
Integrating Human Factors in Information
Systems Development: User Centred and Agile

Development Approaches

Leonor Teixeira1,3(&), Vasco Saavedra1, Beatriz Sousa Santos2,3,
and Carlos Ferreira1,3

1 Department of Economics, Management and Industrial Engineering,
University of Aveiro, Aveiro, Portugal

{lteixeira,vsaavedra,carlosf}@ua.pt
2 Department of Electronics, Telecommunications and Informatics,

University of Aveiro, Aveiro, Portugal
bss@ua.pt

3 Institute of Electronics and Informatics Engineering of Aveiro (IEETA),
Aveiro, Portugal

Abstract. This paper presents an overview and discussion based on the liter-
ature review of recent research of some practices that incorporate human factors,
emphasizing the user-centred design (UCD) and agile software development
(ASD) approaches. Additionally, this article presents an experience of the
development of a web-based application that aims to manage the clinical
information in haemophilia care, which benefited from these practices, making
use of some methods to support the collaboration and communication between
designers, users, and developers. The results of our experience show that the
hybrid approach, that combines the principles of UCD with values of ASD can
help to integrate human factors into the software development process in a
highly complex environment, characterized by missing information, shifting
goals and a great deal of uncertainty, such as the healthcare field.

Keywords: Human factors � Information system development � User-Centred
design � Agile software development � Interactive software

1 Introduction

The dynamics that currently characterize the software market also require the same
dynamic and some flexibility when managing the software requirements. On the other
hand, the traditional models of software engineering (SE) and management practices
for the development of this type of projects limit the flexibility for the adaptation of
those requirements, often compromising the quality of the final product.

In SE, it has been intuitively accepted that user involvement during the Systems
Development Life Cycle (SDLC), leads to a better management software requirements,
and consequently can lead to system success [1]. User involvement in SDLC facilitates
the understanding of their work environment and can improve the quality, accuracy and
completeness of the requirements.

© Springer International Publishing Switzerland 2016
V.G. Duffy (Ed.): DHM 2016, LNCS 9745, pp. 345–356, 2016.
DOI: 10.1007/978-3-319-40247-5_35



Users typically have important tacit knowledge about the system domain and
context of the system usage [1] that can be difficult to be articulated with traditional
techniques from SE. For this reason, the development process of interactive software
(IS), albeit with major contributions coming from the SE, recently has integrated
methods from other knowledge areas to cover the social and human aspects associated
with the interaction component.

On the other hand, aspects such accelerate of time to market, increase the final
product quality, align the information and communication technologies (ICT) with
business strategies, and promote flexibility [2, 3] are increasingly important values in
the software development context. In order to consider this values, the software
development industry has been adopting agile methods, because they are more flexible
and can promote benefits such productivity gains and business alignment [2].

The user-centred design (UCD) and agile software development (ADS) emerge as
appropriate counterproposals to traditional development methodologies, changing the
values of project management, and centring the focus on people.

This paper presents an overview of these two approaches based on a literature
review of recent research. Additionally it describes an experience of developing a
Health Information System that benefited from these practices.

The remainder of this paper is organized as follows. Section 2 shows some con-
cepts related to human factors in the software development process with focus on UCD
and ASD approaches. Section 3 describes an experience of developing a Health
Information System that benefited from a hybrid approach, combining traditional
methods with UCD and ASD practices. Finally, Sect. 4 presents some conclusions.

2 Background: Human Factor in Software Development
Process

Actually, the human factors play a very important role in the software development
(SD) with a major impact on the process performance and product success. In this area
of research, the growing importance of human factors are proved by the existence of
specific tracks devoted to this topic in conferences related with SE, as well as the
specific issues in some important journals in the field, such as Information and Soft-
ware Technology [4].

SD has been characterized as a set of activities comprising a set of tasks grouped in
system analysis, system design, coding, and testing. Moreover, the SD has been
considered a socio-technical endeavour, and particularly in the case of SE, the effec-
tively communication with users and team members is increasingly important.

