
Inference-Proof Updating of a Weakened View
Under the Modification of Input Parameters

Joachim Biskup(B) and Marcel Preuß(B)

Technische Universität Dortmund, Dortmund, Germany
{joachim.biskup,marcel.preuss}@cs.tu-dortmund.de

Abstract. We treat a challenging problem of confidentiality-preserving
data publishing: how to repeatedly update a released weakened view
under a modification of the input parameter values, while continuously
enforcing the confidentiality policy, i.e., without revealing a prohibited
piece of information, neither for the updated view nor retrospectively
for the previous versions of the view. In our semantically ambitious app-
roach, a weakened view is determined by a two-stage procedure that takes
three input parameters: (i) a confidentiality policy consisting of prohibi-
tions in the form of pieces of information that the pertinent receiver of
the view should not be able to learn, (ii) the assumed background knowl-
edge of that receiver, and (iii) the actually stored relation instance, or the
respective modification requests. Assuming that the receiver is aware of
the specification of both the underlying view generation procedure and
the proposed updating procedure and additionally of the declared confi-
dentiality policy, the main challenge has been to block all meta-inferences
that the receiver could make by relating subsequent views.

Keywords: Background knowledge · Inference-proofness · History-
awareness · Meta-inference · Policy of prohibitions · Relational data-
base · Semantic confidentiality · Update · View generation · Weakened
information

1 Introduction

Within a framework of cooperating with partners and sharing resources with
them, managing the fundamental asset of own information – whether personal
or institutional – has evolved as a main challenge of IT-security, leading to
diverse computational techniques to enforce all kinds of an owner’s interests. This
includes confidentiality-preserving data publishing [8] aiming at hiding specific
pieces of information while still providing sufficient availability. One class of tech-
niques for confidentiality-preserving data publishing distorts data by weakening
the still true information content of released data, e.g., by explicitly erasing sen-
sitive data or by substituting sensitive data items by suitably generalized ones,
as for instance applied for k-anonymization with l-diversification [12,15,17].

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 381–401, 2017.
DOI: 10.1007/978-3-319-66399-9 21

382 J. Biskup and M. Preuß

Whereas the effectiveness of many such techniques relies on the appropriate-
ness of more or less intuitive concepts, like, e.g., quasi-identifiers, our own app-
roach has more ambitiously been based on a fully formalized notion of semantic
confidentiality in terms of inference-proofness. This notion considers an autho-
rized receiver that profits from some background knowledge and unlimited com-
putational resources for rational reasoning. More specifically, in previous work [4]
we conceptually designed a two-stage view generation procedure that weakens
the information content of an actually stored relation instance, and we verified
the requested confidentiality property and experimentally evaluated the runtime
efficiency. This procedure takes three input parameters, (i) a confidentiality pol-
icy consisting of prohibitions in the form of pieces of information that the perti-
nent receiver of the view should not be able to learn, (ii) the assumed background
knowledge of that receiver in the form of single-premise tuple-generating data
dependencies, and (iii) the actually stored relation instance.

Example 1 (weakened view). Let R be a relation symbol (table name) with
three attributes (columns) with (conceptually) countably infinite domains, hav-
ing the current relation instance r = {(a, b, c), (a, c, c), (b, a, c)} under closed-
world assumption. Expressed in terms of first-order logic as a basis for formal
semantics of relational databases [1], this means that the three ground atoms
R(a, b, c), R(a, c, c) and R(b, a, c) are evaluated to true, whereas all other syn-
tactically possible ground atoms are considered to be evaluated to false. For
the moment still neglecting background knowledge, let us further suppose that
the data owner wants to prohibit that the anticipated receiver of the view to be
generated could ever learn that R(a, b, c) is true, and so for R(a, b, d). Obviously,
that view should not reveal that the tuple (a, b, c) is an element of the relation
instance r.

The view generation procedure of [4] achieves this goal as follows. In the first
stage, only treating the considered prohibitions, the procedure forms a disjunc-
tive template R(a, b, c) ∨ R(a, b, d) (notably, the truth evaluation of which is not
prohibited to be known). In the second stage, the procedure checks each ground
atom that is true in the instance whether it entails a disjunctive template. If this
is the case the procedure replaces the ground atom by all those templates, thus
weakening the originally complete information about the ground atom into still
true disjunctions. Thus, so far, the view consists of the (distorted) disjunctive
part R(a, b, c) ∨ R(a, b, d) and the (untouched) positive part formed by R(a, c, c)
and R(b, a, c). Moreover, these parts are complemented by an (adapted) negative
part that replaces the original closed-world assumption by a first-order sentence
intuitively expressing that any ground atom that does not entail any element of
the disjunctive part and of the positive part should be evaluated to false:

(∀X)(∀Y)(∀Z) [(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨ (X ≡ a ∧ Y ≡ b ∧ Z ≡ d)∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨ (X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨ ¬R(X,Y,Z)] .

The weakened view consisting of the three parts does not entail any of the
prohibited sentences. Moreover, capturing the receiver’s assumed awareness of

Inference-Proof Updating of a Weakened View 383

the control mechanism, the view is even inference-proof in the sense that for each
prohibited sentence Ψ there is a fictitious “alternative” relation instance rΨ that
would generate the same view as r and make Ψ false. In fact, after seeing the
view and in particular learning the truth of the disjunction R(a, b, c)∨R(a, b, d),
the receiver can not distinguish whether only R(a, b, c) is true or only R(a, b, d)
is true or both R(a, b, c) and R(a, b, d) are true.

authorized partner data owner
as semi-honest attacker as defender

? gaining
information

awareness of

control mechanism

background knowledge

about application

communicated data

client agent data
 modifica-

 tion

protected information system agent

view
generation

 view
update

 inference control
for confidentiality

requesting
observing
data

over the time unlimited reasoning
and storage capabilities

weakened relation security
view instance configuration

 stored data

modifications

Fig. 1. Visualization of the problem of confidentiality-preserving view updating

Considering the situation roughly visualized in Fig. 1, in the present work we
address and solve the problem of efficiently updating a released weakened view
under a modification of the input parameter values, while continuously enforcing
the confidentiality policy, i.e., without revealing a prohibited piece of informa-
tion, neither for the updated view nor retrospectively for the previous versions of
the view. Conservatively assuming that the receiver is aware of the specification
of both the view generation procedure and the updating procedure and, addi-
tionally, of the declared confidentiality policy – and thus of the whole security
configuration consisting of the policy and the background knowledge – the main
challenge has been to block all meta-inferences that the receiver could draw by
relating subsequent views. The wanted blocking is achieved by establishing suf-
ficient indistinguishability between the actual, possibly harmful situation and a
fictitious harmless situation.

