

a . . . . . 2
Jei,co ¢ s —— s'. The components of a cost pair  Fig. 2. Domination in IRy
C1,C2
are denoted primary, respectively, secondary costs.
ai az An

An execution ¢ of 7 is a sequence € = sg s1 Sp. The

1.1 2 .2 n en
C1,C5 c1,C5 C1,Co

cost, Cost(g), of an execution ¢ is given as Cost(e) = (Costy (), Costa(g)), where
Cost;(e) = i, ¢ for j € {1,2}.

The minimal primary cost of reaching a set of goal states, G C S, under an
upper bound, p, on the secondary cost is termed the conditional optimal cost
and given as:

11 n n
C1,C2 C1,C2

mincost<,(G) = inf{Costy(¢) | £ = s — -+ —— s € G, Costa(e) < p} (1)

In order to effectively analyze dual-priced transition systems we suggest dual-
priced symbolic states of the form (A,7) where A C S and 7 : A — 2R
Intuitively, reachability of the dual-priced symbolic state (A, 7) has the inter-
pretation that all s of A are reachable with costs arbitrarily close to all 7(s).
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To express successors of dual-priced symbolic states we use the Post operator
Post, (A, m) = (B, n) where:

B={s]3scA:s% s}, and (2)

n(s)={(c1 +c,co+c) ][3I’ € A: s’ 2= sand 7n(s') = (¢, )} (3)
C1,C2
A symbolic execution £ of a dual-priced transition system is a sequence £ =
(Ao, 70)s -+ (Apn, ), where Ag = {so}, m(so) = (0,0) and for 1 < i < n we
have (A;,m;) = Post,(A;_1,m;—1), for some a € X. The correspondence between
executions and symbolic executions is captured below:

— For each execution ¢ of 7 ending in s there is a symbolic execution £ ending
in (A, ) such that s € A and Cost(e) € 7(s).

— Let € be a symbolic execution of 7 ending in (A, ), then for each s and
(¢, ') € w(s) there is an execution ¢ ending in s such that Cost(e) = (¢, ).

From the above it follows that symbolic states accurately capture conditional
optimal reachability in the sense that:

mincost<,(G) = inf{minCost<,(AN G, ) | (4, ) is reachable}, (4)

where minCost<,(A, ) is defined as inf{c|3s € A : (¢,¢') € n(s) and ¢ < p}.
Furthermore, we define the relation C on dual-priced symbolic states such that
(B,n) C (A,7m) iff A C B and n(s) < 7(s) for all s € A. In other words, B is
bigger than A and for each state, s, in A, 7(s) is dominated by 7(s).

Based on the above result, we provide an algorithm for computing the optimal
conditional reachability problem, mincost<,(G), in Figure Bl

CoOST := ¢
PASSED := {)
WAITING := {({so0},m0)}
while WAITING # () do
select (A, m) € WAITING
if ANG # 0 then
if minCost<,(AN G, n) < CosT then
CosT := minCost<,(ANG,7) fi
fi
if V(B,n) € PAsSED : (B,n) IZ (A, m)then
PASSED := PASSED U {(4, )}
WAITING := WAITING U, Post.(A, ) fi
fi
od
return CosT

Fig. 3. General algorithm for computing the optimal conditional reachability cost,
mincost<,(G)



238 K.G. Larsen and J.I. Rasmussen

The algorithm maintains two lists, a PASSED and a WAITING list, that hold
the states already explored and the states waiting to be explored, respectively.
Initially, the PASSED list is empty and the WAITING list contains only the initial
state. The algorithm iterates as long as the WAITING list in non-empty.

At each iteration the algorithm select a state, (A, ), from the WAITING list.
The set of states, A, is checked for intersection with the set of goal states. If the
intersection is non-empty, the minimum primary cost of any goal state satisfying
the constraint on the secondary cost is computed and compared to CoST, and
if the computed cost is the smaller of the two, COST is updated appropriately.

Whether A intersects with the goal states or not, we go through the PASSED
list and check whether it contains any (B, n) such that (B,n) C (A, 7). If it does,
(A, ) is discarded as it is dominated by (B, n), otherwise we add all successors
of (A, m) to the WAITING list and add itself to the PASSED list.

