
Analysis of Parallel Applications

on a High Performance–Low Energy Computer

Florina M. Ciorba1, Thomas Ilsche1, Elke Franz2, Stefan Pfennig2,
Christian Scheunert3, Ulf Markwardt1, Joseph Schuchart1,

Daniel Hackenberg1, Robert Schöne1, Andreas Knüpfer1, Wolfgang E. Nagel1,
Eduard A. Jorswieck3, and Matthias S. Müller4

1 Center for Information Sciences and High Performance Computing,
Technische Universität Dresden, Germany

2 Faculty of Computer Science, Chair of Privacy and Data Security,
Technische Universität Dresden, Germany

3 Faculty of Electrical Engineering, Chair of Communications Theory,
Technische Universität Dresden, Germany
{firstname.lastname}@tu-dresden.de

4 Rheinisch-Westfälische Technische Hochschule Aachen, Germany
Chair for Computer Science 12 - High Performance Computing

mueller@itc.rwth-aachen.de

Abstract. In this paper, we propose a holistic approach for the analy-
sis of parallel applications on a high performance–low energy computer
(called the HAEC platform). The HAEC platform is currently under
design and refers to an architecture in which multiple 3-D stacked mas-
sively parallel processor chips are optically interconnected on a single
board and multiple parallel boards are interconnected using short-range
high-speed wireless links. Although not exclusively targeting high per-
formance computing (HPC), the HAEC platform aims to deliver high
performance at low energy costs, which are essential features for future
HPC platforms. At the core of the proposed approach is a trace-driven
simulator called haec sim which we developed to simulate the behavior
of parallel applications running on this hardware. We investigate sev-
eral mapping layouts to assign the parallel applications to the HAEC
platform. We concentrate on analyzing the communication performance
of the HAEC platform running parallel applications. The simulator can
employ two communication models: dimension order routing (DOR) and
practical network coding (PNC). As a first example of the usefulness of
the proposed holistic analysis approach, we present simulation results
using these communication models on a communication-intensive par-
allel benchmark. These results highlight the potential of the mapping
strategies and communication models for analyzing the performance of
various types of parallel applications on the HAEC platform. This work
constitutes the first step towards more complex simulations and analyses
of performance and energy scenarios than those presented herein.

Keywords: performance, HAEC, simulation, network coding, routing.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 474–485, 2014.
c© Springer International Publishing Switzerland 2014

Analysis of Parallel Applications on the HAEC Platform 475

1 Introduction

Energy efficiency is one of the greatest challenges in information and commu-
nication technology. A large part of the energy costs can be attributed to the
transfer of information. Progress in energy efficient interconnections is necessary
to allow high performance computing (HPC) and data centers to manage their
energy costs while performing powerful applications. Future computing systems
will largely consist of chips with energy efficient interconnects, such as IBM’s
Holey Optochip [7] or HP’s Corona architecture [20].

The highly adaptive energy efficient computing (HAEC) platform [9] is a fu-
ture computing system design aimed at dynamically adjusting the energy usage
according to the workload without compromising on performance. It uses opti-
cal on-board [16] and wireless board-to-board [10] connections to mitigate the
bandwidth and latency bottlenecks inherent in existing multiprocessor systems.
Optical and wireless interconnects provide a wider opportunity for selecting dif-
ferent operation modes such that the energy consumption of individual links
can be adjusted according to their load. We use an integrated approach of a
highly scalable end-to-end simulation framework combining sufficient details of
the application, processor, and network.

Our goal is to analyze the performance of applications executed on a high
performance–low energy computer. We are concerned with questions regarding:
(i) Modeling of the behavior of the various independent software and hardware
components of such a system, (ii) Their integration into a holistic system model,
and (iii) The prediction of the performance and energy costs of running applica-
tions on the HAEC platform. A more specific challenge on which we concentrate
in this work is to predict the performance of the HAEC platform running (com-
munication intensive) parallel applications.

Our approach is holistic and comprises multiple models. The application
model is based on event traces obtained from running the parallel applications
on existing platforms. This model is mapped onto the HAEC platform model
using several mapping strategies. Our simulations employ two communication
models to predict the behavior of parallel applications on the HAEC platform.
The resulting simulated application traces form the basis for our analysis using
state-of-the-art performance measurement and visualization tools.

