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Abstract. We present a novel computational pheromone model for describing
dynamic network behaviors in terms of transition, persistency, and hosting. The
model consists of a three-dimensional force-directed graph with bi-directional
pheromone deposit and decay paths. A data compression algorithm is developed
to optimize computational performance. We applied the model for visual analysis
of a Malware Distribution Network (MDN), a connected set of maliciously
compromised domains used to disseminate malicious software to victimize
computers and users. The MDN graphs are extracted from datasets from Google
Safe Browsing (GSB) reports with malware attributions from VirusTotal. Our
research shows that this novel approach reveals patterns of topological changes
of the network over time, including the existence of persistent sub-networks and
individual top-level domains critical to the successful operation of MDNs, as well
as the dynamics of the topological changes on a daily basis. From the visualiza‐
tion, we observed notable clustering effects, and also noticed life span patterns
for high-edge-count malware distribution clusters.
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1 Introduction

Pheromones in nature are chemical messages that act within a species. They are used
widely by insects for communication within a community and within the body by means
of hormones. This usage led to these substances also being referred to as “social
hormones” [16]. Pheromones are external memories that are physically projected onto
the ground or into the air, and are shared within a group. The dynamics of depositing
and vaporizing pheromones are very sophisticated processes. These chemical messages
have diverse biological effects and differ widely in their modes of action. In practice,
the term “pheromone” proves useful in describing behaviors such as trail formation,
defensive secretions, and social coherence. For the past several decades, several compu‐
tational pheromone models have been proposed such as the classic ant colony optimi‐
zation model [18] and a contemporary online shopping cart product recommendation
model patented by Amazon [20]. Pheromone models have been used in visualization of
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human activities in CCTV footages, social media, and digital forensics [17, 19]. Digital
pheromone models not only represent simultaneous localization, navigation, and opti‐
mization, but also provide perceptual motion intelligence simulations such as low-pass
filters and visual episodic memory. Consequently, digital pheromone models bridge
collective intelligence and primitive intuition, enabling dynamic data modeling and
motion pattern recognition for humans and machines.

In this study, we explore a novel pheromone model for visualization of topological
changes of a large dynamic network. Similar to virus distribution networks in nature, a
cyber malware distribution network (MDN) is a connected set of maliciously compro‐
mised top-level domains (TLDs) used to facilitate the dissemination of malicious soft‐
ware attempting to victimize computers. It acts like a platform for spreading malwares
to other nodes in the network. The challenge here is that MDNs are normally hidden
and constantly change over time. The topological structures, such as domains hosting
and malware and acting as intermediaries assisting in distribution are not revealed until
the network traffic data is collected, attributed from multiple data sources, and system‐
atically plotted.

MDNs have been used in botnets [1, 2], spam campaigns [3] and distributed denial
of service attacks (DDoS) [4]. In general, MDNs are the essential back end distribution
highway fueling underground economies in monetized schemes generating large reve‐
nues for malicious actors [3]. In this study, we provide a biologically-inspired approach
for the construction and visualization of an MDN’s topological structure. We collect
and visualize an MDN data over a period of 9 month in order to gain insight on its
structure, persistence, and evolution over time. Our MDN graphs were based on the
Google Safe Browsing (GSB) transparency report [5] and malware attribution from the
VirusTotal website. Our research shows the novel approach of leveraging GSB and
VirusTotal reports to graph MDNs reveals deep insight into structural changes over time.
The main contributions of this paper include the novel pheromone-based visualization
model that reveals the existence of persistent sub-networks and individual TLDs critical
to the successful operation of MDNs and use of crowdsourcing data from Google Safe
Browsing and VirusTotal for constructing MDN networks.