The algorithm terminates when the WAITING list is empty and at this point,
CosT holds mincost<,(G). Termination of the algorithm is guaranteed if C is a
well-quasi ordering on dual-priced symbolic states.

For optimization of the algorithm, further pruning of elements in the WAIT-
ING list can be performed simultaneously with the inclusion check, C, e.g. keeping
only elements where the set of states with primary cost smaller than CosT and
secondary cost smaller than p. This is correct since both primary and secondary
costs increase monotonically in any trace. Furthermore, for any encountered pair
(A, 7) with s € A we could prune 7(s) for redundant elements.

Every aspect in this section about dual-priced transition systems, includ-
ing the generic algorithm, can be directly extended to multi-priced transition
systems with k-tuples of cost and optimal conditional reachability of the form
mincost<p,, . (G). That is, minimize the primary cost under individual upper
bound constraints on the k — 1 secondary costs.

The above framework may be instantiated by providing concrete syntax
for dual-priced transition systems and data structures for dual-priced symbolic
states that, first, allow effective computation of the Post operator and, second,
have a well-quasi ordered relation, C. In the following sections, we provide such
an instantiation of the above framework.

3 Dual-Priced Timed Automata

In this section we define dual-priced timed automata which is a proper subset
of linear hybrid automata, [3], and a proper superset of priced timed automata,
[], or weighted timed automata, [4], and in turn timed automata, [2]. DPTA
will serve as a concrete syntax for dual-priced transition systems. First however,
we recall some basic notation from the theory of timed automata.

We work with a finite set, C, of positive, real-valued variables called clocks.
B(C) is the set of formulae obtained as conjunctions of atomic constraints of the
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form x <1 n, where x € C, n € IN, and <€ {<, =, z}ﬁ. We refer to the elements
of B(C) as clock constraints. B(C)* is the set of clock constraints involving only
upper bounds, i.e. <.

Clock values are represented as functions from C to the set of non-negative
reals, IRy, called clock valuations and ranged over by u,u etc.

For a clock valuation, u € (C — IR4), and a clock constraint, g € B(C), we
write u € g when u satisfies all the constraints of g. For ¢t € IR, we define the
operation u 4t to be the clock valuation that assigns u(x) + ¢ to all clocks, and
for R C € the operation u[R — 0] to be the clock valuation that agrees with u
for all clocks in C\R and assigns zero to all clocks in R. u[z — 0] is shorthand
for u[{z} — 0]. Furthermore, uy is defined to be the clock valuation that assigns
zero to all clocks.

Definition 1 (Dual-Priced Timed Automata). A dual-priced timed au-
tomaton is a G-tuple A = (L,lo,C,E, I, P) where P = {Pl,PQ}H, L is a fi-
nite set of locations, ly is the initial location, C is a finite set of clocks, E C
L x B(C) x 2% x (N x IN) x L is the set of edges, I : L — B(C)* assigns
invariants to locations, and P; : L — IN assigns prices to locations, i € {1,2}.

The concrete state semantics of a DPTA, A = (L, 1y, C, E, I, P), is given in
terms of a dual-priced transition system with state set L x (C — IR, ), initial
state (lp,uo), alphabet X = E U {0}, and the transition relation, —, defined as:

—(u) ——— (Lu+t) F YO<t <t:u+t €I(l)and
t-P1(1),t-P2(1)

— (lu) == (I',u") if e=(l,9,R,(c,c),l') € E,u € g, =u[R — 0].

c,c’

We will often write concrete states as (I,u,c1,c2) to denote the assumption
of some underlying execution, ¢, ending in (I, u) with Cost(e) = (¢, ¢2).

A concrete dual-priced state (I,u,c1,cq) is said to dominate another state
(U, c,cy) it 1 =1, uw =1 and (c1,c2) X (¢}, ch). In such case we write
(l,v,c1,e9) X (U0, ¢}, cb).

For convenience reasons, we assume some restrictions on the structure of
the DPTA in the rest of the paper. First, any DPTA should be bounded, i.e.
all locations have upper bound invariants on all clocks. Second, at least one
clock is reset on every transition. Note that neither restriction compromises the
generality of our result, as it is well-known that any TA can be transformed
into a semantically equivalent bounded TA, and that result extends directly to
DPTA. Furthermore, the reset assumption can be guaranteed by introducing an
extra clock which is reset on every transition.

