
Arie Gurfinkel
Vijay Ganesh (Eds.)

LN
CS

 1
46

83

36th International Conference, CAV 2024
Montreal, QC, Canada, July 24–27, 2024
Proceedings, Part III

Computer Aided
Verification

Lecture Notes in Computer Science 14683
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Arie Gurfinkel · Vijay Ganesh
Editors

Computer Aided
Verification
36th International Conference, CAV 2024
Montreal, QC, Canada, July 24–27, 2024
Proceedings, Part III

Editors
Arie Gurfinkel
University of Waterloo
Waterloo, ON, Canada

Vijay Ganesh
Georgia Institute of Technology
Atlanta, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-65632-3 ISBN 978-3-031-65633-0 (eBook)
https://doi.org/10.1007/978-3-031-65633-0

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5964-6792
https://orcid.org/0000-0002-6029-2047
https://doi.org/10.1007/978-3-031-65633-0
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2024, the 36th International
Conference on Computer-Aided Verification. CAV 2024 was held in Montreal, Canada,
on July 24–27, 2024, and the pre-conference workshops were held on July 22–23, 2024.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAV at the cutting edge of formal methods research. This year’s program is a reflection
of this commitment.

CAV 2024 received 317 submissions. We accepted 16 tool papers, 2 case-study
papers, and 51 regular papers, which amounts to an acceptance rate of roughly 26%
in each category. The accepted papers cover a wide spectrum of topics, from theoret-
ical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neural
networks, quantum systems, as well as hybrid and stochastic systems. The program fea-
tured keynote talks by Noriko Arai (National Institute of Informatics, Japan), Leonardo
de Moura (Amazon Web Services, USA), and Erika Abraham (RWTH Aachen Univer-
sity, Germany). In addition to the contributed talks, CAV 2024 also hosted the CAV
Award ceremony, and a report from the Synthesis Competition (SYNTCOMP) chairs.
Furthermore, we continued the tradition of Logic Lounge, a series of discussions on
computer science topics targeting a general audience. This year’s Logic Lounge speaker
was Scott J. Shapiro (Yale Law School) who spoke about topics at the intersection of
formal methods and the law.

In addition to the main conference, CAV 2024 hosted the following workshops: Ver-
ificationMentoringWorkshop (VMW), Correct Data Compression (CoDaC),Workshop
on Synthesis (SYNT), Workshop on Verification of Probabilistic Programs (VeriProP),
Developing an Open-Source, State-of-the-Art Symbolic Model-Checking Framework
for the Model-Checking Research Community (OSSyM), Formal Reasoning in Dis-
tributed Algorithms (FRIDA), Workshop on Hyperproperties: Advances in Theory
and Practice (HYPER), Symposium on AI Verification (SAIV), Deep Learning-aided
Verification (DAV), and International Workshop on Satisfiability Modulo Theories
(SMT).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2024 consisted of 90 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 900 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2024 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.

vi Preface

Like recent years in CAV, we made artifact evaluation mandatory for tool paper submis-
sions, but optional for the rest of the accepted papers. This year we received 54 artifact
submissions, all of which received at least one badge. The Artifact Evaluation Commit-
tee consisted of 92 members who put in significant effort to evaluate each artifact. The
goal of this process was to provide constructive feedback to tool developers and help
make the research published in CAV more reproducible. We are also very grateful to
the Artifact Evaluation Committee for their hard work and dedication in evaluating the
submitted artifacts.

CAV 2024 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2024 a success. We would like to thank Mirco Giacobbe and Milan Ceska for chairing
the Artifact Evaluation Committee. We also thank Temegshen Kahsai for chairing the
workshop organization. Norine Coenen and Hadar Frenkel for leading publicity efforts,
Eric Koskinen and Grigory Fedyukovich as the fellowship chairs, Grigory Fedyukovich
as sponsorship chair, and John (Zhengyang) Lu as the website chair. Hari Govind V. K.
helped prepare the proceedings. We also thank Grigory Fedyukovich, Eric Koskinen,
UmangMathur, Yoni Zohar, and JingboWang for organizing the VerificationMentoring
Workshop. Last but not least, we would like to thank the members of the CAV Steering
Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening)
for helping us with several important aspects of organizing CAV 2024.

We hope that you will find the proceedings of CAV 2024 scientifically interesting
and thought-provoking!

June 2024 Arie Gurfinkel
Vijay Ganesh

Organization

Steering Committee

Aarti Gupta Princeton University
Daniel Kroening University of Oxford
Kenneth McMillan University of Texas at Austin
Ornal Grumberg Technion

Conference Co-chairs

Arie Gurfinkel University of Waterloo
Vijay Ganesh Georgia Institute of Technology

Artifact Evaluation Co-chairs

Mirco Giacobbe University of Birmingham
Milan Ceska Brno University of Technology

Local Chair

Xujie Si University of Toronto

Area Chairs

Alexandra Silva Cornell University
Anthony Widjaja Lin Technical University of Kaiserslautern
Borzoo Bonakdarpour Michigan State University
Corina Pasareanu NASA
Kristin Yvonne Rozier Iowa State University
Laura Kovacs TU Wien

viii Organization

Workshop Chair

Temesghen Kahsai Amazon

Fellowship Chairs

Grigory Fedyukovich Florida State University
Eric Koskinen Stevens Institute of Technology

Publicity Chairs

Norine Coenen CISPA Helmholtz Center for Information Security
Hadar Frenkel CISPA Helmholtz Center for Information Security

Publication Chair

Hari Govind V. K. University of Waterloo

Website Chair

John (Zhengyang) Lu University of Waterloo

Program Committee

Aditya Thakur University of California, Davis
Ahmed Bouajjani IRIF
Aina Niemetz Stanford University
Akash Lal Microsoft Research
Alan Hu University of British Columbia
Alessandro Cimatti Fondazione Bruno Kessler
Alexander Nadel Technion & Intel
Alexandra Silva Cornell University
Amir Goharshady Hong Kong University of Science and Technology
Anastasia Mavridou KBR Inc.
Andrew Reynolds University of Iowa
Anna Slobodova Intel

Organization ix

Anthony Widjaja Lin Technical University of Kaiserslautern
Azadeh Farzan University of Toronto
B. Srivathsan Chennai Mathematical Institute
Benjamin Kaminski Saarland University
Bernd Finkbeiner CISPA Helmholtz Center for Information Security
Bettina Könighofer Graz University of Technology
Bor-Yuh Evan Chang University of Colorado
Borzoo Bonakdarpour Michigan State University
Caterina Urban Inria
Cezara Dragoi Inria
Christopher Hahn Google
Constantin Enea Ecole Polytechnique
Corina Pasareanu NASA
Deepak D’Souza Indian Institute of Science
Dejan Jovanović Amazon
Elizabeth Polgreen University of Edinburgh
Elvira Albert Universidad Complutense de Madrid
Erika Abraham RWTH Aachen University
Eunsuk Kang Carnegie Mellon University
Florin Manea University of Göttingen
Gagandeep Singh University of Illinois Urbana-Champaign
Grigory Fedyukovich Florida State University
Guy Amir Hebrew University of Jerusalem
Hadar Frenkel CISPA Helmholtz Center for Information Security
Hongce Zhang Hong Kong University of Science and

Technology, China
Ichiro Hasuo National Institute of Informatics
Isil Dillig University of Texas at Austin
Jana Hofmann Azure Research, Microsoft
Jianwen Li East China Normal University
Jingbo Wang University of Southern California
Jorge A. Navas Certora
Ken McMillan University of Texas at Austin
Kristin Yvonne Rozier Iowa State University
Kshitij Bansal Google
Kuldeep Meel University of Toronto
Kumar Madhukar Indian Institute of Technology Delhi
Laura Kovacs TU Wien
Liana Hadarean Amazon
Loris D’Antoni University of Wisconsin-Madison
Mathias Preiner Stanford University
Matthias Heizmann University of Freiburg

x Organization

Mihaela Sighireanu Université Paris-Saclay
Mirco Giacobbe University of Birmingham
Naijun Zhan Chinese Academy of Sciences
Natasha Sharygina University of Lugano
Nathalie Sznajder Sorbonne Université
Nikolaj Bjørner Microsoft Research
Ning Luo Northwestern University
Oded Padon VMware Research
Orna Grumberg Technion
Pascal Fontaine Université de Liège
Peter Schrammel University of Sussex
Qirun Zhang Georgia Institute of Technology
Ranjit Jhala University of California, San Diego
Ravi Mangal Carnegie Mellon University
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja Advanced Micro Devices, Inc.
Roland Yap National University of Singapore
Rose Bohrer Worcester Polytechnic Institute
Ruzica Piskac Yale University
S. Akshay Indian Institute of Technology Bombay
Sebastian Junges Radboud University
Serdar Tasiran Amazon
Sharon Shoham Tel Aviv University
Shuvendu Lahiri Microsoft Research
Sorav Bansal Indian Institute of Technology Delhi
Sriram Sankaranarayanan University of Colorado Boulder
Subhajit Roy Indian Institute of Technology Kanpur
Subodh Sharma Indian Institute of Technology Delhi
Suguman Bansal Georgia Institute of Technology
Supratik Chakraborty Indian Institute of Technology Bombay
Temesghen Kahsai Amazon
Umang Mathur National University of Singapore
Xujie Si University of Toronto
Yakir Vizel Technion
Yann Thierry-Mieg LIP6
Yu-Fang Chen Academia Sinica
Zvonimir Rakamaric Amazon

Organization xi

Artifact Evaluation Committee

Abhinandan Pal University of Birmingham
Adwait Godbole UC Berkeley
Akshatha Shenoy Tata Consultancy Services Ltd.
Alejandro Hernández-Cerezo Complutense University of Madrid
Alvin George IISc Bangalore
Ameer Hamza Florida State University
Andreas Katis KBR Inc. at NASA Ames Research Center
Anna Becchi Fondazione Bruno Kessler
Benjamin Mikek Georgia Institute of Technology
Bohua Zhan Institute of Software, Chinese Academy of

Sciences
Chenyu Zhou University of Southern California
Daniel Dietsch University Freiburg
Daniel Riley Florida State University
Diptarko Roy University of Oxford
Edoardo Manino University of Manchester
Ennio Visconti TU Wien
Enrico Magnago Amazon Web Services
Filip Cano Graz University of Technology
Filip Macák Brno University of Technology
Florian Renkin IRIF
Francesco Parolini Sorbonne Université
Francesco Pontiggia TU Wien
Gianluca Redondi Fondazione Bruno Kessler
Giulio Garbi University of Molise
Haoze Wu Stanford University
Jacqueline Mitchell University of Southern California
Jialuo Chen Zhejiang University
Jie An National Institute of Informatics
Jiong Yang National University of Singapore
Julia Klein University of Konstanz
Kartik Nagar IIT Madras
Kaushik Mallik Institute of Science and Technology Austria
Kazuki Watanabe National Institute of Informatics, Tokyo
Kevin Cheang Amazon Web Services
Konstantin Kueffner Institute of Science and Technology Austria
Lelio Brun National Institute of Informatics
Lorenz Leutgeb Max Planck Institute for Informatics
Luca Arnaboldi University of Birmingham
Lucas Zavalia Florida State University

xii Organization

Malinda Dilhara University of Colorado Boulder
Marcel Moosbrugger TU Wien
Marck van der Vegt Radboud University
Marco Casadio Heriot-Watt University
Marco Lewis Newcastle University
Marek Chalupa Institute of Science and Technology Austria
Mário Pereira NOVA University Lisbon
Marius Mikučionis Aalborg University
Mathias Fleury University of Freiburg
Matteo Marescotti Meta Platforms
Matthias Schlaipfer Amazon Web Services
Maximilian Weininger Institute of Science and Technology Austria
Mertcan Temel Intel Corporation
Mihir Mehta University of Texas at Austin
N. Ege Saraç Institute of Science and Technology Austria
Natasha Jeppu Amazon Web Services
Neea Rusch Augusta University
Neta Elad Tel Aviv University
Nham Le University of Waterloo
Oliver Markgraf Max Planck Institute Kaiserslautern
Omar Inverso Gran Sasso Science Institute
Omri Isac Hebrew University of Jerusalem
Oyendrila Dobe Michigan State University
P. Habeeb Indian Institute of Science
Patrick Trentin Amazon Web Services
Philippe Heim CISPA Helmholtz Center for Information Security
Po-Chun Chien LMU Munich
Ranadeep Biswas Informal Systems
Remi Desmartin Heriot-Watt University
Roman Andriushchenko Brno University of Technology
Samuel Pastva Institute of Science and Technology Austria
Sayan Mukherjee Université libre de Bruxelles
Shengping Xiao East China Normal University
Shubham Ugare University of Illinois Urbana-Champaign
Shufang Zhu University of Oxford
Shuo Ding Georgia Institute of Technology
Siddharth Priya University of Waterloo
Sidi Mohamed Beillahi University of Toronto
Stefan Pranger Graz University of Technology
Tobias Meggendorfer Lancaster University Leipzig
Tobias Winkler RWTH Aachen University
Tzu-Han Hsu Michigan State University

Organization xiii

Wael-Amine Boutglay Université Paris Cité and Mohammed VI
Polytechnic University

Xidan Song University of Manchester
Xindi Zhang Institute of Software, Chinese Academy of

Sciences
Xiyue Zhang University of Oxford
Yannan Li Oracle
Yannik Schnitzer University of Oxford
Yizhak Elboher Hebrew University of Jerusalem
Yuzhou Fang University of Southern California
Zhe Tao University of California, Davis
Zhendong Ang National University of Singapore
Zhiwei Zhang Rice University

Additional Reviewers

Albarghouthi, Aws
Amarilli, Antoine
Ang, Zhendong
Antal, László
Banerjee, Subarno
Batz, Kevin
Becchi, Anna
Ben Shimon, Yoav
Biagiola, Matteo
Blicha, Martin
Bossut, Camille
Britikov, Konstantin
Campion, Marco
De Palma, Alessandro
Ding, Shuo
Dobe, Oyendrila
Eeralla, Ajay
Elad, Neta
Elboher, Yizhak
Emmi, Michael
Frenkel, Eden
Georgiou, Pamina
Gerlach, Carolina
Gürtler, Tobias
Hartmanns, Arnd
Hoad, Stuart
Hong, Chih-Duo

Hsu, Tzu-Han
Hunt, Warren
Hyvärinen, Antti
Ivrii, Alexander
Karmarkar, Hrishikesh
Koll, Charles
Labbaf, Faezeh
Lester, Martin Mariusz
Lotan, Raz
Luo, Ziyan
Magnago, Enrico
Metta, Ravindra
Metzger, Niklas
Mikek, Benjamin
Moosbrugger, Marcel
Morris, Jason
Mover, Sergio
Mukhopadhyay, Diganta
Nalbach, Jasper
Otoni, Rodrigo
Pailoor, Shankara
Patterson, Zachary
Piskachev, Goran
Promies, Valentin
Quatmann, Tim
Rappoport, Omer
Ravitch, Tristan

xiv Organization

Rawson, Michael
Ritzert, Martin
Saatcioglu, Goktug
Shenoy, Akshatha
Shetty, Abhishek
Shi, Zheng
Tarrach, Thorsten
Trivedi, Ashutosh
Tunç, Hünkar Can
Verscht, Lena

Visconti, Ennio
Winkler, Tobias
Zhang, Minjian
Kaivola, Roope
Kaufmann, Daniela
Kolárik, Tomáš
Le, Nham
Li, Yong
Lu, Zhengyang
Löding, Christof

Invited Talks

How to Solve Math Problems Without Talent

Noriko Arai

National Institute of Informatics, Japan

The desire to solve mathematical problems without inherent talent has been a long-
standing aspiration of humanity since ancient times. In this lecture, we delve into the
complexity theory of proofs, examining the relationship between talent and the cost
of proof. Additionally, we discuss the possibilities and limitations of using a fusion
of computational methods, including computer algebra and natural language process-
ing, to solve mathematical problems with machines. Join us as we explore the fron-
tier of machine-enabled mathematical problem-solving, reflecting on its potential and
boundaries in fulfilling this age-old human ambition.

Bridging Formal Mathematics and Software Verification

Leonardo de Moura

Amazon Web Services, USA

This talk will explore the dual applications of Lean 4, the latest iteration of the
Lean proof assistant and programming language, in advancing formal mathematics and
software verification. We begin with an overview of its design and implementation. We
will detail how Lean 4 enables the formalization of complex mathematical theories and
proofs, thereby enhancing collaboration and reliability in mathematical research. This
endeavor is supported by a philosophy that promotes decentralized innovation, empow-
ering a diverse community of researchers, developers, and enthusiasts to collaboratively
push the boundaries of mathematical practice. Simultaneously, we will discuss software
verification applications using Lean 4 at AWS. By leveraging Lean’s dual capabilities
as both a proof assistant and a functional programming language, we achieve a cohesive
approach to software development and verification. Additionally, the talk will outline
future directions for Lean 4, including efforts to expand its user community, enhance
user experience, and further integrate formal methods into both academic research and
industrial applications.

The Art of SMT Solving

Erika Ábrahám

RWTH Aachen University, Germany

Satisfiability Modulo Theories (SMT) solving [3, 4, 9] is a technology for the fully
automated solution of logical formulas. SMT solvers can be used as general-purpose off-
the-shelf tools. Due to their impressive efficiency, they are nowadays frequently used in
a wide variety of applications [2]. A typical application encodes real-world problems as
logical formulas, whose solutions can be decoded to solutions of the original real-world
problem.

Besides its unquestionable practical impact, SMT solving has another great merit:
it inspired truly elegant ideas, which do not only enable the construction of efficient
software tools, but provide also interesting theoretical insights.

For propositional logicwhere each formula has a finite number of Boolean variables,
we could enumerate and check all possible variable assignments, but due to its bad
average complexity, this exploration approach is not applicable in practice. Alternatively,
the proof system of Boolean resolution can be applied, but the applicability of this
method is also restricted to rather small problems. However, in the 90s, SAT solvers
succeeded to become impressively powerful due to an elegant combination of these two
methods, where the proof construction is guided by an exploration of the assignment
space equipped with a smart look-ahead mechanism [5, 6, 10].

The effectivity of SAT solvers gave motivation to extend the scope of solver tech-
nologies to formulas of quantifier-free first-order logic over different theories. On the
one hand, eager SMT solving approaches have been proposed for certain theories to
transform their formulas to propositional logic and use SAT solving to check the result
for satisfiability. On the other hand, (full/less) lazy SMT solving uses SAT solving to
explore the Boolean structure of the formula, and employs theory solvers to check the
consistency of Boolean assignments in the theory domains.

Recently, the idea of symbiotic combination of exploration and proof construction
has been also generalized to theories, most notably quantifier-free real algebra [7], in
the framework of the model constructing satisfiability calculus (MCSAT) [11]. In this
approach, exploration-guided proof construction is designed to run both in the Boolean
space and in the theory domain, simultaneously in a consistent manner.

Both the SAT and theMCSAT approaches are based on the generalization of “wrong
guesses”, made during exploration, into pieces of a proof, which are collected and used
to synthesize a global proof during the solving process. While being one of the currently
best approaches, for large or complex formulas, a large number of “proof pieces” cause
high effort for their processing and restrict scalability.

Thus the question comes up whether there are also other ways to store such infor-
mation in a more structured way, allowing a less costly processing. This idea is taken

xxii E. Ábrahám

up by the cylindrical algebraic covering method [1, 8], developed for the satisfiability
check of conjunctions of polynomial constraints.

In this talk we give an introduction to the mechanisms of SAT and SMT solving,
discuss the above ideas, and illustrate the usage of SMT solvers on a few application
examples.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633 (2021).
https://doi.org/10.1016/j.jlamp.2020.100633

2. Ábrahám, E., Kovács, J., Remke, A.: SMT: something you must try. In: Herber,
P., Wijs, A. (eds) iFM 2023. LNCS, vol. 14300, pp. 3–18. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-47705-8_1

3. Ábrahám, E., Kremer, G.: SMT solving for arithmetic theories: theory and tool
support. In: Proceedings SYNASC 2017, pp. 1–8. IEEE (2017). https://doi.org/10.
1109/SYNASC.2017.00009

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 26, pp. 825–885. IOS Press (2009)

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.
368557

7. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

8. Kremer, G., Ábrahám, E., England, M., Davenport, J.H.: On the implementation of
cylindrical algebraic coverings for satisfiability modulo theories solving. In: Pro-
ceedings SYNASC 2021, pp. 37–39. IEEE (2021). https://doi.org/10.1109/SYN
ASC54541.2021.00018

9. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-662-50497-0

10. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering
an efficient SAT solver. In: Proceedings 38th DesignAutomation Conference (2001)

11. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35873-9_1

https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1007/978-3-031-47705-8_1
https://doi.org/10.1109/SYNASC.2017.00009
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1109/SYNASC54541.2021.00018
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-642-35873-9_1

Contents – Part III

Synthesis and Repair

Syntax-Guided Automated Program Repair for Hyperproperties 3
Raven Beutner, Tzu-Han Hsu, Borzoo Bonakdarpour,
and Bernd Finkbeiner

The SemGuS Toolkit . 27
Keith J. C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

Relational Synthesis of Recursive Programs via Constraint Annotated
Tree Automata . 41

Anders Miltner, Ziteng Wang, Swarat Chaudhuri, and Isil Dillig

Information Flow Guided Synthesis with Unbounded Communication 64
Bernd Finkbeiner, Niklas Metzger, and Yoram Moses

Synthesis of Temporal Causality . 87
Bernd Finkbeiner, Hadar Frenkel, Niklas Metzger, and Julian Siber

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 112
Yi Lin, Lucas Martinelli Tabajara, and Moshe Y. Vardi

Localized Attractor Computations for Infinite-State Games 135
Anne-Kathrin Schmuck, Philippe Heim, Rayna Dimitrova,
and Satya Prakash Nayak

Learning

Bisimulation Learning . 161
Alessandro Abate, Mirco Giacobbe, and Yannik Schnitzer

Regular Reinforcement Learning . 184
Taylor Dohmen, Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi

LTL Learning on GPUs . 209
Mojtaba Valizadeh, Nathanaël Fijalkow, and Martin Berger

Safe Exploration in Reinforcement Learning by Reachability Analysis
over Learned Models . 232

Yuning Wang and He Zhu

xxiv Contents – Part III

Cyberphysical and Hybrid Systems

Using Four-Valued Signal Temporal Logic for Incremental Verification
of Hybrid Systems . 259

Florian Lercher and Matthias Althoff

Optimization-Based Model Checking and Trace Synthesis for Complex
STL Specifications . 282

Sota Sato, Jie An, Zhenya Zhang, and Ichiro Hasuo

Inner-Approximate Reachability Computation via Zonotopic Boundary
Analysis . 307

Dejin Ren, Zhen Liang, Chenyu Wu, Jianqiang Ding, Taoran Wu,
and Bai Xue

Scenario-Based Flexible Modeling and Scalable Falsification
for Reconfigurable CPSs . 329

Jiawan Wang, Wenxia Liu, Muzimiao Zhang, Jiaqi Wei, Yuhui Shi,
Lei Bu, and Xuandong Li

Probabilistic Systems

Playing Games with Your PET: Extending the Partial Exploration Tool
to Stochastic Games . 359

Tobias Meggendorfer and Maximilian Weininger

What Should Be Observed for Optimal Reward in POMDPs? 373
Alyzia-Maria Konsta, Alberto Lluch Lafuente, and Christoph Matheja

Stochastic Omega-Regular Verification and Control with Supermartingales 395
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 420
Toru Takisaka, Libo Zhang, Changjiang Wang, and Jiamou Liu

Probabilistic Access Policies with Automated Reasoning Support 443
Shaowei Zhu and Yunbo Zhang

Compositional Value Iteration with Pareto Caching . 467
Kazuki Watanabe, Marck van der Vegt, Sebastian Junges,
and Ichiro Hasuo

Contents – Part III xxv

Quantum Systems

Approximate Relational Reasoning for Quantum Programs 495
Peng Yan, Hanru Jiang, and Nengkun Yu

QReach: A Reachability Analysis Tool for Quantum Markov Chains 520
Aochu Dai and Mingsheng Ying

Measurement-Based Verification of Quantum Markov Chains 533
Ji Guan, Yuan Feng, Andrea Turrini, and Mingsheng Ying

Simulating Quantum Circuits by Model Counting . 555
Jingyi Mei, Marcello Bonsangue, and Alfons Laarman

Author Index . 579

Synthesis and Repair

Syntax-Guided Automated Program
Repair for Hyperproperties

Raven Beutner1(B) , Tzu-Han Hsu2 , Borzoo Bonakdarpour2 ,
and Bernd Finkbeiner1

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner}@cispa.de
2 Michigan State University, East Lansing, MI, USA

{tzuhan,borzoo}@msu.edu

Abstract. We study the problem of automatically repairing infinite-
state software programs w.r.t. temporal hyperproperties. As a first step,
we present a repair approach for the temporal logic HyperLTL based on
symbolic execution, constraint generation, and syntax-guided synthesis
of repair expression (SyGuS). To improve the repair quality, we introduce
the notation of a transparent repair that aims to find a patch that is as
close as possible to the original program. As a practical realization, we
develop an iterative repair approach. Here, we search for a sequence of
repairs that are closer and closer to the original program’s behavior.
We implement our method in a prototype and report on encouraging
experimental results using off-the-shelf SyGuS solvers.

1 Introduction

Hyperproperties and program repair are two popular topics within the formal
methods community. Hyperproperties [14] relate multiple executions of a system
and occur, e.g., in information-flow control [56], robustness [12], and concurrent
data structures [10]. Traditionally, automated program repair (APR) [25,28]
attempts to repair the functional behavior of a program. In this paper, we, for
the first time, tackle the challenging combination of APR and hyperproperties:
given an (infinite-state) software program P and a violated hyperproperty ϕ,
repair P such that ϕ is satisfied.

As a motivating example, consider the data leak in the EDAS conference
manager [1] (simplified in Fig. 1). The function display is given the current
phase of the review process (phase), paper title (title), session (session), and
acceptance decision (decision), and computes a string (print) that will be
displayed to the author(s). As usual in a conference management system, the
displayed string should not leak information other than the title, unless the
review process has been concluded. We can specify this non-interference policy
as a hyperproperty in HyperLTL [13] as follows:

∀π1.∀π2.
(
phaseπ1

�= "Done" ∧ phaseπ2
�= "Done" ∧

titleπ1 = titleπ2

)
→

(
printπ1

= printπ2

)
.

(ϕedas)

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 3–26, 2024.
https://doi.org/10.1007/978-3-031-65633-0_1

https://doi.org/10.5281/zenodo.10947975
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_1&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-6277-2765
http://orcid.org/0000-0003-1800-5419
http://orcid.org/0000-0002-4280-8441
https://doi.org/10.1007/978-3-031-65633-0_1

4 R. Beutner et al.

Fig. 1. Information leak in EDAS confer-
ence management system.

That is, for any two execution
traces π1, π2 of display that, initially
(i.e., at the first observe statement in
line 3), have not reached the "Done"
phase (i.e., phase �= "Done") and
agree on the title, should, at the sec-
ond observe in line 10, agree on the
value of print. It is straightforward
to observe that function display vio-
lates ϕedas. The code implicitly leaks
the acceptance decision by printing the
session iff the paper is accepted. A nat-
ural question to ask is whether it is possible to automatically repair the display
function such that ϕedas is satisfied.

Constraint-Based Repair for Hyperproperties. As a first contribution, we propose
a constraint-based APR approach for HyperLTL. Similar to existing constraint-
based APR methods for functional properties [46], we rely on fault localization
to identify potential repair locations (e.g., line 4 of our example in Fig. 1). We
then replace the repair locations with a fresh function symbol; use symbolic exe-
cution to explore symbolic paths of the program; and generate repair constraints
on the inserted function symbols. We show that we can use the syntax-guided
synthesis (SyGuS) framework [2] to express (and solve) the repair constraints
for HyperLTL properties with an arbitrary quantifier prefix.

Many Solutions. The main challenge in APR for hyperproperties lies in the
large number of possible repair patches; a problem that already exists when
repairing against functional properties [50] but is even more amplified when tar-
geting hyperproperties. Different from functional specification, hyperproperties
do not reason about the concrete functional (trace-level) behavior of a program,
and rather express abstract relations between multiple computation traces. For
example, information-flow policies such as observational determinism [56] can be
checked and applied to arbitrary programs, regardless of their functional behav-
ior. In contrast to functional trace properties, we thus cannot partition the set
of all program executions into “correct” executions (i.e., executions that already
satisfy the trace property and should be preserved in the repair) and “incor-
rect” executions. Instead, we need to alter the set of all program executions such
that the executions together satisfy the hyperproperty, leading to an even larger
space of potential repairs. Moreover, within this large space, many repairs triv-
ially satisfy the hyperproperty by severely changing the functional behavior of
the program, which is usually not desirable.

In our concrete example, the ϕedas property implicitly reasons about the
(in)dependence between phase, title, and print but does not impose how
the (in)dependence is realized functionally. If we apply our basic SyGuS-based
repair approach, i.e., search for some repair of line 4 that satisfies ϕedas, it will
immediately return a trivial repair patch: decision ="Reject". This repair

Syntax-Guided Automated Program Repair for Hyperproperties 5

Fig. 2. Repair candidates discovered by our iterative repair.

simply sets the decision to some string not equal to "Accept" (we use "Reject"
here for easier presentation). While this certainly satisfies our information-flow
requirement, it does not yield a desirable implementation of display because
the session is never displayed.

Transparent Repair. To tackle this issue, we strengthen our repair constraints
using the concept of transparency (borrowed from the runtime enforcement lit-
erature [45]). Intuitively, we search for a repair that not only satisfies the hyper-
property but preserves as much functional behavior of the original program as
possible. We show that we can integrate this within our SyGuS-based repair
constraints. In the extreme, full transparency states that a repair is only allowed
to deviate from the original program’s behavior if absolutely necessary, i.e., only
when the original behavior is part of a violation of the hyperproperty.

Iterative Repair. In the setting of hyperproperties, full transparency is often not
particularly useful. It strictly dictates what traces can be changed by a repair,
potentially resulting in the absence of a repair (within a given search space).
In other instances (including the EDAS example), many paths (in the EDAS
example, all paths) take part in some violation of the hyperproperty, allowing
the repair to intervene arbitrarily. We introduce a more practical repair method-
ology that follows the same objective as (full) transparency (i.e., preserve as
much original program behavior as possible). Our method, which we call iterative
repair, approximates the global search for an optimal repair by a step-wise search
for repairs of increasing quality. Concretely, starting from some initial repair, we
iteratively try to find repair patches that preserve more original program behav-
ior than our previous repair candidate. We show that we can effectively encode
this into SyGuS constraints, and existing off-the-shelf SyGuS solvers can handle
the resulting queries in many challenging instances. Notably, while some APR
approaches (for functional properties) also try to find repairs that are close to
the original program, they often do so heuristically. In contrast, our iterative
repair constraints guarantee that the repair candidates strictly improve in each
iteration. See Sect. 7 for more discussion.

Iterative Repair in Action. Coming back to our initial EDAS example, we can
use iterative repair to improve upon the naïve repair decision = "Reject".
When using our iterative encoding, we find the improved repair solution in
Fig. 2a that (probably) best mirrors the intuition of a programmer (cf. [47]):

6 R. Beutner et al.

This repair patch only overwrites the decision in cases where the phase does
not equal "Done". In particular, note how our iterative repair finds the explicit
dependence of decision on phase (in the form of a conditional) even though
this is only specified implicitly in ϕedas. In a third iteration, we can find an even
closer repair, displayed in Fig. 2b: This repair only changes the decision if the
review process is not completed and the decision equals "Accept".

Implementation. We implement our repair approach in a prototype named HyRep
and evaluate HyRep on a set of repair instances, including k-safety properties from
the literature and challenging information-flow requirements.

Structure. Section 2 presents basic preliminaries, including our simple program-
ming language and the formal specification language for hyperproperties targeted
by our repair. Section 3 introduces our basic SyGuS-based repair approach, and
we discuss our transparent and iterative extensions in Sects. 4 and 5, respec-
tively. We present our experimental evaluation in Sect. 6 and discuss related
work in Sect. 7.

2 Preliminaries

Given a set Y , we write Y ∗ for the set of finite sequences over Y , Y ω for the
set of infinite sequences, and Y � := Y ∗ ∪ Y ω for the set of finite and infinite
sequences. For t ∈ Y �, we define |t| ∈ N ∪ {∞} as the length of t.

Programs. Let X be a fixed set of program variables. We write EZ and EB for the
set of all arithmetic (integer-valued) and Boolean expressions over X, respec-
tively. We consider a simple (integer-valued) programming language

P,Q := skip | x= e | if(b,P,Q) | while(b,P) | P �Q | observe

where x ∈ X, e ∈ EZ, and b ∈ EB. Most statements behave as expected.
Notably, our language includes a dedicated observe statement, which we will use
to express asynchronous (hyper)properties [5,11,29]. Intuitively, each observe
statement causes an observation in our temporal formula, and we skip over un-
observed (intermediate) computation steps (see also [7]).

Semantics. Programs manipulate (integer-valued) stores σ : X → Z, and we
define Stores := {σ | σ : X → Z} as the set of all stores. Our (small-step)
semantics operates on configurations C = 〈P, σ〉, where P is a program and
σ ∈ Stores. Reduction steps have the form C

μ−→ C ′, where μ ∈ Stores ∪ {ε}.
Most program steps have the form C

ε−→ C ′ and model a transition with-
out observation. Every execution of an observe statement induces a transition
C

σ−→ C ′, modeling a transition in which we observe the current store σ. Figure 3
depicts a selection of reduction rules. For a program P and store σ, there exists
a unique maximal execution 〈P, σ〉 μ1−→ 〈P1, σ1〉

μ2−→ 〈P2, σ2〉
μ3−→ · · · , where

Syntax-Guided Automated Program Repair for Hyperproperties 7

Fig. 3. Selection of small-step reduction rules. We write �e�σ ∈ Z and �b�σ ∈ B for the
value of expression e and b in store σ, respectively.

μ1, μ2, μ3, . . . ∈ Stores ∪ {ε}. Note that this execution can be finite or infinite.
We define obs(P, σ) := μ1μ2μ3 · · · ∈ Stores� as the (finite or infinite) obser-
vation sequence along this execution (obtained by removing all εs). We write
Traces(P) := {obs(P, σ) | σ ∈ Stores} ⊆ Stores� for the set of all traces gener-
ated by P. We say a program P is terminating, if all its executions are finite.

Syntax-Guided Synthesis. A Syntax-Guided Synthesis (SyGuS) problem is a
triple Ξ = ({f̃1, . . . , f̃n}, �, {G1, . . . , Gn}), where f̃1, . . . , f̃n are function symbols,
� is an SMT constraint over the function symbols f̃1, . . . , f̃n, and G1, . . . , Gn are
grammars [2]. A solution for Ξ is a vector of terms e = (e1, . . . , en) such that each
ei is generated by grammar Gi, and �[f̃1/e1, . . . , f̃n/en] holds (i.e., we replace
each function symbol f̃i with expression ei).

Example 1. Consider the SyGuS problem Ξ = ({f̃}, �, {G}), where

� := ∀x, y. f̃(x, y) ≥ x ∧ f̃(x, y) ≥ y ∧ (f̃(x, y) = x ∨ f̃(x, y) = y)

G :=

{
I → x | y | 0 | 1 | I + I | I − I | ite(B, I, I)
B → B ∧ B | B ∨ B | ¬B | I = I | I ≤ I | I ≥ I.

This SyGuS problem constrains f̃ to be the function that returns the maximum
of its arguments, and the grammar admits arbitrary piece-wise linear functions.
A possible solution to Ξ would be f̃(x, y) := ite(x ≤ y, y, x). �

HyperLTL. As the basic specification language for hyperproperties, we use
HyperLTL, an extension of LTL with explicit quantification over execution traces
[13]. Let V = {π1, . . . , πn} be a set of trace variables. For a trace variable πj ∈ V,
we define Xπj

:= {xπj
| x ∈ X} as a set of indexed program variables and

X := Xπ1 ∪· · ·∪Xπn
. We include predicates from an arbitrary first-order theory

T to reason about the infinite variable domains in programs (cf. [7]), and denote
satisfaction in T with |=T. We write FX for the set of first-order predicates over
variables X. HyperLTL formulas are generated by the following grammar:

ϕ := ∀π. ϕ | ∃π. ϕ | ψ

ψ := θ | ψ ∧ ψ | ψ ∨ ψ | ψ | ψ W ψ

where π ∈ V, θ ∈ FX , and and W are the next and weak-until operator,
respectively. W.l.o.g., we assume that all variables in V occur in the prefix exactly
once. We use the usual derived constants and connectives true, false,→, and ↔.

8 R. Beutner et al.

Remark 1. We only allow negation within the atomic predicates, effectively
ensuring that the LTL-like body denotes a safety property [38]. The reason for
this is simple: In our program semantics, we specifically allow for both infinite
and finite executions. Our repair approach is thus applicable to reactive sys-
tems but also handles (classical) programs that terminate. By requiring that the
body denotes a safety property, we can easily handle arbitrary combinations of
finite and infinite executions. Note that our logic supports arbitrary quantifier
alternations, so we can still express hyperliveness properties such as GNI. �

Let T ⊆ Stores� be a set of traces. For t ∈ T and i < |t|, we write t(i) for
the ith store in t. A trace assignment is a partial mapping Π : V ⇀ T from
trace variables to traces. We write Π(i) for the assignment X → Z given by
Π(i)(xπ) := Π(π)(i)(x), i.e., the value of xπ, is the value of x in the ith step on
the trace bound to π. We define the semantics inductively as:

Π, i |=T ψ if ∃π ∈ V. |Π(π)| ≤ i

Π, i |=T θ if Π(i) |=T θ

Π, i |=T ψ1 ∧ ψ2 if Π, i |=T ψ1 and Π, i |=T ψ2

Π, i |=T ψ1 ∨ ψ2 if Π, i |=T ψ1 or Π, i |=T ψ2

Π, i |=T ψ if Π, i + 1 |=T ψ

Π, i |=T ψ1 W ψ2 if
(
∃j ≥ i. Π, j |=T ψ2 and ∀i ≤ k < j. Π, k |=T ψ1

)
or

(
∀j ≥ i. Π, j |=T ψ1

)

Π, i |=T ∃π. ϕ if ∃t ∈ T . Π[π 	→ t], i |=T ϕ

Π, i |=T ∀π. ϕ if ∀t ∈ T . Π[π 	→ t], i |=T ϕ

As we deal with safety formulas (cf. Remark 1), we let Π, i satisfy any formula
ψ as soon as we have moved past the length of the shortest trace in Π (i.e.,
∃π ∈ V. |Π(π)| ≤ i). A program P satisfies ϕ, written P |= ϕ, if ∅, 0 |=Traces(P) ϕ,
where ∅ denotes the trace assignment with an empty domain.

NSA. A nondeterministic safety automaton (NSA) over alphabet Σ is a tuple
A = (Q,Q0, δ), where Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
and δ ⊆ Q × Σ × Q is a transition relation. A run of A on a word u ∈ Σ� is a
sequence q0q1 · · · ∈ Q� such that q0 ∈ Q0 and for every i < |u|, (qi, u(i), qi+1) ∈ δ.
We write L(A) ⊆ Σ� for the set of words on which A has some run.

3 Program Repair by Symbolic Execution

In our repair setting, we are given a pair (P, ϕ) such that P �|= ϕ, and try to
construct a repaired program Q with Q |= ϕ. In particular, we repair w.r.t. a
formal specification instead of a set of input-output examples. The reason for
this lies within the nature of the properties we want to repair against: When
repairing against trace properties (i.e., functional specifications), it is often intu-
itive to write input-output examples that test a program’s functional behavior.

Syntax-Guided Automated Program Repair for Hyperproperties 9

Fig. 4. Small-step reduction rules for symbolic execution.

In contrast, hyperproperties do not directly reason about concrete functional
behavior but rather about the abstract relation between multiple computations.
For example, information-flow properties such as non-interference can be applied
to arbitrary programs; independent of the program’s functional behavior. Per-
haps counter-intuitively, in our hyper-setting, formal specifications are thus often
easier to construct than input-output examples.

3.1 Symbolic Execution

The first step in our repair pipeline is the computation of a mathematical sum-
mary of (parts of) the program’s executions using symbolic execution (SE) [37].
In SE, we execute the program using symbolic placeholders instead of concrete
values for variables, and explore all symbolic paths of a program (recording
conditions that a concrete store needs to satisfy to take any given branch). A
symbolic store is a function ν : X → EZ that maps each variable to an expres-
sion, and we write SymStores := {ν | ν : X → EZ} for the set of all symbolic
stores. A symbolic configuration is then a tuple 〈P, ν, α, β〉, where P is a pro-
gram, ν ∈ SymStores is a symbolic store, α ∈ FX is a first-order formula over
X that records which conditions the current path should satisfy (called the
path condition), and β ∈ SymStores∗ is a sequence of symbolic stores record-
ing the observations. For e ∈ EZ and ν ∈ SymStores, we write �e�ν for the
expression obtained by replacing each variable x in e with ν(x). For example,
if ν = [x �→ x − 1, y �→ z ∗ y], we have �x + y�ν = (x − 1) + (z ∗ y). We give
the symbolic execution relation sym−−→ in Fig. 4. We start the symbolic execution
in symbolic store ν0 :=

[
x �→ x

]
x∈X

that maps each variable to itself, path con-
dition α0 := true, and an empty observation sequence β0 := ε. Given a program
P, a symbolic execution is a finite sequence of symbolic configurations

ρ = 〈P, ν0, α0, β0〉 sym−−→ 〈P1, ν1, α1, β1〉 sym−−→ · · · sym−−→ 〈Pm, νm, αm, βm〉 (1)

We say execution ρ is maximal if Pm = skip, i.e., we cannot perform any
more execution steps. Given a symbolic execution ρ, we are interested in the

10 R. Beutner et al.

Fig. 5. Encoding for acceptance of ψ.

path condition αm (to ensure that we follow an actual program path), and the
observation sequence βm (to evaluate the HyperLTL property). We define a
symbolic path as a pair in FX × SymStores∗, recording the path condition and
symbolic observation sequence. Each execution ρ of the form in (1), yields a
symbolic path (αm, βm). We call the symbolic path (αm, βm) maximal if ρ is
maximal, and satisfiable if αm is satisfiable (i.e., some actual program execution
can take a path summarized by ρ). We write SymPaths(P) ⊆ FX × SymStores∗

for the set of all satisfiable symbolic paths of P and SymPathsmax (P) ⊆ FX ×
SymStores∗ for the set of all satisfiable maximal symbolic paths.

Remark 2. An interesting class of programs are those that are terminating and
where SymPathsmax (P) is finite. This is either the case when the program is
loop-free or has some upper bound on the number of loop executions (and thus
control paths). Crucially, if SymPathsmax (P) is finite, it provides a precise and
complete mathematical summary of the program’s executions. �

3.2 Symbolic Paths and Safety Automata

We can use symbolic paths to approximate the HyperLTL semantics by explicitly
considering path combinations. Let ϕ = Q1π1 . . .Qnπn. ψ be a fixed HyperLTL
formula, where Q1, . . . ,Qn ∈ {∀,∃} are quantifiers, and ψ is the LTL body of
ϕ. Further, let F ⊆ FX be the finite set of predicates used in ψ. Due to our
syntactic safety restriction on LTL formulas, we can construct an NSA Aψ =
(Qψ, Q0,ψ, δψ) over alphabet 2F accepting exactly the words that satisfy ψ [38].

Assume Δ : {π1, . . . , πn} → SymStores∗ is a function that assigns each path
variable π1, . . . , πn a symbolic observation sequence. We design a formula accψ

Δ,
which encodes that the symbolic observation sequences in Δ have an accepting
prefix in Aψ, given in Fig. 5. The intermediate formula accq,i

Δ encodes that the
observations in Δ have some run from state q in the ith step. For all steps i,
longer than the shortest trace in Δ, we accept (i.e., accq,i

Δ := true, similar to our
HyperLTL semantics). Otherwise, we require some transition (q, ι, q′) ∈ δψ such

Syntax-Guided Automated Program Repair for Hyperproperties 11

Fig. 6. Encoding of the HyperLTL semantics on symbolic paths P.

that accq′,i+1
Δ holds, and the label ι ∈ 2F holds in step i. To encode the latter,

we use the symbolic observation sequences in Δ: For every predicate θ ∈ F , we
require that θ ∈ ι iff θ

[
xπj

/(
Δ(πj)(i)(x)[y/yπj

]
)]

. That is, we replace variable
xπj

with the expression Δ(πj)(i)(x)[y/yπj
], i.e., we look up the expression bound

to variable x in the ith step on Δ(πj), and – within this expression – index all
variables with πj (i.e., replace each variable y ∈ X with yπj

∈ Xπj
).

3.3 Encoding for HyperLTL

Let P ⊆ FX × SymStores∗ be a finite set of symbolic paths and consider
the formula encϕ

P in Fig. 6. Intuitively, the formula encodes the satisfaction
of ϕ on the symbolic paths in P. For this, we maintain a partial mapping
Δ : {π1, . . . , πn} ⇀ SymStores∗, and for each subformula ϕ′ we define an inter-
mediate formula encϕ′

P,Δ. If we reach the LTL body ψ, we define encψ
P,Δ := accψ

Δ,
stating that the symbolic observation sequences in Δ satisfy ψ (cf. Fig. 5). Each
trace quantifier is then resolved on the symbolic paths in P. Concretely, for a
subformula ∃πj . ϕ

′, we existentially quantify over variables Xπj
and disjunctively

pick a symbolic path (α, β) ∈ P. We require that path condition α holds (after
replacing each variable x with xπj

), and that the remaining formula ϕ′ is satisfied
if we bind observation sequence β to πj (i.e., encϕ′

P,Δ[πj �→β]).

Proposition 1. If Q is a terminating program and SymPathsmax (Q) is finite,
then Q |= ϕ if and only if encϕ

SymPathsmax (Q).

The above proposition essentially states that we can use SE to verify a
program (with finitely-many symbolic paths) against HyperLTL formulas with
arbitrary quantifier alternations. This is in sharp contrast to existing SE-based
approaches, which only apply to k-safety properties (i.e., ∀∗ HyperLTL for-
mulas) [17,18,22,51,52]. To the best of our knowledge, ours is the first app-
roach that can check properties containing arbitrary alternations on fragments
of infinite-state software programs. Previous methods either focus on finite-
state systems [6,8,16,24,31,32] or only consider restricted quantifier structures
[7,23,34,49,53].

12 R. Beutner et al.

Alternation-Free Formulas. In many situations, we cannot explore all symbolic
paths of a program Q (i.e., SymPathsmax (Q) is infinite). However, even by just
exploring a subset of paths, our encoding still allows us to draw conclusions
about the full program as long as the formula is alternation-free.

Proposition 2. Assume ϕ is a ∃∗ formula and P ⊆ SymPathsmax (Q) is a finite
set of maximal symbolic paths. If encϕ

P , thenQ |= ϕ.

Proposition 3. Assume ϕ is a ∀∗ formula and P ⊆ SymPaths(Q) is a finite
set of (not necessarily maximal) symbolic paths. If ¬encϕ

P , then Q �|= ϕ.

In particular, we can use Proposition 3 for our repair approach for ∀∗ prop-
erties (which captures many properties of interest, such as non-interference,
cf. ϕedas). If we symbolically execute a program to some fixed depth (and thus
capture a subset of the symbolic paths), any possible repair must satisfy the
bounded property described in encϕ

P (cf. Sect. 3.4). Note that this does not ensure
that the repair patch that fulfills encϕ

P is correct on the entire program; encϕ
P

merely describes a necessary condition any possible repair needs to satisfy. In our
experiments (cf. Sect. 6), we (empirically) found that the repair for the bounded
version also serves as a repair for the full program in many instances.

3.4 Program Repair Using SyGuS

Using SE and our encoding, we can now outline our basic SyGuS-based repair
approach. Assume P �|= ϕ is the program that should be repaired. As in
other semantic-analysis-based repair frameworks [44,46], we begin our repair
by predicting fault locations [54] within the program, i.e., locations that are
likely to be responsible for the violation of ϕ. In our later experiments, we
assume that these locations are provided by the user. After we have identi-
fied a set of n repair locations, we instrument P by replacing the expressions in
all repair locations with fresh function symbols. That is, if we want to repair
statement x= e, if(b,P1,P2), or while(b,P), we replace the statement with
x= f̃(x1, . . . , xm), if(f̃(x1, . . . , xm),P1,P2), or while(f̃(x1, . . . , xm),P), respec-
tively, for some fresh function symbol f̃ and program variables x1, . . . , xm ∈ X
(inferred using a lightweight dependency analysis). Let Q be the resulting pro-
gram, which contains function symbols, f̃1, . . . , f̃n. We symbolically execute Q,
leading to a set of symbolic paths P containing f̃1, . . . , f̃n, and define the SyGuS
problem ΞP := ({f̃1, . . . , f̃n}, encϕ

P , {G1, . . . , Gn}). Here, we fix a grammar Gi

for each function symbol f̃i, based on the type and context of each repair loca-
tion. Note that encϕ

P now constitutes an SMT constraint over f̃1, . . . , f̃n. Any
solution for ΞP thus defines concrete expressions for f̃1, . . . , f̃n such that the
symbolic paths in P satisfy ϕ. Concretely, let e = (e1, . . . , en) be a solution to
ΞP . Define Q[e] := Q[f̃1/e1, . . . , f̃n/en], i.e., we replace each function symbol f̃i

by expression ei. As e is a solution to ΞP , we directly obtain that Q[e] satis-
fies ϕ; at least restricted to the executions captured by the symbolic paths in P.
Afterward, we can verify that Q[e] indeed satisfies ϕ (even on paths not explored
in P), using existing hyperproperty verification techniques [7,23,34,49,53].

Syntax-Guided Automated Program Repair for Hyperproperties 13

Example 2. Consider the EDAS program P in Fig. 1, and let Q be the mod-
ified program where the assignment in line 4 is replaced with a fresh func-
tion symbol f̃ . Define X := {phase, title, session, decision}. If we per-
form SE on Q, we get two symbolic paths PQ = {(α1, β1), (α2, β2)}, where
α1 = (f̃(X) = "Accept"), α2 = (f̃(X) �= "Accept"), β1 =

[
[. . .], [print �→

title + session, decision �→ f̃(X), . . .]
]
, and β2 =

[
[. . .], [print �→ title,

decision �→ f̃(X), . . .]
]
. For illustration, we consider the simple trace property

ϕtrace = ∀π. (printπ = titleπ). If we construct encϕtrace

PQ
, we get

∀
xπ∈Xπ

xπ.
(
f̃(Xπ) = "Accept" → titleπ + sessionπ = titleπ

)
∧

(
f̃(Xπ) �= "Accept" → titleπ = titleπ

)
,

allowing the simple SyGuS solution f̃(Xπ) := "Reject". �

4 Transparent Repair

As argued in Sect. 1, searching for any repair (as in Sect. 3) often returns a patch
that severely changes the functional behavior of the program. In this paper,
we study a principled constraint-based approach on how to guide the search
towards a useful repair without requiring extensive additional specifications. Our
method is based on the simple idea that the repair should be somewhat close
to the original program. Crucially, we define “closeness” via rigorous systems
of (SyGuS) constraints, guiding our constraint-based repair towards minimal
patches, with guaranteed quality. In this section, we introduce the concept of
a (fully) transparent repair. In Sect. 5, we adapt this idea and present a more
practical adaption in the form of iterative repair.

4.1 Transparency

Our transparent repair approach is motivated by ideas from the enforcement
literature [45]. In enforcement, we do not repair the program (i.e., we do not
manipulate its source code) but rather let an enforcer run alongside the pro-
gram and intervene on unsafe behavior (by, e.g., overwriting the output). The
obvious enforcement strategy would thus always intervene, effectively overwrit-
ing all program behaviors with some dummy (but safe) behavior. To avoid such
trivial enforcement, researchers have developed the notion of transparency (also
called precision [45]). Transparency states that the enforcer should not intervene
unless an intervention is absolutely necessary to satisfy the safety specification,
i.e., a safe prefix of the program execution should never trigger the enforcer.

Transparent Repair. The original transparency definition is specific to program
enforcement and refers to the time step in which the enforcer intervenes. We
propose an adoption to the repair setting based on the idea of preserving as

14 R. Beutner et al.

Fig. 7. Encoding for (fully) transparent repair.

much input-output behavior of the original program as possible. Let Xout ⊆ X
be a set of program variables defining the output. For two stores σ, σ′ ∈ Stores,
we write σ �=Xout

σ′ if σ(x) �= σ′(x) for some x ∈ Xout , and extend �=Xout

position-wise to sequences of stores.

Definition 1 (Fully Transparent Repair). Assume ϕ = ∀π1 . . . ∀πn. ψ is
a ∀∗ HyperLTL formula and P,Q are programs. We say Q is a fully trans-
parent repair of (P, ϕ), if (1) Q |= ϕ, and (2) for every store σ ∈ Stores
where obs(P, σ) �=Xout

obs(Q, σ), there exist stores σ1, . . . , σn ∈ Stores such that[
πj �→ obs(P, σj)

]n

j=1
, 0 �|= ψ, and σ = σj for some 1 ≤ j ≤ n.

Our definition reasons about inputs σ on which the output behavior of Q

differs from the original program P. Any such input σ must take part in a
violation of ϕ on the original program P. Phrased differently, the repair may only
change P’s behavior on executions that take part in a combination of n traces that
violate ϕ. Note that, similar to enforcement approaches [15,45], our transparency
definition only applies to ∀∗ formulas. As soon as the property includes existential
quantification, we can no longer formalize when some execution is “part of a
violation of ϕ”. We will extend the central idea underpinning transparency to
arbitrary HyperLTL formulas in Sect. 5.

4.2 Encoding for Transparent Repair

Given two finite sets of symbolic paths PP,PQ ⊆ FX × SymStores∗, we define
formula transϕ

PP,PQ
in Fig. 7. The premise states that X defines some input on

which P and Q differ in their output. That is, for some symbolic paths (αP, βP) ∈
PP and (αQ, βQ) ∈ PQ, the path conditions αP and αQ hold, but the symbolic
observation sequences yield some different values for some x ∈ Xout . In this case,
we require that there exist n symbolic paths (απ1 , βπ1), . . . , (απn

, βπn
) ∈ PP and

concrete inputs Xπ1 , . . . , Xπn
, such that (1) the path conditions απ1 , . . . , απn

Syntax-Guided Automated Program Repair for Hyperproperties 15

hold; (2) the assignment to some Xπj
equals X; and (3) the symbolic observation

sequences βπ1 , . . . , βπn
violate ψ (cf. Fig. 5).

Proposition 4. If P, Q are terminating and SymPathsmax (P),SymPathsmax (Q)
are finite, thenQ is a fully transparent repair of (P, ϕ) if and only if

encϕ
SymPathsmax (Q)

∧ transϕ
SymPathsmax (P),SymPathsmax (Q)

.

Example 3. We illustrate transparent repairs using Example 2. If we set Xout :=
{decision}, and compute transϕtrace

PP,PQ
, we get

∀
x∈X

x.
(
decision �= f̃(X)

)
→

((
decision = "Accept" ∧

title + session �= title
)

∨
(
decision �= "Accept" ∧ title �= title

))
.

For simplicity, we directly resolved the existentially quantified variables Xπ
with X and summarized all path constraints in the premise. The naïve solution
f̃(X) := "Reject" from Example 2 no longer satisfies transϕtrace

PP,PQ
. Instead, a

possible SyGuS solution for encϕtrace

PQ
∧ transϕtrace

PP,PQ
is

f̃(X) := ite
(
decision = "Accept" ∧ session �= "","Reject",decision

)
.

This solution only changes the decision if the decision is "Accept" and the
session does not equal the empty string, i.e., it changes the program’s decision
on exactly those traces that violate ϕtrace = ∀π. (printπ = titleπ). �

5 Iterative Repair

Our full transparency definition only applies to ∀∗ properties, and, even on ∀∗

formulas, might yield undesirable results: In some instances, Definition 1 limits
which traces may be changed by a repair, potentially resulting in the absence
of any repair. In other instances (including the EDAS example), many paths (in
the EDAS example, all paths) take part in some violation of the hyperproperty,
so full transparency does not impose any additional constraints. In the EDAS
example, this would again allow the naïve repair decision = "Reject". To
alleviate this, we introduce an iterative repair approach that follows the same
philosophical principle as (full) transparency (i.e., search for repairs that are
close to the original program), but allows for the iterative discovery of better
and better repair patches.

Definition 2. Assume ϕ is a HyperLTL formula and P, Q, and S are programs.
We say repair Q is a better repair than S w.r.t. (P, ϕ) if (1) Q |= ϕ, (2) for
every σ ∈ Stores, where obs(P, σ) �=Xout

obs(Q, σ), we have obs(P, σ) �=Xout

obs(S, σ), and (3) for some σ ∈ Stores, we have obs(P, σ) �=Xout
obs(S, σ) but

obs(P, σ) =Xout
obs(Q, σ).

Intuitively, Q is better than S if it preserves at least all those behaviors of P
already preserved by S, i.e., Q is only allowed to deviate from P on inputs where
S already deviates. Moreover, it must be strictly better than S, i.e., preserve at
least one additional behavior.

16 R. Beutner et al.

Fig. 8. Encoding for iterative repair.

5.1 Encoding for Iterative Repair

As before, we show that we can encode Definition 2 via a repair constraint. Let
PP, PS,PQ ⊆ FX × SymStores∗ be finite sets of symbolic paths, and define
iterPP,PS,PQ

as in Fig. 8.

Proposition 5. If P, Q, and S are terminating programs and SymPathsmax (P),
SymPathsmax (S), and SymPathsmax (Q) are finite, then Q is a better repair than
S, w.r.t., (P, ϕ) if and only if

encϕ
SymPathsmax (Q) ∧ iterSymPathsmax (P),SymPathsmax (S),SymPathsmax (Q).

5.2 Iterative Repair Loop

We sketch our iterative repair algorithm in Algorithm1. In line 2, we infer the
locations that we want to repair from user annotations. We leave the exploration
of automated fault localization techniques specific for hyperproperties as future
work, and, in our experiments, assume that the user marks potential repair
locations. In line 3, we instrument P by replacing all repair locations in locs with
fresh function symbols. At the same time, we record the original expression at all
those locations as a vector eP. Subsequently, we perform symbolic execution on

Syntax-Guided Automated Program Repair for Hyperproperties 17

the skeleton program Q (i.e., the program that contains fresh function symbols),
yielding a set of symbolic paths P containing function symbols (line 4). Initially,
we now search for some repair of ϕ by using the SyGuS constraint encϕ

P , giving us
an initial repair patch in the form of some expression vector e (line 5). Afterward,
we try to iteratively improve upon the repair solution e found previously. For
this, we consider the SyGuS constraint encϕ

P ∧ iterP[eP],P[e],P where we replaced
each function symbol in P with eP to get the symbolic paths of the original
program (denoted P[eP]), and with e to get the symbolic paths of the previous
repair (denoted P[e]) (line 7). If this SyGuS constraint admits a solution e′,
we set e to e′ and repeat with a further improvement iteration (line 11). If the
SyGuS constraint is unsatisfiable (or, e.g., a timeout is reached, or the number
of iterations is bounded) (written e′ = ⊥), we return the last solution we found,
i.e., the program Q[e] (line 9). By using a single set of symbolic paths P of the
skeleton program Q, we can optimize our query construction. For example, in
iterP[eP],P[e],P , we consider all 3 tuples of symbolic paths leading to a potentially
large SyGuS query. As we use a common set of paths P we can prune many path
combinations. For example, on fragments preceding a repair location, we never
have to combine contradicting branch conditions.

