
An Empirical Comparison of Support Vector
Machines Versus Nearest Neighbour Methods

for Machine Learning Applications

Mori Gamboni, Abhijai Garg, Oleg Grishin, Seung Man Oh, Francis Sowani,
Anthony Spalvieri-Kruse, Godfried T. Toussaint(B), and Lingliang Zhang

Faculty of Science, New York University Abu Dhabi,
P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
{mg3794,ag3754,og402,smo304,fts215,ask417,gt42,lz781}@nyu.edu

Abstract. Support vector machines (SVMs) are traditionally consid-
ered to be the best classifiers in terms of minimizing the empirical prob-
ability of misclassification, although they can be slow when the training
datasets are large. Here SVMs are compared to the classic k-Nearest
Neighbour (k-NN) decision rule using seven large real-world datasets
obtained from the University of California at Irvine (UCI) Machine
Learning Repository. To counterbalance the slowness of SVMs on large
datasets, three simple and fast methods for reducing the size of the
training data, and thus speeding up the SVMs are incorporated. One
is blind random sampling. The other two are new linear-time methods
for guided random sampling which we call Gaussian Condensing and
Gaussian Smoothing. In spite of the speedups of SVMs obtained by incor-
porating Gaussian Smoothing and Condensing, the results obtained show
that k-NN methods are superior to SVMs on most of the seven data sets
used, and cast doubt on the general superiority of SVMs. Furthermore,
random sampling works surprisingly well and is robust, suggesting that
it is a worthwhile preprocessing step to either SVMs or k-NN.

Keywords: Machine learning · Data mining · Support vector
machines · SMO · Training data condensation · k-Nearest neighbour
methods · Blind and guided random sampling ·Wilson editing ·Gaussian
Condensing

1 Introduction

One of the most attractive learning machine models for pattern recognition appli-
cations, from the point of view of high classification accuracy, appears to be the
support vector machine (SVM) [1]. There exists empirical evidence that SVMs
yield lower rates of misclassification than even the classical k-Nearest Neighbour
(k-NN) rule [2], in spite of the fact that (at least in theory) the latter is asymp-
totically Bayes optimal for all underlying probability distributions [3]. A major
drawback of SVMs is their worst-case complexity, which is O(N3), where N is the
c© Springer International Publishing Switzerland 2015
A. Fred et al. (Eds.): ICPRAM 2014, LNCS 9443, pp. 110–129, 2015.
DOI: 10.1007/978-3-319-25530-9 8



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 111

number of instances in the training set, so that for very large datasets the train-
ing time may become prohibitive [4]. Therefore much effort has been devoted to
finding ways to speed up SVMs [5–12]. The simplest approach is to select a small
random sample of the data for training [13]. This method is called blind random
sampling because it uses no explicit information about the underlying structure
of the data. This approach may be trivially implemented in O(N) worst-case
time. Non-blind random sampling techniques such as Progressive Sampling (PS)
and Guided Progressive Sampling (GPS) have also been investigated with some
success [14–16]. Non-random sampling methods attempt to use intelligent data
analysis such as genetic algorithms [17] or proximity graphs [2,11] to preselect
a supposedly better representative subset of the training data, which is then
fed to the SVM, in lieu of the large original set of data. However, the use of
guided data condensation methods usually incurs an additional worst-case cost
of O(N logN) to O(N3). Since 1968, the literature contains a plethora of such
algorithms and heuristics of varying degrees of computational complexity, for
preselecting small subsets of the training data that will perform well under a
variety of circumstances [18–20]. Although such techniques naturally speed up
the training phase of the SVMs, by virtue of the smaller size of the training
data, many studies primarily focus on (and report) only the number of support
vectors retained, ignoring the additional time taken to perform the pre-selection.
Indeed, it has been shown empirically, for methods that used proximity graphs
for training data condensation, that if the additional time taken by the pre-
selection step is taken into consideration, the overall training time is generally
much worse than that of simple blind random sampling [11].

Some hybrid methods that combine blind random sampling with structured
search for good representatives of datasets have also been tried. An original
method combining blind random sampling with SVM and near neighbour search
has recently been suggested by Li, Cervantes, and Yu [10]. Their approach first
uses blind random sampling to select a small subset of the data, from which the
support vectors are extracted using a preliminary SVM. These support vectors
are then used to select points from the original training set (the data recovery
step) that are near the preliminary support vectors, thus yielding the condensed
training set on which the final SVM is applied.