In Sect. 2, besides briefly discussing related work, we identify some basic
conditions for achieving our goal in a still intuitive style. Then, in Sect. 3 we
introduce our formal framework in order to prepare for proving precise assurances
about our solution. This solution is presented and analyzed in Sect. 4. Finally,
in Sect. 5 we report on the practical efficiency of a prototype implementation.

384 J. Biskup and M. Preuß

2 Conditions for Inference-Proof View Updating

Example 2 (instance modification). Continuing Example 1, let the owner now
insert the tuple (a, b, d) into the relation instance r. The corresponding ground
fact R(a, b, d) entails the disjunctive template R(a, b, c) ∨ R(a, b, d), which how-
ever is already contained in the view, such that the view generation algorithm
applied to the updated relation r′ returns the same view as before, which per
se appears to be harmless. However, if the receiver got informed about the mere
fact of a successful insertion of a new tuple, by recognizing that nevertheless
the view remained unchanged the receiver could figure out that originally only
exactly one of the ground atoms R(a, b, c) and R(a, b, d) has been true and, thus,
now both of them are true. But this would violate the requested confidentiality.

Now, suppose we start with the instance r′ = {(a, b, c), (a, c, c), (b, a, c),
(a, b, d)} and then the owner deletes first (a, b, c) and then (a, b, d). At the begin-
ning and also after the first deletion, the respective views are the same as above.
But after the second deletion, the disjunction R(a, b, c) ∨ R(a, b, d) is removed
from the view and the negative part is suitably adapted. Again, if the receiver
got informed about the mere fact of two successful deletions, by recognizing
that first the view remained unchanged and then the disjunction was dropped,
the receiver could figure out that originally both ground atoms R(a, b, c) and
R(a, b, d) have been true. But this would violate the requested confidentiality.

Such a kind of challenge has been identified earlier for diverse and only
partially comparable settings, briefly and selectively classified in the following
and further surveyed in Table 1; see also Sect. 6 of [8]. The owner’s data might
be either a relation instance focused on individuals [2,7,11,16,18–20] or, more
generically, any logic-oriented knowledge or belief base which includes any rela-
tion instance under closed world assumption (this work, [3,5,6]). The protection
need might refer to either the values of a sensitive attribute [2,7,11,16,18–20] or
a suitable class of sentences in the underlying logic (this work, [3,5,6]), aiming at
either a suitably strengthened version of l-diversity (with match-uncertainty [11])
or a general notion of continuous semantic indistinguishability, respectively. Sim-
ilarly, the background knowledge might dedicatedly consist of either the popula-
tion concerned [2,7,11,16,18–20] (under uniform publication procedures [11]) or,
more generically, of a suitable class of sentences in the underlying logic (this work,
[3,5,6]). Regarding modifications, there might be either none but only sequential
releases of different views [18,20] or independently by other publishers [11], or
insertion of tuples only [7,16] or both insertion and deletion of tuples [19] or,
additionally, also value modification [2,3,5] or belief modification [6] or transac-
tional modifications of not only the instance but also of the background knowl-
edge and the confidentiality policy (this work). The modification request might
be issued by either the information owner (this and most other work), or by the
attacking receiver [3,5,6], as already earlier studied for mandatory multilevel
databases with polyinstantiation. And the main distortion kind might be either
lying [3] or refusals [5,6] or value generalization [2,7,11,16,18–20] or weaken-
ing by disjunctions (this work), the three latter ones possibly complemented by
either restricted lying by fake tuples [2,19] or sampling and noise addition [11]
or restricted refusals (this work).

Inference-Proof Updating of a Weakened View 385

T
a
b
le

1
.
P
ro
p
er
ti
es

o
f
se
le
ct
ed

a
p
p
ro
a
ch
es

to
co
n
fi
d
en
ti
a
li
ty
-p
re
se
rv
in
g
u
p
d
a
ti
n
g

386 J. Biskup and M. Preuß

Example 3 (policy modification). Again extending Example 1, let the owner
now specify R(a, c, c) as a new prohibition in the confidentiality policy. The
first stage of the view generation procedure would aim at forming a disjunctive
template covering the specified new prohibition and also being disjoint from all
other templates. To achieve these goals, the procedure has to select an additional
(artificial) prohibition, say R(b, c, c), and might then add R(a, c, c) ∨ R(b, c, c)
as a further disjunctive template. Since the tuple (a, c, c) is an element of the
relation instance r, the ground fact R(a, c, c) should no longer appear in the
positive part of the modified view generated in the second stage. Instead, the
weakening disjunction R(a, c, c) ∨ R(b, c, c) should become a further element of
the disjunctive part, with the negative part being suitably adapted.

However, if the receiver could be sure that the relation instance r has not been
modified, he would still know that R(a, c, c) is true. This would violate the new
prohibition and, thus, the weakening would be useless. In other words, if previous
knowledge about the instance already indicates a violation of the modified policy,
then inference-proofness of the updated view can not be achieved. This problem
can be resolved by requiring that each modification of the confidentiality policy
occurs as part of a transaction that might also comprise instance modifications,
and thus previous knowledge about the instance could be no longer be valid.

More generally, also dealing with background knowledge as discussed below,
we will show that always leaving the receiver uninformed about the kind of
the requested modifications – in particular uncertain about additional instance
modifications that are not reflected in the new weakened view – is sufficient
to enforce the wanted notion of confidentiality. The examples considered so far
together with the claimed generalized insights indicate that the underlying view
generation procedure enjoys reasonable robustness regarding modifications of
the instance and the policy. This behavior mainly results from two fundamental
features of the overall approach: the two-stage design dealing with the policy and
the instance separately, and the strict isolation of the three parts of a weakened
view regarding entailments. However, achieving this isolation in the presence
of background knowledge, so far neglected, requires quite subtle considerations
presented in [4] and in more detail in [14].