2 Related Work

A corpus of research [6, 7] has proposed various approaches to identify malicious URLs.
Research such as [8, 9] describe and analyze the use of MDNs and their various compo‐
nents in monetized schemes such as botnets, pay-per-install affiliate programs and traffic
direction systems. In the study [10], Behfarshad describes MDNs as a set of landing
pages, redirectors, and malware repositories. The authors suggest detecting the presence
of an MDN by identifying drive by download attempts via two methods: top-down and
bottom-up. The research of Provos, et al. [11, 12] is part of the early work describing
web based malware and the existence and identification of MDNs. Their research
provided insight on identifying malicious URLs and explains the critical role of
iframes, which are a simple and widely accepted mechanism for redirection in http
traffic, as the fundamental link binding multiple URLs together in an MDN. The
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culmination of their work is the Google Safe Browsing service that is the key data source
for our research. We enhance the current literature by defining an MDN and visualizing
a graphical topological structure including vertex role based node types indicative of a
TLD’s role in malware distribution. The authors of this paper developed an early version
of a 3D interactive visualization system that revealed basic distribution patterns from
the GSB data collected in 2014 [21]. In this study, we want to advance visual analytics
with a pheromone simulation model to explore the attributed malware distribution
network data collected in 2017, in order to gain insight on network structure, evolution,
and persistence over time.

3 Malware Distribution Network as a Graph

An MDN is a dynamic structure topologically consisting of interconnected TLDs. An
MDN changes over time that is captured with topological structure visualization at
different points in time. We formally define a graph capturing the temporal topological
structure of an MDN. A representation of an MDN at a given point in time is defined as
a directed graph M(t) = {V(t), E(t)} such that V(t) is a set of vertices at time t, E(t) is a
set of directed edges: {vi(t), vj(t)} ∈ V(t) at time t. In a given graph M(t), a vertex v ∈ V(t)

represents an MDN node in one or more modes. The full range of a node’s modality in
the MDN is unknown. We suggest, based on GSB reports, three possible roles: in an
MDN, a node may act as an intermediary (MI) by facilitating malicious traffic, a mali‐
cious host (MH) or root malicious host (RMH) if malware files were hosted from that
domain. In our visualizations, MI and MH nodes have incoming edges, but RMH nodes
do not. This implies malware in RMH nodes came from some source other than those
represented by a node in the MDN. Figure 1 illustrates an MDN structure.

Fig. 1. Definition of a malware distribution network

4 Pheromone Model

We first build a dynamic graph of the malware distribution network. Graphs are repre‐
sented by an augmented adjacency list data structure that is designed to capture both the
dependencies of graph links and the mode of linkage type – MI or MH. We describe this
data structure as a list of key – value pairs, whose keys are the top level domain of a
website, denoted as a source and key values are a pair <mode, destination> where by
destination is top-level domain which is reported as being affected by the source. To
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place all the top-level domains on the visualization, we used a Dynamic Behavioral
Graph [22] to incorporate event frequencies, protocol types, packet contents and data
flow information into one graph. In contrast to a typical Force-Directed Graph such as
D3 [16], our model goes beyond the aesthetic layout of a graph to reveal the dynamic
sequential patterns in a three-dimensional virtual space. In the model, the attraction force
between a pair of nodes is calculated using formula:

fa =

‖‖‖xj − xi

‖‖‖
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where: i and j are distinct nodes, α is the value of elasticity where a greater value
increases the length of the edge. 𝛽 is the coefficient for repulsion force. T is equal to the

average time between each nodes’ timestamps and |||
|||xi − xj

|||
||| is the distance between two

nodes.
We use a gradient arc for displaying the direction of edges. The decrease of alpha

value indicates the direction, with 1 at the source and 0 at the end. This novel visual
representation also enables us to add the attributes to the edges. See Fig. 2.

Fig. 2. Examples of the dynamic behavior graph of an MDN

Simple pheromone-based movement can produce sophisticated dynamic patterns.
Conventional Ant Colony Optimization (ACO) models assume that insects walk along
paths that connect various nodes. Pheromones can be overlaid in multiple layers.
Furthermore, pheromones decay at a certain rate. If they did not decay, ants would risk
repeating the same route and not respond to a rapidly changing environment. Here, we
generalize pheromone deposit and decay on paths of a network. The amount of phero‐
mones at a pixel position at time t is:

Deposit: D(t) = min (
∑N

i=0
ui(t), M) (3)

Decay: D(t) = max
(
ui(t) − r ⋅ t, L

)
(4)
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where, D(t) is the current pheromone level at a particular path i between two nodes.
M and L are the upper and lower bound limits to it. ui(t) is an individual pheromone
deposit at time t and N is the total number of deposits on that particular edge. ‘r’ is the
linear decay rate. See Fig. 3.