The main contribution of this work is a holistic approach for analyzing the
performance of parallel applications on the HAEC platform. We developed a
trace-driven simulation framework (haec sim) that employs three strategies for
mapping applications to the target platform. Another major contribution is a
novel communication model for the HAEC platform developed using network
coding (NC) technology. This model has been implemented in the simulator in
addition to standard routing. Even though these communication models do not
account for transmission errors, they can easily be extended to address errors.
Then, NC will outperform standard routing [1]. Given that the design of the
HAEC platform is ongoing, the simulator will account for new aspects of the
hardware that may otherwise be hard to capture by existing simulators.

476 F.M. Ciorba et al.

2 Related Work

Topology aware mapping of parallel applications with regular and irregular com-
munication patterns onto supercomputers has been studied in [4]. Mapping is
also a very important area of research in network on chip (NoC) systems, where a
major challenge in overall system design is to associate the intellectual property
(IP) cores implementing tasks of an application with the NoC routers [17].

Many communication models in HPC belong to the LogP model family or
the BSP model family [11]. Even though the parameters of these models cap-
ture significant characteristics of the underlying hardware, they do not explicitly
account for the network topology. Routing [6] and network coding [1] are at a
lower abstraction level than the LogP and BSP models and account for the net-
work topology. For multiple concurrent flows, network coding can achieve higher
throughput, lower latency, and better energy efficiency than standard routing.

BigSim [19] is a parallel trace-based simulator for predicting the performance
of MPI applications on future large scale systems larger than those available
today. COTSon [2] is a parallel simulation infrastructure for modeling clusters
of multicore CPU nodes, networking, and I/O. It combines functional simulation
for the behavior of devices and software, and timing simulators for the timing of
all components. Apart from the compute performance, it also enables to simulate
the power consumption. Dimemas [14] is a sequential trace-based simulator for
predicting the performance of parallel MPI or multithreaded applications. The
simulation model uses parameters such as relative processor speeds, network
bandwidth and latency within and across nodes, the number of input and output
links, and the processor scheduling policy. The network model assumes two-level
buses. Existing trace-driven simulation approaches combine only a subset of all
the aspects considered in this work, such as performance or energy efficiency,
and application or system modeling.

3 Aspects of Application Analysis on Future Computing
Systems

3.1 Simulation and Analysis Workflow

We employ trace-driven simulation to simulate future computing systems, such
as the HAEC platform (cf. §3.3), using traces generated with the scalable per-
formance measurement infrastructure for parallel codes Score-P (cf. §3.2). We
developed a parallel trace-based simulation framework (haec sim) for predict-
ing the behavior of applications running on a future computing system (de-
scribed via hardware and system software abstraction models). The simulation
concentrates on maximizing performance, minimizing energy consumption, and
optimizing communication. The simulated HAEC platform (cf. §3.3) employs
a heterogeneous and adaptive communication model (cf. §4.2) to combine high
application performance with high energy efficiency.

The proposed simulation and analysis workflow is illustrated in Fig. 1. The
source code of a parallel application of interest represents the first step in the

Analysis of Parallel Applications on the HAEC Platform 477

recorded
app. trace
(existing
system)

mapping and trace
visualization and

analysis

simulation

architecture abstraction models
(topology, performance/energy of
computation and communication)

software abstraction models
(mapping, runtime

environment,
 energy-aware software)

parallel application
(source code)

simulated
app. trace

and
mapping

(HAEC Box)

pping and tr
ualization a

l i

an
al

ys
is

an
d

ev

al
ua

tio
n

of

 in
pu

t

tracing
granularity,
performance
counters, etc.

simulation
output

race
and
trrace

analysis and
evaluation

of simulation

haec_sim

desired tracing
features

desired energy
measurements

instrumented
execution

(test systems,
production systems)

accuracy,
sampling rate,
measurement
scope, etc.

energy/utility
function

sim
ul

at
io

n
in

pu
t

ystem)

in
pu

t

)em) m)

pr
oc

es
s

m
ap

pi
ng

simulation
input

application configuration process models display trace influences visualization feedback Legend:

