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Abstract. The model checking of a counters system S often reduces to
the effective computation of the set of predecessors Pre∗S(X) of a set of
integer vectors X. Because the exact computation of this set is not pos-
sible in general, we are interested in characterizing the minimal Number
Decision Diagrams (NDD) [WB00] that represents the set Pre≤k(X). In
particular, its size is proved to be just polynomially bounded in k when
S is a counters system with a finite monöıd [FL02], explaining why there
is no exponential blow up in k.

1 Introduction

Model checking infinite-state transition systems S often reduces to the effective
computation of the potentially infinite set of predecessors Pre∗S . More precisely,
the safety model checking can be expressed as the following problem:

– Given as inputs an infinite-state transition system S and two possibly infinite
sets X0 and X of respectively initial states and non-safe states, decide if
X0 ∩ Pre∗S(X) is empty.

Infinite Sets. In order to effectively compute Pre∗S(X), one generally needs
to find a class of infinite sets which has the following properties: closure under
union, closure under PreS , membership and inclusion are decidable with a good
complexity, and there exists a canonical representation. We are considering the
Number Decision Diagrams (NDD) that provides an automata-based symbolic
representation of some subsets of Nm.

Infinite-State Transition Systems. We will focus on systems S with m inte-
ger variables and more precisely on counters systems with a finite monöıd (also
known as finite linear systems [FL02]), a class of systems that contains the re-
set/transfer Petri Nets [DJS99], generalized broadcast protocols [EN98, Del00],
and all the counters automata. As this model is very general and powerful, the
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price to pay is the undecidability of reachability properties and in particular the
sequence (Pre≤k

S (X))k does not converge in general.

Our Image Computation Problem. The characterization of the NDD struc-
ture that represents Pre≤k

S (X) in function of k is an important problem in order
to effectively compute the exact limit Pre∗S(X) or a “good” over-approximation:

– When there exists an integer k0 such that Pre∗S(X) = Pre≤k0
S (X), the char-

acterization can be useful in order to design an efficient algorithm that
incrementally computes these sets. Recall that even if the convergence of
(Pre≤k

S (X))k is not guaranteed by the theory, in practice we observe that
often, this sequence converges [Del00, BB03] and it often converges quickly
[Bra, Bab]. Moreover, as soon as the set X is upward closed and S is a Well
Structured Transition System [FS01], the convergence is insured.

– When the sequence (Pre≤k
S (X))k diverges, the characterization can be useful

in order to design NDD specialized acceleration operators that computes the
exact limit Pre∗S(X) [BLW03, FL02] or an over-approximation [BGP99].

Related Works. We use the approach called the regular model checking: for
channel systems, Semi-Linear Regular Expressions [FPS00] and Constrained
Queue-content Decision Diagrams [BH99] have been proposed; for lossy chan-
nel systems [ABJ98], the tools Lcs (in the more general tool TreX [ABS01]
[Tre]) uses the downward-closed regular languages and the corresponding subset
of Simple Regular Expressions for sets and it represents them by finite automata
to compute Post∗; for stack automata, regular expressions or finite automata are
sufficient to represent Pre∗ and Post∗ [BEF+00]; for Petri nets and parameterized
rings, [FO97] uses regular languages and Presburger arithmetics (and acceler-
ation) for sets. For Transfer and Reset Petri nets [DFS98], the tool Babylon
[Bab] utilizes the upward closed sets and represents them by Covering Sharing
Trees [DRV01], a variant of BDD; for counters automata, the tool Brain [Bra]
uses linear sets and represent them by their linear bases and periods; Mona
[Mon] [KMS02] and FMona [BF00] use formula in WS1S to represent sets; the
tool CSL-ALV [BGP97] [Alv] uses linear arithmetic constraints for sets and
manipulates formula with the Omega solver and the automata library of Lash.

For counters systems with a finite monöıd, tools Fast [Fas], [FL02], [BFLP03]
and Lash [Las] utilize semi-linear sets and represents them by NDD, moreover,
these two tools are able to accelerate loops [Boi03] [FL02]. In [FL04], the NDD
PreS(X) is proved to be computable in polynomial time in function of the NDD
X for a large class of systems S that contains all the counters system with a finite
(or infinite) monöıd. Moreover, the size of the NDD that represents Pre≤k

S (X) is
proved to be polynomial in k when S and X are “defined in the interval-logic”,
a restrictive class compared to the sets that can be represented by NDD.