Fig. 3. Pheromone deposit and decay model for representing the persistency of the malware
distribution channels (connected edges in the graph).

5 Graph Display Optimization

Whenever there is a new node entering the visualization space, the algorithm has to
measure the distance between the new node and all the rest of the nodes nearby to ensure
that they won’t collide to each other, which is computationally expensive. In order to
speed up the process, we optimize the repulsion calculation along the Z-axis. Here is
the pseudo code of the method:

1. Calculate repulsive forces
2. Propagate backwards
3. Calculate repulsion displacement from search_node to current_node
4. Propagate forwards
5. Calculate repulsion displacement from search_node to current_node

This enables to speed-up in orders of magnitude and to handle more nodes in the
model. For example, before the optimization, it took 30 min to process 2,000 nodes.
After the optimization, it takes less than 5 min to process the same amount of the nodes.
See Fig. 4.

Fig. 4. A compression mapping along Z-axis in order to filter out the nodes that are further than
a threshold.
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6 Data Collection

We have collected the data for creating MDN graphs for a 9-month period from 19
January 2017 to 25 September 2017. We used the Google Safe Browsing (GSB) Trans‐
parency Report as our main source of data. We seeded the process by requesting a GSB
report for the known websites such as notorious vk.net once every 24 h. The site vk.net
was selected as the seed website based on a four month observation of the site reliably
appearing on GSB. The report, in JSON format, consisted of various statistics as shown
in Appendix A. The statistics of interest to us were labeled: name, sendsToAttackSites,
receivesTrafficFrom, sendsToIntermediary-Sites, lastVisitDate, and lastMaliciousDate.
If the returned report listed domains for labels 2, 3, or 4, those domains were added to
the queue to be requested to GSB. This was an exhaustive recursive process that
continued until a report with no more domains listed for these labels was received from
GSB. We labeled nodes for domains listed with nonempty statistic 2 and 4 as an Inter‐
mediate Site (MI), and domains with empty statistic 3 as a Malicious Host (MH) or Root
Malicious Host (RMH). The data provided in the GSB report only allowed us to create
outgoing edges form the node for the current domain under analysis. All nodes are
initially labeled as a Malicious Node (MN) and could be relabeled to MH or MI if the
GSB report for a domain listed in 3 contained the current domain name in 2 or 4. If this
was the case, an incoming edge can be created from the domain listed in 3 to the current
domain under analysis. An MN with no incoming edges for the current collection was
relabeled to a Root Malicious Node (RMN). This node is unique to our MDN graphs as
it cannot be determined from the GSB reports alone. Our collection process occurred
daily starting at 9:00 am EST and required from 4 to 11 h to complete, thus starting and
finishing within the same calendar date. We decided on collecting just once a day after
extensive manual analysis of the GSB report’s value for label 6 over several weeks
revealed GSB tended to perform diurnal updates of their report details.

7 Malware Attribution

We constructed a filtered data set because we want to retain significant patterns for
effective visualizing and the design of such a filter must prevent over-trivializing the
data. We therefore used VirusTotal scans sites that perform malware distribution on
submitted URLs and files logs a report for each query. When given the list of malicious
domains, VirusTotal gives the set of reports which list malware linked to the sites. Our
malware-attributed data set is the set of TLDs that appear in at least one report of a
known malware from VirusTotal. However, as reports are generated only when a
malware scan query is sent to VirusTotal, there may not be a report corresponding
precisely to the last malicious time reported by Google Safe Browsing. Therefore, the
filtered dataset is the set of TLDs that have a report that marks the site as containing
malware within 10 days of when Google Safe Browsing determined the site to be mali‐
cious. The visualization images provided are based upon this malware-attributed set.
More specifically, the visualized dataset is the set of edges that either receive or send
traffic from a site that has a properly timed report denoting it as malicious. See Appendix
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B and C for a sample of the VirusTotal report and the statistical summary of the collected
data from GSB and VirusTotal. See Fig. 5.

