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Abstract. This paper presents Raccoon, a lattice-based signature
scheme submitted to the NIST 2022 call for additional post-quantum
signatures. Raccoon has the specificity of always being masked. Con-
cretely, all sensitive intermediate values are shared into d parts. The
main design rationale of Raccoon is to be easy to mask at high orders,
and this dictated most of its design choices, such as the introduction of
new algorithmic techniques for sampling small errors. As a result, Rac-
coon achieves a masking overhead O(d log d) that compares favourably
with the overheads O(d2 log q) observed when masking standard lattice
signatures.

In addition, we formally prove the security of Raccoon in the t-probing
model: an attacker is able to probe t ≤ d − 1 shares during each execu-
tion of the main algorithms (key generation, signing, verification). While
for most cryptographic schemes, the black-box t-probing security can be
studied in isolation, in Raccoon this analysis is performed jointly.

To that end, a bridge must be made between the black-box game-
based EUF-CMA proof and the usual simulation proofs of the ISW model
(CRYPTO 2003). We formalize an end-to-end masking proof by deploy-
ing the probing EUF-CMA introduced by Barthe et al. (Eurocrypt 2018)
and exhibiting the simulators of the non-interference properties (Barthe
et al. CCS 2016). The proof is divided into three novel parts:

– a simulation proof in the ISW model that allows to propagate the
dependancy to a restricted number of inputs and random coins,

– a game-based proof showing that the security of Raccoon with probes
can be reduced to an instance of Raccoon with smaller parameters,

– a parameter study to ensure that the smaller instance is secure, using
a robust generalization of the Rényi divergence.

While we apply our techniques to Raccoon, we expect that the algorith-
mic and proof techniques we introduce will be helpful for the design and
analysis of future masking-friendly schemes.
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1 Introduction

In the past decade, post-quantum cryptography has reached quickly grown from
a mostly theoretical field to one with sufficient maturity to be deployed on a wide
scale. This is epitomized by NIST’s standardization in 2020 of the hash-based
signatures XMSS and LMS, as well as its announcement in 2022 of the future
standardization of the lattice-based KEM Kyber, the lattice-based signatures
Dilithium and Falcon, and the hash-based signature SPHINCS+. Whilst the
efficiency profiles and black-box security of these schemes are well-understood,
resistance against side-channel attacks remains a weak spot.

Side-Channel Attacks. In a side-channel attack (SCA), an attacker can learn
information about the physical execution of an algorithm, such as its running
time or its effect on the power consumption, electromagnetic or acoustic emission
of the device running it. This information can then be leveraged to recover
sensitive information, for example, cryptographic keys.

SCAs can be devastating against cryptographic implementations, and post-
quantum schemes are no exception. See Sect. 1.3 for references of concrete SCAs
against Dilithium.

Masking. The main countermeasure against side-channel attacks is masking
[27]. It consists of splitting sensitive information in d shares (concretely: x =

x0 + · · · + xd−1), and performing secure computation using MPC-based tech-
niques. Masking provides a trade-off between efficiency and SCA resistance: the
computational efficiency of the implementation is reduced by a polynomial fac-
tor in d, but the cost of a side-channel attack is expected to grow exponentially
[19,28].

Unfortunately, lattice-based signatures contain subroutines that are extremely
expensive to mask, such as (a) sampling from a small set, (b) bit-decomposition,
and (c) rejection sampling. Currently, the best known ways to perform these oper-
ations is to rely on mask conversions [13,26], which convert between arithmetic
and boolean masking. This typically incurs an overheadO(d2 log q) [14] orO(2d/2)
[11], and quickly becomes the efficiency bottleneck. As an illustration, the only
publicly available masked implementation of Dilithium [12] is 53 (resp. 200) times
slower than unmasked Dilithium for d = 2 (resp. d = 4).

Masking-Friendly Schemes. In order to overcome these limitations, a natu-
ral research direction is to design lattice-based signatures that are naturally
amenable to masking. However, this is easier said than done. The few designs
that exist have either been shown insecure or lack a formal security proof, see
Sect. 1.3 for a more detailed discussion. Thus having a masking-friendly signature
with a formal proof has been an elusive goal.

1.1 Our Contributions

We propose Raccoon, a masking-friendly signature, and provide a formal security
proof in the t-probing model [27]. While Raccoon is inspired from the similarly
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named scheme from [17], we have heavily modified its design in order to make
it more efficient and provable secure under standard assumptions. The design
presented in this paper is exactly the same as the one submitted to the NIST
on-ramp standardization campaign [16].

Blueprint. Raccoon is based on the “Lyubashevsky signature without aborts”
blueprint, also found in works on threshold signatures [1], and which we recall
below. Assume the public key vk is a Learning With Errors (LWE) sample(
A, t = [A I ] · s

)
, where s is a small vector, I is the identity matrix and A is

a uniform matrix (precise definitions will be provided later in the paper). Sign-
ing proceeds as follows:

(S1) Sample r, compute a commitment w =
[
A I

]
· r;

(S2) Compute a challenge c = H(w, vk,msg);
(S3) Compute a response z = s · c + r.

The verification procedure checks that H(A · z − t · c, vk,msg) = c and that z is
short. Using a Rényi divergence argument, we can argue security if the modulus
q grows as the square root of the number of queries Qs, that is q = Ω(

√
Qs). By

eliminating the need for rejection sampling, this sidesteps the issue of masking
it. In addition, unlike in Dilithium, the security argument does not rely on bit-
decomposition. This eliminates the need to mask bit-dropping, which we now
employ purely for efficiency reasons. We note that our final modulus has 49 bits,
which is larger than the standard precision (32-bit or less) on many embedded
platforms. We mitigate this by taking q = q1 · q2, where q1 and q2 are 24-bit and
25-bit NTT-friendly prime moduli.

We note that rejection sampling in Dilithium requires a smaller modulus
q = Ω(dim(s)), in practice log q ≈ 23 in Dilithium. Our design choice entails a
trade-off between compactness (Dilithium) and ease of masking (Raccoon).

The Problem with Gaussians. Standard Rényi divergence arguments as in
[1] require r to be sampled from a discrete Gaussian distribution. However, Gaus-
sians are notoriously difficult to generate in a way that is robust to SCA. The most
common method for sampling Gaussians in a constant-time manner is via prob-
ability distribution tables (PDT), see for example FrodoKEM [35] or Falcon [38].
For signatures, the PDT would require a precision p ≈ log(Qs), for example Fal-
con takes p = 72. Masking this step would incur a prohibitive overheadO(d2 log q).
Similarly, all other existing sampling methods (see e.g. “Related works” in [25])
comprise at least one step that is expensive to mask. We could use Gaussians, and
from a purely theoretic perspective the security proof would go through, but from
a practical point of view this would show little relevance to the real-world issues
that masking is trying to solve in the first place.

Sums of Uniforms. Our solution is to pick a distribution that has Gaussian-
style properties, but is easier to sample securely on embedded devices. As it turns
out, sampling r as a sum of uniform variates (over a small set) produces remark-
ably Gaussian-like distributions, which is unsurprising and a straightforward
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consequence of the central limit theorem. Unfortunately, standard Rényi diver-
gence arguments fail for these distributions since they have finite support.

We resolve this analytical issue by introducing the smooth Rényi divergence,
a more robust generalization of the Rényi divergence that is able to provide
cryptographically useful statements about sums of uniform distributions. We
define it as a simple combination of the statistical distance and the Rényi diver-
gence. This generalisation achieves the best of both worlds: the robustness of the
statistical distance and the power of the Rényi divergence.

Probing-resilient sampling via AddRepNoise. Now that we have identified a
suitable distribution (that is, sum of uniforms) for r, the final step is to sample it
in a way that is resilient to t-probing adversaries. A naive approach would be to
sample in parallel each share ri of �r� as the sum of rep small uniform variates, so
that r is the sum of d · rep small uniform variates. However, a probing adversary
is allowed to probe t ≤ d−1 individual shares ri. This would reduce the standard
deviation of the conditional distribution of r by a factor

√
d, and lead to worse

parameters.
We resolve this by proposing a new algorithm, called AddRepNoise , which

interleaves (a) parallel generation of individual noises and (b) refreshing the
masked vector, and repeats this rep times. We can formally prove that a t-
probing adversary only learns t individual uniform variates, so that the standard
deviation of r conditioned to these variates is the sum of d · rep − d + 1 uniform
variates, which allows to prove security with a minimal loss in tightness.

1.2 Overview of the Security Proof

We recall that a high-level description of Raccoon is given in Sect. 1.1. Now, in
a masked form, the secret is shared as s =

∑
i∈[d] si where the coefficients of the

vectors si are sampled in a short interval. This is a deliberate choice of Raccoon
that allows good sampling performance.

At first sight, if the si are safely manipulated in the signature algorithm and
never recombined, the masking security seems guaranteed as the exact value
of s cannot be recombined. However, if an adversary probes d − 1 shares of si,
say {s0, · · · , sd−2}, he can compute vk′ = vk −

[
A I

] ∑d−2
i=0 ·si =

[
A I

]
sd−1. Key

recovery is significantly easier as the updated secret is now from a narrower
distribution. Hence, while the exact value of s is inaccessible, the knowledge
of the probes combined with the knowledge of the public key can lead to a
simpler key recovery. This aspect makes a link between two families of proofs
that are typically separated in other works: the black-box game-based EUF-CMA
proofs and the simulation proofs of masking. The former quantifies the advantage
of a black-box attacker and provides a security statement conditioned to the
hardness of well-defined mathematical problems (like LWE). The latter provides
a statistical statement showing that any probing attacker limited to d−1 probes
have no statistical advantage to recover the sensitive information (Fig. 1).