Our Results.

1. We prove that the asymptotic number of states of the minimal NDD that
represents Pre≤k

S (X) is polynomial in k for any counters systems S with a
finite monöıd and for any set X represented by a NDD.
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2. We show that the structure of the minimal NDD that represents Pre≤k
S (X) is

similar to a BDD. That provides a new way for implementing a NDD library
using all the BDD techniques for speeding-up the computation like cache-
computation, minimization in linear time, Strong canonical form, well-known
in the field of BDD [Bry92].

Plan of the Paper. The structure of the minimal NDD that represents a set
X is given in section 3. In the next one, the definition of counters systems with
a finite monöıd is recall. The structure of the minimal NDD that represents
Pre≤k

S (X) in function of k, is studied in the last section 5.

2 Preliminaries

The cardinal of a finite set X is written card(X). The set of rational numbers,
non negative rational numbers, integers and positive integers are respectively
written Q, Q+, Z and N. The set of vectors with m ≥ 1 components in a set X
is written Xm. The i-th component of a vector x ∈ Xm is written xi ∈ X ; we
have x = (x1, . . . , xm). For any vector v, v′ ∈ Qm and for any t ∈ Q, we define
t.v and v + v′ in Qm by (t.v)i = t.vi and (v + v′)i = vi + v′i. For any x ∈ Qm, we
define ||x||∞ = maxi(|xi|).

The set of square matrices of size m in K ⊆ Q is written Mm(K). The
element Mij ∈ K is the i-th raw and j-th column of a matrix M ∈ Mm(K).
The identity matrix is written Im. The vector M.x ∈ Qm is naturally defined by
(M.x)i =

∑m
j=1 Mijxj . The subset M−1Y ⊆ Qm is defined by M−1Y = {x ∈

Qm; M.x ∈ Y } for any M ∈ M(Q) and X ⊆ Qm. For any M ∈ Mm(Q), we
define ||M ||∞ = maxi,j(|Mij |).

The set of words over a finite alphabet Σ is written Σ∗. The concatenation
of two words σ and σ′ in Σ∗ is written σ.σ′. The empty word in Σ∗ is written ε.
The residue σ−1.L of a language L ⊆ Σ∗ by a word σ ∈ Σ∗ is defined by
σ−1.L = {w ∈ Σ∗; σ.w ∈ L}

A deterministic and complete automaton A is a tuple A = (Q, Σ, δ, q0, F ); Q
is the finite set of states, Σ is the finite alphabet, δ : Q×Σ → Q is the transition
relation, Q0 ⊆ Q is the set of initial states and F ⊆ Q is the set of final states.
As usual, we extends δ over Q × Σ∗ such that δ(q, σ.σ′) = δ(δ(q, σ), σ′). The
language L(A) ⊆ Σ∗ accepted by a deterministic and complete automaton A is
defined by L(A) = {σ ∈ Σ∗; δ(q0, σ) ∈ F}.

3 Number Decision Diagrams

Recall that there exist two natural ways in order to associate to a word σ a
vector in Nm following that the first letter of σ is considered as an “high bit” or
a “low bit”. In this article, we consider the “low bit” representation (even if the
other one, just seems to be symmetrical, results proved in the paper cannot be
easily extended to the other one).



364 Alain Finkel and Jérôme Leroux

Let us consider an integer r ≥ 2 called the basis of the decomposition and an
integer m ≥ 1 called the dimension of the represented vectors. A digit vector b is
an element of the finite alphabet Σrm = {0, . . . , r − 1}m. The vector ρ(σ) ∈ Nm

associated to a word σ = b1 . . . bn of n ≥ 1 digit vectors bi ∈ Σrm is defined by
ρ(σ) =

∑n
i=1 ri−1.bi. We naturally define ρ(ε) = (0, . . . , 0).

Definition 1 ([WB00], [BC96]). A Number Decision Diagram (NDD) A is
a finite deterministic and complete automaton over the alphabet Σrm such that:

ρ−1(ρ(L(A))) = L(A)

The subset X = ρ(L(A)) ⊆ Nm is called the set represented by the NDD A.
Such a subset X is said NDD-definable.