HAEC Box parameters
(latency, bandwidth, errors)

desired
simulation goals

Fig. 1. Proposed trace-driven simulation and analysis workflow

proposed workflow. This is followed by specification of performance and energy
features desired to be collected using Score-P [13]. The instrumented application
is executed either on an energy measurement test system or on high performance
computing production systems. The resulting execution trace forms the input
to the simulation. This trace can be visualized and analyzed using Vampir [12].
In addition to the input trace, the simulator (haec sim) contains and employs
various software and architecture abstraction models. The software abstraction
models include the mapping of the processes in the input trace to the HAEC
platform topology (cf. §4.1), the operating system, and energy-aware software.
The architecture abstraction models include the topology of the HAEC plat-
form (cf. §3.3), a model for predicting the energy consumption of running the
desired application on the HAEC platform, and a communication model that
describes how will communication be carried out over the wireless and optical
links of the HAEC platform (cf. §4.2). The HAEC platform parameters refer to
latency, bandwidth, and error rates. The desired simulation goals also form an
input to the simulator and may include the optimization criteria (or metrics)
such as performance (time) or cost (energy). The output of the simulation is an
event trace describing the predicted behavior of the initial application if it were
executed on the HAEC platform. Similar to the input trace, the output trace can
also be visualized and analyzed with Vampir. Simulation-based analysis results
in valuable feedback that can be provided to the abstraction models, to tune the
target system parameters, and to adjust the desired simulation parameters to
gain more insight towards the goals of the analysis.

3.2 Modeling Applications

Modeling and simulation of the performance and energy consumption of paral-
lel applications require a detailed description of their characteristics and their
behavior on various computing platforms. This can be provided in several ways,

478 F.M. Ciorba et al.

such as via: (i) Expert application knowledge, (ii) Conceptual application mod-
els, (iii) Distribution parametrized (or stochastic) models (e.g., profiles), and
(iv) Recording of application event traces on existing computing systems.

The first two approaches are not easily amenable to a broad range of parallel
applications and require a significant modeling effort. The third one may not
provide the fine-grained level of detail that is necessary to capture correlations
and interference effects in the application. The last approach is more generic
and can be employed to derive application descriptions even for highly complex
applications [18].

Discrete event traces capture the runtime behavior of parallel applications on
existing systems and form the application model for simulating their performance
on target or future computing platforms. Traces preserve the dynamic applica-
tion behavior and can yield meaningful results even for small changes in the
model [18]. An application trace consists of a time-ordered sequence of discrete
events including functions execution, communication operations, and manage-
ment of parallelism [12]. In addition, runtime hardware performance character-
istics, including energy measurements, can be recorded. We use Score-P [13] to
record the execution of parallel applications in the OTF2 [8] file format.

3.3 Modeling a High Performance–Low Energy Computer

The HAEC platform refers to a new high performance–low energy parallel com-
puter architecture [9]. In this architecture, the compute nodes consist of 3-D
stacked processor chips with thousands of ‘thin’ cores [15] offering massive intra-
node parallelism. This parallelism is not modeled explicitly in haec sim and is
abstracted. Thus, a collection of many lightweight application threads are rep-
resented as a single coarse-grain application process. Several such processes can
run concurrently on a single compute node or across multiple compute nodes
and we assume that the ‘thin’ cores are not oversubscribed.

Multiple compute nodes on a single board are interconnected using optical
waveguides [16] and multiple such boards are interconnected using board-to-
board high-speed wireless links [10]. The on-board optical links have high data
transmission rates, low transmission errors, and their topology is 2-D mesh [16].
The board-to-board wireless links are arranged around a compute node using
very large Butler matrices (antenna arrays of 8x8 or 16x16) which correspond
to narrow beams. When this is considered for both for transmitter and receiver
nodes, the interference decreases significantly and can be neglected [10]. The
wireless antennas use a beamforming architecture with phase shifters which en-
ables suppression of signals from directions that are not desired. The placement
of the wireless antennas around the compute nodes yields a 1-D mesh topology
between neighboring boards. The 3×3×3 HAEC platform topology is schemati-
cally illustrated in Fig. 2a.

Analysis of Parallel Applications on the HAEC Platform 479

(a) 3×3×3 HAEC platform topology. Cir-
cles indicate compute nodes, blue/green
lines indicate optical/wireless links, re-
spectively.

(b) lu.C.81 mapped onto the 3×3×3
HAEC platform using block xyz mapping.
Color lines denote inter-process logical
communications (red: ∼80k, turquoise:
∼160k, green: ∼240k).