In particular, and only briefly sketched, background knowledge affects the
forming of disjunctive templates in the first stage of the view generation proce-
dure in two ways. First, it might become necessary to introduce further prohibi-
tions, which in particular strengthens the needs to clean the (extended) policy
from redundancies. Second, the background knowledge has to be partitioned
regarding unwanted joint entailment effects such that, roughly described, dis-
junctive templates have to be formed of suitably “independent” prohibitions
that are not affected by sentences of the same partition block. In more general
terms, the set of disjunctive templates might be modified. Moreover, in some
cases the weakened view has to additionally comprise a refused part consisting
of so-called refusals, i.e., sentences whose truth evaluations are explicitly denied
whatever the stored relation might look like.

Inference-Proof Updating of a Weakened View 387

Example 4 (background modification). Again continuing Example 1, let now
the database application have been changed such that in future all relation
instances will satisfy the data dependency R(a, b, d) ⇒ R(c, c, c). Moreover, let
the owner assume that the receiver can henceforth exploit this dependency as
his background knowledge. As known to him by the negative part of the view,
(a, b, d) �∈ r and thus the premise of the dependency is not true. So, at first
glance the dependency seems to be not helpful for the receiver. A second thought,
however, easily indicates that the following inference would be enabled.

Since also (c, c, c) �∈ r and thus the conclusion R(c, c, c) of the depen-
dency is not true as well, applying the dependency in contraposition, i.e.,
¬R(c, c, c) ⇒ ¬R(a, b, d), the receiver can learn that R(a, b, d) is false. Thus,
given the truth of the disjunction R(a, b, c) ∨ R(a, b, d), the receiver can con-
clude that R(a, b, c) is true. Hence, without suitable further precautions, the
confidentiality policy would be violated. In fact, the underlying view generation
procedure would already treat the conclusion R(c, c, c) as a further prohibition.

The insights gained from the given examples and the lessons learnt from
elaborating the above sketched solutions lead to the following list of conditions
for inference-proof view updating:

– C1: (only) conflict-free requests:
An initial input control checks whether a modification request of the owner
consists of insertions and deletions that are not conflicting. In particular, an
item should not be required to be both inserted and deleted within the same
modification request, and the items to be modified should be consistent.

– C2: (only) transactions:
The accepted inputs of the owner are processed as a transaction with seman-
tics that lead to either a commit (all temporary modifications of the relation
instance and the security configuration are made persistent) or an abort (the
relation instance and the security configuration remain unchanged, i.e., all
temporary actions are rollbacked).

– C3: (only) possibly comprehensive transactions:
Extending condition C2, additionally, (from the point of view of the receiver)
the inputs for each transaction might be comprehensive, i.e., they might
always comprise all kinds of modifications, i.e., simultaneously instance mod-
ifications, background modifications and policy modifications.

– C4: (only) state-related invariants:
Each invariant whose satisfaction is checked for the final decision on either
committing or aborting the transaction only refers to the preliminarily gener-
ated internal situation, but not to the relationship between the previous one
and the still preliminary one.

– C5: notifications:
The receiver is always notified about a request of the owner for modifications
by either returning the updated weakened view or sending a note about an
input rejection or a transaction abort, respectively.

388 J. Biskup and M. Preuß

– C5*: only notifications of effective and committed transactions:
More restrictively, the receiver is notified about a request of the owner for
modifications only if (i) the inputs are not rejected, (ii) the transaction has
been committed and (iii) the view update has been effective, i.e., the weak-
ened view has actually been changed. Otherwise, an owner’s input attempt
is totally invisible to the receiver.

– C6: observability of the security configuration:
The receiver can always learn the somehow “posted” current security con-
figuration which includes the awareness of related requests for modification
(but the receiver can never see the current relation instance nor requests for
instance modifications).

For most applications, we see no need to inform the receiver about internal mod-
ification requests that do not actually change the published view. Accordingly, as
expressed by condition C5*, it appears to be reasonable to completely hide the
processing of requests that do change the external view. Technically, condition
C5* would require to consider possibly differing local times of the owner and of
the receiver, respectively. Then, to distinguish points in time local to the owner
that are observable by the receiver and those points that are not, we would have
to employ a rather complicated formal representation of our approach.

However, under the remaining conditions C1–C6 we can show that our view
update procedure is inference-proof even if the receiver can observe the fact
(but not the internal effects) of unsuccessful internal processing. Accordingly, to
simplify the presentation by avoiding asynchronous local times, we will elaborate
our approach based on conditions C1–C6, with a global discrete time for both
agents, with points in time 1, 2, . . . used as synchronous timestamps.

3 Basic Concepts and Formal Definitions

We will formally define the basic concepts leading to the underlying view gener-
ation procedure, briefly summarize the assurances proved before in [4,14], and
introduce a precise notion of continuous inference-proofness to be enforced by
the new view update procedure. Figure 2 outlines the framework.

3.1 Database Management System

We consider a relational database management system, which is operated under
the control of the data owner. The system is based on a single relational schema,
which comprises a fixed relation symbol (table name) R, a fixed finite set of
attributes (column names) A = {A1, . . . , An}, each of which has the same infinite
domain Dom of constants, and some possibly time-varying set SCt of semantic
constraints. At each point in time t the system maintains a database instance rt,
which is a finite set of tuples over A with values in Dom, satisfying the current
semantic constraints in SCt. Such an instance is treated as being complete: each
tuple in rt represents a fact that is true in some fictitious “real world”; whereas,

Inference-Proof Updating of a Weakened View 389

modifymodify

weakened disjunctive refused relation background policy with
 view templates prohibtions instance knowledge prohibitions
 v temp refu r prior ppol

Δr = (Δ+r , Δ−r)

Δprior = (Δ+prior , Δ−prior)

Δppol = (Δ+ppol , Δ−ppol)

instance-independent
 determination of
templates and refusals

 previous
 view

 vprev

 compare
 and

 notification
block/trigger

 outputs for receiver:

...

inputs of owner:
 as acceptable transaction

 explicitly returned notification about the weakened view
 and somehow ‘‘posted‘‘ security configuration

 owner‘s database management system
protected by inference control for data publishing

 v2 temp2 ref2 prior2 ppol2

 v1 temp1 ref1 prior1 ppol1

 vt tempt reft priort ppolt

 vt‘ tempt‘ reft‘ priort‘ ppolt‘

 perform
 inferences

 inferred knowledge
about hidden instance r

instance-independent
 determination

 suspected design of receiver as attacker

 ...