6 Implementation and Evaluation

Algorithm 1. Iterative repair algorithm
1 def iterativeRepair(P,ϕ):
2 locs := faultLocalization(P,ϕ)
3 Q,eP := instrument(P,locs)
4 P := symbolicExecution(Q)
5 e := SyGuS(encϕ

P)
6 repeat:
7 e′ := SyGuS(encϕ

P ∧ iterP[eP],P[e],P)
8 if (e′ = ⊥) then
9 return Q[e]

10 else
11 e := e′

We have implemented our repair
techniques from Sects. 3 to 5 in
a proof-of-concept prototype called
HyRep, which takes as input a
HyperLTL formula and a program
in a minimalist C-like language
featuring Booleans, integers, and
strings. We use spot [20] to trans-
late LTL formulas to NSAs. HyRep
can use any solver supporting the
SyGuS input format [2]; we use
cvc5 (version 1.0.8) [4] as the
default solver in all experiments. In
HyRep, the user can determine what SyGuS grammar to use, guiding the solver
towards a particular (potentially domain-specific) solution. By default, HyRep
repairs integer and Boolean expressions using piece-wise linear functions (simi-
lar to Example 1), and string-valued expressions by a grammar allowing selected
string constants and concatenation of string variables. All results in this paper
were obtained using a Docker container of HyRep running on an Apple M1 Pro
CPU and 32 GB of memory.

Scalability Limitations. As we repair for hyperproperties, we necessarily need to
reason about the combination of paths, requiring us to analyze multiple paths
simultaneously. Unsurprisingly, this limits the scalability of our repair. Con-
sequently, we cannot tackle programs with hundreds of LoC, where existing

18 R. Beutner et al.

Fig. 9. A CSRF attack and repair candidates by HyRep.

(functional) APR approaches collect a small summary that only depends on the
number of input-output examples (see, e.g., angelic forests [44]). However, our
experiments with HyRep attest that – while we can only handle small programs
– our approach can find complex repair solutions that go beyond previous repair
approaches for hyperproperties (cf. Sect. 7).

6.1 Iterative Repair for Hyperproperties

Table 1. We depict the number of improve-
ment iterations, the number repair loca-
tions, and the repair time (in seconds).

Instance #Iter #Locations t

edas 2 1 2.5

csrf 2 1 17.9

log 1 1 0.9
log′ 1 1 1.0
log′′ 1 1 7.4

atm 3 2 4.2

reviews 3 2 18.5
reviews′ 3 2 151.6

We first focus on HyRep’s ability to
find, often non-trivial, repair solu-
tions using its iterative repair app-
roach. Table 1 depicts an overview of
the 5 benchmark families we consider
(explained in the following). For some
of the benchmarks, we also consider
small variants by adding additional
complexity to the program.

EDAS. As already discussed in
Sect. 1, HyRep is able to repair (a sim-
plified integer-based version of) the
EDAS example in Fig. 1 and derive
the repairs in Fig. 2.

CSRF. Cross Site Request Forgery (CSRF) [35] attacks target web session
integrity. As an abstract example, consider the simple login program as shown
in Fig. 9(left), where we leave out intermediate instructions that are not nec-
essary to understand the subsequent repair. If the user attempts to log in and
enters the correct password, we either set request = 1 (modeling a login on
the original page), or request = 2 (modeling an attack, i.e., a login request

Syntax-Guided Automated Program Repair for Hyperproperties 19

Fig. 10. Privacy leakage by logging and repair candidates by HyRep.

at some untrusted website). We specify that the request should only depend
on the (correctness of the) password. When repairing line 11, HyRep first dis-
coverers the trivial repair that always overwrites request with a fixed constant
(Fig. 9a). However, in the second improvement iteration, HyRep finds a better
repair (Fig. 9b), where the request is only overwritten after a successful login.
The potential attack request (request = 2) is thus deterministically overwrit-
ten.

Fig. 11. An ATM that leaks
the balance to ErrorLog and
TransactionLog.

LOG. We investigate privacy leaks
induced by logging of credentials. We
depict a simplified code snipped in Fig. 10.
Crucially, in case of a successful login, the
secret password flows into the public LOG
(via credentials and info). We specify
that the LOG may only depend on pub-
lic information (i.e., everything except the
password) and use HyRep to overwrite the
final value of LOG (i.e., to repair line 12).
As shown in Fig. 10a, HyRep first finds
a trivial repair that does not log any-
thing. In the first improvement iteration,
HyRep automatically finds the more accu-
rate repair in Fig. 10b. That is, it automatically infers that LOG can contain the
date and username (as in the original program) but not the password.

ATM. Many cases require repairing multiple lines of code simultaneously. We
use cases derived from open-source security benchmarks [26,30,41] and mark
multiple repair locations in the input programs. For example, consider the ATM

20 R. Beutner et al.

Fig. 12. A review system that leaks the reviewer ids via the review order and repair
candidates by HyRep.

program in Fig. 11. Depending on whether the withdraw amount is greater than
balance (secret), different messages will be logged (public). To repair it, we need
to repair both ErrorLog and TransactionLog under different conditions (i.e.,
do not update ErrorLog in the if-clause and do not update TransactionLog in
the else-clause). By indicating lines 8 and 9 as two repair locations, HyRep is able
to synthesize the correct multiline repair.

REVIEWS. We also investigate the review system depicted in Fig. 12(left). Here
the id of each reviewer determines in which order the reviews are displayed to
the author. We assume that the PC chair always has the fixed ID 1 (so if he/she
submits a review, it will always be displayed first). We want to avoid that the
author can infer which review was potentially written by the PC chair. When
asked to repair line 9, HyRep produces the repair patches displayed in Figs. 12a
and b. In particular, the last repair infers that if reviewerAid < 2 (i.e., reviewer
A is the PC chair), we can leave the order; otherwise, we use some fixed constant.

6.2 Scalability in Solution Size

Most modern SyGuS solvers rely on a (heavily optimized) enumeration of solu-
tion candidates [3,19,33,48]. The synthesis time, therefore, naturally scales in the
size of the smallest solutions. Our above experiments empirically show that most
repairs can be achieved by small patches. Nevertheless, to test the scalability in
the solution size, we have designed a benchmark family that only admits large
solutions. Concretely, we consider a program that computes the conjunction of

Syntax-Guided Automated Program Repair for Hyperproperties 21

Table 2. In Table 2a, we evaluate HyRep’s scalability in the SyGuS solution size. The
timeout (denoted “’-”) is 120 s. In Table 2b, we repair a selection of k-safety instances
from [7,23,49,53]. In Table 2c, we evaluate on a selection of functional repair instances
from [27,44]. All times are given in seconds.

(a)
n #Iter t Size

0 0 0.8 1
1 0 0.8 1
2 1 1.1 3
3 2 1.4 5
4 3 1.8 7
5 4 5.1 9
6 5 89.8 11
7 - - -

(b)
Instance t

CollItemSym 1.4
CounterDet 4.9
DoubleSquareNiFF 4.2
DoubleSquareNi 2.9
Exp1x3 1.1
Fig2 2.4
Fig3 1.1
MultEquiv 2.0

(c)
Instance t

Assignment 0.7
Deletion 0.7
Guard 0.6
Long-Output 0.7
Multiline 0.8
Not-Equal 0.6
SimpleExample 1.0
OffByOne 2.1

n Boolean inputs i1, . . . , in. We repair against a simple ∀2 HyperLTL property
which states that the output may not depend on the last input, guiding the
repair towards the optimal solution i1 ∧ · · · ∧ in−1. We display the number of
improvement iterations, the run time, and the solution size (measured in terms
of AST nodes) in Table 2a. We note that one of the main features of SyGuS is the
flexibility in the input grammar. When using a less permissive (domain-specific)
grammar, HyRep scales to even larger repair solutions.

6.3 Evaluation on k-Safety Instances

To demonstrate that HyRep can tackle the repair problem in the size-range sup-
ported by current verification approaches for hyperproperties, we collected a
small set of k-safety verification instances from [7,23,49,53]. We modify each
program such that the k-safety property is violated and use HyRep’s plain (non-
iterative) SyGuS constraints to find a repair. The results in Table 2b demonstrate
that (1) existing off-the-shelf SyGuS solver can repair programs of the complex-
ity studied in the context of k-safety verification, and (2) even in the presence
of loops (which are included in all instances in Table 2b), finite unrolling often
suffices to generate repair constraints that yield repair patches that work for the
full program.

6.4 Evaluation on Functional Properties

While we cannot handle the large programs supported by existing APR
approaches for functional properties, we can evaluate HyRep on (very) small
test cases. We sample instances from Angelix [44] and GenProg [27], and apply
HyRep’s direct (non-iterative) repair. We report the run times in Table 2c.

22 R. Beutner et al.

7 Related Work

APR. Existing APR approaches for functional properties can be grouped into
search-based and constraint-based [25,28]. Approaches in the former category
use a heuristic to explore a set of possible patch candidates. Examples include
GenProg [27] and PAR [36], SPR [42], TBar [40], or machine-learning-based
approaches [21,57]. These approaches typically scale to large code bases, but
might fail to find a solution (due to the large solution space). Our approach falls
within the latter (constraint-based) category. This approach was pioneered by
SemFix [46] and later refined by DirectFix [43], Angelix [44], and S3 [39]. To
the best of our knowledge, we are the first to employ the (more general) SyGuS
framework for APR, which leaves the exact search to an external solver. Most
APR approaches rely on a finite set of input-output examples. To avoid over-
fitting [50] these approaches either use heuristics (to, e.g., infer variables that a
repair should depend on [55]) or employ richer (e.g., MaxSMT-based) constraints
[44]. Crucially, these approaches are local, whereas our repair constraints reason
about the entire (global) program execution by utilizing the entire symbolic
path. Any repair sequence generated by our iterative repair is thus guaranteed
to increase in quality, i.e., preserve more behavior of the original program.

APR for Hyperproperties. Coenen et al. [15] study enforcement of alternation-
free hyperproperties. Different from our approach, enforcement does not provide
guarantees on the functional behavior of the enforced system. Bonakdarpour
and Finkbeiner [9] study the repair-complexity of hyperproperties in finite-state
transition systems. In their setting, a repair consists of a substructure, i.e., a
system obtained by removing some of the transitions of the system, so the repair
problem is trivially decidable. Polikarpova et al. [47] present Lifty, and encoding
of information-flow properties using refinement types. Lifty can automatically
patch a program to satisfy an information-flow requirement by assigning all pri-
vate variables some public dummy default constant. In contrast, our approach
can repair against complex temporal hyperproperties (possibly involving quan-
tifier alternations), and our repair often goes beyond insertion of constants.

8 Conclusion

We have studied the problem of automatically repairing an (infinite-state) soft-
ware program against a temporal hyperproperty, using SyGuS-based constraint
generation. To enhance our basic SyGuS-based approach, we have introduced
an iterative repair approach inspired by the notion of transparency. Our app-
roach interprets “closeness” rigorously, encodes it within our constraint system
for APR, and can consequently derive non-trivial repair patches.

Acknowledgments. This work was partially supported by the European Research
Council (ERC) Grant HYPER (101055412), by the German Research Foundation
(DFG) as part of TRR 248 (389792660), and by the United States NSF SaTC Awards
210098 and 2245114.

Syntax-Guided Automated Program Repair for Hyperproperties 23

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Computer Security Foundations Symposium, CSF 2016 (2016).
https://doi.org/10.1109/CSF.2016.24

2. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013 (2013)

3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2017 (2017). https://doi.org/10.
1007/978-3-662-54577-5_18

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

5. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: International Conference on
Computer Aided Verification, CAV 2021 (2021). https://doi.org/10.1007/978-3-
030-81685-8_33

6. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification. In:
Computer Security Foundations Symposium, CSF 2022 (2022). https://doi.org/
10.1109/CSF54842.2022.9919658

7. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties beyond k-
safety. In: International Conference on Computer Aided Verification, CAV 2022
(2022). https://doi.org/10.1007/978-3-031-13185-1_17

8. Beutner, R., Finkbeiner, B.: AutoHyper: explicit-state model checking for Hyper-
LTL. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2023. LNCS, vol. 13993, pp.
145–163. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9_8

9. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties. In: Chen,
Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 423–441.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_25

10. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4_2

11. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL. In:
Symposium on Logic in Computer Science, LICS 2021 (2021). https://doi.org/10.
1109/LICS52264.2021.9470583

12. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8) (2012). https://doi.org/10.1145/2240236.2240262

13. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: International Conference on Princi-
ples of Security and Trust, POST 2014 (2014). https://doi.org/10.1007/978-3-642-
54792-8_15

14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Computer Security Founda-
tions Symposium, CSF 2008 (2008). https://doi.org/10.1109/CSF.2008.7

15. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J., Schillo, Y.: Runtime enforce-
ment of hyperproperties. In: International Symposium on Automated Technology
for Verification and Analysis, ATVA 2021 (2021). https://doi.org/10.1007/978-3-
030-88885-5_19

https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-030-88885-5_19
https://doi.org/10.1007/978-3-030-88885-5_19

24 R. Beutner et al.

16. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_7

17. Daniel, L., Bardin, S., Rezk, T.: Binsec/Rel: efficient relational symbolic execution
for constant-time at binary-level. In: Symposium on Security and Privacy, SP 2020
(2020). https://doi.org/10.1109/SP40000.2020.00074

18. Daniel, L., Bardin, S., Rezk, T.: Hunting the haunter - efficient relational symbolic
execution for Spectre with haunted RelSE. In: Annual Network and Distributed
System Security Symposium, NDSS 2021 (2021)

19. Ding, Y., Qiu, X.: Enhanced enumeration techniques for syntax-guided synthesis
of bit-vector manipulations. Proc. ACM Program. Lang. (POPL) (2024). https://
doi.org/10.1145/3632913

20. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification, CAV 2022. LNCS, vol. 13372, pp.
174–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2_9

21. Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., Tan, S.H.: Automated repair
of programs from large language models. In: International Conference on Software
Engineering, ICSE 2023 (2023). https://doi.org/10.1109/ICSE48619.2023.00128

22. Farina, G.P., Chong, S., Gaboardi, M.: Relational symbolic execution. In: Interna-
tional Symposium on Principles and Practice of Programming Languages, PPDP
2019 (2019). https://doi.org/10.1145/3354166.3354175

23. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 200–218. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_11

24. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4_3

25. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Softw. Eng. 45(1) (2019). https://doi.org/10.1109/TSE.2017.2755013

26. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in DroidSafe. In: Annual Network and
Distributed System Security Symposium, NDSS 2015 (2015)

27. Goues, C.L., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering, ICSE 2012 (2012). https://doi.org/10.1109/
ICSE.2012.6227211

28. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12) (2019). https://doi.org/10.1145/3318162

29. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. Proc. ACM Program. Lang. (POPL) (2021). https://
doi.org/10.1145/3434319

30. Hamann, T., Herda, M., Mantel, H., Mohr, M., Schneider, D., Tasch, M.: A uniform
information-flow security benchmark suite for source code and bytecode. In: Nordic
Conference on Secure IT Systems, NordSec 2018 (2018). https://doi.org/10.1007/
978-3-030-03638-6_27

31. Hsu, T.-H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-
properties. In: TACAS 2021. LNCS, vol. 12651, pp. 94–112. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72016-2_6

https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1145/3632913
https://doi.org/10.1145/3632913
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1007/978-3-030-03638-6_27
https://doi.org/10.1007/978-3-030-03638-6_27
https://doi.org/10.1007/978-3-030-72016-2_6

Syntax-Guided Automated Program Repair for Hyperproperties 25

32. Hsu, T., Sánchez, C., Sheinvald, S., Bonakdarpour, B.: Efficient loop conditions for
bounded model checking hyperproperties. In: Sankaranarayanan, S., Sharygina, N.
(eds.) International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2023. LNCS, vol. 13993, pp. 66–84. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30823-9_4

33. Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deductive
program synthesis. In: International Conference on Programming Language Design
and Implementation, PLDI 2020 (2020). https://doi.org/10.1145/3385412.3386027

34. Itzhaky, S., Shoham, S., Vizel, Y.: Hyperproperty verification as CHC satisfiability.
In: Weirich, S. (eds.) European Symposium on Programming Languages and Sys-
tems, ESOP 2024. LNCS, vol. 14577, pp. 212–241. Springer, Cham (2024). https://
doi.org/10.1007/978-3-031-57267-8_9

35. Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., Piessens, F.: Client side web
session integrity as a non-interference property. In: Prakash, A., Shyamasundar, R.
(eds.) ICISS 2014. LNCS, vol. 8880, pp. 89–108. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13841-1_6

36. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: International Conference on Software Engineering,
ICSE 2013 (2013). https://doi.org/10.1109/ICSE.2013.6606626

37. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7) (1976).
https://doi.org/10.1145/360248.360252

38. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6_17

39. Le, X.D., Chu, D., Lo, D., Goues, C.L., Visser, W.: S3: syntax- and semantic-guided
repair synthesis via programming by examples. In: Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017 (2017). https://doi.org/10.1145/3106237.
3106309

40. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBar: revisiting template-based
automated program repair. In: International Symposium on Software Testing and
Analysis, ISSTA 2019 (2019). https://doi.org/10.1145/3293882.3330577

41. Livshits, B.: SecuriBench Micro (2014). https://github.com/too4words/
securibench-micro

42. Long, F., Rinard, M.C.: Automatic patch generation by learning correct code. In:
Symposium on Principles of Programming Languages, POPL 2016 (2016). https://
doi.org/10.1145/2837614.2837617

43. Mechtaev, S., Yi, J., Roychoudhury, A.: DirectFix: looking for simple program
repairs. In: International Conference on Software Engineering, ICSE 2015 (2015).
https://doi.org/10.1109/ICSE.2015.63

44. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: International Conference on Software Engineer-
ing, ICSE 2016 (2016). https://doi.org/10.1145/2884781.2884807

45. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: Symposium on Principles of Program-
ming Languages, POPL 2015 (2015). https://doi.org/10.1145/2676726.2676978

46. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In: International Conference on Software Engineering, ICSE
2013 (2013). https://doi.org/10.1109/ICSE.2013.6606623

47. Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., Solar-Lezama, A.: Liq-
uid information flow control. Proc. ACM Program. Lang. (ICFP) (2020). https://
doi.org/10.1145/3408987

https://doi.org/10.1007/978-3-031-30823-9_4
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1007/978-3-031-57267-8_9
https://doi.org/10.1007/978-3-031-57267-8_9
https://doi.org/10.1007/978-3-319-13841-1_6
https://doi.org/10.1007/978-3-319-13841-1_6
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3293882.3330577
https://github.com/too4words/securibench-micro
https://github.com/too4words/securibench-micro
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2676726.2676978
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987

26 R. Beutner et al.

48. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5_5

49. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_9

50. Smith, E.K., Barr, E.T., Goues, C.L., Brun, Y.: Is the cure worse than the disease?
Overfitting in automated program repair. In: Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015 (2015). https://doi.org/10.1145/2786805.
2786825

51. Tiraboschi, I., Rezk, T., Rival, X.: Sound symbolic execution via abstract interpre-
tation and its application to security. In: International Conference on Verification,
Model Checking, and Abstract Interpretation, VMCAI 2023 (2023). https://doi.
org/10.1007/978-3-031-24950-1_13

52. Tsoupidi, R., Balliu, M., Baudry, B.: Vivienne: relational verification of crypto-
graphic implementations in WebAssembly. In: Secure Development Conference,
SecDev 2021 (2021). https://doi.org/10.1109/SECDEV51306.2021.00029

53. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 742–766. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_35

54. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8) (2016). https://doi.org/10.1109/TSE.
2016.2521368

55. Xiong, Y., et al.: Precise condition synthesis for program repair. In: International
Conference on Software Engineering, ICSE 2017 (2017). https://doi.org/10.1109/
ICSE.2017.45

56. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop, CSFW 2003 (2003).
https://doi.org/10.1109/CSFW.2003.1212703

57. Zhu, Q., et al.: A syntax-guided edit decoder for neural program repair. In: Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021 (2021). https://doi.org/10.1145/3468264.
3468544

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1007/978-3-031-24950-1_13
https://doi.org/10.1007/978-3-031-24950-1_13
https://doi.org/10.1109/SECDEV51306.2021.00029
https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544
http://creativecommons.org/licenses/by/4.0/

The SemGuS Toolkit

Keith J. C. Johnson1(B), Andrew Reynolds2, Thomas Reps1,
and Loris D’Antoni1

1 University of Wisconsin–Madison, Madison, USA
keithj@cs.wisc.edu

2 University of Iowa, Iowa City, USA

Abstract. Semantics-Guided Synthesis (SemGuS) is a programmable
framework for defining synthesis problems in a domain- and solver-
agnostic way. This paper presents the standardized SemGuS format,
together with an open-source toolkit that providesa parser, a verifier,
and enumerative SemGuS solvers. The paper also describes an initial set
of SemGuS benchmarks, which form the basis for comparing SemGuS
solvers, and presents an evaluation of the baseline enumerative solvers.

1 Introduction

The field of program synthesis aims to create tools that can automatically create
a program from a specification of desired behavior. Synthesis holds the promise
of easing the burden on programmers (e.g., by finding solutions to tricky special
cases automatically), and allowing non-programmers to create programs merely
by indicating the outcome that they want the program to produce.

While program synthesis has seen successes in many industrial applica-
tions [9,23], these successes have typically been achieved using domain-specific
synthesizers that take advantage of the structure of the specific domain.

To apply synthesis beyond specific domains, synthesis frameworks and tools
should allow one to customize the search space and specifications of a synthesis
problem in a programmable way that is agnostic of a specific domain or synthesis
solver. To address the problem of making synthesis “programmable”, Kim et
al. [15] proposed the SemGuS framework, which enables one to specify synthesis
problems in a solver-agnostic and domain-agnostic way [7].

The SemGuS framework allows one to specify an arbitrary synthesis prob-
lem by defining a programming language via (i) a grammar (the syntax), and
(ii) a set of Constrained Horn Clauses (CHCs) (the semantics). Once one has
described the language, one can define synthesis problems over that language by
providing a specification as a formula. Solving the synthesis problem means find-
ing a program in the language that satisfies the specification. Building solvers for
general SemGuS problems can be difficult due to the framework’s flexibility [7].

This paper presents the SemGuS toolkit, which provides an open-source
implementation of the components needed for researchers to get started building
SemGuS solvers. The toolkit consists of the following components.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 27–40, 2024.
https://doi.org/10.1007/978-3-031-65633-0_2

https://doi.org/10.5281/zenodo.10947134
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_2

28 K. J. C. Johnson et al.

SemGuS Format 1.0: The first standardized format for SemGuS, which is built
on top of the SMT-LIB and SyGuS formats [3,21], thus making it expressible,
extensible, modular, and easy to integrate with existing constraint solvers (e.g.,
to build SemGuS verifiers). We provide an open-source parser (Sect. 2).

Baseline Verifier and Solvers: The flexibility of SemGuS makes verifying
whether a term is a solution to a SemGuS problem undecidable. Furthermore,
because the semantics of the user-provided programming language is expressed
declaratively using CHCs, it is even challenging to efficiently execute programs
in the language. Our implementation provides a compiler that, given a term t
in the user-specified language, can extract efficiently executable semantics for t
from the declarative one provided by the user, as well as an incomplete SMT-
based verifier that can construct constraints for checking whether t matches a
specification ϕ. We also provide implementations of top-down and bottom-up
example-based enumerative solvers that are integrated with these verifiers and
can thus produce solutions to SemGuS problems (Sect. 3).

Benchmarks: We provide 431 SemGuS benchmarks from different domains.
Our solvers can only solve 161/431 benchmarks, and we hope this toolkit will
energize the community to build solvers for the remaining challenging problems
and to provide additional benchmarks (Sect. 4).

2 The SemGuS Format 1.0

We refer the reader to the original SemGuS paper [15] for a more formal definition
of the SemGuS framework, but in this section we show how each component is
expressed in our proposed standard format. The SemGuS parser (https://github.
com/semgus-git/Semgus-Parser) can translate the textual SemGuS format into
two intermediate representations: a JSON format and a declarative S-expression
format, which is then used by solvers and other tools.

Figures 1 and 2 give an example specification of a SemGuS problem, which
we describe in detail in this section. In this example, the goal is to synthe-
size an imperative program (with loops) that multiplies two numbers through
iterative addition. We choose this example because it illustrates how SemGuS
can describe synthesis problems involving complex programming constructs and
is thus strictly more expressive than limited synthesis frameworks, such as
SyGuS [1].

Term Universe. SemGuS problems define a universe of terms with a modified
SMT datatype declaration using the command declare-term-types (lines 1–8
of Fig. 1). This command defines the syntax of the programming language over
which one can specify synthesis problems. The term universe L is intention-
ally separated from the sub-universe (defined by a grammar) from which the
answer is to be synthesized, and from the constraints on the answer (Fig. 2).
The user defines L and its semantics once and for all, and can reuse those defini-
tions for different synthesis problems. This separation enables both (i) building
specialized SemGuS solvers for important languages (e.g., L = SQL), and (ii)

https://github.com/semgus-git/Semgus-Parser
https://github.com/semgus-git/Semgus-Parser

The SemGuS Toolkit 29

instantiating more restricted synthesis problems by confining the search space
to just the terms generated by a grammar.

Semantics as CHCs. The semantics of our term language is given by the
SMT-LIB command define-funs-rec (lines 9–43). In a nutshell, this command
defines a set of Constrained Horn Clauses (CHCs) inductively over terms in the
universe. A CHC is a first-order formula of the form:

∀x̄1, . . . , x̄n, x̄. φ ∧ R1(x̄1) ∧ · · · ∧ Rn(x̄n) ⇒ H(x̄)

where R1, . . . , Rn and H are uninterpreted relations, x̄1, . . . , x̄n and x̄ are (vec-
tors/tuples of) variables, and φ is a quantifier-free constraint over the variables
within some first-order theory. In the specification, one provides the names and
types of the semantic relations used in the semantic definitions (lines 11–16),
and then CHCs that define such relations (lines 17–43). To better align with the
fact that CHCs are used to define the semantics of programs inductively (i.e.,
as an interpreter), in the SemGuS format we encode CHCs as a set of mutually-
recursive SMT functions, taking the term to be evaluated, input variables, and
output variables as arguments, and returning a Boolean. A function is provided
for every non-terminal, and match statements are used to dispatch on the term
constructors for which one is defining the semantics. The match statement must
match on all productions for the given term type (i.e., the corresponding non-
terminal). The match statement can also be annotated with which variables are
inputs and outputs in the specific semantics (note that some semantics, e.g., a
term-rewriting system, do not necessarily have inputs and outputs). Each match
on a production starts with an optional exists block, which specifies auxiliary
variables, followed by the CHC body as a conjunction. Some productions, such
as the while production in Fig. 1 (lines 29–38), have two associated CHCs. For
example, the While-false CHC can be logically written as

B.Sem(tb, xi, yi, ri, b) b = false ∧ xo = xi ∧ yo = yi ∧ ro = ri

S.Sem(($while tb ts), xi, yi, ri, xo, yo, ro)
While-false

The signature at the bottom of the CHC—i.e., the particular variables names
used in this relation instance—is the one defined in Fig. 1 (line 13).

As discussed in the original SemGuS paper [15], many synthesizers have
achieved scalability by exploiting alternative semantics that either underapprox-
imate the actual semantics of the programming language (to speed up evaluation
and enable constraint solving) or overapproximate it (which sometimes makes
it possible to prune the search space of programs). While such previous work
“hardcodes” and takes advantage of such semantics in the solver itself, SemGuS
allows one to write such semantics directly in the SemGuS file. In fact, there is
no limit on how many semantic relations one can define in a SemGuS file. For
example, one might define a semantic relation that associates costs to programs
(but does not evaluate programs) and a semantic relation that captures pro-
gram evaluation. The specification can then require finding a program that (i)

30 K. J. C. Johnson et al.

Fig. 1. Definition of a programming language (i.e., a set of programs) in the SemGuS
format. The syntax of terms is given in lines 1–8, and their semantics is given in
lines 9–43. The gray text denotes parts that have been omitted for brevity.

The SemGuS Toolkit 31

performs a computation correctly, and (ii) has a cost that is less than a specific
constant. The ability of SemGuS to describe multiple semantics enables reusable
solving techniques and interoperability between solvers.

It should be noted that when one defines multiple semantics, the burden of
showing that they are properly related (e.g., that an abstract semantics is related
to the concrete one by a Galois connection [5]) is in the hands of the user. Doing
so automatically is a research direction enabled by the SemGuS format.

synth-fun Command. SemGuS uses the same syntax as in SyGuS to declare
what type of term we are interested in synthesizing (Fig. 2). Unlike SyGuS, a
solution to a SemGuS problem is a term in the provided syntax, as opposed to
a function in an SMT theory. For instance, the command (synth-fun mul ()
F) in Fig. 2 (line 2) asks for a term named mul, rooted at the non-terminal F.
This command can optionally take a grammar (the second argument) to further
restrict the search space, using the same format for grammars as in the SyGuS
format [21]. For example, to synthesize programs that have the fewest number
of while-loops [12], one might first solve the SemGuS problem discussed in this
section and obtain a program with one loop, and then create a new SemGuS
problem where the grammar is restricted to disallow loops. The two problems
will share the same language definition despite having different grammars.

Specification. Specification constraints for SemGuS problems are stated using

Fig. 2. Constraints for a few example input/out-
put pairs, used to synthesize a function mul that
behaves like multiplication.

SMT expressions involving
the root CHC for the term
to be synthesized. The typi-
cal form for input/output exam-
ples is shown in Fig. 2 (lines 4–
9). Note that in SemGuS, con-
straints are specified as relations
and not functions (as in SyGuS).
Relations allow modeling non-
determinism or nonterminating
semantics—e.g., one can state
that, for the specific input pair
(5,3), the answer is a positive
value if the program terminates:

(constraint (forall ((x Int)) (=> (F.Sem mul 5 3 x) (>= x 0)))).

Synthesis Command. The check-synth command instructs the solver to solve
the problem and produce an SMT term. The following term is a solution to the
example presented in this section.

1 ((define -fun mul () F ($function

2 ($while ($< $0 $y) ;; while (0<y)

3 ($seq ($y<- ($- $y $1)) ;; y <- y-1

4 ($r<- ($+ $r $x)))) ;; r <- r+x

5 $r))) ;; return r

32 K. J. C. Johnson et al.

Relationship Between SemGuS and SyGuS. Every SyGuS problem can
be automatically converted to an equivalent SemGuS problem, and our parser
implements this transformation. The only technical detail of interest is that
SyGuS synthesizes function SMT terms, whereas SemGuS synthesizes terms in
a term universe that is interpreted using a relational semantics. For example, if
the predicate ϕ of the SyGuS specification contains invocations of the function
g to be synthesized, e.g., ϕ(g(i1), . . . , g(in)), we can create the new SemGuS
specification as ∃o1, . . . , on. ϕ(o1, . . . , on)∧SemG(g, i1, o1)∧ . . .∧SemG(g, in, on).

Because SemGuS is more expressive than SyGuS, not every SemGuS problem
can be converted to an equivalent SyGuS problem. In general, it is undecidable to
check when such a translation is possible, because SemGuS is Turing complete.
We have implemented a sound (but incomplete) translation of a limited fragment
of statically detectable SemGuS problems into SyGuS. The fragment essentially
captures when the SyGuS-to-SemGuS translation can be inverted.

3 A Baseline SemGuS Solver

In this section, we present ks2, a toolkit for researchers to build SemGuS solvers.
ks2 implements techniques for (efficiently) verifying whether a candidate solu-
tion meets the specification (Sect. 3.1). ks2 also contains implementations of
bottom-up and top-down enumerative synthesizers (Sect. 3.2). ks2 is written in
Common Lisp, which makes it easy to compile code generated at synthesis-time
for speeding up evaluation of candidate solutions. In addition, ks2 is imple-
mented modularly, so new solvers and features can be easily added as plugins.

3.1 Verifying Candidate Solutions

When building synthesizers, one wants two types of verifiers: one that can quickly
tell if a candidate solution is correct on a finite set of input examples E, and
one that can (less quickly) tell if a solution is correct on all inputs, and thus
satisfies a logical specification. When the latter verifier finds a violation of the
specification, it will typically produce a new input example e that can be added
to the set E to restart synthesis with a fresh set of examples. These two verifiers
together form the basis of the counterexample-guided synthesis algorithm. For
SemGuS, building either of these verifiers is generally undecidable as one may
have to deal with an arbitrarily powerful programming language.

In this section, we present two sound (but incomplete) implementations of
such verifiers. These implementations are not the only verifier implementations
that can be built for SemGuS, but just two that were successful in meeting our
needs. Building other verifier implementations based on other technologies, such
as bounded model checkers, symbolic execution, and logic programming, is an
interesting future research direction.

Building Executable Semantics from CHCs. To tell quickly whether a
candidate program is correct on a given input, one needs to “run” the program
on the input according to the semantics. To do so efficiently is nontrivial because

The SemGuS Toolkit 33

the semantics of a candidate program is expressed declaratively using CHCs.
ks2 first “operationalizes” the semantics given by CHCs into executable blocks,
which are then compiled. In general, not all CHCs can be transformed into
executable code (for example, non-deterministic CHCs that can map one input
to different outputs); therefore, ks2 supports only a fragment of CHCs that is
practically useful (all benchmarks discussed in Sect. 4 fall into this fragment).

We illustrate the compilation to native code using the following (recursive)
CHC corresponding to the While-true case in Fig. 1:

SemS(t(tb, ts), i, o) ⇐= SemB(tb, i, b) ∧ b ∧ SemS(ts, i, o′) ∧ SemS(t, o′, o)

ks2 requires each position in each relation to be annotated as an input or output
variable.1 In the example, the first position of SemS and SemB is the term being
executed, which is always assumed to be an input; the second position is the
input on which the term should be executed, and the last position is the output.
To operationalize the CHC, ks2 performs the following steps to identify an
evaluation order: it analyzes each relation instance in the body of the CHC, and
performs a dataflow analysis to determine an order in which the blocks can be
executed. This step is done by building a dataflow graph and then performing a
topological sort to identify an order in which each relation can be computed. In
the given example, one possible order is to first evaluate SemB(tb, i, b) because i is
readily available, then determine whether b is true, then evaluate SemS(ts, i, o′),
and finally evaluate SemS(t, o′, o) (o′ depends on one of the previous relations).
Our implementation of this transformation has some basic requirements. First,
no two relations can output the same variable—otherwise one cannot resolve
which instance to use. Second, every input variable i′ to a relation is either the
output of another relation or appears in the first-order formula of the CHC in
the form i′ = f(·)—i.e., the value of i′ can be computed without having to call
an SMT solver.

At this point, we generate code for each block. Child CHCs turn into function
calls, guards into conditional statements, and value productions into assign-
ments. This generated code is then compiled and turned into an executable
function that implements the CHC’s semantics. To execute a program on an
input/output example, the top-level semantic function is called with the input
state and the child’s semantic functions, and the program returns the output
state. This output state can be checked against the output example.

This implementation of an efficiently executable semantics is one of the main
contributions in ks2. Identifying additional ways to compile the logical semantics
into an efficiently-executable one is an interesting research direction that can
benefit from techniques in compiler design and logic programming.

1 Automatically inferring such annotations (“mode inference”) is a classical analysis
problem in logic programming [6, §10.2.2]. Automatically supplying annotations is
an interesting research direction for SemGuS.

34 K. J. C. Johnson et al.

A Simple Incomplete Verifier for Logical Specifications. The declarative
nature of SemGuS enables a simple way of building a verifier that can check a
program against a specification and return a counterexample. As we argued, veri-
fication for SemGuS is undecidable, but the declarative nature of SemGuS allows
us to build a simple, but incomplete, procedure for verifying some candidates in
SemGuS solutions. Given a concrete term t (i.e., the program we are trying to
verify), our verifier performs a pre-order traversal of t and emits a potentially
recursive SMT function for each node that corresponds to the CHC (or CHCs)
for that node. Because t is a concrete term, each child term in the CHC can also
be replaced by the concrete function implementing it. For example, the program
($+ $x $1) would be verified by emitting three SMT functions for $+, $x, and
$1. The function for $+ will call the ones for $x and $1 to perform the evalua-
tion. Operators like $while require recursive function calls. The specification can
then be used to define constraints over the root node and verified with an SMT
solver. In the case of recursive semantics, the SMT functions will potentially be
mutually recursive, thus relying on undecidable theories for which current SMT
solvers struggle in practice. This verifier, while incomplete, is “good enough” for
many of our current benchmarks, and extending SMT solvers or our verifiers to
better handle such cases is a challenging research question.

3.2 Baseline Enumerative Solvers

ks2 implements standard basic top-down and bottom-up enumeration algo-
rithms as described in the literature [11]. Because we have a logical verifier that
enables counterexample-guided inductive synthesis (CEGIS), our enumeration
algorithms only check correctness on a set of examples.

For top-down enumeration, candidate programs are enumerated using a pri-
ority queue of potentially partial programs (i.e., with holes). At each iteration a
program is extracted from the queue: if it has no holes, it is verified against the
examples; otherwise, all the programs that can be obtained by expanding the
leftmost hole with all possible child productions are added to the queue. The
standard optimization for top-down enumerators is to check partial programs
against the specification and prune them if possible. Existing optimizations are
domain-specific and identifying ways to extend them to SemGuS problems is an
open research question, which we hope this toolkit will help researchers work on.

For bottom-up enumeration, subterms of increasing size (or height) are enu-
merated and added to a program bank where they are grouped by size (or
height). Enumeration of programs of a certain size or height happens lazily; they
are verified and pushed into the bank of programs one at a time. A typical opti-
mization used in a bottom-up enumeration is to use some form of equivalence-
checking to deduplicate enumerated programs with the same behavior. One pop-
ular technique, observational equivalence, executes each enumerated program
on the input example states and prunes a program if a previously enumerated
program returns the same output state. However, because SemGuS supports
imperative semantics, the possible input states for a sub-program are not nec-
essarily the same as the top-level-program’s input states (i.e., variable values

The SemGuS Toolkit 35

change throughout the program execution), and thus there is not an easy way
to perform an observational-equivalence check. The development of an appropri-
ate pruning technique for a bottom-up SemGuS enumerator is an open research
question, which we hope this toolkit will help researchers work on, for example by
building on approaches such as equality saturation [25] and lifting interpretation
to sets of programs [17].

3.3 Extensibility

ks2 can be extended by instantiating various interfaces with modules. For exam-
ple, one might want to add a module that implements a technique for pruning
enumerated programs with the bottom-up enumeration. To add this technique,
the module would implement the add-to-bank interface, which is responsible
for adding freshly enumerated programs to the bank of enumerated programs,
and simply decline to add programs that the module can prune. In code, this
implementation might look like:

1 (defmethod add -to -bank :around ((ext prune) bank prog metric)

2 "Adds the program PROG to BANK unless it should be pruned"

3 (unless (%should -prune prog) (call -next -method)))

where prune is the module class and %should-prune implements the predicate
for whether or not a program should be pruned. At this time, among others, we
have interfaces for adding solvers, adding verifiers, and inspecting and updating
the SemGuS problem. We will continue to add more interfaces as the need arises;
the most up-to-date documentation is available with ks2 and its supporting
libraries.

Outside of ks2, the SemGuS Parser is available as a standalone tool for
parsing SemGuS problems into JSON, as well as a .NET library for direct inte-
gration into solvers. We expect these parsing tools to lower the barrier to entry
for building new SemGuS tooling.

4 Benchmarks and Performance of Baseline Solvers

We present an initial set of SemGuS benchmarks and evaluate the performance
of our baseline solvers on such benchmarks.

Benchmarks. The ability of SemGuS to represent synthesis problems from dis-
parate domains in the same solver-agnostic format is one of its key distinguish-
ing features. We have created 431 SemGuS benchmarks, consisting of synthesis
problems from a variety of domains.

Sample domains: 17 benchmarks of easy synthesis problems (10 for imper-
ative programs with loops, 3 for SMT datatypes, and 4 integer-arithmetic
benchmarks). These benchmarks are designed to help researchers build Sem-
GuS solvers and are basic test of a solver’s support of various features of the
SemGuS format. They contain between 1 and 6 input/output examples each.

36 K. J. C. Johnson et al.

Table 1. Solved benchmarks by category.

Domain Total TopDown BottomUp(H) BottomUp(S) Virtual Best

Sample Domains 17 14 11 13 15

Regular Expressions 72 52 8 45 54

Boolean 88 45 47 46 49

Bitvectors 100 38 27 36 43

Messy 154 0 0 0 0

Total 431 149 93 140 161

Regular expressions: 72 benchmarks for synthesizing regular expressions,
which include problems from the original SemGuS paper [15], from the tool
AlphaRegex [16], and CSV formatting problems. These benchmarks have
between 2 and 244 input/output examples each. Benchmarks in this cate-
gory may use two different semantics of regular expressions: one based on
Boolean matrices and one based on SMT terms for the theory of regular
expressions.

Boolean formulas: 88 benchmarks for synthesizing Boolean formulas, including
DNF (32), CNF (33), and cube (23) formulas. Each benchmark has between
4 and 128 input/output examples.

Bitvectors: We provide 100 benchmarks over imperative loop-free bitvector
programs [10]. In our adaptation of the existing benchmarks, we consider dif-
ferent bitvector semantics (e.g., one where bitvectors restart at 0 on overflow,
and one where the values remain at INT MIN or INT MAX). The ability to
customize programs semantics is a key feature of SemGuS. These benchmarks
use logical specifications instead of input-output examples.

Messy: 154 benchmarks (15 bitvector, 18 imperative, 121 unrealizable SyGuS
and imperative) from the original SemGuS paper.

We expect this set to be extended. New benchmarks may be submitted to
the Semgus-Benchmarks GitHub repository via pull requests. All submissions are
automatically checked for proper syntax and manually reviewed by maintainers
for appropriateness before being included.

Performance of Baseline Solvers. Benchmark results for our top-down and
bottom-up enumerators by height (H) and size (S) are shown Table 1 as a sum-
mary solved instances and Fig. 3 as a cactus plot illustrating the time taken to
solve the benchmarks. All experiments are run on a cluster [4], with each node
having an AMD EPYC 7763 64-Core Processor, of which we requested two cores
and 12 GiB of RAM. We set a timeout value of 2000s and memory limit of 8
GiB. We run each experiment 5 times and report the median of these runs.

The SemGuS Toolkit 37

Fig. 3. Cactus plot of runtime. (Lower and
to the right is better.)

For Sample Domains, the solvers
performed similarly and cumula-
tively solved 15/17 benchmarks (Vir-
tual Best). Top-down enumeration is
a clear winner for Regular Expres-
sions, with height-based bottom-
up enumerator performing poorly
because the solutions are typi-
cally narrow-but-tall. All solvers per-
formed about equivalently on the
Boolean benchmarks, although each
solver solves a slightly different sub-
set of the problems. For Bitvectors,
the bottom-up height-based solver underperformed because these benchmarks
have grammars with many productions per non-terminal, thus producing many
programs at each height. However, size-based bottom-up enumeration could
solve 5 problems that the top-down enumerator could not solve, and the top-
down enumerator solved 7 that the bottom-up, size-based enumerator could not
solve. Note that the Bitvector benchmarks have relational specifications and
were solved with CEGIS, but for 19 benchmarks, the verifier failed to check a
candidate program or generate counterexamples for at least one solver. For the
43 solved benchmarks, the verifier generated between 1 and 10 counterexam-
ples (average 4.5), in less than 150 ms each (average 30 ms). The remaining 38
benchmarks generated up to 12 counterexamples before exceeding the timeout
or memory limit. Our solver could not solve any Messy benchmarks: most are
unrealizable (i.e., they have no solution) or use specifications that are hard to
verify using ks2’s SMT-based verifier. The Messy solver is particularly good at
proving problems unrealizable, but it has not been ported to the SemGuS format
and we cannot include it in our baseline.

In terms of enumeration throughput (enumerated programs per second), our
solvers perform similarly, and they can enumerate up to 150,000 programs per
second (average 33,000) for benchmarks for which verification is quick. The
advantage of building and using executable semantics is obvious: if the log-
ical verifier is instead called on each candidate, the throughput drops to at
most 800 programs per second (average 175). On the benchmarks where solving
with executable semantics and the logical verifier are both supported, the use of
the executable semantics is on average 220 times faster than the logical verifier
(geomean).

These results provide a baseline rate for future SemGuS solvers to be com-
pared against; the advantage of simple enumerators is their raw speed.

5 Related Work

The syntax-guided-synthesis paradigm [1] has been successfully used in many
applications, including invariant synthesis [8,18], and synthesis of rewrite rules

38 K. J. C. Johnson et al.

and invertibility conditions [19,20]. Several efficient solvers are available for this
format [2,13,24]. This effort has inspired several domain-specific extensions for
domains that cannot be captured by standard SMT-LIB theories [21]. In con-
trast, this work develops a general framework for which these extensions can
be expressed in a uniform way. Moreover, SemGuS allows one to define syn-
thesis problems—e.g. for imperative programs—that cannot be captured in a
natural way by an SMT theory. The syntax-guided-synthesis paradigm has been
extended to signatures with oracles [14,22], or symbols whose semantics are given
by user-provided binaries. In contrast, in SemGuS, the semantics of all symbols
are fully expressed in the problem description.

Acknowledgements. The authors would like to thank Jinwoo Kim, for initial discus-
sions about the SemGuS format; Wiley Corning, Rahul Krishnan, and Shaan Nagy, for
code contributions to the SemGuS parser; Evan Geng, Jiangyi Liu, and Charlie Murphy
for finding and reporting bugs; and, in addition to everyone previously listed, Kanghee
Park, Anvay Grover, and all future contributors for providing SemGuS benchmarks.

Supported, in part, by a Microsoft Faculty Fellowship; a gift from Rajiv and Ritu
Batra;and NSF under grants CCF-{1750965, 1918211, 2023222, 2211968, 2212558}.
Any opinions, findings, and conclusions or recommendations expressed in this publica-
tion are those of the authors, and do not necessarily reflect the views of the sponsoring
entities.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-
Aided Design, pp. 1–8 (2013). https://doi.org/10.1109/FMCAD.2013.6679385

2. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part I. LNCS,
vol. 10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5 18

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

4. Center for High Throughput Computing: Center for high throughput computing
(2006). https://doi.org/10.21231/GNT1-HW21, https://chtc.cs.wisc.edu/

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pp. 238–252. ACM (1977).https://doi.org/10.1145/512950.
512973, https://doi.org/10.1145/512950.512973

6. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. 13(2&3), 103–179 (1992)

7. D’Antoni, L., Hu, Q., Kim, J., Reps, T.: Programmable program synthesis. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 84–109. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 4

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.21231/GNT1-HW21
https://chtc.cs.wisc.edu/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-030-81685-8_4

The SemGuS Toolkit 39

8. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 14

9. Gulwani, S.: Synthesis from examples. In: WAMBSE (Workshop on Advances in
Model-Based Software Engineering) Special Issue, Infosys Labs Briefings. vol. 10.
Citeseer (2012)

10. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’11, New York, NY, USA, pp. 62–73.
Association for Computing Machinery (2011). https://doi.org/10.1145/1993498.
1993506

11. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends R© Program.
Lang. 4(1–2), 1–119 (2017)

12. Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 21

13. Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deduc-
tive program synthesis. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15–20, 2020, pp. 1159–1174.
ACM (2020). https://doi.org/10.1145/3385412.3386027, https://doi.org/10.1145/
3385412.3386027

14. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1–8 May 2010, pp. 215–224.
ACM (2010). https://doi.org/10.1145/1806799.1806833

15. Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proc. ACM
Program. Lang. 5(POPL), 1–32 (2021)

16. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. SIGPLAN Not. 52(3), 70–80 (2016). https://doi.
org/10.1145/3093335.2993244

17. Li, X., Zhou, X., Dong, R., Zhang, Y., Wang, X.: Efficient bottom-up synthesis
for programs with local variables. Proc. ACM Program. Lang. 8(POPL) (2024).
https://doi.org/10.1145/3632894

18. Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of rep-
resentation invariants. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15–20, 2020, pp. 1–15. ACM
(2020). https://doi.org/10.1145/3385412.3385967

19. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018, Part II. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2 16

20. Nötzli, A., et al.: Syntax-guided rewrite rule enumeration for SMT solvers. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 279–297. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 20

21. Padhi, S., Polgreen, E., Raghothaman, M., Reynolds, A., Udupa, A.: The sygus
language standard version 2.1. CoRR abs/2312.06001 (2023). https://doi.org/10.
48550/ARXIV.2312.06001

https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3632894
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.48550/ARXIV.2312.06001
https://doi.org/10.48550/ARXIV.2312.06001

40 K. J. C. Johnson et al.

22. Polgreen, E., Reynolds, A., Seshia, S.A.: Satisfiability and synthesis modulo oracles.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 263–284.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1 13

23. Polozov, O., Gulwani, S.: FlashMeta: a framework for inductive program synthesis.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 107–126 (2015)

24. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5 5

25. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: EGG:
fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL)
(2021). https://doi.org/10.1145/3434304

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1145/3434304
http://creativecommons.org/licenses/by/4.0/

Relational Synthesis of Recursive
Programs via Constraint Annotated Tree

Automata

Anders Miltner1(B), Ziteng Wang2, Swarat Chaudhuri2, and Isil Dillig2

1 Simon Fraser University, Burnaby, Canada
miltner@cs.sfu.ca

2 University of Texas at Austin, Austin, USA
{ziteng,swarat,isil}@cs.utexas.edu

Abstract. In this paper, we present a new synthesis method based on
the novel concept of a constraint annotated tree automaton (CATA). A
CATA is a variant of a finite tree automaton (FTA) where the acceptance
of a term by the automaton is conditioned upon the logical satisfiabil-
ity of a formula. In the context of program synthesis, CATAs allow the
construction of a more precise version space than FTAs by ruling out pro-
grams that make inconsistent assumptions about the unknown semantics
of functions under synthesis. We apply our proposed algorithm to syn-
thesizing recursive (or mutually recursive) procedures from relational
specifications and demonstrate that our method allows solving synthesis
problems that are beyond the scope of existing approaches.

1 Introduction

Program synthesis, the task of automatically generating programs that meet
a given specification, has found numerous applications, including both user-
facing domains like data science [15,16,47,48] as well as software engineering
tasks [21,32,36,37,40]. Program synthesizers can be classified among two dimen-
sions, namely (1) whether they target a domain-specific or general programming
language, and (2) what type of specification they require. Many synthesizers
targeting end-users utilize domain-specific languages and only require informal
specifications such as input-output examples or natural language [4,9,20,52].
In contrast, program synthesizers targeting developers tend to require formal
specifications and need to handle a richer set of language features [33,39,41,49].

In the context of synthesizing general-purpose programs from logical specifi-
cations, two aspects have proven to be particularly challenging:

– Recursion: Problems that require synthesizing recursive, or mutually recur-
sive, functions have proven to be particularly difficult to solve. Despite recent
progress in this area [33,53], synthesizers that tackle recursive functions are
not as effective as those that target domain-specific languages.

– Relational specifications: With the exception of one prior research
effort [51], most synthesizers do not handle relational specifications. However,
in practice, relational specifications are particularly relevant: for example,

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 41–63, 2024.
https://doi.org/10.1007/978-3-031-65633-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_3

42 A. Miltner et al.

parametrized unit tests [13,44] and property-based tests [11,18,28], which are
becoming increasingly more popular, are, in essence, relational specifications.

While prior research has tried to tackle each of these problems in isolation,
there is no prior work that has attempted to solve synthesis problems that involve
both recursive procedures and relational specifications. In this paper, we ask
the question, “Is it possible to synthesize recursive, or even mutually recursive,
functions from relational specifications?” For example, given the specification:

even(0) ∧ ∀x. (even(x) ⇔ ¬odd(x) ∧ even(x) ⇒ odd(x + 1))

can we generate correct implementations of both even and odd? This task is quite
difficult, as it requires simultaneously solving the challenges introduced by recur-
sion and relational specifications. Intuitively, handling recursion is hard because
the synthesizer does not know the semantics of terms that involve recursive calls
to the function being synthesized. Similarly, relational specifications pose a sig-
nificant challenge because such specifications do not constrain the input-output
behavior of any individual function. For these reasons, the search space for the
underlying synthesis problem becomes enormous, and standard techniques that
facilitate search space pruning become insufficient.

Interestingly, some of the prior research efforts [33,51] on relational and
recursive synthesis adopt roughly the same solution: they construct a finite tree
automaton (FTA) whose language over-approximates the space of programs con-
sistent with the specification. The key idea is to allow non-deterministic FTA
transitions that encode uncertainty about the semantics of the function being
synthesized. However, since the resulting version space is over-approximate, these
techniques need to combine FTA construction with backtracking search.

Given the similarity between these two techniques that address two (appar-
ently orthogonal) challenges, one might be tempted to ask: “Can we use the
same idea to solve synthesis problems that involve both relational specifications
and that also require synthesizing recursive procedures?” In principle, the answer
to this question is “yes”; however, as we show experimentally, the resulting tech-
nique does not yield an effective solution in practice.

The main contribution of this paper is a more effective approach for syn-
thesizing recursive programs from relational specifications. Our method is based
on the novel concept of constraint annotated tree automaton (CATA), a new
type of FTA where non-deterministic transitions are constrained by logical for-
mulae in a first-order theory. Similar to a standard FTA, a necessary condition
for accepting a tree T is to find a run of the automaton on T that ends in an
accepting state. However, because transitions of a CATA are only valid under
certain conditions, a run of the automaton also induces an acceptance constraint,
which must be logically satisfiable in order for that run to be valid. Intuitively,
CATAs offer a more effective synthesis methodology because their acceptance
condition allows us to build an exact, rather than over-approximate, version
space with acceptable overhead. Furthermore, by leveraging an SMT solver to
check the acceptance condition of the CATA, we can avoid the need for explicit

Relational Synthesis of Recursive Programs via CATAs 43

backtracking search and can instead piggyback on all research results underlying
modern SMT solvers.

In addition to proposing the concept of CATAs and showing how they can
be used for synthesis, another key contribution of this paper is a goal-directed
approach for CATA construction that exploits the specific problem instance at
hand. In particular, a naive synthesis approach based on CATAs would require
constructing multiple CATAs for different sub-terms in the specification and then
taking their intersection. However, as is the case with any type of automaton,
intersection is an expensive operation, so a synthesis algorithm that requires
many intersections is unlikely to scale. Our method addresses this problem by
proposing a more efficient algorithm that minimizes the number of automaton
intersections required to create a precise version space.

We have implemented our proposed approach in a new tool called Contata

and evaluate it on a suite of synthesis benchmarks involving recursion and spec-
ified by a relational specification. Our evaluation shows the advantages of our
approach over prior techniques that first build a non-deterministic FTA and then
perform backtracking search.

2 Motivating Example

In this section, we give an overview of the technique on an extended example
where the goal is to automatically synthesize two functions:

evens : list a -> list a odds : list a -> list a

Given a list, the evens function is expected to return all elements at even indices,
and the odds function should return elements at odd indices. For example, we
have evens([3,8,2]) = [3,2] and odds([3,8,2]) = [8]. The code for evens
and odds is given below:

evens(x) = match x with
| [] -> []
| h:t -> h:odds(t)

odds(x) = match x with
| [] -> []
| _:t -> evens(t)

Note that the evens and odds functions are mutually recursive: The evens
function starts by extracting the head of the list, then prepends it to the result
of calling odds on the tail. The odds function skips the first element in its input
list, and merely returns the result of calling evens on the tail.

Specifying the Task. Since our goal is to automatically synthesize these func-
tions, we first need a specification for this task. For the purposes of this example,
suppose that the user provides the following specification:

∀x.∀xs. evens(xs) = odds(x : xs) ∧ ∀x.∀y.∀z.evens([x, y, z]) = [x, z]

The first conjunct describes the relationship between evens and odds, namely,
that the result of calling odds on x : xs should be the same as calling on evens
on xs. The second part of the specification provides a symbolic input-output

44 A. Miltner et al.

example. Note that such relational specifications naturally arise in many con-
texts, including data structure specifications [36,37], parametrized unit tests [13],
and 2-safety properties like commutativity [42].

Prior Work. Before describing our technique, we first briefly explain how prior
work deals with relational specifications and recursion. First, let us assume that
the universal quantifiers in the specification have been instantiated via a stan-
dard counterexample-guided inductive synthesis (CEGIS) loop. In particular,
suppose we have the following ground formula during some iteration of CEGIS:

evens(0 : [1, 2]) = odds([1, 2]) ∧ evens([0, 1, 2]) = [0, 2] (1)

Given such a specification ϕ for counterexamples I1, . . . , In, a common theme
behind prior work [33,49,50] is to construct a version space in the form of a finite
tree automaton (FTA) that represents the space of all programs (up to a bounded
depth) that are consistent with ϕ. Specifically, these techniques construct an
automaton Ai for each counterexample Ii and then use FTA intersection to
handle the set of all counterexamples. Finally, states that satisfy the specification
ϕ are marked as final, so any tree accepted by the resulting FTA is a solution.

Constructing such an FTA is straightforward when the semantics of all
expressions are known: Since the automaton states represent constants and the
transitions correspond to operators/functions, we can simply add new transi-
tions and nodes to the FTA using the operational semantics of the language. As
an example, consider a DSL operator f that takes as input two integers x and
y and produces 2x + y, and let qx be the automaton state representing constant
x. Since the semantics of f are known, the FTA would contain the transition
f(q1, q2) → q4 since f(1, 2) is equal to 4.

Unfortunately, recursive procedures and relational specifications pose a sig-
nificant challenge for FTA construction: When synthesizing a recursive function
f , the implementation can recursively call f , but the semantics of f are not
yet known, as f is currently under construction. Similarly, when dealing with
relational specifications, the implementation of a function f could call another
function g, but the semantics of g are also not yet known. To make matters
worse, relational specifications constrain the joint behavior of multiple func-
tions, so, when constructing the FTA for an individual function, we cannot even
determine which FTA states should be marked as final.

Limitations of Prior Work. Existing techniques [33,51] deal with this chal-
lenge by adding non-deterministic transitions to the FTA. In particular, given
FTA states representing values c1, . . . , cn and an n’ary function f that has yet
to be synthesized, the idea is to add a transition of the form f(c1, . . . , cn) → c
as long as the formula f(c1, . . . , cn) = c is consistent with the specification.
However, since there are many such output values c that are consistent with the
specification, this introduces a high degree of non-determinism. Furthermore,
relational specifications also introduce non-determinism with respect to final
states, so the resulting FTA is very over-approximate — that is, the ground

Relational Synthesis of Recursive Programs via CATAs 45

truth program is accepted by the FTA, but not every program accepted by the
FTA satisfies the specification. As a result, existing techniques [33,51] combine
FTA construction with backtracking search to look for a valid solution. How-
ever, if the synthesis task involves both recursion and relational specifications,
the resulting FTA becomes so over-approximate that performing backtracking
search over this space of programs is no longer feasible.

Insight Behind Our Approach. Our approach is motivated by the following
observation about the shortcoming of prior techniques: Many programs accepted
by the over-approximate FTA make inconsistent assumptions about the unknown
semantics of functions being synthesized. For example, consider the following
incorrect solution for the evens function for our running example:

evens(x) = match x with
| [] -> []
| h:t -> odds(t)++odds(t)

This program must be incorrect with respect to the specification (Eq. 1) even
if we know absolutely nothing about the implementation of odds: The only way
this program can return [0,2] on input list [0,1,2] is if the first call to odds
on [1,2] returns [0] and the second call returns [2] on the same input list.
But, assuming that odds is deterministic, this is clearly infeasible, as we cannot
have odds([1,2]) = [0] and odds([1,2]) = [2] at the same time!

