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Abstract. We consider a variant of the pure exploration problem in
Multi-Armed Bandits, where the goal is to find the arm for which the
λ-quantile is maximal. Within the PAC framework, we provide a lower
bound on the sample complexity of any (ε, δ)-correct algorithm, and pro-
pose algorithms with matching upper bounds. Our bounds sharpen exist-
ing ones by explicitly incorporating the quantile factor λ. We further pro-
vide experiments that compare the sample complexity of our algorithms
with that of previous works.

1 Introduction

In the classical multi-armed bandit (MAB) problem, the learning agent faces a
set K of stochastic arms, from which it chooses arms sequentially. In each round,
the agent observes a random reward that depends on the selected arm. The goal
of the agent is to maximize the cumulative reward (in the regret formulation),
or to identify the arm with the highest expected reward (in the pure exploration
problem). The MAB model has been studies extensively in the statistical and
learning literature, see [2] for a comprehensive survey.

In this paper, we consider a quantile-based variant of the pure exploration
MAB problem (quantile-MAB). In this variant, for a given 0 < λ < 1, the goal
is to identify the arm for which the λ-quantile is the largest among all arms
(here, as usual the λ-quantile is such that the probability of observing a larger
reward is at least λ). More precisely, considering the PAC framework, the goal is
to identify an (ε, δ)-correct arm, namely an arm for which the (λ− ε)-quantile is
not smaller than the largest λ-quantile among all arms, with a probability larger
than 1 − δ. In addition, we wish to minimize the sample complexity, i.e., the
expected number of samples observed until the learning algorithm terminates.

For the standard MAB problem, algorithms that find the best arm (in terms
of its expected reward) in the PAC sense were presented in [1,5–8,10], and lower
bounds on the sample complexity were presented in [1,9,11].

Similar to the present quantile-MAB problem is the variant of the MAB
problem in which the goal is to find the arm from which the largest possible
sample can be obtained. This is known as the max k-armed bandit problem,
and was first introduced in [3]. For this variant, algorithms that find the best
arm in the PAC sense were provided in [4,13], and a lower bound was presented
in [4]. In contrast to the current quantile-MAB problem, in the max k-armed
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setting, it is necessary to assume a lower bound on the tail probabilities of the
arms. When the tail functions of the arms are known, and ε = λ, the algorithms
for the max k-armed bandit setting can be applied in the present quantile-MAB
problem. However, their sample complexity upper bounds are larger than those
of the algorithms presented in this paper.

More related to the present quantile-MAB problem is the work [15] which
consider a measure of risk called value-at-risk (see [12]). The value-at-risk of a
given random variable (R.V.) X is actually the same as the quantile of the R.V.
−X. An algorithm with an upper bound on the sample complexity that increases
as λ|K|

ε2δD , (where D is the upper bound on the density functions) was provided in
[15], that algorithm is computationally demanding since at each iteration it solves
a non-linear constrained and integer-valued optimization problem. Recently, the
quantile-MAB problem was studied in [14]. They provided a lower bound for the
case in which λ = 3/4 and an algorithm with an upper bound on the sample
complexity of the order of

∑
k∈K

1
(max(ε,Δk,λ))

2 ln( |K|
δ max(ε,Δk,λ)

), where Δk,λ is
the difference between the λ-quantile of arm k and that of the best arm.

In this paper, for certain arm distributions, we provide a lower bound of
the order of

∑
k∈K

λ(1−λ) ln( 1
δ )

(max(ε,Δk,λ))
2 on the sample complexity of every (ε, δ)-correct

algorithm. That lower bound improves the bound in [14] in the sense of consid-
ering the quantile factor λ(1−λ). This is significant when λ is close to 1 or to 0.
Furthermore, for general distribution functions, we provide two algorithms that
attain the lower bound up to the logarithmic terms ln (|K|ε) and ln (|K| log2(ε))
respectively. The upper bounds of these algorithms are smaller than that in [14]
by a factor of λ and a logarithmic factor in ε for the second algorithm.

The paper proceeds as follows. In the next section we present our model. In
Sect. 3, a lower bound on the sample complexity of every (ε, δ)-correct algorithm
is presented. Then in Sect. 4 we present our (ε, δ)-correct algorithms, and pro-
vide upper bounds on their sample complexity. The second algorithm is bases
on applying the doubling trick on the first one. Then, in Sect. 5 we provide
experiments that illustrate the improved sample complexity of our algorithms
compared with the results presented in [14]. In Sect. 6 we close the paper with
some concluding remarks.