Remark 1. Thanks to the condition ρ−1(ρ(L(A))) = L(A), the set Nm\X is
represented by the NDD A = (Q, Σrm , δ, q0, Q\F ). Recall that from any deter-
ministic and complete binary automaton A, we can efficiently computes a NDD
A′ such that ρ(L(A)) = ρ(L(A′)) [KMS02, Ler03].

Remark 2. Any Presburger definable set (a set defined by a formula in the first
order logic 〈N, +,≤〉) [BC96, WB00], or any semi-linear set (a set equal to a
finite union of sets of the form x0 +

∑
p∈P N.p where x0 ∈ Nm and P is a finite

subset of Nm) [GS66, Reu89] can be effectively represented by a NDD. Moreover,
recall that a set is NDD-definable if and only if it is definable by a formula in
the first order logic 〈N, +,≤, Vr〉 where Vr is the valuation function in base r
defined by y = Vr(x) if and only if y is the greatest power of r that divides x
[BHMV94].

In the remaining of this section, we characterize the minimal NDD that
represents a subset X .

The equality ρ(σ.σ′) = ρ(σ) + r|σ|.ρ(σ′) shows that the function γσ : Nm →
Nm defined by γσ(x) = ρ(σ) + r|σ|.x plays an important role. We are going to
prove that X is NDD-definable if and only if the following set Q(X) is finite:

Q(X) = {γ−1
σ (X); σ ∈ Σ∗

rm}
Remark that for any digit vector b ∈ Σrm and for any q ∈ Q(X), the set γ−1

b (q)
remains in Q(X). Hence, if Q(X) is finite, we can easily associate to a set X a
deterministic and complete automaton A(X).

Definition 2. Let X ⊆ Nm be such that Q(X) = {γ−1
σ (X); σ ∈ Σ∗

rm} is finite.
The deterministic and complete automaton A(X) is defined by:






A(X) = (Q(X), Σrm , δ, q0, F )
δ(q, b) = γ−1

b (q)
q0 = X

F = {q ∈ Q(X); (0, . . . , 0) ∈ q}
We are going to prove that A(X) is the unique minimal NDD that represents X .
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Lemma 1. For any X⊆Nm and σ∈Σ∗
rm , we have σ−1.ρ−1(X)=ρ−1(γ−1

σ (X)).

Proof. We have w ∈ σ−1.ρ−1(X) iff σ.w ∈ ρ−1(X) iff ρ(σ.w) ∈ X iff γσ(ρ(w)) ∈
X iff ρ(w) ∈ γ−1

σ (X) iff w ∈ ρ−1(γ−1
σ (X)). 	


The following theorem is really important because it proves that the structure
of the minimal NDD that represents a set X can be obtained just by studying
the sets γ−1

σ (X).

Theorem 1. A set X ⊆ Nm is NDD-definable if and only if Q(X) is finite.
Moreover, in this case, A(X) is the unique minimal NDD that represents X.

Proof. Assume that Q(X) is a finite set. We are going to show that A(X) is
a NDD that represents X by proving L(A(X)) = ρ−1(X). By definition of
A(X), we have σ ∈ L(A(X)) iff (0, . . . , 0) ∈ γ−1

σ (X). Therefore σ ∈ L(A(X)) iff
ρ(σ) = γσ((0, . . . , 0)) ∈ X . Hence, we have proved that L(A(X)) = ρ−1(X). In
particular ρ(L(A(X))) = X and ρ−1(ρ(L(A(X)))) = L(A(X)). We have proved
that A(X) is an NDD that represents X .

Now, assume that X is NDD-definable and let us prove that Q(X) is fi-
nite. There exists a NDD A such that X is represented by A. Let L be the
regular language accepted by A. As A is an NDD that represents X , we have
ρ−1(ρ(L)) = L and ρ(L) = X . We deduce L = ρ−1(X). As the minimal de-
terministic and complete automaton that recognizes L is unique, there exists
a unique minimal automaton that represents X . Recall that the set of states
of this minimal automaton is given by {σ−1.L; σ ∈ Σ∗

rm}. From lemma 1, we
deduce that Q(X) = {ρ(σ−1.L); σ ∈ Σ∗

rm}. Therefore, Q(X) is finite and by
uniqueness of the minimal automaton, A(X) is the unique minimal NDD that
represents X . 	