Fig. 2. The HAEC platform (a) without and (b) with an assigned application

4 Modeling and Simulation Results

4.1 Mapping Applications to Systems

Simulating the behavior of any parallel application on the HAEC platform re-
quires that the application processes be mapped to the nodes of the HAEC
platform topology illustrated in Fig. 2a. High quality mappings increase the
likelihood of achieving high performance and low energy consumption. The ob-
jectives of mapping application processes to compute nodes are reducing the
overall communication cost and maximizing parallelism.

The process-to-node mapping is fixed for the duration of the simulation, i.e.,
no process is migrated. We compare three single-pass mapping strategies: xyz,
block xyz, and random. These strategies are oblivious of the application commu-
nication requirements. The xyz mapping identifies the compute node to assign
to an application process by first increasing the x coordinate of the last assigned
node until every node along the x dimension is assigned, then by increasing the y
coordinate and, finally, the z coordinate in the same manner. When the number
of application processes is larger than the number of nodes in the system, the
strategy proceeds in a round-robin fashion. Otherwise, xyz is the default map-
ping strategy. Block xyz mapping is similar to xyz and maps �N/(dx · dy · dz)�
application processes to a single compute node, where dx, dy , and dz are the
number of nodes in the x, y, and z dimensions, respectively. Random mapping
assigns application processes to compute nodes in a random fashion, and may
result in unassigned system nodes when N > (dx · dy · dz). The three strategies
result in different distributions of the application processes to the HAEC plat-
form nodes, which in turn yield different numbers of intra-node and inter-node
logical communications.

480 F.M. Ciorba et al.

Table 1. Comparison of three process-to-node mappings for lu.C.81

Mapping IePLC IaNLC IeNLC AVG IeNLC MIN IeNLC MAX IeNLC

xyz
11,639,408

0 11,639,408 228,223 161,658 242,490
block xyz 4,364,778 7,274,630 173,205 80,829 242,488
random 646,633 10,992,775 99,934 80,829 242,488

To evaluate our approach we use the lu benchmark from the NPB 3.3 suite [3].
We chose lu because it performs a high number of point-to-point (unicast) mes-
sages and a small number of collective (multicast) messages. We use problem
class C and execute it with 81 MPI processes (denoted lu.C.81) on 6 compute
nodes of our current HPC production system1.

In preparation for the simulations described in §4.2, we used the above strate-
gies to map lu.C.81 to the 27 nodes of the HAEC platform. The number of inter-
process logical unicast communications (IePLC) of the benchmark is 11,639,408.
These communications are illustrated in Fig. 2b where lu.C.81 is mapped to
the HAEC platform using block xyz. As comparison metrics (cf. Table 1), we
use the number of intra-node logical communications (IaNLC), number of inter-
node logical communications (IeNLC), and the average, minimum, and maxi-
mum number of IeNLC between any node pair. The block xyz strategy yields
the smallest IeNLC value, which results in the largest IaNLC value. Thus, it is
expected that block xyz results in the best overall simulated performance.

In reality, a single MPI process of lu represents more than single ‘thin’ core
parallelism (e.g., as it is the case in the multi-zone version of this benchmark).
In our approach, we abstract this parallelism and consider that a single MPI
process partially or entirely exploits the available intra-node parallelism. When
multiple MPI processes are mapped to the same compute node, we assume that
they equally share the ‘thin’ cores of the node. In this work we concentrate on the
inter-node communication requirements of applications mapped to the HAEC
platform, and model them explicitly.

4.2 Application Performance for Different Communication Models

It is possible that the HAEC platform topology dynamically changes at runtime
given the presence of wireless links. To accurately model the communication be-
havior of applications running on the HAEC platform, the communication mod-
els must account for the shape and characteristics of the interconnection network
topology. Hence, we consider routing and network coding as alternative commu-
nication models. For the scope of this work the topology is assumed to be fixed (a
3-D mesh illustrated in Fig. 2a).

In standard routing, data packets are forwarded by intermediate nodes in
a first come first serve manner. Network Coding (NC) [1] allows to increase
throughput, energy efficiency, and robustness of data transmission in compari-
son to standard routing. These benefits result from the basic concept of NC to
compute linear combinations of data packets instead of simply forwarding them.

1 https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus

Analysis of Parallel Applications on the HAEC Platform 481

The min-cut max-flow (the number of packets that can simultaneously be trans-
mitted by a sender) of a network can be achieved using NC in unicast scenarios
(a single sender transmits data to a single receiver) as well as in multicast sce-
narios (one or more senders transmit data to multiple receivers). NC can also be
beneficial due to enhanced transmission robustness against node/link failures.
Receivers require sufficient linear independent data packets to be able to decode
by solving a system of linear equations, hence, the loss of single data packets
can be mitigated.