Actually, in the development of interactive software (IS), it is important to consider,
not only the functional and technical specifications, but also all the aspects related to
the user interface and the interaction process. From the user’s point of view, the system
is usually used and evaluated as a whole, and the separation between
technical/functional components and the user interface is not possible. Conceptually

346 L. Teixeira et al.



these components can be designed using concepts from different knowledge areas.
While the former is defined from the user’s specification, and is generally addressed by
SE, the interface component, which deals with issues related to the interaction between
the user and the IS, is associated with Human-Computer Interaction (HCI) and/or
Usability Engineering (UE).

In order to facilitate the development process of IS, several methods and techniques
have been proposed to provide solutions for the effective involvement of users and that
take into account the human factors. Joint Application Development (JAD) [5], Agile
Software Development (ASD) methods [6, 7], Lean Software Development (LSD)
[8, 9], Effective Technical and Human Interaction with Computer based Systems
(ETHICS) [1] are some examples of those techniques. Other contributions attempt to
accommodate methods from SE and HCI areas in the same process. For example,
Harmelen [10] suggests the Object-Oriented and Human-Computer Interaction
(OO&HCI) method, which integrates object-oriented (OO) modelling techniques, and
HCI concepts for developing IS. Other prominent proposals in this area are the Design
for User-Centred Innovation (DUCI) presented by Zaina and Álvaro [11], which
attempt to integrate HCI into the traditional OO development, combining the merits of
both approaches in order to design software that is both usable and useful. The proposal
by Mayhew [12], implemented through the Framework ‘Usability Engineering Life-
cycle’, also resulted from an attempt to redesign the process of software development
involving methods and activities of the UE.

In fact, the terms ‘user-centred’ and ‘customer-focus’ are the most used in the
human factors’ community.

Nowadays, the set of most well-known techniques used by software development
industry to include human factors has been characterized by two major approaches: on
the one hand the techniques that follow the principles of agile software development
(ASD), which aims to achieve increased velocity and flexibility during the develop-
ment process; on the other hand the techniques which put the goals and users’ needs at
the centre of software development, in order to deliver software with appropriate
usability, known as user-centred design (UCD).

According Brhel et al. [13], while the agile methods focus on the question of “how
useful software can be developed, with customer value being understood as primarily
driven by providing an appropriate functional scope”; the UCD ensures that the “goals
and needs of the system’s end-users is the focus of the product’s development” [13].

Given that the UCD approach focuses on the user and produces usable software
and ASD focuses on the customer and produces useful software, hybrid developments
can contribute to the production of usable and useful software, trying to combine the
merits of both approaches.

2.1 About User-Centred Development Approach

In recent years, the methodologies for the development of IS have placed great
emphasis on iterative and incremental development practices, with evaluation pro-
cesses throughout the entire development cycle. On the other hand, important advances

Integrating Human Factors in Information Systems Development 347



in the SE area have emerged from adaptations of traditional development methods,
based on iterative and incremental models supported by the principles of user-centred
design (UCD).

The literature reports that the UCD methodologies, with a central focus on con-
tinuous evaluation, in iterative processes of a formative evaluation, have been the most
sought for the development of IS. UCD is an approach to interactive system devel-
opment that focuses specifically on making usable systems [14]. UCD is defined by
Vredenburg et al. [15], as “an approach to designing ease of use into the total user
experience with products and systems, involving two fundamental elements: multi-
disciplinary teamwork and a set of specialized methods of acquiring user input and
converting it into design”.

The development according to principles of UCD arises from the attempt to merge
the best practices from SE and HCI and/or UE, and is defined as a philosophy that puts
the user into the centre of the development process. In this approach, apart from the
user, the tasks and the environment or usage-context emerge as important requirements,
having as a main objective the creation of systems after a solid knowledge about the
characteristics of users and the tasks they perform. Thus, the result of a good design is
reflected in a usable system.

Considering the standard on human-centred design by ISO 13407 [14], there are
five critical processes that should be performed in order to incorporate usability into the
software development process: (i) plan the human-centred design process; (ii) under-
stand and specify the context of use; (iii) specify the user and organizational require-
ments; (iv) produce designs and prototypes; and (v) perform user-based assessment.