2 Model Definition

We consider a finite set of arms, denoted by K. At each stage t = 1, 2, . . . the
learning agent chooses an arm k ∈ K, and a real valued reward is obtained from
that arm. The rewards obtained from each arm k are independent and identically
distributed, with a distribution function (CDF) Fk(x), x ∈ R. We denote the
quantile function of arm k ∈ K by Qk : [0, 1] → R, and define it as follows.

Definition 1. For every arm k ∈ K, the quantile function Qk(λ) is defined by

Qk(λ) � inf{x ∈ R|1 − λ < Fk(x)}.
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Note that P (xk ≥ Qk(λ)) ≥ 1 − λ where xk stands for a random variable with
distribution Fk. Clearly, if Fk is continuous at the point Qk(λ), we have equality,
namely, P (xk ≥ Qk(λ)) = 1 − λ.

An algorithm for the quantile-MAB problem samples an arm at each time
step, based on the observed history so far (i.e., the previously selected arms
and observed rewards). We require the algorithm to terminate after a random
number T of samples, which is finite with probability 1, and return an arm k′.
An algorithm is said to be (ε, δ)-correct if the returned arm is ε-optimal with
a probability larger than 1 − δ, (see a precise definition later in this section).
The expected number of samples E[T ] taken by the algorithm is the sample
complexity, which we wish to minimize.

We next provide some definitions and notations which we use later in this
paper. A λ-quantile optimal arm is defined as follows.

Definition 2. Arm k ∈ K is λ-quantile optimal if

Qk(λ) = x∗
λ � max

k′∈K
Qk′(λ).

We use the following quantity which represents the distance of an arm from
being optimal,

Δk,λ = sup{Fk(x)|x < x∗
λ} − (1 − λ). (1)

If Fk is continuous, then Δk,λ = Fk(x∗
λ) − (1 − λ). Furthermore, note that for

every suboptimal arm k, namely, an arm for which Qk(λ) < x∗
λ, it follows by the

monotonicity of CDF functions that Δk,λ > 0.
Now we are ready to precisely define an (ε, δ)-correct algorithm.

Definition 3. For λ and ε such that 0 < ε < λ < 1 and δ > 0, an algorithm is
(ε, δ)-correct if

P (Qk′(λ − ε) ≥ x∗
λ) ≥ 1 − δ

where k′ stands for the arm returned by the algorithm.

3 Lower Bound

Before presenting our algorithms, we provide a lower bound on the sample com-
plexity of any (ε, δ)-correct algorithm for certain arm distributions. The lower
bound is provided in the following Theorem.

Theorem 1. Assume that Fk is continuous for every k ∈ K. Fix some ε0 such
that 0 < ε0 < 1

4 . For every λ ∈ [2ε0, 1 − 2ε0], ε ∈ (0, ε0] and δ ≤ 0.15, there
exist some set of arm distributions {Fk}k∈K , such that for every (ε, δ)-correct
algorithm,

E[T ] ≥
∑

k∈K\k∗

λ (1 − λ)
2 (max (ε,Δk,λ))2

ln
(

1
2.4δ

)

(2)

where k∗ denote some optimal arm, with Qk∗(λ) = x∗
λ.
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The above lower bound refines the one presented in [14] in the sense that
here the size of the quantile λ is considered in the bound. To illustrate the lower
bound, we provide an example.

Example 1. Let {μk}k∈K be a set of constants, and let μ∗ = maxk∈K μk. Suppose
that the rewards of each arm k ∈ K are uniformly distributed on the interval
(μk − 1, μk). Since, μk − x∗

λ ≤ 1, for every arm k ∈ K it follows that

sup{Fk(x)|x < x∗
λ} = Fk(x∗

λ) =

{
1 − (μk − x∗

λ), μk ≥ x∗
λ

1, μk < x∗
λ

.

As x∗
λ = μ∗ − λ, Eq. (1), implies that

Δk,λ = min (λ, μ∗ − μk) .

Since ε < λ, the denominator term in Eq. (2) can be seen to be

max (ε,Δk,λ) =

⎧
⎪⎨

⎪⎩

ε, μ∗ − μk < ε

μ∗ − μk, ε ≤ μ∗ − μk < λ

λ, λ ≤ μ∗ − μk

.