To study the benefits of network coding versus routing in the context of the
HAEC platform, we implemented both models in the simulator. The routing
model is based on dimension order routing (DOR) [6]. Using DOR in a 3-D
mesh (such as the one in Fig. 2b), packets are first routed in the x dimension,
then in the y dimension, and lastly in the z dimension. The network coding
approach is based on practical network coding (PNC, [5]), a practical implemen-
tation of random linear network coding. Random refers to the selection of the
coefficients needed for computing the linear combinations of the data packets.
In view of sending, the data packets are organized into matrices of sw rows ×
(sw + ns) columns, called generations (or windows), where sw is the number of
data packets per generation, and ns is the number of data symbols per packet.
The data packets are augmented by a global encoding vector that reflects all lin-
ear combinations applied to the data packets. Hence, the receiver does not need
to know the randomly selected coefficients for decoding the combinations. For
each packet, the first sw columns contain the global encoding vector. In PNC,
only data packets from one generation can be combined. PNC employs the same
path selection between (sender,receiver) pairs as DOR.

At the moment, both communication models address only unicast communica-
tion. In unicast communication, NC is beneficial in case of packet loss caused by
errors or attacks. In the simulations reported below, communication is assumed
to be error-free. Thus NC will not outperform routing. However, integrating NC
as a communication model in the simulator enables future evaluations in which
certain packet loss rates will be considered.

Using NC for communication requires accounting for additional associated
costs. In our case, the forwarding nodes are not burdened with additional com-
putational effort for receiving the linear combinations of packets and for forward-
ing them. However, both sender and receiver nodes must perform additional
operations, such as computing linear combinations or solving a system of lin-
ear equations. We assume that the nodes of the HAEC platform have sufficient
computational resources; thus the additional operations will not significantly
decrease efficiency. Analysis of the energy consumption of these operation will
be conducted in future work. Regarding communication overhead, the fact that
some additional information is transmitted (e.g., global encoding vector and gen-
eration identifier) needs to be considered. In comparison to the payload, which
in our context refers to the amount of data symbols per packet, the cost of
transmitting this additional information is also negligible.

482 F.M. Ciorba et al.

Table 2. Parameters used in the simulation

Parameter Notation DOR PNC

latency l 1µs
bandwidth b 250Gbit/s
packet size sp 288 bytes
sending delay dout 100 ns
receiving delay din 100 ns
delay per hop dh dout + sp/b+ l + din
acknowledgment processing delay da dout/2
delay intermediate node di da
packet processing delay dp 0.625 ns
finite field size sff 8 bits
window ID swid 4 bytes
delay sender node ds 2·dout 2·dout + sw · dp
delay recv. node dr 2·dout 2·dout + s2w · dp
payload/packet Lp sp − swid sp − sw · sff − swid

Within our evaluations, we focus on comparing the transfer times of messages
of applications running on the HAEC platform. To enable comparison between
DOR and PNC, we assume that data packets are organized in windows of the
same size as the generations. After sending one window (or generation) of data
packets, the sender waits for the acknowledgment of receipt from the receiver
before sending the next window of data packets. Given a payload Lp per data
packet, sending a message of size m requires sending np = �m/Lp� data packets
and, hence, sending nw = �np/sw� full windows (or generations) containing sw
data packets and a non-full window containing the remaining nr = np − sw · nw

data packets (if any). For the tests reported in the following, we set sw to 5.
Other parameters and their notation and values are given in Table 2.

Assuming the delay caused by sending a message over one hop (dh) exceeds
both the delay associated with preparing the data to be sent by the sender (ds)
and the associated delay at the receiver (dr), the time to transfer x data packets
over h hops between sender s and receiver r in the absence of errors is given by:

tt(x) = ds + (h+ x− 1) · dh + (h− 1) · di + dr, (1)

where di denotes the delay associated with processing data packets at the in-
termediate nodes. When s and r are mapped to the same node, we assume
tt(x) = (ds + dr)/2. The time needed for transmitting all data packets of mes-
sage m is given by:

T (np) = tt(sw) · nw + tt(nr) + h · (nw + 1) · (dh + da), (2)

where da refers to the delay associated with processing of an acknowledgment
and tt(sw) is given by Eq. (1). Both DOR and PNC employ Eq. (1) and (2)
with different payloads Lp and delays ds and dr (cf. Table 2). This holds for
the error-free case.