There are several works which attempt to incorporate usability into the software
development process, following a methodological approach based on the principles of
UCD. However, these approaches are not governed by formal methods, but by a set of
techniques and principles that put the user at the centre of development [16].

The International Usability Standard, ISO 13407 [14], specifies the principles and
activities that underlie UCD:

• The process is iterative;
• Users are involved throughout design and development;
• The design addresses the whole user experience;
• The design is based on explicit understanding of users, their tasks and environment;
• The design is driven and refined by user-centred formative evaluation.

A good example is the Framework presented by Kushniruk [17] that depicts a
structure relating the main techniques and assessment methods with the respective
stages of the IS development cycle, combining a set of techniques from HCI and/or UE,
with the traditional methods of SE (see Fig. 1).

Typically, as shown in the Framework of Fig. 1, the UCD approach is a philosophy
that uses a set of techniques and methods already known in other knowledge areas,
aiming to produce usable systems that meet the needs of those who use them.

Techniques coming from the Social and Cognitive Sciences, such as question-
naires, interviews, documentation analysis, and ethnographic techniques (direct
observation) are the most used for the knowledge of the problem and system analysis.

348 L. Teixeira et al.



For a better understanding of the mental model of the users, there are other tech-
niques coming from HCI and/or UE, including task analysis and cognitive analysis,
useful for validating the requirements previously found and for stabilizing the most
volatile requirements. Prototypes accompanied by usability testing and task evaluation
represent also excellent tools for requirements validation and evaluation of the solution
acceptance by the users that can be used in system design, as well as in the remaining
phases of the SDLC.

2.2 About Agile Software Development Approach

The term Agile Software Development (ASD) was created in 2001, by a group of
people involved in defining new software development methods around a common
name ‘Agile Manifesto’ [18].

One of the main beliefs of the promoters of the ‘Agile Manifesto’ is that the
traditional methods of SE, strongly based on a strict specification and supported by
formal contracts, cannot cope with the rapid change and uncertainty that the processes
of a dynamic and competitive economy require.

The ‘Agile Manifesto’ was developed in response to the emphasis placed by main
stream software development research on planning, control, and efficiency [19], pro-
viding “a set of practices that allow for quick adaptations matching the needs of the
software development” [20]. The ASD implements evolutionary and flexible software
processes that answer to changes in customer requirements based on cooperation and
communication, rather than on bureaucracy with models and written documents, to
communicate the requirements and validate the solution [19].

Fig. 1. Framework of IS development considering techniques and methods from different
knowledge areas (adapted from [17])

Integrating Human Factors in Information Systems Development 349



According to Jyothi and Rao [3] the two most important characteristics of the agile
approaches are “handling unstable and volatile requirements throughout the develop-
ment life cycles and delivering products in short time frames and under budget
constraints”.

Agile methods attempt to valorise a development process with quick responses in
real time through the involvement of people in close collaboration with customers,
getting their feedback through functional software in a highly flexible structure to
change. Most agile methods tries to minimize the risk of failure by developing in short
periods, called iterations. Each iteration works as the development of a small project,
implementing only certain features.

Agile methods are also characterized by a real time and face-to-face communica-
tion, thus eliminating excess paperwork and documentation that predominates in tra-
ditional methods, also described as being ‘heavy’.

Agile methods are in their essence based on values and principles defined on the
‘Agile Manifesto’ and composed by agile practices [18]. Taking into account the ‘Agile
Manifesto’, the values of agile methods are:

• Individuals and interactions rather than processes and tools;
• Functional software, rather than comprehensive documentation;
• Collaboration with the customer rather than contract negotiation;
• Response to changes, rather than follow a predefined planning.

With regard to the agile practices, Table 1 reports the 16 most used, taking into
consideration the survey study in Version One State of Agile 2014 Research [21].