Proof. (Theorem 1). First we assume that the quantile value of the optimal
arm, namely, x∗

λ is known. Moreover, we assume that for every arm k ∈ K, the
conditional probabilities P (xk|xk ≥ x∗

λ) and P (xk|xk < x∗
λ) are also known.

Therefore, the learning algorithm needs only to estimate the parameters

pk � P (xk ≥ x∗
λ) , ∀k ∈ K.

Now, by the continuity of the distribution functions it follows that maxk∈K pk =
λ. Also, by Eq. (1) it follows that

max
k∈K

pk − pk′ = Δk′,λ.

Therefore, finding an arm k′ such that Δk′,λ ≤ ε is the same as finding a Bernoulli
arm k′, such that its expected value is ε-optimal, namely, maxk∈K pk − pk′ ≤ ε.
So, our problem is the same as the standard Bernoulli bandit problem with
{pk}k∈K as the Bernoulli parameters.

Then, by Remark 5 in [9], in which a lower bound for the standard MAB
problem with Bernoulli arms is provided for δ ≤ 0.15, we have

E[T ] ≥
⎛

⎝ |Sε| − 1
KL (λ, λ − ε)

+
∑

k∈{K\Sε}

1
KL (pk, λ + ε)

⎞

⎠ ln
1

2.4δ
, (3)

where Sε � {k|k ∈ K, pk ≥ λ − ε} and KL (p, q) stands for the Kullback-
Leibler divergence between two Bernoulli distributions with parameters p and q
respectively.
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We note that ln(1 + x) ≤ x. Hence,

KL (p, q) = p ln

(
p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
≤ p

p − q

q
+ (1 − p)

q − p

1 − q
=

(p − q)2

q(1 − q)
. (4)

Therefore, by Eqs. (3) and (4) it follows that

E[T ] ≥
⎛

⎝ (λ − ε) (1 − λ + ε) (|Sε| − 1)
ε2

+
∑

k∈{K\Sε}

(λ + ε) (1 − λ − ε)
(λ + ε − pk)2

⎞

⎠ ln
1

2.4δ
.

Hence, by the facts that 2ε ≤ λ and 2ε ≤ (1−λ) and since Δk,λ = λ−pk, Eq. (2)
is obtained. ��

4 Algorithms

In this section we provide two related algorithms. The first one is simpler and
attains the lower bound in Theorem 1 up to a logarithmic term. The second
algorithm is based on applying the doubling trick on the first one and hence its
upper bound attains Theorem1 up to a double logarithmic term.

4.1 The Max-Q Algorithm

Here we present our Max-Q algorithm. The algorithm is (ε, δ)-correct and based
on sampling the arm which has the highest potential λ-quantile value.

The Max-Q algorithm starts by sampling a fixed number of times from each
arm. Then, for each arm, the algorithm associates a value that has been sampled
from its quantile in a large probability and choses the arm for which the value
is maximal. If the number of times that arm has been sampled is larger than
a certain threshold, the algorithm stops returns that arm, else it samples one
more time from the chosen arm.

The fundamental difference between the Max-Q algorithm and the algorithm
presented in [14] is the fact that in the latter the entire CDF is estimated, while
in this paper, just the value of the quantile is estimated. That difference leads
to a bound on the sample complexity of the Max-Q algorithm which is smaller
by a factor of λ, compared to that in [14].

Theorem 2. For every λ ∈ (0, 1), ε ∈ (0, λ) and δ ∈ (0, 1), Algorithm 1 is
(ε, δ)-correct with a sample complexity bound of

E[T ] ≤
∑

k∈K

10λL

(max (ε,Δk,λ))2
+ |K| + 1, (5)

where L = 6 ln
(
|K|

(
1 + −10λ ln(δ)

ε2

))
− ln (δ) as defined in the algorithm.
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Algorithm 1. Maximal Quantile (Max-Q) Algorithm
1: Input: Quantile λ ∈ (0, 1), constants δ > 0 and ε > 0.

Define L = 6 ln
(
|K|
(
1 + −10λ ln(δ)

ε2

))
− ln (δ).

2: Initialization: Counters C(k) = N0, k ∈ K,
where N0 = � 3L

λ
� + 1.