4 Counters Automata with Finite Monöıd

The class of counters automata with finite monöıd finite (a.k.a finite linear sys-
tems [FL02]) is a natural extension of some classes of models like Reset/Transfer
Petri Nets [DJS99], counter automata or broadcast protocols [EN98, Del00]. Re-
call that this class is also used as the input model of the accelerated symbolic
model checker Fast [BFLP03].

Let us first provide the definition of a counters system.

Definition 3. A NDD-linear function f is a tuple f = (D, M, v) such that
D ⊆ Nm is NDD-definable, M ∈ Mm(Z) and v ∈ Zm.

Without any ambiguity, we also denote by f the function f : D → Nm de-
fined by f(x) = M.x + v for any x ∈ D. The composition of two NDD-linear
functions is naturally defined by (D1, M1, v1) ◦ (D2, M2, v2) = (D2 ∩M−1

2 (D1 −
v2), M1.M2, M1.v2 + v1).

Definition 4. A counters system S (a.k.a linear system [FL02]) is a tuple S =
(Σ, fΣ) where Σ is a finite set of actions and fΣ = {fa; a ∈ Σ} is a finite set
of NDD-linear functions.
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For any word σ = b1 . . . bn of n ≥ 1 actions bi ∈ Σ, the NDD-linear function
fσ is defined as fσ = fbn ◦ · · · fb1 . The NDD-linear function fε is defined by
fε = (Nm, I, (0, . . . , 0)). We denote by (Dσ, Mσ, vσ) the NDD-linear function fσ.

Like in [FL02], we define the monöıd of S.

Definition 5 ([FL02]). The monöıd multiplicatively generated by the square
matrices Ma is called the monöıd of S and written MS = {Mσ; σ ∈ Σ∗}.
Definition 6. A counters system S such that MS is finite is called a counter
system with a finite monöıd (a.k.a finite linear system [FL02]).

Remark 3. The class of counters systems with a finite monöıd enjoys good prop-
erties that allow to easily accelerate the computation of the reachability set
[FL02, Boi03, Ler03].

Finally, let us recall the definition of the set of immediate predecessors.

Definition 7. Let S be a counters system. The set PreS(X) of immediate pre-
decessors of a set X is defined by PreS(X) =

⋃
a∈Σ f−1

a (X).

5 Structure of the Minimal NDD A(Pre
≤k
S (X))

In [FL04], we have proved that for any counters system S, we can effectively
computes in polynomial time a NDD that represents PreS(X) from any NDD
that represents X . This result provides an exponential time algorithm for com-
puting the minimal NDD A(Pre≤k

S (X)) in function of k. In fact, assume that
each step of the computation multiplies the number of states of the NDD just
by 2, then after k steps, the number of states of the NDD is multiplied by 2k.
However, in practice, such an exponential blow up does not appear.

To explain this experimental result, we are going to study the structure of the
minimal NDD A(Pre≤k

S (X)) in function of k ≥ 0. We prove an unexpected result :
the NDD has a “BDD-like” structure and its number of states is polynomial in k
for any counter systems S with a finite monöıd and for any set X NDD-definable.

We first prove a technical lemma.

Lemma 2. Let X ⊆ Nm be a NDD-definable set, M ∈ M(Z) and α ∈ Q+. There
exists a finite class CX,M,α such that for any v ∈ Zm and for any w ∈ Σ∗

rm, we
have:

||v||∞ ≤ α.r|w| =⇒ γ−1
w (Nm ∩ M−1(X − v)) ∈ CX,M,α

Proof. Let v ∈ Zm and w ∈ Σ∗
rm such that ||v||∞ ≤ α.r|w|. We have:

γ−1
w (Nm ∩ M−1(X − v)) = Nm ∩

[
1

r|w| (N
m ∩ M−1(X − v) − ρ(w))

]

= Nm ∩
[

M−1(
1

r|w| (X − v − M.ρ(w)))
]
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From the equality X =
⋃

w0∈Σ
|w|
rm

γw0(γ−1
w0

(X)), we deduce:

