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Abstract. Under-approximations are useful for falsification of safety
properties for nonlinear (hybrid) systems by finding counter-examples.
Polytopic under-approximations enable analysis of these properties using
reasoning in the theory of linear arithmetic. Given a nonlinear system,
a target region of the simply connected compact type and a time dura-
tion, we in this paper propose a method using boundary analysis to
compute an under-approximation of the backward reachable set. The
under-approximation is represented as a polytope. The polytope can be
computed by solving linear program problems. We test our method on
several examples and compare them with existing methods. The results
show that our method is highly promising in under-approximating reach-
able sets. Furthermore, we explore some directions to improve the scal-
ability of our method.

Keywords: Polytopic under-approximations · Backward reachable
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1 Introduction

Reachability analysis, which involves constructing reachable sets, is a central
component of model checking. It plays an important role in automatic verifica-
tion and falsification of safety properties for continuous nonlinear and hybrid
systems [2,3]. It has been utilized in diverse applications such as artificial pan-
creas [4,5] and robotic systems [6]. Over the past few years, a lot of attention
has been given to construct over-approximations of reachable sets of nonlin-
ear systems, i.e., abstraction methods [7,8], simulation based methods [9] and
Taylor series expansions [10,11]. Nevertheless, much less attention has been given
to the problem of finding under-approximations. Actually, under-approximations
of reachable sets are also important to compute because of a variety of appli-
cations in engineering domains. For example, they can be used for designing
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robust artificial pancreas [5,12]. Computing under-approximations of backward
reachable sets can help find a set of feasible states such that every trajectory
originating from it will definitely enter a specified region (e.g., normal blood
glucose ranges) at a specified time instant. They can be used to prove attrac-
tive properties by checking if all the trajectories originating from them will stay
in them forever and eventually enter some specified desired sets [13]. They can
also be used for falsification by checking if the under-approximation intersects
the unsafe sets1 [3]. Also, under- and over-approximations of reachable sets can
provide an indication of the precision of an estimate of the exact reachability
region [4]. In contrast to over-approximation problems, methods for computing
under-approximations are far from being developed. One of main reasons may
lie in the fact that the problem is more difficult than the one of computing
over-approximations [14].

We in this paper propose a linear programming based approach combining
validated numerical methods for ordinary differential equations for finding poly-
topic under-approximations of backward reachable sets, under the assumption
that the target region is a simply connected compact set. The basic procedure
for computing the under-approximation mainly consists of three steps. The first
step is to compute an enclosure of the boundary of the backward reachable set
based on validated numerical techniques for ordinary differential equations. The
second step is to obtain a polytope, which contains the enclosure obtained in
the first step, and the last step is to shrink this polytope based on linear pro-
gramming to yield an under-approximation of the backward reachable set. The
contributions of this paper are summarized as follows:

1. We show how a polytopic under-approximation of the backward reachable set
can be obtained by solving linear programming problems. We first construct
a polytopic over-approximation of the reachable set based on the reachable
set’s boundary and validated numerical techniques for ordinary differential
equations, then contract this over-approximation to obtain a polytopic under-
approximation by solving linear programs.

2. We implement our approach based on linear programming solver GLPK2 and
the validated ordinary differential equation solver VNODE-LP [24], test and
compare it with the method of Korda et al. [22] based on several examples.
The experiment results show that our approach is highly promising in under-
approximating reachable sets for some cases. Furthermore, we explore some
directions toward making our method scale well based on an example involv-
ing a seven-dimensional biological system.

Related Work

Several techniques have been proposed for computing under-approximations of
reachable sets for linear systems, e.g., [14–16]. However, they cannot be easily
extended to handle non-linear systems. Under-approximations of reachable sets
1 If the under-approximation intersects the unsafe sets, then the system is definitely

unsafe.
2 http://www.gnu.org/software/glpk/.

http://www.gnu.org/software/glpk/
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for nonlinear systems have been discussed elsewhere (e.g., [17] and [21]), but a
feasible solution is not given. Recently, some methods have been proposed to
compute under-approximations of reachable sets for nonlinear systems.

Sum-of-squares programming based methods are proposed to compute inner
approximations of reachable sets for polynomial dynamical systems in [22,37].
Unfortunately, the present status of semi-definite programming solvers is not
so advanced. The numerical problems produced by these solvers often lead to
unreliable results for some cases. On the contrary, our method relies on linear
programming and validated numerical methods for ordinary differential equa-
tions, thus making our method more reliable. A Taylor model backward flow-
pipe method is presented to compute under-approximations in [23]. However,
the algorithm in [23], in which an interval constraint propagation technique is
employed to verify the connectedness of an already obtained basic semi-algebraic
set, for finding implicit Taylor models such that the semi-algebraic set formed
by them is simply-connected3 is not complete generally4. In our method, the
procedure employing interval constraint propagation techniques to enclose the
boundary of the reachable set is complete.