To prove the security of Raccoon, it is important to link these two notions.
For that, we detail and formalize the probing security from a game-base perspec-
tive, i.e. with well-defined simulators and reuse the notion of probing EUF-CMA
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Fig. 1. Proof overview. Jump 1 consists in moving randomness to inputs as per Defi-
nition 5.2. Jump 2 uses Lemma 5.2 to move all probes to inputs. Jump 3 is a simple
rewriting step. Jump 4 is a black-box reduction to a simpler unmasked signature Small
Raccoon. Jump 5 is the security proof of Small Racoon. O denote access to an oracle
to the corresponding algorithm.

provided in [5]. Such a notion has been defined but it was not formally used in a
game-based proof before. The main contribution of this paper is the proof of the
probing EUF-CMA security of Raccoon. It will consist in several steps.

1. Non-uniform masks and sNIU: First, one needs to handle the sensitive
small uniforms that are deviating from the classical ISW model [27] and
other masking proof techniques [4]. For that, all the small uniforms will not be
considered as a sharing of a secret value but as several random coins provided
in input. The notion of sNIU introduced in [20] (detailed later on in the paper)
will come handy. That way, we will be able to prove the masking security
of the key generation and signature algorithm when the small uniforms are
provided as inputs in Sect. 6.

2. Reduction from t-probing EUF-CMA to standard EUF-CMA: Next, we
will use this probe simulation property offered by the NIU model (cf. Lemma
5.2) as part of a game based proof in the probing-EUF-CMA security model.
Through a sequence of games, we prove that the probing-EUF-CMA security of
Raccoon reduces on the black-box-EUF-CMA of a different version of Raccoon
with smaller noise distributions, called small Raccoon. This reduction lets us
include the probing adversary in the attack and reduce to a standard (non
probing) EUF-CMA adversary. This proof is presented in Sect. 7.

3. Unforgeability and smooth Rényi divergence: Finally, the proof con-
cludes with the black-box security of small Raccoon. Such a proof is close
to existing EUF-CMA proofs of signatures following the Fiat–Shamir with
aborts framework with a significative difference. To allow a complete end-to-
end proof, we avoid any heuristic assessments and introduce the notion of
smooth Rényi divergence for obtaining provable and tighter parameters. This
proof is presented in Sect. 7.3.

In Sect. 8, we instantiate the parameters to valid our proof and confirm that
the current NIST submission is secure.
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1.3 Related Works

SCA Against Dilithium. Several side-channel attacks against post-quantum
schemes have been published. For concision, we only mention those related to
Dilithium, which shares similarities with Raccoon. Since its initial publication, a
string of increasingly practical side-channel attacks have been proposed against
unprotected implementations of Dilithium: see for example [8,9,22,29,32,39,40].

Masking Lattice Schemes. The formal study of masking lattice-based signa-
tures has been initiated by Barthe et al. [5], which studied the GLP signature.
Since then, BLISS [6] and qTESLA [23] have also been studied from a mask-
ing perspective. Masked implementations of Dilithium have been proposed in
[3,12,34].

Masking-Friendly Signatures. A few masking-friendly signatures have been
proposed in the past two years.

– Mitaka. Espitau et al. [21] proposed the Mitaka scheme, a masking-friendly
variant of Falcon. A flaw in the security proof of Mitaka, as well as a practical
attack in the t-probing model, was later demonstrated by Prest [37].

– IEEE SP Raccoon. At IEEE S&P 2023, del Pino et al. [17] presented a lattice-
based masking-friendly signature, also called Raccoon. Our scheme is a con-
ceptual descendent of the scheme from [17], with significant improvements.
While both versions of Raccoon are Fiat-Shamir lattice-based signatures, the
security proof of [17] relies on several heuristic arguments, and the scheme
itself is less compact than ours due to the use of a variant of uniform secret
LWR. In comparison, our design is more streamlined, more compact, relies
on standard assumptions and has a formal security proof.

– Plover. Since the original publication of Raccoon as a NIST candidate [16],
Esgin et al. [20] have proposed Plover, a signature scheme heavily inspired
from our scheme, including the use of AddRepNoise. The key insight of Plover
is to realize that our techniques are not limited to Fiat-Shamir signatures, and
can also be applied in a hash-then-sign setting. Conversely, [20] introduced
the NIU notion, a useful abstraction that we re-use in our analysis.

2 Preliminaries

We provide the minimal set of preparation. We refer the readers to the full
version for more details. First, let us prepare some notations. We note N the set
of non-negative integers, including zero. Given n ∈ N, we denote by [n] the set
{0, 1, . . . , n−1}. Let f : X → Y be a function, and x ∈ X. When f is deterministic,
we use the notation y � f (x) to indicate that we assign the output of f (x)
to y. When f is randomized, we instead use the notation y ← f (x). From a
programming viewpoint, both of these notations indicate an assignment of the
result to the variable on the left. Given a probability distribution D over Y , we
note y ← D to express that y ∈ Y is sampled from D.
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2.1 Hardness Assumptions

The security of Raccoon is based on the Module Learning with Errors (MLWE)
and Module Short Integer Solutions (MSIS) assumptions. More precisely, we
rely on the Self Target MSIS (SelfTargetMSIS) problem, a variant of the MSIS
problem, where the problem is defined relative to some hash function modeled
as a random oracle. This assumption also underlies the security of Dilithium.

2.2 Masking Preliminaries

We consider all operations and variables used in algorithms to be over the scalar
ring Rq (i.e. we consider that basic operations are done directly on polynomials
in Rq), this entails that we consider that probes leak full polynomials in Rq

and not bits or even coefficients (leading to a stronger attacker model). An
algorithm is defined as a sequence of gadget calls, each gadget being a sequence
of (probabilistic or deterministic) assignments of expressions to local variables.

Well-Formed Gadgets. We say a gadget is well-formed if it is written in SSA
(single static assignment) form, i.e. if its scalar variables appear at most once
on the left-hand side of an assignment, and if all assignments are three-address
code instructions, i.e. of the form a = b∗ c with ∗ an operator. These restrictions
ensure that all intermediate values are captured by local variables at some point
in the code. An algorithm is well formed if in all gadget calls b = G(x1, . . . , xk)
the variables b, x1, . . . , xk are pairwise disjoint. While some algorithms we provide
are not well formed (e.g., Algorithms 1 and 2), it is clear that this can be easily
remedied by indexing variables and adding new local variables.

We use the notation �x� = (xi)i∈[d] to denote a tuple of d values in Rq, which
implicitly defines the value x =

∑d−1
0 xi ∈ Rq. This notation is used to express

that the secret value x is shared as d additive shares as the encoding �x�.
Variables’ Values and Names. We will distinguish variables (designated by
a binary string representing their name) from the values they take (in the scalar
ring Rq), all objects pertaining to variables (singular variables, vectors, sets,
etc.) will have a name with a bar (e.g. x̄ ∈ {0, 1}∗, V̄ ⊂ {0, 1}∗), while the
corresponding value will not (e.g. x ∈ Rq).

For a gadget G we define the local variables of G as V̄G ⊂ {0, 1}∗ (noted V̄

when the gadget is clear from the context), since all variables are assigned only
once we can match the position of a variable with its name. For a program P with
input scalar variables (ā1, . . . , āN ) that calls the gadgets G1, . . . ,Gk , (with N, k ∈

N), we will consider the set of variables V̄P = {ā1, . . . , āN }
⊎

V̄G1

⊎
. . .

⊎
V̄Gk

(where the local variables of Gi are additionally labelled with i to differentiate
between gadgets and

⊎
is the disjoint union). Note that since all gadgets are

written in three-address code SSA form, all intermediate computations and out-
put variables are at some point stored locally in a uniquely defined local variable
v̄ ∈ V̄P. We thus define the set of all possible probes as the set V̄P of all local
variables as well as the input variables.
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Remark 2.1. We will consider that a program P always outputs all unmasked
values it computes even if they are not explicitly returned by P.

Definition 2.1 (Probes). For a well-formed program P with variables V̄P

and input variables ā1, . . . , āN , a set of probes is a set Ī ⊂ V̄P. For any set
Ī ⊂ V̄P and any scalars X = (a1, . . . , aN ) we will denote as ExecObs(P, Ī ,X)

the joint distribution of the (masked and unmasked) outputs of P(a1, . . . , aN ) and
of all the values taken by the variables in Ī . In particular for

(outmasked, outunmasked,L ) ← ExecObs(P, Ī ,X),

outmasked (resp. outunmasked) is the masked (resp. unmasked) output of
P(a1, . . . , aN ) for some internal random coins and L is the value taken by the
variables in Ī for these random coins.

Probing Model. We recall standard non-interference results from [4].

Definition 2.2 (Perfect simulatability, reformulation of [4]). Let Ī be a
set of probes of a gadget G with input shares X̄. We say that the PPT simula-
tor (SimIn, Simout) perfectly simulates the probes Ī if and only if for any input
values X, SimIn(G, Ī ) outputs a subset X̄′ ⊂ X of the input variables of G, and
SimOut(G,X′) (where X′ is the values taken by X at indices X̄′) outputs a tuple of
values such that the marginal distribution of L , for (outmasked, outunmasked,L ) ←

ExecObs(P, Ī ,X), and SimOut(G,X′) are identical.

Definition 2.3 (Non Interference [4]). A gadget is said (d−1)-non-interfering
(written (d − 1)-NI for short) iff any set of probes Ī such that |Ī | ≤ d − 1 can be
perfectly simulated (See Definition 2.2) by a simulator (SimIn, SimOut) such that
SimIn(G, Ī ) outputs a set X̄′ of at most d − 1 shares of each input.

Definition 2.4 (Strong Non Interference [4]). A gadget is said (d − 1)-
strongly-non-interfering (written (d − 1)-sNI for short) iff any set Ī of at most
d − 1 = dint + dout probes, where dint are made on internal data and dout are
made on the outputs, can be perfectly simulated by a simulator (SimIn, SimOut)
such that SimIn(G, Ī ) outputs a set X̄′ of at most dint shares of each input.