However, prior techniques construct a version space that includes this
spurious program: Since the specification does not constrain the behavior of
odds([1,2]) in any way, they would allow any transition from odds([1,2])
to any possible automaton state, including both [0] as well as [2]. Unfortu-
nately, this leads to many spurious programs, including the “obviously wrong”
implementation of evens from above.

In this paper, we show how to construct the version space in such a way
that such inconsistent programs are never part of it. Our key idea is to qualify
transitions in the FTA by logical formulas that indicate necessary conditions
for a transition to be valid. We refer to such an FTA as a Constraint Anno-
tated Tree Automaton (CATA) due to presence of constraints on its transitions.
Then, a given tree will only be accepted by the CATA if there exists a run of
the CATA that both ends in an accepting state and does not make inconsistent
assumptions. However, because the evens implementation above makes inconsis-
tent assumptions about the I/O behavior of odds, our approach can immediately
rule it out.

3 Preliminaries

A finite tree automaton is a type of state machine that accepts trees rather than
strings. More formally, FTAs are defined as follows:

Definition 1 (FTA). A (bottom-up) finite tree automaton (FTA) over a finite
alphabet Σ is a tuple A = (Q,Qf ,Δ) where Q is a finite set of states, Qf ⊆ Q

46 A. Miltner et al.

is a set of final states, and Δ is a set of transitions (rewrite rules) of the form
f(q1, . . . , qn) → q where q, q1, . . . , qn ∈ Q and f ∈ Σ.

Fig. 1. Tree repre-
senting ¬(¬1 ∨ 0).

Each symbol in the alphabet Σ has an arity (rank), and
terms of arity k are denoted Σk. Each ground term t can be
represented in terms of its syntax tree (n, V,E) with root
node n, vertices V , and edges E; hence, we use “tree” and
“term” interchangeably. We say that a tree t is accepted
by an FTA if we can rewrite t to some state q ∈ Qf using
transitions Δ. The language of an FTA A, denoted L(A),
includes all ground terms that A accepts.

Example 1. Consider the FTA A with states Q = {q0, q1},
Σ0 = {0, 1}, Σ1 = {¬}, Σ2 = {∨}, final states Qf = {q1},
and the transitions Δ:

1 → q1 0 → q0 ∨(q0, q0) → q0 ∨(q0, q1) → q1
¬(q0) → q1 ¬(q1) → q0 ∨(q1, q0) → q0 ∨(q1, q1) → q1

This FTA accepts propositional logic formulas that evaluate to true. For instance,
Fig. 1 shows the tree for formula ¬(¬1 ∨ 0) where each sub-term is annotated
with its state on the right. This formula is accepted by A because the rules in
Δ “rewrite” the input to state q1, which is a final state.

Definition 2 (Accepting run). An accepting run of an FTA A = (Q,Qf ,Δ)
is a pair (t, L) where t = (nr, V, E) is a term that is accepted by A and L is a
mapping from each node in V to an FTA state such that (1) L(nr) ∈ Qf ; (2) If
n has children n1, . . . , nk such that L(n) = q and L(n1) = q1, . . . , L(nk) = qk,
then Label(n)(q1, . . . , qk) → q is a transition in Δ.

In other words, an accepting run labels each tree node with an automaton state.

Example 2. Let L be the mapping that assigns each node of the tree t in Fig. 1
to the state written next to it. Then, (t, L) is an accepting run for Example 1.

4 Constraint Annotated Tree Automata

In this section, we introduce the concept of Constraint Annotated Tree Automata
(CATA), which forms the basis of the synthesis algorithm described in the next
section.

Definition 3 (CATA). Let Σ be a finite alphabet and T be a decidable first-
order theory (T may use symbols from Σ as well as additional symbols). A
constraint annotated tree automaton (CATA) over Σ and T is a tuple AT =
(Q,Qf ,Δ) where:

– Q is a finite set of states
– Qf is a mapping from states to their acceptance condition, which is a formula

in theory T

Relational Synthesis of Recursive Programs via CATAs 47

– Δ ⊆ Σ × Q∗ × T × Q is a set of transitions of the form �(q1, . . . , qn) →ϕ q
where q, q1, . . . , qn ∈ Q and � ∈ Σ and ϕ ∈ T .

At a high level, a CATA differs from an FTA in two ways: First, the accep-
tance condition Qf is a mapping from each state to a formula ϕ in theory T . In
other words, unlike the standard FTA where Qf maps each state to a boolean
constant, the CATA maps each state to a first-order formula under which that
state is accepting. Second, the transitions in a CATA are qualified by formu-
las in a first-order theory T . In particular, a transition f(q1, . . . , qn) →ϕ q
can rewrite f(q1, . . . , qn) to q only if the transition condition ϕ is satisfied.

Fig. 2. CATA run on
f(0, 1)

Next, we define a run of a CATA. Recall that an
FTA run consists of a tree and mapping L from nodes
of that tree to states in the automaton. For CATAs,
we generalize this notion of a run by having two types
of mappings: One maps each tree node to a state, and
another maps each node to a formula. More formally,
we have:

Definition 4 (CATA run). Let AT = (Q,Qf ,Δ) be a CATA over alphabet Σ
and theory T . A run of this CATA is a triple r = (t, LQ, Lϕ) consisting of:

1. A tree t = (nr, V, E), where each n ∈ V is labeled by an element of Σ
2. A function LQ : V → Q mapping the nodes of t to the states of AT
3. A function Lϕ : V → Formulas(T) mapping nodes of t to formulas over theory

T such that if n has label f and children n1 . . . nk then there is a transition

(f(LQ(n1), . . . , LQ(nk)) →Lϕ(n) LQ(n)) ∈ Δ

In other words, a CATA run not only labels tree nodes with states but also
with the conditions under which the corresponding transition is legal. We say
that a run (t,mQ,mΦ), ends at state q if mQ(t.Root) = q.

Example 3. Consider following CATA AT over the combined theory of unin-
terpreted functions and integers: AT has states Q = {q0, q1}, Σ0 = {0, 1},
Σ2 = {f}, final states Qf = {q0
→ ⊥, q1
→ g(0) < 1}, and the following
transitions Δ:

1 →� q1 0 →� q0 f(q0, q0) →g(0)=0 q0 f(q0, q1) →g(0)=1 q1 f(q1,) →� q1

Here, �,⊥ denote true and false respectively. Figure 2 shows a run of this CATA,
with LQ, Lϕ shown as a pair (q, ϕ) next to that node.

Definition 5 (Run Assumptions). Given a run r = (t, LQ, Lϕ), the assump-
tions of the run are defined as follows:

Assumptions(r) =
∧

n∈Nodes(t)

Lϕ(n)

48 A. Miltner et al.

For example, the assumptions for the run shown in Fig. 2 is just g(0) = 1.

Definition 6 (Accepting run). Given a run r = (t, LQ, Lϕ) of CATA AT ,
the acceptance condition of the run is the conjunction of the assumptions of r
and the formula corresponding to the root node, i.e.,

AcceptCond(AT , r) = Assumptions(r) ∧ Qf (LQ(Root(t)))

A run r is accepting if there exists a model M such that M |=
AcceptCond(AT , r). We refer to such a model M as a witness for run r.

Example 4. The run from Example 3 is not accepting because the assumptions
made by the run (namely, g(0) = 1) contradict the acceptance condition for node
q1, which is g(0) < 1.

Recall that an FTA accepts a tree t if there exists a corresponding accepting
run for t. We generalize this notion to CATAs as follows:

Definition 7 (Accepted tree). AT accepts tree t under witness M, denoted
(t,M) |= AT , if there is an accepting run r = (t, LQ, Lϕ) of AT with witness M.

Example 5. The tree shown in Fig. 2 would be accepting (with the same corre-
sponding run from Fig. 2) if we change Qf (q1) to g(0) ≥ 1.

Next, we define the language of a CATA. Recall that the language of an FTA
is the set of all trees it accepts. However, since a CATA accepts a tree only under
certain conditions, the language of a CATA consists of pairs of trees along with
their witnesses. More formally, we have:

L(AT) = {(t,M) | (t,M) |= AT }

As mentioned earlier, synthesis approaches based on tree automata rely on
a product operation, A1

T × A2
T , that produces a new automaton AT such that

L(AT) = L(A1
T) ∩ L(A2

T). This operation is defined as follows for CATAs:

Definition 8 (Intersection). Let A1
T = (Q1, Qf 1,Δ1) and A2

T =
(Q2, Qf 2,Δ2) be two CATAs over the same underlying theory T and alphabet
Σ. Then, the product CATA A1

T × A2
T is defined as (Q,Qf ,Δ) where:

– Q = Q1 × Q2

– Qf ((q1, q2)) = Qf 1(q1) ∧ Qf 2(q2)
– Δ contains the transition �((q11, q21), . . . , (q1n, q2n)) →ϕ1∧ϕ2 (q1, q2) iff

�(q11, . . . , q1n) →ϕ1 q1 ∈ Δ1 and �(q21, . . . , q2n) →ϕ2 q2 ∈ Δ2

Example 6. Suppose A1
T contains the transition q1 →g(0)≥1 q2 and A2

T contains
the transition q3 →g(0) �=1 q4. Then, assuming both CATAs are over the combined
theory of integers and uninterpreted functions, the product CATA would contain
the transition (q1, q3) →g(0)>1 (q2, q4).

Theorem 1. Let A1
T = (Q1, Qf 1,Δ1) and A2

T = (Q2, Qf 2,Δ2) be two CATAs
over theory T and alphabet Σ. Then, L(A1

T × A2
T) = L(A1

T) ∩ L(A2
T)

Relational Synthesis of Recursive Programs via CATAs 49

4.1 CATA Operations for Synthesis

We now define CATA operations that our synthesis algorithm relies on.

Definition 9 (Accepting Runs of Tree). Given a CATA AT and tree t, the
accepting runs for t, denoted Runs(AT , t) are:

Runs(AT , t) = {r = (t, LQ, Lϕ) | SAT(AcceptCond(AT , r))}

In other words, the accepting runs of AT on tree t are those runs whose accep-
tance conditions are logically satisfiable. We can similarly define accepting runs
for a state as all accepting runs that end in that state:

Definition 10 (Accepting Runs of State). Given a CATA AT and state q,
the accepting runs for q, denoted Runs(AT , q), are:

Runs(AT , q) = {r = (t, LQ, Lϕ) | r ∈ Runs(AT , t) ∧ LQ(Root(t)) = q}

Given a state q or tree t, we often need to compute the acceptance condition
for that tree/state, which we define as follows:

Definition 11 (Acceptance Condition). Given a CATA AT and state or
tree x, the acceptance condition of x, denoted AcceptCond(AT , x) is:

AcceptCond(AT , x) =
∨

r∈Runs(AT ,x)

AcceptCond(AT , r)

Example 7. Consider AT defined in Example 3, and let t1 be the tree in Fig. 2.
We have Runs(AT , t1) = ∅, and AcceptCond(AT , q1) = g(0) < 1.

Finally, the acceptance condition for the CATA, AcceptCond(AT), is the
disjunction of acceptance conditions over all states, and a minimum accepted
tree, denoted MinTree(AT) is a minimum size tree accepted by the CATA.

5 Synthesis Algorithm

In this section, we first define our synthesis problem more precisely (Sect. 5.1)
and then present the basic synthesis technique (Sect. 5.2). However, since the
basic algorithm ends up requiring too many CATA intersections, it does not
lend itself to a practical implementation. In Sect. 5.3, we show how to construct
the CATA in a goal-directed way to minimize the number of CATA intersections.

5.1 Problem Statement

Definition 12 (Relational spec). Let F = {f1, . . . , fn} be a set of function
symbols. A relational specification over F is a formula of the form ∀x.Φ(x) where
Φ is a quantifier-free formula over some theory T and the only function symbols
in Φ belong either in F or to the signature of T .

50 A. Miltner et al.

Fig. 3. A functional ML-like language. Programs are comprised of a list of mutually
recursive function definitions.

Fig. 4. Program Semantics. The symbols e range over expressions, v range over values,
and ϕ range over formulas in the the theory of uninterpreted functions.

Relational specifications allow jointly constraining the behavior of multiple
functions to be synthesized. For instance, examples of relational specifications
include ∀x.f(g(x)) = x (i.e., f and g are inverses) or ∀x, y.f(x, y) = g(y, x).

In this paper, we consider the problem of synthesizing programs in an ML-like
functional programming language with sums, products, and mutual recursion.
Figure 3 shows the core subset of this programming language. A program in
this language consists of one or more function definitions, and the body of each
function is an expression e, which includes function applications, constructors
(inl,inr for sums and (e1, e2) for products), destructors (unl,unr for sums,
fst,snd for products) and switch statements for pattern matching. Figure 4
presents the semantics of this language using the notation P � e ⇓ v;ϕ, meaning
that, under the function definitions given by P , expression e evaluates to value
v and ϕ is a formula that tracks the results of procedure calls made by e.1

1 These instrumented semantics for recording results of function calls will be useful
for CATA construction in Sect. 5.

Relational Synthesis of Recursive Programs via CATAs 51

Given a program P in this language defining functions F ′ and a relational
specification ψ over functions F ⊆ F ′, we write P |= ψ if the implementation of
P satisfies specification ψ. Since the focus of this paper is not verification, we
assume access to an oracle for checking P |= ψ. Given n programs P1, . . . , Pn

implementing different functions, we also use the notation (P1, . . . , Pn) |= ψ to
denote that these programs collectively satisfy specification ψ.

Definition 13 (Solution to synthesis problem). Let ψ be a relational spec-
ification over functions F = {f1, . . . , fn}. A solution to this synthesis problem is
a mapping from each fi ∈ F to a program such Pi such that (P1, . . . , Pn) |= ψ.

Since our top-level approach is based on counterexample-guided inductive
synthesis (CEGIS) [2], it suffices to have a synthesis procedure that can only
deal with ground relational specifications. In particular, a ground relational spec-
ification over F cannot contain any variables, either free or bound, besides those
in F . In the remainder of this section, we therefore only consider ground spec-
ifications and assume that quantifiers are handled using the standard CEGIS
framework.

Assumptions. Our synthesis algorithm makes a few important, but realistic
assumptions, that we rely on in the remainder of this section. First, we assume
that there is a pre-defined partial order relation � between constants in the
underlying language (e.g, 1 ≺ 3, [1, 2] ≺ [1, 2, 3] etc.). This partial ordering must
be well founded and must not have infinite fan-out to ensure termination. Sec-
ond, we assume that, when function f is called on some input x, other calls
that f makes can only involve values satisfying y ≺ x. This common assump-
tion [1,24,33,35] is required to ensure that recursive calls are well-founded.
Finally, to further simplify presentation, we assume that the language admits
a finite number of constants; however, our implementation does not make this
assumption (see Sect. 6).

5.2 Basic Synthesis Algorithm

In this section, we describe our CATA-based synthesis procedure. While this
algorithm exposes how CATAs are used for synthesis, it does not lend itself to
a practical implementation due to its eager nature. We first present the basic
algorithm and then explain how to make it more goal-directed in the next section.

Our basic synthesis procedure is summarized in Algorithm 1 and takes two
inputs, the set F of functions to synthesize and a ground relational specification
over F . The algorithm computes a solution for each f ∈ F in three steps:

– First, for each possible input c of f ∈ F , the algorithm builds a CATA Π(f, c)
that encodes how different implementations of f can behave on input c (lines
2–5). In particular, for a possible output c′, AcceptCond(Π(f, c), c′) gives the
conditions under which f can produce c′ on input c.

– Next, in lines 6–11, the algorithm builds a CATA, Ω(f), encoding all pos-
sible input-output behaviors of different implementations of f . This is done

52 A. Miltner et al.

input: Relational ground specification ψ and set of functions F to synthesize
output: Solution Ψ mapping each function to its implementation

1: procedure Synthesize(ψ, F)

� Create initial CATAs for each possible input for each function
2: Π ← ∅ � Mapping from each function and constant to corresponding CATA
3: for each c ∈ C do
4: for each f ∈ F do
5: Π(f, c) ← CreateCATA(f, c, ψ)

� Obtain CATA per function and strengthen specification
6: φ ← ψ � Initialization for strengthened spec
7: Ω ← ∅ � Mapping from each function to its CATA

8: for each f ∈ F do
9: A ← Π(f, c1) × . . . × Π(f, cn)

10: φ ← φ ∧ AcceptCond(A)
11: Ω(f) ← A

� Synthesize implementation of each function
12: Ψ ← ∅ � Solution mapping from each function to its implementation
13: for each f ∈ F do
14: A ← StrengthenSpec(Ω(f), φ) � Update acceptance condition
15: P ← MinTree(A)
16: φ ← φ ∧ AcceptCond(A, P)
17: Ψ(f) ← P

18: return Ψ

Algorithm 1: Basic synthesis procedure. C denotes the set of constants in the
programming language, sorted to be consistent with partial order �

by using the CATA product operation defined in Sect. 4. Lines 6–11 also
strengthen the initial specification ψ to a stronger condition φ by taking into
account the acceptance condition of the constructed CATAs.

– Finally, lines 12–17 of the algorithm use the per-function CATA Ω(f) and
the strengthened specification φ to obtain a concrete implementation of f .
To that end, the algorithm first strengthens the acceptance condition of each
state by conjoining the global specification φ; it then obtains a minimum
tree P accepted by the resulting automaton A. This tree corresponds to the
synthesized implementation for f , and the algorithm moves on to the next
function after strengthening the global specification φ to be consistent with
the acceptance condition for P .

The interesting aspect of this algorithm is that it is guaranteed to find a
set of programs that collectively satisfy the relational specification without any
need for backtracking search. Intuitively, there are three key reasons for this:

1. First, when building the CATA for each (f, c) pair, the CreateCATA pro-
cedure (formalized as inference rules in Fig. 5) generates constraints under
which each transition is valid. In particular, consider the Function Call

rule in Fig. 5. When adding the transition g(c) → c′, AcceptCond(Π(g, c), c′)

Relational Synthesis of Recursive Programs via CATAs 53

Fig. 5. Inference rules for CreateCATA(f, vin, ψ). CATA states correspond to con-
stants in the language, and we write qc to denote the state representing constant c.
The state ⊥ corresponds to the non-evaluated branch of a switch. The rules for Snd,
Inr, and Switch Right are omitted for space reasons.

gives the exact conditions under which g will return c′ on input c, and this is
the case even when g is one of the functions being synthesized.

2. Second, the strengthened specification φ after lines 6–11 precisely encodes all
possible joint behaviors of all functions to be synthesized. Thus, a model of φ
corresponds to input-output behaviors of every f ∈ F that are both mutually
consistent and that will also satisfy the relational specification. Conceptually,
by sampling a model M of φ and plugging M into the transition and accep-
tance conditions of the CATAs, we can turn each CATA into an FTA and
then obtain the solution by finding programs accepted by each FTA.

3. However, one problem with the above model-sampling approach is that it
does not guarantee that the synthesized programs are small (e.g., the sampled
model may only have very complex implementations). Thus, lines 12–17 of
Algorithm 1 construct the model in a lazy way that guarantees minimality
at each step. In particular, rather than obtaining a monolithic model of φ,
the algorithm considers one function f at a time, strengthens its acceptance
condition using φ, and then finds a minimum size accepting tree P for f . Since
P induces certain assumptions on the other functions (or relies on certain
assumptions being held), φ is gradually concretized (by strengthening it at
line 16). Thus, the third step of the synthesis procedure can be viewed as
incremental model construction for the formula φ obtained after step 2.

54 A. Miltner et al.

input: Relational ground specification ψ and set of functions F to synthesize
output: Solution Ψ mapping each function to its implementation

1: procedure LazySynthesize(ψ, F)

� Initialization phase
2: Ω ← {f �→ A�

T | f ∈ F} � Mapping from functions to CATAs
3: Λ ← ∅ � Mapping from each function to counterexamples that appear in ψ

� Iteratively refine CATAs until solution is found
4: while true do

� Initialization for this refinement iteration
5: φ ← ψ ∧ ∧

f∈F AcceptCond(Ω(f)) � Current global specification
6: Ψ ← ∅ � Mapping from functions to candidate solution

� Get candidate solution
7: for each f ∈ F do
8: A ← StrengthenSpec(Ω(f), φ) � Update acceptance condition
9: Ψ(f) ← MinTree(A)

10: φ ← φ ∧ AcceptCond(A, Ψ(f))

� Check if Ψ is a valid solution
11: θ ← {χ | (c′, χ) ∈ Eval(Ψ(f), c), c ∈ Λ(f), f ∈ F}
12: if SAT(ψ ∧ ∧

i θi) then
13: return Ψ � Ψ is a valid solution

� Refinement phase
14: γ ← UnsatCore(ψ ∧ ∧

i θi)
15: for each f(c) ∈ Terms(γ) do
16: Ω(f) ← Ω(f) × CreateCATA(f, c, ψ)

Algorithm 2: Lazy synthesis. A	
T from line 2 denotes a CATA that accepts all

terms, and Eval at line 11 refers to the instrumented semantics (Figure 4).

Theorem 2 (Soundness of synthesis). If Synthesize(ψ,F) returns Ψ such
that Ψ(fi) = Pi, then we have (P1, . . . , Pn) |= ψ, where |F| = n.

Theorem 3 (Completeness of synthesis). Let ψ be a ground relational spec-
ification over functions F . If there exists an implementation Pi for each fi ∈ F
such that (P1, . . . , Pn) |= ψ, then Synthesize will return a solution.

5.3 Lazy Synthesis Algorithm

Despite exposing the core ideas underlying our approach, the synthesis algorithm
described in Sect. 5.2 has two severe shortcomings that make it infeasible in
practice: First, it considers all possible inputs, which may be very large or even
infinite. Second, it eagerly performs CATA intersection, which is impractical due
to the exponential blow-up in CATA size. To address these shortcomings, we now
describe a lazy version of the previous synthesis algorithm that lends itself to a
much more practical implementation.2

2 We note that the eager algorithm as presented in Sect. 5.2 times out on all of our
experimental benchmarks.

Relational Synthesis of Recursive Programs via CATAs 55

The lazy synthesis procedure is presented in Algorithm 2. As in the previous
algorithm, the synthesis procedure maintains a mapping from each function f ∈
F to its corresponding CATA Ω(f). However, since Ω(f) is constructed lazily,
AcceptCond(Ω(f)) over-approximates the possible input-output behaviors of f ’s
implementations rather than characterizing them exactly. Thus, lines 4–16 of
Algorithm 2 iteratively refine Ω as follows until a valid solution is found:

– It first computes the global specification φ (line 5) by conjoining all acceptance
conditions of the current CATAs with the initial specification ψ.

– Next, it finds a solution Ψ consistent with each CATA and the global speci-
fication φ, exactly as done in Phase 3 of Algorithm 1 (lines 7–10).

– Then, it checks whether Ψ is a valid solution (lines 11–13). To do so, it
executes the candidate implementations on all relevant inputs and tracks the
observed input-output behaviors as a set of constraints θ (line 11). If the
conjunction of all of these constraints and ψ is satisfiable, then Ψ is indeed a
valid solution and is returned at line 13.

– Otherwise, the synthesis procedure obtains an unsat core γ of the resulting
unsatisfiable constraint (line 14). Intuitively, if a term f(c) appears in the
unsat core, then the CATA for f does not adequately constrain the outputs
of f on input c; hence, we must refine Ω(f) by constructing the CATA for f
on this input. Thus, line 16 of Algorithm 2 lazily refines Ω(f) by considering
inputs that appear in the unsat core rather than considering all inputs eagerly.

Our proposed lazy synthesis algorithm is also both sound and complete. The
corresponding theorems and proofs are provided in the appendix in the full
version of the paper.

Example 8. Consider the evens/odds example from §2. Initially, Ω maps both
evens and odds to AT

T , the automaton that accepts all terms for both evens and
odds. Suppose, on line 9, Contata obtains evens(xs) = [] and odds(xs) = [] as
the solution. Such a solution fails to pass the check on line 12 because it violates
the specification that evens([x, y, z]) = [x, z].

Then, on line 14, Contata computes the unsat core to be evens([0, 1, 2]) = [].
It now intersects a new CATA created from evens([0, 1, 2]) to the evens CATA,
which constrains the output of evens.

In the beginning of the next iteration, Contata updates the global specifi-
cation with the accept condition of the constrained automatas. It then pops
another candidate program:

evens(l) = match l with
| Nil -> Nil
| Cons (h,t) -> odds(t)

Thus, evens(l) relies on odds([1, 2]) = [1, 2]. But the odds automaton is uncon-
strained, and thus will simply return []. So the unsat core will be odds([1, 2]) = [],
and so the automaton for [1, 2] would then be intersected with the current odds
automaton. This process will continue until eventually the algorithm is able to
find a program that relies on valid assumptions.

56 A. Miltner et al.

Table 1. Statistics about the benchmark set

Benchmark type Count Avg. soln size Example

Mutual recursion (MR) 7 31.0 Test if input is even or odd

Recursive comparators (RC) 7 64.3 Check equality of int-tuple list

Partial data structures (PDS) 12 33.6 Binary tree removal

Stack Overflow (SO) 4 45.5 Reverse a list twice

6 Implementation

We have implemented the proposed algorithm in a new tool called Contata,
which is written in OCaml using Z3 for discharging satisfiability queries. In this
section, we briefly discuss some implementation details and optimizations elided
in the main technical section.

Incremental Search. To simplify technical presentation, earlier sections assume
that we can build a CATA representing the space of all programs consistent with
the specification. However, since this space can be very large (or even infinite),
Contata builds CATAs of increasing size. In particular, Contata first builds
a CATA of size k, increasing the CATA size to k +1 if the algorithm fails to find
a solution within that search space.

Optimizations. The implementation of Contata includes many standard type-
directed synthesis optimizations. For example, to reduce the number of seman-
tically equivalent programs, Contata only considers function implementations
that are in eta-long beta-normal form. Additionally, whenever possible, Con-

tata synthesizes generic functions with type parameters to further reduce the
search space.

7 Evaluation

In this section, we evaluate Contata through experiments that aim to answer
the following research questions:

RQ1. How does Contata compare against prior techniques?
RQ2. What benchmark features impact Contata’s performance?

Benchmarks. To answer these questions, we collected a set of 30 benchmarks
that exhibit two key characteristics that are relevant to our approach. First, all
benchmarks involve recursion or mutual recursion; and, second, the task speci-
fication is relational in nature (i.e., relates two different functions to be synthe-
sized or involves a k-safety property [42]). Because the relational specifications
we found are often highly unconstrained, we augmented some relational specifi-
cations with between 1 and 3 additional input-output examples. The sources of
these benchmarks include Stack Overflow posts, functional data structure verifi-
cation benchmarks [34], and functional programming textbooks [23,29] (Table 1).

Relational Synthesis of Recursive Programs via CATAs 57

Fig. 6. (a) The number of benchmarks completed in a given amount of time. (b) The
percentage of each class of benchmark solved.

Baseline Tool. To the best of our knowledge, there are no existing tools that
can solve relational synthesis tasks involving recursion. Thus, to answer RQ1,
we implemented another baseline, henceforth referred to as RelBurst, that
combines Burst’s approach [33] for dealing with recursion with the approach
of Relish [51] for handling relational specifications. At a high level, RelBurst

first builds FTAs of individual functions using angelic semantics for unknown
functions; this introduces many non-deterministic transitions in the FTA. In
the second step, RelBurst uses the relational synthesis technique from [51]
to construct an automaton representing the specification. Finally, it uses the
backtracking search algorithm of [33] to find a set of function implementations
that jointly satisfy the relational specification.

Experimental Setup. All of our experiments are conducted on a machine with
an Apple M1 Max CPU and 64 GB of physical memory, running the macOS
14.2.1 operating system. For each task, we set the timeout to 2 min. In addition
to relational specifications for each benchmark, we supply a handful of input-
output examples to eliminate the ambiguity of relational constraints.

Results. The results of our evaluation are presented in Fig. 6. The plot on the
left shows the number of benchmarks solved as we vary the time limit, and the
plot on the right compares the percentage of benchmarks solved by Contata

against those solved by RelBurst for each class of benchmarks.
Overall, Contata can successfully complete the synthesis task for 22 out of

the 30 benchmarks (73%), whereas the baseline completes only 8 (27%). Fur-
thermore, for all completed benchmarks, Contata produces the desired ground
truth solution. Additionally, as shown in Fig. 6(b), Contata consistently out-
performs the baseline across all benchmark categories. Since the key differ-
ence between Contata and RelBurst is the use constraint annotated tree
automata, these results support our claim that CATAs are useful for reducing

58 A. Miltner et al.

backtracking search when synthesizing recursive programs from relational spec-
ifications.

Result for RQ1: Contata solves 2.8× as many benchmarks as a baseline
that combines prior techniques for relational synthesis [51] and FTA-based
synthesis of recursive procedures [33].

Failure Analysis. As shown in 6(b), Contata performs the best on the mutual
recursion benchmarks and worst on the recursive comparators. The latter class
of benchmarks are particularly difficult; some involve over a hundred AST nodes
and multiple recursive calls. As expected, the synthesis algorithm is sensitive to
the size of the target program, so the complexity of the ground truth program
has a significant impact on running time. However, there are a few benchmarks
in the Partial Data Structures category where the size of the synthesized code is
relatively small (32 AST nodes) that Contata also times out on. Upon inspec-
tion, we noticed that this is due to the “loose” nature of the specification. In
such cases, the language of the constructed CATA is quite large, making automa-
ton operations like intersection very expensive. However, this situation can be
averted by adding more input-output examples or augmenting the specification
with additional constraints.

Result for RQ2: In addition to the complexity of the target program, Con-

tata is sensitive to the precision of the specifications (i.e., performs better
with more precise specifications).

8 Related Work

While there is a vast literature on program synthesis, this work is most closely
related to techniques that address the synthesis of recursive procedures as well
as those that handle relational specifications.

Synthesis of Recursive Procedures. Research on synthesizing recursive functional
programs dates back to the 1970’s [26,43] and has recently become a very active
research area [17,19,24,27,31,33,35,39,53]. Many of these techniques perform
type-directed top-down synthesis from input-output examples [17,19,31,35],
whereas Synquid uses refinement types as specifications [39]. Among these
approaches, the most related ones are Burst [33], Trio [30], Syrup [53], and
SE2GIS [14]. Our technique is directly inspired by Burst and aims to improve
upon it by using CATAs to reduce the amount of backtracking search. Trio and
Syrup combine deductive reasoning on input-output examples with bottom-up
enumeration. In Trio, this is done by generating straight-line programs that are
then “folded up” into a recursive program. In contrast, Syrup deduces candidate
recursion traces to identify possible clusters of valid FTAs to intersect. Both
of these approaches rely on input/output deduction and are therefore not eas-
ily extensible to the relational synthesis setting that we focus on in this paper.

Relational Synthesis of Recursive Programs via CATAs 59

SE2GIS proves unrealizability of recursion skeletons during synthesis, whereas we
use CATAs to rule out incorrect solutions by construction. Additionally, SE2GIS
requires a reference implementation and a user-provided recursion skeleton and
doesn’t consider mutual recursion or relational specifications.

Relational Verification and Synthesis. This work is also related to a long line
of work on reasoning about relational properties [5,6,8,38,42,45,51]. Most tech-
niques in this space address the verification problem and aim to prove a relational
property, such as equivalence, between two programs [5,6,8,45]. Some tech-
niques [3,42] in this space focus on k-safety properties, such as non-interference
or associativity, where the goal is to prove that k different executions of the
same function do not violate some desired relationship. On the synthesis side,
most prior work handles specific classes of tasks, such as program inversion [22]
or data type refactoring [10,36]. To the best of our knowledge, the only syn-
thesis tool that targets a general class of relational properties is Relish [51].
This technique is also based on tree automata and composes FTAs for individ-
ual functions in a hierarchical manner by adding non-deterministic transitions
between different functions (or different calls to the same function). However,
this approach cannot handle recursive or mutually recursive procedures.

Tree Automata with Constraints. There have been many previous attempts
to augment FTAs with constraints. In many of these efforts, e.g., data tree
automata [7], finite-memory tree automata [25], and symbolic tree automata
[46], the tree alphabet is potentially infinite, and transitions can check constraints
over this alphabet. Other work considers finite tree alphabets but imposes global
constraints such as the equality and disequality of subtrees [12]. In contrast to
these FTA variants, transitions in our proposed CATA model can use symbols
from outside the tree alphabet, and the CATA’s models are not directly tied to
labels of the input tree. To our knowledge, such an automaton model has not
been considered in the literature.

9 Conclusion

In this paper, we introduced constraint annotated tree automata (CATA)
and developed a program synthesis algorithm based on CATAs. Notably, our
proposed algorithm can synthesize recursive and mutually-recursive functions
from relational specifications. We also implemented this algorithm in a tool
called Contata and showed experimentally that Contata outperforms prior
approaches by avoiding backtracking search.

While our approach enables solving synthesis tasks that are out of scope
for prior approaches, there remains significant future work in solving relational
synthesis tasks involving recursion. In future work, we plan to explore the com-
bination of CATAs with top-down synthesis and ML guidance.

60 A. Miltner et al.

References

1. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8 67

2. Alur, R., et al.: Syntax-guided synthesis. IEEE (2013)
3. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:

Decomposition instead of self-composition for proving the absence of timing chan-
nels. ACM SIGPLAN Notices 52(6), 362–375 (2017)

4. Barnaby, C., Chen, Q., Samanta, R., Dillig, I.: Imageeye: batch image processing
using program synthesis. Proc. ACM Program. Lang. 7(PLDI) (2023). https://doi.
org/10.1145/3591248

5. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. ACM SIGPLAN Not. 39(1), 14–25 (2004)

7. Björklund, H., Bojańczyk, M.: Bounded depth data trees. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 862–874.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8 74

8. Chen, J., Wei, J., Feng, Y., Bastani, O., Dillig, I.: Relational verification using
reinforcement learning. Proc. ACM Program. Lang. 3(OOPSLA), 1–30 (2019)

9. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. In: Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 487–502 (2020)

10. Chen, Y., Wang, Y., Goyal, M., Dong, J., Feng, Y., Dillig, I.: Synthesis-powered
optimization of smart contracts via data type refactoring. Proc. ACM Program.
Lang. 6(OOPSLA2), 560–588 (2022)

11. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not. 35(9), 268–279 (2000). https://doi.org/10.1145/
357766.351266

12. Comon, H., et al.: Tree automata techniques and applications (2008)
13. de Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B.,

Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 12

14. Farzan, A., Lette, D., Nicolet, V.: Recursion synthesis with unrealizability wit-
nesses. In: Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. PLDI 2022, New York, NY,
USA, pp. 244–259. Association for Computing Machinery (2022). https://doi.org/
10.1145/3519939.3523726

15. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. SIGPLAN Not. 53(4), 420–435 (2018). https://doi.org/10.1145/
3296979.3192382

16. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-
based synthesis of table consolidation and transformation tasks from examples.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI 2017, New York, NY, USA, pp. 422–436.
Association for Computing Machinery (2017). https://doi.org/10.1145/3062341.
3062351

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1145/3591248
https://doi.org/10.1145/3591248
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-540-73420-8_74
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1007/978-3-540-79124-9_12
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351

Relational Synthesis of Recursive Programs via CATAs 61

17. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. SIGPLAN Not. 50(6), 229–239 (2015). https://doi.
org/10.1145/2813885.2737977

18. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. ACM SIGSOFT Software Eng. Not. 22(4), 74–80 (1997)

19. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. SIGPLAN Not. 51(1), 802–815 (2016). https://doi.
org/10.1145/2914770.2837629

20. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’11, New York, NY, USA,
pp. 317–330. Association for Computing Machinery (2011). https://doi.org/10.
1145/1926385.1926423

21. Guo, Z., Cao, D., Tjong, D., Yang, J., Schlesinger, C., Polikarpova, N.: Type-
directed program synthesis for restful apis. In: Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design and Implemen-
tation. PLDI 2022, New York, NY, USA, pp. 122–136. Association for Computing
Machinery (2022). https://doi.org/10.1145/3519939.3523450

22. Hu, Q., D’Antoni, L.: Automatic program inversion using symbolic transducers. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 376–389 (2017)

23. Hutton, G.: Programming in Haskell, 2nd edn. Cambridge University Press, Cam-
bridge (2016)

24. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Cyclic program
synthesis. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. PLDI 2021, New York,
NY, USA, pp. 944–959. Association for Computing Machinery (2021). https://doi.
org/10.1145/3453483.3454087

25. Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Pillars of Com-
puter Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of
His 85th Birthday, pp. 386–423 (2008)

26. Kitzelmann, E., Schmid, U., Olsson, R., Kaelbling, L.P.: Inductive synthesis of
functional programs: an explanation based generalization approach. J. Mach.
Learn. Res. 7(2) (2006)

27. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive func-
tions. In: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications. OOPSLA
’13, New York, NY, USA, pp. 407–426. Association for Computing Machin-
ery (2013). https://doi.org/10.1145/2509136.2509555, https://doi.org/10.1145/
2509136.2509555

28. Lampropoulos, L., Hicks, M., Pierce, B.C.: Coverage guided, property based test-
ing. Proc. ACM Program. Lang. 3(OOPSLA), 1–29 (2019)

29. Lampropoulos, L., Pierce, B.C.: QuickChick: Property-Based Testing in Coq. Soft-
ware Foundations series, volume 4, Electronic textbook (2018)

30. Lee, W., Cho, H.: Inductive synthesis of structurally recursive functional programs
from non-recursive expressions. Proc. ACM Program. Lang. 7(POPL) (2023).
https://doi.org/10.1145/3571263

31. Lubin, J., Collins, N., Omar, C., Chugh, R.: Program sketching with live bidirec-
tional evaluation. Proc. ACM Program. Lang. 4(ICFP) (2020). https://doi.org/
10.1145/3408991

https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/3571263
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991

62 A. Miltner et al.

32. Mariano, B., Chen, Y., Feng, Y., Durrett, G., Dillig, I.: Automated transpilation of
imperative to functional code using neural-guided program synthesis. Proc. ACM
Program. Lang. 6(OOPSLA1) (2022). https://doi.org/10.1145/3527315

33. Miltner, A., Nuñez, A.T., Brendel, A., Chaudhuri, S., Dillig, I.: Bottom-up synthe-
sis of recursive functional programs using angelic execution. Proc. ACM Program.
Lang. 6(POPL) (2022). https://doi.org/10.1145/3498682

34. Miltner, A., Padhi, S., Millstein, T., Walker, D.: Data-driven inference of repre-
sentation invariants. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2020, New York, NY,
USA, pp. 1–15. Association for Computing Machinery (2020). https://doi.org/10.
1145/3385412.3385967

35. Osera, P.M., Zdancewic, S.: Type-and-example-directed program synthesis. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’15, New York, NY, USA, pp. 619–630. Associ-
ation for Computing Machinery (2015). https://doi.org/10.1145/2737924.2738007

36. Pailoor, S., Wang, Y., Dillig, I.: Semantic code refactoring for abstract data types.
Proc. ACM Program. Lang. 8(POPL) (2024). https://doi.org/10.1145/3632870

37. Pailoor, S., Wang, Y., Wang, X., Dillig, I.: Synthesizing data structure refinements
from integrity constraints. In: Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation. PLDI
2021, New York, NY, USA, pp. 574–587. Association for Computing Machinery
(2021). https://doi.org/10.1145/3453483.3454063

38. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in rela-
tional verification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I.
LNCS, vol. 10981, pp. 164–182. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96145-3 9

39. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’16, New York, NY,
USA, pp. 522–538. Association for Computing Machinery (2016). https://doi.org/
10.1145/2908080.2908093

40. Samak, M., Kim, D., Rinard, M.C.: Synthesizing replacement classes. Proc. ACM
Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/3371120

41. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 404–415. ACM (2006). https://doi.org/10.1145/1168857.
1168907

42. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. SIG-
PLAN Not. 51(6), 57–69 (2016). https://doi.org/10.1145/2980983.2908092

43. Summers, P.D.: A methodology for lisp program construction from examples. J.
ACM 24(1), 161–175 (1977). https://doi.org/10.1145/321992.322002

44. Tillmann, N., Schulte, W.: Parameterized unit tests. ACM SIGSOFT Software
Eng. Not. 30(5), 253–262 (2005)

45. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 742–766. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 35

46. Veanes, M., Bjørner, N.: Symbolic tree automata. Inf. Process. Lett. 115(3), 418–
424 (2015)

https://doi.org/10.1145/3527315
https://doi.org/10.1145/3498682
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3632870
https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3371120
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2980983.2908092
https://doi.org/10.1145/321992.322002
https://doi.org/10.1007/978-3-030-81685-8_35

Relational Synthesis of Recursive Programs via CATAs 63

47. Wang, C., Cheung, A., Bodik, R.: Interactive query synthesis from input-output
examples. In: Proceedings of the 2017 ACM International Conference on Man-
agement of Data, pp. 1631–1634. SIGMOD ’17, Association for Computing
Machinery (2017). https://doi.org/10.1145/3035918.3058738, https://doi.org/10.
1145/3035918.3058738

48. Wang, C., Feng, Y., Bodik, R., Dillig, I., Cheung, A., Ko, A.J.: Falx: synthesis-
powered visualization authoring. In: Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. CHI ’21, New York, NY, USA. Association
for Computing Machinery (2021). https://doi.org/10.1145/3411764.3445249

49. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
Proc. ACM Program. Lang. 2(POPL) (2017). https://doi.org/10.1145/3158151

50. Wang, X., Dillig, I., Singh, R.: Synthesis of data completion scripts using finite
tree automata. Proc. ACM Program. Lang. 1(OOPSLA) (2017). https://doi.org/
10.1145/3133886

51. Wang, Y., Wang, X., Dillig, I.: Relational program synthesis. Proc. ACM Program.
Lang. 2(OOPSLA) (2018). https://doi.org/10.1145/3276525

52. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: Sqlizer: query synthesis from
natural language. Proc. ACM Program. Lang. 1(OOPSLA), 1–26 (2017)

53. Yuan, Y., Radhakrishna, A., Samanta, R.: Trace-guided inductive synthesis of
recursive functional programs. Proc. ACM Program. Lang. 7(PLDI) (2023).
https://doi.org/10.1145/3591255

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3276525
https://doi.org/10.1145/3591255
http://creativecommons.org/licenses/by/4.0/

Information Flow Guided Synthesis
with Unbounded Communication

Bernd Finkbeiner1 , Niklas Metzger1(B) ,
and Yoram Moses2

1 CISPA Helmholtz Center for Information Security, Saarland, Germany
{finkbeiner,niklas.metzger}@cispa.de

2 The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering and
the Taub Faculty of Computer Science, Technion, Haifa, Israel

moses@technion.ac.il

Abstract. Information flow guided synthesis is a compositional app-
roach to the automated construction of distributed systems where the
assumptions between the components are captured as information-flow
requirements. Information-flow requirements are hyperproperties that
ensure that if a component needs to act on certain information that is
only available in other components, then this information will be passed
to the component. We present a new method for the automatic con-
struction of information flow assumptions from specifications given as
temporal safety properties. The new method is the first approach to han-
dle situations where the required amount of information is unbounded.
For example, we can analyze communication protocols that transmit a
stream of messages in a potentially infinite loop. We show that com-
ponent implementations can then, in principle, be constructed from the
information flow requirements using a synthesis tool for hyperproper-
ties. We additionally present a more practical synthesis technique that
constructs the components using efficient methods for standard synthe-
sis from trace properties. We have implemented the technique in the
prototype tool FlowSy, which outperforms previous approaches to dis-
tributed synthesis on several benchmarks.

1 Introduction

More than 65 years after its introduction by Alonzo Church [7], the synthesis
of reactive systems, and especially the synthesis of distributed reactive systems,
is still a most intriguing challenge. In the basic reactive synthesis problem, we
translate a specification, given as a formula in a temporal logic, into an imple-
mentation that is guaranteed to satisfy the specification for every possible input
from the environment. In the synthesis of distributed systems [32], we must find
an implementation that consists of multiple components that communicate with

This work was funded by the German Israeli Foundation (GIF) Grant No. I-1513-
407./2019, by DFG grant 389792660 as part of TRR 248 – CPEC, and by the ERC
Grant HYPER (No. 101055412).

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 64–86, 2024.
https://doi.org/10.1007/978-3-031-65633-0_4

https://doi.org/10.5281/zenodo.10948514
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_4&domain=pdf
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0003-3184-6335
http://orcid.org/0000-0001-5549-1781
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-031-65633-0_4

Information Flow Guided Synthesis with Unbounded Communication 65

each other via shared variables in a given architecture. While the basic synthesis
problem is, by now, well-supported with algorithms and tools (cf. [5,23]), and
despite a long history of theoretical advances [15,25,27,28,30,32], no practical
methods are currently known for the synthesis of distributed systems.

A potentially game-changing idea is to synthesize the systems composi-
tionally, one component at a time [4,6,14,18,24,26,33]. The key difficulty in
automating compositional synthesis is to find assumptions on the behavior of
each component that are sufficiently strong so that each component can guar-
antee the satisfaction of the specification based on the guarantees of the other
components, and, at the same time, sufficiently weak, so that the assumptions
can actually be realized. In our previous work on information flow guided synthe-
sis [17], we identified situations in which certain components must act on infor-
mation that these components cannot immediately observe, but must instead
obtain from other components. Such situations are formalized as information-
flow assumptions, which are hyperproperties that express that the component
eventually receives this information. Once the information flow assumptions are
known, the synthesis proceeds by constructing the components individually so
that they satisfy the information-flow assumptions of the other components pro-
vided that their own information-flow assumptions are likewise taken care of.

Technically, the synthesis algorithm identifies a finite number of sets of infi-
nite sequences of external inputs, so-called information classes, such that the
component only needs to know the information class, but not the individual
input trace. In the first step, the output behavior of the component is fixed
based on an abstract input that communicates the information class to the com-
ponent. This abstract implementation is called a hyper implementation because
it leaves open how the information is encoded in the actual inputs of the com-
ponent. Once all components have hyper implementations, the abstract input is
then replaced by the actual input by inserting a monitor automaton that derives
the information class from the input received by the component.

This approach has two major limitations. The first is that the information
flow requirement only states that the information will eventually be transmit-
ted. This is sufficient for liveness properties where the necessary action can be
delayed until the information is received. For safety, however, such a delay may
result in a violation of the specification. As a result, the information flow assump-
tions of [17] are insufficient for handling safety, and the compositional synthesis
approach is thus limited to liveness specifications. The second limitation is due
to the restriction to a finite number of information classes. As a result, the
compositional synthesis approach is only successful if a solution exists that acts
on just a finite amount of information. The two limitations severely reduce the
applicability of the synthesis method. Most specifications contain a combina-
tion of safety and liveness properties (cf. [23]). While it is possible to effectively
approximate liveness properties through bounded liveness properties (cf. [20]),
which are safety properties, the converse is not true. Likewise, most distributed
systems of interest are reactive in the sense that they maintain an ongoing inter-
action with the external environment. As a result, they do not conform to the

66 B. Finkbeiner et al.

Fig. 1. The prefix distinguishability of the sequence transmission protocol as NFA in
(a). The NFA representing the information class for output bout is shown in (b), where
(c) is a hyper implementation of the receiver on information classes.

limitation that they only act on a finite amount of information. For example,
a communication protocol receives a new piece of information in each message
and is hence required to transmit an unbounded amount of information.

In this paper, we overcome both limitations with a new method for informa-
tion flow guided synthesis that handles both safety properties and specifications
of tasks that require the communication of an unbounded amount of informa-
tion. In order to reason about safety, we consider finite prefixes of external inputs
rather than infinite sequences. The key idea is to collect sets of finite sequences
of the same length into information classes. Such an information class refers to a
specific point in time (corresponding to the length of its traces) and identifies the
information that is needed at this point in time to avoid a violation of the safety
property. We then only require that the number of information classes is finite
at each point in time, while the total number of information classes over the
infinitely many prefixes of an execution may well be infinite. This allows us to
handle situations where again and again some information must be transmitted
in a potentially infinite loop.

2 Running Example: Sequence Transmission

Our running example is a distributed system that implements sequence transmis-
sion. The system consists of two components, the transmitter t and the receiver r.
At every time step, the transmitter observes the current input bit bin from the
external environment, the transmitter can communicate via cb with the receiver,
and the receiver controls the output bout. To implement a sequence transmission
protocol, the receiver must output the value of the input bit one time step after
it is received by the transmitter. We can state this specification using the LTL
formula (bin ↔ bout) for the receiver, and assume the transmitter specifica-
tion to be true. In this example, compositional synthesis is only possible with
assumptions about the communication between the components. We utilize an

Information Flow Guided Synthesis with Unbounded Communication 67

information-flow assumption for compositional synthesis specified in the Hyper-
LTL formula ∀π∀π′.(cbπ

↔ cbπ′)U(binπ
� binπ′ ∧ cbπ

� cbπ′). The formula
states that on any pair of traces π and π′ of an implementation, the communi-
cation bit cb on both traces must be equivalent until there is a difference on the
input bit bin as well as a difference on the communication bit cb. This implies
that whenever the receiver must distinguish two input traces, it will observe
a difference on its local inputs, namely bin. A nondeterministic finite automa-
ton (NFA) accepting all finite traces that must be distinguished at the same
time point is depicted in Fig. 1a. In the course of this paper, we show that, for
safety properties, the distinguishability requirement yields an information-flow
assumption specified over finite traces. Based on the assumption, we heuristi-
cally build information classes over finite traces, such that all finite traces in the
same class do not need to be distinguished. Figure 1b shows an NFA for one of
the two information classes. It accepts all finite traces that have ¬bin in the last
step. On all these traces, the output ¬bout is correct. For this example, there is
only one other information class, namely the finite traces with bin in the last
step. We use the information classes to synthesize a hyper implementation for
the receiver, depicted in Fig. 1c. A hyper implementation receives the current
information classes, which are c and c′ on the transitions, as input, and outputs
the local outputs of the component. Whenever c is the input, the correct out-
put for all traces in c must be set by the receiver. Note that, in this example,
c and c′ cannot occur together as there is no common output for bin ∧ ¬bin.
The hyper implementation is correct for all transmitter implementations. After
synthesizing both hyper implementations, for the transmitter and the receiver,
we compose and decompose them to obtain local implementations. Throughout
this paper, we first define the prefix distinguishability and prefix information-
flow assumption. We then build assume and guarantee specifications that, based
on the information classes, guarantee the correctness of the hyper implementa-
tions, and finally, we show how to construct the local solutions to complete the
synthesis procedure.

3 Preliminaries

Architectures. In this paper, we consider distributed architectures with two com-
ponents: p and q. Such architectures are given as tuple (Ip, Iq, Op, Oq, Oe), where
Ip, Iq, Op, Oq, and Oe are all subsets of the set V of boolean variables. Op and Oq

are the sets of output variables of p and q. We denote by Oe the output variables
of the uncontrollable external environment. We refer to Oe also as the external
inputs of the system. Op, Oq and Oe form a partition of V. Finally, Ip and Iq are
the input variables of components p and q, respectively. The inputs and outputs
are disjoint, i.e., Ip ∩ Op = ∅ and Iq ∩ Oq = ∅. Each of the inputs Ip and Iq of
the components is either an output of the environment or an output of the other
component, i.e., Ip ⊆ Oq ∪ Oe and Iq ⊆ Op ∪ Oe. For a set V ⊆ V, every subset
V ′ ⊆ V defines a valuation of V , where the variables in V ′ have value true and
the variables in V \ V ′ have value false.

68 B. Finkbeiner et al.

Implementations. For a set of atomic propositions AP divided into inputs I
and outputs O, with I ∩ O = ∅, a 2O-labeled 2I -transition system is a 4-tuple
(T, t0, τ, o), where T is a set of states, t0 ∈ T is an initial state, τ : T ×2I → T is
a transition function, and o : T → 2O is a labeling function. An implementation
of an architecture (Ip, Iq, Op, Oq, Oe) is a pair (Tp, Tq), consisting of Tp, a 2Op -
labeled 2Ip transition system Tp, and Tq, a 2Oq -labeled 2Iq transition system
Tq. The composition T = Tp||Tq of the two transition systems (T p, tp0, τ

p, op)
and (T q, tq0, τ

q, oq) is the 2Op∪Oq -labeled 2Oe -transition system (T, t0, τ, o), where
T = T p × T q, t0 = (tp0, t

q
0), τ((tp, tq), x) = (τp(tp, (x ∪ oq(tq)) ∩ Ip), τ q(tq, (x ∪

op(tp)) ∩ Iq)), o(tp, tq) = op(tp) ∪ oq(tq), where x ∈ 2Oe .

Specifications. The specifications are defined over the variables V. For a set
V ⊆ V of variables, a trace over V is an infinite sequence x0x1x2 . . . ∈ (2V)ω of
valuations of V . A specification over V is a set ϕ ⊆ (2V)ω of traces over V. Two
traces over disjoint sets V, V ′ ⊂ V can be combined by forming the union of their
valuations at each position, i.e., x0x1x2 . . . � y0y1y2 . . . = (x0 ∪ y0)(x1 ∪ y1)(x2 ∪
y2) Likewise, the projection of a trace onto a set of variables V ′ ⊆ V is
formed by intersecting the valuations with V ′ at each position: x0x1x2 . . . ↓V ′=
(x0 ∩ V ′)(x1 ∩ V ′)(x2 ∩ V ′) For a trace π we use π[n] to access the set
on π at time step n, and π[n . . . m] for the interval of π from index n to m.
Our specification language is linear-time temporal logic (LTL) [31] with the set
V of variables serving as the atomic propositions. We use the usual Boolean
operations, the temporal operators Next , Until U , Globally , and Eventually

, and the semantic evaluation of (finite) traces π with π � ϕ. LTL formulas can
be represented by nondeterministic Büchi automata (NBAs) with an exponential
blow-up. A finite trace π ∈ (2V)∗ is a bad prefix of an LTL formula ϕ if π � ϕ and
π ·π′

� ϕ for all π′ ∈ (2V)ω. An LTL formula is a safety formula if every violation
has a bad prefix. Specifications over architectures are conjunctions ϕp∧ϕq of two
LTL formulas, where ϕp is defined over Op ∪ Oe, i.e., ϕp relates outputs of the
component p to the outputs of the environment, and ϕq is defined over Oq ∪Oe.
We call these specifications the local specifications of the component. An initial
run T (i0, i1, . . .) = t0t1 . . . ∈ Tω for an infinite sequence of inputs i0, i1 . . . ∈ 2Oe

is an infinite sequence of states produced by the transition function such that
ti = τ(ti−1, ii−1) for all i ∈ N and t0 is the initial state. The set of traces
Traces(T) of an implementation T = (T p, T q) is then defined as all (o(t0) ∪
i0)(o(t1)∪i1) . . . ∈ (2V)ω where T (ioi1 . . .) = t0t1 . . . for some ioi1i2 . . . ∈ (2Oe)ω.
An implementation satisfies a specification ϕ if the traces of the implementation
are contained in the specification, i.e., Traces(T p, T q) ⊆ ϕ. Given an architecture
and a specification ϕ, the synthesis problem is to find an implementation T =
(Tp, Tq) that satisfies ϕ. We say that a specification ϕ is realizable in a given
architecture if such an implementation exists, and unrealizable if not.

Automata. A non-deterministic automaton A is a tuple (Σ,Q, qo, δ, F) where Σ
is the input alphabet, Q is a set of states, qo is the initial state, δ : Q × Σ →
2Q is a transition function, and F is a set of accepting states. For an input
word σ0σ1 . . . σk ∈ Σk, a finite word automaton (NFA) F accepts a finite run

Information Flow Guided Synthesis with Unbounded Communication 69

q0q1 . . . qk ∈ Qk where qi ∈ δ(qi−1, σi−1), if qk ∈ F . A Büchi automaton (NBA)
A accepts all infinite runs q0q1 . . . ∈ Qω that visit states in F infinitely often. An
automaton is deterministic if the transition function δ is injective. The language
of an automaton A is the set of its accepting runs, and is denoted by L(A).

Hyperproperties. Information-flow assumptions are hyperproperties. A hyper-
property over V is a set H ⊆ 2(2

V)ω

of sets of traces over V [9]. An imple-
mentation (Tp, Tq) satisfies the hyperproperty H iff the set of its traces is an
element of H, i.e., Traces(Tp, Tq) ∈ H. A convenient specification language
for hyperproperties is the temporal logic HyperLTL [8], which extends LTL
with trace quantification, i.e., ∀π.ϕ and ∃π.ϕ. In HyperLTL, atomic proposi-
tions are indexed by a trace variables, which make expressing properties like “ψ
must hold on all traces”possible, expressed by ∀π. ψ . Dually, one can express
that “there exists a trace on which ψ holds”, denoted by ∃π. ψ . Sometimes,
a hyperproperty can be expressed as a binary relation on traces. A relation
R ⊆ (2V)ω × (2V)ω of pairs of traces defines the hyperproperty H, where a
set T of traces is an element of H iff for all pairs π, π′ ∈ T of traces in
T it holds that (π, π′) ∈ R. We call a hyperproperty defined in this way
a 2-hyperproperty. In HyperLTL, 2-hyperproperties are expressed as formulas
with two universal quantifiers and no existential quantifiers. A 2-hyperproperty
can equivalently be represented as a set of infinite sequences over the prod-
uct alphabet V2: we can represent a given 2-hyperproperty R ⊆ Vω × Vω, by
R′ = {(σ0, σ

′
0)(σ1, σ

′
1) . . . | (σ0σ1 . . . , σ′

0σ
′
1 . . .) ∈ R}. This representation is con-

venient for the use of automata to recognize 2-hyperproperties.

4 Prefix Information Flow

As argued in [17], identifying information flow between the components is cru-
cial for distributed synthesis, because the specification may require a compo-
nent’s actions to depend on external inputs that are not directly observable by
the component. To react to the external inputs correctly, at least the relevant
information must be transferred to the component. The fundamental concept
to identify when a component requires information transfer is captured by a
distinguishability relation on sequences of environment outputs. We recall the
definition of distinguishability for a component p from [17]:

Definition 1 (Trace distinguishability [17]). Let ϕp be an LTL specification
of p. The corresponding trace distinguishability relation is defined as

τp = {(πe, π
′
e) ∈(2Oe)ω × (2Oe)ω |

∀πp ∈ (2Op)ω.πe � πp � ϕp or π′
e � πp � ϕp}

The trace distinguishability relation is defined w.r.t. pairs of infinite traces,
where each trace records all outputs of the environment, building up all the infor-
mation that is presented to the system. Two traces are related iff there exists no

70 B. Finkbeiner et al.

infinite trace of p’s outputs that satisfies the specification for both (environment)
input traces. For example, the traces in the sequence transmission protocol are
related by τr if they differ on bin at least once. We now turn the distinguisha-
bility relation into an assumption for the component. On traces related by τp,
the component must observe a difference in its local inputs, namely the set Ip.
The relation itself only considers infinite traces over all variables that are not
outputs of the single component, independent of the architecture. Therefore,
the information-flow assumption (IFA) built from the distinguishability relation
enforces that on all related (environment input) traces, there is a difference on
the component’s input:

Definition 2 (Trace information-flow assumption [17]). Let τp be the trace
distinguishability relation for p. The information flow assumption Ip is the 2-
hyperproperty defined by the relation

RIp
= {(π, π′) ∈ (2V)ω × (2V)ω | if (π↓Oe

, π′↓Oe
) ∈ τp then π↓Ip

�= π′↓Ip
}

The trace information-flow assumption is necessary for a component p; every
implementation of the distributed system will satisfy the information-flow
assumption from [17]. In its generality, this definition specifies that the val-
ues of the local inputs to p have to be different at some time point, without
an explicit or implicit deadline. This is critical in two ways: On the one hand,
liveness specifications, as in the example bin ↔ bout, will never determine
an explicit point in time where the information must be present. On the other
hand, safety specifications always include a fixed deadline for the reaction of
the component, which, if the information is not present, cannot be met. This
deadline, however, is not accounted for in the information-flow assumption, and
an algorithm cannot rely on availability of the information during synthesis.