 ...

 views configurations

 instance-dependent
generation/update of
 weakened view

modify

 request for modifications

 (initially, at time 1,
 at times 2,3, …

 for view generation)
 r, prior, ppol

Fig. 2. Outline of the owner’s protection (upper part) against the anticipated receiver
seen as a rational, omnipotent and too-curious attacker (lower part)

by Closed World Assumption (CWA), each other tuple over A with values in
Dom represents a possible fact which is false in that world.

We follow a foundation of the relational model of data in terms of first-order
logic with equality, as also used, e.g., in [1,10]. Syntactically, the logic is specified

390 J. Biskup and M. Preuß

by a language L over ≡, R, A, Dom, variables, propositional connectives and
first-order quantifiers in the usual way. Semantically, for this logic we treat a
database tuple (a1, . . . , an) as a ground fact R(a1, . . . , an) ∈ L and a database
instance as a finite Herbrand interpretation of L with the infinite universe Dom
assuming unique names. Using an instance in this way, we can inductively assign
a truth value to each sentence in L . This foundation also provides us with
the pertinent notions of satisfaction and entailment : an instance r, seen as an
Herbrand interpretation of the kind described above, satisfies a sentence Φ ∈ L
(r is a model of Φ, r |= Φ) iff the truth evaluation according to r returns the
truth value true; a set S ⊆ L of sentences entails a sentence Φ ∈ L (S |= Φ) iff
each instance r satisfying S also satisfies Φ.

For confidentiality policies we employ the sublanguage Lexist of existential
facts, which are sentences in L of the form (∃Xi1) . . . (∃Xim)R(t1, . . . , tn) with
pairwise different variables Xi1 , . . . , Xim and terms tij = Xij for ij ∈ {i1, . . . , im}
⊆ {1, . . . , n} and ti ∈ Dom otherwise. Such a sentence corresponds to a subtuple
where the components for the attributes in {Ai1 , . . . , Aim} are dropped. We
also see ground facts (without any existentially quantified variables) as elements
of Lexist. For weakening we employ the sublanguage L ∨

exist of strict and non-
redundant disjunctions over Lexist, i.e., all sentences of the form Ψ1∨Ψ2∨. . .∨Ψk

such that k ≥ 2, Ψi ∈ Lexist and Ψi �|= Ψj for i �= j.

3.2 Inference Control for Data Publishing

The database management system is protected by an inference control system for
data publishing, which for each point in time t internally determines a receiver-
specific current weakened view vt on the current relation instance rt. The current
view vt also depends on the current security configuration, which consists of the
currently assumed background knowledge prior t ⊇ SCt of the receiver, and the
currently declared confidentiality policy ppol t for the receiver.

The initial view v1 is generated by applying the underlying view generation
procedure vgen [4,14], i.e., v1 = vgen(r1, prior1, ppol1). During its first still
instance-independent stage, this procedure vgen also internally determines the
initial set temp1 of disjunctive templates and the initial set refu1 of refusals.

All further weakened views vt, for times t > 1, are determined by a view
update procedure vupd , to be presented in the remainder of this article, i.e.,
vt = vupd((Δ+rt, Δ−rt), (Δ+prior t, Δ−prior t), (Δ+ppol t, Δ−ppol t)). The following
definition specifies the envisioned structure of such a procedure.

Definition 1 (specification of view update procedure). At times
t = 2, 3, . . . a view update procedure vupd determines a weakened view
vt = vupd((Δ+rt, Δ−rt), (Δ+prior t, Δ−prior t), (Δ+ppol t, Δ−ppol t)), based on the pre-
vious internal owner state, defined by

ownt−1 = (vt−1, tempt−1, refut−1, rt−1, prior t−1, ppol t−1) , (1)

and satisfying the following conditions:

Inference-Proof Updating of a Weakened View 391

– The previous internal state ownt−1 is accessible for the view update procedure
vupd, but more aged internal states are not memorized.

– The explicit input parameter values (Δ+rt, Δ−rt), (Δ+prior t, Δ−prior t) and
(Δ+ppol t, Δ−ppol t) for the requested modifications are internally specified by
the owner, for each parameter indicating which elements are to be inserted in
and which elements are to be deleted from the previous state.

– A requested modification is actually accepted and committed only if (i)
the input parameter values are conflict-free and (ii) all pertinent invariants
expressed in terms of a state are maintained; otherwise the request would be
rejected or aborted, respectively.

– The components of the internal state are updated as follows:
• ppol t := [ppol t−1 ∪ Δ+ppol t] \ Δ−ppol t ;
• prior t := [prior t−1 ∪ Δ+prior t] \ Δ−prior t ;
• rt := [rt−1 ∪ Δ+rt] \ Δ−rt ;
• tempt and refut are assigned the same results as the underlying view

generation procedure vgen would do in its first stage;
• vt is assigned the return value of the view update procedure vupd.

– The receiver always gets notified about the fact of a modification request.

Cautiously assuming condition C5 and suspecting the memorization of the
full history, the observable effects of initial view generation and repeated view
updates on the side of the receiver are represented by the sequence of current
attacker states, each of them defined by att t = (vt, tempt, refut, prior t, ppol t).

3.3 The Underlying View Generation Procedure

The underlying view generation procedure vgen(r, prior , ppol) [4,14] takes three
inputs from the owner: a relation instance r, the assumed background knowledge
prior of the receiver, and the confidentiality policy ppol for that receiver. During
a first, still instance-independent stage, a subprocedure vgen stage1 (prior , ppol)
internally determines a set temp of disjunctive templates and a set refu of ele-
ments stemming mainly from ppol and leading to refusals. In a second, instance-
dependent stage, a subprocedure vgen stage2 (temp, refu, r) generates a weak-
ened view v that consists of four parts: the refused knowledge v? := refu, the
positive knowledge v+, the disjunctive knowledge v∨, and the negative knowledge
v−. In order to avoid inferences based on the editorial representation of these
parts some final normalization based on standardized sorting is due. Accordingly,
the view generation procedure has the following overall structure:

PROCEDURE vgen(r, prior , ppol) {
(temp, refu) := vgen stage1 (prior , ppol);
(v?, v+, v∨, v−) := vgen stage2 (temp, refu, r);
v := norm(v?, v+, v∨, v−);
notify receiver by sending v }

Employing first-order logic, all items are formalized by means of suitable
subsets of L . Capturing the intuitions and our goals on the one hand and

392 J. Biskup and M. Preuß

facing the well-known difficulty of the computational unsolvability of the general
entailment problem for the full first-order logic language L on the other hand,
see, e.g., [13], we will apply the conventions summarized in the following.