3 For simplification we do not include strict inequalities, note, however, that everything
covered in this paper extends directly to strict inequalities, which is why we compute
infimum costs as opposed to minimum costs.

Y If we let P = {Py,...,Px} we have MPTA with analogous semantics.
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3.1 Relation to Linear Hybrid Automata

Any DPTA is a LHA where the value of the rate of each clock variable is one is
every location, and the rates of the primary and secondary costs are P;(l) and
Pa(1), respectively, in location .

Tools such as HYTECH, [§], can perform forward symbolic reachability anal-
ysis on LHA over a set of variables & using symbolic state structures (I, A, b)
where [ is a location and A - & < b defines a convex polyhedra of valid variable
assignments. One of the main properties of this kind of reachability analysis is
that the Post operators defined for LHA maintains convexity of the state set.
However, the reachability problem for LHA is, in general, undecidable, so termi-
nation of the reachability algorithm is not guaranteed. However, a consequence
of our result is that for the class of DPTA, HYyTECH will terminate when per-
forming conditional reachability.

4  Dual-Priced Zones

Now, we propose dual-priced zones as a syntactic construct for providing a sym-
bolic semantics for the dual-priced transition system induced by DPTA.

The constructs of our proposal for dual-priced symbolic states are zones and
cost functions. Zones are well-known from the analysis of timed systems and
efficient implementations of zones as difference bound matrices are used in real-
time verification tools such as KrRONOS, [5], and UpPPAAL, [I0]. Briefly, zones are
convex collections of clock valuations that can be described solely using difference
constraints of the form z; —x; < m where m € ZZ and z;,z; € CU {zo}, where,
Tg, is a special clock whose value is fixed to zero. That way, constraints of the
form x; > n can be written as o — x; < —n, and similarly for other constraints
involving a single variable. Zones are ranged over by Z, Z1, Z’,.... When a clock
valuation, u, satisfies the difference constraints of a zone, Z, we write u € Z.

The second construct is a cost function, which is an affine function over C,
i.e. a cost function, d, is a function with signature (C — IR4) — IRy that can
be written syntactically as ay -2y + -+ ay, - ©, + b where x; € C, 1 <1i <n, and
a;,b € ZZ. The cost of a clock valuation, u, in a cost function, d, is given by d(u) =
ay -u(xy) + -+ ap - u(z,) + b. We range over cost function by d, e, dy,eq,d’, e’
etc. For ease of notation we define a number of operations on cost functions.
Let m € Z, p € IN and z;,z; € C, then the substitution operation d[x;/¢] for
© € {m,xj+m} is defined as d[z; /] = a1-x1+- - -+a; o+ - -+an-z,. The delay
operation d'?% is defined as d'P% = a; -2 +- - -+(p—zj¢i a;) i+t Tp,
meaning we want the sum of the coefficients to match p by assign the correct
coefficient to x;.

Let C be a set of pairs of cost functions, i.e. C' = {(e1,d1),...,(ex,dr)} and
u a clock valuation, then C(u) = {(e1(u),dy(u)),... (ex(u),dr(u))} is a set of
points in IR . We denote by A(C(u)) the set of all convex combinations of C(u),
i.e. the convex hull.

For the construction of dual-priced symbolic states we propose dual-priced
zones as given in Definition [ below.
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Definition 2 (Dual-Priced Zone). A dual-priced zone is a pair, (Z,C), where
Z is a zone and C is a set of pairs of cost functions {(e1,dy1),. .., (ex,di)}.

We construct dual-priced symbolic states as structures (I, Z, C) where [ is a
location and (Z, C) is a dual-priced zone. A dual-priced symbolic state (I, Z,C)
contains all concrete states (I’,u,c1,c2) where I/ = I, v € Z, and (c1,c2) €
A(C(u)). Not that dual-priced zones extend directly to multi-priced zones with
k-tuples of cost functions and, in turn, multi-priced symbolic states.

In [9], efficient data structures for symbolic minimum-cost reachability for
priced timed automata (PTA) are provided. These are so-called priced zones
which effectively are zones, Z, with an associated cost function, e. For repre-
senting cost in the discrete case described in [I1], subsets of IN x IN are used for
representing reachability costs.