γ−1
w (Nm ∩ M−1(X − v))

=
⋃

w0∈Σ
|w|
rm

(

Nm ∩ M−1

(

γ−1
w0

(X) +
ρ(w0) − v − M.ρ(w)

r|w|

))

Let B = {z ∈ Zm; ||z||∞ ≤ 1+α+m. ||M ||∞} and let us prove that for any w0 ∈
Σ

|w|
rm , if Nm ∩ M−1

(
γ−1

w0
(X) + ρ(w0)−v−M.ρ(w)

r|w|

)

= ∅ then ρ(w0)−v−M.ρ(w)

r|w| ∈ B.

In fact, in this case, there exists x0 ∈ γ−1
w0

(X) such that x0 + ρ(w0)−v−M.ρ(w)
r|w| ∈

M.Nm ⊆ Zm. Therefore ρ(w0)−v−M.ρ(w)
r|w| ∈ Zm. Moreover, we have the following

inequality:
∣
∣
∣
∣

∣
∣
∣
∣
ρ(w0) − v − M.ρ(w)

r|w|

∣
∣
∣
∣

∣
∣
∣
∣
∞

≤ (r|w| − 1) + α.r|w| + m. ||M ||∞ .(r|w| − 1)
r|w|

≤ 1 + α + m. ||M ||∞
Now, just remark that the following finite class CX,M,α satisfies the lemma:

CX,M,α =






⋃

(q,b)∈F

Nm ∩ M−1(q + b); F ⊆ Q(X) × B






	

Theorem 2. Let S be a counters system with a finite monöıd and X be a NDD-
definable set. There exists a finite class CS,X of subsets of Nm such that for any
w ∈ Σ∗

rm and for any L ⊆ Σ≤r|w|
, we have:

γ−1
w

(
⋃

σ∈L

f−1
σ (X)

)

∈ CS,X

Proof. Let α = max(M,a)∈MS×Σ ||M.va||∞. We define the function gσ : Qm →
Qm by gσ(x) = Mσ.x + vσ for any x ∈ Qm, σ ∈ Σ∗.

Let σ = a1 . . . an be a word of n ≥ 1 actions in Σ and w ∈ Σ∗
rm be a word

of vector digits such that |σ| ≤ r|w|. The sequence of prefixes (σi)0≤i≤n of σ
is defined by σi = a1 . . . ai. The set I(M, a, σ) = {i ∈ {1, . . . , n}; (Mσi , vσi) =
(M, v)} where (M, a) ∈ MS ×Σ is useful to compute the set γ−1

w (f−1
σ (X)) as it

is shown by the following equality:

γ−1
w (f−1

σ (X)) =γ−1
w

(
g−1

σ0
(Da1) ∩ · · · ∩ g−1

σn−1
(Dan) ∩ g−1

σn
(X)

)

=
⋂

(M,a)∈MS×Σ

⋂

i∈I(M,a,σ)

γ−1
w

(
Nm ∩ M−1(Da − vσi)

)

∩ γ−1
w (Nm ∩ M−1

σn
(X − vσn))
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Let CX,M,α and CDa,M,α be some finite classes satisfying lemma 2 for any (M, a) ∈
MS × Σ. From vσi =

∑i
j=1 Mσj .vaj , we deduce ||vσi ||∞ ≤ α.i ≤ α.|σ| ≤ α.r|w|.

Therefore, we have proved that γ−1
w (f−1

σ (X)) is in the following finite class C0
S,X :

C0
S,X =






⋂

Y ∈F

Y ∩ X ′; X ′ ∈
⋃

M∈MS

CX,M,α; F ⊆
⋃

(M,a)∈MS×Σ

CDa,M,α






Now, let CS,X be the set of all finite unions of elements in C0
S,X . From the equality

γ−1
w (
⋃

σ∈L f−1
σ (X)) =

⋃
σ∈L γ−1

w (f−1
σ (X)), we deduce that γ−1

w (
⋃

σ∈L f−1
σ (X))

∈ CS,X for any L ⊆ Σ≤r|w|
. 	