Regarding the input parameters:

– The relation instance r is seen as a finite set of ground facts of the
form R(a1, . . . , an), complemented with a pertinent completeness sentence
Comp(r); i.e., for r = {(a1,1, . . . , a1,n), . . . , (am,1, . . . , am,n)} we get

(∀X1) . . . (∀Xn)[
∨

(aj,1,...,aj,n)∈r

(
∧

i∈{1,...,n}
Xi ≡ aj,i) ∨ ¬R(X1, . . . , Xn)].

– Establishing knowledge about the relationship of one single fact with another
single fact, the background knowledge prior is a finite set of single-premise
tuple-generating dependencies [1] of the syntactic form1

(∀X1) . . . (∀Xk) [R(t1, . . . , tn) ⇒ (∃Y1) . . . (∃Yl)R(t̄1, . . . , t̄n)] , (2)

where X1, . . . , Xk, Y1, . . . , Yl are pairwise different variables, each universally
quantified variable Xi occurring exactly once in R(t1, . . . , tn) and at most once
in R(t̄1, . . . , t̄n), each existentially quantified variable Yj occurring exactly
once in R(t̄1, . . . , t̄n), and – preferably to avoid an overall refusal – in both
R(t1, . . . , tn) and R(t̄1, . . . , t̄n) at least one constant of Dom occurs.

– The confidentiality policy ppol ⊂ Lexist is a finite set of existential facts.

Regarding the first stage, further outlined below:

– As far as possible, the finite set temp of disjunctive templates with temp ⊂
L ∨

exist should only be formed by elements of the confidentiality policy, cov-
ering all of them. Moreover, all disjunctions seen together should be mutu-
ally independent in the following sense: for each two different disjunctions
Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk and Ψ̄1 ∨ Ψ̄2 ∨ . . . ∨ Ψ̄k̄ we have Ψi �|= Ψ̄j and Ψ̄j �|= Ψi.

– The finite set refu of refusals contains selected policy elements and possibly
further prohibition sentences and, thus, refu ⊂ Lexist.

Regarding the second stage:

– The refused knowledge is instance-independent and just comprises the refusals
determined in the first stage, i.e., v? := refu.

– The positive knowledge gathers all ground facts (tuples) of the relation
instance r that entail neither a refusal nor a disjunctive template, i.e.,
v+ := {Φ |Φ ∈ r and for all Ψ ∈ refu : Φ �|= Ψ, for all τ ∈ temp : Φ �|= τ}.

1 To simplify our treatment, we do not consider definite background knowledge with
an empty premise part. Thus, in particular, background knowledge can not per se
entail any possible prohibition.

Inference-Proof Updating of a Weakened View 393

– The disjunctive knowledge v∨ is formed as follows. As far as needed for con-
fidentiality, a ground fact (tuple) R(a1, . . . , an) in the relation instance r is
disjunctively weakened by replacing it in a context-free way by a disjunction
Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk taken from the previously, in the first stage determined set
of disjunctive templates temp such that R(a1, . . . , an) |= Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk.
In fact, in order to conveniently capture many simultaneous threats to confi-
dentiality, the replacement is performed with all such disjunctions. Formally,
v∨ := { τ | τ ∈ temp and there exists Φ ∈ r : Φ |= τ }2.

– The negative knowledge consists of the suitably adapted pertinent complete-
ness sentence, i.e., v− := Comp(v+, v∨, temp, refu).

 extend clean cluster add reject form

confidentiality
 policy

ppol

 background
 knowledge

prior

 formal notion
 of

 admissibility

 1 2 5 6 7 8

control flow combined with possibly transitive data flows
direct data flow

 refusals disjunctive
 templates

refu temp

 4
partition

 3
 reject

Fig. 3. Direct and transitive data flows and control flow in stage 1

The first stage, which is still independent of r, can be further outlined as follows,
and as also visualized in Fig. 3:

1. extend the policy by implicit prohibitions caused by a single dependency;
2. clean the policy from semantically redundant prohibitions;
3. reject (delete) conflicting prohibitions and establish refusals in refu instead;
4. partition the set of dependencies according to interactions with prohibitions;
5. respecting the partitioning, cluster prohibitions into admissible3 groups;
6. if possible, add synthetic prohibitions for completing a partial match;
7. reject prohibitions remained isolated and establish additional refusals in refu;
8. form templates of temp as disjunctions, one for each group of the clustering.

2 In reference [4], we additionally required a void overlapping with the refused knowl-
edge to ensure unique interactive control decisions; the current weaker requirement
is in accordance with the detailed elaboration in reference [14].

3 As elaborated in [14], the notion of admissibility is intended to formally capture
application-oriented needs, in particular aiming at the plausibility of a disjunctive
template and an approximate equal likelihood of its disjuncts.

394 J. Biskup and M. Preuß

3.4 Continuous Inference-Proofness

Intuitively, as inspired by [9] and closely following [3,5,6], a prohibition sentence
Ψ ∈ ppol t is intended to express a strong semantic confidentiality requirement:
from the point of view of the receiver, based on the explicitly returned pieces
of data and the somehow “posted” security configurations, at all times t′ ≥ t
it should appear to be possible that the prohibition sentence Ψ has not been
true at time t. In other words, even if Ψ has actually been true in the (hidden)
relation instance rt, the receiver should not be sure about this situation.

This intuition will be formalized as roughly outlined in the following.
Based on (i) his (assumed) time-depending background knowledge prior1,
prior2, . . . , prior t′ , (ii) his awareness of the time-depending confidentiality pol-
icy ppol1, ppol2, . . . , ppol t′ , and (iii) the observed notifications of either rejection,
abortion or commitment, including the weakened views v1, v2, . . . , vt′ – originat-
ing from the actual (hidden) initial instance r1 and the actual (hidden) instance
modification parameters Δr2, Δr3, . . . , Δrt′ –, the receiver can imagine that the
same observations could result from a (fictitious) alternative instance rΨ

1 and (fic-
titious) instance modifications ΔrΨ

2 , ΔrΨ
3 , . . . , ΔrΨ

t′ such that the then resulting
(also fictitious) relation instance rΨ

t does not satisfy Ψ .