The immediate combination of the two suggest the use of zones together with
sets of pairs of cost function. The following example illustrates why we also need
to consider convex combinations of the cost functions.

Z 10 (ely/2],d[y/2])
Y r=2.5 O /\
: Z 8
9 —t— g o (ely/1],d[y/1])
7z g
) B 4
2
0 ¢ 0
0 1 2 3 x 0 2 4

Primary Cost

Fig. 4. The relationship between the zone, Z, defined by the constraints 2 < x < 3
and 1 <y < 2 with cost functions (e,d) with e =z +y and d = 4z — 3y + 1

Consider the zone of Figure @ described by the constraints 2 < x < 3 and
1 <y < 2 with the pair of cost functions (e, d) where e = z+y and d = 4z—3y+1.
Now, if we need to compute the projection of the zone onto the first axis due
to a reset of y, what should the set of pairs of cost functions be to represent or
dominate the possible cost values? The suggestion following the lines of reasoning
from [9] would be to use the two pairs of cost functions (e[y/2],d[y/2]) and
(e[y/1],d[y/1]). This choice, however, has a loss of information if we do not allow
convex combinations. The point (x = 2.5,y = 0) is obtained from Z by projection
from any point satisfying (z = 2.5,1 < y < 2) corresponding to costs given by
any convex combination between (3.5,8) and (4.5, 5). However, maintaining only
the these two points is incorrect, as neither of the points dominate any point in
their convex combination.



242 K.G. Larsen and J.I. Rasmussen

5 Post Operator

The projection operation in the previous section serves as a first step towards a
Post operator. Consider, again, the zone in Figure @] and assume it is, now, as-
sociated with two pairs of cost functions (e, d;) and (eq, dz2), between which we
allow arbitrary convex combinations. Now, if we perform a projection onto the
first axis we split each pair of cost functions in two, i.e. (eF,dr) and (eV,d¥),
i € {1,2}, corresponding to the lines L : y = 1 and U : y = 2, respectively,
giving four cost functions. Originally, for any clock valuation, u, in the zone and
0 < o < 1, the convex combination between (e (u), d; (u)) and (ez(u), da(u)) wrt.
« is a valid cost pair. However, when we split the cost functions, the cost corre-
sponding to e.g. (e;(u),d;(u)) is given by some convex combination of (el d})
and (€Y, dY¥) for the clock valuation uly — 0], and similarly for (ez(u), da(u)) us-
ing the same convex combination. Contrary to the definition of dual-priced zones,
this suggests not to allow arbitrary convex combinations between (ef,dl) and
€V, dY), (ek,d%) and (eY,dY), but rather “binary tree” convex combinations
of the form: Choose the same convex combination between (ef,d}), (¥, d¥)
and (ef,dy), (e¥,dY) and take any convex combination of the resulting pairs.
However, the following key lemma states that if this set is convex, it is identical
to the set of arbitrary convex combinations between the four.

. . . 2
Lemma 1. Assume a set of pairs of points in IR7
{(a1,b1),. ., (an,by)}, a; €RZ,b; € RE,1<i<n
For0<a<l, let:

Ay ={a-a; + (1 —a)- bl <i<n}and
B:{az,bz|1§z§n}

Now, if U, MAa) is convex (i.e. |J, AM(Aa) = MU, A(Aa))) then U, MAa) =
A(B).

Proof. We prove the lemma in two steps. First, we show that [J, A(Aa) € A(B)
and, secondly, that A\(B) C [J, AM(Aa)-
1. Let ¢ be a convex combination of A, for any 0 < « < 1, that is,

c=M(aay + (1 —a)by) + -+ Ap(aa, + (1 — a)by,) (5)
=Maay + A (1 —a)by + -+ Ayaan + Ay (1 — )by, (6)

where 0 < A; <1 and >, A\; = 1. Now, (@) is a convex combination of B, thus
c € A(B) and in turn [J, AM(Aa) € A(B).