In [17] we solve the liveness issue by introducing a time-bounded information-
flow assumption. The time bound acts as a placeholder for the exact time point
of information flow. The locally synthesized receiver must then be correct for all
such possible time points. Because of the arbitrary deadline, the assumptions
cannot suffice to find a solution for a safety specification of the receiver either;
they are too weak. We solve this issue by restricting the attention to safety
specifications. Consider, for example, the safety property ϕr = (bin ↔ bout)
of our running example. To satisfy this property, the receiver r must observe the
value of bin on its local inputs in exactly one time step, otherwise, it cannot react
to bin in time. With this observation, we can state a stronger distinguishability
relation over pairs of finite traces.

Definition 3 (Prefix distinguishability). Let ϕp be the safety specification
for component p. The prefix distinguishability relation is defined as

ρϕp
= {(π, π′) ∈ (2Oe)m×(2Oe)m,m ∈ N | ∀πp ∈ (2Op)m.

π � πp �m ϕp or π′ � πp �m ϕp

and ∀n ∈N, n < m. ∃π′
p ∈ (2Op)n.

π[0 . . . n] � π′
p �n ϕp and π′[0 . . . n] � π′

p �n ϕp}

Information Flow Guided Synthesis with Unbounded Communication 71

The first condition states that, for the two related input traces of length m,
the specification is violated for all possible output sequences for p of the same
length. The second condition enforces that m is the first position at which the
trace pair must be distinguished, i.e., for all previous positions of the traces,
there exists a common output sequence that satisfies the specification on both
traces. Every violation of a safety specification has a minimal bad prefix [11],
and hence every violation that originates in the indistinguishability of two traces
is captured by Definition 3. For liveness specifications, no two traces are related
by this definition: One can inductively reason that for every (π, π′) ∈ τϕp

this
pair of traces is not in ρϕp

, i.e., (π, π′) /∈ ρϕp
, since for every chosen m, one can

find an output trace of p that violates the formula after time point m.
Prefix distinguishability is the core concept of our synthesis method. We now

show that we can build an automaton that accepts a pair of finite environment
output traces iff they are related. We say that an automaton A recognizes a
relation R if L(A) = R.

Theorem 1. For a component p with specification ϕp, there exists a non-de-
terministic finite automaton with a doubly exponential number of states in the
length of ϕp that recognizes the prefix distinguishability relation ρϕp

.

Proof. We construct a non-deterministic finite automaton (NFA) F that accepts
precisely all pairs of traces over (2Oe)m × (2Oe)m, where m ∈ N, that are related
by ρϕp

. Let ϕ′
p be the formula ϕp where all atomic propositions a ∈ AP are

renamed to a′, and let V ′ be a set containing a copy v′ of every variable v ∈ V.
We build the NBA B = Aϕp

× Aϕ′
p
, where Aϕp

and Aϕ′ are constructed with
a standard LTL-to-NBA translation respectively, and the operator × builds the
product of two NBAs. B now accepts all tuples of traces that each satisfy ϕp.
Let C be the NBA that restricts the transition relation of B s.t. edges are only
present if the output variables of p are equal

∧
o∈Op

o ↔ o′ holds, enforcing
that both traces agree on the output while satisfying the specification. We now
existentially project to the set Oe ∪ O′

e to build D, whose alphabet does not
contain the component’s outputs. To accept the pairs of traces that do not satisfy
the formula, we negate D, denoted by D̄. In the last step of the construction, we
transform the NBA D̄ to an NFA F using the emptiness per state construction
of [3]. This yields an NFA that accepts the prefix distinguishability relation.
The size of the automaton is doubly exponential in the size of the formula. The
first exponent stems from the LTL to NBA construction, and the second from
negating the automaton F . ��
Similar to Definition 2, we now turn the safety distinguishability relation into
an information-flow assumption that must be guaranteed by the component
that observes the respective environment output. The assumptions include spe-
cific information-flow deadlines for pairs of traces at which the component must
observe the information at the latest. The information-flow assumption, again,
is a 2-hyperproperty enforcing that pairs of traces that are related by the prefix
distinguishability relation have an observable difference for the component.

72 B. Finkbeiner et al.

Definition 4 (Prefix information-flow assumptions). Let ρϕp
be the pre-

fix distinguishability relation for p. The corresponding prefix information flow
assumption Pp is the 2-hyperproperty defined by the relation

RPp = {(π, π′) ∈ (2V)ω × (2V)ω | if ∃m ∈ N s.t. (π[0 . . . m], π′[0 . . . m]) ∈ ρϕp

then π↓Ip [0 . . . m − 1] �= π′↓Ip [0 . . . m − 1]}
On all finite trace pairs in the prefix distinguishability relation ρϕp

, there must
be a difference on Ip before the deadline m. Restricting the observable difference
to happen before the deadline m is crucial for the receiving component. Whereas
the prefix distinguishability relation relates finite traces, the prefix information-
flow assumption is a hyperproperty over infinite traces. Unsurprisingly, every
implementation of a distributed system satisfying safety LTL specifications sat-
isfies the corresponding prefix information-flow assumption.

Lemma 1. The prefix information-flow assumption is necessary for safety LTL
specifications.

Proof. Assume that there exists an implementation (Tp, Tq) satisfying the safety
LTL specifications ϕp and ϕq but not Pp and Pq. Since Pp is not satisfied, there
exists a pair of traces π, π′ such that (π↓Oe

[0 . . . m], π′↓Oe
[0 . . . m]) ∈ ρϕp

and
π↓Ip

[0 . . . m + 1] = π′↓Ip
[0 . . . m + 1]. The deterministic system must therefore

choose the same output for the timestep m + 1 since the inputs are the same.
This contradicts the assumption: either π[0 . . . m + 1] or π′[0 . . . m + 1] is a min-
imal bad prefix since, otherwise, the traces would not be related by the prefix
distinguishability relation. ��
We are now ready to return to the sequence transmission example. The prefix
distinguishability automaton for (bin ↔ bout) is depicted in Fig. 1a. The
automaton accepts a 2-hyperproperty whose alphabet is a pair of valuations of
bin. Note that the communication bit from t to r is not restricted by the pre-
fix distinguishability. The automaton terminates whenever a sequence of inputs
must be distinguished. For example, starting in the initial state, the input words
bin on π and ¬bin on π′ lead immediately to an accepting state; these finite
traces need to be distinguished. However, if bin is equivalent on both traces, the
automaton stays in the initial non-accepting state. By abuse of notation, we use
Xp for Xϕp

, e.g., ρp for ρϕp
, if ϕp is clear from context.

The automata for the prefix distinguishability and the prefix information-
flow assumption can be very complex; even if two traces are different at point n,
it can be decided at position n + m if the difference of the inputs results in a
necessary information flow, and the automaton might need to store the observed
difference during all m intermediate steps. We evaluate the size of the prefix
distinguishability automaton empirically in Sect. 7. With the prefix information-
flow assumption, we could construct a hyperproperty synthesis problem similar
to [17]. In practice, however, synthesis from hyperproperties is largely infeasible,
because it hardly scales to more than a few system states [16]. In the following, we
show that this problem can be avoided by reducing the compositional synthesis
problem to the much more practical synthesis from trace properties.

Information Flow Guided Synthesis with Unbounded Communication 73

5 Unbounded Communication in Distributed Systems

Computing the information flow between the components in a distributed sys-
tem, as shown in Sect. 4, is the first step for compositional synthesis. In the
second and more complex step, the synthesis procedure needs to guarantee (1)
that the component that observes the information actually transmits the infor-
mation, and (2) that the component requiring the information correctly assumes
the reception. We construct an assume specification, which ensures that the com-
ponent correctly assumes the information flow, and a guarantee specification,
which enforces the correct transmission of information.

5.1 Receiving Information

A component cannot realize its specification only based on its local observations;
it needs to assume that the required information is transmitted during execution.
The prefix information-flow assumption is one class of necessary assumptions,
i.e., every transmitter implementation must satisfy it, and the hyperproperty
can be assumed without losing potential solutions. In many cases, this assump-
tion is also sufficient; if the receiver assumes this exact information flow, the
local synthesis problem is realizable. During synthesis, we do not know what
actual information the component currently has. The synthesis procedure only
has partial information of all environment outputs. Which information is actu-
ally transmitted at which time point is finally decided by the synthesis process
of the transmitter. However, the receiver’s implementation must be correct for
every possible information in every step. We, therefore, collect all traces at a
position that do not need to be distinguished by component p at time n, i.e.,
there exists a prefix of p’s outputs that works on all traces.

Definition 5 (Prefix information class). Let ρp be the prefix distinguisha-
bility relation for p. The information class of a trace π at position n ∈ N is the
set of traces [π]np = (2Oe)n\{π′ ∈ (2Oe)n | (π, π′) ∈ ρp}

We now construct a trace property that, given an information class cn,
enforces that the output by the component is correct for all traces in the infor-
mation class cn. This property specifies exactly one step of outputs, namely n+1.
Since we consider safety LTL properties, it is sufficient to incrementally specify
the outputs according to the satisfaction of the LTL formula.

Definition 6 (Information class specification). Let ϕp be the LTL speci-
fication for component p, n ∈ N, and let cn be a prefix information class at
position n − 1. The information class specification C

n
p ⊆ (2V\Oq)ω is defined as

C
n
p = {πe � πo | πe ∈ (2V\Op)n, πo ∈ (2Op)n

s.t. ∀π′
e ∈ cn−1.π

′
e[0 . . . n] � πo[0 . . . n] �n ϕp}.

74 B. Finkbeiner et al.

The output traces in C
n
p need to be correct for every environment output trace

that is in the information class. Here, if an environment output trace is not in
the information class, we do not restrict any behavior. We now introduce a cru-
cial assumption: That the number of information classes over all time steps is
bounded. In general, this is not necessary: one can distinguish every trace from
every other trace, such that the information classes increase in every time step.
However, if the number of information classes is bounded, we present an effec-
tive heuristic for constructing them on the prefix distinguishability assumption
in Sect. 5.1. Each information class c (which is now not parametric in the time
point) is then a set of finite traces (2Oe)�, which is exactly the set of traces
in each step that do not need to be distinguished by a component. Consider,
for example, the sequence transmission specification ϕ = (bin ↔ bout). The
information classes w.r.t. Definition 5 are all traces that are equal on the envi-
ronment outputs up to time-point n−1. This builds infinitely many information
flow classes. It is, however, possible to reduce the information classes to a finite
representation. In our example, it is sufficient to check for the previous position
of the traces: all finite traces that are equal at n − 1 do not need to be distin-
guished. This yields two information classes, one for bin at the previous step and
one for ¬bin at the previous step. The NFA accepting one of them is depicted in
Fig. 1b. With the assumption that we are given a finite set of information classes
as subsets of (2Oe)∗, we are able to build an assume specification, which assumes
that information classes are received if necessary, and can react to any possible
consistent sequence of information classes. The information classes C are now
part of the alphabet for the input traces and we use c for refering to a specific
information class and as an atomic proposition.

Definition 7 (Assume specification). Let ϕp be the component specification
and C be the finite set of information classes, where each c ∈ C is a subset of
(2Oe)∗. The trace property A ⊆ (C ∪ 2Op)ω is defined as

A
C
p = {πC ∪ πo | πC ∈ Cω, πo ∈(2Op)ω,∀n ∈ N.∀c ∈ πC [n − 1].

∀πe[0 . . . n − 1] ∈ c. if πc is consistent, then πe � πo[0 . . . n] �n ϕp},

where a finite prefix πC ∈ Cn is consistent if it holds that for all 0 ≤ m < n, all
finite traces in πe[0 . . . m] have a prefix in πe[0 . . . m − 1].

The assume specification collects, for a sequence of information classes, all
component outputs that are correct for all environment outputs in this informa-
tion class. The consistency of input traces specifies the correct reveal of infor-
mation classes. It cannot be the case that a trace that was distinguishable from
the current trace in step n − 1 is indistinguishable in n. Note that a correct
transmitter will implement only consistent traces. Let’s assume we are given the
information classes C = {c, c′} for the sequence transmission problem, where
c = ({bin}, {¬bin})∗{bin} and c′ = ({bin}, {¬bin})∗{¬bin}. These classes suffice
to implement the receiver: whenever the trace over Cn ends in c, the receiver has
to respond with bout and it should respond with ¬bout whenever the trace ends

Information Flow Guided Synthesis with Unbounded Communication 75

in c′. Each information class c can be split into the information classes cn by
fixing the length of the traces to n.

Lemma 2. Let Cp be the finite set of information classes for component p. Every
implementation satisfying the assume specification A

C
p also satisfies the informa-

tion class specification C
n
p for all n ∈ N and c ∈ Cp.

This lemma follows directly from the definition of the assume specification: It
collects all information class specifications for the given set of information classes.
Note that correctness is only specified for the set of information classes, not the
information flow assumption. If the information classes are not total, in the sense
that all distinguished traces are in one of the classes, then the receiver is not
correct for all implementations of the sender.

5.2 Transmitting Information

While a transmitter has to satisfy its local specification, it must also guarantee
that the information flow that the receiver relies on is transmitted in time. In
general, this is, again, a hyperproperty synthesis problem: The combination of
the local specification of q and the prefix information-flow assumption of p is
the 2-hyperproperty that the implementation of q needs to satisfy. However, we
propose a framework for more involved (incomplete) trace property synthesis
algorithms, potentially speeding up the transmitter synthesis significantly. In
contrast to the receiver, the transmitter of information can choose the synthesis
strategy; As long as the transmitter satisfies the information-flow assumption,
the receiver will assume this implementation as feasible and can react to the
information flow correctly during composition. We specify a class of trace prop-
erties s.t. each element specifies a subset of the implementations that satisfy a
correct transmitter.

Definition 8 (Guarantee specification). Let p and q be components and Iϕp

be the IFA for ϕp. The set Gρp
⊆ (2Iq∪Oq)ω is a guarantee specification if all

2Oq -labeled 2Iq -transition systems that satisfy G also satisfy Ip.

The first crucial difference between the guarantee specification and the
assume specification in Definition 7 is that the transmitter must guarantee a
difference on the traces in ρp whereas the receiver can only assume to observe
a difference whenever ρp relates two traces. Additionally, the guarantee specifi-
cation can specify a subset of implementations of all possible transmitters. We
show this difference in the following example: Consider our running example
specification ϕ = (bin ↔ bout). One of the (infinitely) many guarantee spec-
ifications can be the set of traces specified by the LTL formula (bin ↔ ¬cb),
which enforces that every bin is communicated to the receiver by setting cb to
false.

It remains to show that we can construct guarantee specifications for prefix
information-flow assumptions effectively. We will highlight two useful guarantee
specifications, one that is implemented in our prototype and one that utilizes the

76 B. Finkbeiner et al.

information classes. We begin with the full-information specification. It forces
the transmitter to send, if possible, all information and therefore reduces the
distributed synthesis problem to monolithic synthesis. This concept was already
presented in [32] where it was called adequate connectivity and later extended
by Gastin et al. [21].

Definition 9 (Full-information specification). Let p and q be components,
and f : Oe ∩ Iq → Oq ∩ Ip be a bijection. The full-information specifciation for
q is the trace property

Fp = {πe � πo | πe ∈ (2Oe∩Iq)ω, πp ∈ (2Oq∩Ip)ω,∀v ∈ (Oe ∩ Iq),
either ∀n ∈ N.v ∈ πe[n] iff f(v) ∈ πo[n + 1]

or ∀n ∈ N.v ∈ πe[n] iff f(v) /∈ πo[n + 1]}
This specification forces the sender to assign exactly one value of a communi-

cation variable to every input variable. This choice must hold for every point in
time and can not be changed, ensuring that every input combination is uniquely
represented by the communication variables. The full-information specification
is a guarantee specification for every possible information-flow assumption. Since
every input bit is guaranteed to be transmitted, every different input trace can
be distinguished, not only the ones required to be distinguished by the prefix
distinguishability relation. The full-information specification is a sufficient con-
dition for realizing the sender; if there is an implementation for satisfying F,
then this implementation is a correct sender. It is not a necessary specification,
the sender might be able to encode the inputs to a smaller set of communication
variables. The second guarantee specification is based on the information classes.

Definition 10 (Information Class Guarantee). Let C′
p be the finite set of

information classes of p projected to the inputs of q, s.t. the information classes
c ∈ C′

p are subsets of (2Oe∩Iq)∗. Let furthermore f : C → 2Oq∩Ip be a bijection.
The information class guarantee I

C
q ⊆ (2(Oe∩Iq)∪(Oq∩Ip)))ω is defined as

I
C
q = {πe ∪ πo | πe ∈ (2Oe∩Iq)ω,πo ∈ (2Oq∩Ip)ω,∀n ∈ N,∀c ∈ C′

p

if πe[0 . . . n] ∈ c then f(c) ∈ πo[n + 1]}.

The specification tracks, for an environment output trace πe, the current
information class. Whenever the finite trace is in an information class c, the
transmitter must set the combination of its outputs to the values as specified
by the bijection f . The receiver p can therefore observe c by decoding the out-
puts of q on Oq ∩ Ip. Similar to the assume specification, the correctness of the
information class guarantee depends on the information classes:

Lemma 3. If a set of information classes C is sufficient to synthesize ϕp then
I
C
q is a guarantee specification for ϕp.

If providing the information classes at every step is not sufficient for synthe-
sis, then either the specification is unrealizable or at least one information class

Information Flow Guided Synthesis with Unbounded Communication 77

falsely contains two traces that need to be distinguished. The assume and guar-
antee specifications in Sect. 5 build the foundation for synthesizing local compo-
nents that satisfy the local specification and the information-flow assumption.
In most distributed systems, however, components are not solely receivers nor
transmitters, but both simultaneously. We now define local implementations that
are correct w.r.t. information classes, called safety hyper implementations.

5.3 Safety Hyper Implementations

Hyper implementations were introduced in [17] specifying local implementations
of a distributed system that are correct for all possible implementations of all
other components. The hyper implementations observe all inputs of the envi-
ronment but are forced to react to them only if necessary, without restricting
the possible solution space of other components. For example, the implemen-
tation of the receiver r in the sequence transmission protocol is a 2Or -labeled
2Ir -transition system, but any locally synthesized solution for r must react to
inputs only observed by t. We use the information classes of Sect. 5 to specify
and synthesize a different approach to hyper implementations. Recall that we
assume a bounded number of information classes C.

Definition 11 (Safety hyper implementation). Let p and q be components,
e be the environment, and Cp be a set of information classes. A safety hyper
implementation Hp of p is a 2Op-labelled Cp ∪ 2Ip-transition system.

The safety hyper implementation branches over the information classes and the
local inputs to p and reacts with local outputs. The safety hyper implementa-
tion of our running example is depicted in Fig. 1c. Compared to (non-safety)
hyper implementations in [17], the safety hyper implementations do not con-
tain a special input variable t that signalizes the reception of information. This
deadline is explicitly present in the prefix distinguishability relation and can be
computed on the automaton representing the prefix distinguishability relation.
Since we consider safety properties, there always exists a pre-determined time
frame between the environment input and the necessary reception of the infor-
mation - a fact that we utilize heavily during hyper implementation construction.
We now formalize when a safety hyper implementation is correct.

Definition 12 (Correctness of safety hyper implementation). Let p, q,
and e be the components of a distributed system and the environment, and ϕp,
ϕq be the local specifications. A safety hyper implementation Hp is correct if it
implements Aϕp

and some Gϕq
.

Correct hyper implementations of p are compatible with all correct implemen-
tations of q, i.e., all possible sequences of information provided by some trans-
mitter, and implement one solution to the information-flow assumption of q.
Since assume and guarantee specifications are trace properties, we can synthe-
size safety hyper implementations with trace property synthesis algorithms once
the Büchi automata for the specifications are constructed.

78 B. Finkbeiner et al.

Fig. 2. The steps in the algorithm for compositional synthesis with prefix information
flow assumptions.

6 Synthesis with Prefix Information Flow Assumptions

In this section, we present algorithms for generating assume and guarantee spec-
ifications, the synthesis of hyper implementations, and obtaining the solutions
for each component. Combined, this builds our compositional synthesis approach
with information-flow assumptions for distributed systems.

6.1 Automata for Assume and Guarantee Specifications

The first step in our synthesis approach is to construct the assume specification
which builds on a finite set of information classes. According to Definition 5, there
is, in theory, an unbounded number of information classes. Our Algorithm 1
therefore iteratively builds automata that accept, for each prefix length, one
information class. Given the automaton for the prefix distinguishability relation
over Σϕ ×Σϕ′ , the function identicalAPs returns an automaton Aid that accepts
exactly one input trace over the alphabet Σϕ at each time step. This is achieved
by choosing one explicit proposition combination for each edge in the automaton.

Algorithm 1: Information Classes

1 let informationClasses(Aρ):=
2 let Ac = Aρ

3 let Aid = identicalAPs(Aρ)
4 let result = ∅
5 while L(Aid) �= ∅ do

6 result.add(allTraces(Aid ∩ Ac))

7 Ac = Aρ ∩ Aid

8 Aid = identicalAPs(Ac)
9 return result

On this automaton, the
function call allTraces(Aid ∩ Ac)
collects all traces that do not
need to be distinguished from
Aid. These are the traces in
the negation of the prefix dis-
tinguishability relation that are
related to Aid. The function
allTraces can be computed by
renaming the primed propo-
sitions on the edges of the
automaton. This concludes the
computation of the first infor-
mation class. The algorithm
continues by removing Aid from
the prefix distinguishability automaton and computing the next information
class until the current automaton for the prefix distinguishability relation is
empty.

Information Flow Guided Synthesis with Unbounded Communication 79

Algorithm 1 yields, if it terminates, n finite automata Fc where all traces
in each Fc do not need to be distinguished. This implies that there exists a
common output combination for each time-step that is correct for each trace
in the automaton. We now show a construction for the assume specification
in Definition 7.

Construction 1. We first transform the n finite automata F1, . . . ,Fn for the
information classes, as obtained as the result of Algorithm 1, to the respective
information class specification (see Definition 6). For each automaton, we build
the intersection of the goal automaton Aϕ and Fi. The resulting automaton
accepts all traces in the information class with outputs as specified by ϕ. This
yields an NBA B that only accepts a subset of all input traces. We lift it to an
automaton for the information class specification by unionizing all input and
output combinations that do not occur on Fi, which is Atrue\B, where Atrue

is the automaton accepting all input and output combinations. After performing
this construction for all n information class automata, the intersection of all of
them accepts the assume specification.

We use this automaton for the local synthesis of each component. The local
specification is implicitly satisfied by the hyper implementation of the assume
specification since it is encoded in the construction. We now show how to con-
struct the full information specification in Definition 9.

Construction 2. Let I = Iq ∩ Oe be the inputs observed by q and O = Oq ∩ Ip.
We assume that |I| ≤ |O| since we can only transmit all information if we have
at least as many communication variables as environment output variables. Let
f : I → O be a bijection that maps input variables to output variables. We
construct the LTL formula ϕ =

∧
i∈I (i ↔ f(i)) ∨ (i ↔ ¬f(i)). This

formula enforces that, for every i ∈ I, either the value of i is copied to f(i) at
every point in time, or the negation of i’s value is copied to f(i) at every point.
The corresponding automaton whose language is a full-information specification
is Aϕ, obtained by a standard LTL to NBA translation.

Together with a guarantee specification, the hyper implementation satisfies
its own local specification and the guarantee of the other component.

6.2 Compositional Synthesis

The last step in the compositional synthesis algorithm is the composition and
decomposition of the hyper implementations. After this process, we obtain the
local implementations of the components and therefore the implementation of the
distributed system. During composition and decomposition, we need to replace
the information class variables with the actual locally received input. The compo-
sition collects all environment and component outputs, as well as the information
classes for both components. This includes unreachable states, namely combina-
tions of information classes and environment outputs that are impossible (the
finite environment output trace is not in the information class). We eliminate
these states in Definition 14. The composition is defined as follows:

80 B. Finkbeiner et al.

Definition 13 (Composition). Let p, q be components and Hp = (T p, tpo,
τp, op) and Hq = (T q, tq0, τ

q, oq) be their safety hyper implementations. The
composition H = Hp||Hq is a 2Op∪Oq -labeled 2Oe ∪ Cp ∪ Cq-transition system
(T, tp, τ, o), where T = T p × T q, t0 = (tp0, t

q
0), o((tp, tq)) = op(tp) ∪ oq(tp), and

τ((tp, tq), x) = τp(tp, (x ∪ oq(tq)) ∩ (Ip ∪ Cp)), τ q(tq, (x ∪ op(tp)) ∩ (Iq ∪ Cq))

The state space is the cross product of the hyper implementations and the label-
ing function is the union of the local hyper implementation’s outputs. The tran-
sition function ensures that the global inputs over 2Oe ∪Cp∪Cq are separated into
the inputs of the respective hyper implementations, namely Cp ∪ Ip and Cq ∪ Iq.
For every state in the cross-product, the composition branches for every envi-
ronment output and information class to a local state of a component. Some of
these states are unreachable. For our running example, the composition includes
a transition with ¬bin, c′, even though the trace with ¬bin in the last step cannot
be in c′. We now filter states according to consistency. We consider H(x) as the
hyper implementation H terminating in x.

Definition 14 (Filter). Let H = (T, t0, τ, o) be the composition of the 2Op-
labeled 2Cp∪Ip-transition system Hp and the 2Oq -labeled 2Cq∪Iq -transition system
Hq. The consistent composition of Hp and Hq is the hyper implementation H′ =
(T ′, t′0, τ

′, o′), with T ′ = T , t′0 = t0, o′ = o, and

τ ′((tp, tq), x) =
{

τ((tp, tq), x) if ∀c ∈ x.H(tp, tq) ⊆ L(Fc)
∅ else

A finite trace π of length n over 2Oe ∪ Cp ∪ Cq is impossible to reach if c is
in π[n] but π ↓Oe

is not in the information class represented by c. Computing if
a state is unreachable includes language inclusion of the subsystem terminating
in the state and the automaton of the information class. However, an algorithm
that enforces consistency can monitor the current information class of a state
during a forward traversal of the composed hyper implementations. In the next
and final step, the decomposition then projects the composition to only the
observable outputs of a component. For some input combinations, this yields a
set of reachable states, of which we choose one for the decomposition. In essence,
all these states are viable successors for the current input combination.

Definition 15 (Decomposition). Let H = (T, tp, τ, o) be the consistent com-
position of the 2Op-labeled 2Cp∪Ip-transition system Hp and the 2Oq -labeled
2Cq∪Iq -transition system Hq. Furthermore, let min be a function returning the
minimal element for a subset of T w.r.t. some total ordering over the states of
T . The decomposition H|p is a 2Op-labelled 2Ip-transition system (T p, tp0, τ

p, op)
where T p = T , tp0 = t0, op((tp, tq)) = o((tp, tq)) ∩ Op, and

τp(t, x) = min{t′ | ∃y ∈ 2(Oe∪Cp)\Ip .t′ = τ(t, x ∪ y)}
The full compositional synthesis algorithm is shown in Fig. 2. Given the two

local specifications, the first step is computing the prefix distinguishability NFAs.

Information Flow Guided Synthesis with Unbounded Communication 81

Based on those, the assume specifications and guarantee specifications for both
components are constructed and build the inputs to the local synthesis proce-
dures. Note that the guarantee specification can be any strategy that implements
the information flow assumption, e.g., any scheduling paradigm. After intersect-
ing the two automata, the components must satisfy the assume and the guar-
antee specification together, which is achieved by trace property synthesis on
the intersection of the automata. The problem is unrealizable if either the prefix
information-flow assumption is not sufficient for synthesis (there could be nec-
essary behavioral assumptions), or not all information can be communicated to
the receiver. After composition, consistency, and decomposition, the algorithm
terminates with two local implementations that, together, implement a correct
distributed system:

Corollary 1. Let p and q be components with local specifications ϕp and ϕq. The
distributed system implementation returned by the algorithm depicted in Fig. 2
satisfies the local specifications.

7 Experiments

We implemented the compositional synthesis algorithm described so far in our
prototype called FlowSy. The implementation builds on the popular infinite
word automaton manipulation tool spot [13] for translation, conversion, and
emptiness checking of NBAs. FlowSy implements the support for the finite
automata, the construction of prefix distinguishability in Construction 4, the
construction of the information classes in Algorithm 1, and building automata
for the assume specification in Construction 1 and full information specification
Construction 2. The synthesis of the hyper implementations is performed by
converting the Büchi automata to deterministic parity games and solving them
with the solver oink [12]. We report on two research questions, (1) how do the
prefix distinguishability automaton and the information classes scale w.r.t. for-
mula size and information flow over time and (2) how does FlowSy compare
to the existing bounded synthesis approach for distributed system HyperBosy
presented in [16]. Note that, at the time of evaluation, HyperBosy was the only
tool for distributed synthesis that we were able to compare against. A compari-
son with the existing information flow guided synthesis algorithm with bounded
communication in [17] is infeasible since the supported languages of input spec-
ifications are disjoint. All experiments are run on a 2.8 GHz processor with 16
GB RAM, the timeout was 600 s, and the results are shown in Table 1.

Benchmarks. The benchmarks scale in 3 different dimensions: the number of
independent variables, time-steps in between information reception and corre-
sponding output, and combinatorics over input and output variables. The first
one is independent communication of n input variables in sequence transmission.
This parametric version of the running example has n conjuncted subformulas
of the form (i ↔ o). For the delay benchmark, the number of variables is
constant, but the number of time steps between input and output is increased,

82 B. Finkbeiner et al.

Table 1. This table summarizes the experimental results. The Benchmark and Param-
eter columns specify the current instance. The columns |ϕ|, |ρ|, and |C| give the size of
the formula, the number of states in the prefix distinguishability automaton, and the
number of information classes, respectively. The last two columns report the running
time of FlowSy and BosyHyper in seconds.

Benchmark Par. |ϕ| |ρ| |C| FlowSy BosyHyper

Delay 1 5 4 2 1.74 0.97

2 6 8 2 1.87 TO

3 7 16 2 1.84 TO

4 8 32 2 1.94 TO

5 9 64 2 2.36 TO

Sequence Transmission 1 5 4 2 1.83 1.42

2 11 6 4 5.28 TO

3 16 10 8 36.81 TO

Conjunctions 1 5 4 2 3.18 0.92

2 9 4 4 4.35 91.80

3 13 4 8 9.20 TO

4 17 4 16 TO TO

Disjunctions 1 5 4 2 3.25 6.26

2 9 4 4 5.63 60.08

3 13 4 8 12.14 TO

4 17 4 16 TO TO

i.e., the formulas have the form (i ↔ n o). The last two benchmarks build
Boolean combinations over the inputs. The conjunctions benchmark enforces
that the conjunctions over the inputs are mirrored in the outputs. Disjunctions
is constructed in the same way but with disjunctions in between variables. For-
mulas are (i1 ∧ i1 ∧ . . . ↔ o1 ∧ o2 ∧ . . .) and (i1 ∨ i1 ∨ . . . ↔ o1 ∨ o2 ∨ . . .).

Scaling. FlowSy primarily scales in the number of computed information
classes. Most interestingly, for benchmark delay, the number of information
classes is constantly 2, even though the size of the prefix distinguishability
automaton grows exponentially. Independent of the length of the current trace,
the automaton for the information class checks that the current position is equal
to the position n steps earlier. This can indeed be represented by two informa-
tion classes. For synthesizing the conjunction and disjunction benchmarks, the
situation is reversed. Even though the prefix distinguishability automaton is con-
stant, the number of information classes grows exponentially in the parameter,
collecting all possible combinations of input variables. For the sequence trans-
mission benchmark, all reported values scale with the input parameter, which
leads to an expected increase of the running time until the timeout at step 4
(not included in Table 1).

Comparison to BosyHyper. FlowSy clearly outscales BosyHyper. Most inter-
estingly, the delay benchmark shows the almost constant running time for
FlowSy. Since the number of information classes stays the same, the synthesis

Information Flow Guided Synthesis with Unbounded Communication 83

of the hyperproperties only scales for transmitting the information. BosyHy-
per must store all values for all n steps during synthesis, which immediately
increases the search space to an infeasible size. For the benchmarks conjunction
and disjunction, one can observe that, although the information classes scale
exponentially, the running time of FlowSy is significantly faster than that of
BosyHyper, which is already at 91 s for parameter 2. In summary, the com-
positionality of FlowSy is always beneficial for the synthesis process and it
saves on the execution time dramatically when the complex communication in
the distributed system can be reduced to a small number of information classes.

8 Related Work

Compositional synthesis for monolithic systems, i.e., architectures with one com-
ponent and the environment, is a well-studied field in reactive synthesis, for
example in [14,18,24,26] and most recently in [1]. In multi-component systems
with partial observation, compositionality has the potential to improve algo-
rithms significantly, for example in reactive controller synthesis [2,22]. Assume-
guarantee synthesis adheres to the same synthesis paradigm as our approach: the
local components infer assumptions over the other components to achieve the
local goals [4,6]. The assumptions are trace properties, restricting the behavior
of the components which often is not necessary. If the assumptions are not suffi-
cient, i.e., too weak to locally guarantee the specification, the assumption can be
iteratively refined [29]. Another approach is weakening the acceptance condition
to dominance [10] or certificates that specify partial behavior of the components
in an iterative fashion [19]. In our previous work on information flow guided
synthesis [17], we have introduced the concept of compositional synthesis with
information-flow assumptions. The work presented in the paper overcomes the
two major limitations of this original approach, namely the limitation to liveness
(or, more precisely, co-safety properties) and the limitation to specifications that
can be realized by acting only on a a finite amount of information.

9 Conclusion

We have presented a new method for the compositional synthesis of distributed
systems from temporal specifications. Our method is the first approach to handle
situations where the required amount of information is unbounded. While the
information-flow assumptions are hyperproperties, we have shown that standard
efficient synthesis methods for trace properties can be utilized for the construc-
tion of the components. In future work, we plan to study the integration of
the information-flow assumptions computed by our approach with the assump-
tions on the functional behavior of the components generated by techniques from
behavioral assume-guarantee synthesis [4,6]. Such an integration will allow for
the synthesis of systems where the components collaborate both on the distri-
bution and on the processing of the distributed information.

84 B. Finkbeiner et al.

References

1. Akshay, S., Basa, E., Chakraborty, S., Fried, D.: On dependent variables in reactive
synthesis. In: Finkbeiner, B., Kovács, L. (eds.) ETAPS 2024, pp. 123–143. Springer
Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-57246-3 8

2. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (2011). https://doi.org/10.1145/2000799.
2000800

4. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis
for concurrent reactive programs with partial information. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 517–532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 50

5. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Handbook of Model Checking, pp. 921–962. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-10575-8 27

6. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

7. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, vol. 1, pp. 3–50. Cornell
University, Ithaca, NY (1957)

8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur
10. Damm, W., Finkbeiner, B.: Automatic compositional synthesis of distributed sys-

tems. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
179–193. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 13

11. d’Amorim, Marcelo, Roşu, Grigore: Efficient Monitoring of -Languages. In: Etes-
sami, Kousha, Rajamani, Sriram K.. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–
378. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 36

12. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 16

13. Duret-Lutz, A., et al.: From spot 2.0 to Spot 2.10: what’s new? In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification: 34th International Conference, CAV
2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II, pp. 174–187. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-13188-
2 9

14. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 10

15. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS (2005)
16. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-

tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV

https://doi.org/10.1007/978-3-031-57246-3_8
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-642-15643-4_10

Information Flow Guided Synthesis with Unbounded Communication 85

2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

17. Finkbeiner, B., Metzger, N., Moses, Y.: Information flow guided synthesis. In:
Shoham, S., Vizel, Y. (eds.) CAV 2022, Proceedings, Part II (2022). https://doi.
org/10.1007/978-3-031-13188-2 25

18. Finkbeiner, B., Passing, N.: Dependency-based compositional synthesis. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 447–463. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 25

19. Finkbeiner, B., Passing, N.: Compositional synthesis of modular systems. In: Hou,
Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 303–319. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88885-5 20

20. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Trans-
fer 15(5–6), 519–539 (2013). https://doi.org/10.1007/s10009-012-0228-z

21. Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected
architectures. Formal Methods Syst. Des. 34(3), 215–237 (2009)

22. Hecking-Harbusch, J., Metzger, N.O.: Efficient trace encodings of bounded synthe-
sis for asynchronous distributed systems. In: Chen, Y.-F., Cheng, C.-H., Esparza,
J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 369–386. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31784-3 22

23. Jacobs, S., et al.: The reactive synthesis competition (SYNTCOMP): 2018-2021.
CoRR (2022). https://doi.org/10.48550/ARXIV.2206.00251

24. Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live
sequence chart specifications. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00768-2 9

25. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Logic in Com-
puter Science (LICS) (2001)

26. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 6

27. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 33

28. Madhusudan, P., Thiagarajan, P.S.: A decidable class of asynchronous distributed
controllers. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 145–160. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45694-5 11

29. Majumdar, R., Mallik, K., Schmuck, A., Zufferey, D.: Assume-guarantee dis-
tributed synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020).
https://doi.org/10.1109/TCAD.2020.3012641

30. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. TOPLAS 6(1), 68–93 (1984)

31. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977 (1977). https://doi.org/10.1109/SFCS.1977.32

32. Pnueli, A., Rosner, R.: Distributed Reactive Systems Are Hard to Synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II. pp. 746–757. IEEE Computer Society (1990).
https://doi.org/10.1109/FSCS.1990.89597

https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-031-13188-2_25
https://doi.org/10.1007/978-3-031-13188-2_25
https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/978-3-030-88885-5_20
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.48550/ARXIV.2206.00251
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/11817963_6
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/FSCS.1990.89597

86 B. Finkbeiner et al.

33. Schewe, S., Finkbeiner, B.: Semi-automatic distributed synthesis. Int. J. Found.
Comput. Sci. 18(1), 113–138 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Synthesis of Temporal Causality

Bernd Finkbeiner , Hadar Frenkel , Niklas Metzger ,
and Julian Siber(B)

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner,hadar.frenkel,niklas.metzger,julian.siber}@cispa.de

Abstract. We present an automata-based algorithm to synthesize ω-
regular causes for ω-regular effects on executions of a reactive system,
such as counterexamples uncovered by a model checker. Our theory is
a generalization of temporal causality, which has recently been proposed
as a framework for drawing causal relationships between trace properties
on a given trace. So far, algorithms exist only for verifying a single causal
relationship and, as an extension, cause synthesis through enumeration,
which is complete only for a small fragment of effect properties. This work
presents the first complete cause-synthesis algorithm for the class of ω-
regular effects. We show that in this case, causes are guaranteed to be ω-
regular themselves and can be computed as, e.g., nondeterministic Büchi
automata. We demonstrate the practical feasibility of this algorithm with
a prototype tool and evaluate its performance for cause synthesis and
cause checking.

Keywords: Actual causality · Cause synthesis · Reactive systems ·
Temporal logic · Büchi automata

1 Introduction

Causality is a key ingredient for explaining model-checking results [5,15,38,46]
and a reasoning tool in several verification and synthesis algorithms [2,36,37].
These techniques have retrofitted causality definitions from philosophy [33,40]
and artificial intelligence [31], which were not designed for reactive systems with
infinite dynamics and often fall short in such ad-hoc applications. For instance,
popular approaches for explaining model-checking results highlight the coun-
terexample trace at events that constitute causes [7,18,32]. Yet, marking a (pos-
sibly infinite) set of events does not clearly describe the temporal behavior man-
ifested by them since, e.g., two events can be individually responsible for the
effect or only together. Similarly, the occurrence of events in the loop part of a
trace can be relevant, e.g., only once or infinitely often.

To address such reoccurring problems arising with causal reasoning in reac-
tive systems, Coenen et al. have recently proposed temporal causality for draw-
ing causal relationships between temporal properties on a given trace of a sys-
tem [19]. Causal properties can then be described symbolically with logics or
automata, which give a concise description of the possibly infinite causal behav-
ior, and are, moreover, amenable to verification algorithms.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 87–111, 2024.
https://doi.org/10.1007/978-3-031-65633-0_5

https://doi.org/10.5281/zenodo.10946309
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_5&domain=pdf
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-3566-0338
http://orcid.org/0000-0003-3184-6335
http://orcid.org/0000-0003-0842-0029
https://doi.org/10.1007/978-3-031-65633-0_5

88 B. Finkbeiner et al.

1.1 Temporal Causality

At its core, temporal causality uses counterfactual reasoning to infer a causal
relationship: A property is a cause for some effect property on a given trace,
where both properties hold, if on all closest traces that do not satisfy the cause,
the effect is not satisfied either. Additionally, the cause property has to be seman-
tically minimal. Hence, it is a form of actual causation [30], which describes the
concrete causal behavior in the given, actual observation (the trace), and not all
of the system behavior that may cause the effect (which loosely corresponds to
the concept of general causation).1

{}

{e} {e}

{}

x ∧ ¬y

¬x
x

y

�x

¬x ∧ ¬y
¬x

Fig. 1. Example system.

To illustrate, consider the system
depicted in Fig. 1, where x and y
are inputs and e is an output. We
are interested in what input behav-
ior causes the effect e on the trace
π = ({x, e})ω – we skip the output
label of the first position. Our first
guess may be y ∨ x, which char-
acterizes all system traces that sat-
isfy e. However, this is too general
to describe the causal behavior on π.
After all, the left disjunct y is not even
satisfied by π. Let us see which condi-
tion fails. The counterfactual criterion
holds: The closest system traces that
do not satisfy y ∨ x also do not sat-
isfy the effect, as these are exactly the
traces that go directly to the lower state labeled with the empty set and loop
there infinitely. However, minimality is not satisfied, as the property x implies
y ∨ x (i.e., is semantically smaller) and also satisfies the counterfactual crite-
rion: the closest trace that does not satisfy it is ({})ω. In particular, the existence
of, e.g., trace {y, e}({})ω that also does not satisfy the cause x, but still satis-
fies the effect e, is irrelevant, as ({})ω is closer to π than the trace {y, e}({})ω.
It is worth pointing out that we only measure distance over inputs. Picking a
property that is too small fails the counterfactual criterion: If we picked x,
which implies x, there would be, e.g., the closest trace {}({x, e})ω that still
satisfies the effect.

In their original work [19], Coenen et al. showed that the requirements for a
valid causal relationship can be encoded as a hyperproperty [17], such that check-
ing whether a given ω-regular property is indeed the cause for a given ω-regular
effect on a trace can be decided via model checking. This has recently been
implemented in a sketch-based algorithm for enumerating causes [11], which is
complete for effects containing as the only temporal operator. That approach,
of course, covers only a tiny fragment of the original theory. How to compute
the cause for an arbitrary ω-regular effect has remained an open question.
1 Actual and general causality are also called token and type causality in the literature.

Synthesis of Temporal Causality 89

1.2 Contributions and Structure

As it turns out, the intricate balance between the counterfactual criterion and
minimality of temporal causality gives rise to an intuitive order-theoretic char-
acterization of causes: The complement of the cause is the upward closure of
the negated effect property in the partial order defined by the similarity relation
(measuring distance from the actual trace). We illustrate the intuition behind
this characterization in Sect. 3.1, and formally develop it in Sect. 5.1.

The consequence of our characterization is that if we can compute the upward
closure of the negated effect E and the complement of the result, then we can
compute the cause for E on π. We show that if E is an ω-regular property, π in a
lasso shape, and the similarity relation is also defined by a (relational) ω-regular
property, such an upward closure can be constructed as a nondeterministic Büchi
automaton, which means that the cause (i.e., the complement of the automa-
ton) again is an ω-regular property. This approach forms the core of our cause
synthesis algorithm, which we describe in Sect. 5.

The complexity of our algorithm significantly scales in the size of the descrip-
tion of the similarity relation, which is problematic due to the complex and large
similarity relations of previous work. Coenen et al. [19] observed that with the
original counterfactual criterion, these similarity relations need to satisfy the
assumption that there is a non-empty set of closest traces for any actual trace
and candidate cause, otherwise the counterfactual condition can be vacuously
true. We tie this restriction to the limit assumption first introduced by Lewis [41]
and study similarity relations through this lens. Concrete similarity relations
that have been proposed so far [11,19] satisfy the limit assumption by adding
additional criteria, but these increase the size of the formula describing the sim-
ilarity relation significantly. In Sect. 4, we show that we can instead modify the
counterfactual condition of the causality definition to allow similarity relations
that do not satisfy the limit assumption, using Lewis’ semantics for counterfactu-
als [41], as extended to non-total similarity relations by Finkbeiner and Siber [23].
Crucially, this modification retains the original semantics of Coenen et al. for
similarity relations that satisfy the limit assumption as long as the actual trace
is deterministic. Hence, it generalizes our closure-based characterization and the
corresponding algorithm to significantly simpler similarity relations. All proofs
can be found in the full version of this paper [22].

In Sect. 6, we show through experiments with our prototype tool CORP that
our modified counterfactual criterion leads to significantly faster computations in
practice. We further compare our cause synthesis algorithm with the incomplete
sketching approach of the tool CATS [11]. Last, we extend our approach to cause
checking through cause synthesis with an additional equivalence check, which we
compare with the checker implemented in CATS.

Contributions. In summary, we make the following contributions:

– We extend the theory of temporal causality to similarity relations that do not
satisfy the limit assumption.

90 B. Finkbeiner et al.

– We prove an order-theoretic characterization of causes as downward closed
sets of the similarity relation.

– Based on this characterization, we develop the first complete method for ω-
regular cause synthesis.

– We present and evaluate a prototype implementation of our approach.

2 Preliminaries

We start by recalling preliminaries regarding our system model. Then, we provide
background on automata and logics for describing temporal properties.

Systems and Traces. We model systems as nondeterministic finite state
machines T = (S, s0,AP , δ, l) where S is a finite set of states, s0 ∈ S is the
initial state, AP = I ∪· O is the set of atomic propositions consisting of inputs
I and outputs O , δ : S × 2I → 2S is the transition function determining a set
of successor states for a given state and input, and l : S → 2O is the labeling
function mapping each state to a set of outputs. A trace of T is an infinite
sequence π = π[0]π[1] . . . ∈ (2AP)ω, with π[i] = A ∪ l(si+1) for some A ⊆ I
and si+1 ∈ δ(si, A) for all i ≥ 0, i.e., we skip the label of the initial state in
the first position. traces(T) is the set of all traces of T . For two subsets of
atomic propositions V ,W ⊆ AP , let V |W = V ∩W , π|W = π0|W π1|W . . . and
π =V π′ iff π|V = π′|V for traces π, π′. A trace π0 is deterministic in T iff for
all π1 ∈ traces(T) : π0 =I π1 → π0 = π1. A trace π is lasso-shaped, if there exist
i, j = i+1, k ∈ N such that π = π0 . . . πi · (πj . . . πk)ω, we then define |π| = k−1.

Büchi Automata. A nondeterministic Büchi automaton (NBA) [13] is a tuple
A = (Q,Σ,Q0, F,Δ), where Q denotes a finite set of states, Σ is a finite alphabet,
Q0 ⊆ Q is a set of initial states, F ⊆ Q is the set of accepting states, and
Δ : Q×Σ → 2Q is the transition function that maps a state and a letter to a set
of possible successor states. The size of an NBA |A| is the number of its states
|Q|. A run of A on an infinite word w = w1w2 · · · ∈ Σω is an infinite sequence
r = q0q1 · · · ∈ Qω with q0 ∈ Q0 and qi+1 ∈ Δ(qi, wi) for all i ∈ N. A run r of
the NBA is accepting if there exist infinitely many i ∈ N such that qi ∈ F . The
language L(A) is the set of all words that have an accepting run. We say that
some trace property P ⊆ (2A)ω is ω-regular, if there is an NBA A such that
L(A) = P. A trace π satisfies any P ⊆ (2A)ω, denoted by π � P, iff π|A ∈ P.

Linear-Time Temporal Logic. We use Linear-time Temporal Logic (LTL)
[44] to succinctly specify a fragment of ω-regular properties throughout the
paper. LTL formulas are built using the following grammar, where a ∈ AP :

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ .

Synthesis of Temporal Causality 91

The semantics of LTL are given by the following satisfaction relation, which
recurses over the positions i of the trace π.

π, i � a iff a ∈ π[i]
π, i � ¬ϕ iff π, i � ϕ
π, i � ϕ ∧ ψ iff π, i � ϕ and π, i � ψ
π, i � ϕ iff π, i + 1 � ϕ
π, i � ϕ U ψ iff ∃j ≥ i such that π, j � ψ and ∀i ≤ k < j. π, k � ϕ

A trace π satisfies a formula ϕ, denoted by π � ϕ iff the formula holds at
the first position: π, 0 � ϕ. The language L(ϕ) is the set of all traces that satisfy
a formula ϕ. We also consider the usual derived Boolean connectives: ∨, →, ↔;
and temporal operators: ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), ϕ ≡ true U ϕ, ϕ ≡ false R ϕ.

Relational Properties. Relational properties, or, hyperproperties [17], allow us
to relate multiple system executions, and reason about their interaction. Coun-
terfactual reasoning often is a hyperproperty, and in particular, temporal causal-
ity as defined by Coenen et al. was formally shown to be a hyperproperty [19].
Many logics to express temporal hyperproperties have been suggested in recent
years (e.g., [6,8,10,28]), the most prominent one being HyperLTL [16]. In this
paper, we do not use a hyperlogic to express temporal causality, but we use the
related notion of zipped traces (e.g., [9]) for defining similarity relations. A zipped
trace of three traces π0,1,2 is defined as zip(π0, π1, π2)[i] = {(a, tk) | a ∈ πk[i]},
i.e., we construct the zipped trace from disjoint unions of the positions of the
three traces, where atomic propositions from the traces π0,1,2 are distinguished
through pairing them with the trace variables t0,1,2.

3 Overview: The Topology of Causality

Our main results on cause synthesis heavily rely on a characterization of causes
as certain downward closed sets of system traces that are ordered by a similarity
relation. We illustrate the main intuition behind this characterization in Sect. 3.1.
Then, in Sect. 3.2, we outline how we extend this result to more general similarity
relations than originally considered by Coenen et al. [19].

3.1 Actual Causes as Downward Closed Sets of Traces

Our central theorem states that the temporal cause for an effect E on some actual
trace π is the largest subset of E that is downward closed2 in the preordered
set of system traces (traces(T),≤π), where ≤π is a (comparative) similarity
relation that orders traces based on their similarity to π. Figure 2a illustrates
this abstractly. Arrows together with nodes represent system executions, whose

2 X ⊆ traces(T) is downward (upward) closed in (traces(T), ≤π) if for all πx ∈ X and
πt ∈ traces(T), πt ≤π πx (πx ≤π πt) implies πt ∈ X.

92 B. Finkbeiner et al.

Fig. 2. Two highlighted aspects of the cause C in the preordered set (traces(T), ≤π).
Figure 2a illustrates that the cause is the largest downward-closed subset of the effect
E. The quantifiers in Fig. 2b show which traces outside of the cause are required to
avoid the effect in our formalization (without limit assumption) and in Coenen et al.’s
definition [19] (with limit assumption). (Color figure online)

traces form traces(T) and are ordered by the irreflexive reduction <π of the
similarity relation. The set of system traces is, in general, infinite, such that
there may be infinitely many other traces which are omitted from the illustration
for sake of clarity. However, note that similarity relations must be designed such
that all traces are further away from the actual trace π than itself, i.e., π is a
minimum of ≤π. The set of traces that satisfy the effect is depicted by the area
that is colored in light blue. The actual trace π is an element of this set, as this
is the trace on which the cause for a given effect is analyzed.

Coenen et al.’s temporal causality is counterfactual in nature, and now
requires that the closest traces outside of the cause C, which in Fig. 2a is marked
by the red border, do not satisfy the effect. In the illustration, this is reflected
by πb and πc not satisfying the effect, i.e., not being in a light blue area. At the
same time, Coenen et al. require the cause to be the smallest set that satisfies
this, which means that only traces that satisfy the effect are included: Otherwise,
the upward closure3 of traces that do not satisfy the effect could be removed.
Hence, in Fig. 2a the area inside the red border is light blue.

In this paper, we show that the balance between these criteria defines causes
that are the largest subsets of E that are downward closed in the preordered
set (traces(T),≤π). We also propose an algorithm that constructs these causes
for effects that are ω-regular properties and traces that are in a lasso-shape.
Our algorithm first constructs a nondeterministic Büchi automaton for the com-
plement of the cause C. This complement is the upward closure of the negated
effect E, which means it includes all traces for which there exists an at-least-as
close trace that does not satisfy the effect. Since ≤π is reflexive, this naturally
includes all traces in E, such as πb and πc in Fig. 2a. It also includes all traces
that are further away than a trace in E, such as πa and πd.

3 The upward closure of a set X is the smallest upward closed set containing X.

Synthesis of Temporal Causality 93

In the end, these mechanisms make temporal causality a form of actual
causality that describes a local generalization of the behavior that causes the
effect on the actual trace. In the introductory example from Fig. 1 with the
actual trace π = {x, e}ω, traces in, e.g., L(y ∧ ¬ x) are all further away from
π than the trace {}ω, which is in E = L(¬e). Hence, L(y ∧ ¬ x) is included
in the upward closure of E, and none of its elements is included in the cause.

3.2 Causality Without the Limit Assumption

With our approach based on set closure, we can solve a central issue of temporal
causality: Since the preordered set (traces(T),≤π) is infinite, there only exist
traces in C that are the closest with respect to the actual trace π if (C,≤π) is
well-founded. If this is the case for all possible pairs of actual trace π and cause
candidate C, we say the similarity relation satisfies the limit assumption, after
Lewis [41], who formalized it for counterfactual modal logic. Since Coenen et al.’s
definition [19] requires that all closest traces avoid the effect, it is restricted to
similarity relations that satisfy this assumption. Their counterfactual condition
is illustrated in the lower part of Fig. 2b. If the limit assumption holds, any
descending chain πj ≥π πj−1 ≥π . . . stabilizes at some πi, for which Coenen et
al. require πi ∈ E.

If the limit assumption does not hold (upper part of Fig. 2b), there may be
infinite chains πj ≥π πj−1 ≥ . . . for which a closest πi does not exist. In these
instances, Coenen et al.’s criterion would be vacuously true. This is particularly
problematic as the canonical similarity relation ≤subset

π does not satisfy the limit
assumption. This metric orders two traces as πj ≤subset

π πk if the changes between
πj and π are a subset of the changes between πk and π. This may lead, for
example, to the infinite chain {}ω ≥subset

π {x}{}ω ≥subset
π . . . in the preordered set

(L(¬x),≤subset
π), where π = {x}ω. Coenen et al. add additional constraints

on top of ≤subset
π to ensure that it satisfies the limit assumption. These, however,

make cause checking more expensive, as observed by Beutner et al. [11], who
therefore combine ≤subset

π with a vacuity check. While this is computationally
better, this check simply fails in instances as outlined above, and so certain
causes cannot be checked by this method [11].

In this work, we solve this conundrum by modifying the definition of temporal
causality to accommodate similarity relations that satisfy the limit assumption.
We change the central counterfactual condition from a universal quantification
over the closest traces in C to an ∀∃-quantification over all traces πj ∈ C. For
each such trace πj , we require the existence of a closer trace πi ≤π πj that does
not satisfy the effect. This is depicted in the upper part of Fig. 2b. Naturally,
this quantification mirrors exactly the characterization of cause-complements
via upward closed sets (cf. Sect. 5.1). On the theoretical side, we show that if
the similarity relation satisfies the limit assumption and a minor assumption
on nondeterminism is met, our definition is equivalent to Coenen et al.’s origi-
nal definition (Sect. 4.3). On the practical side, we confirm experimentally that
our approach leads to significant improvements through the accommodation of
simpler similarity relations that do not satisfy the limit assumption (Sect. 6).

94 B. Finkbeiner et al.

4 Generalized Temporal Causality

In this section, we generalize the definition of temporal causality to accommodate
similarity relations that do not satisfy the limit assumption. We first recall sim-
ilarity relations and formalize the limit assumption (Sect. 4.1). Then we present
our updated definition of temporal causality (Sect. 4.2). Last, we prove that it
retains the original semantics in the special case considered by Coenen et al.
with a minor additional assumption on nondeterminism (Sect. 4.3).

4.1 Similarity Relations and the Limit Assumption

A comparative similarity relation ≤π ⊆ (2I)ω × (2I)ω is a partial order that
orders traces by their comparative distance from the given actual trace π, i.e., it
gives no quantitative but a relative measurement of distance: π0 ≤π π1 means
π0 is at-least-as close to π as π1. We measure distance over the set of inputs I,
i.e., for two traces π0,1 ∈ (2AP)ω we are only interested in π0|I ≤π π1|I .

If I is clear from the context, we write π0 ≤π π1. We require the actual trace
to be closer to itself than any other trace, i.e., π ≤π π′ for all π′ ∈ (2AP)ω. The
ternary relation ≤, where (π0, π1, π2) ∈ ≤ iff π1 ≤π0 π2, encodes the comparative
similarity relations of all possible actual traces π0.

Example 1. To illustrate our formalism for similarity relations, consider the
following subset-based similarity relation ≤subset defined via the zipped trace
zip(π0, π1, π2) ∈ (2AP×{t0,t1,t2})ω. To ease comprehension, for some a ∈ AP we
write aactual for (a, t0), aclose for (a, t1), and afar for (a, t2) to explicitly iden-
tify, e.g., propositions on the actual trace, in a given formula. We then have
πclose ≤subset

πactual
πclose iff

zip(πactual, πclose, πfar) �
∧

i∈I

(
(iactual �↔ iclose) → (iactual �↔ ifar)

)
.

For the three traces πactual, πclose, πfar this requirement states that the changes
between πactual and πclose are a subset of the changes between πactual and πfar,
where we define the changes between two traces π0, π1 as changes(π0, π1) =
{(a, i) | π0[i] �={a} π1[i]}. For example, let π = {x}({})ω, π0 = {}({})ω, π1 =
{}{y}({})ω and I = {x, y}. Then, π0 ≤π π1, since changes(π, π0) = {(x, 0)} ⊆
{(x, 0), (y, 1)} = changes(π, π1). The trace π2 = {x}({y})ω, however, is incom-
parable to π0 and π1, as changes(π, π2) = {(y, j) | j ≥ 1} is not in any subset
relationship with the respective sets for π0, π1.

The similarity relations considered in previous works [11,19] are all funda-
mentally based on ≤subset as defined in Example 1, with added conditions to
avoid infinite chains of closer traces. This is directly tied to the limit assumption
first studied by Lewis in his seminal work on counterfactual modal logic [41]. In
our setting, this assumption can be formalized as follows.

Synthesis of Temporal Causality 95

Definition 1 (Limit Assumption). A similarity relation ≤ ⊆ (2I)ω ×(2I)ω ×
(2I)ω satisfies the limit assumption, if for all traces π ∈ (2I∪O)ω and all possible
causes C ⊆ (2I)ω, we have that (C, <π) is well-founded, i.e., there is no infinite
descending chain π0 >π π1 >π . . . with πi ∈ C.

This requirement means that there always exist closest counterfactual traces
that do not satisfy the cause no matter which actual trace we pick (except if
all traces satisfy the cause). These closest traces would be ideal candidates for
causal analysis, but unfortunately, they do not always exist, in particular not for
the similarity relation ≤subset, as stated in Proposition 1. Note that all proofs
can be found in the full version of this paper [22].

Proposition 1. ≤subset does not satisfy the limit assumption.

Since the original definition of Coenen et al. [19] quantifies universally over
closest traces, it can be vacuously satisfied if the similarity relation does not
satisfy the limit assumption. Previous works have therefore added additional
constraints. For instance, Beutner et al. [11] propose ≤full, which additionally to
the constraints of ≤subset (cf. Example 1) requires the following:

zip(πactual , πclose , πfar) �
∧

i∈I

(
(iactual �↔ iclose) → (iclose ↔ ifar)

)
.