In this paper several methods for speeding up the running time of SVMs
are compared in terms of the speed-up factor and the classification accuracy,
using seven large real world datasets taken from the University of California at
Irvine (UCI) Machine Learning Repository [21]. All the methods are based on
efficiently reducing the size of the training data that is subsequently fed to an
SVM with sequential minimal optimization (SMO), whilst maintaining a high
classification accuracy. Three probabilistic methods are investigated that run
in O(N) worst-case time. The first is blind random sampling and the second
and third are new methods proposed here for guided random sampling (called
Gaussian Condensing and Gaussian Smoothing), as well as an algorithm which
can combine these classifiers that can sometimes yield better results. These are
compared with nearest neighbour methods for reducing the size of the training



112 M. Gamboni et al.

set (k-NN condensation) and for smoothing the decision boundary (Wilson edit-
ing), both of which run in O(N2) worst-case time. One aim of this paper was
also to compare SVMs with their leading competitor, the k-NN rule; thus, every
method for reducing the size of the training data was also tested on a k-NN
classifier.

2 The Classifiers Tested

2.1 Blind Random Sampling

Blind random sampling is the simplest method for reducing the size of the train-
ing set, both conceptually and computationally, with a running time of O(N). Its
possible drawback is that it is blind with respect to the quality of the resulting
reduced training set, although this need not result in poor performance. In the
experiments reported here the percentages of training data randomly selected
for training the SVM were varied from 10 % to 90 % in increments of 10 %.

2.2 Wilson Editing (Smoothing)

Wilson’s editing algorithm was used for smoothing the decision boundary [22].
Each instance in the training set is classified using the k-Nearest Neighbour rule
by means of a majority vote. If the instance is misclassified it is marked. After all
instances have been classified, all the marked points are deleted. This condensed
set is then used as the testing set. Wilson editing was not designed to significantly
reduce the size of the training set; its goal is rather to improve classification
accuracy, and is used here as a pre-processing step before reducing the training
set further with methods tailored for that purpose. Using packages available in
the Weka Machine Learning Software [23], a value of k = 3 was chosen, and thus
Wilson editing runs in O(N2) worst-case time with a straightforward, näıve
implementation. Wilson editing was preceded by blind random sampling in a
second set of experiments (see Gaussian Smoothing below).

2.3 k-Nearest-Neighbour Condensation

When all k nearest neighbours of a point X belong to the class of X, the k-NN
rule makes a decision with very high confidence. In other words the point X is
located relatively far from the decision boundary. This suggests that many points
with this property could be safely deleted. Before classifying each testing set, the
corresponding training set is condensed as follows. Each instance in the training
set is classified using the k-NN rule. If the instance is correctly classified with
very high confidence it is marked. After all instances are classified, all marked
points are deleted. This condensed set is then used to classify the testing set.
High confidence in the classification of X is measured by the proportion of the k
nearest neighbours of X that belong to the class of X. The standard k-NN rule
uses a majority vote as its measure of confidence. In our approach we use the



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 113

unanimity vote (all the k nearest neighbours belong to the same class) and select
a good value of k. This algorithm runs in O(N2) worst-case time using the näıve
straightforward implementation and packages available in Weka. Note that when
data of different classes are widely separated it may happen (at least in theory)
that for every point X its k nearest neighbours all belong to the class of X. In
such a situation unbridled k-NN condensation might discard the entire training
set. For such an eventuality, if for some pattern class all training instances are
marked for deletion, the mean of those instances is retained as the representative
of that class. Experiments were also performed with k-NN condensation preceded
by Wilson editing.

2.4 Gaussian Condensing

Gaussian Condensing is a novel heuristically guided random sampling algorithm
introduced here. The heuristic implemented assumes that instances with feature
values relatively close to the mean of their own class are likely to be furthest
from the decision boundary, and therefore not expected to contain much discrim-
ination information. Conversely, points relatively far from the mean are likely
to be closer to the decision boundary, and expected to contain the most useful
information. First, for each class, the mean value of each feature is calculated.
Then, for each feature in every instance, the ratio between the Gaussian function
of the feature value of that instance and the Gaussian function of the mean is
computed. This determines a parameter termed the partial discarding probability.
Finally, all instances are discarded probabilistically in parallel with a probability
equal to the mean of the partial discarding probabilities of all their features. The
main attractive attribute of this algorithm is that it runs in O(N) worst-case
time, where N is the number of training instances. It is therefore linear with
respect to the size of the training data, and thus much faster than previous dis-
carding methods that use proximity graphs, which are either quadratic or cubic
in N. Indeed, the complexity of Gaussian Condensing is as low as that of blind
random sampling.