Lemma 2.1 (Composability of NI and sNI gadgets [5]). A well-formed algo-
rithm is NI if all of its gadgets are NI or sNI and each sharing is used at most
once as input of a non-sNI gadget. Moreover, a well-formed algorithm is sNI if
it is NI and its output sharings are issued from a sNI gadget.

Lastly, in this paper, the masking order is fixed at d − 1 where d is the number
of shares. For simplicity, we omit the d − 1 when referring to NI/sNI properties.

2.3 Sum of Uniforms

Given a distribution D of support included in an additive group, we note [T] ·
D the convolution of T identical copies of D; in other words, [T] · D is the
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distribution of the sum of T independent random variables, each being sampled
from D. Given integers u,T > 0, and if we note U(S) the uniform distribution
over a finite S, we note:

SU(u,T) = [T] · U({−2u−1, . . . , 2u−1 − 1}).

Fig. 2. The distribution SU(4,T), for T ∈ {1, 2, 4, 8}

The acronym SU stands for “sum of uniforms”. This class of distributions
is illustrated in Fig. 2. This distribution is highly desirable for our purposes,
since for T ≥ 4 it verifies statistical properties in the same way as Gaussians do.
However, unlike Gaussians, they are straightforward to sample in constant-time
and without requiring tables or elaborate mathematical machinery. This makes
them adequate for Raccoon. Finally, we note RSU(u, 1) the distribution over R

obtained by sampling each integer coefficient of a ∈ R according to SU(u, 1), and
outputting a. More details about sums of uniforms can be found the full version
of this paper.

3 The Raccoon Signature Scheme

In this section, we present our masking-friendly signature scheme called Rac-
coon. We describe the key generation (Algorithm 1), signing (Algorithm 2) and
verification (Algorithm 3). Key generation and signing are always performed in
a masked manner; when d = 1, the algorithmic descriptions remain valid but the
algorithms are, in effect, unmasked.

We reference relevant variables and parameters in Table 1.

3.1 Key Generation

Masked key generation process is described by Algorithm 1. At a high-level,
KeyGen generates d-sharings (�s�, �e�) of small errors (s, e), computes the ver-
ification key as an LWE sample (A, t = A · s + e), and rounds t for efficiency.
A key technique is that �s�, �e� are generated in Lines 4 and 6 using our novel
algorithm AddRepNoise (Algorithm 5).
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Table 1. Overview of parameters used in the Raccoon signature.

Parameter Explanation

(Rq, n) Polynomial ring Rq = Z[X]/(q, Xn + 1)

(k, �) Dimension of public matrix A ∈ Rk×�
q

d Number of shares used, corresponding to a masking order d − 1

RSU(a, b) Sum of a polynomials with coefficients uniform in {−2u−1, . . . , 2u−1 − 1}

ut, uw Parameter and repetition rate used for the sum of uniform in

rep the secret/signature s ← RSU�(ut, rep), r ← RSU�(uw, rep)

νt Amount of bit dropping performed on verification key

νw Amount of bit dropping performed on (aggregated) commitment

(qt, qw) Rounded moduli satisfying (qt, qw) � (�q/2νt, �q/2νw )

(C, ω) Challenge set {c ∈ Rq | ‖c‖∞ = 1 ∧ ‖c‖1 = ω} s.t. |C| ≥ 22κ

(B2, B∞) Two-norm and infinity-norm bounds on the signature

Algorithm 1. KeyGen(�) → (vk, sk)
Output: Keypair vk, sk
1: seed ← {0, 1}κ � κ-bit random seed for A.

2: A � ExpandA(seed) � Similar to ExpandA in Dilithium. A ∈ Rk×�
q .

3: �s� ← � × ZeroEncoding(d) � Masked zero vector �s� ∈ (R�
q )

d . Algorithm 8.
4: �s� ← AddRepNoise(�s�, ut, rep) � Generate the secret distribution. Algorithm 5.

5: �t� � A · �s� � Compute masked product �t� ∈ (Rk
q )

d .

6: �t� ← AddRepNoise(�t�, ut, rep) � Add masked noise to �t�. Algorithm 5.

7: t � Decode(�t�) � Collapse t ∈ Rk
q . Algorithm 6.

8: t � �t�νt � Rounding and right-shift to modulus qt = �q/2νt .

9: return (vk � (seed, t), sk � (vk, �s�)) � Return serialized key pair.

3.2 Signing Procedure

The masked signing process is described by Algorithm 2. This signing procedure
is similar to the “Lyubashevsky’s Signature Without Aborts” in [1]. Again, the
use of AddRepNoise is crucial in this procedure. The challenge computation is
divided in two parts, first a 2κ bitstring is computed using the hash function
ChalHash, then this bitstring is mapped to a ternary polynomial with fixed ham-
ming weight using ChalPoly. As in previous works this distinction is made for
ease of implementation and storage.

3.3 Verification Procedure

Algorithm 3 describes the signature verification process. Signature verification
is not masked, and its parameters are independent of the number of shares d
used when creating the signature. As is usual in lattice signatures, verification
performs a bound check and an equality check.

It is easy to check that the equation of line 7 verifies by construction when
the signature algorithm is run honestly, we will fix the bounds B∞ and B2 such
that honest signatures verify with overwhelming probability (this is necessary
for the reduction of Sect. 7.2 to go through).
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Algorithm 2. Sign(�sk�,msg) → sig

Input: Secret signing key sk = (vk, �s�), message to be signed msg ∈ {0, 1}∗.
Output: Signature sig = (chash, h, z) of msg under sk.
1: μ � H(H(vk)‖msg) � Bind vk with msg to form μ ∈ {0, 1}2κ .
2: A � ExpandA(seed) � Similar to ExpandA in Dilithium. A ∈ Rk×�

q .

3: �r� ← � × ZeroEncoding(d) � Masked zero vector �r� ∈ (R�
q)

d. Algorithm 8.
4: �r� ← AddRepNoise(�r�, uw, rep) � Add masked noise to �r�. Algorithm 5.
5: �w� � A · �r� � Compute masked product �w� ∈ (Rk

q)
d.

6: �w� ← AddRepNoise(�w�, uw, rep) � Add masked noise to �w�. Algorithm 5.
7: w � Decode(�w�) � Collapse LWE commitment w. Algorithm 6.
8: w � �w�νw � Rounding and right-shift to modulus qw = �q/2νw .
9: chash � ChalHash(w, μ) � Map w and μ to chash ∈ {0, 1}2κ .

10: cpoly � ChalPoly(chash) � Map chash to cpoly ∈ C.
11: �s� ← Refresh(�s�) � Refresh �s� before re-use. Algorithm 7.
12: �r� ← Refresh(�r�) � Refresh �r� before re-use. Algorithm 7.
13: �z� � cpoly · �s� + �r� � Masked response �z� ∈ (R�

q)
d.

14: �z� ← Refresh(�z�) � Refresh �z� before collapsing it. Algorithm 7.
15: z � Decode(�z�) � Collapse into response z ∈ R�

q . Algorithm 6.
16: y � A · z − 2νt · cpoly · t � “Noisy” LWE commitment.

17: h � w − �y�νw � Compute hint h ∈ Rk
qw . Subtraction mod qw.

18: sig � (chash, h, z)
19: if {CheckBounds(sig) = FAIL} goto Line 3 � Sanity check on the signature.

Algorithm 4.
20: return sig � Return encoded signature triplet.

Algorithm 3. Verify(sig,msg, vk) → {OK or FAIL}
Input: Signature sig = (chash, h, z), message msg ∈ {0, 1}∗, public key vk = (seed, t).
Output: Signature validity: OK (accept) or FAIL (reject).

1: if CheckBounds(sig) = FAIL return FAIL � Norms check. Algorithm 4.

2: μ � H(H(vk)‖msg) ; A � ExpandA(seed)
3: cpoly � ChalPoly(chash) � Map chash to cpoly ∈ C.

4: y � A · z − 2νt · cpoly · t � Scale t from Zqt to Zq and recompute the commitment.

5: w′ � �y�νw + h � Adjust the LWE commitment with hint (mod qw).
6: c′

hash
� ChalHash (w′, μ) � Recompute c′

hash
∈ {0, 1}2κ .

7: if chash � c′
hash

return FAIL � Check commitment.
8: return OK � Signature is accepted.

3.4 Helper Algorithms

The following are algorithms used within our key generation (Algorithm 1), sign-
ing (Algorithm 2) and verification (Algorithm 3). The algorithm AddRepNoise
(Algorithm 5) is the most interesting one, which we come back later when dis-
cussing probing security.

Checking Bounds. The function CheckBounds (Algorithm 4) is used to check
the norm bounds and encoding soundness of signatures by both the verification
function (Algorithm 3), but also by the signing function (Algorithm 2). Note that
unlike rejection, CheckBounds is used to enforce the zero-knowledge property, and
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therefore it does need to be masked. Rather, it detects signatures that are a bit
too large. Note that CheckBounds could be removed entirely at the cost of a
slight increase in signature size (and therefore a slight decrease in security).

Algorithm 4. CheckBounds(sig) → {OK or FAIL}

Input: Signature sig = (chash, h, z).
Output: Format validity check OK or FAIL.
1: if (‖(z, 2νw · h)‖∞ > B∞) or (‖(z, 2νw · h)‖2 > B2) return FAIL else return OK

Error Distributions. AddRepNoise (Algorithm 5) implements the Sum of Uni-
forms (SU) distribution SU(u, d · rep) (Sect. 2.3) in a masked implementation.
AddRepNoise interleaves noise additions and refresh operations; more precisely,
for each (masked) coefficient �a� of �v�, small uniform noise is added to each
share of �a�, then �a� is refreshed, and this operation is repeated rep times. The
security properties of AddRepNoise is analyzed in Sect. 6.2.