This encodes that whenever πclose differs differs from πactual on some input
at infinitely many locations, then πfar agrees with πclose on this input. Hence,
on any chain in <full

π , infinite changes on some i ∈ I eventually get converted
into finite ones, which ensures finiteness of the chain since there are only finitely
many atomic propositions. We confirm that this results in ≤full satisfying the
limit assumption.

Proposition 2. ≤full satisfies the limit assumption.

While satisfying the limit assumption is, in principle, useful, in the case of
≤full this comes at a significant cost: Its logical description contains a large
conjunction over the inputs, each containing an implication between temporal
formulas. Hence, any algorithmic approach to cause synthesis (and checking)
that uses ≤full will scale poorly in the size of I. This motivates us to develop a
modified definition of temporal causality that can directly work with the smaller,
canonical similarity relation ≤subset, while retaining most of the original seman-
tics of Coenen et al. for similarity relations that satisfy the limit assumption,
such as ≤full.

4.2 A General Definition of Temporal Causality

We now develop our generalized definition of temporal causality for similarity
relations that do not satisfy the limit assumption.

96 B. Finkbeiner et al.

The idea behind our generalization stems from counterfactual modal logic
as formalized by Lewis [41]. Lewis’ semantics a priori only work for total sim-
ilarity relations, making them unsuitable for our setting. However, they were
recently extended to non-total similarity relations by Finkbeiner and Siber [23].
We apply these semantics to our concrete problem to obtain a well-defined notion
of causality for similarity relations that do not satisfy the limit assumption. In
Sect. 4.3, we show that our definition retains the original semantics proposed by
Coenen et al. for similarity relations that satisfy the limit assumption.

Definition 2 (Temporal Causality). Let T be a system, π ∈ traces(T) a
trace, ≤π a similarity relation, and E ⊆ (2AP)ω an effect property. We say that
C ⊆ (2I)ω is a cause of E on π in T if the following conditions hold.

SAT: For all π0 ∈ traces(T) such that π0 =I π we have π0|I ∈ C and π0 ∈ E.
CF: For all π0 ∈ C there is an at-least-as close trace π1 ∈ C, i.e., with π1 ≤π π0,

such that there is a π2 ∈ traces(T) with π1 =I π2 and π2 ∈ E.
MIN: There is no C′ ⊂ C such that C′ satisfies SAT and CF.

The main idea of the counterfactual criterion CF is that for every trace π0

that does not satisfy the cause, there exists a closer trace π2 that does not satisfy
the cause and the effect. The additional quantification over π1 is a technicality
included because the cause C ⊆ (2I)ω consists of input sequences while π2 ∈
traces(T) is a full system trace. It also closely mirrors the structure of Coenen
et al.’s PC2 criterion (cf. Definition 3) which it neatly generalizes to similarity
relations that do not satisfy the limit assumption: If the assumption holds, then
a π2 is, in particular, required for the closest traces π0 in C, for which π2 can
only be instantiated by themselves. Hence, the closest traces are required to not
satisfy the effect (we develop this comparison more formally in Sect. 4.3). If the
limit assumption does not hold and there exists an infinite chain of ever-closer
traces π0 ∈ C, the condition requires that for all these π0 there is a closer π2

that avoids the effect, even in infinity: No matter how far we descend on this
chain, we are always guaranteed that we can descend further towards a closer
counterfactual trace that does not satisfy the effect.

Example 2. To illustrate these conditions with a concrete example, consider the
system from Fig. 1, the trace π = {x, e}ω, the effect E = L(e), and the
cause C = L(x), with similarity relation ≤subset. It is easy to that SAT
is satisfied, as the system is deterministic and π|I = {x}ω ∈ C and π ∈ E.
There is, as discussed in Sect. 3.2, an infinite chain in (L(¬x),≤subset

π) and,
hence, no closest trace. We require for all π0 ∈ L(¬x) = C a π1 ∈ C with
π1 ∈ L(¬e) = E and a π2 =I π1 such that π2 ∈ E. In this case, we can
pick π1 as π0 and π2 as the corresponding system trace, hence CF is satisfied.
To see that MIN is satisfied, consider any strict subset C′ ⊂ C. Hence, there is
some π′ ∈ C′ such that π′ � x. Then, all system traces π2 with π2 ≤π π′

satisfy π2 � x by the definition of ≤subset
π , and in this system this also means

π2 � e. Hence, C satisfies MIN because no strict subset satisfies CF.

Synthesis of Temporal Causality 97

Remark 1. Note that Definition 2 is not restricted to similarity relations that
can be expressed via zipped traces and LTL formulas as used in the previous
examples, but instead applies to any comparative similarity relation as defined
at the start of this section.

4.3 Proving Generalization

This section is dedicated to proving that our generalization (Definition 2) is
conservative, i.e., agrees with Coenen et al.’s original definition whenever the
underlying similarity relation satisfies the limit assumption and the actual trace
is deterministic. First, we recall Coenen et al.’s definition.

Definition 3 (Coenen et al. [19]). Let T be a system, π ∈ traces(T) a trace,
≤π a similarity relation, and E ⊆ (2O)ω an effect property. C ⊆ (2I)ω is a cause
of E on π in T if the following three conditions hold.

PC1: π|I ∈ C and π ∈ E.
PC2: For all closest counterfactual traces π0 ∈ C, i.e., traces for which there

are no closer traces π1 ∈ C with π1 <π π0, there exists a π2 ∈ traces(T) such
that π0 =I π2 and π2 ∈ E.

PC3: There is no C′ ⊂ C such that C′ satisfies PC1 and PC2.

Unlike in our updated definition, PC1 only works if the actual trace π is
deterministic. If the π is nondeterministic, the effect can be avoided with no
modifications at all to π (which is minimal), hence the cause should be empty.
PC1 does not reflect this and allows to build a cause that includes π|I (and pos-
sibly more), wrongfully implying that a modification of the sequence is required
to avoid the effect. PC2 may be vacuously satisfied if the similarity relation does
not satisfy the limit assumption, as outlined in Sect. 3.2.

Remark 2. Note that Coenen et al. consider traces π ∈ traces(CT
π) of the coun-

terfactual automaton CT
π for PC2. This automaton models contingencies, which

allow to partially reset outputs back to as they were on the actual trace π, and to
change the system state accordingly. For PC2 in Definition 3, this means that the
closest counterfactual traces π2 do not have to avoid the effect themselves, but
together with some contingency. This mechanism, inspired by Halpern’s mod-
ified version of actual causality [29], was extended by Coenen et al. [18,19] to
lasso-shaped traces and finite state machines to sometimes obtain more accu-
rate causes. However, to guarantee meaningful results, the original system has
to have unique output labels. Beutner et al.’s implementation [11] therefore
allows to toggle the usage of contingencies. Similarly, our generalization works
both with contingencies and without. For the latter case, one simply supplants
T with CT

π in both definitions. Our cause synthesis algorithm can also handle
contingencies, and our implementation allows to toggle them as a feature. Our
theoretical contribution is independent of this detail.

98 B. Finkbeiner et al.

We now proceed to show the equivalence between our definition (Defini-
tion 2) and Coenen et al.’s definition (Definition 3) in case the limit assumption
is fulfilled and the actual trace is deterministic. We start with proving the equiv-
alence of the counterfactual conditions CF and PC2, which holds regardless of
nondeterminism on the actual trace.

Lemma 1. Let T be a system, π ∈ traces(T) a trace, C ⊆ (2I)ω a cause prop-
erty, and E ⊆ (2AP)ω an effect property. Let ≤ be a similarity relation that
satisfies the limit assumption. Then we have that PC2 is satisfied iff CF is
satisfied.

With Lemma 1 at hand, we only need to address the differences between
PC1 and SAT. It is easy to see that their equivalence fails when behavior on
the actual trace π is nondeterministic, i.e., when there is another trace that
is input-equivalent to π but does not satisfy the effect. In such a case, PC1
is satisfied but SAT is not. Hence, our definition is equivalent to Coenen et
al.’s definition only in deterministic systems, as we deliberately diverge in the
case of nondeterminism on the actual trace. Notably, Lemma 1 holds for both
deterministic and nondeterministic systems, and determinism is only relevant on
the actual trace. The restriction to output-only effects E ⊆ (2O)ω is inherited
from Coenen et al.’s definition, but technically not necessary.

Theorem 1. Let ≤ be a similarity relation that satisfies the limit assumption.
Then C ⊆ (2I)ω is a cause for E ⊆ (2O)ω on a trace π that is deterministic in
T according to our definition (Definition 2) if and only if it is a cause according
to Coenen et al.’s definition (Definition 3).

5 Cause Synthesis

In this section, we develop our algorithm for synthesizing causes. In Sect. 5.1 we
formalize the characterization of a cause as the complement of the upper closure
of the negated effect, which we have discussed intuitively in Sect. 3.1. In Sect. 5.2
we provide an algorithm for cause synthesis in the ω-regular setting, when the
effect is given as a nondeterministic Büchi automaton and the actual trace is in
a lasso shape.

5.1 Proving Our Characterization

For this section, we fix a system T , an actual trace π ∈ traces(T), a similarity
relation ≤, and an effect E. We now show that, if it exists, the cause for E on π
is the complement of the upward closure of E in (traces(T),≤π). Formally, we
construct a set D that is a cause for E on π via its complement:

D = { ρ ∈ (2I)ω | ∃σ ∈ traces(T). σ ≤π ρ ∧ σ ∈ E } , hence

D = { ρ ∈ (2I)ω | ∀σ ∈ traces(T). σ ≤π ρ → σ ∈ E } .

The set D directly corresponds to the (unique) cause if there exists one, and is
empty if there is none. We establish this in a series of lemmas.

Synthesis of Temporal Causality 99

Lemma 2. If the set D is non-empty, it is a cause for E on π in T .

Lemma 2 shows that D satisfies Definition 2 assuming it is non-empty. The
assumption is only required for SAT, as this criterion requires that π and all
input-equivalent traces are in the cause. CF follows from the definition of D, and
for MIN we can show that any strict subset of D does not satisfy CF.

Lemma 3. Iff the set D is empty, there exists no cause that satisfies SAT.

Lemma 3 serves two purposes. First, it helps us argue for the completeness
of our construction. Second, it shows that the only reason why there may be no
cause is due to a nondeterministic actual trace. To fully argue completeness, we
show that causes are unique, and hence D is the only relevant cause in all cases.

Lemma 4. Causes are (semantically) unique: There can be no two sets C �= C′

that are both causes for some effect property E on a trace π in some system T .

Remark 3. This does not mean that there can only exist a single causal event,
such as “a at position 0” or “b at position 1”, in a given scenario. Instead,
Lemma 4 states that the semantics of the symbolic description of the causal
behavior in a given scenario is unique. It is precisely the idea of temporal causal-
ity to encompass multiple single events in a single symbolic description, e.g.,
through a conjunction such as a ∧ b.

5.2 Cause-Synthesis Algorithm for ω-Regular Effects

In Sect. 5.1, we have established a direct characterization of causes as downward
closed sets, independent of any concrete descriptions of cause, effect, and trace.
In this section, we develop an automata-based algorithm for synthesizing causes
of ω-regular effects given, e.g., by a nondeterministic Büchi automaton (NBA),
on lasso-shaped traces. We assume that the relation ≤ ⊆ (2I)ω × (2I)ω × (2I)ω

is definable by a relational ω-regular property P≤ ⊆ (2I×{t0,t1,t2})ω, such that
(π0, π1, π2) ∈ ≤ iff the zipped trace zip(π0, π1, π2) satisfies P≤. Note that this
applies to all concrete similarity relations introduced in Sect. 4. We show that
under these assumptions, the set D from Sect. 5.1 can be constructed as an
NBA. First, we construct an NBA for D and subsequently complement it. This
is necessary because we start out from an NBA representation for the effect, and
assume the similarity relation to be given by an NBA as well. Since the NBAs
acceptance condition is existential, we need the additional complementations to
express the universal quantification over the closer traces σ appearing in the
definition of D.

The main technical difficulty that remains is to ensure that the conditions
on the three traces πactual, πclose and πfar, as they appear in the alphabet of a
similarity relation, are applied consistently, and that the quantification over σ in
D, which corresponds to πclose, is resolved at the correct step, as the automaton
should range over the inputs I and not, e.g., over I × {t0, t1, t2} as used by the
similarity relation.

100 B. Finkbeiner et al.

Similarity Relation. Our starting point is the NBA for the similarity relation
defined by the ω-regular property P≤: AI

≤ = (Q≤, 2I×{t0,t1,t2}, Q0
≤, F≤,ΔI

≤). The
automaton AI

≤ only reasons about inputs and uses tuples with the trace vari-
ables t0, t1 and t2 to encode whether the input appears on the actual, closer or
farther trace, respectively. We lift the automaton to the full set of atomic propo-
sitions as the automaton A≤ = (Q≤, 2(I×{t0,t1,t2})∪(O×{t0,t1}), Q0

≤, F≤,Δ≤). The
transition relation is defined as follows, for a letter w: q2 ∈ Δ≤(q1, w) iff q2 ∈
ΔI

≤
(
q1, w \ (O × {t0, t1})

)
. Hence, A≤ specifies the same relation between the

inputs of the three traces as AI
≤, but allows arbitrary output behavior. Its alpha-

bet does not contain outputs for π2, as these traces eventually form the elements
of the cause, which only ranges over the inputs.

Effect. Next, we modify the NBA A∗
E = (QE, 2AP , qE, FE,Δ

∗
E) for the ω-regular

effect E such that it refers to the closer trace t1 and ranges over the same alphabet
as A≤. We obtain AE = (QE, 2(I×{t0,t1,t2})∪(O×{t0,t1}), qE, FE,ΔE) with:

q2 ∈ ΔE

(
q1, (w × {t1}) ∪ X ∪ Y

)
iff

q2 ∈ Δ∗
E(q1, w) ∧ X ⊆ (AP × {t0}) ∧ Y ⊆ (I × {t2}) .

Hence, AE restricts π1 to be in E by restricting it to the transition relation of
A∗

E, while allowing an arbitrary trace π0 and arbitrary input sequence in π2.

Intersection. For the conjunction that defines the set D, we intersect A≤ with the
complement of AE to obtain A∩ = (Q∩, 2(I×{t0,t1,t2})∪(O×{t0,t1}), Q0

∩, F∩,Δ∩)
such that: A∩ = A≤ ∩ AE.

System Product. As the next step, we construct the product of the automaton
A∩ with the system T = (S, s0,AP , δ, l), ensuring that the atomic propositions
t1 are picked from a valid system trace. When building the product, we project
away explicit atomic propositions paired with t1, as the traces of the desired set
D are only the traces paired with t2. The resulting automaton is A× = (S ×Q∩,
2(I×{t0,t2})∪(O×{t0}), {s0} × Q0

∩, S × F∩,Δ×), where

Δ×
(
(si, qi), w

)
=

{
(si+1, qi+1) | ∃A ⊆ I. si+1 ∈ Δ∩(si, A)

∧ qi+1 ∈ Δ∩(qi, (l(si+1) ∪ A) × {t1})
}

.

Cause Automaton. To obtain the final result, we first complement the automaton
from the previous step to obtain A× = (Q×, 2(I×{t0,t2})∪(O×{t0}), Q0

×, F×,Δ×),
and then build the product with the trace. At the same step we project away
atomic propositions paired with t0, and remove the trace variable t2 to obtain the
alphabet 2I for the cause. For the lasso-shaped trace π = π0 . . . πj−1 ·(πj . . . πk)ω

we define the set of positions as Π = {π0, . . . , πk} and a successor function
succ : Π �→ Π as succ(πr) = πr+1 for r < k, and succ(πk) = πj . The cause
automaton is then AD = (Π × Q×, 2I , {π0} × Q0

×,Π × F×,ΔD), where

ΔD

(
(πi, qi), w

)
=

{
(succ(πi), qi+1) | qi+1 ∈ Δ×

(
qi, (πi × {t0}) ∪ (w × {t2})

)}
.

Synthesis of Temporal Causality 101

From the lemmas established in Sect. 5.1, we conclude that there is a cause
iff AD is non-empty, and then the cause is uniquely determined by its language.

Corollary 1. The language of AD is empty iff there is no cause C for E on π
in T , and if L(AD) is non-empty, then it is the unique cause for E on π in T .

We can also state an upper bound on the size of AD, which is dominated by
the potentially exponential growth from NBA complementation [47].

Proposition 3. If the effect E and the similarity relation ≤ are given as NBAs
AE and A≤, respectively, then the size of AD is in |π| · 2(2

O(|AE|)·|A≤|·|T |).

Note that the doubly-exponential upper bound in the description of E per-
sists independent of whether it is given as an NBA or LTL formula. In the latter
case, we simply translate the negated formula, which again leads to an expo-
nential blow-up. In theory, the description does make a difference for ≤: If it is
represented as a formula, we first need to translate it with a potentially expo-
nential increase in size, hence it would move up one exponent in the bound. In
practice, the canonical similarity relation ≤subset can always be represented by
a 1-state NBA, such that its contribution to the bound is less relevant.

While the stated upper bound may seem daunting, it mirrors the (tight)
bounds of related problems, such as LTL synthesis [45]. In the following section,
we show that, not only can our approach solve many cause-synthesis problems in
practice, it also significantly improves upon previous methods for cause checking.

6 Implementation and Evaluation

In this section, we evaluate a prototype tool implementing our cause-synthesis
approach, called CORP - Causes for Omega-Regular Properties.4 Our prototype
is written in Python and uses Spot [21] for automata operations and manipula-
tion. The prototype allows for both cause synthesis and cause checking, where in
the latter case the correct cause is first synthesized and than checked for equiv-
alence against the cause candidate. This allows for a direct comparison with
the cause checking tool CATS [11] in Sect. 6.2. Before, we report on our exper-
iments on cause synthesis, where we compare our method with the incomplete,
sketch-based approach of CATS. All experiments were carried out on a machine
equipped with a 2.8 GHz Intel Xeon processor and 64 GB of memory, running
Ubuntu 22.04.

6.1 Cause Synthesis

We conducted three different experiments that highlight how the similarity rela-
tions, effect size and system size contribute to the performance of our algorithm.
4 Our prototype is on GitHub: https://github.com/reactive-systems/corp. Our full

evaluation can be reproduced with the artifact on Zenodo: https://doi.org/10.5281/
zenodo.10946309.

https://github.com/reactive-systems/corp
https://doi.org/10.5281/zenodo.10946309
https://doi.org/10.5281/zenodo.10946309

102 B. Finkbeiner et al.

Table 1. Cause synthesis for arbiters. |T | is the number of system states. In all
instances, π is the (unique) trace where all n clients send a request at every posi-
tion, which has length |π| = n. ϕE is the effect. We report the time taken to synthesize
the causal NBA with the metrics ≤full and ≤subset in seconds and the respective NBA
sizes |Afull

C | and |Asubset
C |, and provide an LTL description ϕC of the NBA language

(guessed manually). TO denotes the timeout of 60 seconds.

Instance |T | ϕE t(≤full) t(≤subset) |Afull
C | |Asubset

C | ϕC

Spurious 1 1 g0 0.11 0.11 1 1 true

Spurious 2 2 g0 0.11 0.11 1 1 true

Spurious 3 3 g0 0.21 0.11 1 1 true

Spurious 4 4 g0 TO 0.11 - 1 true

Unfair 2 2 ¬g0 0.11 0.11 1 1 rprio

Unfair 3 4 ¬g0 0.16 0.11 1 1 rprio

Unfair 4 6 ¬g0 TO 0.11 - 1 rprio

Full 1 1
g0
g0

0.11
0.11

0.11
0.11

2
2

2
2

r0
r0

Full 2 4
g0
g0

0.11
0.11

0.11
0.11

2
12

2
4

r0
r0

Full 3 11
g0
g0

0.16
2.04

0.11
0.16

2
215

2
24

r0
r0

Full 4 46
g0
g0

TO
TO

0.11
33.22

-
-

2
214

r0
r0

Arbiters. We computed causes on traces of resource arbiters to compare the
performance of our algorithm under different similarity relations, whose logical
description scales in the number of system inputs. An arbiter instance is parame-
terized by a number of clients n, each with its own input. This let us easily scale
the size of the similarity relation’s description. For some number n of clients
(indexed by k) that request access to a shared resource with a request rk, an
arbiter grants mutually exclusive access to the resource with a grant gk. We con-
sidered different arbiter strategies, and for each we synthesize causes as NBAs
Afull

C and Asubset
C with the similarity relations ≤full and ≤subset, respectively. The

results of these instances are depicted in Table 1. Spurious arbiters simply give
out grants to all clients in a round-robin manner, regardless of previous requests.
Unfair arbiters prioritize one client with request rprio over the others, while full
arbiters are fully functional arbiters that only give out grants that were requested
beforehand. In all instances, we computed causes on the (unique) trace π where
all clients send requests continuously, i.e., π|I = {r0, . . . , rn}ω. Consequently,
on this trace both the spurious and the full arbiter send grants to all clients,
while the unfair arbiter only gives grants to the prioritized client. These vary-
ing strategies are reflected in the synthesized cause-effect pairs. In the spurious
arbiters, the language of the synthesized cause NBA for the effect g0 is true,

Synthesis of Temporal Causality 103

which reflects that the effect appears on all system traces. In the unfair arbiters,
the cause for no grant being given to client 0 is that the prioritized arbiter sends
requests permanently, i.e., the causal NBA has the language rprio. In the full
arbiters, g0 is caused, as expected, by r0 and g0 is caused by r0.
From a performance standpoint, the arbiter instances show us that accommodat-
ing the canonical similarity relation ≤subset, as we did through our generalization
of temporal causality in Sect. 4, leads to significant improvements in practice: In
all instances, synthesizing causes with ≤subset was faster than with ≤full, and the
resulting causal NBAs were smaller as well. This is mostly because of the num-
ber of inputs involved: The other parameters stay comparably small when going
from the spurious 1-arbiter to the spurious 4-arbiter, but the latter times out
when using ≤full. When the systems get larger and the effects more complex,
e.g., in the instance of the full 4-arbiter with the effect g0, the automata
produced can become bigger even with ≤subset. However, the language of the
produced automata has a small representation, i.e., r0, such that we see
potential for improvement through automata minimization techniques.

Fig. 3. Computing causes for neural syn-
thesis mispredictions with CORP. Size of
a point represents the length of the coun-
terexample (between 2 and 16).

Neural Synthesis. For more diverse
effects, we considered mispredicted
circuits from a neural synthesis
model [48]. Given some specifica-
tion (in this case, generated by
Spot’s randltl) the neural model
predicts an implementation as an
AIGER [12] circuit, which is in the
end model-checked against the spec-
ification. Since neural synthesis is not
sound, this check fails occasionally
and returns a counterexample, which
may be used for further repair [20].
We used our tool CORP to compute
the cause for the violation of the spec-
ification on such a counterexample. In
Fig. 3 we report the time of comput-
ing causes with respect to size of the
syntax tree of the effect formula, and the system size. The timeout was set to
100 s. The size of the points in the scatter plot corresponds to the length of the
counterexample and the color to the system size. From the plot we can deduce
that a large effect does not mean a long runtime of our tool per se. However, a
combination of large effects, bigger systems, and longer counterexamples usually
means that the tool takes longer. The sizes of the synthesized causes are diverse
and range from 2 to 60 states.

Example 3. We discuss an illustrative example of cause synthesis with a small
benchmark from the neural synthesis datatset. All relevant inputs and outputs of

104 B. Finkbeiner et al.

Fig. 4. A system predicted wrongly by a neural synthesis model (Fig. 4a) for the speci-
fication ¬ϕE, i.e., the negation of the effect. The effect is shown together with the actual
trace π, i.e., a counterexample obtained from model checking, and the computed cause
automaton Asubset

C in Fig. 4b.

our cause synthesis algorithm are depicted in Fig. 4. First, we have the system (cf.
Fig. 4a), which is a wrongly predicted circuit of the neural synthesis model. This
model tried to come up with a solution for the specification (i2 U i0) ↔ (o4),
i.e., o4 appears infinitely often if and only if input i2 is enabled until input i0 is
enabled. The predicted system does not satisfy this specification, because there
are cases where o4 holds without the inputs meeting the required condition.
Hence, model checking the specification returns a counterexample π that violates
the formula, which means the negated specification can be seen as an effect
ϕE that is present on the counterexample π (cf. Fig. 4b). Our algorithm then
computes the cause for this effect, i.e., for the violation of the specification, on
the counterexample π, as a nondeterministic Büchi automaton. The computed
automaton Asubset

C is depicted at the bottom of Fig. 4b. It is language-equivalent
to the LTL formula ¬i0∧ (¬i0∧¬i2∧ i0), which basically states that the effect
is caused by a conjunction of four inputs spread out over the first three steps.
Indeed, it is easy to see that modifying any of these four inputs results in a trace
that satisfies the specification: For instance, setting i0 at the first position results
in the trace that immediately enters the state labeled with o4 and loops there
forever such that the left part of the equivalence is satisfied, while removing i0
from the third position results in looping in the initial state such that the right
part of the equivalence is not satisfied anymore.

Comparison with Cause Sketching. CATS, the tool of Beutner et al. [11],
allows to enumerate non-temporal formulas in holes of a provided cause sketch
until a cause is found. If the effect contains as the only temporal operator
and a cause exists, there is a sketch that is guaranteed to encompass the cause.
This provides us with a baseline with which we can compare our cause-synthesis
algorithm. We constructed random benchmarks that fall into CATS’ complete
fragment using Spot’s randaut function to generate systems with 10 up to 1000
states, obtaining traces of length 2 and then inserting a new atomic proposition e
at the last position of the trace and in the system. The effect then is defined as the
occurrence of e at exactly this position. We chose such small traces and effects

Synthesis of Temporal Causality 105

because CATS timed out already on slightly larger instances. We conducted
additional experiments using just our tool CORP with traces (and effects) of size
10. Figure 5a shows the time taken by CATS and CORP to synthesize causes. The
influence of the system size on the runtime of CORP in this setting is negligible,
which we believe is due to the efficient automata operations performed by Spot.
The hyperproperty encoding of CATS does not seem as amenable to similar
optimizations.

Fig. 5. Direct comparisons between our tool CORP and the tool CATS [11]. Figure 5a
shows the time CATS needs to synthesize a cause in its complete fragment with trace
and effect of size 2, and the time taken by CORP for sizes 2 and 10. Figure 5b shows
the time taken to check single causal relationships. These problems are taken from
Beutner et al. [11] (where “Instances” are “Examples”).

6.2 Cause Checking

It is straightforward to use our cause synthesis algorithm to also check causes
through an equivalence check between the synthesized causal NBA and the can-
didate formula (or automaton). This allows a direct performance comparison
with the cause checking tool CATS of Beutner et al. [11], which we conducted
on the publicly available benchmarks of their paper. In these cause-checking
benchmarks, a cause candidate is given in addition to the system, actual trace
and effect. The time CATS and our tool CORP took in each instance to check
whether the given candidate is a cause is depicted in Fig. 5b. Somewhat surpris-
ingly, our cause checker based on cause synthesis performs significantly better on
all benchmarks. This shows that our characterization of causes as complements
of the upward closure of the negated effect (cf. Section 5.1) is more efficient than
encoding the cause-checking instances into a hyperlogic, as done by CATS.

106 B. Finkbeiner et al.

7 Related Work

The study of causality and its applications in formal methods has gained great
interest in recent years [3]. In a finite setting, Ibrahim et al. use SAT solvers and
linear programming to check [35] and infer [34] actual causes. Our definition of
actual causality for reactive systems extends the definitions of Coenen et al. [19]
to cases in which the limit assumption does not hold. While Coenen et al. study
the theory of actual causality [29] in reactive systems, they do not provide a way
to generate causes and explanations. In terms of cause synthesis, the most related
work is by Beutner et al. [11], which checks causality and generates causes based
on sketching. Unlike ours, their tool is only applicable for the small fragment of
LTL containing only operators, while we are able to generate temporal causes
for all ω-regular specifications.

In a series of works, Leue et al. study symbolic description of counterfactual
causes in Event Order Logic [14,38,39]. However, this logic can only reason about
the ordering of events, and not their absolute timing, as we can do with ω-regular
properties (e.g., specifying that the input at the second position is the cause).

Gössler and Métayer [24] define causality for component-based systems, and
Gössler and Stefani [25] study causality based on counterfactual builders. Their
formalisms differ from ours, which is based on Coenen et al. [19], and none of
the works considers cause synthesis.

Most other works related to cause synthesis concern generating explanations
for effects observed on finite traces [5,26,27,49], or effects restricted to safety
properties [43]. In the context of cause synthesis over infinite traces for effects
given as temporal specifications, existing works are limited to causes given as
sets of events (i.e., atomic propositions and times points) [7,18,32] or take a
state-centric view to, e.g., measure the responsibility of a state for an observed
effect property [1,4,42].

8 Conclusion

This paper presents the first complete algorithm to compute temporal causes
for arbitrary ω-regular properties. It is based on a new, generalized version of
temporal causality that solves a central dilemma of previous definitions by loos-
ening the assumptions on similarity relations. From a philosophical perspective,
this is an immense step forward since it is the first definition that accommodates
the canonical similarity relation used in previous literature. Our experimental
results show that our generalization also leads to significant improvements from
a practical perspective. These mainly stem from characterizing causes based
on set-closure properties, which may be an interesting approach for counterfac-
tual causality in other formalisms. Besides, our work opens up exciting research
directions on generating explanations from temporal causes, i.e., as formulas or
annotations in highlighted counterexamples.

Synthesis of Temporal Causality 107

Acknowledgements. We thank Matthias Cosler and Frederik Schmitt for providing
us with the neural synthesis benchmarks. This work was partially supported by the
DFG in project 389792660 (Center for Perspicuous Systems, TRR 248) and by the
ERC Grant HYPER (No. 101055412).

References

1. Baier, C., van den Bossche, R., Klüppelholz, S., Lehmann, J., Piribauer, J.:
Backward responsibility in transition systems using general power indices. In:
Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2014, 20-27 February 2024, Van-
couver, Canada, pp. 20320–20327. AAAI Press (2024). https://doi.org/10.1609/
AAAI.V38I18.30013

2. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 42

3. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek,
R.: From Verification to Causality-Based Explications. In: Bansal, N., Merelli,
E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 198, pp. 1:1–1:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://drops.dagstuhl.de/opus/volltexte/2021/14070

4. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Opera-
tional causality - necessarily sufficient and sufficiently necessary. In: Jansen, N.,
Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed
Automata to Model Learning - Essays Dedicated to Frits Vaandrager on the Occa-
sion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp.
27–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 2

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: Aiken, A., Morrisett, G. (eds.) Conference Record of
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, New Orleans, Louisisana, USA, 15-17 January 2003, pp. 97–105.
ACM (2003). https://doi.org/10.1145/604131.604140

6. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

8. Beutner, R., Finkbeiner, B.: HyperATL*: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci. 19, 13:1–13:44 (2023)

9. Beutner, R., Finkbeiner, B.: Model checking omega-regular hyperproperties with
autohyperq. In: Piskac, R., Voronkov, A. (eds.) LPAR 2023: Proceedings of 24th
International Conference on Logic for Programming, Artificial Intelligence and

https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://drops.dagstuhl.de/opus/volltexte/2021/14070
https://doi.org/10.1007/978-3-031-15629-8_2
https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11

108 B. Finkbeiner et al.

Reasoning, Manizales, Colombia, 4-9th June 2023. EPiC Series in Computing,
vol. 94, pp. 23–35. EasyChair (2023). https://doi.org/10.29007/1XJT

10. Beutner, R., Finkbeiner, B., Frenkel, H., Metzger, N.: Second-order hyperproper-
ties. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, 17-22 July 2023, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 13965, pp. 309–332. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37703-7 15

11. Beutner, R., Finkbeiner, B., Frenkel, H., Siber, J.: Checking and sketching causes
on temporal sequences. In: André, É., Sun, J. (eds.) Automated Technology for
Verification and Analysis - 21st International Symposium, ATVA 2023, Singapore,
24-27 October 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol.
14216, pp. 314–327. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
45332-8 18

12. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Inst. f. Form. Model. u. Verifikation, Johannes Kepler University (2007)

13. Buechi, J.R.: On a decision method in restricted second-order arithmetic. In: Inter-
national Congress on Logic, Methodology, and Philosophy of Science (1962)

14. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable prop-
erties. In: Workshop on Formal Reasoning About Causation, Responsibility, and
Explanations in Science and Technology, CREST 2018. EPTCS, vol. 286 (2018).
https://doi.org/10.4204/EPTCS.286.1

15. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In: Tay-
lor, R.N., Dwyer, M.B. (eds.) Proceedings of the 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2004, Newport Beach,
CA, USA, October 31 - November 6, 2004, pp. 73–82. ACM (2004). https://doi.
org/10.1145/1029894.1029908

16. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

18. Coenen, N., Dachselt, R., Finkbeiner, B., Frenkel, H., Hahn, C., Horak, T., Met-
zger, N., Siber, J.: Explaining hyperproperty violations. In: Shoham, S., Vizel, Y.
(eds.) Computer Aided Verification - 34th International Conference, CAV 2022,
Haifa, Israel, August 7-10, 2022, Proceedings, Part I. LNCS, vol. 13371, pp. 407–
429. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 20

19. Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J.: Temporal
causality in reactive systems. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.) Automated
Technology for Verification and Analysis - 20th International Symposium, ATVA
2022, Virtual Event, 25-28 October 2022, Proceedings. LNCS, vol. 13505, pp. 208–
224. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9 13

20. Cosler, M., Schmitt, F., Hahn, C., Finkbeiner, B.: Iterative circuit repair against
formal specifications. In: The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, 1-5 May 2023. OpenReview.net (2023).
https://openreview.net/pdf?id=SEcSahl0Ql

21. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: What’s new? In: Shoham,
S., Vizel, Y. (eds.) Computer Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, 7-10 August 2022, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 13372, pp. 174–187. Springer, Cham (2022. https://doi.
org/10.1007/978-3-031-13188-2 9

https://doi.org/10.29007/1XJT
https://doi.org/10.1007/978-3-031-37703-7_15
https://doi.org/10.1007/978-3-031-45332-8_18
https://doi.org/10.1007/978-3-031-45332-8_18
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://openreview.net/pdf?id=SEcSahl0Ql
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9

Synthesis of Temporal Causality 109

22. Finkbeiner, B., Frenkel, H., Metzger, N., Siber, J.: Synthesis of temporal causal-
ity. CoRR (2024). https://doi.org/10.48550/ARXIV.2405.10912, https://arxiv.
org/abs/2405.10912, full version

23. Finkbeiner, B., Siber, J.: Counterfactuals modulo temporal logics. In: Piskac, R.,
Voronkov, A. (eds.) LPAR 2023: Proceedings of 24th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Manizales, Colom-
bia, 4-9th June 2023. EPiC Series in Computing, vol. 94, pp. 181–204. EasyChair
(2023). https://doi.org/10.29007/QTW7

24. Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality.
In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 11

25. Gössler, G., Stefani, J.: Causality analysis and fault ascription in component-based
systems. Theor. Comput. Sci. 837 (2020). https://doi.org/10.1016/j.tcs.2020.06.
010

26. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3) (2006). https://doi.org/10.1007/
s10009-005-0202-0

27. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 35

28. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Propositional dynamic logic for
hyperproperties. In: International Conference on Concurrency Theory, CONCUR
2020. LIPIcs, vol. 171. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.
CONCUR.2020.50

29. Halpern, J.Y.: A modification of the Halpern-pearl definition of causality. In: Yang,
Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25-31
July 2015, pp. 3022–3033. AAAI Press (2015). http://ijcai.org/Abstract/15/427

30. Halpern, J.Y.: Actual Causality. MIT Press (2016)
31. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach:

Part 1: Causes. In: Breese, J.S., Koller, D. (eds.) UAI 2001: Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence, University of Washing-
ton, Seattle, Washington, USA, 2-5 August 2001, pp. 194–202. Morgan Kaufmann
(2001)

32. Horak, T., et al.: Visual analysis of hyperproperties for understanding model check-
ing results. IEEE Trans. Vis. Comput. Graph. 28(1) (2022) https://doi.org/10.
1109/TVCG.2021.3114866

33. Hume, D.: An Enquiry Concerning Human Understanding. London (1748)
34. Ibrahim, A., Pretschner, A.: From checking to inference: actual causality compu-

tations as optimization problems. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020.
LNCS, vol. 12302, pp. 343–359. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59152-6 19

35. Ibrahim, A., Rehwald, S., Pretschner, A.: Efficiently checking actual causality with
sat solving. Eng. Secure Dependable Softw. Syst. 53, 241–255 (2019)

36. Kupriyanov, A., Finkbeiner, B.: Causality-based verification of multi-threaded
programs. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol.
8052, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40184-8 19

37. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 814–830. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 54

https://doi.org/10.48550/ARXIV.2405.10912
https://arxiv.org/abs/2405.10912
https://arxiv.org/abs/2405.10912
https://doi.org/10.29007/QTW7
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
http://ijcai.org/Abstract/15/427
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-030-59152-6_19
https://doi.org/10.1007/978-3-030-59152-6_19
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-319-08867-9_54

110 B. Finkbeiner et al.

38. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 16

39. Leitner-Fischer, F., Leue, S.: SpinCause: a tool for causality checking. In: Inter-
national Symposium on Model Checking of Software, SPIN 2014. ACM (2014).
https://doi.org/10.1145/2632362.2632371

40. Lewis, D.K.: Causation. J. Philos. 70(17), 556–567 (1973). https://doi.org/10.
2307/2025310

41. Lewis, D.K.: Counterfactuals. Blackwell, Cambridge, MA, USA (1973)
42. Mascle, C., Baier, C., Funke, F., Jantsch, S., Kiefer, S.: Responsibility and verifica-

tion: importance value in temporal logics. In: 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pp.
1–14. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470597

43. Parreaux, J., Piribauer, J., Baier, C.: Counterfactual causality for reachability and
safety based on distance functions. In: Achilleos, A., Monica, D.D. (eds.) Proceed-
ings of the Fourteenth International Symposium on Games, Automata, Logics, and
Formal Verification, GandALF 2023, Udine, Italy, 18-20 September 2023. EPTCS,
vol. 390, pp. 132–149 (2023). https://doi.org/10.4204/EPTCS.390.9

44. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

45. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11-13 January 1989, pp. 179–190. ACM Press
(1989). https://doi.org/10.1145/75277.75293

46. Sallinger, S., Weissenbacher, G., Zuleger, F.: A formalization of heisenbugs and
their causes. In: Ferreira, C., Willemse, T.A.C. (eds.) Software Engineering and
Formal Methods - 21st International Conference, SEFM 2023, Eindhoven, The
Netherlands, 6-10 November 2023, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 14323, pp. 282–300. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-47115-5 16

47. Schewe, S.: Büchi complementation made tight. In: Albers, S., Marion, J. (eds.)
26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, 26-28 February 2009, Freiburg, Germany, Proceedings. LIPIcs, vol. 3,
pp. 661–672. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009).
https://doi.org/10.4230/LIPICS.STACS.2009.1854

48. Schmitt, F., Hahn, C., Rabe, M.N., Finkbeiner, B.: Neural circuit synthesis from
specification patterns. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang,
P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
6-14 December 2021, virtual, pp. 15408–15420 (2021). https://proceedings.neurips.
cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html

49. Wang, C., Yang, Z., Ivančić, F., Gupta, A.: Whodunit? Causal analysis for coun-
terexamples. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
82–95. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914 9

https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1145/2632362.2632371
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.1109/LICS52264.2021.9470597
https://doi.org/10.4204/EPTCS.390.9
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-031-47115-5_16
https://doi.org/10.1007/978-3-031-47115-5_16
https://doi.org/10.4230/LIPICS.STACS.2009.1854
https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://doi.org/10.1007/11901914_9

Synthesis of Temporal Causality 111

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dynamic Programming for Symbolic
Boolean Realizability and Synthesis

Yi Lin , Lucas Martinelli Tabajara , and Moshe Y. Vardi(B)

Rice University, Houston, TX 77005, USA
yl182@rice.edu, vardi@cs.rice.edu

Abstract. Inspired by recent progress in dynamic programming
approaches for weighted model counting, we investigate a dynamic-
programming approach in the context of boolean realizability and synthe-
sis, which takes a conjunctive-normal-form boolean formula over input
and output variables, and aims at synthesizing witness functions for the
output variables in terms of the inputs. We show how graded project-join
trees, obtained via tree decomposition, can be used to compute a BDD
representing the realizability set for the input formulas in a bottom-
up order. We then show how the intermediate BDDs generated during
realizability checking phase can be applied to synthesizing the witness
functions in a top-down manner. An experimental evaluation of a solver
– DPSynth – based on these ideas demonstrates that our approach for
Boolean realizabilty and synthesis has superior time and space perfor-
mance over a heuristics-based approach using same symbolic representa-
tions. We discuss the advantage on scalability of the new approach, and
also investigate our findings on the performance of the DP framework.

Keywords: Boolean synthesis · Binary decision diagram · Dynamic
programming · Bucket elimination

1 Introduction

The Boolean-Synthesis Problem [19] – a fundamental problem in computer-aided
design – is the problem of taking in a declarative boolean relation between two
sets of boolean variables – input and output – and generating boolean functions,
called witness functions, that yield values to the output variables with respect
to the input variables so as to satisfy the boolean relation. As a fundamental
problem in computer-aided design, there are many applications of boolean syn-
thesis in circuit design. For example, based on a circuit’s desired behavior, we
can use boolean synthesis to automatically construct the missing components of
the circuit [3]. In addition to being used in circuit design, boolean synthesis has
recently found applications also in temporal synthesis [30,31], where the goal is

A full version of this paper, with appendices included is available on arXiv at [21].
L. Martinelli Tabajara—Currently at Runtime Verification, Inc.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 112–134, 2024.
https://doi.org/10.1007/978-3-031-65633-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_6&domain=pdf
http://orcid.org/0000-0001-8443-2246
http://orcid.org/0000-0001-9608-1404
http://orcid.org/0000-0002-0661-5773
https://doi.org/10.1007/978-3-031-65633-0_6

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 113

to construct a sequential circuit that responds to environment inputs in a way
that is guaranteed to satisfy given temporal-logic specification.

Many approaches have been investigated for boolean synthesis, such as knowl-
edge compilation [1], QBF solving [24], and machine learning [17,18]. Here we
build on previous work on boolean synthesis using Binary Decision Diagrams
(BDDs) [28]. The main advantage of the decision-diagram approach is that it
provides not just the synthesized witness functions, but also the realizability set
of the specification, which is the set of inputs with respect to which the specifi-
cation is realizable. In modular circuit design [19], where a system is composed
of multiple modules that are independently constructed, it is imperative to con-
firm the realizability set of a module, as it has to match the output set of prior
modules. Similarly, in the context of temporal synthesis [30,31], the winning set
is constructed iteratively by taking the union of realizability sets, where for each
realizability set we construct a witness function. The winning strategy is then
constructed by stitching together all these witness functions.

Motivated by applications that require the computation of both realizability
sets and witness functions, we describe here a decision-diagram approach that
can also handle partially realizable specifications, where the realizability set is
neither empty nor necessarily universal. (Indeed, in our benchmark suit, about
30% of the benchmarks are partially realizable.) Our tool, DPSynth computes the
realizability sets and witness functions with respects to these sets. While several
recent synthesis tools do provide witnesses for partially-realizable specifications,
cf. [1,17,18], not all of them directly output the realizability set, requiring it,
instead, to be computed from the witnesses and the original formula.

The boolean-synthesis problem starts with a boolean formula ϕ(X,Y) over
sets X,Y of input and output variables. The goal is to construct boolean for-
mulas, called witness functions (sometimes called Skolem functions) [1,18] – for
the output variables expressed in terms of the input variables. The BDD-based
approach to this problem [15] constructs the BDD Bϕ(X,Y) for ϕ, and then
quantifies existentially over the Y variables to obtain a BDD over the X vari-
ables that captures the realizability set – the set of assignments τX in 2X for
which an assignment τY in 2Y exists where Bϕ(τX , τy) = 1. The witness func-
tions can then be constructed by iterating over the intermediate steps of the
realizability computation [15].

A challenge of this BDD-based approach is that it is often infeasible to con-
struct the BDD Bϕ. Factored Boolean Synthesis [28] assumes that the formula
ϕ is given in conjunctive normal form (CNF), where the individual clauses are
called factors. Rather than constructing the monolithic BDD Bϕ, this approach
constructs a BDD for each factor, and then applies conjunction in a lazy way
and existential quantification in an eager way, using various heuristics to order
conjoining and quantifying. As shown in [28], the factored approach, Factored
RSynth, is more scalable than the monolithic approach, RSynth. Thus, we use
here Factored RSynth as the baseline for comparison in this paper.

By dynamic programming we refer to the approach that simplifies a com-
plicated problem by breaking it down into simpler sub-problems in a recursive

114 Y. Lin et al.

manner [5]. Unlike search-based approaches to Boolean reasoning, cf. [22], which
directly manipulate truth assignments, we use data structure based on decision
diagrams [7] that represents sets of truth assignments. This approach is referred
to as symbolic, going back to [11].

The symbolic dynamic-programming approach we propose here is inspired
by progress in weighted model counting, which is the problem of counting the
number of satisfying (weighted) assignments of boolean formulas. Dudek, Phan,
and Vardi proposed in [14], an approach based on Algebraic Decision Diagrams,
which are the quantitative variants of BDDs [4]. Dudek et al. pointed out that
a monolithic approach is not likely to be scalable, and proposed a factored app-
roach, ADDMC, analogous to the approach in [28], in which conjunction is done
lazily and quantification eagerly. In follow-up work [12], they proposed a more
systematic way to order the quantification and conjunction operations, based
on dynamic programming over project-join trees; the resulting tool, DPMC,
was shown to scale better than ADDMC. In further follow-on work, they pro-
posed graded project-join trees for projected model counting, where the input
formula has two sets of variables – quantified variables and counting variables
[13]. Graded project-join tree offers a recursive decomposition of the Boolean-
Synthesis Problem into smaller tasks of projections and join.

We show here how symbolic dynamic programming over graded project-join
trees can be applied to boolean synthesis. In our approach, realizability checking
is done using a BDD-based bottom-up execution, analogous to the handling of
counting quantifiers in [13]. This enables us to compute the realizability set and
check its nonemptiness. We then present a novel algorithm for synthesizing the
witness functions using top-down execution on graded project-join trees. (In con-
trast, [13] both types of quantifiers are handled bottom-up). We demonstrate the
advantage of our bottom-up-top-down approach by developing a tool, DPSynth.
For a fair evaluation, we compare its performance to Factored RSynth, which
can also handle partially realizable specifications.

The main contributions of this work are as follows. First, we show how to
adapt the framework of projected counting to Boolean synthesis. In projected
counting there are two types of existential quantifiers – additive and disjunctive
[13], while Boolean synthesis combine universal and existential quantifiers. Sec-
ond, projected counting requires only a bottom-up pass over the graded project-
join trees, while here we introduce an additional, top-down pass over the tree to
perform the major part of boolean synthesis, which is, witness construction.

The organization of the paper is as follows. After preliminaries in Sect. 2,
we show in Sect. 3 how to use graded project-join trees for boolean realizability
checking, and show that DPSynth generally scales better than Factored RSynth.
Then, in Sect. 4, we show how to extend this approach from realizability checking
to witness-function construction. Experimental evaluation shows that DPSynth
generally scales better than Factored RSynth also for witness-function construc-
tion. We offer concluding remarks in Sect. 6.

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 115

2 Preliminary Definitions

2.1 Boolean Formula and Synthesis Concepts

A boolean formula ϕ(X), over a set X of variables, represents a boolean function
f : 2X → B, which selects subsets of 2X . A truth assignment τ satisfies ϕ iff
ϕ(τ) = 1. A boolean formula in conjunctive normal form (CNF) is a conjunction
of clauses, where a clause is a disjunction of literals (a boolean variable or its
negation). When ϕ is in CNF, we abuse notation and also use ϕ to denote its own
set of clauses. Given a CNF formula ϕ(X,Y) over input and output variable X
and Y , the realizability set of ϕ, denoted Rϕ(X) ⊆ 2X , is the set of assignments
σ ∈ 2X for which there exists an assignment τ ∈ 2Y such that ϕ(σ ∪ τ) = 1.
When ϕ is clear from context, we simply denote the realizability set by R.

Definition 1 (Realizability). Let ϕ(X,Y) be a CNF formula with X and Y
as input and output variables. We say that ϕ is fully realizable if R = 2X . We
say that ϕ is partially realizable if R �= ∅. Finally, we say that ϕ is nullary
realizable if R = ∅.

Given the condition that the formula is at least partially realizable, the boolean
synthesis problem asks for a set of witnesses for the output variables generated
on top of given input values, such that the formula is satisfied. This sub-problem
of constructing witnesses, is usually referred to as synthesis.

The motivation behind synthesizing partially-realizable specifications is that
there are cases where a specification is not fully realizable, but it is still useful
to synthesize a function that works for all inputs in the realizability set. An
example is the factorization benchmark family, as discussed in the introduction
of [3], which takes an integer and aims to factor it into two integers that are
both not equal to 1. If the integer is prime, then there is no valid factorization
for this particular input, but it would still be valuable to have a solution that
works for all composite numbers. This is why our attention to partially-realizable
cases is a contribution of the paper, while related works tend to focus mostly on
fully-realizable instances.

Definition 2 (Witnesses in Boolean Synthesis Problem). Let ϕ(X,Y)
denote a fully or partially realizable boolean formula with input variables in X =
{x1, . . . , xm} and output variables Y = {y1, . . . , yn}, and let Rϕ(X) �= ∅ be its
realizability set. A sequence g1(X), . . . , gn(X) of boolean functions is a sequence
of witness functions for the Y variables in ϕ(X,Y) if for every assignment
x ∈ Rϕ(X), we have that ϕ[X �→ x][y1 �→ g1(x)] . . . [yn �→ gn(x)] holds.

Definition 3 (Synthesis). Given a partially or fully realizable CNF formula
ϕ(X,Y) with input and output variables X and Y , the synthesis problem asks to
algorithmically construct a set of witness functions for the Y variables in terms
of the X variables.

116 Y. Lin et al.

2.2 Dynamic Programming Concepts - Project-Join Trees

A binary decision diagrams (BDD) [7] is directed acyclic graphs with two termi-
nals labeled by 0 and 1. A BDD provides a canonical representation of boolean
functions (and, by extension, boolean formulas). A (reduced, ordered) BDD is
constructed from a binary decision tree, using a uniform variable order, of a
boolean function by merging identical sub-trees and suppressing redundant nodes
(nodes where both children are the same). Each path from the root of the BDD
to the 1-terminal represents a satisfying assignment of the boolean function it
represents. Based on the combination of BDDs and project-join trees, which is
to be defined below, our dynamic-programming algorithm solves the boolean
synthesis problem.

Definition 4 (Project-Join Tree of a CNF formula). A project-join
tree [12] for a CNF formula ϕ(X) is defined as a tuple T = (T, r, γ, π), where

1. T is a tree with a set V(T) of vertices, a set L(T) ⊆ V(T) of leaves, and a
root r ∈ V(T)

2. γ : L(T) → ϕ is a bijection that maps the leaves of T to the clauses of ϕ
3. π : V(T) \ L(T) → 2X is a function which labels internal nodes with variable

sets, where the labels {π(n) | n ∈ V(T) \ L(T)} form a partition of X, and
4. If a clause c ∈ ϕ contains a variable x that belongs to the label π(n) of an

internal node n ∈ V(T) \ L(T), then the associated leaf node γ−1(c) must
descends from n.

A Graded Project-Join Tree [13] is a generalization of project-join trees.

Definition 5 (Graded Project-Join Tree of a CNF formula [13]). A
project-join tree T = (T, r, γ, π) of a CNF formula ϕ(X,Y) over variables X∪Y ,
where X ∩ Y = ∅, is (X, Y)-graded if there exist grades IX , IY ⊆ V(T) that
partition the internal nodes V(T) \ L(T), such that:

1. For a node, its grade is always consistent with its labels. i.e., If nX ∈ IX then
π(nX) ⊆ X, and if nY ∈ IY then π(nY) ⊆ Y .

2. If nX ∈ IX and nY ∈ IY , then nX is not a descendant of nY in T .

Intuitively, in a graded project-join tree, the nodes are partitioned according to
a partition (X,Y) of the variables, with nodes in the X block always appearing
higher than nodes in the Y block. As we shall see, this is useful for formulas
with two different types of quantifiers.

Figure 1 shows an example Graded Project-Join Tree for a CNF formula,
along with intermediate trees produced in the course of the execution of our
synthesis algorithm. In the upcoming sections we will refer back to this example
to illustrate the individual steps of the algorithm related to each intermediate
tree.

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 117

Fig. 1. Original and intermediate trees generated by our algorithms for the CNF exam-
ple (x1∨y4∨¬y5)∧(¬x3∨x2∨¬y5)∧(¬x1∨x2∨y6)∧(¬x3∨x1∨¬y4)∧(x1∨¬x2∨x3∨y5).
The label for each internal node is denoted by e.

3 Realizability Checking1

Our overall approach has three phases: (1) planning – constructing graded
project-join trees, (2) realizability checking, and (3) witness-function synthesis.
The focus in this section is on realizability checking. We construct the realiz-
ability set Rϕ(X) for an input formula ϕ(X,Y), and then use it to check for full
and partial realizability, as described in Definition 1.

For the planning phase, we use the planner described in [13], which is based
on tree decomposition [25]. Computing minimal tree decomposition is known to
be an NP-hard problem [6], so planning may incur high computational over-
head. Nevertheless, tree-decomposition tools are getting better and better. The
planner uses an anytime tree-decomposition tool, cf. [16], which outputs tree
decompositions of progressively lower width. Deciding when to quit planning
and start executing is done heuristically. In contrast, Factored RSynth applies
a fixed set of fast heuristics, which incurs relatively small overhead. We discuss
the planning overhead further below.

1 Proofs for All Lemmas and Theorems Can Be Found in the Appendix A.

118 Y. Lin et al.

3.1 Theoretical Basis and Valuations in Trees

The realizability set Rϕ(X) can be interpreted as a constraint over the X vari-
ables stating the condition that there exists an assignment to the Y variables
that satisfies ϕ. In other words, Rϕ(X) ≡ (∃y1) . . . (∃yn)ϕ, for Y = {y1, . . . , yn}.

Therefore, we can construct R from ϕ =
∧

j ϕj by existentially quantifying all
Y variables. As observed in [28], however, a clause that does not contain yi can
be moved outside the existential quantifier (∃yi). In other words, (∃yi)

∧
j ϕj ≡∧

yi �∈AP (ϕj)
ϕj ∧ (∃yi)

∧
yi∈AP (ϕj)

ϕj , where AP stands for atomic propositions
in a formula. This allows us to perform early quantification to compute R more
efficiently, since applying quantification on the smaller formula

∧
yi∈AP (ϕj)

(ϕj)
is likely less expensive computationally than doing so on the full formula ϕ =∧

j(ϕj).
Inspired by a similar observation in [13], we use the insight that a graded

project-join tree can be employed to guide early quantification. Consider the
following definition, which allows us to interpret a node n in a project-join tree
as a boolean formula:

Definition 6 (BDD-Valuations of Nodes in Project Join Tree). Let n be
a node in a graded project-join tree T = (T, r, γ, π) with a partition of internal
nodes into two grades IX and IY , as defined in Sect. 2. Let the set of children
nodes of n be denoted by C(n). Let �α� denote the BDD encoding a boolean
expression α, and ∃Zf denote the existential projection on f with respect to
variables in Z. We now define a pair of mutually related valuation concepts for
nodes in a project-join tree, interpreting their BDD representations.

The post-valuation of n is defined as

BVpost(T , n) =

{
�γ(n)�, if n is a leaf node
∃π(n)BVpre(T , n), if n is an internal node.

The pre-valuation of n is defined as

BVpre(T , n) =

{
�γ(n)�, if n is a leaf node
∧

n′∈C(n) BVpost(T , n′), if n is an internal node.

Intuitively, we evaluate an internal node n by first taking the conjunction of
post-valuations of its children and then existentially quantifying the variables
π(n) in its label. The former step generates a pre-valuation, while the latter
produces a post-valuation. We can safely perform quantification of the variables
in the label of n after conjoining, because every internal node n must satisfy the
property that all clauses containing variables in π(n) are descendants of n, by
the definition of a project-join tree.

Furthermore, recall that, by the definition of a (X,Y)-graded project-join
tree, all nodes in IY occur below all nodes in IX . This allows us to turn Defini-
tion 6 into a procedure for efficiently computing realizability of the CNF formula
ϕ using a graded project-join tree as a guide:

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 119

1. First, apply Definition 6 to the IY nodes of the tree, producing a project-join
tree for Rϕ(X) ≡ (∃y1) . . . (∃yn)ϕ.

2. Inspect this tree for full realizability (see below).
3. Apply Definition 6 again in order to check partial realizability (see below).

For the CNF with the graded project-join tree in Fig. 1a, the pre- and post-
valuations for nodes 1, 4, 5, 2, 3 are equivalent to the BDDs representing their
original clauses. BVpre(T , 6) = �(x1 ∨y4 ∨¬y5)∧ (¬x3 ∨x1 ∨¬y4)�, BVpost(T , 6) =
(∃y4)BVpre(T , 6) = (x1 ∨ ¬y5 ∨ ¬x3), BVpre(T , 7) = (x1 ∨ ¬x2 ∨ x3 ∨ y5)∧ (¬x3 ∨
x2 ∨¬y5)∧ (x1 ∨¬y5 ∨¬x3), BVpost(T , 7) = (∃y5)BVpre(T , 7) = �1�, BVpre(T , 9) =
(¬x1 ∨ x2 ∨ y6), andBVpost(T , 9) = (∃y6)BVpre(T , 9) = �1�.

Notations. We denote the set of children nodes and the set of descendants of n
by C(n) and D(n). Let �·� denote the BDD encoding of the enclosed expression,
and use projn(B,Z) to denote a series of existential projections on BDD B with
respect to variables in set Z.

Algorithm 1: GenericV aluation(T , n)
Input: : an ((X,Y)-graded) project-join tree T = (T, r, γ, π) of ϕ, and a

particular node n ∈ V(T)
Output: early determination of nullary realizability, otherwise outputs

BVpost(T , n) and BVpre(T , n)
1 if n ∈ L(T)
2 α ← �γ(n)�, pre-BV(T , n) ← α, post-BV(T , n) ← α// if n is a leaf
3 else
4 post-BV(T , n) ← �1�, pre-BV(T , n) ← �1�
5 for n′ ∈ C(n) do
6 if post-BV(T , n′) == �0�
7 pre-BV(T , n) ← �0�, post-BV(T , n) ← �0�
8 return nullary realizable, no further synthesis needed
9 end if

10 else
11 pre-BV(T , n) ← pre-BV(T , n) ∧ post-BV(T , n′)
12 end if
13 if pre-BV(T , n) == �0�
14 post-BV(T , n) ← �0�
15 return nullary realizable, no further synthesis needed
16 end if
17 end for
18 post-BV(T , n) ← Projn(pre-BV(T , n), π(n))
19 end if
20 return pre-BV(T , n), post-BV(T , n)

Algorithm 1 presents a procedure to compute the pre and post-valuations of
Definition 6. In this algorithm pre-valuations are intermediate BDDs used to
compute the post-valuations, but their values are also used in Sect. 4 for witness-

120 Y. Lin et al.

function synthesis. Post-valuations, meanwhile, are used in Sect. 3.2 to determine
if a given instance has a fully, partially, or unrealizable domain.