Fig. 5. The malware distribution data collection and attribution process

8 Visualization Results

The data we visualized are the malware-attributed data as described in the prior section,
containing all edges that have at least one endpoint being a malware attributed site. Each
edge is label with corresponding capture date time stamps, and rendered in chronological
order, spanning across the entire 9 months of data. The rendering process iteratively
adds each edge supplied to the graph, depending on whether both endpoints of the edge
already exists in the graph, the visualization process will add nodes to the graph and
then render a cold colored edge. Each day, the color of the existing edge becomes warmer
until it reaches red, reflecting the age of each malicious link. If an existing edge is present
in a later collection, the edge will be reassigned a cold color. When an edge is red, it
will disappear when the visualization reaches the next day if the edge is not present in
the data set for the next day. Given that each edge is directed, opaqueness of the edge
demonstrates which node is sending traffic and which node is receiving traffic in the
link. Figure 6 through Fig. 8 show the clusters of MDN evolved on January 19th, 20th,
and 21st of 2017. Figure 9 shows a close-up of the MDN on September 25th of 2017
(Fig. 7).

From our visualization of the malware-attributed dataset, we can observe five key
dynamic phenomena: First, having a clear distinction between days, we can observe the
clustering effect of the malware nodes. Large clusters do not form rapidly. Instead, a
cluster of significant size in general requires one to two weeks to form. It is rare for
edges to be continuously added to a singular node in succession to form a super node,
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instead, smaller chains will first form over time before multiple chains gather together
to form a large cluster. In particular, for the months of January, March, and June, we are
able to observe a large centralized cluster of similar websites. This highlights potential
large-scale malware attacks that may be occurring during those particular periods and
the similarities in the distribution network used for those attacks.

Second, the visualization process highlights the quantitative differences in number
of malicious nodes that exist for any particular month visually. By examining the time
stamps presented and the quantity of edges present on screen we can visually determine
the change in quantity of data over time. For example, we can observe that the quantity
of malicious nodes peaks in our dataset during February. We can also visually compare
the outbound and inbound edge frequencies across different time periods as well as
examine whether high-edge-count sites are scattered or closely interconnected.

Third, the visualization is the ease of determining and examining the site with traits
of particular interest. For example, root malicious nodes (RMN) are easily identified
visually as each edge has a gradient effect where the opaque end marks the source and
the transparent end marks the destination, so a node with only outgoing edges can be
identified as a root malicious host (RMH) while examining the visualization. Further‐
more, because the visualization allows us to traverse the graph in 3D as well as zoom
in and out, we can examine the changes in the nodes, such as a malicious root node
(RMN), is connected to, as well as observe the chains that the root malicious nodes
(RMN) are part of as they dissipated and form. For example, in Fig. 9, we can zoom in
to a specific node to see the node’s address as well as the address of the adjacent nodes
in the visualization.

Fourth, given that the data visualized is labeled with time stamps, we can observe
changes per specific quantity of time. As mentioned the prior section, the data is filtered
to those with a malware-attributed date within 10 days of the capture date. With this
time frame in mind, when combined with the timestamps displayed in the visualization,
we can view specific changes in whether a link is malicious or not and the time frame
which it is malicious. Using this we can view whether past links are deprecated as new
links are established and have approximations for overlapping active times in a malware
distribution chain.

Finally, the timestamps are further supplemented by the pheromone effect. As
describe at the beginning of this section, edges decay over time, with colors representing
the age of the edge. The key benefit of this method is the ability to observe the frequency
a link is used in malware distribution, at each time in a new collection, when an existing
edge is mentioned again, it will be restored to the color that represents very recent.
Therefore, in the duration which an edge remains in existence, the frequency of being
reset to the coldest color will approximate the frequency the link was malicious. This
pheromone method also highlights the order of deprecation in malware distribution
chains by showing which links first becomes unused. By decaying edges gradually, we
can more easily see changes in chains as malware distribution links shift over time.
Overall, the pheromone effect in the visualization give visual feedback on such pattern
in a visually identifiable manner.
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Fig. 6. A cluster of malware distribution network on January 19, 2017. (Color figure online)