The goal of Gaussian Condensing is to invert the probability distribution
function of instances for all features of each class. Hence, points near the mean
are certain to be thrown away, and points near the boundaries are almost never
thrown away. If applied to data with a Gaussian distribution, the probability
distribution function would result in an inverted bell curve, with the minimum
point occurring at the center, and increasing towards the boundaries before
decreasing again. A similar idea was introduced by Chen, Zhang, Xue, and Liu,
[12], with strong results. However, their algorithm deletes a ratio of the total data
closest to the mean. The approach proposed here is superior in two ways: (1) it
does not require a method to decide the ratio of data that should be optimally
kept, and (2) it does not create a hole? in the data, but rather preserves the
entire distribution of points, by simply altering the density. Experiments were
also performed with Gaussian Condensing preceded by Wilson editing.



114 M. Gamboni et al.

2.5 Gaussian Smoothing

Gaussian Smoothing is another original method presented here that was added
after experiments were done with Gaussian Condensing. This algorithm can be
considered the opposite of Gaussian Condensing, in that it tries to discard points
which are near the boundary. First, the mean feature value of every feature in
every class is computed, then, lists of these values are grouped by feature and
independently sorted (since the number of features is very small compared to the
number of instances, sorting time does not dominate the total running time of the
algorithm). For every feature of every instance, if the Gaussian function of the
feature value of that instance is smaller than the Gaussian function of the closest
mean feature value regardless of the class, the partial discarding probability is the
ratio between the two values subtracted from one (p = 1 − instance

neighbor ), otherwise,
the partial discarding probability is zero. The mean of the partial discarding
probabilities gives the final discarding probability and instances are discarded in
parallel, exactly as in Gaussian Condensing. Thus, the partial discarding prob-
ability starts to increase for points when they are closer to the center of the
neighboring class than the center of their own class (the partial discarding prob-
ability is zero where the two Gaussian functions intersect). Gaussian Smoothing
thus runs in O(N) worst-case time. k-NN condensation was not included in
the second set of experiments as it performed poorly (see Sect. 4.2); Gaussian
Smoothing was tested alone, in conjunction with Gaussian Condensing (in both
possible orders), and preceded by blind random sampling.

2.6 Combined Gaussian Filter

In practice, using both Gaussian Condensing and Smoothing does not always
give good accuracies (see Subsect. 4.2). However, a slight modification of the
algorithm can sometimes give better results. To calculate the partial probabili-
ties, the methods of condensing and smoothing are applied when the Gaussian
function of the feature value of an instance is respectively higher than or lower
than or equal to that of the closest mean feature value. In other words, if the
Gaussian function of the feature value of the instance is lower than or equal to
the closest mean feature value, then the partial discarding probability is given
by the ratio of those two values subtracted by one (smoothing), if it is higher,
the probability is given by the ratio between the Gaussian function of the feature
value and the mean feature value of the class of the instance (condensing). The
final discarding probability is calculated – and the points discarded – in the same
manner as the other methods. This algorithm ideally causes the probability dis-
tribution to become inverted near the boundary of the classes, which is the case
with perfect normal distributions, thus potentially keeping the best attributes
of both the condensing and smoothing methods. The Combined Gaussian Filter
runs in O(N) for a constant number of classes, just as in Gaussian Smoothing.



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 115

3 The Datasets Tested

Year Prediction Million Song Data. The original dataset is extremely large,
(515,345 instances) and therefore some of the data were randomly discarded. The
pattern classes were converted from years to decades (1950 s through 2000 s) and
then 3,000 instances of each class were chosen, comprising six classes with a total
of 18,000 instances.

Letter Image Data. This dataset contains black-and-white rectangular pixel
displays of the 26 upper-case letters in the English alphabet. The letter images
were constructed from twenty different fonts. Each letter from the twenty fonts
was randomly distorted to produce 20,000 unique instances. Each instance is
described using 17 attributes: a letter category (A, B, C,..., Z) and 16 numeric
features.