3: Sample N0 times from each arm.
4: Set k∗ ∈ arg maxk∈K V k (with ties broken arbitrary), where V k is the mk-th largest

reward observed so far from arm k and

mk = �λC(k) −
√

3λC(k)L� + 1.

5: if C(k∗) > 10λL
ε2

then
6: Stop and return arm k∗.
7: else
8: Sample once from arm k∗, set C(k∗) = C(k∗) + 1 and return to step 4.
9: end if

It may be observed that for λ ≤ 1
2 , the upper bound provided in Theorem 2 is

of the same order as the lower bound in Theorem 1, up to a logarithmic factor.
To establish Theorem 2, we first bound the probability of the event under

which the m-th largest sample of one of the optimal arm is below the λ-quantile.
Then, we bound the number of samples needed to be observed from each subop-
timal arm such that the m-th largest value (obtained from that arm) is below the
(λ − ε)-quantile. For establishing these bounds in a way that the multiplicative
factor of λ remains in the bounds, we use Bernstein’s inequality for bounding
the difference between the empirical mean and the mean value of a Bernoulli
R.V. which is one if the sampled value is above the quantile and zero otherwise.

Proof. (Theorem 2). We denote the time step of the algorithm by t, the value of
the counter C(k) at time step t by Ct(k) and we use the notations L′ = L+ln (δ)
and x∗ as a short for x∗

λ. Recall that T stands for the random final time step.
By the condition in step 5 of the algorithm, for every arm k ∈ K, it follows that,

CT−1(k) ≤ 	10λ (L′ − ln(δ))
ε2


 + 1. (6)

Note that by the facts that for x ≥ 6 it follows that d6 ln(x)
dx ≤ 1, and that for

x0 = 20 it follows that x0 > 6 ln(x0) + 1, it is obtained that

L′′ � |K|
(−10λ ln(δ)

ε2
+ 1

)

> 6 ln
(

|K|
(−10λ ln(δ)

ε2
+ 1

))

+ 1 = L′ + 1,

for L′′ ≥ 20. So, by the fact that T =
∑

k∈K CT−1(k) + 1, for L′′ ≥ 20 it follows
that

T ≤ |K|
(

10λ (L′ − ln(δ))
ε2

+ 1
)

+ 1 < |K|
(

10λ (L′′ − ln(δ))
ε2

+ 1
)

≤ L′′2 = e
L′
3 .

(7)
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We proceed to establish the (ε, δ)-correctness of the algorithm. Let V k
N (m) stand

for the m-th largest value obtained from arm k after sampling it for N times and
assume w.l.o.g. that Q1(λ) = x∗

λ. Then, for N ≥ N0 and m = 	λN−√
3λNL
+1,

as stated in the algorithm, by Lemma 1 below it follows that

P
(
V 1

N (m) < x∗) ≤ δe−L′
. (8)

Hence, at every time step t, by Eqs. (7) and (8), applying the union bound
obtains

P
(
V t,1 < x∗) ≤

exp
(

L′
3

)
∑

N=N0

P
(
V 1

N (m) < x∗) = δe− 2L′
3 . (9)

where V t,k stands for the value of V k at time step t.
Let k∗

T stand for the arm returned by the algorithm. Also, by Lemma 1, for

N >
10λ(L′−ln(δ))

ε2 , it follows that

P
(
V k

N (m) > Qk(λ − ε)
) ≤ δe−L′

. (10)

So, since by the condition in step 5, it is obtained that C(k∗
T ) >

10λ(L′−ln(δ))
ε2 , it

follows by Eq. (10) and the union bound that

P
(
V T,k∗

T > Qk∗
T
(λ − ε)

)
≤

∑

k∈K

exp
(

L′
3

)
∑

t=1

exp
(

L′
3

)
∑

N=1

δe−L′
= |K|δe− L′

3 . (11)

Also, by Eq. (9) and the union bound it follows that

P
(
V T,1 < x∗) ≤

exp
(

L′
3

)
∑

t=1

P
(
V t,1 < x∗) ≤ δe− L′

3 . (12)

So, since by step 4 of the algorithm, V T,k∗
T ≥ V T,1, it follows by Eqs. (11) and

(12) that

P
(
Qk∗

T
(λ − ε) < x∗) ≤ P

(
V T,k∗

T > Qk∗
T
(λ − ε)

)
+ P

(
V T,1 < x∗) < δ.