As mentioned previously, polytopic under-approximations permits the analy-
sis of some specified properties such as the falsification of safety properties
using reasoning in the theory of linear arithmetic. Interval under-approximations
received increasing attention recently [18,19]. A method based on modal intervals
with affine forms is proposed to under-approximate reachable sets using inter-
vals for continuous nonlinear systems modelled by ordinary differential equations
[20]. However, our method provides a way to characterize under-approximations
of reachable sets using general polytopes, reducing the conservativeness induced
by interval representations in the construction of reachable sets.

The structure of this paper is as follows. Some basic definitions related to
backward reachable sets as well as an introduction to convex polytopes is intro-
duced in Sect. 2. Our approach of computing under-approximations, together
with its computational complexity, is presented in Sect. 3. Several numerical
examples with a detailed discussion of our approach and comparison with the
method in [22] are provided in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Preliminary

In this paper, the following notations are used. Vectors are denoted by boldface
letters (e.g., x). For a set Δ, its complement, interior, closure and boundary are
denoted by Δc, Δ◦, Δ and ∂Δ respectively. Further, U(x; ε) = {y : ‖y − x‖ <
ε, ε > 0} represents an ε−neighbourhood of the vector x.

3 A set is simply connected if there are no holes in it to prevent the continuous shrink-
ing of each closed arc to a point.

4 An algorithm is complete, implying that it guarantees to find a solution if there
is one.
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2.1 Backward Reachable Sets

Consider a nonlinear system of the form

ẋ = f(x), (1)

where x = (x1, · · · , xn)′ ∈ R
n, and f(x): Rn → R

n is (p − 1)-time continuously
differentiable and p ≥ 1. We also assume f is locally Lipschitz continuous. Thus
for a given set X that is a simply connected compact set, the existence and
uniqueness of the trajectory with x(0) = x0 and x0 ∈ X will be assured over
some time interval [−σX , σX ] with σX > 0. Further, the trajectory of System
(1) is defined to be φ(t;x0) = x(t), where x(t) is the solution of System (1) sat-
isfying the initial condition x(0) = x0. Furthermore, the backward and forward
reachable sets of a simply connected compact set TR for the time duration T are
defined as follows.

Definition 1. Given System (1), a set TR that is a simply connected compact
set and a finite time duration T ≤ σTR, the backward reachable set of TR for
the time duration T is defined to be Ωb(T ; TR,f) = {x0|φ(T ;x0) ∈ TR} and the
forward reachable set of TR for the time duration T is defined to be Ωf (T ; TR,f) =
{x|x = φ(T ;x0) and x0 ∈ TR}.
Remark 1. According to Definition 1, the map φ(t; ·) : TR ⊆ R

n → Ωf (t; TR,f)
(or, Ωb(t; TR,f) → TR) is bijective and continuous for t ∈ [0, T ] under the
Lipschitz condition of f .

It is intractable to obtain these reachable sets for nonlinear systems since they
generally do not have a closed-form solution. However, as mentioned previously,
it is sufficient to consider an under-approximation of the backward reachable set,
denoted as UAB, for certain applications such as artificial pancreas [12].

Definition 2. Given System (1), a set TR that is a simply connected compact
set and a finite time duration T , an UAB of TR for the time duration T is a
nonempty subset of Ωb(T ; TR,f).

Obviously, all trajectories originating from UAB will definitely enter TR after
a time duration T , although there may be trajectories not in UAB that also enter
TR after the time duration T . The under-approximation is equivalent to a region
attracting to a target region, but a variant of the classical region of attraction
containing an equilibrium.

2.2 Convex Polytopes

Convex polyhedra over reals (rationals) are a natural representation of sets of
states for the verification of hybrid systems [25–27]. A convex polytope is a set
in R

l that can be regarded as the set of solutions to the system of linear inequal-
ities Aw + C ≤ B,5 where A = (aij)m×l is a m × l matrix, w = (w1, . . . , wl)′ is
a l × 1 vector, C = (c1, . . . , cm)′ and B = (b, . . . , b)′ are both m × 1 vectors.
5 A convex polytope is formulated in this form for the convenience of the presentation

of our approach in Sect. 3.
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A convex polytope P = {w : Aw+C ≤ B} has the following property, where
the matrix A is full row rank.

Property 1. Let P be compact and its interior P ◦ be not empty, then P and
P ◦ are both simply connected sets with the same boundary ∂P = {w ∈ P :
∨m

i=1[
∑l

j=1 aijwj + ci = b]}.

Based on Property 1, the following two lemmas can be obtained, which are
further illustrated in Fig. 1.

Lemma 1. Assume P = {w : Aw + C ≤ B} is a compact convex polytope.
If U is a compact set such that its boundary is a subset of the compact convex
polytope P , then P is an over-approximation of the set U .

Proof. Since U is a compact set, there exists yi = (yi1, . . . , yil)′ ∈ U such that
∑l

j=1 aijwj + ci reaches its maximum value MAXi in U at this point, where i =
1, . . . ,m. Obviously, U ⊆ P is equivalent to MAXi ≤ b for i = 1, . . . , m. Thus it is
enough to prove that MAXi ≤ b for i = 1, . . . , m.