According to Campanelli and Parreiras [2], the different agile practices can be
grouped into (i) management practices, (ii) software process practices, and (iii) soft-
ware development practices. While management practices are principles such as:
on-site customer, daily stand-up meetings, release planning and open work area; the
software process practices include simple design, coding standards and collective code
ownership, and the software development practices correspond to, for example, pair
programming and unit testing.

Table 1. The agile practices most adopted (%) according a survey study in [21]

Position Practices % Position Practices %

1 Daily stand-up 80 % 9 Iteration reviews 53 %
2 Short iterations 79 % 10 Task board 53 %
3 Prioritized backlogs 79 % 11 Continuous integration 50 %
4 Iteration planning 71 % 12 Dedicated product owner 48 %
5 Retrospectives 69 % 13 Single team 46 %
6 Release planning 65 % 14 Coding standards 43 %
7 Unit testing 65 % 15 Open work area 38 %
8 Team-based estimation 56 % 16 Refactoring 36 %

350 L. Teixeira et al.



However, the various existing practices all share the same principles, following an
iterative development process, based on strong communication between the develop-
ment team members, applying minimal effort in documentation or in the creation of
intermediate artefacts. Delivering working software in short time periods, with high
quality and under budget and handling unstable requirements, are the main distinctive
characteristics of agile methods when compared with traditional ones [2].

There are several agile methods, some of them hybrids, benefiting the best from
several other methods, with slight differences in the practices they apply. eXtreme
Programming (XP) [22], Scrum [23], Crystal Methods [24], Adaptive Software
Development (AdapSD) [25], Feature-Driven Development (FDD) [26], Lean Software
Development (LSD) [9], and Dynamic Systems Development Methodology (DSDM)
[2] represent the most popular agile methods.

3 Experimental Study Using User-Centred Design and Agile
Development Approaches

Although the literature often refers to the UCD and ASD approaches as methodologies,
in fact they are philosophies that define a set of practices based on certain principles,
using for this purpose a set of techniques and methods coming from other knowledge
areas.

As these approaches have different focuses at different stages of system develop-
ment, they can become useful as complementary approaches in some projects.

While the UCD approach requires more investment in the early stages of the
lifecycle, reducing the risk of unexpected changes in requirements, the ASD can
provide a great contribution in coding phases, reducing service costs and all associated
bureaucracy.

Given the complementary nature of these approaches, there are already several
projects that experienced hybrid approaches, trying to combine the merits of UCD and
ASD approaches in order to design software that is both usable and useful [13, 27–32].
The experimental study briefly presented in this paper is one such example which
adopts a hybrid approach, taking advantage of both the UCD and the ASD, and having
been applied in the development of an application to manage the clinical information in
the hemophilia care.

3.1 Overview of the Project and Brief Characterization

The project at issue aimed to develop a technological application to manage the clinical
information in haemophilia care, as well as to support the process of registry and
submission of the data generated in the home-treatments by patients [33]. In order to
manage the data, this application integrates three actors: (i) Patient who has access to a
restrict online area allowing the registry of all data generated from home treatments;
(ii) Physician responsible for the management of all patient’s clinical data; and
(iii) Nurse responsible for managing the stocks of the drugs used, as well as the registry
of the hospital-treatments (see more details of application in [34–36].

Integrating Human Factors in Information Systems Development 351



The problem emerged in the scope of a highly complex environment, characterized
by missing information, shifting goals and a great deal of uncertainty. Given the type of
the problem and the peculiarities of the project, the development of the technology
involved a strong interaction with the domain experts in the early stages of the SDLC,
once the users were the main holders of the tacit knowledge needed to define the
system requirements. Actually, decisions in healthcare are complex processes strongly
based on tacit knowledge, which contributes for a difficult process of requirement
elicitation using traditional methodologies. For this reason, it was decided to incor-
porate the principles of the UCD approach in the early stages of the project, more
specifically in the requirement engineering phase [37].

On the other hand, and since the developers team was physically displaced, there
was the need to mediate the process between users and the team of developers through
a figure of the analyst. The analyst was responsible for understanding the problem,
collecting the requirements and validation with the users, ensuring also a proper
communication of the requirements with development team.