We can deduce many interesting results from the previous theorem. The first
unexpected one is about the asymptotic number of states of the minimal NDD
A(Pre≤k

S (X)) in function of k.

Corollary 1. Let S be a counters system with a finite monöıd and X be a NDD-
definable set. There exists a constant cS,X such that the number of states of the
minimal NDD that represents Pre≤k

S (X) is bounded km + cS,X.

Proof. Let CS,X be a class of finite subsets of Nm satisfying theorem 2 and let
Xk = Pre≤k

S (X). From Xk =
⋃

σ∈Σ≤k f−1
σ (X), we deduce that for any w ∈ Σ∗

rm

such that k ≤ r|w|, we have γ−1
w (Xk) ∈ CS,X . From theorem 1 we deduce that the

set of states Q(Xk) of the minimal NDD that represents Xk satisfies Q(Xk) ⊆
CS,X ∪ {γ−1

w (Xk); r|w| < k}. From card({γ−1
w (Xk); r|w| < k}) ≤ km, we deduce

that the cardinal of Q(Xk) is bounded by km + card(CS,X). 	

The previous corollary proves an experimental result : the number of counters

m is an exponential limitation for the effective computation of A(Pre≤k
S (X)) for

large value of k. However, it explains why there is no exponential blow up in k.
Now, let us study precisely the structure of A(Pre≤k

S (X)).

Definition 8. A state q of a NDD A is said acyclic if the number of paths
q0 → q is finite.

Corollary 2. Let S be a counters system with a finite monöıd and let X be
a NDD-definable set. The number of non acyclic states of the minimal NDD
A(Pre≤k

S (X)) is bounded independently of k.

Proof. Let CS,X be a class of finite subsets of Nm satisfying theorem 2 and let
Xk = Pre≤k

S (X). We are going to prove that for any non acyclic state q of A(Xk),
we have q ∈ CS,X . As the number of paths q0 → q is infinite, there exists a path
q0

σ−→ q such that r|σ| ≥ k. In this case γ−1
σ (Xk) ∈ CS,X . From q = γ−1

σ (Xk),
we deduce q ∈ CS,X . Therefore, the number of non acyclic states of A(Xk) is
bounded by card(CS,X). 	

Remark 4. The cardinal of the set CS,X is used in the two corollaries. From the
proof of lemma 2 and the proof of theorem 2, this cardinal can be easily bounded
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by an elementary function in the size of S, A(X) and in the size of the monöıd
MS . From [MS77], we deduce that MS has a size elementary in the size of S
when matrices Ma are in Mm(N). Therefore, in this case, the cardinal of CS,X

is elementary in the size of S and A(X). When matrices Ma are in Mm(Z), the
elementary size of the monöıd is an open problem to the best of our knowledge.

We can easily extend the previous corollary in order to show that the struc-
ture of the minimal NDD that represents Pre≤k

S (X) corresponds to a BDD
[Bry92] “concatenated” with a NDD that does not depends on k. This final
result shows a new way for implementing a NDD library using all the BDD tech-
niques for speeding-up the computation like cache-computation, minimization
in linear time and strong canonical form, well-known in the field of BDD. Our
symbolic model-checker Fast [Fas], will be available with this new library as
soon as possible.
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[DJS99] Catherine Dufourd, Petr Jančar, and Philippe Schnoebelen. Boundedness
of Reset P/T nets. In Proc. 26th Int. Coll. Automata, Languages, and
Programming (ICALP’99), Prague, Czech Republic, July 1999, volume
1644 of Lecture Notes in Computer Science, pages 301–310. Springer, 1999.

[DRV01] Gorgio Delzanno, Jean-Francois Raskin, and Laurent Van Begin. Attack-
ing symbolic state explosion. In Proc. 13th Int. Conf. Computer Aided
Verification (CAV’2001), Paris, France, July 2001, volume 2102 of Lec-
ture Notes in Computer Science, pages 298–310. Springer, 2001.

[EN98] E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In Proc. 13th IEEE Symp. Logic in
Computer Science (LICS’98), Indianapolis, IN, USA, June 1998, pages
70–80. IEEE Comp. Soc. Press, 1998.



Image Computation in Infinite State Model Checking 371

[Fas] Fast homepage. http://www.lsv.ens-cachan.fr/fast/.
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