Fig. 7. A cluster of malware distribution network on January 20, 2017. (Color figure online)
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Fig. 8. A cluster of malware distribution network on January 21, 2017. (Color figure online)

Fig. 9. A close-up of the cluster of malware distribution on September 25, 2017. (Color figure
online)
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9 Conclusions

In this study, we provide a biologically-inspired approach for the construction and visu‐
alizing an MDN’s topological structure. We collect and visualize an MDN data over a
period of 9-month in order to gain insight on its structure, persistence, and evolution
over time. Our MDN graphs were based on Google Safe Browsing (GSB) reports and
malware attribution from VirusTotal. Our research shows the novel approach of lever‐
aging GSB and VirusTotal reports to graph MDNs reveals deep insight into structural
changes over time. We found that the pheromone-based visualization model reveals the
existence of persistent subnet works and individual TLDs’ critical to the successful
operation of MDNs.

The pheromone model shows the evolving MDN dynamics on daily basis, which
enables analysts to zoom in and out, pause, replay, and fast-forward the animation inter‐
actively. Furthermore, we found use of crowdsourcing data from Google Safe Browsing
and VirusTotal are critical for constructing MDN networks. We need to explore the open
source space for better availability of data and more accuracy of the attribution of
malware types, names, and contents.

From the visualization, we are able to notice significant malware distribution clus‐
ters. Specifically we found large malware distribution clusters in the months of January,
March, and June. The visualization also highlighted how large distribution clusters
require approximately two weeks to form and also an approximate life span of two
weeks.
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Appendix A: Sample GSB Data in JSON Format

{"date": 1484884380.0, "website": {"name": "nowcheck247freshandforfree. online/", 
"partialUnknownDowHosts": [], "partialMalwareDowHosts": [], "malwareSite":
{"sendsToAttackSites": ["milleniumforum.info/"], "receivesTrafficFrom": 
["veryhotmom.com/"], "type": 8, "sendsToIntermediarySites": []}, 
"uwsDownloadListStatus": "unlisted", "partialUwsDowHosts": [], "uwsListStatus": 
"unlisted", "unknownDownloadListStatus": "unlisted", "partialUwsHosts": [], 
"malwareDownloadListStatus": "unlisted", "partialSocialEngHosts": [], 
"malwareListStatus": "unlisted", "numAses": 1, "asList": ["AS12876 (AS12876)"], 
"numListedTimes": 0, "partialMalwareHosts": [], "socialListStatus": "listed"}, 
"lastVisitDate": 1482084799, "numTested": 7, "as": {}, "dataUpdatedDate": 
1484871006, "lastMaliciousDate": 0}

Appendix B: Sample VirusTotal Data in CSV Format

ameritag.com,1493672220.0
Trojan.Script.682678,JS.Dropper.JU,JS.Trojan.Iframe.nm,Trojan.Gen.7,
JS/Iframe.MO,JS:Iframe-EPR [Trj], HEUR:Trojan.Script.Generic, 
Trojan.Script.682678, Trojan.Script.Iframe.ecnmvw, Troj.Script.Generic!c, 
Trojan.Script.682678, Trojan.Script.682678(B), TrojWare.JS.Iframe.MO, 
Trojan.Script.682678,SCRIPT.Virus, JS_AXPERGLE.SM, HTML/ExpKit.Gen2, 
VirTool:JS/Obfuscator, JS.Z.Agent.4728.I[h], 
HEUR:Trojan.Script.Generic,Script.Trojan.IFrame.AL,
Trojan.Script.682678,Win32.Script.Agent.Pgwl, Trojan.HTML.Framer, 
JS/Moat.6D1444D0!tr, HTML/Framer,virus.js.qexvmc.1

Appendix C: Statistics of the 9-Month Dataset

Months Nodes Inbound edges Outbound edges Attributed nodes
January* 14810 19199 36655 156
February 18660 24830 46896 222
March 15664 20229 36084 173
April 15880 21251 36719 188
May 14620 19953 34129 125
June** 12352 17055 30204 178
July 12057 18111 33202 136
August 8813 12272 22350 88
September*** 7731 10699 21122 45

*Started on January 19, 2017
**There were 5 days down time
***The ending date was September 25, 2017
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