Wearable Computing Data. This dataset (PUC-Rio) contains information
matching accelerometer readings from various parts of the human body, with
the readings taken while the actions were performed. Accelerometers collected
x, y, andz axes data from the waist, left-thigh, right ankle, and right upper-arm
of the subjects. In each instance, the subjects were either sitting-down, standing-
up, walking, in the process of standing, or in the process of sitting. Metadata
about the gender, age, height, weight and BMI of each subject are also provided.
In total 165,632 instances of such data are included in this dataset.

MAGIC Gamma Telescope Data. This data consist of Monte-Carlo gener-
ated simulations of high-energy gamma particles. There are ten attributes, each
continuous, and two classes (‘g’ and ‘h’). The number of instances was 12,332
for ‘g’ and 6,688 for ‘h’. For the purpose of this study approximately half of
class ‘g’ was removed at random, since the goal of the present research is the
improvement of the running time of SVMs, rather than the minimization of the
probability of misclassification for this particular application.

Spambase Data. The Spambase dataset provides information about email
spam. The emails are classified into two categories: spam and non-spam. The
data labelled spam were collected from postmasters and individuals who had
reported spam, and the non-spam data were collected from filed work and per-
sonal emails. The dataset was created with the goal of designing a personal
spam filter. It contains 4601 instances, of which 1813 (39.4 %) are spam. These
instances are characterized by 57 attributes (57 continuous features and one
nominal class label). The class label is either 1 or 0, indicating that the email is
either spam or non-spam, respectively.



116 M. Gamboni et al.

Wine Quality Data. The white wine quality dataset includes over 2000 dif-
ferent vinho verde wines (instances). The dataset comprises twelve features that
include acidity and sulphate content. There are ten classes defined in terms of
quality ratings that vary between 1 and 10.

Handwritten Digits Data. This dataset contains 32 by 32 bitmaps that have
been obtained by centering and normalising the input images from 43 different
people. The training set consisting of 5,620 instances and has data from 30
people, while the test set comes from the 13 others, so as to prevent learning
algorithms from classifying digits based on the writing style rather than features
of the shape of the digits themselves. To decrease the dimensionality of the data,
the bitmaps are divided into 4 by 4 blocks and the number of pixels in each block
is counted. The total number of features is thus 64 and the number of classes is
10, the digits 0 through 9.

4 Results and Discussion

Note: Due to space restrictions, only particularly illustrative graphs are shown.

4.1 The Computation Platform

The timing experiments were performed on the fastest high-performance com-
puter available in the United Arab Emirates (second fastest in the Gulf region):
BuTinah, operated by New York University Abu Dhabi. The computer consists
of 512 nodes, each one equipped with 12 Intel XeonX5675 CPU’s clocked at
3.07 GHZ and 48 GB of RAM with 10 GB of swap memory. BuTinah operates
at approximately 70 trillion floating-point operations per second (70 teraflops).
The experiments utilized seven nodes, in total, consuming 9 h of computation
time and 12 GB of memory. The testing environment was programmed in Java,
using the Weka data Mining Package, produced by the University of Waikato.

4.2 Blind Random Sampling

The SMO (Sequential Minimization Optimization) version of SVM – invented by
John Platt [24] and improved by Keerthi, Shevade, Bhattacharyya, and Murthy
[25] – that is installed in the Weka machine learning package was compared
to the classical k-NN decision rule when both are preceded by blind random
removal of data before feeding the remaining data to each classifier. A typical
result obtained with the Song dataset is shown in Fig. 1, for the classification
accuracy (left vertical axis) and the total running time (right vertical axis). Total
time refers to the sum of the times taken for training data condensation, training
time, and testing time (results for the three individual timings will be presented
in a following section). In this and all other experiments the classification accu-
racies and timings were obtained by the method of K-fold cross-validation (or Π



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 117

method) with a value of K = 10 [26]. This means that for each of the classifiers
and condensing methods tested the procedure for estimating the classification
accuracy for each fold was the following. Let X denote the entire dataset. The
i-th fold is obtained by taking the i-th 10 % of {X} as the testing set (denoted
by {XTS−i}), and the remaining 90 % of the data as the training set (denoted
by {XTR−i}). Estimates of the misclassification accuracy of any classifier are
then obtained by training the classifier on {XTR−i}, and testing it on {XTS−i},
for i = 1, 2, . . . , 10 yielding a total of ten estimates. Similarly, when estimating
the classification accuracy of an editing (or condensing) method, the editing (or
condensing) is first applied to {XTR−i}, and the resulting edited (condensed) set
is used to classify {XTS−i}. Finally, in all cases the average of the ten estimates
obtained in this way is calculated. Thus the results shown in the figures are the
mean values over the ten folds. This method also permits the computation of
standard deviations (over the ten folds) to serve as indicators of statistically
significant differences between the means. The error bars in the figures indicate
± one standard deviation.