It follows that the algorithm returns an ε-optimal arm with a probability
larger than 1 − δ. Hence, it is (ε, δ)-correct.

To prove the bound on the expected sample complexity of the algorithm, we
define the following sets:

M(ε) = {l ∈ K|Δk,λ ≤ ε} and N(ε) = {l ∈ K|Δk,λ > ε}.

As before, we assume w.l.o.g. that Q1(λ) = x∗. Then, for the case in which

E1 �
⋂

1≤t≤T

{
V t,1 ≥ x∗}
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occurs, for every arm k ∈ K, a necessary condition for CT (k) > N ′
k, where

N ′
k = 	 10λ(L′−ln(δ))

Δ2
k,λ


 + 1 is

Ek �
{

V k
N ′

k
(m′

k) ≥ x∗
}

,

where m′
k = 	λN ′

k − √
3λN ′

k (L′ − ln(δ))
 + 1.
Now, by using the bound in Eq. (6) and the fact that

∑
k∈K CT (k) =

∑
k∈K CT−1(k) + 1 for the arms in the set M(ε), N ′

k as a bound for the arms in
the set N(ε), and the bound in Eq. (7), it is obtained that

E[T ] ≤ (1 − P (E1)) e
L′
3 + P (E1)

∑
k∈N(ε)

(
(1 − P (Ek|E1)) Φk(ε) + e

L′
3 P (Ek|E1)

)

+
∑

k∈M(ε)

Φk(ε) + 1,

(13)

where Φk(ε) = 	 10λ(L′−ln(δ))
(max(ε,Δk,λ))

2 
 + 1. But, by Eq. (9) it follows that

P (E1) ≥ 1 −
exp
(

L′
3

)
∑

t=1

P
(
V t,1 < x∗) ≥ 1 − δe

−2L′
3 e

L′
3 = 1 − δe

−L′
3 . (14)

Also, since Q′
k � Qk

(
λ −

√
10λ(L′−ln(δ))

N ′
k

)
< x∗ for k ∈ N(ε), it follows by

Lemma 1 that

P (Ek|E1)P (E1) ≤ P (Ek) ≤ P
(
V k

N ′
k
(m′

k) > Q′
k

)
≤ δe−L′

, ∀k ∈ N(ε) (15)

Therefore, by Eqs. (13), (14) and (15) and the definition of Φk(ε), the bound
on the sample complexity is obtained. ��
Lemma 1. For every arm k ∈ K, let V k

N (m) stand for the m-th largest value
obtained from arm k after sampling it for N times. Then, for any positive inte-
gers m and N such that m < N , and every λ ∈ [0, 1], it follows that,

1. If m
N > λ, then

P
(
V k

N (m) > Qk(λ)
) ≤ f0(m,N, λ) .

2. If m
N < λ, then

P
(
V k

N (m) < Qk(λ)
) ≤ f0(m,N, λ) ,

where f0(m,N, λ) = exp
(
− |m−Nλ|2

2(Nλ+|m−Nλ|/3)
)
.

The proof is based on Bernstein’s inequality.
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Proof. In this proof, we omit the arm index k for short. We start with claim
(1). Let xi stand for the i-th sampled value from the arm, and let {Xi(λ)} and
{Yi(λ)} be random variables for which

Xi(λ) =

{
1 w.p λ

0 w.p 1 − λ
and Yi(λ) =

{
1 xi > Q(λ)
0 xi ≤ Q(λ)

. (16)

Note that the variables {Yi(λ)} are i.i.d. The variables {Xi(λ)} are i.i.d as well.
Then, since P (Yi(λ) = 1) ≤ P (Xi(λ) = 1), after sampling N times,

P (VN (m) > Q(λ)) = P

(
1
N

N∑

i=1

Yi(λ) ≥ m

N

)

≤ P

(
1
N

N∑

i=1

Xi(λ) ≥ m

N

)

= P

(
1
N

N∑

i=1

X̃i(λ) ≥ m

N
− E[X1(λ)]

)

� Υ(λ,m,N) ,

(17)
where X̃i(λ) = Xi(λ) − E[X1(λ)]. So,

{
X̃i(λ)

}
satisfies the conditions of Bern-

stein’s inequality with σ2 = λ (1 − λ), and E[X1(λ)] = λ. Therefore

Υ(λ,m,N) ≤ exp

(

− (m − Nλ)2

2 (Nλ (1 − λ) + (m − Nλ) /3)

)

≤ exp

(

− (m − Nλ)2

2 (Nλ + (m − Nλ) /3)

)

.