3.2 Framework with the Overview of the Development Approach

The approach used in the development of the present technological solution was
inspired by a hybrid approach, combining UCD and ASD techniques (see Fig. 2).

As shown in the framework presented in Fig. 2, the development approach adopted
was based on an iterative and incremental model comprising three main phases:
(i) exploratory phase, (ii) project phase and (iii) coding phase.

While the exploratory phase focused its work in the early stages of the development
process, the coding phase was more prominent in the final stages, although it had begun
at the same time as the requirement analysis.

Fig. 2. Framework of development proposed based on experimental study

352 L. Teixeira et al.



The exploratory phase used some contextual techniques for understanding the
problem, focusing on the document analysis, direct observation, and informal inter-
views with the domain experts.

As the knowledge of the domain problem was increasing, and the first requirements
were collected, the first version of the conceptual model was created, using the UML
notation (Use-Case diagram and Class diagram). The choice of this notation was due to
UML being Object-Oriented (OO) and therefore suitable to the evolutionary charac-
teristic of the project (incremental development). In order to validate the models with
users, techniques derived from HCI were selected, specifically techniques for task
analysis - hierarchical task analysis (HTA) [38], and prototypes [39].

The assessed requirements were implemented (coding phase) using the principles
of the eXtreme Programming (XP) approach. As the programming team was geo-
graphically displaced from the users responsible for defining the requirements, the
analyst had an important role in the process of mediation, using techniques for proper
communication with each of the stakeholders.

3.3 Some Remarks About Proposed Framework

In the project development cycle (see the framework of Fig. 2 from left to right), it can
be seen that the uncertainty in terms of requirements decreases, the importance of the
activities of each phase changes, reversing the effort and the work required, particularly
in the exploratory phase and coding phase. The project phase is the communication link
between the front-end component of the project, where are the users and customers, and
the back-end component, where are the developers. As such, and given the importance
of the work on this level and its impact on the final result, the framework recommends a
double approach to the work at this stage. First, one OO analysis using UML to build
the conceptual solution in an iterative way so it can be understood by the programmers
working on the back-end component of the project. On the other hand, in order to
interface with users and customers on the validation component, verification and
gathering new requirements, models less abstract and more easily interpretable by
people without computer knowledge are recommended, such as HTA models and
prototypes.

The UML has a great potential for documenting evolving projects and for com-
municating with developers; however, is not an easy language to interpret and, as such,
is not ideal for interfacing with users without a computer background. For this reason,
it is concluded that the interface with users in order to validate and complete the data
previously obtained, should be made based on simple models coming from HCI and/or
UE areas.

In this experiment, the HTA model and prototypes revealed having a great potential
for communication with users, integrating the proposal as an essential component in the
Requirements Engineering process. Regarding the type of prototype, the vertical one
could be the best solution, being in line with evolutionary prototype that characterizes
the XP approach.

Integrating Human Factors in Information Systems Development 353



This approach combining techniques coming from HCI with ASD, not only
allowed more easily capture and validate the requirements with the end user, as also
provided an excellent basis for obtaining new requirements, particularly for the most
difficult requirements to capture (emerging requirements).

4 Conclusion

The present work discussed the development process of usable and useful software,
focusing on human factors, based on some recent literature. The literature points to the
existence of several methods that attempt to incorporate human factors in the devel-
opment process, highlighting two categories: (i) the approaches that are governed by
the principles of UCD; and (ii) the approaches that follow the values of ASD.

Although the UCD and the ASD have different approaches, they do have some
similarities. Both philosophies are iterative, i.e., they progress in small steps providing
opportunities for validation and refinement the results during the development process,
and both are human-centred approaches, despite the UCD being focused in the user and
the ASD focused in the customer.

Given their complementarity, there are already several proposals reported in the
literature that attempt to combine the principles of the two approaches, taking
advantage of the best each has to offer. However, the literature shows a clear need for
more empirical and/or experimental studies regarding UCD and Agile Methods.