2. Each point a; can be given as a convex combination of A, where o = 1 using
Ai = 1 and \; = 0 for j # 4. Simililarly for b; with a@ = 0. Now, since all a;, b;
are included in the convex set (J, A(Aq), we know that A\(B) C A(J, AM(Aa)) =
U AM(Aa). O
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Note, that the proof makes no mention of IR? , thus the Lemma [ is directly
extendible to pairs of points in IR{T_

At first glance, |J, A(Aq) in Lemma [I] might seem universally convex, how-
ever, Figure [l depicts the contrary where Lemma [0 does not hold. Let P =
{(A,B),(C,D)}, now, |, A(P,) (the gray area with the dashed line) is not con-
vex and not equal to A({4, B, C, D}), particularly, all points on the line from A
to D are not included in the former.

Before defining the Post operator on dual-priced states of the form (I, Z, C),
we need to introduce a number of definitions and operations. Let Z be a zone,
then the delay operation Z! and the reset, {x}Z, with respect to a clock, x € C,
are defined as Z! = {u+tlu € Z and t > 0} and {2}Z = {u[r — 0]|u € Z}.
It is well-known from timed automata that both Z! and {x}Z are representable
as zones.

Given a zone, 7, if x; —x; < mis a con- | A
straint in Z then (ZA(x; —x; = m)) is a facet gy
of Z, a lower relative facet of x;, and an up- )
per relative facet of ;. The set of lower (resp. S T
upper) relative facets of a clock, x;, in a zone, RN
Z, is denoted LF,,(Z) (resp. UF,,(Z)).

The following lemma for facets is proven
in [9].

Lemma 2. Let Z be a zone over a clock set, C, with x € C, then:

1. 2V =Upevr,, () F' = ZUUperr,, () F' and
2. {x}Z = Uperr, 2} F =Upcvr, ({2}
Lemma P11 is most intuitively understood knowing that zq is fixed to zero,

that way U Fy, is the set of all lower bound constraints on clocks in € (i.e. © > n)
and LF,, is the set of all upper bound constraints on clocks in C (i.e. z < n).

Fig. 5. Counter example

Definition 3. Given a zone, Z, and a clock, x, LUF,(Z) is the unique, smallest
collection of pairs {(L1,U1), ..., (Ln,Uy)}, such that for all 1 < i,j5 < n,i # j
we have (i) L;NL; = U;NU; =0, (i) {z}L; = {«}U;, and (iit) L, C F,U; C F’
for some F € LF,(Z) and F' € UF,(Z).

We call the elements of LUF,(Z) partial relative facets with regard to x.
Figure [0l illustrates the concept of partial relative facets.

Let d be a cost function and let F' be a relative facet of a zone in the sense
that ; —z; = m (or &; = m) is a constraint in F, then we use the shorthand
notation d* for d(z;/z; +m] (or dx;/m]).

Definition 4 (Post Operator). Let A = (L,ly,C,E, I, P) be a DPTA with
le L ande = (l,g,{x},(c,c),l') € Eﬁ, let Z be zone, let Z' be a zone where

5 For the general case with multiple resets, we consecutively split the pairs of cost
functions for each clock that is reset.
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Uy
Uy

L3

S
8
S

Fig. 6. From left to right (i): a zone, Z, (ii): LFy(Z) = {L1,L2} and UF,(Z) =
{U1,Uz} (ili): LUF, = {(L1,Un),(L2,U2), (L3, Us)}

x € C is fizred at zero, and let C = {(e1,d1), ..., (ex,dr)} be a set of pairs of cost
functions, then

Post; (1, 2/, C) = { (1, (' A 1) A1), {(e]™ O, a1 < i < k) |

Post.(,2,0)= | {0 w0}

(L, U)ELUF,(ZNg)
where C' = {(el +c,dl + '), (e + ¢, dY + /)1 <i < k}.

The simplification of the Posts operator is no restriction given the reset as-
sumption we made in Section Bl we simply just allow Posts after a Post., which
is, actually, how symbolic reachability is performed in tools such as UPPAAL
and KRONOS. The Post operator as given above extends directly to multi-priced
zones and the binary split in Post. remains binary.

As shorthand notation, we write (I, u, ¢1,c2) € Post.(l, Z,C) to indicate that
(l,u,c1,c0) € (I',Z',C") for some (I, Z',C") € Post.(l, Z,C).