(18)

Proceeding to claim (2), let {Zi(λ)} be random variables for which

Zi(λ) =

{
1 xi ≥ Q(λ)
0 xi < Q(λ)

. (19)

Note that {Zi} are i.i.d. Then, since P (Zi(λ) = 1) ≥ P (Xi(λ) = 1),

P (VN (m) < Q(λ)) = P

(
1
N

N∑

i=1

Zi(λ) <
m

N

)

≤ P

(
1
N

N∑

i=1

Xi(λ) ≤ m

N

)

= P

(
1
N

N∑

i=1

X̃i(λ) ≤ m

N
− E[X1(λ)]

)

� Υ̂(λ,m,N)

(20)

and by symmetry

Υ̂(λ,m,N) ≤ exp

(

− (Nλ − m)2

2 (Nλ (1 − λ) + (Nλ − m) /3)

)

≤ exp

(

− (Nλ − m)2

2 (Nλ + (Nλ − m) /3)

)

.

(21)

��
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Algorithm 2. Doubled Maximal Quantile (Max-Q) Algorithm
1: Input: Quantile λ ∈ (0, 1), constants δ > 0 and ε > 0.

Define LD = 6 ln
(
|K| log2

(
−20λ ln(δ)

ε2

))
− ln (δ).

2: Initialization: Counters C(k) = N0, k ∈ K,
where N0 = � 3LD

λ
� + 1.

3: Sample N0 times from each arm.
4: Set k∗ ∈ V k (with ties broken arbitrary), where V k is the mk-th largest reward

observed so far from arm k and

mk = �λC(k) −
√

3λC(k)LD� + 1.

5: if C(k∗) > 10λLD
ε2

then
6: Stop and return arm k∗.
7: else
8: Sample C(k∗) times from arm k∗, set C(k∗) = 2C(k∗) and return to step 4.
9: end if

4.2 The Doubled Max-Q Algorithm

Here we improve on the previous algorithm by resorting to the doubling trick.
The Doubled Max-Q Algorithm is based on the same principle as the Max-Q
Algorithm. However, instead of observing one sample at each time step, here
the algorithm doubles the number of samples of the chosen arm. Consequently,
the number of times at which the algorithm needs to choose an arm is roughly
logarithmic compared to that under the previous algorithm, leading to a tighter
bound. Algorithm 2 presents the proposed Doubled Max-Q algorithm.

Theorem 3. For every λ ∈ (0, 1), ε ∈ (0, λ) and δ ∈ (0, 1), Algorithm 2 is
(ε, δ)-correct with a sample complexity bound of

E[T ] ≤
∑

k∈K

20λLD

(max (ε,Δk,λ))2
+ |K| + 1, (22)

where LD = 6 ln
(
|K| log2

(
−20λ ln(δ)

ε2

))
− ln (δ) as defined in the algorithm.

Here, the upper bound is of the same order as the lower bound in Theorem 1,
up to a double-logarithmic order.

The proof of Theorem 3 is established by some adjustments of the proof of
Theorem 2.

Proof. As before, we denote the time step of the algorithm by t, the value of the
counter C(k) at time step t by Ct(k) and we use the notations L′

D = LD +ln (δ)
and x∗ as a short for x∗

λ. We note that here, at each time step, there may be
more than a single sample, so T , the sample complexity, may be different than
the final time step. Hence, here we denote the (random) final time step by TD.
By the condition in step 5 of the algorithm, for every arm k ∈ K, it follows that,

CTD−1(k) ≤ 10λ (L′
D − ln(δ))
ε2

. (23)
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Note that by the facts that for x ≥ 6 it follows that d6 ln(x)
dx ≤ 1, and that for

x0 = 20 it follows that x0 > 6 ln(x0) + 1 it is obtained that

L′′
D � |K| log2

(−20λ ln(δ)
ε2

)

> 6 ln
(

|K| log2

(−20λ ln(δ)
ε2

))

+ 1 = L′
D + 1,

for L′′
D ≥ 20. So, by the fact that T =

∑
k∈K log2

(
2CTD−1(k)

)
, for L′′

D ≥ 20 it
follows that

T ≤ |K| log2

(
20λ (L′

D − ln(δ))
ε2

)

< |K| log2

(
20λ (L′′

D − ln(δ))
ε2

)

≤ |K| log2 (L′′
D) + L′′

D ≤ L′′
D (log2 (L′′

D) + 1) ≤ (L′′
D)2

2
=

1
2
e

L′
D
3 .