All seven datasets exhibit similar behaviour to that depicted in Fig. 1 with
respect to how the classification accuracy varies as a function of the percentage
of training data removed. The classification accuracy results are not unanimous,
but favour k-NN over SMO, the latter having significantly better accuracy than
k-NN only for the Song data (Fig. 1). For the Letter Image, Wearable Computing,
and MAGIC Gamma datasets k-NN did significantly better (e.g. Letter Image
data set in Fig. 2). Furthermore, for the Wine and Handwritten Digits data
no significant differences were observed between SMO and k-NN (Figure not
shown). For the Spambase data SMO is significantly better only when 60 %,
70 % or 90 % of the data are discarded (Figure not shown).

With respect to the total time taken, for all the datasets, SMO takes consid-
erably less running time than k-NN, and all show similar behaviour. For example,

Fig. 1. Accuracy and total time vs. % of training data removed by blind random
sampling for the Year Prediction Million Song data.



118 M. Gamboni et al.

Fig. 2. Accuracy and total time vs. % of training data removed by blind random
sampling for the Letter Image data.

Fig. 3. Accuracy and total time of condensing algorithms for the MAGIC Gamma
Telescope data.

if 70 % of the data are discarded then k-NN runs about five times faster (and
SMO about ten times faster) than when all the data is used for training. This
is not too surprising since k-NN runs in O(N2) expected time and SMO is able
to run faster in practice depending on the structure of the data.

4.3 The Condensing Classifiers

Experiments were done applying various training data condensation classifiers
to reduce the size of the training dataset that was fed to both the SMO and



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 119

k-NN classifiers. The condensing classifiers tried in the first experiment were:
(1) Wilson Editing, (2) Gaussian Condensation, (3) Wilson Editing + Gaussian
Condensation, (4) Wilson Editing + k-NN Condensation, and (5) k-NN Conden-
sation. In the second experiment, the classifiers tested were: (1) Gaussian Con-
densation + Gaussian Smoothing, (2) Gaussian Condensation + Wilson Editing,
(3) Combined Gaussian Filters, (4) Gaussian Smoothing, (5) Gaussian Smooth-
ing + Gaussian Condensation, and (6) Wilson Editing.

Figures 3–5 show the percent mean accuracy and mean total running times (in
seconds) as well as the breakdown of the total time for all the five condensation
classifiers in the first experiment, plus the results for blind random sampling
obtained by discarding 40 % and 70 % of the training data. Figures 8–16 show
the same variables for the six classifiers in the second set, as well as Gaussian
Smoothing and Wilson Editing preceded by discarding 70 % of the data. In
the figures, ‘k-NN-Con’ indicates k-NN condensation, ‘Wilson’ denotes Wilson
Editing, ‘Gauss’ stands for Gaussian Condensation, ‘GaussSmooth’ for Gaussian
Smoothing, ‘GaussComb’ for the Combined Gaussian Filters, and ‘rem40’ and
‘rem70’/‘%’ are blind random removal of 40 % and 70 % of the data, respectively.

Experiment 1. Perusal of Figs. 3–5 reveals that none of the condensing meth-
ods improve the accuracy of the classifiers that do not use condensing. In fact,
k-NN condensation performs the worst for all but two of the data sets – Song and
Wine data – and for those two, other methods give poor results (e.g. see Fig. 4
for Wine data). With k-NN classification, random removal of 70 % of the train-
ing set and Gaussian Condensing were the fastest methods for all the datasets
(e.g. MAGIC Gamma data in Fig. 3) other than the Handwritten Digits (see
Fig. 5). Similar relative behavior was observed with SMO, however, in all cases
the running times with SMO were much smaller than those with k-NN.