Before we prove the soundness and completeness of the Post operator, we
illustrate, in Figure [0 its behavior on the running example of Figure [II

Lemma 3. Given dual-priced symbolic state (1,Z,C) where C = {(e1,d1), ...,
(er,di)} and a € {e, 8} where e = (1, g,{z}, (c,c),l") we have

(', ), ) € Post, (1, Z,C) <
I, uycr,e0) € (1, Z,C): (Lu, e, c0) 2 (U0, ¢y, ch)

Proof. We choose only to prove the lemma for Post, as the analogous proof
for Post; is straightforward since each concrete successor has a unique concrete
predecessor, given the requirement that Posts is always applied after a clock
reset. We prove each direction of the bi-implication separately.

<= - Completeness: Let (I, u,c1,ca) € (I, Z,C). The costs (¢1,c) are given as a
convex combination of C(u), i.e thereare 0 < A\; < land ), Ay =1for1 <i<k

such that:
(c1,¢2) :Z)\i-(ei(u),di(u)). (7)
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Fig. 7. Reachability analysis for mincost<4({ls}) on the DPTA in Figure rl-l starting
from the initial state (l1, Zo, Co). Areas inclosed by black lines in the cost part indicate
all cost pairs computable from the cost functions. (i) (I1, Z1,C1) = Posts(l1, Zo, Co)
(ZZ) (lz, Za, Cz) = POSte(ll, AR 01) where e = (l1, -, {y}, (0, 1), 12) (Z’L’L) (lz, 73, 03) =
Posts(l2, Z2,C2). The dashed area indicates the subset of the zone satisfying the guard
of e = (la,x > 2 Ay > 1,{y} (0,0),13) (iv) (I3, Z4,Cs) = Post./ (l2, Z3,C3). The gray
area in the cost part indicate the convex combinations between the lines describing the
two cost functions. The cost pairs below the dashed line are the ones satisfying the

constraint on the secondary cost. Note that mincost<4({l3}) = L
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The discrete successor of (I,u,cq,c2) with respect to e is given as (I',ulx —
0],¢1 + ¢, ¢o + '), which we will now prove is contained in Post.(l, Z, C).

Let (L,U) € LUF,(Z) such that u[lz — 0] € {z}L. Given the convexity of
zones there exist unique v € L and w € U where v(z) < u(zx) < w(z) and
u(y) = v(y) = w(y) for y # x, ie. u(x) = a-v(x) + (1 — a) - w(z) for some
0 < a < 1. Furthermore, the affinity of cost functions provide us with

(ei(u), di(u)) = a- (ei(v),di(v)) + (1 = a) - (ei(w), di(w)), (8)

for all 1 <7 < k and the same « as above.
Now, choose (I',u,c},ch) € Post.(l, Z,C) where v’ = ulz — 0] and (¢}, ch) is
given by (@), which we can rewrite as:

Z)\ (W) + e, dX (W) + )+ (1 —a) - (Y (u') + ¢,dY (u) 4+ ¢))9)
= (¢,¢ +Zki~(a~(ef(U’)7diL(u/)) (1—a)- (e (u), df (u))) (10)
= (e, ) + ZA (a-(ei(v),di(v)) + (1 = a) - (es(w), di(w))) (11)
= (¢,d) + i)\i (ei(u),di(u)) = (c1 + ¢,c2 + ) (12)

The step from ([[0) to () follows from the definition of el d¥, eV, and d¥, and
the step from () to ([I2)) uses ([{). Thus, the discrete successor of each concrete
state in ([, Z,C') is contained in Post.(l, Z, C).

= - Soundness: Let (I',u, ¢}, cy) € Post.(l, Z,C) such that v’ € {z}L for some
(L,U) € LUF,(Z). Assume that:

(ch, ) Z/\ u)te df (u)+c ) +(1=a)-(ef (u) e, d (u)+c)) (13)

for some 0 < a, A\; <land ), A=1.

Let v € L and w € U be the unique clock valuations in Z where v'(y) =
v(y) = w(y) for y # x. w € Z is then the unique clock valuation with u(y) =
a-v(y) + (1 —a) - w(y) for all y with the same « as above. Choose the cost
pair (c1,c2) = Y. i - (ei(u),di(u)). Now, (I,u,c1,¢2) € (I,Z,C) and the proof
of completeness gives us that (I,u,c1,co) — (I',u', ¢}, ch).