The instrumented lu.C.81 benchmark (cf. Sec. 4.1) ran in 41.8 s and resulted
in a trace of 1.4GiB. This trace was given as input to haec sim. We conducted six
simulations: one for each of the three mapping strategies, and for each mapping
we employed DOR and PNC as communication models. Each simulation was

Analysis of Parallel Applications on the HAEC Platform 483

(a) xyz, DOR (b) block xyz, DOR (c) random, DOR (d) input trace

(e) xyz, PNC (f) block xyz, PNC (g) random, PNC (h) input trace

Fig. 3. Function and message statistics of the simulated lu.C.81 running on the 3×3×3
HAEC platform. (d) shows function and message statistics of the input trace while (h)
shows function groups statistics and message counts per message size of the input trace.
Visualization with Vampir [12].

conducted in parallel on 6 compute nodes using 81 simulation processes, and
completed in 675 seconds. The duration of the simulated lu.C.81 benchmark on
the HAEC platform was between 23.7 s to 24.1 s for the different mappings using
DOR and PNC (Fig. 3). Two types of statistics are shown for each simulated
trace: (1) the accumulated exclusive time spent in MPI functions and (2) the
average transfer times for the different message sizes. The following statistics
are shown additionally for the input trace: (3) accumulated exclusive time spent
in functions of group Application (green bar) and MPI (red bar) and (4) the
number of messages grouped by message size. The original trace is shown only
for illustration and not for comparison against the simulated traces.

The choice of mapping or communication model has no impact on the duration
of the simulated benchmark, even though most of the time is spent in MPI
functions in the input trace (cf. Fig. 3d). Note that the communication models
only alter the duration of the following MPI functions: Send, Recv, Wait, and
Irecv. Time spent in all other functions is the same in both input and simulated
traces. There are differences in the times spent in these four MPI functions and
in the transfer times per message sizes among the three mappings and the two
communication models.

From a mapping strategy perspective, less time is spent in send, recv, and
wait for block xyz mapping using DOR and PNC, than in any other case. From
a communication model perspective, more time is spent in send and wait using
PNC than DOR for all mappings. This confirms our expectation, given that the

484 F.M. Ciorba et al.

simulation assumed an error-free HAEC platform and knowing that use of NC
for unicast communication is only beneficial in the presence of errors or attacks.
However, less time is spent in recv using PNC than DOR. This may be due to
indirect balancing effects, such as faster transmissions leading to longer waiting
times on subsequent messages. Also, the effect of mapping and communication
model on message transmission time depends on the message size.

5 Conclusion and Future Work

This paper presents a holistic approach that uses a trace-driven workflow to
simulate and analyze the performance of parallel applications running on a high
performance–low energy computer (the HAEC platform). We have presented an
application model based on event traces, an abstract model for the HAEC plat-
form, as well as three strategies for mapping parallel applications to the HAEC
platform. We have developed a trace-driven simulator (haec sim) which employs
two communication models: dimension order routing and practical network cod-
ing. The simulation results conducted on a well known parallel benchmark show
the potential of the mapping strategies and the communication models for ana-
lyzing the performance of various parallel applications on the HAEC platform.

There are multiple future work directions. Immediate directions include: simu-
lation experiments on various parallel applications from the scientific community;
development of energy consumption models for computation and communication
operations; development of mapping strategies that take into account the com-
munication patterns of the application; modeling of unicast communication in
the presence of errors/attacks; and modeling of HAEC platform (compute and
communication) resources management in order to address, e.g., congestion over
communication links. Longer-term work directions include: modeling of multicast
communications; development of support for migration of tasks across compute
nodes to increase performance or decrease energy costs; development of a hybrid
communication model that supports dynamic latency, bandwidth, and topology.

Acknowledgements. This work is supported by the German Research Founda-
tion (DFG) in the Collaborative Research Center 912 “Highly Adaptive Energy-
Efficient Computing”. The authors thank Mario Bielert and Miriam Debus for
contibution in simulator implementation and visualization.