This paper presented an experimental study relating to the development of an
Information System in healthcare, which used a hybrid approach, following the prin-
ciples of UCD and ASD, aiming to reach a useful and usable final product.

The results of our experience show that a hybrid approach, that combines the
principles of UCD with values of ASD can help to integrate human factors into the
software development process in a highly complex environment, characterized by
missing information, shifting goals and a great deal of uncertainty, such as the
healthcare field.

Finally, it should be noted that despite the successful experience with this approach,
this proposal has some limitations, having to be adjusted according to the type of
project. It should be emphasized the high degree of demand in terms of availability
from the analyst and the motivation and willingness of users who will participate in the
process.

Acknowledgments. This work is funded by National Funds through FCT - Foundation for
Science and Technology, in the context of the project PEst- OE/EEI/UI0127/2014.

References

1. Bano, M., Zowghi, D.: A systematic review on the relationship between user involvement
and system success. Inf. Softw. Technol. 58, 148–169 (2015)

2. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring – A systematic literature review.
J. Syst. Softw. 110, 85–100 (2015)

354 L. Teixeira et al.



3. Jyothi, V.E., Rao, K.N.: Effective implementation of agile practices ingenious and organized
theoretical framework. Int. J. Adv. Comput. Sci. Appl. 2, 41–48 (2011)

4. Amrit, C., Daneva, M., Damian, D.: Human factors in software development: On its
underlying theories and the value of learning from related disciplines. A guest editorial
introduction to the special issue. Inf. Softw. Technol. 56, 1537–1542 (2014)

5. Duggan, E.W., Thachenkary, C.S.: Integrating nominal group technique and joint
application development for improved systems requirements determination. Inf. Manag.
41, 399–411 (2004)

6. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Human Behav.
51, 915–929 (2014)

7. Losada, B., Urretavizcaya, M., Fernández-Castro, I.: A guide to agile development of
interactive software with a “user objectives”-driven methodology. Sci. Comput. Program.
78, 2268–2281 (2013)

8. Ebert, C., Abrahamsson, P., Oza, N.: Lean software development. IEEE Softw. 29, 22–25
(2012)

9. Poppendieck, M., Cusumano, M.A.: Lean software development: A tutorial. IEEE Softw.
29, 26–32 (2012)

10. van Harmelen, M.: Interactive system design using OO&HCI methods. In: Object Modelling
and User Interface Design: Designing Interactive Systems, pp. 365–427. Addison Wesley
(2001)

11. Zaina, L.A.M., Alvaro, A.: A design methodology for user-centered innovation in the
software development area. J. Syst. Softw. 110, 155–177 (2015)

12. Mayhew, D.J.: The usability engineering lifecycle. Morgan Kaufman, San Francisco (1999)
13. Brhel, M., Meth, H., Maedche, A., Werder, K.: Exploring principles of user-centered agile

software development: A literature review. Inf. Softw. Technol. 61, 163–181 (2015)
14. ISO: ISO 13407 - Human-centred design processes for interactive systems. Ergonomics

(1999)
15. Vredenberg, K., Isensee, S., Righi, C.: User-Centered Design: An Integrated Approach with

Cdrom. Prentice Hall PTR, Upper Saddle River (2001)
16. Norman, D.A., Draper, S.W.: User Centered System Design: New Perspectives on

Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale (1986)
17. Kushniruk, A.: Evaluation in the design of health information systems: application of

approaches emerging from usability engineering. Comput. Biol. Med. 32, 141–149 (2002)
18. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Agile Manifesto. http://www.agilemanifesto.
org

19. Hansson, C., Dittrich, Y., Gustafsson, B., Zarnak, S.: How agile are industrial software
development practices? J. Syst. Softw. 79, 1295–1311 (2006)

20. Papadopoulos, G.: Moving from traditional to agile software development methodologies
also on large, distributed projects. Procedia - Soc. Behav. Sci. 175, 455–463 (2015)

21. VersionOne: 9th Annual State of Agile Survey (2015)
22. Beck, K., Andres, C.: Extreme Programming Explained. Addison Wesley, Pearson