Assuming that there exists an index i ∈ {1, . . . , m} such that MAXi > b,
we derive a contradiction as follows. Since ∂U ⊆ P and Aw + C ≤ B for
∀w ∈ P , then yi ∈ U◦. If U◦ = ∅, a contradiction is obtained; Otherwise, let
Ω = {w : Aw + C ≤ MAX}, where MAX = (MAXi, . . . , MAXi)′. By Property 1, we
obtain that yi ∈ ∂Ω. Thus for an arbitrary but fixed positive number ε, there
exists z = (z1, . . . , zl)′ ∈ U(yi; ε) such that

∑l
j=1 aijzj + ci > MAXi. Also, since

yi ∈ U◦, there exist ε1 > 0 and w0 = (w01, . . . , w0l)′ ∈ U(yi; ε1) ⊆ U such that
∑l

j=1 aijw0j + ci > MAXi, contradicting the fact that
∑l

j=1 aijwj + ci reaches its
maximum MAXi in U at the point yi. Thus, MAXi ≤ b for i = 1, . . . ,m. That is, P
is an over-approximation of the set U .

Lemma 2. Assume O is a simply connected compact set and P = {w : Aw +
C ≤ B} is a compact convex polytope. If the boundary of the set O is a subset
of the enclosure of the complement of the polytope P , and the intersection of the
interior of the set O and the interior of the set P is not empty, then the set P
is an under-approximation of the set O.

Proof. Since P = {w : Aw+C ≤ B} is compact, P ◦ and P are simply connected
sets with the same boundary ∂P = {w ∈ P : ∨m

i=1

∑l
j=1 aijwj + ci = b}.

Assuming that y ∈ P is a point such that y /∈ O, we derive a contradiction
as follows.

Case 1: y ∈ P ◦. Since O◦ ∩ P ◦ �= ∅, there exists y0 ∈ O◦ ∩ P ◦. Thus there
exists a path q in P ◦, connecting y and y0. Due to the assumption that
y /∈ O, there exists y1 ∈ q such that y1 ∈ ∂O and y1 ∈ P ◦, contradicting
the assumption that ∂O ⊆ P c.
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Case 2: y ∈ ∂P . Since y /∈ O and O is compact, there exists a δ > 0 such
that P ◦ ∩ U(y; δ) �= ∅ and U(y; δ) ∩ O = ∅. Thus there exists z1 such that
z1 ∈ P ◦∩U(y; δ) and z1 /∈ O. Then, similar to the above case, a contradiction
is derived.

Thus, we conclude that the set P is an under-approximation of the set O.

Fig. 1. An illustration for Lemmas 1 and 2. (blue curve – the boundary of the set O
in Lemma 1; red curve – the boundary of the convex polytope P ; black curve – the
boundary of the set U in Lemma 2.) (Color figure online)

Based on the above two lemmas, an approach to compute a polytopic UAB is
proposed in the section that follows.

3 Under-Approximating Backward Reachable Sets

In this section an approach is proposed to compute an UAB of a compact simply
connected target region TR after the time duration T . The UAB is represented by
a polytope.

3.1 Computing Under-Approximations

In this subsection an approach for computing an UAB of TR for the time duration
T is detailed. The framework to compute an UAB of a simply connected compact
set TR for the time duration T in our method involves the following steps,

1. a time grid 0 = t0 < t1 < . . . < tN = T is adopted with a step size h;
2. starting with U0 = TR, we compute a compact polytope U1, which is an UAB

of TR for the time duration h;
3. starting from the kth UAB, we advance our approximation to a compact poly-

topic UAB Uk+1;
4. UN is what we want to obtain.
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Assume that we have already obtained a compact polytope Uk, where Uk is
an UAB of TR for the time duration tk. A compact polytopic UAB for the time
duration k + 1 is constructed through the following steps:

(a) compute a set Ωk+1, which is an union of a collection of intervals, such that
∂Ωb(h;Uk,f) ⊆ Ωk+1, as discussed below;

(b) compute a compact polytope Ok+1 = {x : Ax + C ≤ B} such that Ωk+1 ⊆
Ok+1;

(c) contract Ok+1 to obtain Uk+1 = {x : Ax+C ≤ Bu} such that Ωk+1 ⊆ U c
k+1

and U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅.

In order to prove that Uk+1 obtained by the steps (a) ∼ (c) is also a sim-
ply connected compact set and is a subset of Ωb(h;Uk,f), we first introduce
a fundamental theorem behind our method based on the fact that φ(t; ·) :
Ωb(t;Δ,f) �→ Δ is a homeomorphism between two topological spaces (Δ, TΔ)
and (Ωb(t;Δ,f), TΩb(t;Δ,f)).

Theorem 1. [28,29] If Δ ⊆ R
n is a simply connected compact set, then

Ωb(t;Δ,f) is also a simply connected compact set and ∂Ωb(t;Δ,f)=
Ωb(t; ∂Δ,f).

Based on Theorem 1, we have the following lemma stating that Uk+1 is a
simply connected compact UAB of Uk for the time duration h.