In Figs. 3–5 the times plotted are total times: condensing time + training time
+ testing time. One of the main goals of this research is to compare the testing
times of the various classifiers, since these reflect the speed of the classifier on
all future data. However, if the condensing times and training times dominate
the testing time, then the total times listed in the figures may hide the testing
times. Therefore a breakdown of the individual times was also plotted for all
the experiments. Note from Fig. 5 that the classifiers with the smallest total
times are: SMO, SMO+rem40, SMO+rem70, and SMO+Gauss. Furthermore
their accuracies are not significantly different. Therefore the classifiers with the
fastest testing times would be preferred in this case.

Figure 6 shows the breakdown of condensing, training, testing, and total time
for the Song data on a linear scale in seconds. This figure clearly shows how
large the testing time for k-NN is compared to all other classifiers, thus making
it difficult to compare the four classifiers of main interest. To zoom in on their
performance the data from Fig. 6 are shown on a logarithmic scale in Fig. 7,
where it can be clearly seen that SMO has shorter testing times with rem40,
rem70, and Gaussian Condensing, but is slower when no filter is used (although
total time is similar). All data sets show similar behaviour, and thus are not
shown here.



120 M. Gamboni et al.

Fig. 4. Accuracy and total time of condensing algorithms for the Wine Quality data.

Fig. 5. Accuracy and total time of condensing algorithms for the Digits data.

Experiment 2. Figures 8–13 show that the classifiers tested give greatly varying
results across data sets. Only the Letter Image and Wearable Computing data
show very similar behaviour (Wearable Computing data shown in Fig. 8). In gen-
eral, k-NN classification with Gaussian Smoothing and Condensing together, in
both orders (but not with the combined algorithm), Gaussian Condensing and



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 121

Fig. 6. Breakdown of condensing, training, testing, and total time for the Year Pre-
diction Million Song data.

Fig. 7. The data of Fig. 8 on a logarithmic scale.

Wilson Editing, and random removal with Gaussian Smoothing or Wilson Edit-
ing are all fast, but give mixed results in terms of accuracy. In the Letter Image
and Wearable Computing datasets, k-NN with Combined Gaussian Filters gives
the greatest accuracy but is slightly slow, while Gaussian Smoothing and Con-



122 M. Gamboni et al.

Fig. 8. Accuracy and total time of condensing algorithms for the Wearable Computing
data.

Fig. 9. Accuracy and total time of condensing algorithms for the MAGIC Gamma
Telescope data.

densing together in either order, and random removal with Gaussian Smoothing
both give good accuracy (see Fig. 8). The MAGIC Gamma data show similar
behaviour, although the latter three classifiers are instead better with SMO (see
Fig. 9). On average, k-NN classification gives better accuracy than SMO classi-
fication for these data sets, as well as the Song data (See Fig. 10). The latter is



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 123

Fig. 10. Accuracy and total time of condensing algorithms for the Year Prediction
Million Song data.

Fig. 11. Accuracy and total time of condensing algorithms for the Digits data.

also similar to MAGIC Gamma data since they both have the same three well
performing classifiers, however in the Song data, SMO with Combined Gaussian
Filters is overall the best method, SMO with Gaussian Condensation and Wil-
son Editing or random removal and Wilson Editing give poor accuracy, while



124 M. Gamboni et al.

Fig. 12. Accuracy and total time of condensing algorithms for the Spambase data.

Fig. 13. Accuracy and total time of condensing algorithms for the Wine Quality data.

only Gaussian Condensing with Wilson Editing gives good accuracy and short
running times out of all k-NN classifiers. The Handwritten Digit data gives gen-
erally excellent accuracy with all classifiers, but SMO with random removal and
Gaussian Smoothing is the fastest (see Fig. 11). In the Spambase data (Fig. 12)
SMO classification is much better than k-NN classification. Finally, the Wine



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 125

Fig. 14. Breakdown of condensing, training, testing, and total time on a logarithmic
scale for the Digits data.

Fig. 15. Breakdown of condensing, training, testing, and total time on a logarithmic
scale for the Spambase data.

data (Fig. 13) shows very little similarity with other data sets, and yields gener-
ally poor results for every classifier.