Education, Reading, Upper Saddle River (2005)
23. Schwaber, K., Beedle, A.: Agile Software Development with SCRUM. Prentice- Hall,

Upper Saddle River (2002)
24. Cockburn, A.: Crystal Clear: A Human-Powered Software Development Methodology for

Small Teams. Addison-Wesley, Reading (2001)

Integrating Human Factors in Information Systems Development 355

http://www.agilemanifesto.org
http://www.agilemanifesto.org


25. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Longman
Publishing Co., Boston (2002)

26. Coad, P., Palmer, S.: Feature-Driven Development. Prentice Hall, Englewood Cliffs (2002)
27. Sohaib, O., Khan, K.: Integrating usability engineering and agile software development: A

literature review. In: 2010 International Conference on Computer Design and Applications
(ICCDA), pp. V2-32–V2-38 (2010)

28. da Silva, T.S., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile methods:
a systematic review. In: 2011 Agile Conference (AGILE), pp. 77–86 (2011)

29. Fox, D., Sillito, J., Maurer, F.: Agile methods and user-centered design: how these two
methodologies are being successfully integrated in industry. In: Agile 2008 Conference,
pp. 63–72 (2008)

30. Blomkvist, S.: Towards a model for bridging agile development and user-centered-design. In:
Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.) Human-Centered Software Engineering —
Integrating Usability in the Software Development Lifecycle. Human-Computer Interaction
Series, pp. 219–244. Springer, Heidelberg (2006)

31. Chamberlain, S., Sharp, H., Maiden, N.A.M.: Towards a framework for integrating agile
development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.)
XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006)

32. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile development
processes and user centred design integration. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, pp. 5:1–5:10. ACM,
New York (2014)

33. Teixeira, L., Ferreira, C., Santos, B.S., Saavedra, V.: Web-enabled registry of inherited
bleeding disorders in Portugal: conditions and perception of the patients. Haemophilia 18,
56–62 (2012)

34. Teixeira, L., Saavedra, V., Simões, J.P.: Dashboard to support the decision-making within a
chronic disease: a framework for automatic generation of alerts and KPIs. In: Magdalena-
Benedito, R., Soria-Olivas, E., Martínez, J.G., Gómez-Sanchis, J., Serrano-López, A.J. (eds.)
Medical Applications of Intelligent Data Analysis, pp. 160–171. IGI Global, Hershey (2012)

35. Teixeira, L., Saavedra, V., Ferreira, C., Sousa Santos, B.: Improving the management of
chronic diseases using web-based technologies: an application in hemophilia care. In:
Proceedings of the Conference on IEEE Engineering in Medicine and Biology Society, vol.
106, pp. 2184–2187 (2010)

36. Teixeira, L., Ferreira, C., Santos, B.S., Martins, N.: Modeling a web-based information
system for managing clinical information in hemophilia care. In: International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 2610–2613 (2006)

37. Teixeira, L., Ferreira, C., Santos, B.S.: User-centered requirements engineering in health
information systems: a study in the hemophilia field. Comput. Methods Programs Biomed.
106, 160–174 (2012)

38. Teixeira, L., Ferreira, C., Santos, B.S.: Using task analysis to improve the requirements
elicitation in health information system. In: 29th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 3669–3672 (2007)

39. Teixeira, L., Saavedra, V., Ferreira, C., Simões, J., Sousa Santos, B.: Requirements
engineering using mockups and prototyping tools: developing a healthcare web-application.
In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 652–663. Springer,
Heidelberg (2014)

356 L. Teixeira et al.


	Integrating Human Factors in Information Systems Development: User Centred and Agile Development Approaches
	Abstract
	1 Introduction
	2 Background: Human Factor in Software Development Process
	2.1 About User-Centred Development Approach
	2.2 About Agile Software Development Approach

	3 Experimental Study Using User-Centred Design and Agile Development Approaches
	3.1 Overview of the Project and Brief Characterization
	3.2 Framework with the Overview of the Development Approach
	3.3 Some Remarks About Proposed Framework

	4 Conclusion
	Acknowledgments
	References