Lemma 3. If Uk is a simply connected compact set, then Uk+1 obtained by our
framework is also a simply connected compact set satisfying Uk+1 ⊆ Ωb(h;Uk,f).

Proof. Since Uk is a simply connected compact set, Ωb(h;Uk,f) is also a sim-
ply connected compact set according to Theorem 1. Also, since Ok+1 in our
framework is a simply connected compact set, we obtain that Uk+1 is a simply
connected compact set.

Regarding ∂Ωb(h;Uk,f) ⊆ Ωk+1 ⊆ U c
k+1 and U◦

k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅, we
conclude that Uk+1 ⊆ Ωb(h;Uk,f) according to Lemma 2.

From Lemma 3, we can deduce that UN is an UAB of TR for the time duration
T , as stated in Theorem 2.

Theorem 2. Given a nonlinear system of the form (1), if U0 = TR is a simply
connected compact set, UN obtained by our computational framework is an UAB
of TR for the time duration t = T .

In the sections that follow, we detail how to compute Ωk+1, Ok+1 and Uk+1

in the steps (a) ∼ (c).

3.1.1 Computing Ωk+1 and Ok+1

In this subsection, we describe how to compute Ωk+1 and Ok+1 in the steps (a)
and (b) respectively in our computational framework.

Firstly, we introduce a proposition stating that the backward reachable set of
System (1) can be obtained by computing the corresponding forward reachable
set of its reverse system, as described in the following.
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Proposition 1. [21] Ωf (h;X ,−f)=Ωb(h;X ,f), where X ⊆ R
n.

From Proposition 1, we observe that Ωf (h;Uk,−f) instead of Ωb(h;Uk,f)
can be used for performing computations in our computational framework, where
k = 0, . . . , N − 1. Thus, we can equivalently compute a set Ωk+1 such that
∂Ωf (h;Uk,−f) ⊆ Ωk+1. Also, the fact that the boundary of Ωf (h;Uk,−f) cor-
responds to the boundary of Uk under the map φ(h; ·) according to Theorem 1 is
observed. Thus Ωk+1 is obtained based on ∂Uk. According to these observations,
an approach to computing Ωk+1 is presented, as described in the following.

1. For a given εM , we use the interval Branch and Bound methods (e.g., [30]) to
obtain a set of compact intervals {sj , j = 1, . . . ,Mk} such that ∂Uk ⊆ ∪Mk

j=1sj ,
where Mk is the number of intervals and each interval sj is of the form
[x1, x1] × . . . × [xn, xn] satisfying |xl − xl| ≤ εM .

2. For j = 1, . . . ,Mk, we use interval reachability analysis based methods (e.g.,
[24]) to obtain a compact interval Ij such that Ωf (h; sj ,−f) ⊆ Ij . Thus,
Ωk+1 = ∪Mk

j=1Ij is what we want.

The above procedure for computing Ωk+1 is denoted by Boundary(h,Uk, εM ).

Remark 2. In the procedure Boundary(h,Uk, εM ), εM is used to restrict the size
of boxes enclosing ∂Uk. As εM becomes smaller, the volume of the obtained
boxes becomes smaller and the resulting Ωk+1 becomes less conservative, but
the computational burden increases.

The procedure Boundary(h,Uk, εM ) for computing Ωk+1 is illustrated
through the following example.

Example 1. Consider a model of an electromechnical oscillation of s synchronous
machine [31], {

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

,

where TR = [−0.1, 0.1] × [2.9, 3.1] and T = 0.5.
Computing Ω1 when h = 0.5 and εM = 0.05 is illustrated in Fig. 2.

Next, we compute a convex hull Ok+1 such that Ok+1 ⊇ Ωk+1, where Ωk+1 =
∪Mk

j=1Ij . Let vj be the set of vertices of the interval Ij and v = ∪Mk
j=1vj . We get a

polytope Ok+1 = {x : Ax+C ≤ B} of v using convex hull algorithm (e.g., [33]),
where A = (aij)m×n and B = (b, . . . , b)′. This procedure for computing Ok+1 is
denoted by Polytope(Ωk+1).

Since Ij is compact for j = 1, . . . ,Mk, v is a bounded set, and as a conse-
quence Ok+1 is bounded and thus compact. Also, since every box Ij is also a
convex hull of vj , every x ∈ Ij can be formulated as

∑2n

l=1 λlvj,l, where vj,l ∈ vj ,
λl ≥ 0 for l = 1, . . . , 2n and

∑2n

l=1 λl = 1. Thus x ∈ Ok+1 holds, implying that
∪Mk

j=1Ij ⊆ Ok+1. Now we conclude that Ok+1 in the step (b) is computed.

Remark 3. According to Lemma 1 in Subsect. 2.2, the convex hull Ok+1 is an
over-approximation of the backward reachable set of Uk for the time duration h.
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Fig. 2. An illustration for computing Ω1. (red boxes – Ω1 including ∂Ωb(T ; TR, f ); green
points – ∂Ωb(T ; TR, f ) obtained by simulation methods; black points – some simulation
trajectories originating from Ωb(T ; TR, f ) over the time interval [0, 0.5]; purple curve –
∂TR; blue boxes – ∪jsj including ∂TR.) (Color figure online)

3.1.2 Computing an Under-Approximation Uk+1

This section focuses on computing a polytopic under-approximation Uk+1 (step
(c) in our computational framework) by solving linear programming problems.