(24)

Recall that x∗ is used as a short for x∗
λ. Now, we begin with proving the (ε, δ)-

correctness property of the algorithm. We let V k
N (m) stands for the m-th largest

value obtained from arm k after sampling it for N times and we assume w.l.o.g.
that Q1(λ) = x∗. Then, for N ≥ N0 and m = 	λN − √

3λNLD
 + 1, as stated
in the algorithm, by Lemma 1 it follows that

P
(
V 1

N (m) < x∗) ≤ δe−L′
D (25)

Hence, at every time step t, by Eqs. (24) and (25), by applying the union
bound, for Ni = 2iN0 it follows that

P
(
V t,1 < x∗) ≤

1
2 exp

(
L′

D
3

)

∑

i=0

P
(
V 1

Ni
(m) < x∗) = δe− 2L′

D
3 .

(26)

where V t,k stands for the value of V k at time step t.
Now, we let k∗

TD
stands for the arm returned by the algorithm. Also, by

Lemma 1, for N >
10λ(L′

D−ln(δ))
ε2 , it follows that

P
(
V k

N (m) > Qk(λ − ε)
) ≤ δe−L′

D . (27)

So, since by the condition in step 5, it is obtained that C(k∗
TD

) >
10λ(L′

D−ln(δ))
ε2 ,

it follows by Eq. (27) and the union bound that

P
(
V

TD,k∗
TD > Qk∗

TD
(λ − ε)

)
≤
∑
k∈K

1
2 exp

(
L′

D
3

)

∑
t=1

1
2 exp

(
L′

D
3

)

∑
i=0

δe−L′
D = |K|δe− L′

D
3 . (28)

Also, by Eq. (26) and applying the union bound it follows that

P
(
V TD,1 < x∗) ≤

1
2 exp

(
L′

D
3

)

∑

t=1

P
(
V t,1 < x∗) ≤ δe− L′

D
3 (29)



Pure Exploration for Max-Quantile Bandits 567

So, since by step 4 of the algorithm, V TD,k∗
TD ≥ V TD,1, it follows by Eqs. (28)

and (29) that

P
(
Qk∗

TD
(λ − ε) < x∗

)
≤ P

(
V TD,k∗

TD > Qk∗
TD

(λ − ε)
)

+ P
(
V TD,1 < x∗) < δ

Therefore, it follows that the algorithm returns an ε-optimal arm with a
probability larger than 1 − δ. So, it is (ε, δ)-correct.

For proving the bound on the expected sample complexity of the algorithm
we define the following sets:

M(ε) = {l ∈ K|Δk,λ ≤ ε} and N(ε) = {l ∈ K|Δk,λ > ε}.

As before, we assume w.l.o.g. that Q1(λ) = x∗. For the case in which

E1 �
⋂

1≤t≤T

{
V t,1 ≥ x∗} ,

occurs, for every arm k ∈ K, a necessary condition for CTD (k) > N ′
k,D, where

N ′
k,D � min

{

Ni|Ni >
10λ (L′

D − ln(δ))
Δ2

k,λ

, i ∈ N

}

is
Ek,D �

{
V k

N ′
k,D

(m′
k,D) ≥ x∗

}
,

where m′
k,D = 	λN ′

k,D −
√

3λN ′
k,D (L′

D − ln(δ))
 + 1.
Then for

Φk,D(ε) =
20λ (L′

D − ln(δ))
(max (ε,Δk,λ))2

for k ∈ N(ε) it follows that
N ′

k,D ≤ Φk,D(ε)

So, by using the bound in Eq. (23) and the fact that
∑

k∈K CTD (k) =
2
∑

k∈K CTD−1(k) for the arms in the set M(ε), N ′
k,D as a bound for the arms

in the set N(ε) and the bound in Eq. (24), it is obtained that

E[T ] ≤ (1 − P (E1)) e
L′

D
3

+ P (E1)
∑

k∈N(ε)