As in Experiment 1, a breakdown of the condensing, training, testing, and
total time was also graphed (only the logarithmic versions are shown for the
same reasons outlined above). The Handwritten Digits data (see Fig. 14) show



126 M. Gamboni et al.

Fig. 16. Breakdown of condensing, training, testing, and total time on a logarithmic
scale for the MAGIC Gamma Telescope data.

random removal with Gaussian Smoothing as the classifier with the shortest
combined testing and total time, which gives a good approximation of the best
classifier in general. The Spambase data (see Fig. 15) also include Gaussian Con-
densation followed by Gaussian Smoothing as a top classifier. Finally, the top
classifiers of the rest of the data sets comprise the last two classifiers along with
Gaussian Smoothing and Gaussian Condensation (the opposite order as the sec-
ond classifier mentioned), shown in Fig. 16 using the Magic GAMMA data as an
example.

5 Conclusions

One of the main conclusions that can be made from the experiments reported
here is that blind random sampling is surprisingly good and robust. For all
the datasets, as much as 70 % to 80 % of the data may be discarded, without
incurring any significant decrease in the classification accuracy. Furthermore, for
six of the seven datasets, discarding 70 % of the data at random in this way made
k-NN run about five times faster, and SMO about ten times faster. Since this
method is so simple and requires so little computation time we believe that it
should play a role as a pre-processing step for speeding up SVMs.

Previous research has shown that SVMs perform better than k-NN. However,
some of the comparisons have used synthetically generated datasets that do not
resemble real world data. On the other hand, the results of the present study
with seven real-world datasets tell a different story. SMO is significantly better
in terms of accuracy only for the Song data, whereas k-NN does better for the
Letter Images, Wearable Computing, and Magic Gamma datasets. For the other
three datasets (Spam, Wine, and Handwritten Digits) there are no significant



An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 127

differences between SMO and k-NN. However, SMO has the advantage of running
faster than k-NN, which may be more important in some applications. In future
research we hope to discover structural features of the data that predict when
SMO is expected to outperform k-NN.

One of the goals of this research was to test how much Wilson editing and
k-NN condensation improve the overall performance of classifiers in practice. It
was found that for all seven datasets using Wilson editing as a pre-processing
step to either SVM or k-NN, yielded no statistically significant improvement
in accuracy, and k-NN condensation led to poorer accuracy. Furthermore, both
Wilson editing and k-NN condensation incur a considerable additional cost in the
filter (editing+condensing) time. However, if used after Gaussian Condensing or
blind random sampling, it runs quickly, and can sometimes give good levels of
accuracy.

Another main goal of this research project was to compare the new proposed
methods for condensing and smoothing training data in O(N) worst-case time:
Gaussian Condensing/Smoothing, along with the algorithm for combining both
Gaussian filters. This probabilistic method falls in the category of guided (or
intelligent) random sampling and is almost as fast as blind random sampling.
The results of this study show that Gaussian Smoothing used alone or together
with Gaussian Condensing can give surprisingly good results, and is especially
fast with SMO classification. The Combined Gaussian Filters also performed
quite well in general. Finding ways to predict which combination of random
sampling methods will do best depending on the dataset is an area of research
we would also like to investigate further.

Acknowledgements. This research was supported by a grant from the Provost’s
Office of New York University Abu Dhabi in the United Arab Emirates. The authors
are grateful to the University of California at Irvine for making available their large
collection of data at the Machine Learning Repository.

References

1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
2. Toussaint, G.T., Berzan, C.: Proximity-graph instance-based learning, support vec-

tor machines, and high dimensionality: an empirical comparison. In: Perner, P. (ed.)
MLDM 2012. LNCS (LNAI), vol. 7376, pp. 222–236. Springer, Heidelberg (2012)

3. Devroye, L.: On the inequality of cover and hart in nearest neighbour discrimina-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 3, 75–78 (1981)

4. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online
and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005)

5. Almeida, M.B., Braga, A.P., Braga, J.P.: SVM-KM: speeding SVMs learning with
a priori cluster selection and k-means. In: Proceedings of the 6th Brazilian Sym-
posium on Neural Networks, pp. 162–167 (2000)

6. Chen, J., Chen, C.: Speeding up SVM decisions based on mirror points. In: Proceed-
ings of the 6th International Conference Pattern Recognition, vol. 2, pp. 869–872
(2002)



128 M. Gamboni et al.

7. Panda, N., Chang, E.Y., Wu, G.: Concept boundary detection for speeding up
SVMs. In: Proceedings of the 23 International Conference on Machine Learning,
Pittsburgh (2006)