Note that children nodes are always visited before parent nodes, per Algo-
rithm 2. This guarantees that line 6 in GenericValuation is always viable. We
now assert the correctness of the Algorithm 1 by the following theorem.

Theorem 1. If a graded project-join tree T and a particular node n are given,
then (i) BVpost(T , n) and (ii) BVpre(T , n) returned by Algorithm 1 are as defined
in Definition 6.

Theorem 2. Given a graded project-join tree T of a CNF formula ϕ, let
Xleaves(T) denote the set of highest level nodes n ∈ T such that π(n) ⊆
Yϕ. Then the realizability set Rϕ(X) can be represented by the conjunction∧

n∈Xleaves(T) BVpre(T , n) of BDDs returned by Algorithm 1.

The pair of post and pre valuations defined in this section offer support for
both realizability checking and synthesis, respectively. Section 3.2 applies BVpost
for realizability checking, and we show in Sect. 4 how BVpre is used in witnesses
construction.

3.2 Determining Nullary, Partial and Full Realizability

Using the post-valuations of nodes computed in Algorithm 1 as the result of
projecting variables on the conjunction of children nodes, we can construct the
realizability set and determine if it is full, partial or empty. In practice, we
represent the realizability set as a conjunction of BDDs, where an input is in the
set if it satisfies all BDDs in the conjunction.

Notation Let XLeaves(T) denote the set of Y internal nodes whose parents are
not in IY . This set is easily obtainable by means such as graph-search algorithms.

We start by applying the pair of valuations computed in Algorithm 1 to
the first layer of IY nodes in the graded tree; that is, all internal nodes in IY

whose parent is not in IY . By replacing these nodes with leaves labeled by their
post-valuation, we obtain a project-join tree TX for the formula (∃y1) . . . (∃yn)ϕ,
which, as explained in Sect. 3.1, corresponds to the realizability set. This proce-
dure is implemented in Algorithm 2.

In the case of the example formula in Fig. 1, once we obtain the pre- and post-
valuations from Algorithm 1, BpureX = �1� and b = 1 from the post-valuations
BVpost(T , 7) (Fig. 1c) and BVpost(T , 9) (Fig. 1d) on XLeaves. Hence we get full
realizability.

Note that the formula ϕ is fully realizable if and only if the conjunction of
the leaves in TX is 1, which holds true if and only if all leaves are 1. Therefore, at
the end of Algorithm 2 we are also able to answer whether ϕ is fully realizable.
Note also that if any of the leaves is 0, then their conjunction is 0, meaning that
ϕ is nullary realizable. Therefore, in some cases it might be possible to detect
nullary realizability in this step. If the formula is not fully realizable and nullary

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 121

realizability is not detected, then TX is passed to the next step to test partial
realizability.

Algorithm 2: LowV aluation(T)
Explanation: This algorithm computes pre and post-valuations of nodes

in the leaves and in the Y partition, simultaneously in the
bottom-up manner checks if the realizability set is
tautology (fully realizable) or an obvious negation (not
realizable). If neither applies, it passes the new tree to
Algorithm 3.

Input: T = (T, r, γ, π): an (X,Y)-graded project-join tree with internal
nodes partitioned into IX , IY .

Output: Returns full or nullary realizability if can determine by the end
of this algorithm. Otherwise, a project-join tree TX of (∃y∈Y y)ϕ
is passed to Algorithm 3 for further determining between partial
and nullary realizability.

1 BpureX ←conjunction of clauses without y variables
2 if BpureX == �0� return nullary realizable
3 TX ← T , b ← 1
4 if IY is empty return fully realizable
5 for n ∈ IY ∪ L(T) do
6 GenericValuation(T , n) // in bottom-up order from leaves to root
7 if BVpre(TX , n) == �0� return nullary realizable
8 end for
9 for n ∈ XLeaves(T) do

10 if BVpost(TX , n) == �0� return nullary realizable
11 else if BVpost(TX , n) �= �1�
12 b ← 0
13 end if
14 V(TX) ← V(TX) \ D(n)// remove the descendants of n from TX

15 L(TX) ← L(TX) ∪ {n}// add n to leaves of TX

16 end for
17 if b == 1 and BpureX == �1� return fully realizable
18 return HighValuation(TX)

Theorem 3. Given a graded project-join tree T for a CNF formula ϕ, Algo-
rithm 2 returns full realizability if and only if the formula (∀X)(∃Y)ϕ(X,Y) is
true. And the algorithm returns nullary realizability, if and only if the formula
(∃X)(∃Y)ϕ(X,Y) is false.

When the formula is not fully realizable, we proceed to pass the tree returned by
Algorithm 2 to Algorithm 3, which then distinguishes partial realizability from
nullary realizability. It does this by simply using Algorithm 1 to compute the
post-valuation of the root of TX .

122 Y. Lin et al.

In the case of the example in Fig. 1, for this formula, we do not need to check
Algorithm 3 because by Algorithm 2 full realizability is returned.

Algorithm 3: HighV aluation(TX)
Input: TX = (TX , rX , γX , πX) is the generated tree from Algorithm 2,

which is the project-join tree generated by projecting out all Y
variables from the (X,Y)-graded tree for CNF ϕ.

Output: whether or not ϕ is partially realizable
1 for n ∈ IX // for all nodes in IX partition
2 do
3 GenericValuation(T , n) // in bottom-up order leaves to the root
4 end for
5 if BVpost(TX , rX) == �0� return nullary realizable
6 else return partially realizable

Since this corresponds to taking the conjunction of the leaves (which are
themselves the post-valuation of the first layer of Y nodes) and existentially
quantifying the X variables, the result is 1 if ϕ is partially realizable, and 0 if
not. Built on top of Theorem 2, we formulate the correctness of the algorithm:

Theorem 4. Given a CNF formula ϕ and its graded project-join tree T , if
we generate TX by Algorithm 2, then Algorithm 3 returns the correct status of
realizability of ϕ.

4 Synthesis of Witness Functions

We now move to the third phase of our boolean-synthesis approach, where we
construct boolean expressions for the output variables, which are the witness
functions. More precisely, when the realizability set Rϕ(X), as defined in Sect. 3,
is nonempty, we proceed to witness construction. We now formally define the
concept of witnesses, in the context where the boolean synthesis problem is given
as a CNF specification and reduced ordered BDDs are used for boolean-function
representations.

The following lemma describes the self-substitution method for witness con-
struction.

Lemma 1. [15] Let X be a set of input variables and y a single output variable in
a Boolean CNF formula ϕ(X, y) with Rϕ(X) �= ∅. Then g(X) = ϕ(X, y)[y �→ 1]
is a witness for y in ϕ(X, y).

We now show how to extend this method to multiple output variables, build-
ing towards an approach using graded project-join trees.

4.1 Monolithic Approach

The synthesis procedure here builds on the condition that partial realizability is
known, provided by the algorithms in Section. 3. While solvers constructed by

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 123

related works, as discussed in Sect. 1, apply only to fully realizable formulas, we
show here that synthesis can also be performed to obtain witness functions in
the case of partial realizability.

As a stepping stone towards graded-tree-based synthesis, we first explain how
witness functions are constructed in the monolithic case. We review the basic
framework in [15], where the realizability set Rϕ(X) is obtained through iterative
quantification on yn to y1, while witnesses are obtained via iterative substitution
on y1 to yn.

Denote the BDD encoding the original CNF formula ϕ(X,Y) to be Bϕ(X,Y).
Then, a series of intermediate BDDs can be defined on the way of obtaining the
realizability sets Rϕ(X):

Bn(X, y1, . . . , yn) ≡ Bϕ,

. . .

Bi(X, y1, . . . , yi) ≡ (∃yi+1)Bi+1,

. . .

B0(X) ≡ (∃y1)B1

Finally, the realizability set Rϕ(X) is B0(X).
Note that existential quantification proceeds here inside-out, since larger-

indexed output variables are quantified before smaller-indexed output variables.
Witness construction, on the other hand, proceeds outside-in: witnesses are
constructed in the reverse direction starting from the smallest-indexed out-
put variable y1. The witnesses for variables y1, . . . , yi−1 are substituted into
Bi, from which we then construct the next witness gi. Using the witness given
by Lemma 1, we have:

g1 is computed from: B′
1(X, y1) = B1(X, y1), via g1 = B′

1[y1 �→ 1];
. . .
gi is computed from: B′

i(X, yi) = Bi(X, y1, . . . , yi)[y1 �→ g1] . . . [yi−1 �→ gi−1],
via gi = B′

i(X, yi)[yi �→ 1].
The following lemma is based on [15].

Lemma 2. If R0(X) �= ∅, then the gi’s above are witness functions for Y in
ϕ(X,Y).

As the witnesses above are computed using the self-substitution method from
Lemma 1, each formula can have potentially many different witnesses. The cor-
rectness of the procedure does not depend on which witness is used. RSynth
[15] applies the SolveEqn function of the CUDD package to compute a block of
witnesses at once by essentially the procedure above. The procedure produces
several witnesses for each variable, from which we chose one witnesses (by setting
a parameter to 1).

The above monolithic synthesis framework was generalized in [28] to the
case where the formula ϕ is given as a conjunction of factors. A factor can be a
formula, for example, a single clause or a conjunction of clauses (called a “cluster”

124 Y. Lin et al.

in that work). In that case, the principle of early quantification mentioned in
Sect. 3.1 can be applied. See Appendix B for details. As shown in [28], the tool,
Factored RSynth, generally outperforms RSynth.

In the following section, we describe a factored approached to witness con-
struction using graded project-join trees.

4.2 Synthesis Using Graded Project-Join Trees

As we saw above, in the monolithic setting we compute the realizability set by
quantifying the Y variables inside out, and then computing the witness function
for these variables outside in. In the graded project-tree framework, we saw that
the realizability set is computing by quantifying the Y variables bottom-up.

Our framework works for both partial and fully realizable cases. We first
compute realizability sets going bottom up the graded project-join tree for ϕ
as in Sect. 3. We now show that the witness functions for the Y variables can
then be constructed by iterated substitution top-down. In other words, we first
compute the witnesses for the variables in the labels of internal nodes at higher
levels, and then propagate those down toward the leaves. We compute witnesses
from the pre-valuation BVpre of a node in the tree, computed as in Algorithm 1.
Note that, in contrast to the bottom-up realizability and top-down synthesis
described here, in projected model counting, where graded project-join trees
were introduced [13], the trees are processed fully in a bottom-up fashion.

The following lemma is crucial to our approach.

Lemma 3. Let m and n be two different internal nodes of a graded project-join
tree T such that n is not a descendant of m. Then no variable in π(m) appears
in BVpre(T , n).

We can derive from Lemma 3 the essential relation among witness functions for
different variables: since the witness for a variable yi ∈ π(n) is computed from
BVpre(T , n), this witness can only depend on the witnesses of output variables
yj ∈ π(m) such that n is a descendant of m.

Based on these insights, we present in Algorithm 4 our dynamic-programming
synthesis algorithm for producing the witnesses gy(X) for each output variable
y, represented by a BDD Wy(X). The algorithm starts at the top-most layer of
Y nodes, those whose parents are X nodes, represented by the set called XLeaves
(line 1). For each node n in this set (line 3), we compute the set of witnesses {Wy |
y ∈ π(n)} from BVpre(T , n) (line 9) using the monolithic procedure from Sect. 4.1
(represented by the CUDD function SolveEqn(π(n), BVpre(T , n)), mentioned in
that section). Note that, since the tree is graded, these nodes do not descend
from any Y nodes. Therefore, by Lemma 3, these witnesses depend only on the
X variables.

As we compute the witnesses for a node, we add all of its (non-leaf) children
to the set of nodes to visit (line 6), representing the next layer of the tree. After

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 125

all nodes in the current set have been processed, we repeat the process with the
new layer (line 3).

Algorithm 4: DPSynth(T)
Notation: C(n): set of the children nodes of n
Notation: D(n): set of the descendant nodes of n
Notation: Wy: BDD representing the witness of variable y
Notation: �α�: the BDD representation of boolean expression α
Notation: XLeaves(T) as in Algorithm 2
Input: T = (T, r, γ, π): the original (X,Y)-graded project-join tree of

CNF ϕ
Input: BDDs BVpre(m) for all m ∈ IY

Output: a series of BDDs Wy,∀y ∈ Y , encoding the witness functions for
output variables

1 synthNodes ← XLeaves(T)
2 while synthNodes �= {} do

// from top-down order from the root to leaves
3 for all n ∈ synthNodes do
4 for n′ ∈ C(n) do
5 if n′ is not a leaf
6 add n′ to synthNodes
7 end if
8 end for

// monolithic algorithm presented in Section 4.1
9 {Wy | y ∈ π(n)} ← SolveEqn(π(n), BVpre(T , n))

10 for n′′ ∈ D(n) do
11 for all y ∈ π(n) do

// substitute new synthesized y by their witnesses Wy in
the BDD representing the pre-valuation of descendants
n′′

12 BVpre(T , n′′) ← BVpre(T , n′′)[y �→ Wy]
13 end for
14 end for
15 end for
16 end while
17 return Wy,∀y ∈ Y

This continues until the set of children is empty (line 2). Note that, since for each
node n we apply the monolithic synthesis procedure only to the variables in π(n),
the witnesses can be dependent on the Y variables of its ancestors. Therefore,
we finish the algorithm by iterating over the new synthesized witnesses Wy and
substituting each into the pre-valuation of descendant nodes that are computed
later (lines 10-14). Note that this overapproximates the set of dependencies on
y ∈ π(n) of the witnesses for y′ ∈ π(n′′) for n′′ ∈ D(n), but since Wy′ [y �→
Wy] ≡ Wy′ when y does not appear in Wy′ , the result is still correct. At the end
of this procedure, all Wy will be dependent only in the input variables X.

126 Y. Lin et al.

Continuing with the running example for the problem in Fig. 1, once full
realizability is detected, we apply Algorithm 4 and construct the witnesses in
top-down manner. First, we get the witness g6 = 1 for y6 by BVpre(T , 9) =
�(¬x1 ∨ x2 ∨ y6)�. Then we construct the witness g5 = (x1 ∧ x2) ∨ ¬x3 for y5
by substituting y5 = 1 in BVpre(T , 7) = �(x1 ∨ ¬x2 ∨ x3 ∨ y5) ∧ (¬x3 ∨ x2 ∨
¬y5) ∧ (x1 ∨ ¬y5 ∨ ¬x3)�. After that, we go to node 6 and get g4 = x1 ∨ ¬x3

from BVpre(T , 6) = �(x1 ∨ y4 ∨ ¬y5) ∧ (¬x3 ∨ x1 ∨ ¬y4)�. By the algorithm, we
would need to substitute g5 into BVpre(T , 6) before computing g4, but since for
this specific CNF g4 is not actually dependent on g5, this does not change the
witness. The witnesses are correct by ϕ[y4 �→ g4][y5 �→ g5][y6 �→ g6] = 1.

The following theorem proves the correctness of witnesses constructed. First,
it is easy to see by an inductive argument that a witness is synthesized for
all output variables: all Y nodes that do not descend from other Y nodes are
included in the set processed in the first iteration, and if a node is processed in
one iteration, all of its children are included in the set for the next iteration. Since
the tree is graded, we have processed all of the Y nodes, and since every output
variable y is in the label of some node, a witness Wy is computed for every y.
Then, the following theorem states the correctness of the witnesses constructed:

Theorem 5. Algorithm 4 returns a set of BDDs encoding the witness functions
for output variables that satisfy the given CNF ϕ, assuming that SolveEqn(π(n),
BVpre(T , n)) returns correct witnesses for the variables in π(n) in BVpre(T , n).

5 Experimental Evaluation

5.1 Realizability-Checking Phase

Methodology: To examine our dynamic-programming graded-project-join-
tree-based approach for boolean realizability, we developed a software tool,
DPSynth, which implements the theoretical framework described above. We
choose to compare DPSynth to Factored RSynth, which as explained in the intro-
duction is the closest existing tool, also being based on decision diagrams and
outputting the realizability set along with the witnesses. Prior work [28] already
demonstrated that RSynth practically never outperforms Factored RSynth, while
Factored RSynth typically outperforms RSynth, so we compare in this paper to
Factored RSynth. (See Sect. 5.4 for an additional comparison to a non-decision-
diagram tool.) We measured the time and space performance for determining
realizability on a set of mature benchmarks, described below. The experiments
aim at answering the following research questions:

– Does our DP-based solution improve execution time for realizability checking?
Does the overhead of planning time investment in DPSynth get paid off?

– How does the relative weight of planning overhead vary between small and
large input instances?

– How does DPSynth improve the scalability of realizability checking?

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 127

(Tree width is one of the critical parameters impacting the performance of the
graded project-jointree-based approach in running time. We discuss this issue
further in separate a subsection.)

We selected 318 benchmarks that are neither too easy (taking less than 1ms)
not too hard (such that the whole benchmark family is not solvable by either
solver) from the data set of forall-exists ΠP

2 CNFs from the QBFEVAL [23]
datasets from 2016 to 2019, without any more selection criteria, as the edi-
tions of QBFEVAL in 2020 and 2022 do not include additional 2QBF instances
or tracks other than those included by 2019. Families of benchmarks that our
experiments run on include reduction-finding query, mutexP, qshifter, ranking
functions, sorting networks, tree and fix-point detection families, and also two
additional scalable families, consisting of parametric integer factorization and
subtraction benchmarks from [2,3].

Among the full benchmark suite, at least 33% of the 285 instances where
realizability can be checked by either DPSynth or factored RSynth are partially
realizable. In the benchmarks for which both tools are able to synthesize a com-
plete group of witnesses, 28% are partially realizabile. (No benchmark in the
suite is identified as nullary realizable). We conclude that partial realizability is
a significant issue in Boolean synthesis. We now present the experimental results
analyzed according to the research questions above.

For each benchmark instance, we run the FlowCutter-based planner until we
obtain the first tree decomposition, and we declare timeout if no tree decom-
position is generated within ten minutes, in which case, the instance is marked
unsolved. Otherwise, we take the first tree generated, and proceed to the execu-
tion phase of DPSynth, which includes BDD compilation, realizability checking,
and synthesis of witnesses. The maximal time limit for each instance is set to be
two hours for the execution phase. We measure planning time, execution time,
and end-to-end time.

Our implementation is based on the CUDD Library [27] with BDD opera-
tions, and the FlowCutter tree-decomposition tool [20]. In our implementation,
BDD variables are in MCS order [28]. This ordering is based on the primal graph
of the input clause set, and was also used by Factored RSynth.

We ran the experiments on Rice University NOTS cluster, which assigns the
jobs simultaneously to a mix of HPE SL230s, HPE XL170r, and Dell PowerEdge
C6420 nodes, each of which has 16–40 cores with 32–192 GB RAM that runs at
2.1–2.60GHz. Each solver-benchmark combination ran on a single core.

Experimental Results: Our goal in this paper was to compare the performance
of the fast, CSP-based, formula-partitioning techniques of Factored RSynth [28],
to the heavier-duty formula-partitioning techniques based on tree decomposition
described above. For a fair comparison, the charts do not include data points
for those instances that timed out for one of the solvers. (In total, DPSynth was
able to solve 126 instances end-to-end, and RSynth 111.) Thus, our experiments
compare DPSynth to Factored RSynth. Our conjecture is that such heavier-duty
techniques pay off for larger formulas, but not necessarily for smaller formulas.

128 Y. Lin et al.

Fig. 2. (a) Time Comparison. (b) Scalable Families Time Growth

Figure 2a shows overall running-time comparison between DPSynth and Fac-
tored RSynth for realizability checking. A clear pattern that emerges is there is a
difference in relative performance between very small problems (solvable within 1
millisecond) and larger problems. DPSynth underperforms Factored RSynth on
small instances, but outperforms on larger instances and the difference increases
exponentially as input size grows. We conclude that planning overhead domi-
nates on small input instances, but that effect fades off as instances get larger
and the planning pays off. In memory usage comparison2 – using peak node
count as a measurement – DPSynth uses less memory than Factored RSynth.
Here the graded project-join-tree approach is advantageous, and planning incurs
no overhead.

To evaluate scalability, we take the scalable benchmark families mentioned
previously, and compare the logarithmic-scale slope in their running time as sizes
of benchmarks increase. As indicated in Figure. 2b, DPSynth scales exponentially
better than Factored RSynth, as the planning overhead fades in significance as
instances grow. We see a steeper slope on the exponential scale in DPSynth
trends over factored RSynth. Some data points for larger benchmarks in the
families (horizontal coordinates 3, 4, 5 on chart) are missing because factored
RSynth is not able to finish solving these instances in realizability-checking phase
within the time limit.

5.2 Synthesis

The experiments on synthesis of witnesses answer the following research ques-
tions:

– How does DPSynth compare in execution time to factored RSynth?
– Does the influence of planning investment reduces as problem gets large?
– What do we see in growth of tree widths and synthesis execution time?

Using the same set of benchmarks and setting under the methodology as
in Sect. 5.1, we applied our synthesis procedure to both fully realizable and
2 The charts for space consumption for both phases are in the Appendix C.

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 129

partially realizable benchmarks. This broadens the scope of Boolean synthesis
beyond that of fully realizable benchmarks, which is the scope of earlier work, as
discussed above. Regarding end-to-end synthesis (planning, realizability check-
ing, and synthesis, combined) DPSynth outperforms Factored RSynth in running
time as illustrated in Fig. 3a. As with realizability checking, planning overhead
dominates for small instances, as discussed in Sect. 3, but DPSynth solves large
benchmarks faster and shows significant advantage as problem size increases,
once the planning overhead fades in significance. In memory usage there is con-
sistent relative performance of DPSynth vs. Factored RSynth.

We again selected three scalable benchmark families, scaled based on a
numerical parameter. As shown in Fig. 3b, DPSynth scales exponentially as
benchmark size increases. Similarly to the case in realizability checking, the
missing data points on larger benchmarks in the scalable families presented by
the dashed lines are caused by the timeouts by factored RSynth.

While DPSynth shows performance advantage over Factored RSynth with
respect to our benchmark suite, one cannot conclude that DPSynth always dom-
inates Factored RSynth. This is because DPSynth involves computationally non-
trivial planning phase, and it is not possible to say definitively that the planning
overhead always pays off.

Fig. 3. (a) Synthesis Time: DPSynth vs. Factored RSynth. (b) Scalable Families Com-
parison

We can conclude, however, that DPSynth is an important addition to the port-
folio of algorithms for boolean synthesis.

5.3 Tree Widths and Realizability

Graded project-join trees enable the computation of the realizability set in a
way that minimizes the set of support of intermediate ADDs (Algebraic Deci-
sion Diagrams), saving time and memory. But computing these trees is a heavy
computational task. In this section, we study the impact of tree width on real-
izability checking.

130 Y. Lin et al.

Fig. 4. (a) DPSynth Realizability Time as Widths Increases. (b) DPSynth/Factored
RSynth Realizability Time Ratio as Widths Increases

Fig. 4a presents the range of realizability time run by DPSynth along increasing
tree widths. As we see, increases in tree widths implies an increase in running
time for realizability-checking. Figure 4b, depicts the ratio of realizability time,
computed by that of DPSynth over Factored RSynth, with respect to tree width,
for problem instances that can be solved by both solvers. As treewidth increases,
the over-performance of DPSynth over Factored RSynth increases, as planning
overhead decreases in significance for higher-treewidth instances.

Synthesis execution time has similar relation with tree widths.

5.4 Comparison with Non-BDD-Based Synthesis

To complement out evaluation, we include additional experiments to verify
whether DPSynth is competitive with non-BDD-based synthesis solvers, as moti-
vated in Sect. 1. We compare with Manthan [17], a leading tool that is not based
on decision diagrams, and find that DPSynth performs favorably.

We present a general picture by the following table, which shows the overall
strength of the dynamic-programming decision-diagram approach, by measuring
the time and space usage of experiments on the dataset selected from QBFE-
VAL’16 to QBFEVAL’19. DPSynth and Manthan each is able to solve some
benchmarks that the other does not solve.

In order to compare the running time, we compare against Manthan using
the DPSynth end-to-end synthesis time, which is the sum of tree-decomposition
time, compilation, realizability-checking time, and synthesis time.

As the overall picture of synthesis solving, DPSynth shows a better time
performance on most instances. DPSynth and Manthan each has strength on
some instances, but the number of benchmarks that only DPSynth solves is
larger than those solved only by Manthan. On those that are solved by both,
DPSynth takes less time in most of them. See Appendix D for more illustrative
data on specific fully and partially-realizable benchmarks.

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 131

Number of benchmarks

solved by Manthan 79
solved by DPSynth 102
solved by both Manthan and DPSynth 70
solved by Manthan but not by DPSynth 9
solved by DPSynth but not by Manthan 32

6 Concluding Remarks

To summarize the contribution in this work, we propose a novel symbolic
dynamic programming approach for realizability checking and witness construc-
tion in boolean synthesis, based on graded project-join trees. The algorithm we
propose here combine a bottom-up realizability-checking phase with a top-down
synthesis phase. We demonstrated experimentally that our approach, imple-
mented in the DPSynth tool, is powerful and more scalable than the approach
based on CSP heuristics (Factored RSynth). Another crucial contribution of this
work is the inclusion of partial realizability checking, which applies to 30% of the
total number of benchmarks. As we explain in introduction, this consideration
is motivated by the need in modular circuit design and temporal synthesis to
locate the scope of realizable inputs in iterative constructions.

There are many directions for future work. Variable ordering is a critical issue
in decision-diagram algorithms, and should be explored further in the context
of our approach. In particular, dynamic variable ordering should be investigated
[26]. Also, in our work here we used high-level API of the BDD package CUDD,
but it is possible that performance gains can be obtained by using also low-
level BDD-manipulating APIs. The question of how to provide certificates of
unrealizability also needs to be explored, c.f., [8,9].

As mentioned earlier, quantifier elimination is a fundamental algorithmic
component in temporal synthesis [31]. Tabajara and Vardi explored a factored
approach for temporal synthesis [29]. It would be worthwhile to explore also
the graded project-tree approach for boolean synthesis in the context of fac-
tored temporal synthesis. Finally, quantifier elimination is also a fundamental
operation in symbolic model checking [11] and partitioning techniques have
been explored in that context [10]. Therefore, exploring the applicability of
our dynamic-programming approach in that setting is also a promising research
direction.

Acknowledgements. This work was supported in part by NSF grants IIS-1527668,
CCF-1704883, IIS-1830549, CNS-2016656, DoD MURI grant N00014-20-1-2787, an
award from the Maryland Procurement Office, the Big-Data Private-Cloud Research
Cyberinfrastructure MRI-award funded by NSF under grant CNS-1338099 and by Rice
University’s Center for Research Computing (CRC).

132 Y. Lin et al.

References

1. Akshay, S., Arora, J., Chakraborty, S., Krishna, S., Raghunathan, D., Shah, S.:
Knowledge compilation for Boolean functional synthesis. In: 2019 Formal Methods
in Computer Aided Design (FMCAD), pp. 161–169. IEEE (2019)

2. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
Boolean functional synthesis? In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018,
Part I. LNCS, vol. 10981, pp. 251–269. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3_14

3. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: Boolean functional syn-
thesis: hardness and practical algorithms. Formal Methods Syst. Des. 57(1), 53–86
(2021)

4. Bahar, R.I., et al.: Algebric decision diagrams and their applications. Formal Meth.
Syst. Des. 10(2), 171–206 (1997)

5. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
6. Bodlaender, H.L., et al.: Treewidth is np-complete on cubic graphs (and related

results). arXiv preprint arXiv:2301.10031 (2023)
7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE

TC 100(8), 677–691 (1986)
8. Bryant, R.E., Heule, M.J.: Dual proof generation for quantified Boolean formulas

with a BDD-based solver. In: CADE, pp. 433–449 (2021)
9. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-

based SAT solver. In: TACAS 2021. LNCS, vol. 12651, pp. 76–93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72016-2_5

10. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transistion relations. In: Proceeding of the IFIP 10.5 International Conference
on Very Large Scale Integration. IFIP Transactions, vol. A-1, pp. 49–58. North-
Holland (1991)

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

12. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: weighted model counting by
dynamic programming on project-join trees. In: Simonis, H. (ed.) CP 2020. LNCS,
vol. 12333, pp. 211–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58475-7_13

13. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: ProCount: weighted projected model
counting with graded project-join trees. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 152–170. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3_11

14. Dudek, J.M., Phan, V.H., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. In: AAAI, vol. 34, pp. 1468–1476 (2020)

15. Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-based Boolean functional synthesis.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 402–421.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_22

16. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. arXiv
preprint arXiv:1207.4109 (2012)

17. Golia, P., Roy, S., Meel, K.S.: Manthan: a data-driven approach for Boolean func-
tion synthesis. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
611–633. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_31

18. Golia, P., Slivovsky, F., Roy, S., Meel, K.S.: Engineering an efficient Boolean func-
tional synthesis engine. In: 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), pp. 1–9. IEEE (2021)

https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.1007/978-3-319-96145-3_14
http://arxiv.org/abs/2301.10031
https://doi.org/10.1007/978-3-030-72016-2_5
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-319-41540-6_22
http://arxiv.org/abs/1207.4109
https://doi.org/10.1007/978-3-030-53291-8_31

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 133

19. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Springer,
Cham (2007)

20. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Goodrich,
M.T., Mitzenmacher, M. (eds.) Proceedings of the Eighteenth Workshop on Algo-
rithm Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA,
January 10, 2016, pp. 90–102. SIAM (2016)

21. Lin, Y., Tabajara, L.M., Vardi, M.Y.: Dynamic programming for symbolic Boolean
realizability and synthesis (2024). arXiv:2405.07975

22. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient sat solver. In: Proceedings of the 38th Annual Design Automation
Conference. pp. 530–535 (2001)

23. Narizzano, M., Pulina, L., Tacchella, A.: The QBFEVAL web portal. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 494–497. Springer, Heidelberg (2006). https://doi.org/10.1007/
11853886_45

24. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_23

25. Robertson, N., Seymour, P.D.: Graph minors. x. obstructions to tree-
decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

26. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pp. 42–47. IEEE (1993)

27. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0. University of
Colorado at Boulder (2015)

28. Tabajara, L.M., Vardi, M.Y.: Factored Boolean functional synthesis. In: Stewart,
D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided Design,
FMCAD 2017, Vienna, Austria, 2–6 October, 2017, pp. 124–131. IEEE (2017)

29. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLF synthesis. In: Inter-
national Joint Conference on Artificial Intelligence (2019)

30. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety ltl synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_10

31. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLF synthesis. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pp. 1362–1369. ijcai.org (2017)

http://arxiv.org/abs/2405.07975
https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-70389-3_10

134 Y. Lin et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Localized Attractor Computations
for Infinite-State Games

Anne-Kathrin Schmuck1 r© Philippe Heim2(B) r© Rayna Dimitrova2 r©
Satya Prakash Nayak1

1 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
{akschmuck,sanayak}@mpi-sws.org

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{philippe.heim,dimitrova}@cispa.de

Abstract. Infinite-state games are a commonly used model for the syn-
thesis of reactive systems with unbounded data domains. Symbolic meth-
ods for solving such games need to be able to construct intricate argu-
ments to establish the existence of winning strategies. Often, large prob-
lem instances require prohibitively complex arguments. Therefore, tech-
niques that identify smaller and simpler sub-problems and exploit the
respective results for the given game-solving task are highly desirable.

In this paper, we propose the first such technique for infinite-state
games. The main idea is to enhance symbolic game-solving with the
results of localized attractor computations performed in sub-games. The
crux of our approach lies in identifying useful sub-games by comput-
ing permissive winning strategy templates in finite abstractions of the
infinite-state game. The experimental evaluation of our method demon-
strates that it outperforms existing techniques and is applicable to
infinite-state games beyond the state of the art.

1 Introduction

Games on graphs provide an effective way to formalize the automatic synthesis
of correct-by-design software in cyber-physical systems. The prime examples are
algorithms that synthesize control software to ensure high-level logical specifi-
cations in response to external environmental behavior. These systems typically
operate over unbounded data domains. For instance, in smart-home applica-
tions [35], they need to regulate real-valued quantities like room temperature
and lighting in response to natural conditions, day-time, or energy costs. Also,
unbounded data domains are valuable for over-approximating large countable
numbers of products in a smart manufacturing line [20]. The tight integration
of many specialized machines makes their efficient control challenging. Similar
control synthesis problems occur in robotic warehouse systems [18], underwater
robots for oil-pipe inspections [25], and electric smart-grid regulation [29].

Authors are ordered randomly, denoted by r©. The publicly verifiable record of the
randomization is available at www.aeaweb.org.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 135–158, 2024.
https://doi.org/10.1007/978-3-031-65633-0_7

https://doi.org/10.5281/zenodo.10939871
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_7&domain=pdf
http://orcid.org/0000-0003-2801-639X
http://orcid.org/0000-0002-5433-8133
http://orcid.org/0009-0006-2494-8690
http://orcid.org/0000-0002-4407-8681
https://www.aeaweb.org/journals/policies/random-author-order/search?RandomAuthorsSearch%5Bsearch%5D=fKy1kA2NiEmL
https://doi.org/10.1007/978-3-031-65633-0_7

136 A.-K. Schmuck et al.

Algorithmically, the outlined synthesis problems can be formalized via
infinite-state games that model the ongoing interaction between the system (with
its to-be-designed control software) and its environment over their infinite data
domains. Due to their practical relevance and their challenging complexity, there
has been an increasing interest in automated techniques for solving infinite-state
games to obtain correct-by-design control implementations. As the game-solving
problem is in general undecidable in the presence of infinite data domains, this
problem is substantially more challenging than its finite-state counterpart.

Fig. 1. Schematic paper outline; con-
tributions highlighted in blue. (Color
figure online)

Within the literature1, there are
two prominent directions to attack this
problem. One comprises abstraction-based
approaches, where either the overall syn-
thesis problem (e.g. [23,38]) or the spec-
ification (e.g. [8,14,27]) are abstracted,
resulting in a finite-state game, to which
classical techniques apply. The other one
are constraint-based techniques [9,10,32,
33], that work directly on a symbolic rep-
resentation of the infinite-state game. Due
to the undecidability of the overall syn-
thesis problem, both categories are inher-
ently constrained. While abstraction-based
approaches are limited by the abstrac-
tion domain they employ, constraint-based
techniques typically diverge due to non-
terminating fixpoint computations.

To address these limitations, a recent
constraint-based technique called attractor acceleration [21] employs ranking
arguments to improve the convergence of symbolic game-solving algorithms.
While this technique has shown superior performance over the state-of-the art,
the utilized ranking arguments become complex, and thus difficult to find, as
the size of the games increases. This makes the approach from [21] infeasible in
such cases, often resulting in divergence in larger and more complex games.

In this paper, we propose an approach to overcoming the above limita-
tion and thus extending the applicability of synthesis over infinite state games
towards realistic applications. The key idea is to utilize efficient abstraction-
based pre-computations that localize attractor computations to small and useful
sub-games. In that way, acceleration can be applied locally to small sub-games,
and the results utilized by the procedure for solving the global game. This often
avoids the computationally inefficient attractor acceleration over the complete
game. To guide the identification of useful sub-games, our approach computes
strategy templates [2] – a concise representation of a possibly infinite number
of winning strategies – in finite abstractions of the infinite-state game. Figure 1
shows an overview of our method which also serves as an outline of the paper.

1 See Sect. 7 for a detailed discussion of related work.

Localized Attractor Computations for Infinite-State Games 137

Our experimental evaluation demonstrates the superior performance of our
approach compared to the state of the art. Existing tools fail on almost all
benchmarks, while our implementation terminates within minutes.

To build up more intuition, we illustrate the main idea of our approach with
the following example, which will also serve as our running example.

Example 1. Figure 2 shows a reactive program game for a sample-collecting
robot. The robot moves along tracks, and its position is determined by the inte-
ger program variable pos. The robot remains in location base until prompted by
the environment to collect inpReq many samples. It cannot return to base until
the required samples are collected, as enforced by the variable done. From the
right position, it can enter the mine, where it must stay and collect samples from
two sites, a and b. However, it has to choose the correct site in each iteration,
as they might not have samples all the time (if both do not have samples, it can
get one sample itself). Once enough samples are collected, the robot can return
to base. The requirement on the robot’s strategy is to be at base infinitely often.

Attractor acceleration [21] uses ranking arguments to establish that by iter-
ating some strategy an unbounded number of times through some location, a
player in the game can enforce reaching a set of target states. In this example,
to reach samp ě req in location mine (the target) the robot can iteratively
increase the value of samp by choosing the right updates (the iterated strategy).
This works, since if samp is increased repeatedly, eventually samp ě req will
hold (the ranking argument). Establishing the existence of the iterated strategy
(i.e. the robot can increment samp) is a game-solving problem, since the behav-
ior of the robot is influenced by the environment. This game-solving problem
potentially considers the whole game, since the iterated strategy is not known a
priori. In addition, identifying locations where acceleration can be applied and
finding the right ranking arguments is challenging. This impacts the scalability
and applicability of acceleration, making it infeasible for large games.

Fig. 2. A reactive program game for a sample-collecting robot with locations
base,move,mine, integer-type program variables pos, done, req , samp and input vari-
able inpReq . We use the following abbreviations: enterBase “̂ (pos “ 12 ^ done “ 1),
atMine “̂ (pos “ 23), haveSamples “̂ (a ą 0 _ b ą 0), enough “̂ samp ě
req , sampleA “̂ (samp :“ samp ` a), sampleB “̂ (samp :“ samp ` b), and
sampleS “̂ (samp :“ samp ` 1). In each round of the game, the environment chooses
a value for the input inpReq . Based on guards over program variables and inputs, the
game transitions to a black square. The system then chooses one of the possible updates
to the program variables, thus determining the next location.

138 A.-K. Schmuck et al.

Consequently, our method aims to identify small and useful sub-games and
cache the results obtained by solving these sub-games. In Example 1, a useful sub-
game would be the game restricted to the mine location with the target state
samp ě req . Applying the acceleration technique to this sub-game, provides the
ranking argument described earlier. These cached results are then utilized to
enhance the symbolic game-solving procedure for the entire game.

To identify these small and useful sub-games, we use permissive strategy tem-
plates [2] in finite-state abstracted games. They describe a potentially infinite set
of winning strategies using local conditions on the transitions of the game. These
local conditions (in the abstract game) provide guidance about local behavior
in the solution of the infinite-state game without solving it. This local behavior
(e.g. incrementing samp in mine) induces our sub-games.

2 Preliminaries

Sequences and First-Order Logic. For a set V , V ˚ and V ω denote the sets
of finite, respectively infinite, sequences of elements of V , and let V 8 “ V ˚ YV ω.
For π P V 8, we denote with |π| P NY{8} the length of π, and define dom(π) :“
{0, . . . , |π| ´ 1}. For π “ v0v1 . . . P V 8 and i, j P dom(π) with i ă j, we define
π[i] :“ vi and π[i, j] :“ vi . . . vj . last(π) is the last element of a finite sequence
π.

Let V be the set of all values of arbitrary types, Vars be the set of all variables,
F be the set of all functions, and ΣF be the set of all function symbols. Let TF be
the set of all function terms defined by the grammar TF � τf ::“ x | f(τ1

f , . . . τn
f)

for f P ΣF and x P Vars. A function ν : Vars Ñ V is called an assignment. The
set of all assignments over variables X Ď Vars is denoted as Assignments(X).
We denote the combination of two assignments ν′, ν′′ over disjoint sets of vari-
ables by ν′ Z ν′′. A function I : ΣF Ñ F is called an interpretation. The
set of all interpretations is denoted as Interpretations(ΣF). The evaluation of
function terms χν,I : TF Ñ V is defined by χν,I(x) :“ ν(x) for x P Vars,
χν,I(f(τ0, . . . τn)) :“ I(f)(χν,I(τ0), . . . χν,I(τn)) for f P ΣF and τ0, . . . τn P TF .
We denote the set of all first-order formulas as FOL and by QF the set of all
quantifier-free formulas in FOL. Let ϕ be a formula and X “ {x1, . . . , xn} Ď
Vars be a set of variables. We write ϕ(X) to denote that the free variables of
ϕ are a subset of X. We also denote with FOL(X) and QF (X) the set of for-
mulas (respectively quantifier-free formulas) whose free variables belong to X.
For a quantifier Q P {D, @}, we write QX.ϕ as a shortcut for Qx1. . . . Qxn.ϕ. We
denote with |“: Assignments(Vars)ˆ Interpretations(ΣF)ˆFOL the entailment
of first-order logic formulas. A first-order theory T Ď Interpretations(ΣF) with
T ‰ H restricts the possible interpretations of function and predicate symbols.
Given a theory T , for a formula ϕ(X) and assignment ν P Assignments(X) we
define that ν |“T ϕ if and only if ν, I |“ ϕ for all I P T .

For exposition on first-order logic and first-order theories, see c.f. [7].

Localized Attractor Computations for Infinite-State Games 139

Two-Player Graph Games. A game graph is a tuple G “ (V, VEnv , VSys , ρ)
where V “ VEnv Z VSys are the vertices, partitioned between the environment
player (player Env) and the system player (player Sys), and ρ Ď (VEnv ˆVSys)Y
(VSys ˆ VEnv) is the transition relation. A play in G is a sequence π P V 8 where
(π[i], π[i ` 1]) P ρ for all i P dom(π), and if π is finite then last(π) is a dead-end.

For p “ Sys (or Env) we define 1´p :“ Env (respectively Sys). A strategy for
player p is a partial function σ : V ˚Vp Ñ V where σ(π ·v) “ v′ implies (v, v′) P ρ
and σ is defined for all π ·v P V ˚Vp unless v is a dead-end. Stratp(G) denotes the
set of all strategies for player p in G. A play π is consistent with σ for player p
if π[i ` 1] “ σ(π[0, i]) for every i P dom(π) where π[i] P Vp. PlaysG(v, σ) is the
set of all plays in G starting in v and consistent with strategy σ.

An objective in G is a set Ω Ď V 8. A two-player turn-based game is a
pair (G,Ω), where G is a game graph and Ω is an objective for player Sys. A
sequence π P V 8 is winning for player Sys if and only if π P Ω, and is winning
for player Env otherwise. The definitions of different types of common objectives
can be found in [34]. The winning region Wp(G,Ω) of player p in (G,Ω) is the
set of all vertices v from which player p has a strategy σ such that every play in
PlaysG(v, σ) is winning for player p. A strategy σ of player p is winning if for
every v P Wp(G,Ω), every play in PlaysG(v, σ) is winning for player p.

Acceleration-Based Solving of Infinite-State Games. We represent
infinite-state games using the same formalism as [21], called reactive program
games. Intuitively, reactive program games describe symbolically, using FOL for-
mulas and terms, the possible interactions between the system player and the
environment player in two-player games over infinite data domains.

Definition 1 (Reactive Program Game Structure [21]). A reactive pro-
gram game structure is a tuple G “ (T, I,X, L, Inv , δ) with the following com-
ponents. T is a first-order theory. I Ď Vars is a finite set of input variables.
X Ď Vars is a finite set of program variables where IXX “ H. L is a finite set of
game locations. Inv : L Ñ FOL(X) maps each location to a location invariant.
δ Ď LˆQF (XY I)ˆ (X Ñ TF)ˆL is a finite symbolic transition relation where

(1) for every l P L the set of outgoing transition guards Guards(l) :“ {g |
Du, l′. (l, g, u, l′) P δ} is such that

∨
gPGuards(l) g ≡T J, and for all g1, g2 P

Guards(l) with g1 ‰ g2 it holds that g1 ^ g2 ≡T K,
(2) for all l, g, u, l1, l2, if (l, g, u, l1) P δ and (l, g, u, l2) P δ, then l1 “ l2, and
(3) for every l P L and x P Assignments(X) such that x |“T Inv(l), and i P

Assignments(I), there exist a transition (l, g, u, l′) P δ such that x Z i |“T g
and x′ |“T Inv(l′) where x′(x) “ χxZi,I(u(x)) for all x P X and I P T , and

(4) for every (l, g, u, l′) P δ, f P ΣF (u), I1, I2 P T it holds that I1(f) “ I2(f).

The requirements on δ imply for each l P L that: (1) the guards in Guards(l)
partition the set Assignments(XY I), (2) each pair of g P Guards(l) and update
u can label at most one outgoing transition from l, (3) if there is an assignment
satisfying the invariant at l, then for every input assignment there is a possible

140 A.-K. Schmuck et al.

transition, and (4) the theory T determines the meaning of functions in updates
uniquely. Given locations l, l′ P L, we define Labels(l, l′) :“ {(g, u) | (l, g, u, l′) P
δ} as the set of labels on transitions from l to l′. We define as RPGS the set of all
reactive program game structures. The semantics of the reactive program game
structure G is a (possibly infinite) game graph defined as follows.

Definition 2 (Semantics of Reactive Program Game Structures). Let
G “ (T, I,X, L, Inv , δ) be a reactive program game structure. The semantics of G
is the game graph �G� “ (S,SEnv ,SSys , ρ) where S :“ SEnv Z SSys and

– SEnv :“ {(l,x) P L ˆ Assignments(X) | x |“T Inv(l)};
– SSys :“ SEnv ˆ Assignments(I);
– ρ Ď (SEnv ˆ SSys) Y (SSys ˆ SEnv) is the smallest relation such that

• (s, (s, i)) P ρ for every s P SEnv and i P Assignments(I),
• (((l,x), i), (l′,x′)) P ρ iff x′ |“T Inv(l′) and there exists (g, u) P
Labels(l, l′) such that x Z i |“T g, x′(x) “ χxZi,I(u(x)) for every x P X

and I P T .

Note that this semantics differs from the original one in [21] where the
semantic game structure is not split into environment and system states. We
do that in order to consistently use the notion of a game graph. Both seman-
tics are equivalent. We refer to the vertices of �G� as states. We define the
function loc : S Ñ L where loc(s) :“ l for any s “ (l,x) P SEnv and
any s “ ((l,x), i) P SSys . By abusing notation, we extend the function loc
to sequences of states, defining loc : S8 Ñ L8 where loc(π) “ l0l1l2 . . . iff
loc(π[i]) “ li for all i P dom(π). For simplicity of the notation, we write Wp(G, Ω)
instead of Wp(�G�, Ω). We represent and manipulate possibly infinite sets of
states symbolically, using formulas in FOL(X) to describe sets of assignments to
the variables in X. Our symbolic domain D :“ L Ñ FOL(X) is the set of func-
tions mapping locations to formulas in FOL(X). An element d P D represents
the states �d� :“ {((l,x) P S | x |“T d(l)}. With {l1 �Ñ ϕ1, . . . , ln �Ñ ϕn} we
denote d P D s.t. d(li) “ ϕi and d(l) “ K for l R {l1, . . . , ln}. For brevity, we
sometimes refer to elements of D as sets of states.

Note that the elements of the symbolic domain D represent subsets of SEnv ,
i.e., sets of environment states. Environment states are pairs of location and valu-
ation of the program variables. The system states, on the other hand, correspond
to intermediate configurations that additionally store the current input from the
environment. This input is not stored further on (unless assigned to program
variables). Thus, we restrict the symbolic domain to environment states.

Solving Reactive Program Games. We consider objectives defined over the loca-
tions of a reactive program game structure G. That is, we require that if
π′, π′′ P S8 are such that loc(π′) “ loc(π′′), then π′ P Ω iff π′′ P Ω. We consider
the problem of solving reactive program games. Given G and an objective Ω for
Player Sys defined over the locations of G, we want to compute WSys(�G�, Ω).

Localized Attractor Computations for Infinite-State Games 141

Attractor Computation and Acceleration. A core building block of many algo-
rithms for solving two-player games is the computation of attractors. Intuitively,
an attractor is the set of states from which a given player p can enforce reaching
a given set of target states no matter what the other player does. Formally, for
a reactive program game structure G, and R Ď S the player-p attractor for R is

Attr �G�,p(R) :“ {s P S | Dσ P Stratp(�G�).@π P Plays�G�(s, σ).Dn P N. π[n] P R}.

In this work, we are concerned with the symbolic computation of attractors
in reactive program games. Attractors in reactive program games are computed
using the so-called enforceable predecessor operator over the symbolic domain D.
For d P D, CPreG,p(d) P D represents the states from which player p can enforce
reaching �d� in one step in G (i.e. one move by each player). More precisely,

�CPreG,Sys(d)� “ {s P SEnv | @s′. ((s, s′) P ρ) Ñ Ds′′. (s′, s′′) P ρ ^ s′′ P �d�}, and
�CPreG,Env (d)� “ {s P SEnv | Ds′. ((s, s′) P ρ) ^ @s′′. ((s′, s′′) P ρ) Ñ s′′ P �d�}.

The player-p attractor for �d� can be computed as a fixpoint of the enforce-
able predecessor operator:

Attr �G�,p(�d�) X SEnv “ �μX. d _ CPreG,p(X)�,

where μ denotes the least fixpoint. Note that since S is infinite, an iterative
computation of the attractor is not guaranteed to terminate.

In Example 1, consider the computation of the player-Sys attractor for �d�
where d “ {base �Ñ J,move �Ñ J,mine �Ñ K}. Applying CPreG,Sys(d) will
produce {base �Ñ J,move �Ñ J,mine �Ñ samp ě req} as in one step player-Sys
can enforce reaching move if samp ě req in mine. Since in mine the system player
can enforce to increment samp by at least one, a second iteration of CPreG,Sys(·)
gives {. . . ,mine �Ñ samp ě req ´ 1}, a third {. . . ,mine �Ñ samp ě req ´ 2}, and
so on. Thus, a naive iterative fixpoint computation does no terminate here. To
avoid this non-termination, [21] introduced attractor acceleration. It will compute
that, as explained in Sect. 1, the fixpoint is indeed {. . . ,mine �Ñ J}.

Permissive Strategy Templates. The main objective of this work is to iden-
tify small and useful sub-games, for which the results can enhance the symbolic
game-solving process. To achieve this, we use a technique called permissive strat-
egy templates [2], designed for finite game graphs. These templates can represent
(potentially infinite) sets of winning strategies through local edge conditions.
This motivates our construction of sub-games based on templates in Sect. 4.2.

These strategy templates are structured using three local edge conditions:
safety, co-live, and live-group templates. Formally, given a game (G,Ω) with
G “ (V, VEnv , VSys , ρ) and Ep “ ρ X (Vp ˆ Vp´1), a strategy template for player
p is a tuple (U,D,H) consisting of a set of unsafe edges U Ď Ep, a set of co-live

142 A.-K. Schmuck et al.

edges D Ď Ep, and a set of live-groups H Ď 2Ep . A strategy template (U,D,H)
represents the set of plays Ψ “ ΨU X ΨD X ΨH Ď Plays(G), where

ΨU :“ {π | @i. (π[i], π[i ` 1]) R U}, ΨD :“ {π | Dk. @i ą k. (π[i], π[i ` 1]) R D},

ΨH :“
⋂

HPH
{π | (@i. Dj ą i. π[j] P src(H)) Ñ (@i. Dj ą i. (π[j], π[j ` 1]) P H)},

where src(H) contains the sources {u | (u, v) P H} of the edges in H. A strategy
σ for player p satisfies a strategy template Ψ if it is winning in the game (G,Ψ)
for player p. Intuitively, σ satisfies a strategy template if every play π consistent
with σ for player p is contained in Ψ , that is, (i) π never uses the unsafe edges
in U (i.e., π P ΨU), (ii) π stops using the co-live edges in D eventually (i.e.,
π P ΨD), and (iii) for every live-group H P H, if ρ visits src(H) infinitely often,
then it also uses the edges in H infinitely often (i.e., π P ΨH). Strategy templates
can be used as a concise representation of winning strategies as formalized next.

Definition 3 (Winning Strategy Template [2]). A strategy template Ψ for
player p is winning if every strategy satisfying Ψ is winning for p in (G,Ω).

We note that the algorithms for computing winning strategy templates in safety,
Büchi, co-Büchi, and parity games, presented in [2], exhibit the same worst-case
computation time as standard methods for solving such (finite-state) games.

3 Attractor Computation with Caching

As outlined in Sect. 1, the core of our method consists of the pre-computation
of attractor sets for local sub-games and the utilization of the results in the
attractor computations performed when solving the complete reactive program
game. We call the pre-computed results attractor cache. We use the cache during
attractor computations to directly add to the computed attractor sets of states
from which, based on the pre-computed information, the respective player can
enforce reaching the current attractor subset. In that way, if the local attrac-
tor computation requires acceleration, we can avoid performing the acceleration
during the attractor computation for the overall game. This section presents the
formal definition of an attractor cache and shows how it is used.

Intuitively, an attractor cache is a finite set of tuples or cache entries of the
form (G, p, src, targ ,Xind). G is a reactive program game structure and p the
player the cache entry applies to. The sets of states src, targ P D are related
via enforceable reachability: player p can enforce reaching �targ� from �src� in
G. Xind are the so-called independent variables – the enforcement relation must
hold independently of and preserve the values of Xind . Independent variables
are useful when a cache entry only concerns a part of the game structure where
these variables are irrelevant. This allows the utilization of the cache entry under
different conditions on those variables. We formalize this intuition in the next
definition.

Localized Attractor Computations for Infinite-State Games 143

Definition 4 (Attractor Cache). A finite set C Ď RPGSˆ {Sys,Env} ˆ D ˆ
D ˆ2X is called an attractor cache if and only if for all (G, p, src, targ ,Xind) P C
and all ϕ P FOL(Xind) it holds that �src ^ λl. ϕ� Ď Attr �G�,p(�targ ^ λl. ϕ�).

We use the lambda abstraction λl. ϕ to denote the anonymous function that
maps each location in L to the formula ϕ.

Example 2. Recall the game from Example 1. From every state with location
mine, player Sys can enforce eventually reaching samp ě req by choosing at
every step the update that increases variable samp. As this argument only
concerns location mine, the program variables done and pos are independent.
Since it is not updated, req is also independent (we prove this in the next
section). Hence, Cex “ {(Gex ,Sys, src, targ ,Xind)} where Gex is from Fig. 2,
src “ {mine �Ñ J}, targ “ {mine �Ñ samp ě req}, and Xind “ {done, pos , req}
is an attractor cache.

Algorithm 1: Attractor computation using an attractor cache.
1 function AttractorAccCache(G, p P {Sys,Env}, d P D, C: cache)
33 a0 := λl. K; a1 := d
55 for n “ 1, 2, . . . do
77 if an ≡T an´1 then return an

8 foreach (G′, p′, src, targ ,Xind) P C with G′ “ G and p′ “ p do
9 ϕ :“ StrengthenTarget(targ ,Xind , an)

10 an :“ an _ (src ^ (λl. ϕ))

11 an :“ an _ Accelerate(G, p, l, an) /* Accelerate(...) is the result of
applying attractor acceleration as in [21] */

1313 an`1 :“ an _ CPreG,p(a
n)

Algorithm 1 shows how we use an attractor cache to enhance accel-
erated attractor computations. AttractorAccCache extends the proce-
dure AttractorAcc for accelerated symbolic attractor computation presented
in [21]. AttractorAccCache takes a cache as an additional argument and at
each iteration of the attractor computation checks if some cache entry is applica-
ble. For each such cache entry, if �targ� is a subset of �an�, we can add src to an

since we know that targ is enforceable from src. However, an may constrain the
values of Xind making this subset check fail unnecessarily. Therefore, Strength-
enTarget computes a formula ϕ P FOL(Xind) such that targ strengthened with
ϕ is a subset of an. Intuitively, ϕ describes the values of the independent vari-
ables that remain unchanged in the cached attractor. Note that ϕ always exists
as we could pick K, which we have to do if targ is truly not a subset of an.

The next lemma formalizes this intuition and the correctness of Attrac-
torAccCache under the above condition on StrengthenTarget. Note that
since the cache is used in the context of attractor computation, the objective Ω
of the reactive program game is not relevant here.

144 A.-K. Schmuck et al.

Lemma 1 (Correctness of Cache Utilization). Let G be a reactive pro-
gram game structure, p P {Sys,Env}, d P D and C be an attractor cache.
Furthermore, suppose that for every targ P D, a P D and every Xind Ď X it
holds that if StrengthenTarget(targ ,Xind , a) “ ϕ, then ϕ P FOL(Xind) and
�targ ^ λl. ϕ� Ď �a�. Then, if the procedure AttractorAccCache(G, p, d, C)
terminates returning attr P D, then it holds that �attr� “ Attr �G�,p(�d�) X SEnv .

We realize StrengthenTarget(targ ,Xind , a) such that it returns the for-
mula

∧
lPL

(@(X\Xind). targ(l) Ñ a(l)
)

which satisfies the condition in Lemma 1.

Example 3. Recall the game from Example 1 and the cache Cex from Exam-
ple 2. Suppose that we are computing the attractor for player Sys to d “
{base �Ñ J}, i.e. AttractorAccCache(Gex ,Sys, d, Cex) without acceleration,
i.e., Accelerate returns K in line 11 in Algorithm 1. Initially, a1 “ {base �Ñ J}.
After one iteration of applying Cpre, we get a2 “ {base �Ñ J,move �Ñ pos “
12 ^ done “ 1}. Then we get a3 “ {. . . ,mine �Ñ pos “ 12 ^ samp ě req}.
In the only entry of Cex , the target set targ “ {mine �Ñ samp ě req}
contains more states in mine (i.e., all possible positions of the robot) then
a3 (which asserts pos “ 12). However, StrengthenTarget(targ ,Xind , a3)
as implemented above, will return the strengthening pos “ 12 (after simpli-
fying the formula), which makes the cache entry with targ applicable. Since
src “ {mine �Ñ J}, we update a3 to {. . . ,mine �Ñ pos “ 12} in line 10 of the
algorithm.

4 Abstract Template-Based Cache Generation

Section 3 defined attractor caches and showed their utilization for attractor com-
putations via Algorithm 1. We motivated this approach by the observation that
there often exist small local sub-games that entail essential attractors, and pre-
computing these attractors within the sub-games, caching them and then using
them via Algorithm 1 is more efficient then only applying acceleration over the
entire game (as in [21]). To formalize this workflow, Sect. 4.1 explains the gen-
eration of cache entries from sub-game structures of the given reactive program
game, and Sect. 4.2 discusses the identification of helpful sub-game structures
via permissive strategy templates in finite-state abstractions of the given game.

4.1 Generating Attractor Caches from Sub-Games

Within this subsection, we consider a sub-game structure G′ which is induced by
a subset of locations Lsub Ď L of the original reactive program game structure
G, as formalized next. Intuitively, we remove all locations from G not in Lsub

and redirect their incoming transitions to a new sink location sinksub .

Definition 5 (Induced Sub-Game Structure). Let G “ (T, I,X, L, Inv , δ)
be a reactive program game structure and let Lsub Ď L be a set of locations. The

Localized Attractor Computations for Infinite-State Games 145

sub-game structure induced by Lsub is the reactive program game structure
SubGame(G, Lsub) :“ (T, I,X′, L′, Inv ′, δ′) where L′ :“ Lsub Y {sinksub},
X

′ :“ {x P X | x appears in transitions from or invariants of Lsub in G′},
Inv ′(l) :“ Inv(l) for all l P L′ \ {sinksub} and Inv ′(sinksub) :“ J, and
δ′ :“ {(l, g, u, l′) P δ | l, l′ P L′} Y {(sinksub , J, λx. x, sinksub)}Y

{(l, g, λx.x, sinksub) | Dl′ P L. (l, g, u, l′) P δ ^ l P L′ ^ l′ R L′}.

Recall that D “ L Ñ FOL(X). Let D′ :“ L′ Ñ FOL(X′) be the symbolic domain
for a sub-game structure with locations L′. As X′ Ď X, FOL(X′) Ď FOL(X) which
allows us to extend each element of D′ to an element of D that agrees on L′.
Formally, we define extendL : D′ Ñ D such that for d′ P D′ and l P L we have
extendL(d′)(l) :“ if l P L′ then d′(l) else K.