(

(1 − P (Ek,D|E1)) Φk,D(ε) + e
L′

D
3 P (Ek,D|E1)

)

+
∑

k∈M(ε)

Φk,D(ε) + 1,

(30)
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But, by Eq. (26) it follows that

P (E1) ≥ 1 −
exp

(
L′

D
3

)

∑

t=1

P
(
V t,1 < x∗) ≥ 1 − δe− 2L′

D
3 e

L′
D
3 = 1 − δe

−L′
D

3
(31)

Also, since Qk

(

λ −
√

10λ(L′
D−ln(δ))

N ′
k,D

)

< x∗ for k ∈ N(ε), it follows by

Lemma 1 that

P (Ek,D|E1) P (E1) < δe−L′
D , ∀k ∈ N(ε) (32)

Therefore, by Eqs. (30), (31) and (32) and the definition of Φk,D(ε), the bound
on the sample complexity is obtained. ��

5 Experiments

In this section we investigate numerically the Max-Q and the Double-Max-Q
algorithms presented in this paper and compare them with the QPAC algorithm
presented in [14].

In Fig. 1, we present the average sample complexity of 10 runs vs. the quantile
λ for δ = 0.01 and various values of ε. As shown in Fig. 1, and detailed in
Tables 1, 2, 3 and 4, the Max-Q and the Double-Max-Q algorithms significantly
outperform the QPAC algorithm. The arms distribution functions used here were
uniform with an interval of length 1.

Table 1. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.005 ε = 0.005 ε = 0.005

1 − λ = 0.8 7.26 7.43 7.6

1 − λ = 0.85 7.26 6.47 6.75

1 − λ = 0.9 7.26 6.35 6.57

1 − λ = 0.95 7.26 6.05 6.25

1 − λ = 0.96 7.26 5.85 6.16

1 − λ = 0.97 7.26 5.68 6.04

1 − λ = 0.98 7.26 5.58 5.88

1 − λ = 0.99 7.28 5.42 5.72
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Fig. 1. The average sample complexity of the Max-Q, the Double-Max-Q and the
QPAC algorithms for various of parameters settings. The number of arms was 10 and
the averages were computed over 10 runs.

Table 2. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.01 ε = 0.02 ε = 0.01 ε = 0.02 ε = 0.01 ε = 0.02

1 − λ = 0.8 6.22 6.01 6.83 6.2 6.96 6.26

1 − λ = 0.85 6.63 6.01 5.86 5.26 6.11 5.48

1 − λ = 0.9 6.63 6.01 5.74 5.15 5.93 5.33

1 − λ = 0.95 6.63 6.01 5.46 4.92 5.64 5.12

1 − λ = 0.96 6.63 6.03 5.28 4.8 5.57 5.09

1 − λ = 0.97 6.63 6.23 5.15 4.76 5.47 5.07

1 − λ = 0.98 6.66 6.23 5.11 4.81 5.4 5.1

1 − λ = 0.99 6.85 — 5.12 — 5.41 —
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Table 3. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.03 ε = 0.04 ε = 0.03 ε = 0.04 ε = 0.03 ε = 0.04

1 − λ = 0.8 5.64 5.41 5.64 4.85 5.51 5

1 − λ = 0.85 5.63 5.42 5.63 4.69 5.13 4.92

1 − λ = 0.9 5.64 5.41 5.64 4.62 5 4.78

1 − λ = 0.95 5.74 5.6 5.74 4.53 4.9 4.76

1 − λ = 0.96 5.85 5.6 5.85 4.51 4.89 4.82

1 − λ = 0.97 5.85 — 5.85 — 4.92 —

Table 4. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1

1 − λ = 0.8 5.31 5 4.57 4.09 4.85 4.46

1 − λ = 0.85 5.3 5 4.44 4.04 4.73 4.33

1 − λ = 0.9 5.3 5 4.4 4.1 4.69 4.42

1 − λ = 0.95 5.48 — 4.41 — 4.66 —

6 Conclusion

In this paper we studied the pure exploration problem where the goal is to find
the arm with the maximal λ-quantile. Under the PAC framework, we provided
a lower bound and algorithms that attain it up to a logarithmic term (for the
first algorithm) and a double-logarithmic term (for the second algorithm).

A challenge for future work is closing the logarithmic gap between the lower
and upper bounds.
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