Definition 2 (continuous (possibilistic) inference-proofness). Under
conditions C1–C6, a view update procedure vupd according to Definition 1 con-
tinuously complements the view generation procedure vgen in an inference-proof
way iff, from the point of view of the receiver:

for each (hidden) initial relation instance r1,
for each (known) initial background knowledge prior1,
for each (known) initial confidentiality policy ppol1 and
for each (totally hidden) sequence of instance modifications Δr2, Δr3, . . . , Δrt′ ,
for each (known) sequences of background modifications Δprior2, Δprior3, . . . ,
Δprior t′ and policy modifications Δppol2, Δppol3, . . . , Δppol t′

under the procedures vgen and vupd leading to
the (known) attacker states att1, att2, . . . , att t′ and
the (hidden) relation instance rt at a point in time t ≤ t′,

for each prohibition sentence Ψ ∈ ppol t
there exists an “alternative hidden situation”, i.e., there exist a (fictitious)
relation instance rΨ

1 and a (fictitious) sequence of instance modifications
ΔrΨ

2 , ΔrΨ
3 , . . . , ΔrΨ

t′ such that

1. indistinguishability of the alternative hidden situation:
under the procedures vgen and vupd, the instance parameters rΨ

1 and
ΔrΨ

2 , ΔrΨ
3 , . . . , ΔrΨ

t′ together with the background parameters prior1 and
Δprior2, Δprior3, . . . , Δprior t′ and with the policy parameters ppol1 and
Δppol2, Δppol3, . . . , Δppol t′ generate the same notifications and the same
attacker states attΨ

1 = att1, attΨ
2 = att2, . . . , attΨ

t′ = att t′ , in particular the
same weakened views, i.e., regarding Ψ , the hidden items are indistinguishable
from the fictitious items;

Inference-Proof Updating of a Weakened View 395

2. credibility of the alternative situation: rΨ
j satisfies prior j, for j = 1, . . . , t′;

3. harmlessness of the alternative situation: rΨ
t does not satisfy Ψ .

If we restrict Definition 2 to the special case t′ = 1, i.e., that only initially, at
time 1, the view generation procedure vgen has been applied but subsequently no
modifications have been requested, we just obtain the notion of (static) semantic
confidentiality dealt with in our previous work [4,14] and, thus, according to
Theorem 1 and Theorem 2 of [4], the following proposition holds.

Proposition 1. The view generation procedure vgen (restricted to acceptable
input parameter values) complies with static (possibilistic) inference-proofness,
i.e., from the point of view of the receiver: for each (hidden) initial rela-
tion instance r1, for each (known) initial background knowledge prior1, for
each (known) initial confidentiality policy ppol1, for each prohibition sentence
Ψ ∈ ppol1 there exists an “alternative hidden situation”, i.e., there exists a (fic-
titious) relation instance rΨ

1 such that

1. indistinguishability of the alternative situation: under the procedure vgen,
rΨ
1 together with prior1 and ppol1 generates the same weakened view v1;

2. credibility of the alternative situation: rΨ
1 satisfies prior1;

3. harmlessness of the alternative situation: rΨ
1 does not satisfy Ψ .

4 The View Update Procedure

Based on the informally stated conditions C1–C6 identified in Sect. 2 and the
formal specifications outlined in Sect. 3, we are now ready to present our main
contribution: a concrete view update procedure for weakened views and a ver-
ification of its compliance with continuous inference-proofness. As discussed in
Sect. 2, to show inference-proofness under as weak conditions as reasonable, we
define the procedure in accordance with condition C5 (notifications), such that
the receiver gets notified about the fact of any owner request. However, for prac-
tical applications, we do not recommend to do so but, following condition C5*,
to inform the receiver only about actually changed views. Moreover, condition
C6 (observability of security configuration) is not explicitly expressed in the
procedure but only employed in its verification assuming an utmost powerful
attacking receiver.

PROCEDURE vupd((Δ+r, Δ−r), (Δ+prior , Δ−prior), (Δ+ppol , Δ−ppol)) {
IF modification requests are not conflict-free

THEN notify owner in detail about the detected conflicts;
notify receiver only about the mere fact of a conflict

ELSE*****if there are no conflicts
BEGIN TRANSACTION

ownprev := own ;
prior := [prior ∪ Δ+prior] \ Δ−prior ;
r := [r ∪ Δ+r] \ Δ−r ;
IF invariants satisfied (here: prior is satisfied by r)

396 J. Biskup and M. Preuß

THEN ppol := [ppol ∪ Δ+ppol] \ Δ−ppol ;
IF (priorprev, ppolprev) �= (prior , ppol)
THEN (temp, refu) := vgen stage1 (prior , ppol) FI ;

IF (tempprev, refuprev, rprev) �= (temp, refu, r)

THEN (v?, v+, v∨, v−) := vgen stage2 (temp, refu, r) ;
v := norm(v?, v+, v∨, v−) FI ;

commit (make all modifications persistent);
notify owner about commit ;
notify receiver about commit by sending v

ELSE abort (restore previous values of prior and r) ;
notify owner in detail about violation of invariants ;
notify receiver only about the mere fact of a violation

FI
END TRANSACTION

FI }

actual relation instances r1 ... rj-1 rj ... rt´

actually requested

generated/updated views v1 ... vj-1 vj ... vt´

fictitious instances rψ
1 ... rψ

j-1 rψ
j ... ψrt´

Δ−rψ
j := rψ

j-1 \ rψ
j

vgen vgen vgen vgen

Prop. 1 Prop. 1 Prop. 1 Prop. 1

Δ+rψ
j := rψ

j \ rψ
j-1 fictitious

instance modification requests ... (Δ+rj , Δ−rj) ...

instance modification requests

Fig. 4. Construction of “alternative situations” regarding instance modifications

Theorem 1. Procedure vupd complies with continuous inference-proofness in
the sense of Definition 2.

Proof. Let the procedures vgen and vupd inductively determine a sequence of
internal owner states own1, own2, . . . , ownt′ , as defined by (1) within Defini-
tion 1. Basically, besides dedicated arguments for conflicting parameter values
and transaction abortion, for the standard case of transaction commitment we
will apply Proposition 1 for each point in time individually, as indicated in Fig. 4.

More specifically, for j = 1, Proposition 1 directly ensures the existence of
an “alternative situation” with the same notification.

Inductively, for j > 1, according to the declaration of vupd we have to dis-
tinguish three mutually excluding cases.