8. Wang, Y., Zhou, C.G., Huang, Y.X., Liang, Y.C., Yang, X.W.: A boundary method
to speed up training support vector machines. In: Liu, G.R., et al. (eds.) Compu-
tational Methods, pp. 1209–1213. Springer, Netherlands (2006)

9. Chen, J., Liu, C.-L.: Fast multi-class sample reduction for speeding up support
vector machines. In: Proceedings of the IEEE International Workshop on Machine
Learning for Signal Processing, Beijing, China, 18–21 September (2011)

10. Li, X., Cervantes, J., Yu, W.: Fast classification for large datasets via random
selection clustering and support vector machines. Intell. Data Anal. 16, 897–914
(2012)

11. Liu, X., Beltran, J.F., Mohanchandra, N., Toussaint, G.T.: On speeding up support
vector machines: proximity graphs versus random sampling for pre-selection con-
densation. In: Proceedings of the International Conference Computer Science and
Mathematics, Dubai, United Arab Emirates, 30–31 January, vol. 73, pp. 1037–1044
(2013)

12. Chen, J., Zhang, C., Xue, X., Liu, C.-H.: Fast instance selection for speeding up
support vector machines. Knowl. Based Syst. 45, 1–7 (2013)

13. Lee, Y.L., Mangasarian, O.L.: RSVM: reduced support vector machines. In: Pro-
ceedings of the First SIAM International Conference on Data Mining, 5–7 April
(CD-ROM). SIAM, Chicago (2001)

14. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, USA (1999)

15. Ng, W.Q., Dash, M.: An evaluation of progressive sampling for imbalanced
datasets. In: Sixth IEEE International Conference on Data Mining Workshops,
Hong Kong, China (2006)

16. Portet, F., Gao, F., Hunter, J., Quiniou, R.: Reduction of large training set by guided
progressive sampling: application to neonatal intensive care data. In: Proceed-
ings of Intelligent Data Analysis in Biomedicine and Pharmacology, Amsterdam,
pp. 43–44 (2007)

17. Kawulok, M., Nalepa, J.: Support vector machines training data selection using a
genetic algorithm. In: Gimel’farb, G.L., et al. (eds.) SSPR & SPR 2012. LNCS,
vol. 7626, pp. 557–565. Springer, Heidelberg (2012)

18. Hart, P.E.: The condensed nearest neighbour rule. IEEE Trans. Inf. Theory 14,
515–516 (1968)

19. Sriperumbudur, B.K., Lanckriet, G.: Nearest neighbour prototyping for sparse and
scalable support vector machines. Technical report No. CAL-2007-02, University
of California San Diego (2007)

20. Toussaint, G.T.: Geometric proximity graphs for improving nearest neighbour
methods in instance-based learning and data mining. Int. J. Comput. Geom. Appl.
15, 101–150 (2005)

21. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013). http://archive.
ics.uci.edu/ml

22. Wilson, D.L.: Asymptotic properties of nearest neighbour rules using edited-data.
IEEE Trans. Syst. Man Cybern. 2, 408–421 (1973)

23. Witten, I., Frank, E.: WEKA: machine learning algorithms in java. In: Data Min-
ing: Practical Machine Learning Tools and Techniques with Java Implementations,
pp. 265-320. MorganKaufmann (2000)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


An Empirical Comparison of SVMs Versus Nearest Neighbour Methods 129

24. Platt, J.C.: Fast training of support vector machines using sequential minimial
optimization. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods: Support Vector Machines. MIT Press, Cambridge (1998)

25. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements
to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13, 637–649
(2001)

26. Toussaint, G.T.: Bibliography on estimation of misclassification. IEEE Trans. Inf.
Theory 20, 472–479 (1974)


	An Empirical Comparison of Support Vector Machines Versus Nearest Neighbour Methods for Machine Learning Applications
	1 Introduction
	2 The Classifiers Tested
	2.1 Blind Random Sampling
	2.2 Wilson Editing (Smoothing)
	2.3 k-Nearest-Neighbour Condensation
	2.4 Gaussian Condensing
	2.5 Gaussian Smoothing
	2.6 Combined Gaussian Filter

	3 The Datasets Tested
	4 Results and Discussion
	4.1 The Computation Platform
	4.2 Blind Random Sampling
	4.3 The Condensing Classifiers

	5 Conclusions
	References