The computation of an attractor cache from an induced sub-game is detailed
in Algorithm 2. Given a reactive program game structure G, a player p, and a
subset of locations Lsub , Algorithm 2 first computes the induced sub-game (line
2). The quantifier elimination ([7, Ch. 7]) QElim in line 3 projects the given d P D
to an element d′ of the symbolic domain D′ of the sub-game structure. Then, in
line 4, we perform the accelerated attractor computation from [21] with target set
d′ to obtain the set of states a from which player p can enforce reaching d′ in G′.
The independent variables are those variables in X that are not updated in any
of the transitions in G′. Formally, we define those as IndependentVars(G,G′) :“
{x P X | @(l, g, u, l′) P δ′. u(x) “ x}. In order to output an attractor cache for the
original game G, we extend the computed source and target sets a and d′ via the
previously defined function extendL (line 6). Intuitively, the attractor computed
over a sub-game G′ is also an attractor for the overall game G as sub-games are
only restricted by location (not by variables). Hence, player p can also enforce
reaching the target set in the original game G, if he can do so in G′. This is
formalized by the next lemma.

Lemma 2. Let G “ (T, I,X, L, Inv , δ) be a reactive program game structure, and
let G′ “ (T, I,X′, L′, Inv ′, δ′) be an induced sub-game structure with sink location
sinksub constructed as above. Let src′, targ ′ P D′ be such that targ ′(sinksub) “ K
and �src′� Ď Attr �G′�,p(�targ ′�) for some player p P {Sys,Env}. Furthermore, let
Y Ď IndependentVars(G,G′). Then, for every ϕ P FOL(Y) it holds that

�extendL(src′) ^ λl.ϕ� Ď Attr �G�,p(�extendL(targ ′) ^ λl.ϕ�).

This results in the following correctness statement.

Lemma 3. SubgameCache(G, p, Lsub , d) returns an attractor cache over G.

Example 4. Consider the reactive program game structure Gex from Example
1. We apply SubgameCache(Gex ,Sys , {mine}, d) with d “ {mine �Ñ samp ě
req ^ pos “ 12^ done ‰ 1}. First, we construct the induced sub-game structure
in Figrue 3. Quantifier elimination produces the target set d′ “ {mine �Ñ samp ě
req}. If we compute the attractor in this sub-game to set d′, we get {mine �Ñ J}.

146 A.-K. Schmuck et al.

Algorithm 2: Cache generation based on an induced sub-game.
1 function SubgameCache(G, p, Lsub, d P D)
2 G′ “ (T, I,X′, L′, Inv ′, δ′) :“ SubGame(G, Lsub)
3 d′ :“ λl. if l P Lsub then QElim(D(X \ X

′).d(l)) else K
4 a :“ AttractorAcc(G′, p, d′) /* attractor computation from [21] */
5 Xind :“ IndependentVars(G, G′)
6 return {(G, p, extendL(a), extendL(d

′),Xind)}

Fig. 3. Induced sub-game structure SubGame(Gex , {mine}) of the reactive program
game structure Gex from Fig. 2, with the same abbreviations as in Fig. 2.

Note that since the number of steps needed to reach d′ depends on the initial
value of samp and is hence unbounded, a technique like acceleration [21] is
necessary to compute this attractor. As in this sub-game structure only the
variable samp is updated, the independent variables are Xind “ {done, pos, req}.
With this we get the cache entry from Example 2.

4.2 Constructing Sub-games from Abstract Strategy Templates

The procedure from the previous subsection yields attractor caches regardless
of how the sub-games are chosen. In this section we describe our approach to
identifying “useful” sub-game structures. These sub-game structures are induced
by so-called helpful edges determined by permissive strategy templates. Since the
game graph described by a reactive program game structure is in general infinite,
we first construct finite abstract games in which we compute permissive strategy
templates for the two players. We start by describing the abstract games.

Finite Abstractions of Reactive Program Games. Here we describe the
construction of a game graph Ĝ “ (V, VEnv , VSys , ρ̂) from a reactive program
game structure G “ (T, I,X, L, Inv , δ) with semantics �G� “ (S,SEnv ,SSys , ρ).
While �G� is also a game graph, its vertex set is typically infinite. The game
graph Ĝ, which is an abstraction of �G�, has a finite vertex set instead.

We construct the game graph Ĝ from G by performing abstraction with respect
to a given abstract domain. The abstract domain consists of two finite sets of
quantifier-free first-order formulas which are used to define the vertex sets of the
game graph Ĝ. The conditions that we impose in the definition of abstraction
domain given below ensure that it can partition the state space of G.

Localized Attractor Computations for Infinite-State Games 147

Definition 6 (Game Abstraction Domain). A game abstraction domain
for a reactive program game structure G “ (T, I,X, L, Inv , δ) is a pair of finite
sets of quantifier-free first-order formulas (PX,PXYI) P QF (X)ˆQF (XY I) such
that for P “ PX (resp. P “ PXYI) and V “ X (resp. V “ X Y I), P partitions
Assignments(V), i.e. Assignments(V) “ ⋃

ϕPP{v | v |“T ϕ} and for every
ϕ1, ϕ2 P P with ϕ1 ^ ϕ2 satisfiable it holds that ϕ1 “ ϕ2.

The abstraction domain we use consists of all conjunctions of atomic pred-
icates (and their negations) that appear in the guards of the reactive program
game structure G. Let GA be the set of atomic formulas appearing in the guards
of G. We use the abstraction domain AbstractDomain(G) :“ (PGA

X
,PGA

XYI
) where

PGA
X

:“ {
∧

ϕPJ ϕ ∧
∧

ϕRJ ¬ϕ | J Ď GA X FOL(X)},

PGA
XYI

:“ {
∧

ϕPJ ϕ ∧
∧

ϕRJ ¬ϕ | J Ď GA X (FOL(X Y I) \ FOL(X))}.

Example 5. In the game structure Gex from Example 1, we get for PGA
X

all
combinations of ϕ1 ^ ϕ2 ^ ϕ3, where ϕ1 P {req ă samp, req ě samp}, ϕ2 P
{pos “ 12, pos “ 23, pos ‰ 12 ^ pos ‰ 23}, and ϕ3 P {task “ 1, task ‰ 1}.
For PGA

XYI
we get all combinations of ψ1 ^ ψ2 ^ ψ3, where ψ1 P {a ď 0, a ą 0},

ψ2 P {b ď 0, b ą 0}, and ψ3 P {inpReq ď 0, inpReq ą 0}.

We choose this abstraction domain as a baseline since the predicates appear-
ing in the guards are natural delimiters in the program variable state space.
However, the abstraction we define now is independent of this specific domain.

Given a game abstraction domain (PX,PXYI), we construct two abstract game
graphs, ĜÒ and ĜÓ. They have the same sets of vertices but differ in the tran-
sition relations. The transition relation in ĜÒ overapproximates the transitions
originating from states of player Sys and underapproximates the transitions from
states of player Env . In ĜÓ the approximation of the two players is reversed.

Definition 7 (Abstract Game Graphs). Let G “ (T, I,X, L, Inv , δ) be a
reactive program game structure and (PX,PXYI) be an abstraction domain. The
game graphs Ĝ◦ “ (V, VEnv , VSys , ρ̂

◦) with ◦ P {Ò, Ó} are the (PX,PXYI)-induced
abstractions of G if V :“ VSysYVEnv , VEnv :“ LˆPX, and VSys :“ LˆPXˆPXYI;
and ρ̂◦ Ď (VEnv ˆ VSys) Y (VSys ˆ VEnv) is the smallest relation such that

– ((l, ϕ), (l, ϕ, ϕI)) P ρ̂◦ X (VEnv ˆ VSys) iff the following formula is valid

move•
X
(Inv(l) ^ ϕ(X), DI. ϕI(X, I))

for • “Ó if ◦ “Ò and • “Ò if ◦ “Ó,
– ((l, ϕ, ϕI), (l′, ϕ′)) P ρ̂◦ X (VSys ˆ VEnv) iff the following formula is valid

move◦
XYI

(Inv(l) ^ ϕ(X) ^ ϕI(X, I), D(g, u) P Labels(l, l′). trans(g, u, l′, ϕ′))

for trans(g, u, l′, ϕ′) :“ g(X, I) ^ (
ϕ′ ^ Inv(l′)

)
(u(X, I)),

148 A.-K. Schmuck et al.

where moveÒ
V (ϕ,ϕ′) :“ DV.ϕ(V) ^ ϕ′(V) and moveÓ

V (ϕ,ϕ′) :“ @V.ϕ(V) Ñ
ϕ′(V).

Definition 7 provides us with a procedure AbstractRPG for constructing
the pair of abstractions (ĜÒ, ĜÓ) :“ AbstractRPG(G, (PX,PXYI)).

We refer to the vertices in the abstract game graphs as abstract states.
By slightly overloading notation, we define the projection from abstract states
v P V to the respective location by loc : V Ñ L s.t. loc((l, ϕ)) “ l and
loc((l, ϕ, ϕI)) “ l. This definition naturally extends to sequences of abstract
states π P V 8 s.t. loc(π̂)[i] “ loc(π̂[i]) for all i P dom(π), and to sets of vertices:
loc : 2V Ñ 2L. Given G with semantics �G� “ (S,SEnv ,SSys , ρ) and an abstract
game graph Ĝ◦ “ (V, VEnv , VSys , ρ̂

◦), we define the following functions between
their respective state spaces. The concretization function γ : V Ñ 2S is defined
s.t.

γ((l, ϕ)) :“ {(l,x) P SEnv | x |“T ϕ} and
γ((l, ϕ, ϕI)) :“ {((l,x), i) P SSys | x Z i |“T ϕ ^ ϕI}.

The abstraction function α : S Ñ 2V is defined s.t. v P α(s) iff s P γ(v). We
extend both function from states to (finite or infinite) state sequences π P S8
and π̂ P V 8 s.t.

γ(π̂) :“ {π P S8 | |π| “ |π̂| ^ @i P dom(π). π[i] P γ(π̂[i])}, and
α(π) :“ {π̂ P V 8 | |π| “ |π̂| ^ @i P dom(π). π̂[i] P α(π[i])}.

Both functions naturally extend to sets of states or infinite sequences of states
by letting γ(A) :“ ⋃

aPA γ(a) for A Ď V and A Ď V ω and α(C) :“ ⋃
cPC α(c)

for C Ď S and C Ď Sω. Note that it follows from the partitioning conditions
imposed on (PX,PXYI) in Definition 6 that α is a total function and always
maps states and state sequences to a singleton set. We abuse notation and write
α(s) “ v (resp. α(π) “ π̂) instead of α(s) “ {v} (resp. α(π) “ {π̂}).

Let Ω Ď S8 be an objective for the semantic game �G�. With the relational
functions 〈α, γ〉 defined before, Ω naturally induces an abstract objective Ω̂ :“
α(Ω) Ď V 8 over the abstract state space V .

Recall that we consider winning conditions Ω Ď S8 for �G� defined over the
set L of locations of G. As α preserves the location part of the states, π̂ P Ω̂ iff
γ(π̂) Ď Ω. That is, a sequence of abstract states is winning according to Ω̂ iff
all the corresponding concrete state sequences are winning according to Ω.

The next lemma states the correctness property that the abstraction satisfies.
More concretely, ĜÒ overapproximates the winning region of player Sys in the
concrete game, and ĜÓ underapproximates it.

Lemma 4 (Correctness of the Abstraction). Given a reactive program
game structure G with semantics �G� “ (S,SEnv ,SSys , ρ) and location-based
objective Ω, let Ĝ◦ “ (V, VEnv , VSys , ρ̂

◦) with ◦ P {Ò, Ó} be its (PX,PXYI)-
induced abstractions with relational functions 〈α, γ〉. Then it holds that (1)
WSys(�G�, Ω) Ď γ(WSys(ĜÒ, Ω̂)), and (2) γ(WSys(ĜÓ, Ω̂)) Ď WSys(�G�, Ω).

Localized Attractor Computations for Infinite-State Games 149

By duality, ĜÓ results in an overapproximation of the winning region of
player Env in the concrete game. Given an abstraction Ĝ◦, we denote with
OverapproxP(Ĝ◦) the player whose winning region is overapproximated in Ĝ◦:
OverapproxP(Ĝ◦) :“ Sys if ◦ “Ò and OverapproxP(Ĝ◦) :“ Env if ◦ “Ó.

Abstract Strategy Templates and Their Induced Sub-games. We now
describe how we use a permissive strategy template for a player p in an abstract
game to identify sub-game structures of the given reactive program game from
which to generate attractor caches for player p.

We determine the sub-game structures and local target sets based on so-called
helpful edges for player p in the abstract game where p is over-approximated. A
helpful edge is a live-edge or an alternative choice to a co-live edge of a permissive
strategy template. Intuitively, a helpful edge is an edge that player p might have
to take eventually in order to win the abstract game. As our chosen abstraction
domain is based on the guards, a helpful edge often corresponds to the change
of conditions necessary to enable a guard in the reactive program game. Since
reaching this change might require an unbounded number of steps, our method
attempts a local attractor computation and potentially acceleration. Identifying
helpful edges based on permissive strategy templates rather than on winning
strategies has the following advantages. First, templates reflect multiple abstract
winning strategies for player p, capturing multiple possibilities to make progress
towards the objective. Moreover, they describe local conditions, facilitating the
localization our method aims for. Helpful edges are defined as follows.

Definition 8 (Helpful Edge). Given a strategy template (U,D,H) for player
p in a game (G,Ω) with G “ (V, VEnv , VSys , ρ), we call an edge e P ρ helpful for
player p w.r.t. the template (U,D,H) if and only if the following holds: There
exists a live-group H P H such that e P H, or e R U YD and there exists a co-live
edge (vs, vt) P D with vs “ src(e). We define HelpfulG,p(U,D,H) to be the set
of helpful edges for player p in G w.r.t. (U,D,H).

For each helpful edge, we define pre- and post-sets which are the abstract
environment states before and after that edge. This is formalized as follows.

Definition 9 (Pre- and Post-Sets). Let Ĝ◦ “ (V, VEnv , VSys , ρ̂
◦) for some ◦ P

{Ò, Ó} be a (PX,PXYI)-induced abstraction of G, let pover :“ OverapproxP(Ĝ◦),
and e “ (vs, vt) P Helpful

̂G◦,pover
(U,D,H) for some template (U,D,H). If

pover “ Env , we have e P VEnv ˆ VSys and define Pre(e, pover) :“ {vs} and
Post(e, pover) :“ {v P V | (vt, v) P ρ̂◦}. If pover “ Sys we have that e P VSys ˆ
VEnv and define Pre(e, pover) :“ {v P V | (v, vs) P ρ̂◦} and Post(e, pover) :“ {vt}.
Note that in both cases it holds that Pre(e, pover),Post(e, pover) Ď VEnv Ď LˆPX.

As a helpful edge represents potential “progress” for player p, we consider the
question of whether player p has a strategy in the concrete game to reach the
post-set from the pre-set. This motivates the construction of sub-game structures
induced by the locations connecting those two sets in the reactive program game.

150 A.-K. Schmuck et al.

Algorithm 3: Generation of a cache based on a strategy template.
1 function GenerateCache(G, ̂G◦, pover , (U, D, H), b P N)
2 SubgameLocs :“ H, PostSet :“ H,
3 foreach e P Helpful

̂G◦,pover
(U, D, H) do

4 LS :“ loc(Pre(e, pover)); LT :“ loc(Post(e, pover))
5 Lsub :“ {l | Dw P SimplePaths(G, LS , LT). |w| ď b ^ Di. w[i] “ l}
6 SubgameLocs :“ SubgameLocs Y {Lsub}
7 PostSet :“ PostSet Y {(Lsub ,Post(e, pover))}
8 C :“ H
9 foreach Lsub P SubgameLocs do

10 TargetSet :“ ConstructTargets(Lsub ,PostSet)/* see Eq. (1) */
11 foreach targ P TargetSet do
12 C :“ C Y SubgameCache(G, pover , Lsub , targ)

13 return C

Procedure GenerateCache in Algorithm 3 formalizes this idea. It takes an
abstract game and a strategy template for the over-approximated player pover in
this game. For each helpful edge e, it constructs the sub-game structure induced
by the set of locations that lie on a simple path in the location graph from the
locations of the pre-set to the post-set of e. The optional parameter b allows for
heuristically tuning the locality of the sub-games by bounding the paths’ length.

For each sub-game structure, the target sets for the local attractor compu-
tations are determined by the post-sets of the helpful edges that induced this
sub-game structure (it might be more than one). They are computed by

ConstructTargets(Lsub ,PostSet) “ T1 Y T2 Y T3 (1)

where the sets T1, T2 and T3 of elements of D are defined as follows.

– T1 :“ {d P D | DP. (Lsub , P) P PostSet ^ @l P L. d(l) “ ∨
(l,ϕ)PP ϕ} consists of

targets that are determined by a single post-set.
– T2 :“ {dY}, where for every l P L, dY(l) “ ∨

P s.t. (Lsub ,P)PPostSet

∨
(l,ϕ)PP ϕ is

the singleton containing the union of the targets of all post-sets.
– T3 :“ {dJ}, where for l P L, dJ(l) “ DP,ϕ.(Lsub , P) P PostSet ^ (ϕ, l) P P

contains the target that is J iff the location appears in some post-set.

Once the targets are constructed, GenerateCache uses SubgameCache
from Algorithm 2 to compute the attractor caches for those targets and respec-
tive sub-game structures. By Lemma 3, SubgameCache returns attractor
caches. As attractor caches are closed under set union, we conclude the following.

Corollary 1. The set C returned by GenerateCache is an attractor cache.

Example 6. The abstractions of Gex from Example 1 and respective templates
are too large to depict. One helpful edge for Sys is e “ ((mine, ϕ, ϕI), (mine, ϕ′))

Localized Attractor Computations for Infinite-State Games 151

Algorithm 4: Game solving with abstract template-based caching.
1 function RPGCacheSolve(G “ (T, I,X, L, Inv , δ), Ω, b P N)
2 (PX, PXYI) :“ AbstractDomain(G)
3 (̂GÒ, ̂GÓ) :“ AbstractRPG(G, (PX, PXYI)) /* see Definition 7 */
4 C :“ H
5 foreach (p, ◦) P {(Sys, Ò), (Env , Ó)} do
6 (U, D, H) :“ SolveAbstract(̂G◦, Ω)

7 C :“ C Y GenerateCache(G, ̂G◦, p, (U, D, H), b)

8 return RPGSolveWithCache(G, C) /* solves G using
AttractorAccCache in Algorithm 1 for attractor computation */

with ϕ “ samp ă req ^ pos “ 12 ^ done ‰ 1, ϕ′ “ samp ě req ^ pos “ 12 ^
done ‰ 1, and ϕI “ a ą 0 ^ b ď 0 ^ inpReq ď 0. This edge e is in a live
group where the other edges are similar with different ϕI . They correspond
to the situation where the value of samp finally becomes greater or equal to
req . For e, Pre(e,Sys) “ {(mine, ϕ)} and Post(e,Sys) “ {(mine, ϕ′)} result in
Lsub “ {mine} and the target {mine �Ñ ϕ′}. With this, we generate a cache as
in Example 4.

5 Game Solving with Abstract Template-Based Caching

This section summarizes our approach for reactive progam game solving via
Algorithm 4, which combines the procedures introduced in Sect. 3 and Sect. 4
as schematically illustrated in Fig. 1 of Sect. 1. Algorithm 4 starts by com-
puting the abstract domain and both abstractions. For each abstract game,
SolveAbstract computes a strategy template [2]. Then, GenerateCache
is invoked to construct the respective attractor cache. RPGSolveWithCache
solves reactive program games in direct analogy to RPGSolve from [21], but
instead of using AttractorAcc, it uses the new algorithm AttractorAcc-
Cache which utilizes the attractor cache C. The overall correctness of RPG-
CacheSolve follows from Lemma 1, Corollary 1, and the correctness of [21].

Theorem 1 (Correctness). Given a reactive program game structure G and
a location-based objective Ω, for any b P N, if RPGCacheSolve terminates,
then it returns WSys(�G�, Ω).

Remark 1. In addition to using the strategy templates from the abstract games
for caching, we can make use of the winning regions in the abstract games, which
are computed together with the templates. Thanks to Lemma 4, we know that
outside of its winning region in the abstract game the over-approximated player
loses for sure. Thus, we can prune parts of the reactive program game that
correspond to the abstract states where the over-approximated player loses. As
our experiments show that the main performance advantage is gained by caching
rather than pruning, we give the formal details for pruning in the extended
version [34].

152 A.-K. Schmuck et al.

Discussion. The procedure RPGCacheSolve depends on the choice of game
abstraction domain (PX,PXYI) and on the construction of the local games per-
formed in GenerateCache. The abstraction based on guards is natural, as it
is obtained from the predicates appearing in the game. Acceleration [21] is often
needed to establish that some guards can eventually be enabled. Therefore, we
choose an abstraction domain that represents precisely the guards in the game.

Helpful edges capture transitions that a player might need to take, hence the
game solving procedure has to establish that the player can eventually enable
their guards. This might require acceleration, and hence motivates our use of
helpful edges to construct the local games. Investigating alternatives to these
design choices and their further refinement is a subject of future work.

6 Experimental Evaluation

We implemented Algorithm 4 for solving reactive program games in a prototype
tool2 rpg-STeLA (Strategy Template-based Localized Acceleration). Our imple-
mentation is based on the open-source reactive program game solver rpgsolve
from [21]. Specifically, we use rpgsolve for the AttractorAcc and RPGSolve-
WithCache methods to compute attractors via acceleration and to solve reac-
tive program games utilizing the precomputed cache, respectively. We realize
SolveAbstract by using PeSTel [2], which computes strategy templates in
finite games. We do not use the bound b in Algorithm 4.

We compare our tool rpg-STeLA to the solver rpgsolve and the μCLP solver
MuVal [36]. Those are the only available techniques that can handle unbounded
strategy loops, as stated in [21]. Other tools from [5,8–10,27,28,31–33] cannot
handle those, are outperformed by rpgsolve, or are not available. For MuVal, we
encoded the games into μCLP as outlined in [36] and done in [21].

Benchmarks. We performed the evaluation on three newly introduced sets of
benchmarks (described in detail in [34]). They all have unbounded variable
ranges, contain unbounded strategy loops, and have Büchi winning conditions.
On the literature benchmarks from [6,21,27,31,39] rpgsolve performs well as [21]
shows. Hence, we did not use them as local attractor caches are unnecessary, and
they are smaller than our new ones. Our new benchmark categories are:
(1) Complex Global Strategy (Scheduler and Item Processing). These benchmarks
consist of a scheduler and an item processing unit. The core feature of these
benchmarks is that the system needs to perform tasks that require complex
global strategic decisions and local strategic decisions requiring acceleration.
(2) Parametric Benchmarks (Chains). These benchmarks each consist of two
parametric chains of local sub-tasks requiring acceleration and local strategic
reasoning and more lightweight global strategic reasoning. The number of vari-
ables scales differently in both chains, showcasing differences in scalability.
(3) Simple Global Strategy (Robot and Smart Home). These benchmarks repre-
sent different tasks for a robot and a smart home. The robot moves along tracks
2 Available at https://doi.org/10.5281/zenodo.10939871.

https://doi.org/10.5281/zenodo.10939871

Localized Attractor Computations for Infinite-State Games 153

Table 1. Evaluation Results. ST is the variable domain type (additional to B). |L|,
|X|, |I| are the number of respective game elements. We show the wall-clock running
time in seconds for our prototype rpg-STeLA in three settings (one with normal caching,
one with additional pruning, one that only prunes), rpgsolve, and MuVal (with clause
exchange). TO means timeout after 30min, MO means out of memory (8GB). We
highlight in bold the fastest solving runtime result. The evaluation was performed on
a computer equipped with an Intel(R) Core(TM) i5-10600T CPU @ 2.40GHz.

Name ST |L| |X| |I| rpg-STeLA rpgsolve MuVal
normal pruning prune-only

scheduler Z 7 3 3 110.3 73.43 202.23 99.57 52.66
item processing Z 7 4 2 473.85 479.34 TO TO TO
chain 4 Z 7 6 1 128.02 128.48 TO TO TO
chain 5 Z 8 7 1 410.90 413.75 TO TO TO
chain 6 Z 9 8 1 1464.86 1470.13 TO TO TO
chain 7 Z 10 9 1 TO TO TO TO TO
chain simple 5 Z 8 3 1 27.54 29.10 1364.91 1362.38 TO
chain simple 10 Z 13 3 1 76.41 80.01 TO TO TO
chain simple 20 Z 23 3 1 236.74 244.53 TO TO TO
chain simple 30 Z 33 3 1 485.73 503.89 TO TO TO
chain simple 40 Z 43 3 1 813.05 826.67 TO TO TO
chain simple 50 Z 53 3 1 1212.90 1240.36 TO TO TO
chain simple 60 Z 63 3 1 1704.02 1718.39 TO TO TO
chain simple 70 Z 73 3 1 TO TO TO TO TO
robot running (Example 1) Z 3 4 3 470.69 471.59 TO TO TO
robot repair Z 6 4 2 TO 91.66 51.40 TO TO
robot analyze samples Z 6 3 1 104.02 113.06 684.67 632.39 TO
robot collect samples v1 Z 4 3 1 22.89 26.89 TO TO TO
robot collect samples v2 Z 3 4 1 478.33 483.50 TO TO TO
robot collect samples v3 Z 4 3 3 60.55 65.76 TO TO TO
robot deliver products 1 Z 6 5 1 95.08 101.75 TO TO TO
robot deliver products 2 Z 7 6 2 724.20 741.01 TO TO TO
robot deliver products 3 Z 7 6 3 1116.31 1133.57 TO TO TO
robot deliver products 4 Z 7 6 4 1580.03 1615.72 TO TO TO
robot deliver products 5 Z 7 6 5 TO TO TO TO TO
smart home day not empty R 5 5 2 84.17 100.99 TO TO TO
smart home day warm R 6 5 3 162.06 187.82 TO TO TO
smart home day cold R 6 5 3 162.06 193.81 TO TO TO
smart home day warm or cold R 6 5 4 320.27 380.88 TO TO TO
smart home day empty R 5 5 2 TO TO TO TO MO
smart home night sleeping R 6 5 2 80.69 99.38 TO TO MO
smart home night empty R 6 5 2 TO TO TO TO TO
smart home nightmode R 6 6 3 TO TO TO TO MO

(with one-dimensional discrete position) and must perform tasks like collecting
several products. The smart home must, e.g., maintain temperature levels and
adjust blinds depending on whether the house is empty or on the current time
of day. These benchmarks need acceleration and local strategic reasoning, but
their global reasoning is usually simpler and more deterministic.

Analysis. The experimental results in Table 1 demonstrate that local attrac-
tor pre-computation and caching have a significant impact on solving complex

154 A.-K. Schmuck et al.

games. This is evidenced by the performance of rpg-STeLA that is superior to the
other two tools. We further see that pruning (without caching) is not sufficient,
which underscores the need to use more elaborate local strategic information
in the form of an attractor cache. This necessitates the computation of strat-
egy templates, and simply solving an abstract game is insufficient. However, as
pruning does not cause significant overhead, it offers an additional optimization.

7 Related Work

A body of methods for solving infinite-state games and synthesizing reac-
tive systems operating over unbounded data domains exists. Abstraction-based
approaches reduce the synthesis problem to the finite-state case. Those include
abstraction of two-player games [15,19,23,37,38], which extends ideas from ver-
ification, such as abstract interpretation and counterexample-guided abstraction
refinement, to games. The temporal logic LTL has recently been extended with
data properties, resulting in TSL [14] and its extension with logical theories [13].
Synthesis techniques for those [8,14,27] are based on propositional abstraction of
the temporal specification and iterative refinement by introducing assumptions.
The synthesis task’s main burden in abstraction-based methods falls on the
finite-state synthesis procedure. In contrast, we use abstraction not as the core
solving mechanism but as a means to derive helpful sub-games. Another class of
techniques reason directly over the infinite-state space. Several constraint-based
approaches [9,10,24] have been proposed for specific types of objectives. [32,33]
lift fixpoint-based methods for finite-state game solving to a symbolic represen-
tation of infinite state sets. However, a naive iterative fixpoint computation can
be successful on a relatively limited class of games. Recently, [21] proposed a
technique that addresses this limitation by accelerating symbolic attractor com-
putations. However, as we demonstrate, their approach has limited scalability
when the size of the game structure grows. Our method mitigates this by identi-
fying small helpful sub-games and composing their solutions to solve the game.

There are many approaches for compositional synthesis from LTL specifica-
tions [11,12,16]. To the best of our knowledge, no techniques for decomposing
infinite-state games exist prior to our work.

In verification, acceleration [3,4,17] and loop summarization [26] are applied
to the loops in given program and can thus be easily combined with subsequent
analysis. In contrast, in the setting of games, acceleration relies on establishing
the existence of a strategy which needs more guidance.

Permissive strategy templates were introduced in [1] and used in [2] to repre-
sent sets of winning strategies for the system player in two-player games. They
were used to synthesize hybrid controllers for non-linear dynamical systems [30].
Similar to our work, [30] uses templates over abstractions to localize the compua-
tion of continuous feedback controllers. While this inspired the solution method-
ology for infinite-state systems developed in this paper, the abstraction method-
ology and the semantics of the underlying system and its controllers are very
different in [30]. Our work is the first which uses permissive strategy templates
as a guide for localizing the computation of fixpoints in infinite-state games.

Localized Attractor Computations for Infinite-State Games 155

8 Conclusion

We presented a method that extends the applicability of synthesis over infinite-
state games towards realistic applications. The key idea is to reduce the game
solving problem to smaller and simpler sub-problems by utilizing winning strat-
egy templates computed in finite abstractions of the infinite-state game. The
resulting sub-problems are solved using a symbolic method based on attractor
acceleration. Thus, in our approach abstraction and symbolic game solving work
in concert, using strategy templates as the interface between them. This opens
up multiple avenues for future work, such as exploring different abstraction tech-
niques, as well as developing data-flow analysis techniques for reactive program
games that can be employed in the context of symbolic game-solving procedures.

Data Availability Statement. The software generated during and/or analysed dur-
ing the current study is available in the Zenodo repository [22]. A full version of this
paper including proofs is available through arXiv [34].

References

1. Anand, A., Mallik, K., Nayak, S.P., Schmuck, A.K.: Computing adequately per-
missive assumptions for synthesis. In: Sankaranarayanan, S., Sharygina, N. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 211–228.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8_15

2. Anand, A., Nayak, S.P., Schmuck, A.: Synthesizing permissive winning strategy
templates for parity games. In: Enea, C., Lal, A. (eds.) CAV 2023, Part I. LNCS,
vol. 13964, pp. 436–458. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-37706-8_22

3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: fast acceleration of sym-
bolic transition systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 118–121. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_12

4. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). https://doi.org/10.1007/11562948_35

5. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: Jagannathan, S., Sewell, P. (eds.) The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20–21, 2014, pp. 221–234.
ACM (2014). https://doi.org/10.1145/2535838.2535860

6. Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J.,
Zantema, H.: Cinderella versus the wicked stepmother. In: Baeten, J.C.M., Ball, T.,
de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33475-7_5

7. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74113-8

https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.1007/978-3-031-37706-8_22
https://doi.org/10.1007/978-3-031-37706-8_22
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/11562948_35
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1007/978-3-642-33475-7_5
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8

156 A.-K. Schmuck et al.

8. Choi, W., Finkbeiner, B., Piskac, R., Santolucito, M.: Can reactive synthesis and
syntax-guided synthesis be friends? In: Jhala, R., Dillig, I. (eds.) PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, San Diego, CA, USA, 13–17 June, 2022, pp. 229–243. ACM
(2022). https://doi.org/10.1145/3519939.3523429

9. Faella, M., Parlato, G.: Reachability games modulo theories with a bounded safety
player. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intel-
ligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intel-
ligence and Thirteenth Symposium on Educational Advances in Artificial Intelli-
gence. AAAI’23/IAAI’23/EAAI’23. AAAI Press (2023). https://doi.org/10.1609/
aaai.v37i5.25779

10. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL), 61:1-61:30 (2018). https://doi.org/10.1145/3158149

11. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. Formal Methods Syst. Des. 39(3), 261–296 (2011). https://doi.org/10.
1007/S10703-011-0115-3

12. Finkbeiner, B., Geier, G., Passing, N.: Specification decomposition for reactive
synthesis. Innov. Syst. Softw. Eng. 19(4), 339–357 (2023). https://doi.org/10.1007/
S11334-022-00462-6

13. Finkbeiner, B., Heim, P., Passing, N.: Temporal stream logic modulo theories. In:
FoSSaCS 2022. LNCS, vol. 13242, pp. 325–346. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99253-8_17

14. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal stream logic: syn-
thesis beyond the bools. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 609–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4_35

15. Finkbeiner, B., Mallik, K., Passing, N., Schledjewski, M., Schmuck, A.: BOCoSy:
small but powerful symbolic output-feedback control. In: Bartocci, E., Putot, S.
(eds.) HSCC ’22: 25th ACM International Conference on Hybrid Systems: Com-
putation and Control, Milan, Italy, May 4–6, 2022, pp. 24:1–24:11. ACM (2022).
https://doi.org/10.1145/3501710.3519535

16. Finkbeiner, B., Passing, N.: Dependency-based compositional synthesis. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 447–463. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_25

17. Finkel, A., Leroux, J.: How to compose presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36206-1_14

18. Girija, P., Mareena, J., Fenny, J., Swapna, K., Kaewkhiaolueang, K.: Amazon
robotic service (ARS) (2021)

19. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better
than winning: Abstraction and refinement for the full mu-calculus. Inf. Comput.
205(8), 1130–1148 (2007). https://doi.org/10.1016/j.ic.2006.10.009

20. Gueye, S.M.K., Delaval, G., Rutten, E., Diguet, J.P.: Discrete and logico-numerical
control for dynamic partial reconfigurable FPGA-based embedded systems: a case
study. In: 2018 IEEE Conference on Control Technology and Applications (CCTA),
pp. 1480–1487. IEEE (2018)

21. Heim, P., Dimitrova, R.: Solving infinite-state games via acceleration. Proc. ACM
Program. Lang. 8(POPL) (2024). https://doi.org/10.1145/3632899

https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1609/aaai.v37i5.25779
https://doi.org/10.1609/aaai.v37i5.25779
https://doi.org/10.1145/3158149
https://doi.org/10.1007/S10703-011-0115-3
https://doi.org/10.1007/S10703-011-0115-3
https://doi.org/10.1007/S11334-022-00462-6
https://doi.org/10.1007/S11334-022-00462-6
https://doi.org/10.1007/978-3-030-99253-8_17
https://doi.org/10.1007/978-3-030-99253-8_17
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1145/3501710.3519535
https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1016/j.ic.2006.10.009
https://doi.org/10.1145/3632899

Localized Attractor Computations for Infinite-State Games 157

22. Heim, P., Nayak, S.P., Dimitrova, R., Schmuck, A.K.: Artifact of “Localized
Attractor Computations for Infinite-State Games” (2024). https://doi.org/10.
5281/zenodo.10939871

23. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 886–902. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45061-0_69

24. Katis, A., et al.: Validity-guided synthesis of reactive systems from assume-
guarantee contracts. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 176–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3_10

25. Kelasidi, E., Liljebäck, P., Pettersen, K.Y., Gravdahl, J.T.: Innovation in under-
water robots: biologically inspired swimming snake robots. IEEE Robotics Autom.
Mag. 23(1), 44–62 (2016). https://doi.org/10.1109/MRA.2015.2506121

26. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using state and transition invariants. Formal Methods Syst. Des.
42(3), 221–261 (2013). https://doi.org/10.1007/s10703-012-0176-y

27. Maderbacher, B., Bloem, R.: Reactive synthesis modulo theories using abstraction
refinement. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-
Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pp. 315–324.
IEEE (2022). https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38

28. Markgraf, O., Hong, C.-D., Lin, A.W., Najib, M., Neider, D.: Parameterized syn-
thesis with safety properties. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol.
12470, pp. 273–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64437-6_14

29. Masselot, M., Patil, S., Zhabelova, G., Vyatkin, V.: Towards a formal model of
protection functions for power distribution networks. In: IECON 2016-42nd Annual
Conference of the IEEE Industrial Electronics Society, pp. 5302–5309. IEEE (2016)

30. Nayak, S.P., Egidio, L.N., Della Rossa, M., Schmuck, A.K., Jungers, R.M.: Context-
triggered abstraction-based control design. IEEE Open J. Control Syst. 2, 277–296
(2023). https://doi.org/10.1109/OJCSYS.2023.3305835

31. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9_12

32. Samuel, S., D’Souza, D., Komondoor, R.: Gensys: a scalable fixed-point engine for
maximal controller synthesis over infinite state spaces. In: Spinellis, D., Gousios,
G., Chechik, M., Penta, M.D. (eds.) ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23–28, 2021, pp. 1585–1589. ACM (2021).
https://doi.org/10.1145/3468264.3473126

33. Samuel, S., D’Souza, D., Komondoor, R.: Symbolic fixpoint algorithms for logical
LTL games. In: 38th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2023, Luxembourg, September 11–15, 2023, pp. 698–709. IEEE
(2023). https://doi.org/10.1109/ASE56229.2023.00212

34. Schmuck, A.K., Heim, P., Dimitrova, R., Nayak, S.P.: Localized attractor com-
putations for infinite-state games (full version) (2024). https://doi.org/10.48550/
ARXIV.2405.09281

https://doi.org/10.5281/zenodo.10939871
https://doi.org/10.5281/zenodo.10939871
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1109/MRA.2015.2506121
https://doi.org/10.1007/s10703-012-0176-y
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_38
https://doi.org/10.1007/978-3-030-64437-6_14
https://doi.org/10.1007/978-3-030-64437-6_14
https://doi.org/10.1109/OJCSYS.2023.3305835
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1145/3468264.3473126
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.48550/ARXIV.2405.09281
https://doi.org/10.48550/ARXIV.2405.09281

158 A.-K. Schmuck et al.

35. Sylla, A.N., Louvel, M., Rutten, E., Delaval, G.: Modular and hierarchical discrete
control for applications and middleware deployment in IoT and smart buildings.
In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp.
1472–1479. IEEE (2018)

36. Unno, H., Satake, Y., Terauchi, T., Koskinen, E.: Program verification via predicate
constraint satisfiability modulo theories. CoRR abs/2007.03656 (2020). https://
arxiv.org/abs/2007.03656

37. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-
tion. Int. J. Softw. Tools Technol. Transf. 15(5–6), 413–431 (2013). https://doi.
org/10.1007/S10009-012-0232-3

38. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, Octo-
ber 21–24, 2014. pp. 219–226. IEEE (2014). https://doi.org/10.1109/FMCAD.
2014.6987617

39. Woeginger: Combinatorics problem c5 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://doi.org/10.1007/S10009-012-0232-3
https://doi.org/10.1007/S10009-012-0232-3
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
http://creativecommons.org/licenses/by/4.0/

Learning

Bisimulation Learning

Alessandro Abate1 , Mirco Giacobbe2 , and Yannik Schnitzer1(B)

1 University of Oxford, Oxford, UK
{alessandro.abate,yannik.schnitzer}@cs.ox.ac.uk

2 University of Birmingham, Birmingham, UK
m.giacobbe@bham.ac.uk

Abstract. We introduce a data-driven approach to computing finite
bisimulations for state transition systems with very large, possibly infi-
nite state space. Our novel technique computes stutter-insensitive bisim-
ulations of deterministic systems, which we characterize as the problem of
learning a state classifier together with a ranking function for each class.
Our procedure learns a candidate state classifier and candidate ranking
functions from a finite dataset of sample states; then, it checks whether
these generalise to the entire state space using satisfiability modulo the-
ory solving. Upon the affirmative answer, the procedure concludes that
the classifier constitutes a valid stutter-insensitive bisimulation of the
system. Upon a negative answer, the solver produces a counterexample
state for which the classifier violates the claim, adds it to the dataset,
and repeats learning and checking in a counterexample-guided induc-
tive synthesis loop until a valid bisimulation is found. We demonstrate
on a range of benchmarks from reactive verification and software model
checking that our method yields faster verification results than alter-
native state-of-the-art tools in practice. Our method produces succinct
abstractions that enable an effective verification of linear temporal logic
without next operator, and are interpretable for system diagnostics.

Keywords: Data-driven verification · Stutter-insensitive bisimulation ·
Reactive verification · Software model checking · Abstraction

1 Introduction

Abstraction of state transition systems is the process for which a system under
analysis—the concrete system—is reduced to another system—the abstract
system—that is simpler to analyze and preserves certain temporal properties
of the former [20,25,38,48]. It is a fundamental approach to state space reduc-
tion in the verification of finite-state systems and an essential element for the
verification of infinite-state systems. Bisimulations are the abstractions that pre-
serve linear and branching behaviour with respect to propositional observations,
for which the model checking question for both linear- and branching-time logics
have the same answer on the abstract and the concrete system [14,29].

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 161–183, 2024.
https://doi.org/10.1007/978-3-031-65633-0_8

https://doi.org/10.5281/zenodo.11109292
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_8&domain=pdf
http://orcid.org/0000-0002-5627-9093
http://orcid.org/0000-0001-8180-0904
http://orcid.org/0000-0001-7406-3440
https://doi.org/10.1007/978-3-031-65633-0_8

162 A. Abate et al.

Computing a bisimulation amounts to computing an equivalence relation on
the state space that is stable with respect to a notion of state change, and pre-
serves propositional observations. An equivalence relation defines a partition of
the concrete state space and induces an abstract system where every abstract
state corresponds to an equivalence class. The problem of computing bisimula-
tions over an explicit representation of the state graph has been widely studied
in the past [5,32], since Hopcroft’s graph minimisation algorithm and the Paige-
Tarjan algorithm for iterative partition refinement [31,46]. Partition refinement
was improved with on-the-fly partition refinement of the reachable state space
as well as parallelisation [21,35–37]. Yet, explicit-state algorithms fall short on
systems with very large or infinite state space, for which one must resort to
procedures that represent regions of state space symbolically [10].

Partition refinement relies on computing exact pre- and post-images through
the transition function of the system [10,26]. This entails quantifier elimination,
which is computationally costly. Counterexample-guided abstraction refinement
(CEGAR) provides an approach to avoid pre- and post-image computation; it
computes simulations of state transition systems incrementally, from infeasibil-
ity proofs of spurious counterexamples [17,30]. The resulting abstract system is
tight enough to verify a specific property of interest, but cannot generally pro-
vide concrete counterexamples when a property is false and, for this purpose,
methods based on CEGAR are usually coupled with bounded model checking [8].
Similarly, methods for temporal logic verification based on proof rules (i.e., cer-
tificates) provide sufficient conditions to verify whether a property holds but do
not provide a counterexample when this is false [2,18,27,42,52]. By contrast,
bisimulations provide a tight abstraction where abstract counterexamples corre-
spond to concrete counterexamples and, as such, these are directly interpretable
for system debugging and diagnostics.

We present a data-driven approach to computing finite bisimulations from
sample states and transitions of the system, which skips partition refinement
entirely. We adapt the notion of well-founded bisimulations, where the condition
of stability of the equivalence relation with respect to stuttering is characterised
as the existence of ranking functions over well-founded sets [43]. While originally
introduced solely as a proof rule, we leverage well-founded bisimulations for the
first time to directly compute finite bisimulations. We instantiate well-founded
bisimulations with ranking functions that, for every state transition to a different
state in the abstract system, map states to natural numbers that decrease strictly
as the system stutters. This characterises stutter-insensitive bisimulations for
deterministic transition systems and also applies to strong bisimulations, which
is the special case of our method where ranking functions are constant.

Stutter-insensitive bisimulations are stable bisimulations with respect to
observation change in the system, and is closed with respect to all state transi-
tions between these changes. A system stutters when it changes concrete state
without changing observation [33], and stutter-insensitive bisimulations abstract
stuttering away. In contrast to strong bisimulations, stutter-insensitive bisimu-
lations result in much more succinct abstractions, while being sufficiently strong

Bisimulation Learning 163

to preserve the validity of any linear temporal logic specification without next
operator. While our approach also applies to strong bisimulations, we generalise
our method to stutter-insensitive bisimulations, because they more effectively
yield finite abstractions on infinite-state systems in practice.

We build on the observation that a finite partition can be characterized as
a state classifier mapping the (possibly infinite) state space into a finite set of
classes. This reduces the problem of computing a stutter-insensitive bisimulation
to training a classifier and a ranking function for each class [22,45,51]. For the
partition classifier, we employ a binary decision tree (BDT) with parametric
linear predicates at each decision node, and we associate each leaf node with a
parametric linear ranking function. This structure forms our template.

Our approach is underpinned by a learner and a verifier interacting with
each other, both using a satisfiability modulo theory (SMT) solver. The learner
proposes a candidate bisimulation by computing parameters of the classifier and
ranking function templates to satisfy conditions over sampled transitions. The
verifier then checks if these conditions hold over the entire state space. If affirmed,
the classifier induces a stutter-insensitive bisimulation. If not, the verifier pro-
vides a counterexample, a state where stutter-insensitive bisimulation conditions
are violated. This counterexample is fed back to the learner, which updates the
classifier and ranking functions. The process repeats in a counterexample-guided
inductive synthesis (CEGIS) loop until the verifier confirms the bisimulation’s
validity [50]. If the template cannot fit the finite set of samples, for instance, due
to an insufficient number of partitions, our procedure automatically enlarges the
BDT with an additional layer and resumes the CEGIS loop.

We demonstrate the experimental efficacy of our approach on numerical pro-
grams and reactive software systems with integer state spaces. We consider
benchmarks from reactive verification and software model checking, in particu-
lar discrete-time synchronisation protocols and conditional termination analysis
problems. We benchmark the former set against the nuXmv model checker for
reactive verification and the latter against the Ultimate and the CPAChecker
tools for software verification [7,16,28]. The results are two-fold. For the reac-
tive verification benchmarks, our approach has faster verification times than
nuXmv on systems with long stuttering intervals. For the conditional termi-
nation benchmarks, our approach is able to generate exact preconditions for
which the program terminates, unlike the baselines that return negative answers
when the program does not terminate for at least one input. In summary, we
demonstrate that, on these problems, our approach yields both faster and more
informative results than the alternative state-of-the-art tools.

We summarise our contributions in the following three points: (1) we intro-
duce the first data-driven approach to construct bisimulations, as an alternative
approach to partition refinement; (2) we implement the theory of well-founded
bisimulations which we synthesise in a CEGIS loop, as a means to compute
stutter-insensitive bisimulations; (3) we demonstrate the efficacy of our novel
approach on reactive verification and software model checking benchmarks. Our
approach is fully automatic and requires no user input beyond the system itself. It

164 A. Abate et al.

produces succinct abstractions of infinite-state systems, which effectively enables
their LTL (without next) verification using finite-state model checkers.

2 Illustrative Example

We motivate our procedure with an example from software model checking. Con-
sider the code snippet in Fig. 1a. The program takes two arbitrary integers as
input and subtracts the smaller from the larger until the two values coincide.
We ask the question of whether the program terminates for every initial condi-
tion, which is not straightforward to answer for this example. Given two positive
inputs, the program runs the Euclidean algorithm for the greatest common divi-
sor and terminates once it is found. However, for any two unequal non-positive
inputs, this implementation will never exit the loop and run forever.

Fig. 1. Learned stutter-insensitive bisimulation of the Euclidean algorithm.

Our procedure solves the termination problem by iteratively learning param-
eters for a given state classifier template, such that its induced partition of the
state space satisfies the stutter-insensitive bisimulation conditions over a finite
set of sample transitions of the program. We ensure this by simultaneously com-
puting parameters for given ranking function templates, which, together with
the partition induced by the classifier, satisfy the equivalent conditions of a
well-founded bisimulation. We leverage an SMT solver to check for counterex-
amples, i.e., states that are not equivalent to other states with the same class
assigned by the classifier. These counterexample states are passed back to the
learning procedure to update the classifier and the ranking function parameters
until the SMT solver cannot generate a counterexample anymore and, thus, cer-
tifies that the learned classifier generalises to the entire infinite state space and
induces a valid stutter-insensitive bisimulation.

Figure 2 illustrates the iterative update of the classifier with respect to the
sampled program behaviour, given an initial partitioning of the state space into

Bisimulation Learning 165

the class of terminated states violating the loop condition x != y and the disjoint
class of not terminated states. Upon termination the learned classifier correctly
separates the states into those for which both variables are positive and which
will eventually reach a terminated state after stuttering for a finite number of
steps and the states that infinitely stutter in the class of not-terminated states.

Fig. 2. Iterative process of bisimulation learning. Starting from the initial label-
preserving partition (a), our procedure generates counterexamples (blue dots) until
it attains a valid stutter-insensitive bisimulation (c). (Color figure online)

In addition to the stutter-insensitive bisimulation, our procedure generates
the corresponding abstract system by computing the behavior of the abstract
states (i.e., the classes of the partition) alongside the classifier. Figure 1b shows
the synthesized abstract system for the Euclidean algorithm, where each abstract
state corresponds to an infinite subset of the concrete state space. The stutter-
insensitive bisimulation ensures that the termination question has the same
answer for all concrete states within the same class. A key advantage of our
approach over methods providing a single counterexample is that it produces
interpretable representations of the abstract system, aiding in system diagnos-
tics. Specifically, our approach yields interpretable classifiers as binary decision
trees. Figure 1b shows the abstract system and the automatically generated pred-
icates defining the partition. Even for high-dimensional state spaces and complex
partitions, this approach provides accessible means to interpret and diagnose the
system for potential faults and undesired behavior [3,13].

3 Stutter-Insensitive Bisimulations of Deterministic
Transition Systems

We introduce the fundamental concepts underpinning our approach.

Definition 1 (Transition Systems). A transition system M consists of

– a state space S,

166 A. Abate et al.

– an initial region I ⊆ S, and
– a non-blocking transition function T : S → (2S \ ∅).

We say that M is deterministic if |T (s)| = 1 for all s ∈ S. It is labelled when it
additionally comprises

– a set of atomic propositions AP (the observables), and
– a labelling (or observation) function 〈〈·〉〉 : S → 2AP .

A trajectory of M is any sequence of states τ = s0, s1, s2, . . . such that si+1 ∈
T (si) for all consecutive si, si+1 in τ . We say that τ is initialised if s0 ∈ I.

Definition 2 (Partitions). A partition on M is an equivalence relation �⊆
S × S on S, which defines the quotient space S/� (i.e., the set of equivalence
classes of �) of pairwise-disjoint regions of S whose union is S.

Since we are interested in a notion of state equivalence insensitive to
behaviour that does not change the observation of a state, the concept of diver-
gence will be essential to distinguish between states that progress while not
changing observation and those that do not progress at all [4,53].

Definition 3 (Divergence Sensitivity). Let � be a partition on M. A state
s ∈ S is �-divergent if there exists an infinite trajectory s0, s1, . . . such that
s0 = s and si � s for all i > 0. Partition � is divergence-sensitive when s � t
and s is �-divergent implies that t is �-divergent.

A partition of the state space induces a reduced transition system — the
corresponding abstract system or quotient.

Definition 4 (Quotient). The quotient of M under the partition � is the
transition system M/� with

– state space S/�,
– initial region I/� where R ∈ I/� iff R ∩ I
= ∅, and
– transition function T/� where

1. R
= Q ∈ T/�(R) iff T (s) ∈ Q for some s ∈ R,
2. R ∈ T/�(R) iff some s ∈ R is �-divergent.

The quotient is the aggregation of equivalent states and their behaviours. The
specifications preserved by the quotient, i.e., the statements that carry over from
the abstract to the concrete system, depend on the properties of the underlying
partition [46]. The most important property to preserve sensible specifications
is that equivalent states must have equal observations.

Definition 5 (Label-preserving Partitions). A partition � on a labelled
transition system is label-preserving when s � t implies 〈〈s〉〉 = 〈〈t〉〉. The quotient
M/� of a labelled transition system M under a label-preserving partition � is
labelled with the extended labelling function 〈〈·〉〉 : S∪S/� → 2AP where, for every
region R ∈ S/�, 〈〈R〉〉 = 〈〈s〉〉 for any representative s ∈ R.

Bisimulation Learning 167

A standard notion of state equivalence on labelled transition systems is bisim-
ilarity [39]. Bisimilarity preserves both linear- and branching-time behaviour by
co-inductively requiring that every pair of related states can match each oth-
ers’ transitions with equivalent transitions. However, this stability with respect
to stepwise behaviour often results in large quotients, thus limiting its suitabil-
ity to facilitate reasoning over the system [46]. Therefore, we focus on stutter-
insensitive bisimulations [14]. By abstracting from stepwise behaviour that does
not change the observation of a state, stutter-insensitive bisimulations yield
smaller quotients while preserving important specifications, as we will see in
the following section.

Definition 6 (Stutter-insensitive Bisimulation). A label-preserving parti-
tion � is a stutter-insensitive bisimulation if, for all states s, s′, t ∈ S such that
s � t and s
� s′ ∈ T (s), there exists a finite trajectory t0, t1, . . . , tk such that
t0 = t, ti � s for all i = 1, . . . k − 1, and tk = t′ for some t′ � s′.

Figure 3 illustrates the stability condition of stutter-insensitive bisimulations.
This condition requires that for related states, transitions to unrelated states can
be matched by finite trajectories that pass through the same equivalence class.

Fig. 3. Trajectory-based representation of the stutter-insensitive stability condition.

Lemma 1. Every stutter-insensitive bisimulation on any deterministic labelled
transition system admits a deterministic quotient.

Proof. Let M be a deterministic transition system and � be a stutter-insensitive
bisimulation on M. Assume M/� is nondeterministic, this implies that there
exists pairwise distinct R,Q, V ∈ S/� such that {Q,V } ⊆ T/�(R). It follows
that there exist s, t ∈ R with T (s) ∈ Q and T (t) ∈ V . Since s, t ∈ R it holds
that s � t and as M is deterministic and Q
= V , � cannot satisfy Def. 6. �

3.1 Model Checking

We introduce Linear Temporal Logic without next-operator (LTL\©) as a formal
specification language for the temporal behaviour of a system and its states [4,
49]. LTL\© formulas are constructed according to the following grammar:

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | ϕU ϕ

168 A. Abate et al.

The model checking problem for LTL\© is to decide whether transition system
M satisfies a given LTL\© formula ϕ, where the satisfaction relation |= for
trajectories of M is defined as

τ, i |= true
τ, i |= p iff p ∈ 〈〈si〉〉 where τ = s0, s1, s2, . . .

τ, i |= ϕ1 ∧ ϕ2 iff τ, i |= ϕ1 and τ, i |= ϕ2

τ, i |= ¬ϕ iff τ, i
|= ϕ

τ, i |= ϕ1 U ϕ2 iff for some finite k ≥ i, τ, k |= ϕ2 and
τ, j |= ϕ1 for all j = i, . . . , k − 1

and is lifted to the entire transition system by requiring that every initialised
trajectory satisfies ϕ:

M |= ϕ iff τ, 0 |= ϕ for all infinite initialised trajectories τ of M.

We also introduce the derived operators ”eventually” ♦ and ”globally” �.
The formula ♦ϕ := trueU ϕ states that ϕ must be true in some state on the
trajectory. The formula �ϕ := ¬(♦¬ϕ) requires that ϕ holds true in all states
of the trajectory. We do not include the ”next” operator © from full LTL since
we are interested in stutter-insensitive bisimulations, which do not preserve a
system’s stepwise behavior as expressed by the next-operator. It is a well-known
fact that divergence-sensitive stutter-insensitive bisimulations preserve specifi-
cations expressable in LTL\© [4]. Divergence-sensitivity is crucial to properly
treat stutter-trajectories, i.e., trajectories that forever stutter inside the same
equivalence class [44]. However, for deterministic transition systems, each state
has only one outgoing trajectory that either eventually leaves its equivalence
class or stutters indefinitely. Therefore, any stutter-insensitive bisimulation on a
deterministic system must be divergence-sensitive, as stated in Lemma 2.

Lemma 2. Every stutter-insensitive bisimulation on any deterministic labelled
transition system is divergence-sensitive.

Proof. Let M be a deterministic transition system and � be a stutter-insensitive
bisimulation on M. Let s � t and assume s �-divergent but t not �-divergent.
As t not �-divergent, there exists a finite trajectory τ = t, t1, . . . , tn, t′ with
t � ti,∀i ≤ n and t
� t′, for some n ≥ 0. This implies that there exists a state
u � s with s
� t′ ∈ T (u). However, since M is deterministic and s is �-divergent,
the unique trajectory τ = s, s1, . . . initalised in s satisfies s � si,∀i ≥ 0, which
is a contradiction. �
Theorem 1. Let M be a deterministic labelled transition system. If � is a
stutter-insensitive bisimulation on M, then M |= ϕ if and only if M/� |= ϕ for
any LTL\© formula ϕ.

Proof. Any divergence-sensitive stutter-insensitive bisimulation � on any (pos-
sibly non-deterministic) transition system M implies, for every LTL\© formula

Bisimulation Learning 169

ϕ, the model checking problems M |= ϕ and M/� |= ϕ have the same answer.
Lemma 2 establishes that, since M is deterministic and � is stutter-insensitive
on M, then � is also divergence-sensisitve. Therefore, the statement follows. �
Remark 1. Theorem 1 in general does not hold for nondeterministic transition
systems, as can be seen by the counterexample in Fig. 4.

Fig. 4. A stutter-insensitive but not divergence-sensitive bisimulation � is indicated
by the dashed lines. It holds that M |= ♦(red) but M/� �|= ♦(red).

Remark 2. It may seem counterintuitive to the reader to relate stutter-
insensitive bisimulation and LTL\©-equivalence, as it is usually associated with
the more expressive CTL∗

\© [4]. However, recall that we focus on deterministic
transition systems for which both logics coincide in expressivity.

4 Counterexample-Guided Bisimulation Learning

This section introduces our main contributions. We present our adaption of
Namjoshi’s well-founded bisimulations to deterministic transition systems [43]
and describe a counterexample guided learning algorithm for simultaneous com-
putation of a stutter-insensitive bisimulation and its corresponding quotient from
a finite sampling of the state space. Well-founded bisimulation implements the
stability conditions of stutter-insensitive bisimulation (see Def. 6) in the form of
ranking functions that map states to a well-founded set, ensuring that a finite
trajectory matches every transition of equivalent states. We present an adaption
to deterministic systems that only requires the ranking functions to map single
states of certain classes to a well-founded set and show that this characterizes
stutter-insensitive bisimulation. Furthermore, we show that the problem of com-
puting a stutter-insensitive bisimulation can be rephrased to finding a classifier
on states and ranking functions for the corresponding classes.

Theorem 2. Let M be a deterministic labelled transition system with state
space S and transition function T . Let � be a label-preserving partition on M.

170 A. Abate et al.

Suppose that for every region R ∈ S/� there exists a function hR : S → IN such
that, for every R
= Q ∈ T/�(R), the following condition holds:

∀s ∈ R : T (s) ∈ Q ∨ [T (s) ∈ R ∧ hR(s) > hR(T (s))]. (1)

Then, � is a stutter-insensistive bisimulation on M.

Proof. Let s � t such that s
� s′ ∈ T (s). This implies that ∃R
= Q ∈ S/� : s, t ∈
R and s′ ∈ Q, and Q ∈ T/�(R). Assume there exists no finite trajectory τ =
t, t1, . . . , tn, t′, n ≥ 0 with t � ti,∀i ≤ n and s′ � t′. As M is deterministic, we
only need to distinguish the two cases:

– The infinite trajectory τ = t, t1, t2, . . . stutters infinitely in R, i.e., ti ∈ R,∀i ≥
1. This contradicts the ranking property 1.