Case 1, parameter values conflicting : A conflict can only occur for the following
reasons: contradictory insert and delete requests or inconsistent modification
requests. Both an actual contradiction and an actual inconsistency could always

Inference-Proof Updating of a Weakened View 397

be imagined to result from alternative fictitious ones, respectively, leading to the
same notification and leaving the internal owner state unchanged, and thus the
induction hypothesis applies.

Case 2, transaction aborted : The transaction for the modification of the instance
and the security configuration is only aborted if the tentatively modified (known)
background knowledge prior j does not satisfy the tentatively modified (hidden)
instance rj . So, there exists a single-premise tuple-generating dependency in
prior j that is violated by rj and is of the form defined by (2) in Sect. 3.3, e.g.,

(∀X1) . . . (∀Xk) [R(t1, . . . , tn) ⇒ (∃Y1) . . . (∃Yl)R(t̄1, . . . , t̄n)] .

Accordingly, there exists a substitution σ that replaces the universally quantified
variables X1, . . . , Xk with the constants c1, . . . , ck such that (i) σ[(t1, . . . , tn)] ∈
rj but (ii) for all constant substitutions τ of the existentially quantified variables
Y1, . . . , Yl we have τ [σ[(t̄1, . . . , t̄n)]] �∈ rj .

This actual situation could also result from a fictitious instance modification
regarding the fictitious instance rΨ

j−1 that requests to insert σ[(t1, . . . , tn)] and to
delete all those (finitely many) τ [σ[(t̄1, . . . , t̄n)]] which have been in rΨ

j−1. Accord-
ingly, the abort notification for the actual situation equals the abort notification
for the fictitious situation. Moreover, in both situations the internal owner state
and thus also the attacker state remains the same as at time j − 1 such that the
induction hypotheses about the situation at time j − 1 immediately implies the
assertion about time j.

Case 3, transaction committed : Consider the committed execution of

vupd((Δ+rj , Δ−rj), (Δ+prior j , Δ−prior j), (Δ+ppol j , Δ−ppol j)) .

This execution first determines new components prior j , ppol j and rj for the
internal state, and then determines the same updated view vj as the view gen-
eration procedure vgen would have done applied to these components. Thus,
according to Proposition 1, there exists an “alternative” fictitious instance rΨ

j

leading to the same view vj under the procedure vgen applied to prior j , ppol j
and rΨ

j . Now, we observe that this fictitious instance rΨ
j can also be obtained

from the inductively assumed fictitious instance rΨ
j−1 by an instance modification

request with parameter values

Δ+rΨ
j := rΨ

j \ rΨ
j−1 and Δ−rΨ

j := rΨ
j−1 \ rΨ

j .

Then, the fictitious execution of

vupd((Δ+rΨ
j , Δ−rΨ

j), (Δ+prior j , Δ−prior j), (Δ+ppol j , Δ−ppol j))

would also generate the same view vj for the following reasons: by condition C3,
these parameter values are possible, and by condition C4, the transaction would
commit for these parameter values as well. Accordingly, the notification for the
actual situation equals the notification for the fictitious situation. ��

398 J. Biskup and M. Preuß

5 Experimental Runtime Evaluation

We presented the view update procedure vupd in a straightforward way in order
to facilitate its verification. However, we might attempt to replace the employed
recomputation of the new internal state by means of the two subprocedures
vgen stage1 and vgen stage2 of the underlying view generation procedure vgen
by a more efficient incremental determination of the new internal state.

Regarding the subprocedure vgen stage1 , the outline given in Sect. 3.3 and
visualized by Fig. 3 already roughly indicates that the final results temp and refu
depend on the inputs ppol and prior in a transitively dependent way, along the
whole chain of the eight steps. For example, the insertion of a new prohibition
into ppol might raise further extensions in step 1, which in turn might introduce
new redundancies that in step 2 can trigger rather involved non-monotonic clean-
ing effects: a previously kept prohibition is sometimes removed in favor of a new
prohibition, but sometimes it remains untouched causing the removal of new
prohibitions as being redundant. The alternatives decided in step 2, adjusted
by identifying refusals in step 3, further effects all succeeding steps, both by
using the result of step 3 as direct input and indirectly via the transitive data
flows, in particular incorporated by the partition generated in step 4. A more
detailed analysis and corresponding options for optimized, partly incremental
computations are beyond the scope of the present work.

Regarding the subprocedure vgen stage2 , we can replace its simple call by
essentially more refined operations if the results of the first stage, temp and refu,
have remained unchanged. This is an outline of an incremental approach:

– The instance-independent refused knowledge remains v? := refu.
– For updating the positive knowledge, basically only the elements of the input

parameter value (Δ+r, Δ−r) have to be processed, rather than the whole
modified relation r, i.e., under the precondition Δ+r ∩ Δ−r = ∅, v+ :=
[v+

prev ∪ {Φ |Φ ∈ Δ+r and for all τ ∈ temp ∪ refu : Φ �|= τ}] \ Δ−r.
– For updating the disjunctive knowledge, similarly only the elements of the

input parameter value (Δ+r, Δ−r) have to be processed, i.e., v∨ := [v∨
prev \

{ τ | τ ∈ v∨
prev and for all Φ ∈ rprev with Φ |= τ : Φ ∈ Δ−r}] ∪ { τ | τ ∈

temp and there exists Φ ∈ Δ+r : Φ |= τ }.
– The completeness sentence for negative knowledge is adapted accordingly.

We also extended the prototype implementation of [4,14] to instantiate the
new view update procedure vupd in two versions, straightforward and incremen-
tal. All crucial subroutines of this implementation, which are employed for view
generations and view updates, are developed in Java 8 and parallelized to bene-
fit from modern hardware. The experiments were run under Ubuntu 14.04 on a
machine with two “Intel Xeon E5-2690” CPUs, providing a total number of 16
physical and 32 logical cores (due to hyperthreading) running at 2.9 GHz.

Within Experiment 1 an original instance with 1 000 000 database tuples is
modified by inserting and deleting the same number of randomly chosen data-
base tuples, varying from 10 000 to 970 000. Comparing the Figs. 5(a) and (b),

Inference-Proof Updating of a Weakened View 399

Fig. 5. Experimental runtime comparison of the incremental and the straightforward
recomputation (of stage 2) version of the view update procedure

it becomes clear that in terms of runtime an incremental view update is nearly
always better than a recomputation of a weakened view with vgen stage2 . Even
if about the full database instance is to be replaced, there is usually little reason
not to employ the incremental procedure.