After obtaining Ωk+1 = ∪Mk
j=1Ij and Ok+1 = {x : Ax + C ≤ B} in steps (a)

and (b) based on the method in Subsect. 3.1, we shrink Ok+1 to yield Uk+1 by
solving linear programming problems. The computations consist of two steps, as
described below.

1. For j = 1, . . . , Mk, we solve the following linear optimization problem:

minimize bj

s. t. Ax + C ≤ Bj ,
bj ≤ b,
x ∈ Ij ,

(2)

where Bj = (bj , . . . , bj)′. Since bj ≤ b, we can obtain that {x : Ax + C ≤
Bj} ⊆ {x : Ax + C ≤ B}.

2. We denote min{bj , j = 1, . . . , Mk} by bu and (bu, . . . , bu)′ by Bu respectively.
If {x : Ax + C ≤ Bu} �= ∅, it is denoted by Uk+1. The case that Uk+1 is
empty is discussed in Sect. 4. Note that Uk+1 is just a candidate of what we
want.

The above procedure for Uk+1 is denoted by Contraction(Ωk+1, Ok+1),
which is illustrated in the following example.

Example 2. For Example 1, computing U1 when εM = 0.05 and h = 0.5 is
illustrated in Fig. 3, where T = 0.5.

Since Uk+1 ⊆ Ok+1, Uk+1 is compact. However, we cannot conclude that
Uk+1 is an UAB of Uk for the time duration h. In order to further ensure that
Uk+1 is an under-approximation of Ωb(h;Uk,f), we need to verify whether Uk+1
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Fig. 3. An illustration for computing Ω1. (red boxes – Ω1 including ∂Ωb(T ; TR, f );
green curve – ∂O1; black curve – ∂U1.) (Color figure online)

satisfies the condition as described in the step (c) in our computational frame-
work, i.e., verify whether Ωk+1 ⊆ U c

k+1 and U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds.

For the constraint Ωk+1 ⊆ U c
k+1, we can ensure it by the following lemma.

Lemma 4. Ωk+1 ⊆ U c
k+1, where Ωk+1 and Uk+1 are respectively obtained based

on the procedures Boundary(h,Uk, εM ) and Contraction(Ωk+1, Ok+1).

Proof. Since Uk+1 = {x : Ax + C ≤ Bu}, where A =
(
aij

)
m×n

, C =
(c1, . . . , cm)′, Bu = (bu, . . . , bu)′, bu = min{bj , j = 1, . . . ,Mk} and bj is
obtained by solving the optimization problem (2), we can obtain that for
every x = (x1, . . . , xn)′ ∈ ∪Mk

j=1Ij , there exists an index i ∈ {1, . . . , m} such
that

∑n
j=1 aijxj + ci ≥ bu, implying that x /∈ {x : Ax + C < Bu}. Thus,

Ωk+1 = ∪Mk
j=1Ij ⊆ U c

k+1.

In order to check whether U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds, we first take

a point x ∈ U◦
k+1 = {x : Ax + C < Bu}, then apply interval methods (e.g.,

[24]) to get an interval enclosure sx of φ(h;x), and check whether sx ⊆ Uk

holds. If the answer is positive, U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds, as stated in

Lemma 5. The procedure for checking U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ is denoted by

Verification(U◦
k+1 ∩ (Ωb(h;Uk,f))◦).

Lemma 5. If sx ⊆ Uk, then x6∈ U◦
k+1 ∩ (Ωb(h;Uk,f))◦ holds, where sx and

Uk+1 are respectively computed based on the procedures Verification(U◦
k+1 ∩

(Ωb(h;Uk,f))◦) and Contraction(Ωk+1, Ok+1).

6 Although x can be an arbitrary point belonging to U◦
k+1, x has to be a point being

away from ∂Uk+1 due to the fact that sx is an interval box rather a point and
sx ⊆ Uk. This can be done by taking x being in {x : Ax + C ≤ Bu − δ}, where
δ > 0.
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Proof. Since sx ⊆ Uk, x ∈ Ωf (h;Uk,−f) and thus x ∈ Ωb(h;Uk,f) holds.
Also, according to the fact that ∂Ωb(h;Uk,f) ⊆ Ωk+1 and Ωk+1 ⊆ U c

k+1, we
obtain that U◦

k+1 ∩ ∂Ωb(h;Uk,f) = ∅, implying that x /∈ ∂Ωb(h;Uk,f). Thus,
x ∈ U◦

k+1 ∩ (Ωb(h;Uk,f))◦.

Thus, if the boolean value returned by Verification(U◦
k+1∩(Ωb(h;Uk,f))◦)

is true, i.e., U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅, then Uk+1 obtained by the procedure

Contraction(Ωk+1, Ok+1) is an UAB of Ωb(h;Uk,f).