Algorithm 5. AddRepNoise(�v�, u, rep) → �v�
Input: Masked vector �v� = (vj )j∈[d] = (vi, j )i∈[len(v)], j∈[d].
Input: Bit size (distribution parameter) u.
Input: Global repetition count parameter rep.
Output: Updated �v� with SU(u, d · rep) distribution added to each coefficient of v.
1: for i ∈ [len(v)] do � Vector index.
2: for irep ∈ [rep] do � Repetition index.
3: for j ∈ [d] do � Share index.
4: ρ← RSU(u, 1) � uniform sample of u bits
5: vi, j ← vi, j + ρ � Add small uniform to the polynomial.

6: �vi� ← Refresh(�vi�) � Refresh polynomial on each repeat.

7: return �v�

Challenge Computation. As in Dilithium, the challenge computation is split
in two subroutines: ChalHash computes a hash digest, and ChalPoly expands it
into a challenge polynomial cpoly that is (pseudo-randomly) uniform in the set
C = {c ∈ R, ‖c‖1 = ω}. These functions do not need to be masked.

Refresh and Decoding Gadgets. Lastly, we recall some useful gadgets.
Refresh (Algorithm 7) generates a fresh d-sharing of a value in Rq, or “refresh”
the d-sharing. This operation is important for security against t-probing adver-
saries. Refresh uses ZeroEncoding (Algorithm 8) as a subroutine. Both algorithms
perform O(d log d) basic operations over Rq and require O(d log(d) log(q)) bits
of entropy. While we present ZeroEncoding as a recursive algorithm, one can see
that it can be computed in-place and its memory requirement is O(d). Remark
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Algorithm 6. Decode(�x�) → x
Input: d-sharing �x� = (xi)i of x ∈ Rq

Output: The clear value x ∈ Rq

1: �x� ← Refresh(�x�)
2: return x �

∑
i∈[d] xi

Algorithm 7. Refresh(�x�) → �x�′
Input: A d-sharing �x� of x ∈ Rq

Output: A fresh d-sharing �x� of x
1: �z� ← ZeroEncoding(d)
2: return �x�′ � �x� + �z�

Algorithm 8. ZeroEncoding(d) → �z�d
Input: A power-of-two integer d, a ring Rq

Output: A uniform d-sharing �z� ∈ Rd
q of 0 ∈ Rq

1: if d = 1 then

2: return �z�1 � (0) � There is only one way to encode zero into 1 share.

3: �z1�d/2 ← ZeroEncoding(d/2) � Recursively obtain left side.

4: �z2�d/2 ← ZeroEncoding(d/2) � Recursively obtain right side.

5: �r�d/2 M
←− R

d/2
q � Sampled using a Mask Random Generator (MRG).

6: �z1�d/2 � �z1�d/2 + �r�d/2 � Add to the left side.

7: �z2�d/2 � �z2�d/2 − �r�d/2 � Subtract from the right side.

8: return �z�d �
(�z1�d/2 ‖ �z2�d/2

)
� Concatenate the two.

that our ZeroEncoding algorithm entails that the number of shares d is a power
of 2, as the rest of our algorithms are agnostic to this property we could use a
ZeroEncoding that produces a more fine-grained number of shares to obtain dif-
ferent parameters (e.g. by using Algorithm 8 and collapsing some of the shares).

We describe in Algorithm 6 a Decode gadget that takes �x� = (xi)i∈[t+1] as
input, refreshes it with Algorithm 7, then computes the sum x0+· · ·+xd−1 mod q.
When the decoding gadget is already preceded by a refresh gadget, one of them
may be omitted. Decode is similar to the algorithm “FullAdd” from [5, Alg. 16].

4 Smooth Rényi Divergence and Useful Bounds

Raccoon’s core design choice is using the sum of uniforms distributions as
opposed to the discrete Gaussian distributions. From a practical point of view,
the sum of uniforms distribution is a much simpler distribution to mask and
implement. On the other hand, from a theoretical point of view, it poses more
challenges, as there are far fewer established statistical guarantees usable in
cryptography. Notably, since the sum of uniforms distribution only has finite
support, a standard proof technique used in lattice-based cryptography relying
on the Rényi divergence breaks down. To this end, we generalize the Rényi diver-
gence and prepare useful statistical bounds on the sum of uniforms distribution.
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4.1 Smooth Rényi Divergence

The usual Rényi divergence is undefined for distributions P,Q of supports not
included in one another. For example, this happens when P = SU(u,T) and Q =

P+a, for any a � 0. The smooth Rényi divergence (Definition 4.1) addresses these
limitations by combining the statistical distance and the Rényi divergence. The
statistical distance component captures problematic sets (typically, distribution
tails), while the Rényi divergence component benefits from the same efficiency
as the usual Rényi divergence over unproblematic parts of the supports.

Definition 4.1 (Smooth Rényi divergence). Let ε ≥ 0 and 1 < α < ∞. Let
P,Q be two distributions of countable supports Supp(P) ⊆ Supp(Q) = X. The
smooth Rényi divergence of parameters (α, ε) between P and Q is defined as:

Rε
α(P;Q) = min

ΔSD(P′;P)≤ε
ΔSD(Q′;Q)≤ε

Rα(P
′;Q′), (1)

where ΔSD and Rα denote the statistical distance and the Rényi divergence,
respectively:

ΔSD(P;Q) =
1
2

∑

x∈X

|P(x) −Q(x)| , Rα(P;Q) =

(
∑

x∈X

P(x)α

Q(x)α−1

) 1
α−1

.

While [18] has also provided a definition of smooth Rényi divergence, we argue
that our definition is more natural. Indeed, it satisfies variations of properties
that are expected from classical Rényi divergences. These are listed in Lemma
4.1.

Tools for Smooth Rényi Divergence. We review some basic properties of the
smooth Rényi divergence.

Lemma 4.1. The smooth Rényi divergence satisfies the following properties.

1. Data processing inequality. Let P,Q be two distributions, let ε ≥ 0, and
g be a randomized function over (a superset of) Supp(P) ∪ Supp(Q).

Rε
α(g(P); g(Q)) ≤ Rε

α(P;Q). (2)

2. Probability preservation. For any event E ⊆ Supp(Q):

P(E) ≤ (Q(E) + ε)(α−1)/α · Rε
α(P;Q) + ε . (3)

3. Tensorization. Let (Pi)i∈I, (Qi)i∈I be two finite families of distributions, let
εi ≥ 0 for i ∈ I, and let ε =

∑
i∈I εi.

Rε
α

(
∏

i∈I

Pi;
∏

i∈I

Qi

)

≤
∏

i∈I

Rεi
α (Pi;Qi). (4)

Proof. We recall that ΔSD and (Rα
α − 1) can be cast as f -divergences, following

Csiszár’s terminology [15]. Item 1 follows from the data processing inequality for
f -divergences. Item 2 is a special case of Item 1 . Finally, Item 3 follows from
tensorization properties of the statistical distance and the Rényi divergence. ��
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4.2 Useful Bounds on Sum of Uniforms

We bound the smooth Rényi divergence between two sums of uniforms, centered
at either 0 or a small offset. This will be a key lemma establishing the hardness
of standard EUF-CMA security of the small Raccoon (cf. Section 7.3). Due to
page limitation, the proof is provided in the full version of this paper.

Lemma 4.2. Let T, u, N ∈ N and c ∈ Z such that T ≥ 4 and N = 2u. Let
P = SU(u,T) and Q the distributions corresponding to shifting the support of P
by c. Let α ≥ 2 and τ > 0, ε > 0 be such that:

1. α |c| ≤ τ = o(N/(T − 1)) ;
2. ε = (τ+T )T

NT T !
.

Then:

Rε
α(P;Q) ≤

(

1 +
α(α − 1)

2

(
Tc
N

)2
+

2
T !

(
Tαc
N

)2
+ ε +O

((
Tαc
N

)3))1/(α−1)

(5)

Gap with Practice. In practice, Lemma 4.2 is a bit sub-optimal. Let us note
σ2 =

T (N2−1)
12 the variance of P and Tc = o(N), which follows from Item 1 above.

We also use the notation a � b for a ≤ b + o(b). Then, Lemma 4.2 essentially
tells us that log Rε

α(P;Q) � α
2

(
Tc
N

)2
∼ α c2 T3

24σ2 . In comparison, [1, Lemma 2.28]
tells that if P is instead a Gaussian of parameter σ, then log Rα(P;Q) ≤ α c2

2σ2 .
Thus there is a gap O(T3) between Lemma 4.2 and [1, Lemma 2.28].

One could assume that this gap is caused by a fundamental difference between
Gaussians and sums of uniforms. However we performed extensive experiments
and found that this gap does not exist in practice, i.e., it seems to be an artifact
of our proof. For this reason, we put forward the following conjecture which
ignores this gap and which we use when setting our concrete parameters. Due
to page limitation, we expand upon Conjecture 4.1 in the full version.

Conjecture 4.1. Under the conditions of Lemma 4.2, we have

Rε
α(P;Q) � exp

(
CRényi · α · c

2 (1 + 2
α−1 )

T · N2

)

(6)

for a constant CRényi ≈ 6. Therefore, for any M-dimensional vector c, P = PM

and Q = c +QM , and further assuming α = ωasymp(1) and T = o(α |ci |) for all the
i-th (i ∈ [M]) entry of c, we have:

Rε
α(P;Q) � exp

(
CRényi · α · ‖c‖

2
2

T · N2

)

, (7)

where ε ≈
αT ‖c‖TT
NT T !

�
1

√
2 π T

(
α e ‖c‖2
N T

)T
(8)

and where ‖c‖T ≤ ‖c‖2 is the LT norm.
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5 Enhancing NI/sNI for Probing EUF-CMA Security

We first formally define NI security against a probing adversary, the security
model in which Raccoon will later be prove in. We then argue that existing
probing tools/models discussed in Sect. 2.2 are insufficient to prove EUF-CMA
security and prepare useful tools that may be of independent interest. Our tools
build on the recent techniques developed by [20] (cf. Sect. 1.3).