Now, we have that all e-successors and only e-successors of concrete states in
(1,Z,C) are in the subset of Post.(l,Z,C) with costs that can be written ac-
cording to ([I3]). Since DPTA are a subset of linear hybrid automata, we know
that e-successors maintain convexity. So, since (I, Z, C') is, by definition, convex
we know that the set of concrete states (I',u, ¢}, c5) € Post. (I, Z,C) with costs
according to ([I3) is convex. Lemma [l now states that this set is identical to all
concrete states in Post. (I, Z, C').0

If allowing k-tuples of costs as opposed to pairs, the proof of Lemma [ is
analogous, whenever we choose concrete states using o and (1 — ), we instead
use o, ...ap with Y oy = 1.
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Lemmal[3]states that the properties of our proposed Post operator corresponds
to the requirements of Post defined in Section

6 Termination

In this section, we first define the ordering C on the structure of locations with
dual-priced zones and then prove that it is a well-quasi order.

Note that given a zone, Z, with m corner points, any cost function, e, asso-
ciated with Z can be represented as an element of IN™* giving the cost at each of
corner points since any corner point of a zone have integral values. Thus, we can
view the set of cost function pairs, C, of a dual-priced symbolic state, (I, Z,C)
as a subset of 2N *IN™ if 7 has m corner points, and whenever we refer to this
representation, we write Cz. Given a pair, (€, d), of m-vectors in Oy, we write
¢ < d, if € is component-wise less than or equal to d.

Definition 5 (C). Given two dual-priced symbolic states (1, 2,C), (I',Z',C"),
we write (1, Z,C) E (I, Z',C") iff (i)l =1" (i) Z' C Z and (iii) for all (¢',d') €
CY,, there exists a (€,d) € Cznz such that e <& and d < d'.

The order T on k-tuples of costs are defined analogously. Note that (I, Z,C) C
(I, Z',C") implies that for all u € Z'; \(C'(u)) =< A(C’(u)), but not the reverse,
i.e. our C is stronger than domination, however, the above definition suffices to
guarantee termination.

Lemma 4. C is a well-quasi ordering.

The proof of Lemma @] follows directly from the fact that (IN, <) is a better-
quasi ordering, [1], and better-quasi orderings are closed under Cartesian product
and power sets, and, finally, better-quasi orderings imply well-quasi orderings.
For k-tuples of cost, the proof is identical as we consider k Cartesian products
on IN™ instead of pairs.

Now, we have fully instantiated the framework defined in Section [2 with
syntax, data structures, a Post operator, and a well-quasi order. Based on this,
we can conclude that, with this instantiation, the algorithm in Figure[3 computes
optimal conditional reachability for DPTA. The result is summarized in the
following theorem.

Theorem 1. Optimal conditional reachability for DPTA is decidable.

Along with the definitions of the framework of dual-priced transitions sys-
tems, DPTA, data structure for dual-priced symbolic states, the Post operator,
and C we have discussed the straightforward extension to k-tuples of cost, and
thus MPTA. Based on this we state the following corollary of Theorem [I1

Corollary 1. Optimal conditional reachability for MPTA is decidable.
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7 Conclusion and Future Work

We have proven the decidability of optimal conditional reachability for multi-
priced timed automata. The results are obtained from a zone-based algorithm
for computing optimal conditional reachability which, in turn, might lead to an
efficient implementation.

The example of Figure []illustrates that integral solution are not guaranteed,
thus the immediate discrete time semantics for MPTA will not, in general, give
correct results. However, discrete analysis of MPTA can be applied, but a correct
time granularity must be chosen beforehand. In the case of Figure [l a valid time
granularity is % However, a valid choice of granularity is non-trivial.

Except implementation of conditional reachability in the tool UPPAAL, future
research includes considering approximations along the lines of the ones proposed
by Puri and Tripakis in [T1]. Also, the complexity and efficiency of the algorithm
in Figure[3should be analyzed. Finally, related conditional reachability problems
such as minimization under lower bound constraints and maximization under

lower as well as upper bound constraints deserve investigation.

Acknowledgements. The authors would like to thank Stavros Tripakis for
introducing them to multi-constrained optimization problems.
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