Remark 4. In the procedure Contraction(Ωk+1, Ok+1), | b−bu

b−d | can be used to
evaluate the obtained UAB Uk, where d is the supremum such that {x : Ax+C <
D} = ∅ and D = (d, . . . , d)′7. As it approaches one, the under-approximation
becomes increasingly conservative.

Thus our approach for computing a compact polytopic UAB is elucidated.
We formally formulate our approach for computing an UAB of TR for the time
duration T as Algorithm 1.

Algorithm 1. Computing an Under-Approximation
Input: Given system (1), a target region: TR, a time duration: T , a time step h such

that T−0
h

≥ 1 is an integer, εM : the size of intervals enclosing the boundaries, and
ε: local error bounds.

Output: an UAB of TR for the time duration T .
1: U0 := TR;
2: for i = 0 : 1 : N − 1 do
3: Ωi+1 := Boundary(h, Ui, εM );
4: Oi+1 := Polytope(Ωi+1);
5: Ui+1 := Contraction(Ωi+1, Oi+1);
6: if Verification(U◦

i+1 ∩ (Ωb(h; Ui, f ))◦) is false or | b−bu

b−d
| > ε then

7: return ”failed to obtain an UAB” and terminate;
8: end if
9: end for

10: return an UAB UN .

Remark 5. Our method, as formalised in Algorithm 1, can be applied to under-
approximate forward reachable sets by performing forward computations on ini-
tial sets.

In order to enhance the understanding of our approach, an example is
employed to illustrate Algorithm 1 as follows.

Example 3. Consider a model of an electromechanical oscillation of s synchro-
nous machine, {

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

,

where TR = [−0.1, 0.1] × [2.9, 3.1] and T = 3.
7 d can be obtained by solving the linear program: min d, s.t., Ax + C ≤ D.
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Let h = 3, εM = 0.0001 and ε = 0.5. Firstly, we compute Ω1 = ∪jIj such that
∂Ωb(T ; TR,f) ⊆ Ω1 based on the procedure Boundary(h, TR, εM ) in Subsect. 3.1,
where Ij is of the interval form. Secondly, we compute O1 based on the procedure
Polytope(Ω1) in Subsect. 3.1 such that Ω1 ⊆ O1. Thirdly, we contract O1 to
obtain U1 based on the procedure Contraction(Ω1, O1) in Subsect. 3.1. Finally,
we find a point x = (−8.08, 2.52) ∈ U◦

1 and obtain sx = [0.0082, 0.0083] ×
[3.0181, 3.0182] based on the procedure Verification(U◦

1 ∩ (Ωb(h; TR,f))◦) in
Subsect. 3.1. Since sx ⊆ TR and | b−bu

b−d | ≈ 0.246621 ≤ ε, where b = 0, bu =
−0.008260 and d = −0.0334927, U1 is an UAB of TR for the time duration T = 3.
The boundary of U1 is depicted in Fig. 4.

Fig. 4. An UAB for Example 3. (left: red boxes – Ω1 including ∂Ωb(3; TR, f ); green curve
– ∂O1; black curve – ∂U1; right: a zoomed-in portion of the left figure.) (Color figure
online)

3.2 Computational Complexity

In this subsection, the computational complexity of Algorithm 1 is discussed
briefly. In the kth step, the branch-and-bound method for the problem of yielding
some interval subdivisions to enclose ∂Uk is of exponential complexity O(ξn),
where ξ = O( 1

εM
). The underlying interval Taylor series method is of polynomial

complexity: the work is O(p2) to compute the Taylor coefficients, where p is the
order of the used Taylor expansion, and O(n3) for performing linear algebra
[32]. The complexity of applying simplex algorithms to solve the linear program
(2) is O(nmk) generally, where mk is the number of linear constraints. The
computational complexity of the convex hull algorithm (e.g., [33]) is Conk =
O(2nMk logr) for n ≤ 3 and O(2nMkfr/r + fr) when n > 3, where r ≤ 2nMk

is the number of vertices of Ok+1, fr = O(r�n
2 �/�n

2 �!) and �n
2 � is the floor

function of n
2 . Therefore, the total computational complexity of our method is

∑N−1
k=0

(
O(ξn

k ) + Mk(O(p2) + O(n3)) + MkO(nmk) + Conk
)
.
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4 Examples, Discussions and Comparisons

Our approach is implemented based on the floating point linear programming
solver GLPK running the Simplex algorithm and the validated ordinary differ-
ential equation solver VNODE-LP [24]. We evaluate it using five examples and
compare it with the method of Korda et al. [22]. The results for Examples 4–7
can be found in Figs. 5, 6, 7 and 8 respectively. Table 1 presents details on para-
meters that control our approach. All these computations are performed on an
i5-3337U 1.8 GHz CPU with 4 GB RAM running Ubuntu Linux 13.04.