5.1 EUF-CMA Security in the Probing Model

We use the definition of [5] that captures the fact that no PPT adversary with
access to less than d − 1 probes on KeyGen and Sign should be able to break
EUF-CMA security (i.e., unforgeability). Below, our definition slightly deviates
from theirs as we rely on more generalized (and formal) notion of probes captured
by the function ExecObs (cf. Definition 2.1).

Definition 5.1. Let d ≥ 1 an integer, Qs be a fixed maximum amount of signa-
ture queries. A signature scheme (KeyGen, Sign,Verify) with an efficient signing
key update algorithm KeyUpdate is EUF-CMA-secure in the (d−1)-probing model
if any probabilistic polynomial time adversary has a negligible probability of win-
ning the game presented in Fig. 3.

As in [5], we assume a KeyUpdate algorithm that refreshes the secret key between
signature queries and cannot be probed by the attacker. This is performed to
avoid attackers probing more than d − 1 shares of the secret across different
signature queries. See [5, Remark 3] for more details.

Remark 5.1 (Standard EUF-CMA security). We note that Definition 5.1 incor-
porates the standard notion of standard EUF-CMA (i.e., 0-probing). For this, we
define KeyUpdate to be the identify function; the restriction that the adversary
can only query an empty set for the set of probes is enforced by the winning
condition.

5.2 Insufficiency of the NI/sNI Models

At first glance, all subroutines of Raccoon can be proven composable in the NI
model. However, careful consideration shows that the NI model does not capture
security when the intermediate values are not uniformly distributed and biased
with the knowledge of the public output. Indeed, for example in the KeyGen, the
combined knowledge of some shares of �s� and of the public key vk allows one
to decrease the key-recovery security (decreasing the standard deviation of the
short vector in a lattice) as presented in the technical overview in Sect. 1.

The gist of the problem when taking the output of an algorithm into account
comes from the fact that the NI model proves that there exists a simulator that
can simulate any set of probes from a subset of the input shared secrets of the
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Fig. 3. EUF-CMA security game in the d − 1-probing model. See Definition 2.1 for the
definition of ExecObs.

algorithm. However, the aforementioned property does not entail that the distri-
bution of the probes can be simulated when taking into account the output. This
is clearly apparent in Definition 2.2 where the definition requires SimOut(G,X′)

and L to be identically distributed, but not (outunmasked, SimOut(G,X′)) and
(outunmasked,L ).

Fig. 4. Example of an algorithm without unshared inputs (left), and its equivalent
where randomnesses are explicitly passed as unshared inputs (right).

To see that the marginal distributions being identical is insufficient we give
a simple example in Fig. 4: both algorithms are trivially NI since any probe ρ̄j
or v̄′j can be simulated by sampling a small uniform and outputting it or adding
it to the corresponding input vj . However, if we consider the unmasked value
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w as a public output, a simulator taking as input shares of �v� cannot output
probes that are correlated to w. For example, in gadget non-NIU, consider the
set of probes Ī =

{
v̄′1
}

which corresponds to the sum of v1 and ρ1. A simulator
(SimIn, SimOut) can perfectly simulate Ī by setting SimIn(non-NIU, Ī ) � v̄1,
and SimOut(non-NIU, v1) � v1 + RSU(u, 1). Then the variable L = v′1 being
probed has the same distribution as SimOut(non-NIU, v1). However the distribu-
tion of (L , outunmasked) = (v1 + ρ1, v + ρ1 + . . . + ρd) is clearly not the same as
that of (SimOut(non-NIU, v1), outunmasked) = (v1 + RSU(u, 1), v + ρ1 + . . . + ρd).

5.3 NI/sNI with Unshared Inputs

To be able to handle cases where the values being probed are correlated with the
public output we will modify the relevant gadgets and consider that any corre-
lated random variables will be considered as inputs. We will formalize this idea
with a model named Non-Interference with Unshared Inputs (NIU) (see Defini-
tions 5.2 and 5.3 below), in which we will consider a variant of the algorithm
where all random values that can affect the distribution of the output will be
considered as inputs of the algorithm. While this model is stronger than the NI
model, as it can be used to prove security even in the presence of leakage (see
Lemma 5.2), we note that once an algorithm P has been modified to have its
relevant randomness moved to inputs, the difference with the NI model becomes
mostly syntactical since the new inputs of the algorithm and gadgets can be
considered as just an additional shared secret input.

As an example, see the algorithm NIU in Fig. 4 where we parse the random
samples ρi as inputs rather than local variables. NIU thus takes two tuples of d
values as input, and can as before be proven NI (where we artificially consider
the tuple (ρi)i∈[d] as a shared input). However this time the NI proof does entail
that the joint distribution of the probes and the output is identical to that of the
simulator and output, because the output is a deterministic function of the input.
Using the same set of probes Ī = v̄′1 as before, this time the simulator needs to
use two input values to simulate the probe: SimIn(NIU, Ī ) � {v̄1, ρ̄1} , however
since each input variable is in a different shared input this simulator fits the
definition of 2-NI in Definition 2.3, and we can set SimOut(NIU, {v1, ρ1}) � v1+ρ1
. It is obvious that in this case (L , outunmasked) = (v1 + ρ1, v + ρ1 + . . . + ρd) =
(SimOut(NIU, {v1, ρ1}), outunmasked) .

We will now first formalize the (d − 1)-NIU notion, introduced in [20], in
Definitions 5.2 and 5.3. Using the formalism of Sect. 2.2 we can then state and
prove composition properties in Lemma 5.1, which are straightforward though
never made explicit in [20]. Finally we can prove the core simulatability property
of Lemma 5.2 which shows that when passing appropriate random variables as
input NIU is sufficient to simulate the joint distribution of the probes and outputs
of an algorithm. While this property was implicitly used in [20], it was actually
never proven.

Definition 5.2 (Non Interference with Unshared input [20]). Let G be
a gadget taking two types of inputs:
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1. shared inputs X, where all elements in X are d-tuples of elements in Rq

2. unshared input Y, where all elements in Y are tuples (not of fixed size) of
elements in Rq

A gadget G with shared and unshared inputs is said (d − 1)-non-interfering with
unshared inputs (written (d − 1)-NIU for short) iff any set of probes Ī such
that |Ī | ≤ d − 1 can be perfectly simulated (See Definition 2.2) by a simulator
(SimIn, SimOut) such that SimIn(G, Ī ) outputs a set X̄′

⋃
Ū of at most d − 1

shares of each shared input (X̄′) and each unshared input (Ū).

Definition 5.3 (Strong Non Interference with Unshared input [20]).
A gadget is said (d − 1)-strongly-non-interfering with unshared inputs(written
(d − 1)-sNIU for short) iff any set Ī of at most d − 1 = dint + dout probes where
dint are made on internal data and dout are made on the outputs can be simulated
as in Definition 5.2 with dint instead of d − 1.

Since unshared inputs only differ from shared inputs by semantics (the dis-
tinction comes mostly from the fact that they do not represent a secret being used
by the algorithm but internal randomnesses), one can note that if we ignore this
distinction, the definitions of NIU and NI are identical. The interesting property
of NIU comes from the fact that first transforming the relevant gadgets (namely
AddRepNoise ) to include the randomness as unshared inputs allows NIU to prove
a meaningful statement on the joint distribution of the probes and the output.
A key property we use to prove EUF-CMA in the probing model.

As argued earlier once the randomness is moved to inputs the definition of
NIU becomes identical to the one of NI with the difference that inputs are sepa-
rated in two sets by whether they are shared or unshared. Since this difference
is purely syntactical the composition lemma of NI naturally extends to NIU.

Lemma 5.1 (Composability of NIU and sNIU gadgets). A well-formed
algorithm is NIU if all of its gadgets are NIU or sNIU and each sharing and each
unshared variable is used at most once as input of a non-sNIU gadget. Moreover,
a well-formed algorithm is sNIU if it is NIU and its output sharings are issued
from an sNIU gadget.

We now give a core lemma to use NIU. In essence the following lemma states that
by passing the relevant randomnesses of a program to inputs, provingNIU becomes
sufficient to prove that probes can be simulated even in the presence of outputs.

Lemma 5.2. Let P be an algorithm with shared inputs X and unshared inputs
U. If P is (d − 1)-NIU, and the public output of P is a deterministic function
of (X,U). Then for any input X and any probes Ī (with |Ī | ≤ d − 1), the
distribution of (outunmasked, SimOut(P, (X′,U′))) and (outunmasked,L ) over the
randomness U and the random coins of P and SimOut are identical, where
(outmasked, outunmasked,L ) ← ExecObs(P, Ī ,X) and (X̄′, Ū′) ← SimIn(P, Ī ).

Proof. We will fix the input X and not D the distribution from which U is
sampled. L and outunmasked are random variables over the choice of U and
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the random coins of P which we will note rcP, and SimOut(P, (X′,U′))) is a
random variable over the choice of U and the random coins of SimOut which
we will note rcS (SimOut only uses the randomness in U′ ⊂ U but we can
consider it as a variable of U since U′ is a marginal of U). First we observe that
since the definition of NI and NIU are identical if we simply consider the extra
randomness as another input we have that the marginal distributions of L and
SimOut(P, (X′,U′)) are identical, i.e. for any possible leakage Λ we have:

Pr
U←D,rcP←{0,1}∗

[L (X,U, rcP) = Λ] = Pr
U←D,rcP←{0,1}∗

[SimOut(X,U, rcS) = Λ]

Since the algorithm P is deterministic when given (X,U), we have that for any
possible leakage value Λ and output value θ:

Pr
U←D,rcP←{0,1}∗

[L (X,U, rcP) = Λ, outunmasked(X,U) = θ]

=
∑

U s.t outunmasked(X,U)=θ

Pr
rcP←{0,1}∗

[L (X,U, rcP) = Λ]

=
∑

U s.t outunmasked(X,U)=θ

Pr
rcS←{0,1}∗

[SimOut(X,U, rcS) = Λ]

= Pr
U←D,rcS←{0,1}∗

[SimOut(X,U, rcS) = Λ, outunmasked(X,U) = θ]

which is the desired result. ��

6 NIU Property of Raccoon’s KeyGen and Sign

Before establishing EUF-CMA security of Raccoon in the probing model, we
prove that the KeyGen and Sign algorithms are NIU. Looking ahead, this allows
a reduction to simulate the probes LKeyGen and L (i)

Sign
in the EUF-CMA security

game in the probing model (cf. Fig. 3).