Experiment 2 then applies a sequence of instance modifications to an orig-
inal instance with initially 1 000 000 tuples. Each of these modifications inserts
500 000 random tuples and deletes only 250 000 random tuples, resulting in mod-
ified original instances enlarged up to 4 250 000 tuples. A quick look at Fig. 5(c)
reveals that the incremental procedure clearly outperforms recomputations.

6 Conclusion

For a specific approach to confidentiality-preserving data publishing, we
addressed the challenging problem of how to update a published view according
to modifications of the underlying original data or of the security configuration
without revealing sensitive information. Basically, as far as needed for complying
with a declarative confidentiality policy, and whenever possible, that approach
weakens the knowledge embodied in a tuple of a complete relation instance into
a piece of disjunctive knowledge formed from elements of the policy. In a first
still instance-independent stage disjunctive templates (and, if required, refusals)
are suitably determined, and in a second instance-dependent stage each tuple is
inspected individually whether it has to be disjunctively weakened according to
one or more of the disjunctive templates (or even be refused). The first stage
guarantees that all templates are sufficiently mutually isolated regarding logic
entailments – even under background knowledge in the form of data dependen-
cies – such that afterwards in the second stage for any actual relation instance
a strong kind of (possibilistic) semantic confidentiality will always be achieved
(leaving open the problem of probabilistic inference-proofness).

Exploiting the basic features of this approach, namely instance-independent
mutual isolation of templates (and refusals) in the first stage and individual

400 J. Biskup and M. Preuß

treatment of tuples in the second stage, we showed how confidentiality-preserving
updating of views is possible while complying with an extended notion of con-
tinuous inference-proofness. Essentially, this goal can be achieved by conceptu-
ally rerunning the two stages of the underlying view generation procedure, pro-
vided some precautions are enforced: modification requests have to be formed
as transactions, in general possibly dealing with modifications of both the rela-
tion instance and the security configuration, and invariants to be maintained
by transaction processing should refer to committed internal states of the over-
all system of the underlying relational database. Due to simplification avoiding
asynchronous time, we always made transactions explicit, though essentially the
same confidentiality guarantees can be obtained by completely hiding rejected,
non-committed and non-effective modification requests (see condition C5*).

The updating procedure preserves the practical efficiency of the underlying
view generation procedure, again due to the basic features summarized above,
and as confirmed by runtime experiments with a prototype implementation.
Moreover, the updating procedure also preserves and extends the availability
properties of the underlying procedure. As discussed in [4,14], the latter one
minimally distorts data only if locally necessary under the given setting, and the
introductory examples necessitate some restrictions, and motivate the concrete
ones expressed by conditions C1–C4. However, global optimization is likely to be
related to NP-hardness and thus would be in conflict with efficiency.

So far, we only deal with a single relation governed by single-premise tuple-
generating dependencies rather than with a multi-relational database with any
intrarelational and interrelational constraints. Though any attempt towards the
latter goal would be highly worthwhile to enhance practicality, it will always face
substantial limitations regarding efficiency or even computability.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Anjum, A., Raschia, G., Gelgon, M., Khan, A., Malik, S.U.R., Ahmad, N., Ahmed,
M., Suhail, S., Alam, M.M.: τ -safety: a privacy model for sequential publication
with arbitrary updates. Comput. Secur. 66, 20–39 (2017)

3. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. J. Comput. Secur. 19, 487–529 (2011)

4. Biskup, J., Preuß, M.: Information control by policy-based relational weakening
templates. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 361–381. Springer, Cham (2016). doi:10.
1007/978-3-319-45741-3 19

5. Biskup, J., Tadros, C.: Inference-proof view update transactions with minimal
refusals. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de Cap-
itani di Vimercati, S. (eds.) DPM/SETOP -2011. LNCS, vol. 7122, pp. 104–121.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28879-1 8

6. Biskup, J., Tadros, C.: Preserving confidentiality while reacting on iterated queries
and belief revisions. Ann. Math. Artif. Intell. 73(1–2), 75–123 (2015)

http://dx.doi.org/10.1007/978-3-319-45741-3_19
http://dx.doi.org/10.1007/978-3-319-45741-3_19
http://dx.doi.org/10.1007/978-3-642-28879-1_8

Inference-Proof Updating of a Weakened View 401

7. Byun, J., Li, T., Bertino, E., Li, N., Sohn, Y.: Privacy-preserving incremental data
dissemination. J. Comput. Secur. 17(1), 43–68 (2009)

8. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

9. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

10. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cam-
bridge (2000)

11. Li, J., Baig, M.M., Sattar, A.H.M.S., Ding, X., Liu, J., Vincent, M.W.: A hybrid
approach to prevent composition attacks for independent data releases. Inf. Sci.
367–368, 324–336 (2016)

12. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. �-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007).
Article 3

13. Nerode, A., Shore, R.: Logic for Applications, 2nd edn. Springer, Heidelberg (1997)
14. Preuß, M.: Inference-proof materialized views. Ph.D. thesis, Dortmund University

of Technology, Germany (2016)
15. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.

Knowl. Data Eng. 13(6), 1010–1027 (2001)
16. Shmueli, E., Tassa, T.: Privacy by diversity in sequential releases of databases. Inf.

Sci. 298, 344–372 (2015)
17. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-

ness Knowl.-Based Syst. 10(5), 557–570 (2002)
18. Wang, K., Fung, B.C.M.: Anonymizing sequential releases. In: Eliassi-Rad, T.,

Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Knowledge Discovery and Data
Mining, KDD 2006, pp. 414–423. ACM (2006)

19. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of
dynamic datasets. In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) Management of Data,
SIGMOD 2007, pp. 689–700. ACM (2007)

20. Yao, C., Wang, X.S., Jajodia, S.: Checking for k-anonymity violation by views. In:
Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.-Å., Ooi, B.C. (eds.)
Very Large Data Bases, VLDB 2005, pp. 910–921. ACM (2005)

	Inference-Proof Updating of a Weakened View Under the Modification of Input Parameters
	1 Introduction
	2 Conditions for Inference-Proof View Updating
	3 Basic Concepts and Formal Definitions
	3.1 Database Management System
	3.2 Inference Control for Data Publishing
	3.3 The Underlying View Generation Procedure
	3.4 Continuous Inference-Proofness

	4 The View Update Procedure
	5 Experimental Runtime Evaluation
	6 Conclusion
	References