References

1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE
Trans. on Inf. Theory 46(4), 1204–1216 (2000)

2. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., Ortega, D.: COTSon: In-
frastructure for full system simulation. SIGOPS Op. Sys. Review 43(1) (2009)

3. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V., Weeratunga, S.: The NAS parallel benchmarks. RNR Technical Report
RNR-94-007, NASA (March 1994)

Analysis of Parallel Applications on the HAEC Platform 485

4. Bhatele, A.: Automatic Topology Aware Mapping for Supercomputers. PhD thesis,
University of Illinois at Urbana-Champaign (2010)

5. Chou, P.A., Wu, Y., Jain, K.: Practical network coding. In: Proc. Annual Allerton
Conf. on Comm., Control, and Computing (2003)

6. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann (2004)

7. Doany, F.E., Lee, B., Rylyakov, A., Kuchta, D.M., Baks, C., Jahnes, C., Libsch,
F., Schow, C.: Terabit/sec VCSEL-based parallel optical module based on Holey
CMOS transceiver IC. In: Optical Fiber Communication Conf. and Expo. and the
National Fiber Optic Engineers Conf. (2012)

8. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open
Trace Format 2: The next generation of scalable trace formats and support libraries.
In: Applications, Tools and Techniques on the Road to Exascale Computing. Ad-
vances in Par. Co, vol. 22, pp. 481–490 (2012)

9. Fettweis, G., Nagel, W.E., Lehner, W.: Pathways to servers of the future. In: De-
sign, Automation, Test in Europe, pp. 1161–1166 (2012)

10. Israel, J., Martinovic, J., Fischer, A., Jenning, M., Landau, L.: Optimal antenna
positioning for wireless board-to-board communication using a butler matrix beam-
forming network. In: 17th Int’l ITG Workshop on Smart Antennas, pp. 1–7. VDE
(2013)

11. Kielmann, T., Gorlatch, S.: Bandwidth-latency models (BSP, LogP). In: Padua,
D. (ed.) Encycl. of Par. Co., pp. 107–112. Springer, US (2011)

12. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir performance analysis tool-set. In: Resch, M.M.,
Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Perf. Comp,
pp. 139–155. Springer (2008)

13. Knüpfer, A., Rössel, C.,Mey,D., Biersdorff, S., Diethelm,K., Eschweiler, D.,Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen, P.,
Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B., Wolf,
F.: Score-P: A joint performancemeasurement run-time infrastructure for Periscope,
Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M.
(eds.) Tools for High Perf. Comp, pp. 79–91. Springer, Heidelberg (2012)

14. Labarta, J., Girona, S., Cortes, T.: Analyzing scheduling policies using Dimemas.
Par. Co. 23(1-2), 23–34 (1997)

15. Marowka, A.: Back to thin-core massively parallel processors. Computer 44(12),
49–54 (2011)

16. Nieweglowski, K., Rieske, R., Henker, R., Schöniger, D., Ellinger, F., Wolter, K.-J.:
Optical interconnects for adaptive high performance computing. In: IEEE Work-
shop Photonics and Microsys. (July 2013)

17. Sahu, P.K., Chattopadhyay, S.: A survey on application mapping strategies for
network-on-chip design. J. Syst. Archit. 59(1), 60–76 (2013)

18. Sherman, S.W., Browne, J.C.: Trace driven modeling: Review and overview. In:
1st Symp. on Simul. of Computer Sys., pp. 200–207. IEEE Press (1973)

19. Totoni, E., Bhatele, A., Bohm, E.J., Jain, N., Mendes, C.L., Mokos, R.M., Zheng,
G.,, L.: V Kale. Simulation-based performance analysis and tuning for a two-
level directly connected system. In: 17th IEEE Intl. Conf. on Par. and Dist. Sys.,
pp. 340–347 (2011)

20. Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N.P.,
Fiorentino, M., Davis, A., Binkert, N., Beausoleil, R.G., Ahn, J.H.: Corona: System
implications of emerging nanophotonic technology. In: IEEE Intl. Conf. on Progr.
Comprehension, pp. 153–164 (June 2008)

	Analysis of Parallel Applications on a High Performance–Low Energy Computer
	1
Introduction
	2
Related Work
	3
Aspects of Application Analysis on Future Computing Systems
	3.1
Simulation and Analysis Workflow
	3.2
Modeling Applications
	3.3
Modeling a High Performance–Low Energy Computer

	4
Modeling and Simulation Results
	4.1
Mapping Applications to Systems
	4.2
Application Performance for Different Communication Models

	5
Conclusion and Future Work
	References