6.1 Existing Security Properties

Thanks to the composability of the sNI/NIU models, we can focus on the smaller
gadgets comprising the KeyGen and Sign algorithms. Table 2 summarizes the
security properties of the gadgets used in Raccoon, where we can rely on prior
works to establish the security of every gadget, except for AddRepNoise . We
refer to the cited papers for more information about the proofs.

6.2 Security Property of the AddRepNoise Gadget

Let us start with an intuition on the role of the Refresh operations in
AddRepNoise. When considering unmasked coefficients, AddRepNoise is function-
ally equivalent to performing a ← a+SU(u,T) for each coefficient a, for T = d ·rep.
The internal use of Refresh operations does not affect this behavior but is meant
to offer some resilience to probing adversaries.
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Table 2. Security properties of the known and new gadgets. No security property is nec-
essary for the other unmasked operations (ExpandA, ChalHash, ChalPoly, CheckBounds,
Computing the hint h).

Name Property Proof reference

×A and Line 13 of Algorithm 2 NI Zq−linear

Refresh (Algorithm 7) sNI [7,24,33]

ZeroEncoding (Algorithm 8) sNI [33]

Decode (Algorithm 6) NI [5, Alg. 16]

AddRepNoise (Algorithm 5) sNIU Proved in Section 6.2, Section 6.1

Without Refresh, a viable strategy would be to probe individual shares of
�a� at the start and at the end of AddRepNoise , allowing to learn the sum b of
rep · (d − 1)/2 small uniform errors. The conditional distribution of the additive
noise (conditioned on the d−1 probed values) is now b+SU(u,T −(d−1) · rep/2).
With Refresh, this strategy is not possible anymore but a probing adversary can
still probe individual errors, which in the end gives out no more than the sum b
of d − 1 small uniform errors. The conditional distribution of the additive noise
(conditioned on the d − 1 probed values) is now b+ SU(u,T − (d − 1)), where the
adversary learns b but knows nothing about the realization of SU(u,T − (d − 1)).

While AddRepNoise performs operations share by share, the underlying dis-
tributions are not uniform. The addition of short noise values are added biases
the a posteriori distribution of the final noise. Hence, one cannot prove that this
gadget is probing secure. We resolve this issue by moving the short noise values
as random coin inputs of the algorithm, introducing AddRepNoiseER in Algorithm
9, an instance of AddRepNoise with explicit randomness (ER) for the small uni-
forms. Note that the complete set of small uniforms is considered as a single
unshared input. We can now formally show in Lemma 6.1 that AddRepNoiseER
is sNIU. A similar result was proven in [20] but our proof strategy is different
and perhaps a bit more formal. Later, these inputs will be handled in the general
composition proof.

Lemma 6.1. The AddRepNoiseER gadget is (d-1)-sNIU.

Proof. We represent AddRepNoiseER as a sequential succession of
MiniAddRepNoise and Refresh as presented in Fig. 5. To prove the sNIU prop-
erty, we exhibit the randomness ρi,irep, j in the input. Let us remark that the
randomness involved in Refresh (and thus in ZeroEncoding) are not explicited as
the algorithm is already proved sNI. Hence, AddRepNoiseER is partially deran-
domized. Our proof proceeds in two steps; we first study the MiniAddRepNoise
sub-gadget, then AddRepNoiseER.

Step 1: MiniAddRepNoise. We first show that any probe inside MiniAddRepNoise
can be perfectly simulated (see Definition 2.2) with ρi,irep, j and the input vj ,
where (i, irep, j) corresponds to the targeted loop. Indeed, let p be a probe inside
MiniAddRepNoise. The description of this probe necessarily includes (i, irep, j) to
specify the involved loop. The intermediate value targeted by p can be
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Fig. 5. Structure of AddRepNoiseER (using Algorithm 10). A gadget proven sNI is noted

gadget . The gadgets with no proven property are noted gadget . Single arrows

( ) and double arrows ( ) represent plain and masked values, respectively.

Algorithm 9. AddRepNoiseER(�v�, (ρi,irep, j)) → �v′�, w/ partial explicit random-
ness
Input: Masked vector �v� = (vj )j∈[d] = (vi, j )i∈[len(v)], j∈[d].
Input: Randomness (ρi,irep, j )i∈[len(v)],irep∈[rep], j∈[d]
Output: Updated �v� with SU(u, d · rep) distribution added to each coefficient of v.
1: for (i, irep) ∈ [len(v)] × [rep] do � Vector index.
2: for irep ∈ [rep] do
3: �vi� ← MiniAddRepNoise(�vi�, (ρi,irep, j )i∈[len(v)], j∈[d])
4: �vi� ← Refresh(�vi�) � Refresh polynomial on each repeat.

5: return �v�

Algorithm 10. MiniAddRepNoise(�v�, irep, (ρi,irep, j)) → �v′�
Input: Masked vector �v′�, index irep ∈ [rep], randomness (ρi,irep, j )i∈[len(v)], j∈[d]
Output: Updated �v�.
1: for j ∈ [d] do
2: v′j ← vj + ρi,irep, j

3: return �v′�

1. the randomness ρi,irep, j ,
2. the value vj or v′j .

It is easy to conclude that any of these values can be perfectly simulated from
ρi,irep, j and the input vj . The only intermediate value that needs both is v′j as it
needs ρi,irep, j .

Step 2: AddRepNoiseER. Let us now look at the bigger picture. In this proof, we
will perform a composition proof by propagating the dependency of the inter-
mediate variables to shares of ρi,irep, j and vj . Let Ī be the given set of at most
d − 1 probes in AddRepNoise . We decompose Ī as follows.

– Let δi,irep
MiniAddRepNoise

be the number intermediate variables that are probed

inside the MiniAddRepNoise gadget of the loop with indexes i, irep.
– Let δi,irep

Refresh
be the number intermediate variables that are probed inside the

Refresh gadget of the loop with indexes i, irep.
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By definition,

len(v)∑

i=0

rep∑

irep=0

(

δ
i,irep

MiniAddRepNoise
+ δ

i,irep

Refresh

)

≤ d − 1. (9)

Going from right to left in Fig. 5, we first consider the last Refresh of the last loop
(where i = len(v) and irep = rep). Thanks to the sNI property of the last Refresh

algorithm, all the δlen(v),rep
Refresh

probes can be perfectly simulated from δ
len(v),rep

Refresh
shares of v′, which is also the output of the last MiniAddRepNoise. So, thanks
to the above paragraph about MiniAddRepNoise, all the probes from the last
MiniAddRepNoise, can be perfectly simulated from two sets of probes:

– Ī len(v),rep defined as the description of at most δlen(v),rep
MiniAddRepNoise

+ δ
len(v),rep

Refresh
values of ρlen(v),rep, j (with several different j’s),

– Ī
′
len(v),rep defined as the set of to at most δlen(v),rep

MiniAddRepNoise
+ δ

len(v),rep

Refresh
shares

of v, the input of the last MiniAddRepNoise.

The set of Ī ′
len(v),rep can also be seen as probes of the output of the penultimate

Refresh. But, thanks to the sNI property of the penultimate Refresh algorithm,
they can be simulated independently from the δlen(v)−1,rep−1

Refresh
intermediate variables

probed inside the penultimate Refresh algorithm. In conclusion, the Ī
′
len(v),rep

probes can be simulated from uniform random.
Applying the same reasoning for all the subsequent loops, the set of Ī probes

can be perfectly simulated from

– Ī i,irep defined as the description of at most δi,irep
MiniAddRepNoise

+δ
i,irep

Refresh
values

of ρi,irep, j (with several different j’s),
– Ī

′
0,0 defined as the set of to at most δ0,0

MiniAddRepNoise
+ δ0,0

Refresh
shares of

v, the input of the AddRepNoiseER.

We define Ū = Ī 0,0
⋃

· · ·
⋃

Ī len(v),rep and X̄′ = Ī
′
0,0. Thanks to Eq. (9) and

Lemma 2.1, we have shown that AddRepNoiseER is (d-1)-sNIU. ��

6.3 Security Property of KeyGen and Sign

Now that AddRepNoiseER is proved, one needs to derive the security of the key
generation and signature algorithms with a composition proof. Let us first intro-
duce KeyGenER and SignER, simple modifications of KeyGen and Sign algorithms
where the small uniform randomness is provided as input. KeyGenER is formally
described in Algorithm 11. Due to space constraints, the formal description of
SignER is deferred to the full version. We provide a proof of Lemma 6.2 for
KeyGenER. The proof for SignER proceeds in a similar fashion and is included in
the full version of this paper.