4.1 Examples and Discussions

In this subsection our approach is evaluated using Examples 4–8, and parameters
that control our approach are discussed using the first four examples. The results
are illustrated in Figs. 4, 5, 6 and 7. Regarding the computational complexity
analysis in Subsect. 3.2, our approach suffers from dimensional curse. In order to
overcome this problem, we explore some future directions to make our approach
more practical through Example 8.

Table 1. Performance of Algorithm 1 on Examples. Each benchmark is indexed by its
example number. TR: target region, εM : bound for the size of intervals in the procedure
Boundary(h, Uk, εM ); ε: bound for | b−bu

b−d
| in the procedure Contraction(Ωk+1, Ok+1);

h: step size; T :a specified time duration for UAB; Time: CPU time cost (seconds).

Ex TR εM ε h T Time

4 [−0.1, 0.1] × [−0.1, 0.1] 0.001 0.5 0.5 10 34.29

4 [−0.1, 0.1] × [−0.1, 0.1] 0.0002 0.5 0.5 10 266.58

5 [0.3, 0.4] × [0.5, 0.7] 0.001 0.5 0.05 1.1 55.23

5 [0.3, 0.4] × [0.5, 0.7] 0.0002 0.5 0.05 1.1 410.13

6 [1.2, 1.5] × [0.8, 1.1] 0.001 0.5 0.5 10 23.04

6 [1.2, 1.5] × [0.8, 1.1] 0.0001 0.5 0.5 10 911.40

7 xi ∈ [−0.1, 0.1], i = 1, . . . , 3 0.003 0.5 0.5 2.5 450.32

7 xi ∈ [−0.1, 0.1], i = 1, . . . , 3 0.003 0.5 2.5 2.5 66.56

8 xi ∈ [−0.015, 0.001], i = 1, . . . , 7 0.016 0.5 0.01 0.2 0.67

Example 4. Consider the system in Example 1 again
{

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

.

Example 5. Consider the Brusselator model [10],
{

ẋ1 = 1 + x2
1x2 − 1.5x1 − x1

ẋ2 = 1.5x1 − x2
1x2

,



470 B. Xue et al.

Example 6. Consider the Van-der-Pol system,
{

ẋ1 = x2

ẋ2 = −0.2(x2
1 − 1)x2 − x1

.

Example 7. Consider the 3D-Lotka-Volterra System,
⎧
⎪⎨

⎪⎩

ẋ1 = x1x2 − x1x3

ẋ2 = x2x3 − x2x1

ẋ3 = x3x1 − x3x2

.

Note that Ωb(2.5; TR,f) ⊆ O1 in Fig. 8 according to Remark 3.

Fig. 5. ∂UAB for Example 4.(blue
points – ∂Ωb(10; TR, f ) obtained by
Runge-Kutta methods; red curve –
∂U20 when εM = 0.0002; green curve –
∂U20 when εM = 0.001.) (Color figure
online)

Fig. 6. ∂UAB for Example 5. (blue
points – ∂Ωb(1.1; TR, f ) obtained by
Runge-Kutta methods; red curve –
∂U22 when εM = 0.0002; green curve –
∂U22 when εM = 0.001.) (Color figure
online)

From the above four examples, we first observe that polytopes can represent
reachable sets well for some nonlinear systems, e.g., Examples 4–7. Also, we
observe that (1) when h is fixed, the resulting UAB becomes less conservative
as εM becomes smaller (Examples 4–6); (2) when εM is fixed, a smaller h may
lead to large errors. The underlying reason is that the under-approximation
error in every iterative step will propagate through the computations (Example
7), similar to the well known wrapping effect in over-approximating reachable
sets. The errors in the construction of under-approximations of reachable sets
using our method result from three parts in every iteration. The first one is the
computation of interval boxes enclosing the boundary of the target region. The
second one is the computation of interval boxes enclosing the boundary of the
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Fig. 7. ∂UAB for Example 6. (blue
points – ∂Ωb(10; TR, f ) obtained by
Runge-Kutta methods; red curve –
∂U20 when εM = 0.0001; green curve -
∂U20 when εM = 0.001.) (Color figure
online)

Fig. 8. ∂UAB for Example 7. (black
curve – ∂O1 when h = 2.5; red curve
– ∂U1 when h = 2.5; green curve – ∂U5

when h = 0.5.) (Color figure online)

backward reachable set based on the interval Taylor-series method and the last
one is the computation of an polytopic under-approximation. It is well known
that reachable sets of nonlinear systems are in general far from being convex,
the last one contributes to the total error mainly. Especially, for the case that
the returned under-approximation is empty in some iterative step, we could try
a smaller εM and/or a different time step h. A smaller εM , which mitigates the
error from the first source, will help to obtain a tighter Ωk+1, eventually leading
to a less conservative UAB. However, the computational cost increases. Therefore,
in order to obtain a tighter Ωk+1, reachability analysis methods which better
control the wrapping effect should be considered (e.g., [10,27]). This corresponds
to the reduction of the error from the second source. As to the last error source
resulting from polytopic approximations, an under-approximation of the semi-
algebraic form instead of the polytopic form will be contemplated in our future
study.