Lemma 6.2. The algorithms KeyGenER and SignER are (d − 1)-NIU.
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Algorithm 11. KeyGenER((ρ
(0)
i,irep, j

), (ρ
(1)
i,irep, j

)) → (vk, sk)

� KeyGen with explicit randomness for AddRepNoise

Input: Randomness (ρ
(0)
i,irep, j

)i∈[len(v)],irep∈[rep], j∈[d], (ρ
(1)
i,irep, j

)i∈[len(v)],irep∈[rep], j∈[d]

Output: Keypair vk, sk
1: seed ← {0, 1}κ ; A � ExpandA(seed)
2: �s� ← � × ZeroEncoding(d)

3: �s� ← AddRepNoiseER(�s�, ut, rep, (ρ(0)i,irep, j
)) � Partially derandomized

AddRepNoise.
4: �t� � A · �s�
5: �t� ← AddRepNoiseER(�t�, ut, rep, (ρ(1)i,irep, j

)) � Partially derandomized

AddRepNoise.
6: t � Decode(�t�)
7: t � �t�νt
8: return (vk � (seed, t), sk � (vk, �s�))

Fig. 6. Structure of KeyGen (Algorithm 11). Gadgets proven NI (resp. sNIU) is noted

gadget (resp. gadget ). Triangular gadgets either start from a masked input
and output an unmasked value, or the other way around.

Proof. (Lemma 6.2). Let us decompose the key generation as a succession of
gadgets. The gadgets may be represented as in Fig. 6. We assume the respective
NI/sNI/sNIU properties of each gadget as presented in Table 2.

Recall that given a set Ī of at most d − 1 probes inside KeyGenER, we aim
at proving that they can be perfectly simulated with at most d − 1 shares of
(ρ

(0)
i,irep, j

) and d − 1 shares of (ρ(1)i,irep, j
). In other words we will exhibit two sets Ī 0

of at most d − 1 values of (ρ(0)i,irep, j
), and Ī 1 of at most d − 1 values of (ρ(1)i,irep, j

)

which will be enough to perfectly simulate Ī .
Let us decompose the set Ī of at most d − 1 probes in KeyGenER among the

different gadgets. By convention, to avoid counting certain probes twice (once
as output of a gadget and once as input of the subsequent gadget), we do not
count the probes on the outputs. For example, if a probe is made on the output
of a gadget G, we will consider that it is actually made on the input of the
subsequent gadget. We note:

– δ0 the number of intermediate variables probed in Line 6 (final Decode gad-
get);
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– δ1 the number of intermediate variables probed in Line 5 (second
AddRepNoiseER);

– δ2 the number of intermediate variables probed in Line 4 (multiplication with
A);

– δ3 the number of intermediate variables probed in Line 3 (first
AddRepNoiseER);

– δ4 the number of intermediate variables probed in Line 2 (ZeroEncoding);

We recall that by definition of Ī ,
∑4

i=0 δi ≤ d − 1.

The proof is similar to a standard composition proof. Thanks to the NI prop-
erty of the Decode gadget, all the δ0 intermediate variables can be perfectly
simulated (see Definition 2.2) with at most δ0 shares of �t�. Since the second
AddRepNoiseER is d − 1-sNIU, the δ1 + δ0 intermediate variables observed during
Decode and the last AddRepNoiseER may be perfectly simulated with δ1 shares
of �t� (the output of the ×A operation) and δ1 shares of (ρ

(1)
i,irep

). We note Ī 1

this set. Note that δ0 is discarded as it concerns the output of a sNIU gadget.
With the same reasoning, all the δ0 + δ1 + δ2 + δ3 intermediate variables

observed after the first AddRepNoiseER can be perfectly simulated with at most
δ3 shares of �s� (which are also the output of ZeroEncoding) and at most δ3 shares
of (ρ(0)i,irep

). We note Ī 0 this sets. In addition, the δ4 intermediate variables in the
ZeroEncoding gadget may be perfectly simulated from the public parameters as
ZeroEncoding is NI and does not take any input.

Putting everything together, we have proved that the distribution of the
intermediate variables in Ī may be perfectly simulated from:

– the set Ī 0 containing at most δ3 shares of (ρ(0)i,irep
)

– the sets Ī 1 containing at most δ1 shares of (ρ(1)i,irep
)

Since δ3 + δ1 ≤
∑4

i=0 δi ≤ d − 1, we have exhibited a ses Ū of at most d − 1 of the
unshared input which concludes the proof. ��

7 EUF-CMA Security of Raccoon in the Probing Model

We are finally ready to prove EUF-CMA security of Raccoon in the probing
model. This is done in two steps. We first reduce EUF-CMA security of Raccoon
in the probing model to the standard EUF-CMA security of small Raccoon,
formally defined in Fig. 7. We then establish that this small Raccoon is EUF-CMA
secure. Technically, the first part relies on the NIU property of KeyGen and Sign
(cf. Sect. 6), a purely statistical step claiming that given a small Raccoon key
and signature, we can simulate the leakage of Raccoon. The second part relies on
the smooth Rényi divergence for the sum of uniform distributions (cf. Sect. 4),
and reduces to computational problems.
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7.1 Description of a Non-masked Small Raccoon

We first formally define a non-masked and simplified variant of Raccoon, called
small Raccoon, depicted in Fig. 7. Notice that there are no more masking or
bit-droppings applied. More importantly, it is “small” since the sum of uniform
distribution is smaller. We effectively modify the bounds on the signature size
to be smaller, using B̄∞ and B̄2, whose formal definition appears in Theorem 7.1.

Fig. 7. A non-masked and simplified Raccoon, named small Raccoon. While we used
the notation from the masked Raccoon for consistency, notice above that h simply
becomes cpoly · e + e′ without rounding errors.
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7.2 EUF-CMA Security of Small Raccoon ⇒ Probing EUF-CMA
Security of Raccoon

This consists of the first step. Once the following theorem is established, we only
need to prove standard EUF-CMA security of small Raccoon.

Theorem 7.1. Let B∞ and B2 satisfying:

– B̄∞ ≥ B∞ + ω · (d − 1) ·
(
1
2 + 23ut

3

)
· (κ + log(n(k + �)) + 2νw + ω · 2νt

– B̄2 ≥ B2+ω ·
√
n(k + �)·(d−1)·

(
1
2 + 23ut

3

)
·(κ+log(n(k+�))+2νw ·

√
nk+ω ·2νt ·

√
nk

Let QH and QS denote the number of random oracle queries and signing queries
performed by A. For any PPT adversary A against the EUF-CMA security on
Raccoon in the (d −1)-probing model with time T and advantage ε, there exists a
PTT adversary B against the EUF-CMA security on small Raccoon (cf. Fig. 7)
with time O(T) and advantage:

AdvB ≥ AdvA − 4QHQS · 2−2κ − 2−κ+1 −
1
|C|
.

We will use a series of hybrids defined below to prove the theorem.

Hybrid0: This hybrid corresponds to real the EUF-CMA security game in the
(d − 1)-probing model (cf. Fig. 3).

Hybrid1: In this hybrid we replace KeyGen with KeyGenER and Sign with SignER,
in which all randomnesses are sampled prior to running the algorithm. Since
the algorithms are functionally identical the advantage is unchanged.

Hybrid2: This hybrid corresponds to Fig. 8, in which all the probes queried by
the adversary during either key generation or signature are mapped to probes
that target only the randomness used in the AddRepNoise gadgets. We prove
that the values output by these probes can be used to perfectly simulate the
output queried by the adversary in Lemma 6.2.
More precisely there is a first PPT simulator (SimInKeyGen, SimOutKeyGen)

such that for any probe set |ĪKeyGen | ≤ t in KeyGen(1κ), all probes
in Ī

′ � (Ī
′
s, Ī

′
e) � SimInKeyGen(ĪKeyGen) are of the form

ρ̄s,i,irep, j ∈ Ī
′
s for some (i, irep, j) ∈ [�, rep, d], and ρ̄e,i,irep, j ∈ Ī

′
e for some

(i, irep, j) ∈ [k, rep, d] (note that the variable names ρ̄ are also indexed
by the AddRepNoise gadget to which they belong to ensure unique nam-
ings), and max(|Ī ′

s |, |Ī
′
e |) ≤ d − 1. Using Lemma 5.2 we have that

(vk, SimOut(KeyGenER,I
′)) follows the same distribution as (vk,L ), where

(sk, vk,L ) ← ExecObs(ĪKeyGen,KeyGenER, 1
λ).

Similarly there is a second PPT simulator (SimInSign, SimOutSign) such that
for any message msg, masked secret key �sk�, and probe set |Ī Sign | ≤ t in

Sign(�sk�,msg), all probes in Ī
′ � (Ī

′
r, Ī

′
e′, Ī

′
sk) � SimInSign(Ī Sign)

are of the form ρ̄r,i,irep, j ∈ Ī
′
r for some (i, irep, j) ∈ [�, rep, d], ρ̄e′,i,irep, j ∈
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Fig. 8. Hybrid2: The NIU properties proven in Lemma 6.2 ensure the existence of
two PPT simulators (SimInKeyGen, SimOutKeyGen) and (SimInSign, SimOutSign). This

ensures all probes can be moved to the randomness in the AddRepNoise gadgets in
KeyGen and Sign. Differences with the EUF-CMA security game in the (d − 1)-probing

model (Fig. 3) are highlighted .

Algorithm 15. KeyGenL (1κ, Ī ) → (vk, sk,L )

Input: Probe set I = (Is,Ie), Ī s ⊂
{
ρ̄s, i, irep, j ; (i, irep, j) ∈ [�] × [rep] × [d]

}
,

Ī e ⊂
{
ρ̄e, i, irep, j ; (i, irep, j) ∈ [k] × [rep] × [d]

}

Output: Keypair vk, sk and Leakage L

1: seed ← {0, 1}κ ; A � ExpandA(seed)
2: �s� = (s1, . . . , sd ) � (0, . . . , 0) ∈ (R�

q )
d

3: for (i, irep, j) ∈ [�] × [rep] × [d] do

4: ρs, i, irep, j ← RSU(u, 1)

5: s j, i ← s j, i + ρs, i, irep, j

6: �t� � A · �sk� ∈ (Rk
q )

d

7: for (i, irep, j) ∈ [k] × [rep] × [d] do

8: ρe, i, irep, j ← RSU(u, 1)

9: t j, i ← t j, i + ρs, i, irep, j

10: t � Decode(�t�)
11: t � �t�νt

12: L �
{
(ρs, i, irep, j, ρe, i′, i′rep, j′ )

}

(ρ̄s, i, irep, j , ρ̄e, i′, i′rep, j
′ )∈ ¯I

13: return (vk � (seed, t), sk � (vk, �s�),L )
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Fig. 9. Hybrid3: We replace the ExecObs calls with the functionally identical algorithms
KeyGenL (cf. Algorithm 15) and SignL (cf. full version).