Example 8. Consider a seven-domensional biological system8,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −0.4x1 + 5x3x4

ẋ2 = 0.4x1 − x2

ẋ3 = x2 − 5x3x4

ẋ4 = 5x5x6 − 5x3x4

ẋ5 = −5x5x6 + 5x3x4

ẋ6 = 0.5x7 − 5x5x6

ẋ7 = −0.5x7 + 5x5x6

.

8 The model is from http://ths.rwth-aachen.de/research/hypro/biological-model-i/.

http://ths.rwth-aachen.de/research/hypro/biological-model-i/
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Using an interval hull rather than a convex hull in every iterative step
of Algorithm 1, we obtain that an UAB for the time duration t = 0.2 is
[−0.0152, 0.000] × [−0.0169, 0.0011] × [−0.0140, 0.0030] × [−0.0141, 0.0001] ×
[−0.0141, 0.0001] × [−0.0138, 0.0014] × [−0.0155, 0.000].

From Example 8, we observe that our approach scales well to systems with
a large number of variables by using an interval hull instead of a convex hull
in every iteration. However, this results in more conservative results, compared
to that based on polytopic representations. In order to reduce the conserva-
tiveness brought by interval representations, while making our approach scale
well, we will explore using oriented rectangular hulls [25], zonotopes [15] or sym-
bolic orthogonal projections [34] to construct under-approximations in our future
work. Furthermore, regarding that the boundary of a polytope is piecewise of
the zonotope form, therefore the exact boundary of the polytope rather than
interval subdivisions enveloping it obtained by Branch and Bound methods in
every iteration can be used for computations directly using methods in [11,27],
thereby reducing the computational cost and further improving the scalability
of our method.

4.2 Comparisons

In this section we will compare our method with the method of Korda et al.
[22]. Due to a lot of input parameters such as sum-of-squares multipliers being
coordinated in the method of Korda et al. [22], it is not trivial to find an optimal
combination, thereby making fair comparisons difficult. Therefore, we try to
explore some potential benefits of our method by comparing with this method.

Firstly, the method of Korda et al. [22] aims to compute inner approximations
of the region of attraction for polynomial dynamical systems by solving sum-of-
squares programming problems. The region of attraction is the set of all states
that end in the target set at a given time without leaving a constraint set. In
contrast, our method is not restricted to polynomial dynamical systems. That is,
our method can deal with more general nonlinear systems such as Example 4 in
Subsect. 4.1. Secondly, we compare the performances of the two methods based
on Examples 5–8. Assume that the specified constraint sets for the four examples
are {x : 1.252 − (x1 + 0.75)2 − (x2 − 0.65)2 ≥ 0}, {x : 4 − x2

1 − x2
2 ≥ 0}, {x :

0.04−x2
1−x2

2−x2
3 ≥ 0} and {x : 0.01252−

∑7
i=1(xi +0.0075)2 ≥ 0} respectively.

Actually, they are respectively the over-approximations of backward reachable
sets of the target regions for these four examples. Using the method of Korda
et al. [22], we can not obtain feasible solutions to any of the above examples
based on the sum-of-squares programming solver YALMIP [35] with Sedumi
[36]. Since there are a lot of sum-of-squares multipliers that are coordinated
in advance, their degrees should be determined in advance for computations,
improper mixing will result in unreliable results. The main underlying reason is
that the present status of semi-definite programming solvers is not so advanced,
as pointed out in [37]. The numerical problems produced by these solvers often
result in unreliable results for some cases. We use Example 5 to illustrate this.
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Although the solver YALMIP returns a “feasible” solution as shown in Fig. 9 for
some mixing of sum-of-squares multipliers, the result is incorrect actually. On
the contrary, our method relies on Interval methods to locate the boundary of the
backward reachable set and linear programs to obtain an under-approximation
in every iterative step, making our method more reliable.

x
1

x 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

Fig. 9. An incorrect UAB for Example 5 obtained by the method of Korda et al. [22]
due to numerical problems. (black curve – {x : 1.252 − (x1 +0.75)2 − (x2 −0.65)2 ≥ 0};
red curve – the boundary of an incorrect under-approximation of Ωb(1.1, TR, f ); green
curve - ∂TR; blue points – ∂Ωb(1.1, TR, f ) obtained by Runge Kutta methods.) (Color
figure online)

5 Conclusion

Given a nonlinear system and a target region of the simply connected compact
type, we in this paper proposed a method by performing boundary analysis
to obtain an UAB of the target region for a specified time duration. The UAB
is represented as a polytope. The polytope can be obtained by combining vali-
dated numerical methods for ordinary differential equations and linear programs.
Numerical results and comparisons with the method of Korda et al. [22] based
on five examples were given to illustrate the benefits of our approach. The results
show that our method has some significant benefits in under-approximating
reachable sets for some cases. Furthermore, we explore some directions toward
improving the scalability of our method.

Extending our method to compute under-approximations of reachable sets
for nonlinear systems with time delay (e.g., [38]) is considered in our future
work. Moreover, computing a bounded error approximation of the solution over
a bounded time is another interesting investigation towards addressing under-
approximation problems [39].
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