Ī
′
e′ for some (i, irep, j) ∈ [k, rep, d], and s̄i ∈ Ī

′
sk for some i ∈ [d], and

max (|Ī ′
r |, |Ī

′
e′ |, |Ī

′
sk)| ≤ t.

It also holds that (sig, SimOut(ExecObs(Ī
′
, Sign, 1λ))) follows the same dis-

tribution as ExecObs(Ī Sign, Sign, 1
λ). From Lemma 5.2, SimOut(SignER,

I ′) follows the same distribution as (sig,L ), where (sig,L ) ←

ExecObs(Ī Sign, SignER,msg). Thus the two hybrids are identical.
Hybrid3: This hybrid corresponds to Fig. 9, in which the algorithms ExecObs(Ī ,

KeyGen, 1κ) and ExecObs(Ī , Sign, sk,msg) are replaced by KeyGenL (1κ, Ī )

and SignL (sk,msg, Ī ), respectively. The former is presented in Algorithm
15. The latter is defined analogously and deferred to the full version due
to page limitations. Observe that since ExecObs(Ī ,KeyGen, 1κ) outputs the
same output as KeyGen(1κ) as well as the value of the variables at indices
Ī , any algorithm that outputs the same distribution is semantically identi-
cal. Since the variables in Ī are now restricted to the randomness used in
AddRepNoise it is clear that the algorithm KeyGenL outputs the same dis-
tribution . The same argument goes for ExecObs(Ī , Sign, sk,msg). Hence, the
two hybrids are identical.

Hybrid4: This hybrid corresponds to Fig. 10, in which the challenger artificially
extends the set of probes queried to the key generation and signing algorithm.
More specifically, we define Extend so that for any ρs,i,irep, j ∈ Ī s, all variables
ρs,i′,irep, j for i′ ∈ [�] are in Extend(Ī s) (same for Extend(Ī e), Extend(Ī r),
Extend(Ī e′ )). Conversely Collapse(L ′

s ) discards the values of any variables
that are in Ī r but not Ī

′
r. Clearly, this does not modify the view of the
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Fig. 10. Hybrid4: In this game, for any variable name ρ̄s,i,irep, j the challenger artificially
leaks all variables ρs,i,irep, j′ for j ′ ∈ [�] (and similarly when s is replaced by e, r, e′). He
then discards the extra leakage before sending it to the adversary. The view of the
adversary is unchanged.

adversary. This conceptual change will be necessary to reduce to a simpler
signing algorithm in the following section.

Lastly, we prove that for any PPT adversary A against the game described
in Hybrid4 (cf. Fig. 10), we can construct an adversary B against the standard
EUF-CMA security of small Raccoon in Fig. 7. At a high level a challenger can
simulate queries from KeyGenL by querying the public key t̄ from the oracle for
KeyGenSmall and artificially sampling additional noises (̃s, ẽ) as the sum of d − 1
small uniforms and outputting the public key t �

⌊
t̄ +As̃ + ẽ

⌉
νt

which will be
distributed exactly as a public key for KeyGenL . Similarly, a signature from
SignSmall can be mapped to a signature for SignL by sampling the appropriate
sums of uniform (r̃, ẽ′) and setting w = �w̄ +Ar̃ + ẽ′�νw . Finally we show a forgery
for SignL can be mapped to a forgery for SignSmall . The formal proof is given
in the full version. This completes the proof.

7.3 MLWE + SelfTargetMSIS ⇒ EUF-CMA Security of Small Raccoon

Notations for Smooth Rényi Divergence. We further define some useful notations
to aid the readability. For any c ∈ C, s ∈ R�

q, and e ∈ Rk
q, we note center �
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c ·

[
s
e

]

∈ R�+k
q and recall T = d · (rep − 1) + 1. We define two distributions:

P � SU(uw,T)n(�+k) and Q(center) � center + P.
We bound the smooth Rényi divergence of P and Q. For any α = ωasymp(1)

and εTail(center) = 1√
2 π T

(
α e ‖center ‖2

2uw ·T

)T
(see Conjecture 4.1 or Lemma 4.2), we

define εTail and RεTail
α (P;Q) to be any two values satisfying

Pr
[

εTail ≥ max
c∈C
εTail(center)

]

≥ 1 − negl(κ). (10)

Pr
[

RεTail
α (P;Q) ≥ max

c∈C
RεTail(center)
α (P;Q(center))

]

≥ 1 − negl(κ). (11)

where both probabilities are taken under the randomness of (s, e) ← RSU(ut,T)�×
RSU(ut,T)k . For efficiency and better parameters, we set εTail and RεTail

α (P;Q)

to be the smallest values satisfying the above inequality. The above parameters
we provide is one set of candidate asymptotic parameters.

It remains to prove that small Raccoon in Fig. 7 is (standard) EUF-CMA
secure. This is established in the following theorem.

Theorem 7.2. The small Raccoon in Fig. 7 is EUF-CMA secure under the
MLWEq,�,k,SU(ut,T ) and SelfTargetMSISq,�+1,k,C,β assumptions.

Formally, for any adversary A against the EUF-CMA security game mak-
ing at most Qh random oracle queries and Qs signing queries, and εTail and
RεTail
α (P;Q) satisfying Eqs. (10) and (11), there exists adversaries B and B′

against the MLWEq,�,k,SU(ut,T ) and SelfTargetMSISq,�+1,k,C,β problems such that

AdvEUF-CMA
A ≤ 2−κ · Qh · (1 + 2−κ+1 · Qs) +Qs · εTail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +Qs · εTail

) α−1
α

·
(
RεTail
α (P;Q)

)Qs ,

(12)

where Time(A) ≈ Time(B) ≈ Time(B′).

We now present an overview of the proof which, due to page constraints, is left to
the full version. As a first step we replace the hash function by a random oracle
which we will program by first sampling cpoly ← C and setting the hash function
accordingly. Once this is done w can be defined as a function of cpoly rather than
(r, e′), using the equation w � A · z − cpoly · t + z′ where z′ � cpoly · e + e′.
We now observe that all variables can be computed as deterministic functions
of (z, z′), we thus want to prove that (z, z′) are independent of (s, e). Using the
Smooth-Renyie divergence property of Lemma 4.2 we can bound the divergence
between (z, z′) = (cpoly · s + r, cpoly · e + e′) and (r, e′) which are sums of uniforms
independent of the secret. Finally we can replace the public key with a uniform
vector using MLWE, and use the forgery output by the adversary to break MSIS.
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8 Concrete Instantiation

Looking at Theorem 7.2, it is clear that the security bottlenecks in Theorem 7.2
are the hardness of MLWE, of SelfTargetMSIS, and the smooth Rényi divergence
(εTail and RεTail

α ). Instantiating Raccoon boils down to an optimization problem
where we need to balance the hardness assumptions (MLWE, SelfTargetMSIS),
the smooth Rényi divergence and the performance metrics (size of vk and sig).

– Our analysis of MLWE and SelfTargetMSIS is fairly standard. We rely on
the lattice estimator [2] for the concrete analysis of MLWE. Following the
Dilithium methodology [31, §C.3], we assume that breaking SelfTargetMSIS
requires to either (a) break the second-preimage resistance of the hash func-
tion, or (b) break an inhomogeneous MSIS instance, for which the best known
attack is in [10, §4.2].

– For the smooth Rényi divergence, one could use Lemma 4.2 for a provable
bound. However, it is not tight so we opt instead to use Conjecture 4.1.

We refer the reader to the full version of this paper where we provide the rela-
tionship between parameters the security/efficiency metrics is in. In addition,
we provide example parameters for the NIST security level I (Table 3).

Table 3. Parameters for Raccoon-128, NIST Post-Quantum security strength category
1. For all Raccoon-128 masking orders, we fix: κ = 128, Qs = 253, q = (224 − 218 + 1) ·
(225 − 218 + 1), n = 512, k = 5, � = 4, νt = 42, νw = 44, ω = 19, 2−64B2

2 = 14656575897,
B∞ = 41954689765971.

Parameter Raccoon-128 128-2 128-4 128-8 128-16 128-32

|sig| (bytes) 11524 = = = = =

|vk| (bytes) 2256 = = = = =

d 1 2 4 8 16 32

rep 8 4 2 4 2 4

ut 6 6 6 5 5 4

uw 41 41 41 40 40 39

|sk| (bytes) 14800 14816 14848 14912 15040 15296

9 Conclusion and Next Steps

We have presented Raccoon, a masking-friendly signature scheme with a formal
security proof in the t-probing model based on standard lattice assumptions. We
present a few natural extensions of our work:

– Tighter proof. The recent Hint-MLWE assumption by Kim et al. [30] seems
perfectly suited to study Raccoon, as illustrated by a thresholded variant of
Raccoon [36]. For Raccoon itself, an obstacle to a direct application is that
[30] provided security reductions for Gaussian distributions, whereas Raccoon
uses sums of uniform distributions.
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– More realistic models. While the t-probing model is a simple and con-
venient abstraction of real-world leakage, there exist more realistic models
such as the random probing and noisy leakage models. We expect a security
analysis in these models to be informative and to raise its own challenges.

– Real-world assessment. Since side-channel analysis are grounded in real-
world deployment, this work needs to be completed with a study of the con-
crete leakage of Raccoon when implemented on real-world devices.
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