– There exists a finite trajectory τ = t, t1, . . . , tn, t′, n ≥ 0 with t′ ∈ V
= Q and
ti ∈ R,∀i ≤ n. However tn ∈ R and t′ ∈ V
= Q is a contradiction to the
ranking property 1 only allowing for an exit to Q. �
The ranking functions hR in Theorem 2 ensure that if class R has an outgoing

transition to Q, for all states in R either (1) their successor is in Q or (2)
their successor is in R and hR decreases when transitioning. As the value of
hR is bounded from below and must strictly decrease along any trajectory, no
trajectory can stutter in R indefinitely and must eventually enter Q (see Fig. 5).

Fig. 5. Intuitive representation of Theorem 2. Since a state s ∈ R has a successor in
Q, the value of hR must strictly decrease along any trajectory through R. Therefore,
all states in R eventually transition to Q after possible stuttering.

Remark 3. For deterministic systems, strong bisimulations form a special case
of stutter-insensitive bisimulations, not allowing for any stuttering. In our for-
mulation, they only admit constant ranking functions hR. Strong bisimula-
tions preserve a system’s stepwise behavior, hence, full LTL including the next-
operator [4]. However, they may induce much larger quotients, less suitable for
verifying large systems with long stuttering intervals. Furthermore, there exist
infinite state systems that do not admit a finite strong bisimulation, but do
admit a finite stutter-insensitive bisimulation quotient.

Bisimulation Learning 171

We aim to phrase the problem of finding a suitable partition and ranking
functions that satisfy the conditions in Theorem 2 as a learning problem. For
that, we introduce the notion of state classifiers.

Definition 7 (State Classifier). A state classifier on a labelled transition sys-
tem with state space S is any function f : S → C that maps states to a finite set
of classes C. It is label-preserving if f(s) = f(t) implies 〈〈s〉〉 = 〈〈t〉〉.

We can now state Theorem 2 for a state classifier f and give sufficient con-
ditions for f to induce a valid stutter-insensitive bisimulation.

Theorem 3. Let M be a deterministic labelled transition system with state
space S and transition function T . Suppose that there exists a label-preserving
state classifier f : S → C, a function g : C → C and functions hc : S → N for
each c ∈ C such that, for every c
= d ∈ C and s ∈ S, the following two conditions
hold:

f(s) = c ∧ g(c) = d =⇒ f(T (s)) = d ∨ [f(T (s)) = c ∧ hc(s) > hc(T (s))], (2)
f(s) = c ∧ f(T (s)) = d =⇒ g(c) = d. (3)

Then, �f defined as �f= {(s, t) | f(s) = f(t)} is a stutter-insensitive bisimula-
tion on M and T�f

(f−1[c]) = {f−1[g(c)]}.
Proof. We first show that �f is a stutter-insensitive bisimulation on M. Since
f is label-preserving, �f is label-preserving by definition. The quotient space is
the set of non-empty pre-images of the classes C under f , i.e., S/�f

= {f−1[c] |
c ∈ C} \ ∅. By definition of T/�f

(see Def. 4) it holds that f−1[c]
= f−1[d] ∈
T/�f

(f−1[c]) implies that there exists an s ∈ f−1[c] with T (s) ∈ f−1[d]. With
Condition 3 this implies that g(c) = d. The claim follows by Condition 2 and
Theorem 2. We now show that T�f

(f−1[c]) = {f−1[g(c)]}. Since �f is a stutter-
insensitive bisimulation Lemma 1 implies that T/�(f−1[c]) can only be a single-
ton for any c ∈ C . We distinguish the two cases:

– f−1[c]
= f−1[d] ∈ T/�f
(f−1[c]), then f−1[c]
= f−1[d] implies that c
= d. By

Def. 4 there must exist a s ∈ f−1[c] with T (s) ∈ f−1[d], which by Condition 3
implies that g(c) = d.

– f−1[c] ∈ T/�f
(f−1[c]), then some state in s ∈ f−1[c] must be �f -divergent

by Def. 4. The only possibility for g to be a total function and not to violate
Condition 2 is g(c) = c, as g(c) = d
= c would contradict the �f -divergency
of s due to Condition 2. �

Remark 4. Note that Theorem 3 requires g to be well-defined, i.e., represent
a deterministic transition function. However, this is not a restriction as per
Lemma 1 any stutter-insensitive bisimulation on a deterministic transition sys-
tem has a deterministic quotient. The fact that g has to be total additionally
requires it to correctly account for the self-loops of the divergent classes.

172 A. Abate et al.

In Theorem 3 function g takes on the role of the deterministic transition func-
tion of the quotient induced by f . Thus, f and g together provide a complete
description of a stutter-insensitive bisimulation quotient of the underlying tran-
sition system. In the following, we introduce our counterexample-guided learning
approach for generating appropriate functions on a given transition system.

4.1 Learner-Verifier Framework for Bisimulation Learning

Fig. 6. Architeture of our learner-verifier framework for bisimulation learning.

Our procedure involves two communicating components, the learner and the
verifier, implementing a CEGIS loop. The learner proposes candidate functions
that satisfy the stutter-insensitive bisimulation conditions over a finite set of
sample states. The verifier checks if a counterexample state exists for which the
functions proposed by the learner violate the conditions, which are then passed
back to the learner to update the functions (see Fig. 6).

Learner. We consider parametric function templates whose maps solely depend
on the provided parameters. Therefore, the learner seeks suitable parameters for
a label-preserving state classifier template f : Θ × S → C, a transition function
template g : Γ ×C → C and ranking function templates hc : H ×S → N for each
c ∈ C, i.e., attempts to solve:

∃θ ∈ Θ, γ ∈ Γ, η ∈ H :
∧

ŝ∈D

Φ1(θ, γ, η; ŝ, T (ŝ)) ∧ Φ2(θ, γ, η; ŝ, T (ŝ)), (4)

where Φ1 encodes Condition 2 of Theorem 3:

Φ1(θ, γ, η; s, s′) =
∧

c �=d∈C

f(θ; s) = c ∧ g(γ; c) = d =⇒

f(θ; s′) = d ∨ [f(θ; s′) = c ∧ hc(η; s) > hc(η; s′)], (5)

Bisimulation Learning 173

and Φ2 represents Condition 3:

Φ2(θ, γ, η; s, s′) =
∧

c �=d∈C

f(θ; s) = c ∧ f(θ; s′) = d =⇒ g(γ; c) = d, (6)

for a deterministic transition system M and finite set of sample states D ⊆ S.
In our instantiation, we use an SMT-solver to seek a satisfying assignment for
the parameters θ, γ, and η in the quantifier-free inner formula of 4.

Verifier. The verifier checks the functions induced by the proposed candidate
parameters θ̂, γ̂ and η̂ for generalisation to the entire state space, i.e., attempts
to solve:

∃s ∈ S : ¬Φ1(θ̂, γ̂, η̂; s, T (s)) ∨ ¬Φ2(θ̂, γ̂, η̂; s, T (s)). (7)

Similar to the learner, the verifier is an SMT-solver to which we hand the
quantifier-free inner formula of 7. A found satisfying assignment for a coun-
terexample state s is returned to the learner. If the formula is unsatisfiable, the
procedure terminates and has successfully synthesised a valid stutter-insensitive
bisimulation and its corresponding quotient.

4.2 Binary Decision Tree Partition Templates

From here on, our focus is on transition systems with discrete state spaces
S ⊆ Z

n defined over the integers. We present the parametric function templates
used in our instantiation of the framework. For the state classifier templates,
we employ binary decision trees with real-valued decision functions in the inner
nodes. We construct binary decision trees preserving the system’s labelling func-
tion and automatically enlarge them when the template is not expressive enough
to fit the finite set of sample states (see Fig. 6).

Definition 8 (Binary Decision Tree Templates). The set of binary decision
tree templates T over a finite set of classes C and parameters Θ consists of trees
t, where t is either

– a leaf node leaf(c) with c ∈ C, or
– a decision node node(p, t1, t2), where t1, t2 ∈ T are the left and right subtrees,

and p : Θ × S → R is a parametrised real-valued function of the states.

A parametric tree template t ∈ T over classes C and parameters Θ defines the
parametric state classifier ft : Θ × S → C given as

ft(θ, s) =

⎧
⎪⎨

⎪⎩

c if t = leaf(c)
ft1(θ, s) if t = node(p, t1, t2) and p(θ; s) ≥ 0
ft2(θ, s) if t = node(p, t1, t2) and p(θ; s) < 0.

174 A. Abate et al.

Fig. 7. Binary decision tree with parameters θ1 =
[−2 1

]
, θ2 = −2, θ3 =

[
1
2

1
]
, and

θ4 = 1 for the parametrised functions, and its corresponding state classifier.

Binary decision trees appeal as state classifier templates as they are inter-
pretable, expressive, and simple to translate into quantifier-free expressions to
instantiate the formulas of the learner and the verifier, see Fig. 7. The para-
metric transition function template g : Γ × C → C is simply a vector or list
over classes C, indexed by C, and for the parametric ranking function templates
hc : H × S → N we consider linear functions of the form hc(η, s) = η1 · s + η2.

An important requirement for our procedure is that the synthesised state
classifier is label-preserving. We guarantee this by constructing label-preserving
templates which have this property by design for any parameter instantiation.
We assume that any atomic proposition a ∈ AP is associated with a real-valued
function pa : S → R, such that

〈〈s〉〉 = {a ∈ AP | pa(s) ≥ 0}. (8)

We construct label-preserving templates by encoding the functions corre-
sponding to the atomic propositions into the top nodes of the binary decision
tree, i.e., fixing the functions for the top nodes to represent the observation par-
tition (see for example [47] for a canonical construction). This resembles the pre-
requisite of classical partition-refinement algorithms, which are initialised from
label-preserving partitions. Fixing the labelling with the top nodes ensures that
any instantiated state classifier is label-preserving, and the subsequent nodes fur-
ther refine the label-preserving partition. Figure 8 shows the top nodes with fixed
functions for a label-preserving binary tree template for the Euclidean algorithm
from Figs. 1 and 2.

When the binary decision tree used is too small to fit the minimum number
of regions in a quotient or if it requires more decision boundaries, the learner will
return UNSAT as it cannot fit a partition with the given template on the finite
set of samples. In such cases, our procedure automatically increases the size of
the employed BDT template and resumes bisimulation learning with the more
expressive template (see Fig. 6). Our template construction is entirely automatic
and requires no user input other than the labeling function. Bisimulation learning
starts from a small, automatically generated BDT template encoding the labeling

Bisimulation Learning 175

Fig. 8. Label-preserving binary decision tree template for the Euclidian algorithm from
Fig. 1. The functions are assigned with respect to the loop condition x �= y. The
terminated proposition, i.e., class t, is assigned to the states satisfying x ≤ y and
y ≤ x. Any state satisfying either of x > y or y > x is labelled with not-terminated.

function and successively enlarges the partition template as required. We enlarge
the partition template by adding an additional layer to the BDT, doubling the
number of available partitions.

5 Experimental Evaluation

We implemented our approach in a software prototype and evaluated bisim-
ulation learning on a range of benchmark systems representing two common
classes of problems: verification of reactive systems and software model check-
ing. We compare our procedure to established state-of-the-art tools: the nuXmv
model checker [12,15,16] for the reactive system problems and the Ultimate [28]
and CPAChecker [7] tools for software model checking benchmarks. All bench-
marks, our implementation, and the used templates are publicly available. We
employ the Z3 SMT-solver [41] in both learner and verifier, and the nuXmv
model checker to verify the properties of interest on the obtained abstractions.

5.1 Discrete-Time Clock Synchronization

Setup. For reactive systems, we consider two distributed synchronization pro-
tocols for potentially drifted discrete clocks of distributed agents. First, the
TTEthernet protocol, where all agents send their current clock value to a cen-
tral synchronization master. This synchronization master computes the median
clock value and sends it back to the agents, which use the received value to
update their internal clocks [9]. Second, we consider an interactive convergence
algorithm where the agents directly exchange clock values and compute the
average to update their internal clocks while excluding received values that dif-
fer more than a given threshold from their own [34]. We check the systems for
two kinds of properties: a safety invariant, which specifies that all clock valua-
tions remain within a predefined maximum distance (G(safe)); and whether all
clocks infinitely often synchronize on the same valuation (GF(sync)). Note that
while the baseline procedures verify the systems regarding the given specifica-
tion, our abstraction procedure is agnostic to the specification, i.e., the obtained

176 A. Abate et al.

abstraction can be used to verify arbitrary LTL\© formulas over the atomic
propositions.

To render verification with BDDs feasible, we leverage that all clock val-
uations remain within an interval that depends on the time discretization, as
they are either continuously reset or enter a dead-lock state when violating the
safety requirement. We explicitly pass this invariant to the BDD toolchain in the
form of finite variable domains to allow for the construction of BDDs, whereas
IC3 and our abstraction approach operate over unbounded integer variables,
which would not be possible for BDDs. For both benchmarks, we consider a safe
variant, where the agents use the received values to update their internal clock
correctly, and an unsafe version, where they stick with their internal values and
drift further. In all instances, we assess multiple instances of time discretization,
i.e., the sampling frequency (number of discrete time steps) for a unit second.

Results. Table 1 presents the runtime results. Our approach depends on gener-
ating candidate parameters and counterexamples through an SMT solver. These
can vary across runs of the procedure, even under identical initial conditions (i.e.,

Table 1. Results for reactive clock-synchronization benchmarks. All times are mea-
sured in seconds with “oot” denoting a timeout at 500 [sec]. The benchmark names
include the used parameters, e.g., “tte-sf-1k” describes a safe TTEthernet instance
with a time discretization of 1000 steps per second.

Benchmark No. States nuXmv (IC3) nuXmv (BDDs) Bisimulation

LearningG(safe) GF(sync) G(safe) GF(sync)

tte-sf-10 250 0.1 0.7 0.1 0.1 0.3±0.4

tte-sf-100 2500 13.3 423 0.3 0.3 0.7±0.6

tte-sf-1k 2.5 × 106 oot oot 1.8 31 1.2±0.4

tte-sf-2k 1 × 107 oot oot 6.4 162 1.5±0.1

tte-sf-5k 6.25 × 107 oot oot 34 417 1.6±0.4

tte-sf-10k 2.5 × 108 oot oot 193 oot 1.6±0.2

tte-usf-10 250 0.1 0.5 0.1 0.1 0.2±0.1

tte-usf-100 2500 15.2 9.2 0.1 0.2 0.2±0.1

tte-usf-1k 2.5 × 106 421 405 1.5 10 0.3±0.1

tte-usf-2k 1 × 107 oot oot 7.1 41 0.4±0.2

tte-usf-5k 6.25 × 107 oot oot 32 242 0.5±0.5

tte-usf-10k 2.5 × 108 oot oot 130 oot 0.6±0.5

con-sf-10 250 0.6 0.5 0.1 0.1 0.4±0.2

con-sf-100 2500 22 oot 0.2 0.3 0.4±0.3

con-sf-1k 2.5 × 106 oot oot 4.6 45 0.7±0.4

con-sf-2k 1 × 107 oot oot 17.6 210 0.7±0.2

con-sf-5k 6.25 × 107 oot oot 95 oot 0.8±0.5

con-sf-10k 2.5 × 108 oot oot oot oot 1.4±1.4

con-usf-10 250 0.2 0.3 0.1 0.1 0.2±0.2

con-usf-100 2500 31 33 0.3 0.2 0.2±0.1

con-usf-1k 2.5 × 106 oot oot 2.8 24 0.3±0.2

con-usf-2k 1 × 107 oot oot 8.2 154 0.4±0.3

con-usf-5k 6.25 × 107 oot oot 36 oot 0.7±0.4

con-usf-10k 2.5 × 108 oot oot 156 oot 0.8±0.3

Bisimulation Learning 177

provided initial samples). Since this can impact the convergence speed and over-
all runtime of the algorithm, we conduct each experiment 10 times and report
the average runtimes and standard deviations. We only report a single outcome
for our approach, as we check both properties of interest on the same abstrac-
tion and the differences in verification time are negligible on the obtained small
abstractions.

Discussion. The results show that the learned bisimulations effectively and
efficiently verify the specifications. Especially with decreased time discretization
and, therefore, increased size of the state space, our approach clearly shows an
advantageous performance. While a larger reachable state space renders verifi-
cation harder for all considered approaches, a decreased time discretization is
especially difficult for the IC3 toolchain based on bounded model checking, as
it increases the completeness threshold and the depth of counterexamples. Since
bisimulation learning generalizes from a finite set of samples, it is less susceptible
to larger state spaces if the corresponding abstractions remain small. Generally,
there is a trade-off between the number of provided initial samples and the
number of CEGIS iterations needed to refine the initial partition. Although it
may require more time to fit an initial partition on a more extensive set of uni-
form initial samples, it can reduce the counterexamples needed to obtain a valid
stutter-insensitive bisimulation. As our instantiation leverages potentially expen-
sive SMT solving in both the learner and the verifier, which scales in the number
of considered samples, we aim at being sample-efficient: therefore, we decided
to consider a fixed, small amount of uniform initial samples for all benchmarks
of different sizes and leverage the generation of informative counterexamples in
potentially more, but faster CEGIS cycles.

5.2 Conditional Termination

Setup. For software model checking, we consider a range of benchmarks from
program termination analysis, including a selection of programs sourced from
the termination category of the SV-COMP competition for software verifica-
tion [6]. As is the case for the Euclidean algorithm in Fig. 1, these programs
on unbounded integer variables may terminate for some inputs and enter a non-
terminating loop for others. The two baseline tools determine whether a program
terminates for all possible inputs. Our procedure instead goes a step further by
providing an exact partition of the variable valuations, separating the inputs
for which the algorithm eventually terminates from those for which it does not.
As a distinguishing feature of the baseline benchmarks, we split each program
into two versions: one that only allows for inputs for which the program termi-
nates (denoted as “term”) and another that includes potentially non-terminating
inputs (denoted as “¬term“).

Results. Table 2 presents the runtime results. Note that we only report the
analysis time for the baselines, without additional time spent on parsing or
preprocessing the programs.

178 A. Abate et al.

Table 2. Results for software termination benchmarks. All times are measured in sec-
onds, with “oot” denoting a timeout at 500 [sec]. A non-conclusive analysis outcome is
denoted by “n/c” and “-” indicates that there is no such special case of the benchmark.

Benchmark nuXmv (IC3) CPAChecker Ultimate Bisimulation
Learningterm ¬term term ¬term term ¬term

term-loop-1 oot oot 0.6 1.8 1.5 2.9 0.2±0.1

term-loop-2 oot oot 0.6 0.3 0.7 0.2 0.4±0.3

audio-compr 3.1 < 0.1 n/c n/c 0.9 0.6 0.3±0.3

euclid oot oot n/c 0.3 1.6 0.4 0.6±0.2

greater oot < 0.1 0.6 0.3 1.1 0.3 0.4±0.2

smaller oot < 0.1 0.6 0.3 1.6 0.3 0.2±0.1

conic oot < 0.1 0.7 0.4 n/c 0.4 4.2±7.3

disjunction oot - 34 - 1.7 - 0.3±0.3

parallel n/c - 0.9 - 9.1 - 0.3±0.3

quadratic 0.2 - n/c - n/c - 0.3±0.1

cubic 0.2 < 0.1 n/c n/c n/c 0.2 0.4±0.2

nlr-cond < 0.1 < 0.1 n/c n/c n/c 0.2 0.2±0.2

Discussion. The results show that bisimulation learning, while computing more
informative results and solving the more complex problem of conditional termi-
nation [11,19], operates in runtimes comparable to the state-of-the-art tools
for the considered benchmarks. Especially for programs that involve disjunc-
tions over variable valuations (cf. the disjunction and parallel benchmarks), our
procedure is able to prove termination more efficiently. Additionally, our app-
roach can handle non-linear operations if the employed templates are sufficiently
expressive for the corresponding partition and ranking functions. As a further
surplus, it yields interpretable binary decision trees representing the derived
stutter-insensitive bisimulation. These trees are valuable for system diagnos-
tics and fault analysis, providing further insight beyond single counterexamples.
Once again, this experimental evaluation shows that, while not being complete
in theory, our algorithm terminates in all of the considered experiments.

Limitations. Bisimulation learning addresses a generally undecidable problem:
finding finite bisimulations for systems with potentially infinite state spaces [40].
While our procedure is guaranteed to terminate on finite state systems, it must
be inherently incomplete in general. Our experimental evaluation demonstrates
that we can effectively and efficiently find finite bisimulations for infinite-state
systems. However, there exist systems for which bisimulation learning can never
successfully terminate. We give an example for such a system: Consider the infi-
nite state space of natural numbers S = {0, 1, . . . }, where each state transitions
by subtracting one, and zero loops on itself, i.e., T = {0 �→ 0}∪ {n �→ n− 1, n >
0}. The labelling function distinguishes zero, even, and odd numbers (see Fig. 9).

Bisimulation Learning 179

Fig. 9. A system for which bisimulation learning can never terminate, as no finite
stutter-insensitive bisimulation exists.

Any infinite trajectory starting in some state i will eventually enter state
zero. However, depending on the starting state, it will traverse a different
sequence of even and odd states. Hence, we can construct LTL\© formu-
las that distinguish each state from smaller states. For instance, the formula
♦(even ∧ ♦(odd ∧ ♦(zero))) can only be satisfied by states larger than one. Per
Theorem 1, since LTL\© can distinguish any state from smaller states, every
state must be its own equivalence class with respect to stutter-insensitive bisimu-
lation. When applying bisimulation learning to the described system, the CEGIS
loop can never terminate with a finite quotient. Our procedure will keep enlarg-
ing the partition template used to fit the growing set of counterexamples, but
will never be able to generalize to the entire state space. We note that this
is a limitation intrinsic to bisimulations, i.e., no bisimulation algorithm could
successfully terminate when applied to the stated system.

6 Conclusion

We have presented the first data-driven method to compute bisimulations. We
have demonstrated that our method effectively computes finite abstractions
for model checking and diagnostics. We instantiated our method to stutter-
insensitive bisimulations, showcased its efficacy on LTL\© model checking of
discrete-time synchronization protocols as well as on conditional termination
analysis benchmarks from the SV-COMP. On these benchmarks, our method
yielded faster results than alternative model checking algorithms based on BDDs
and IC3 (nuXmv), and state-of-the-art software model checking procedures (Ulti-
mate and CPAChecker). Our benchmark sets are systems with long completeness
thresholds and deep counterexamples, for which stutter-insensitive bisimulations
provide succinct abstract quotients.

Our technique builds upon an existing proof rule for well-founded bisimu-
lations. This allows us to characterise stutter-insensitive bisimulations as clas-
sifiers from infinite concrete states to finite abstract states, with an attached
ranking function on each abstract state that strictly decreases as the concrete
system stutters. This has enabled implementing a learner-verifier framework to
compute bisimulations for deterministic systems with discrete state space. Our
approach readily extends to strong bisimulations for deterministic systems, even
though in practice these produce too large abstractions for effective model check-
ing. Stutter-insensitive bisimulations instead are coarser and, therefore, generate

180 A. Abate et al.

smaller quotients. Not only this enables an effective verification of LTL\© prop-
erties, but also provides succinct and interpretable abstractions.

Our result is the basis for several extensions. First, we envision extensions
towards stutter-insensitive bisimulations for non-deterministic systems, which
are harder because they require more general conditions on learner and veri-
fier. Second, we target extensions towards continuous-state systems, which are
harder because they offer much less flexibility in terms of numerical representa-
tion [23,24,54]. Lastly, we envision extensions towards using neural architectures
for further flexibility and scalability in state classifier representation [1].

References

1. Abate, A., Edwards, A., Giacobbe, M.: Neural abstractions. In: NeurIPS (2022)
2. Abate, A., Giacobbe, M., Roy, D.: Stochastic omega-regular verification and control

with supermartingales. In: CAV. LNCS. Springer (2024)
3. Ashok, P., Jackermeier, M., Jagtap, P., Kret́ınský, J., Weininger, M., Zamani, M.:

dtcontrol: decision tree learning algorithms for controller representation. In: HSCC,
pp. 17:1–17:7. ACM (2020)

4. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
5. Balcázar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-Complete. For-

mal Aspects Comput. 4(6A), 638–648 (1992)
6. Beyer, D.: Competition on software verification and witness validation: SV-COMP

2023. In: TACAS (2). LNCS, vol. 13994, pp. 495–522. Springer (2023). https://
doi.org/10.1007/978-3-031-30820-8 29

7. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

9. Bogomolov, S., Herrera, C., Steiner, W.: Verification of fault-tolerant clock syn-
chronization algorithms. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 43,
pp. 36–41. EasyChair (2016)

10. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023733

11. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 18

12. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

13. Brázdil, T., Chatterjee, K., Křet́ınský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10805, pp. 385–407. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2 21

14. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite kripke structures
in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)

https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/978-3-642-28756-5_18
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/978-3-319-89960-2_21

Bisimulation Learning 181

15. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 102̂0 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

16. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

18. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: POPL, pp. 265–276. ACM (2007)

19. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 32

20. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

21. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. Int.
J. Softw. Tools Technol. Transf. 20(2), 157–177 (2018)

22. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In:
ESEC/SIGSOFT FSE, pp. 633–645. ACM (2022)

23. Girard, A.: Approximately bisimilar finite abstractions of stable linear systems. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp.
231–244. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-
4 20

24. Girard, A., Pappas, G.J.: Approximate bisimulation: A bridge between computer
science and control theory. Eur. J. Control. 17(5–6), 568–578 (2011)

25. Glabbeek, R.J.: The linear time — Branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

26. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Com-
put. Log. 18(2), 13:1–13:34 (2017)

27. Grumberg, O., Francez, N., Makowsky, J.A., de Roever, W.P.: A proof rule for fair
termination of guarded commands. Inf. Control 66(1/2), 83–102 (1985)

28. Heizmann, M., et al.: Ultimate automizer and the commuhash normal form - (com-
petition contribution). In: TACAS (2). LNCS, vol. 13994, pp. 577–581. Springer
(2023). https://doi.org/10.1007/978-3-031-30820-8 39

29. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

30. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244. ACM (2004)

31. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196.
Academic Press (1971)

32. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

33. Lamport, L.: What good is temporal logic? In: IFIP Congress, pp. 657–668. North-
Holland/IFIP (1983)

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-71493-4_20
https://doi.org/10.1007/978-3-540-71493-4_20
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-3-031-30820-8_39

182 A. Abate et al.

34. Lamport, L., Melliar-Smith, P.M.: Byzantine clock synchronization. In: PODC, pp.
68–74. ACM (1984)

35. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended
abstract). In: STOC, pp. 264–274. ACM (1992)

36. Lee, I., Rajasekaran, S.: A parallel algorithm for relational coarsest partition prob-
lems and its implementation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp.
404–414. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 71

37. Martens, J., Groote, J.F., van den Haak, L., Hijma, P., Wijs, A.: A linear parallel
algorithm to compute bisimulation and relational coarsest partitions. In: Salaün,
G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 115–133. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90636-8 7

38. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer (1980).
https://doi.org/10.1007/3-540-10235-3

39. Milner, R.: Communication and concurrency. PHI Series in computer science. Pren-
tice Hall (1989)

40. Moller, F.: Infinite results. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-61604-7 56

41. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

42. Murali, V., Trivedi, A., Zamani, M.: Closure certificates. In: HSCC, pp. 10:1–10:11.
ACM (2024)

43. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0058037

44. Nicola, R.D., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

45. Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE,
pp. 246–256. ACM (2013)

46. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

47. Pappas, G.J.: Bisimilar linear systems. Autom. 39(12), 2035–2047 (2003)
48. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

49. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

50. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

51. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional ter-
mination. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp.
302–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10936-7 19

52. Vardi, M.Y.: Verification of concurrent programs: The automata-theoretic frame-
work. Ann. Pure Appl. Log. 51(1–2), 79–98 (1991)

53. Walker, D.J.: Bisimulations and divergence. In: LICS, pp. 186–192. IEEE Com-
puter Society (1988)

54. Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A., Lygeros, J.: Symbolic con-
trol of stochastic systems via approximately bisimilar finite abstractions. IEEE
Trans. Autom. Control 59(12), 3135–3150 (2014)

https://doi.org/10.1007/3-540-58179-0_71
https://doi.org/10.1007/978-3-030-90636-8_7
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-61604-7_56
https://doi.org/10.1007/3-540-61604-7_56
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/BFb0058037
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-319-10936-7_19

Bisimulation Learning 183

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Regular Reinforcement Learning

Taylor Dohmen(B) , Mateo Perez , Fabio Somenzi ,
and Ashutosh Trivedi

University of Colorado, Boulder, CO 80309, USA
{taylor.dohmen,mateo.perez,fabio,
ashutosh.trivedi}@colorado.edu

Abstract. In reinforcement learning, an agent incrementally refines a
behavioral policy through a series of episodic interactions with its envi-
ronment. This process can be characterized as explicit reinforcement
learning, as it deals with explicit states and concrete transitions. Build-
ing upon the concept of symbolic model checking, we propose a symbolic
variant of reinforcement learning, in which sets of states are represented
through predicates and transitions are represented by predicate trans-
formers. Drawing inspiration from regular model checking, we choose
regular languages over the states as our predicates, and rational transduc-
tions as predicate transformations. We refer to this framework as regular
reinforcement learning, and study its utility as a symbolic approach to
reinforcement learning. Theoretically, we establish results around decid-
ability, approximability, and efficient learnability in the context of reg-
ular reinforcement learning. Towards practical applications, we develop
a deep regular reinforcement learning algorithm, enabled by the use of
graph neural networks. We showcase the applicability and effectiveness
of (deep) regular reinforcement learning through empirical evaluation on
a diverse set of case studies.

Keywords: Reinforcement Learning · Regular Model Checking ·
Graph Neural Networks · Symbolic Techniques for Verification and
Synthesis

1 Introduction

Reinforcement learning [51] (RL) is a sampling-based approach to synthesis,
capable of producing solutions with superhuman efficiency [10,44,49]. An RL
agent interacts with its environment through episodic interactions while receiving
scalar rewards as feedback for its performance. Following the explicit/symbolic
dichotomy of model checking approaches, the interactions in classic RL can be
characterized as explicit : each episode consists of a sequence of experiences in
which the agent chooses an action from a concrete state, observes the next con-
crete state, and receives an associated reward for this explicit interaction.

We envision a symbolic approach to RL, where each experience may deal
with a set of states represented by a predicate, and the evolution of the system
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 184–208, 2024.
https://doi.org/10.1007/978-3-031-65633-0_9

https://doi.org/10.5281/zenodo.10934033
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_9&domain=pdf
http://orcid.org/0000-0001-5722-4847
http://orcid.org/0000-0003-4220-3212
http://orcid.org/0000-0002-2085-2003
http://orcid.org/0000-0001-9346-0126
https://doi.org/10.1007/978-3-031-65633-0_9

Regular Reinforcement Learning 185

is described by predicate transformers. When the state space is large, symbolic
representations may lead to greater efficiency and better generalization. More-
over, there are systems with naturally succinct representations—such as factored
MDPs [27,32], succinct MDPs [23], and Petri nets [9]—that can benefit from
symbolic manipulation of states.

The concept of symbolic interactions with an environment differs signifi-
cantly from typical approximation methods used in RL, such as linear approx-
imations [51] or deep neural networks [31]. In the context of such techniques,
a learning agent attempts to generalize observations based on perceived simi-
larities between them. In the symbolic setting, however, the generalization of a
given interaction is explicitly provided by the environment itself. As a result,
symbolic interactions facilitate a more direct form of generalization, where the
environment ensures that similar interactions lead to similar outcomes.

This paper presents regular reinforcement learning (RRL), a symbolic app-
roach to RL that employs regular languages and rational transductions, respec-
tively, as models of predicates and their transformations. While natural lan-
guages can be used to encode symbolic interactions, we use regular languages [50]
for the following reasons: (1) Regular languages enable unambiguous represen-
tation of predicates and predicate transformers. (2) Regular languages pos-
sess elegant theoretical properties including the existence of minimal canoni-
cal automata, determinizability, closure under many operations, and decidable
emptiness and containment. (3) Regular languages hold a special position in
machine learning, enjoying numerous efficient learnability results and active
learning algorithms.

Regular languages also form the basis of a class of powerful symbolic model
checking algorithm for infinite-state systems known as regular model checking
(RMC) [2,5,13,18]. The following example introduces the concepts of RRL
though a variation on the canonical token passing protocol used in the RMC
literature [5,18].

Example 1 (Token Passing). The token passing protocol involves an arbitrary
number of processes arranged in a linear topology and indexed by consecutive
natural numbers. At any point in time, each process can be in one of two states:
t if it has a token or n if it does not. The states of the system are then strings
over the alphabet {t, n}. The initial state, in which only the leftmost process has
a token, is the regular language tn∗.

At each time step, an agent chooses an action from the set {a, b, c}, and each
of these actions corresponds to one of the following outcomes.

(a) Each even-indexed process with a token passes it to the right. Each odd-
indexed process with a token passes a copy of it to the right.

(b) Each odd-indexed process with a token passes it to the right. Each even-
indexed process with a token passes a copy of it to the right.

(c) The outcome of a (resp. b) occurs with probability p (resp. (1 − p)).

186 T. Dohmen et al.

Fig. 1. An edge from q0 to q2 labelled by t\n denotes that if the transducer reads the
symbol t from state q0, then it outputs the symbol n and moves to q2. Double-circled
states are accepting. Such a machine is understood to only produces outputs for inputs
that, once completely processed, leave the transducer in an accepting state.

Figure 1 depicts finite state transducers1 corresponding to actions a and b. The
property to be verified is that exactly one process possesses a token at any
given time. The essence of this property may be captured by a reward function2

R : 2{t,n}∗ → R defined such that

R(L) =

{
0 if L ⊆ n∗tn∗,
−1 otherwise.

From the initial configuration tn∗, action a moves the system to state ntn∗

and incurs a reward of 0, while action b transitions the system to the configura-
tion ttn∗ and incurs a reward of −1. The optimal policy selects action a when
the token is with a process with an even index, and chooses action b otherwise.

In RRL, the agent initially chooses an action that it deems appropriate for
the state tn∗. The environment then returns a language obtained by applying
either transducer Ta or transducer Tb to transform tn∗, depending on the agent’s
choice. From tn∗, the two possible languages are ntn∗ and ttn∗. The environment
also assigns a reward to the agent. Repeated interactions of this type result in
a sequence of states (regular languages) and rewards. The goal of the agent is
to learn a policy (a function from regular languages to actions) that maximizes
the cumulative reward.

Since there are infinitely many regular languages, the system described in
Example 1 gives rise to an infinite-state decision process. As there is no known
convergent RL algorithm for infinite-state environments in general, this prohibits
the direct use of tabular RL algorithms for RRL. In regular model checking,
techniques exist to address the difficulties of dealing with infinite state spaces,
such as widening and acceleration. In regular reinforcement learning, we will
leverage advances in graph neural networks to tackle this challenge.

1 Note that the transducers in Fig. 1 are designed under the implicit assumption that
their input strings will contain at most one t symbol. This is because there is no
way of removing tokens from the system once they have been introduced, and, as a
result, no learning can occur after a second token is introduced.

2 Since containment is decidable for regular languages, R is computable.

Regular Reinforcement Learning 187

Fig. 2. Illustration of the difference between transitions in RMC and RMDPs.

Contributions. As in RMC, the primary application of language-theoretic mod-
eling in RRL is the symbolic representation of states and transitions in the
underlying system. We formalize RL environments that are constructed accord-
ing to this principle under the name regular Markov decision processes (RMDPs).
These environments generalize the systems modeled in RMC by incorporating
controllable dynamics (through the agent selecting actions) and stochastic tran-
sition dynamics. Figure 2 provides a visual depiction of the similarities and dif-
ferences between system transitions in RMC vs. RRL.

We provide a theoretical analysis of various aspects of RMDPs, focussing on
issues related to decidability, finiteness, and approximability of optimal policies.
This clarifies the basic limits of RRL and helps in determining when standard
RL methods can or cannot be adapted to this setting. In particular, we establish
the following results in Sect. 4.

– The optimal expected payoff, known as the value, of a given RMDP under an
arbitrary payoff function is not computable.

– For any RMDP with computable rewards and transition probabilities, the
value under a discounted payoff is approximately computable.

– For any RMDP with computable rewards and transition probabilities, the
value under a discounted payoff is PAC-learnable.

– We identify several conditions under which an RMDP remains finite and
present a Q-learning algorithm for such situations.

188 T. Dohmen et al.

After this, we turn our attention toward practical applications of RRL. In
Sect. 5 we propose a formulation of deep RRL. By representing regular languages
as finite-state automata and viewing automata as labeled directed graphs, we
are able to exploit graph neural networks for approximating optimal values and
policies. Graph neural networks [56] are neural network architectures that pro-
cess graphs as input, typically by performing repeated message passing of vectors
over the graph’s structure. We demonstrate through a collection of experimental
case studies that deep RRL is both natural and effective.

2 Related Work

Regular Model Checking. RMC [3,5,18,55] is a verification framework based
on symbolically encoding system states and transitions as regular languages
and rational transductions, respectively. Despite the relative simplicity of ratio-
nal transductions, allowing their arbitrary iteration produces a Turing-complete
model of computation. Consequently, significant effort has been put into methods
to approximate the transitive closures of rational transductions, and to compute
them exactly in special cases [17,38,52].

In particular, incorporating automata learning techniques into the RMC tool-
box [33,43,45] has shown promise. There is also significant work on improving
the framework’s expressive capabilities by extending RMC to enable the use
of ω-regular languages [13,40,41], regular tree languages [4,6,16,19], and more
powerful types of transductions [26]. RMC and its various extensions have been
successfully applied to verification safety and liveness properties in a variety of
settings related to mutual exclusion protocols, programs operating on unbounded
data structures [14,15], lossy channel systems [8], and additive dynamical sys-
tems over numeric domains [11,12]. To the best of our knowledge, this paper is
the first to combine deep reinforcement learning with regular model checking.

Regular Languages and Reinforcement Learning. The use of regular languages
in RL has become increasingly popular to meet the increasing demand for struc-
tured, principled representations in neuro-symbolic artificial intelligence. The
work closest to our own employs regular languages as a mechanism for mod-
eling aspects of environments with certain kinds of non-Markovian, or history-
dependent, dynamics.

Regular Decision Processes [20,21] are the topic of a recent line of research
at the intersection of language-theoretic regularity and sequential optimization.
A regular decision process is a finite state probabilistic transition system—much
like a traditional Markov decision process (MDP)—except that transition proba-
bilities and rewards are dependent on some regular property of the history. Note
that while regular decision processes provide a succinct modeling framework for
a subclass of non-Markovian optimization problems, they can be converted to
larger, but semantically equivalent, finite-state MDPs. In contrast, the RMDPs
introduced in this paper are not generally equivalent to finite MDPs. Consider-
able work has been done to develop the theory and practice around regular deci-

Regular Reinforcement Learning 189

sion processes, including design and analysis of inference algorithms [1], learning
efficiency analysis [47], and empirical evaluations of specific modeling tasks [42].

Reward Machines [34–36] are finite state machines used in modeling reward
signals in decision processes with non-Markovian, but regular, reward dynamics
Attention to the topic has resulted in inference algorithms for learning reward
machines in partially observable MDPs [37], methods for jointly learning reward
machines and corresponding optimal policies [57], adaptations of active gram-
matical inference algorithms like L� for reward machine inference [58], gener-
alization to probabilistic machines modeling stochastic reward signals [24,29],
applications to robotics [22], and more [25,59].

3 Preliminaries

Let N and R denote, respectively, the natural numbers and the real numbers.
For a set X, we write 2X to denote its powerset and |X| to denote its cardinality.

3.1 Regular Languages

An alphabet Σ is a finite set of symbols, and a word w over Σ is a finite string of
its symbols. The length |w| of a word w is the number of its constituent symbols.
The empty word, of length 0, is denoted by ε. We write Σn for the set of all
words of length n. Further, let Σ≤n =

⋃n
k=0 Σk be the set of all strings of length

at most n and let Σ∗ =
⋃∞

n=0 Xn be the set of all words over Σ. A subset
L ⊆ Σ∗ is a called a language.

Definition 1 (FSA). A (nondeterministic) finite-state automaton (FSA) A is
given by a tuple 〈Σ,Q, q0, F, δ〉, where Σ is an alphabet, Q is a finite set of
states, q0 ∈ Q is a distinguished initial state, F ⊆ Q is a set of final states, and
δ : Q × Σ → 2Q is a transition function.

The transition function δ may be extended to δ∗ : Q × Σ∗ → 2Q such that
δ∗(q, ε) = {q} and δ∗(q, σw) =

⋃
q′∈δ(q,σ) δ∗(q′, w). The semantics of an FA A

are given by a language

LA = {w ∈ Σ∗ : δ∗ (q0, w) ∩ F �= ∅} ,

and we say that A recognizes LA.

A language is regular if it is recognized by an FSA.

3.2 Rational Transductions

Let Σ and Γ be alphabets. A mapping θ : Σ∗ → 2Γ ∗
, or equivalently a relation

over Σ∗ × Γ ∗, is called a transduction. For a language L and a transduction
θ : Σ∗ → 2Γ ∗

, let θ(L) =
⋃

x∈L θ(x). The domain of θ : Σ∗ → 2Γ ∗
is given as

dom (θ) = {x ∈ Σ∗ : θ(x) �= ∅} and its image is defined as im (θ) =
⋃

x∈Σ∗ θ(x).

190 T. Dohmen et al.

Given a finite set of transductions Θ with type Σ∗ → 2Σ∗
, each finite word

θ1 . . . θn ∈ Θ∗ corresponds to the transduction θn ◦· · ·◦θ1 where ε represents the
identity mapping, i.e. ε(x) = x for every x ∈ Σ∗. For convenience, we identify the
word θ1 . . . θn with the transduction θn◦· · ·◦θ1 so that θ1 . . . θn(x) = θn◦· · ·◦θ1(x)
holds for every x ∈ Σ∗. The set of languages reachable from a given language L
via elements of Θ∗ is called the orbit of Θ on L and is written as

OrbΘ (L) = {τ(L) : τ ∈ Θ∗} .

Definition 2 (FST). A (nondeterministic) finite-state transducer (FST) T is
given by a tuple 〈Σ,Γ,Q, q0, F, δ〉, where
– Σ and Γ are input and output alphabets, respectively,
– Q is a finite set of states,
– q0 ∈ Q is a distinguished initial state,
– F ⊆ Q is a set of final states, and
– δ : Q × Σ → 2Q×Γ ∗

is a transition function that maps each state-input pair
to a set of state-output pairs.

The transition function δ may be extended to δ∗ : Q×Σ∗ → 2Q×Γ ∗
such that

δ(q, ε) = {〈q, ε〉} and δ∗(q, σx) = {〈q2, yz〉 : 〈q1, y〉 ∈δ(q, σ) ∧ 〈q2, z〉 ∈δ∗(q1, x)}.
The semantics of T are the transduction �T � : Σ∗ → 2Γ ∗

defined by

�T �(x) = {y ∈ Γ ∗ : ∃q ∈ F. 〈q, y〉 ∈ δ∗(q0, x)} .

A rational transduction θ is one for which there exists an FST T such that
θ = �T �. A rational function θ is a rational transduction such that |θ(x)| ≤ 1 for
all x ∈ Σ∗. When discussing rational functions, we write the type as Σ∗ → Γ ∗.

Remark 1. While the title of regular language has become standard terminology,
there is no universally adopted vocabulary for their relational counterparts. The
transductions we qualify here as rational are sometimes qualified alternatively
in related work with terms such as regular, FST-definable, GSM-definable, etc.

3.3 Markov Decision Processes

Let Dist (X) be the family of all probability distributions over a set X.

Definition 3 (MDP). A Markov decision process (MDP) M is presented by a
tuple 〈S, ŝ, A, p, r〉, where
– S is a set of states,
– ŝ ∈ S is a distinguished initial state,
– A is a set of actions,
– p : S × A → Dist (S) is a probabilistic transition function, and
– r : S × A → R is a reward function.

Regular Reinforcement Learning 191

For any states s, t ∈ S and action a ∈ A, we write p(t | s, a) as a shorthand
for p(s, a)(t). We call an MDP finite if both S and A are finite sets.

A policy over an MDP M = 〈S, ŝ, A, p, r〉 is a history-dependent function
that determines how the next action is stochastically chosen. More formally,
a policy is defined as a mapping π : S (AS)∗ → Dist (A) from the domain of
interaction histories to probability distributions over the action space. Let ΠM

be the set of all policies over the MDP M . Fixing a policy π on M induces a
family of probability distributions {Pn

π : n ∈ N} on histories h = s1a1 . . . snan

with s1 = ŝ, where P
n
π(h) =

∏n−1
k=1 p(sk+1 | sk, ak)π(ak | s1a1 . . . ak−1sk). There

exists a unique extension Pπ ∈ Dist ((SA)ω) of the family {Pn
π : n ∈ N} and a

corresponding expectation Eπ.
An objective over an MDP M with states S and actions A is a real-valued

function J over the domain of infinite real sequences. Whenever the function J◦r
is Pπ-measurable, the expectation Eπ(J) =

∫
J ◦ r dPπ is well-defined and can

be used to evaluate the quality of the policy π with respect to the environment
M . The J-value of M is defined as ValJ (M) = supπ∈ΠM

Eπ(J).
Let J be a fixed objective function.

– The J-value problem asks, given as input (i) an MDP M and (ii) a lower
bound b, to decide whether the inequality b ≤ ValJ (M) holds.

– The J-value is computable if, and only if, there is an algorithm that, given an
MDP M as input, returns ValJ (M).

– The J-value is approximable if, and only if, there exists an algorithm that,
given as input (i) an MDP M and (ii) a tolerance ε > 0, returns a value V
such that |ValJ (M) − V | ≤ ε.

4 Regular Markov Decision Processes

Regular Markov decision processes (RMDPs) are MDPs where states have been
provided with a specific structure expressed through a regular language over
some alphabet Σ. An execution of an RMDP starts with an initial regular lan-
guage L0 = I. At each step i ≥ 0, a decision maker or learning agent selects
an action ai from the current state Li. The environment resolves the action by
selecting a transduction θi from the probabilistic distribution over Θ correspond-
ing to the action and returning the next state as Li+1 = θi(Li) and returning
the reward r(Li). The goal of the agent is to learn a policy for selecting actions
in a manner that optimizes the value of a given objective J in expectation.

Definition 4 (RMDP). A regular Markov decision process (RMDP) R is
given by a tuple 〈Σ, I,Θ,A,p, r〉, where
– Σ is an alphabet,
– I ⊆ Σ∗ is an initial regular language,
– Θ is a finite set of rational transductions with type Σ∗ → 2Σ∗

,
– A is a finite set of actions,

192 T. Dohmen et al.

– p : 2Σ∗ × A → Dist (Θ) is a mapping from language-action pairs to distribu-
tions over Θ, and

– r : 2Σ∗ → R is a bounded reward function.

Semantically, R is interpreted as a countable MDP �R� = 〈S, ŝ, A, p, r〉. The
state set is defined as S = OrbΘ (I) with initial state ŝ = I, and the transition
and reward functions are such that the equations

p(θ(L) | L, a) = p(θ | L, a) and r(L, a) = r(L),

hold for all languages L ∈ S, actions a ∈ A, and transductions θ ∈ Θ. The value
of an objective J over a RMDP R is defined as ValJ (R) = ValJ (�R�).

An RMDP R is called finite if the orbit OrbΘ (I), is finite. An RMDP is said
to be computable if the transition probability map p and the reward function r
are computable.

4.1 Undecidability of Values

Our first theoretical result establishes that value problems for RMDPs are gen-
erally undecidable.

Theorem 1. Determining whether an arbitrary RMDP satisfies any fixed non-
trivial property is undecidable.

Proof. We construct, as depicted in Fig. 3, a deterministic FST that can simulate
the transition relation of an arbitrary Turing machine (TM). Configurations of
the TM, i.e. combinations of internal state and tape contents, are encoded as
words in the regular language (0 + 1) (0 + 1)∗ Z (0 + 1)∗, where Z is the finite
set of internal states. The index i of the single element of Z occurring in each
such word represents that the tape head of the TM is at position i−1. Assume
that the TM in question includes an arbitrary transition instruction according
to the following pair of rules.

– If 0 is read in state z, then write b0, go to state z0, and move the tape head.
– If 1 is read in state z, then write b1, go to state z1, and move the tape head.

We leave the direction of the tape head shift undetermined and show all possibil-
ities in Fig. 3. The red edges show the construction for the above TM transition
when the tape head shifts left. The blue edges show the construction when the
tape head shifts right.

In combination with Rice’s theorem [46]—which states that no non-trivial3
property is decidable for the class of Turing machines— this construction implies
the desired result. ��

It follows from Theorem 1 that optimal values of RMDPs are not computable
in general.

Corollary 1. Under any objective, the RMDP value problem is undecidable.

3 Using Rice’s terminology, a property is trivial with respect to class of models if it
holds for all models in the class or if it holds for no models in the class.

Regular Reinforcement Learning 193

Fig. 3. The FST from the proof of Theorem 1, simulating the transition function of a
Turing machine over a binary alphabet.

4.2 Discounted Optimization

We now consider RMDPs under discounted objectives. Let x = x1, x2, . . . be a
bounded infinite sequence of real numbers. Given a discount factor λ ∈ [0, 1),
the λ-discounted objective Dλ is defined as

Dλ(x) =
∞∑

n=1

xnλn−1.

Over computable RMDPs, it is possible to approximate the Dλ-value to an
arbitrary tolerance. This result is facilitated by properties of the discounted
objective, and therefore holds even when the RMDP in question is not finite.
The proof uses the standard technique of finding, given a tolerance ε and a
discount factor λ, the least n such that∣∣∣∣∣Dλ(x) −

n∑
k=1

λk−1xk

∣∣∣∣∣ ≤ ε.

Theorem 2. If R is a computable RMDP, then the Dλ-value is ε-approximable,
for any λ ∈ [0, 1) and any ε > 0.

Proof. For a given RMDP R, the Dλ-value can be characterized by the following
Bellman optimality equation:

D(L) = max
a∈A

{
r(L) + λ

∑
θ∈Θ

p(θ | L, a)D(θ(L))

}
.

It follows from the more general result on MDPs with countable state space,
finite action space, and bounded reward [30]. Let b be an upper bound on the
absolute value of the rewards. For a given ε > 0, let n be such that

λn+1b

1 − λ
≤ ε.

194 T. Dohmen et al.

Then a solution to the following recurrence characterizes an ε-optimal value and
corresponding memoryful policy for the RMDP:

Dn(L) =

⎧⎨
⎩max

a∈A

{
r(L) + λ

∑
θ∈Θ

p(θ | L, a)Dn−1(θ(L))
}

if n > 0

0 otherwise.

The proof is now complete. ��
An RL algorithm is probably approximately correct (PAC) [53], with respect

to parameters ε > 0 and δ > 0, if after polynomially many samples of the
environment, it produces an ε-optimal policy with probability 1 − δ. Objective
functions under which PAC algorithms exist are called PAC-learnable.

Theorem 3. For every RMDP, the Dλ-value is PAC-learnable.

Proof. Our approach for calculating ε-optimal policies for the discounted objec-
tive involves computing a policy that is optimal for a fixed number of steps,
denoted by n. Given ε > 0, we choose n such that

λn+1b

1 − λ
≤ ε.

This policy can be computed on a finite-state MDP obtained by unfolding the
given RMDP n times. We can then apply existing PAC-MDP algorithms [7]
to compute an

ε

2
-optimal policy, which is also an ε-optimal policy for the

RMDP. ��

4.3 Finiteness Conditions

In this section, we provide three sufficient conditions to guarantee finiteness
of the RMDP. Fix an arbitrary RMDP R = (Σ, I,Θ,A,p, r) with semantics
�R� = (S, ŝ, A, p, r).

Word-Based Condition. A transduction θ : Σ∗ → 2Γ ∗
is (i) length-preserving if

|θ(x)| = |x|, (ii) decreasing if |θ(x)| < |x|, (iii) non-increasing if |θ(x)| ≤ |x|, (iv)
non-decreasing if |θ(x)| ≥ |x|, (v) increasing if |θ(x)| > |x|, for all x ∈ Σ∗.

Proposition 1. If I is a finite language, Θ is non-increasing, |Σ| = n, and
maxx∈I |x| = m, then OrbΘ (I) ∈ 2O(nm).

Proof. The statement can be derived from the observation that the longest string
possibly appearing in the image θ(I) of a finite language I under a non-increasing
transformation θ is of length m = maxw∈I |w|. There are nm strings of length
m over an alphabet Σ of size n, so it follows that |θ(I)| ≤ 1 +

∑m
k=1 nk. More

succinctly, this says that |θ(I)| = O (nm). Since OrbΘ (I) must comprise some
collection of subsets of Σ≤m, we conclude that |OrbΘ (I)| = 2O(nm). ��

Regular Reinforcement Learning 195

Language-Based Condition. A transduction θ : Σ∗ → 2Σ∗
is (i) specializing if

θ(L) ⊆ L, (ii) non-specializing if θ(L) �⊆ L, (iii) generalizing if L ⊆ θ(L), (iv)
non-generalizing if L �⊆ θ(L), for all L ⊆ Σ∗.

Proposition 2. If |I| = n and Θ is specializing, then OrbΘ (I) ≤ 2n.

Proof. This result can be deduced from the observation that when beginning
with a finite initial language, specializing transformations can only generate
languages with a cardinality that is either equal to or smaller than that of I. ��

Reward-Based Condition. Let ∼R⊆ 2Σ∗ × 2Σ∗
be an equivalence relation over

languages such that L1 ∼R L2 if, and only if,

r(L1) = r(L2) and ∀θ ∈ Θ. θ(L1) ∼R θ(L2).

This relation is often useful as a means of partitioning the state space of an
RMDP into a finite set of equivalence classes that respects the structure of its
dynamics. For instance, it is straightforward to deduce the following proposition.

Proposition 3. If there exists n ∈ N such that r(L) = r
(
L ∩ Σ≤n

)
holds for

every L ⊆ Σ∗, then OrbΘ (I) has finitely many ∼R -equivalence classes.

4.4 Q-Learning in RMDPs

We have discussed some conditions that ensure the finiteness of �M�. When
any such condition is satisfied, it becomes feasible to employ off-the-shelf RL
algorithms for discounted optimization. Equation (1)—in which [L]∼ denotes the
equivalence class of ∼R to which the language L belongs—provides an iteration
scheme for a variation on the Q-learning [54] algorithm tailored for RMDPs. If
learning rates (αn)n∈N

are such that
∑∞

n=1 αn = ∞ and
∑∞

n=1 α2
n < ∞, and

the trajectory ([Ln]∼ , an, rn)n∈N
includes each pair [L]∼, a infinitely often, then

iterating Eq. (1) converges almost surely to an optimal policy.

Qn+1 ([Ln]∼, an) := (1−αn)Qn
(
[Ln]∼ , an

)
+αn

(
rn+max

a∈A
Qn

(
[Ln+1]∼ , a

))
(1)

5 Deep Regular Reinforcement Learning

Generally speaking, RMDPs may have infinite state spaces, so we cannot guar-
antee convergence of Q-learning. In light of this fact and the uncomputability
of exact discounted values—established by Theorem 1—it makes sense to con-
sider approximate learning methods. Accordingly, we propose a deep learning
approach based on using graph neural networks (GNNs). Our key insight in
this context is the observation that we can use automaton representations of the
states of an RMDP directly as inputs to GNNs. Much like standard deep RL uses

196 T. Dohmen et al.

feature vectors as inputs for neural networks, this technique uses automata—
which are essentially finite labeled graphs—as inputs for GNNs. We term this
approach deep regular reinforcement learning.

Before presenting experimental results, we describe the overall architecture
of our learning scheme in the next subsection.

Fig. 4. Deep regular reinforcement learning architecture.

Our graph neural network architecture, is based on the graph convolution
operator proposed by Kipf & Welling [39]. We perform an independent graph
convolution for each letter in the input automaton— only allowing the convolu-
tion to operate over the graph connectivity for that letter—and take the mean
of the resulting vectors for each node, followed by a nonlinearity. We repeat this
for N layers and then concatenate the sum of all node vectors with the element-
wise maximum of all node vectors. Separate multi-layer perceptrons produce the
policy and state value predictions from this representation. We use proximal pol-
icy optimization (PPO) [48] for training. Figure 4 outlines this architecture. The
initial embedding for each node in the automaton is a binary vector of length
two, which encodes whether a node is the initial state and if a node is accepting.
For all experiments, the graph neural network had 3 graph convolution layers
with hidden dimension 256, and the multi-layer perceptron heads had 2 layers
each with hidden dimension 256. We used the LeakyReLU nonlinearity.

In the remainder of this section, we present specific examples of regular RL
problems and provide experimental results to illustrate the effectiveness of deep
regular reinforcement learning.

Regular Reinforcement Learning 197

5.1 Token Passing

We first consider the token passing scenario of Example 1 (cf. Fig. 1). Note
that this example admits a partitioning of the environment via the equivalence
relation defined in Sect. 4.3: there are two equivalence classes, corresponding
to whether there are an even or an odd number of n symbols before the first
t symbol. We compare using the GNN on the original representation (GNN)
and on the representation formed by the two equivalence classes (GNN+EC).
Figure 5 shows the FSA representations used for the two equivalence classes.

Fig. 5. Automata used to represent even and odd equivalence classes.

The hyperparameters we used for PPO in this case study were 1024 steps
per update, a 512 batch size, 4 optimization epochs, a clip range of ε = 0.2, and
a discount factor of λ = 0.99. The learning curves4 are shown in Fig. 6.

Fig. 6. Reward curves for the token passing case study.

Note that under the selected network architecture, determining whether the
number of n symbols occurring before the first t symbol is even or odd is largely
determined by the multi-layer perceptron components. Roughly, the number of

4 Here, the dark lines are means and the shaded regions are the 10th to 90th percentiles
over 5 training runs. All subsequent reward curves should be read this way as well.

198 T. Dohmen et al.

n symbols before the first t symbol is encoded in unary in the global sum compo-
nent of the graph representation. The multi-layer perceptrons must then detect
parity on this unary representation, which is challenging. To encourage learning,
we use a denser reward of 1 on every successful step and −1 on failure, up to a
time limit of 30. Although alternative network architectures have the potential
to perform better, the simple two-state equivalence class representation is still
expected to result in faster learning than the unmodified representation. The
learning run is shortened, and the maximum episode length is set to 30 to high-
light the difference between these two setups. We see that forming equivalence
classes leads to an increase in learning speed.

5.2 Duplicating Pebbles

Consider a grid world with multiple pebbles on it. The agent can select two
adjacent directions, e.g., “up” and “right”, and every pebble will be duplicated
and moved in each of these directions. The goal of the agent is to have at least one
pebble reach the goal state, while all pebbles do not accumulate a cost greater
than a threshold t = 2. If a pebble goes over a trap cell, it incurs a cost of 1 for
that pebble.

Although the number of pebbles grows exponentially, doubling after each
action, the set of paths the pebbles take has an FSA representation. Namely,
one can represent the growing paths by adding a state to the FSA with two
transitions to the state corresponding to the two directions selected. This added
state is marked as the only accepting state. The language of this FSA corresponds
to all paths that pebbles have taken. A reward of −1 is given on failure and a
reward of 1 is given on success. The grid layout is shown in Fig. 7, where the
initial pebble begins in the top left. The agent learns the optimal policy “down,
right”, “down, right”, “up, left”, “up, left” in about 10k training steps. Figure 7
shows the execution of this optimal policy, from left to right, top to bottom.
Traps are denoted by red cells and the goal is denoted by a green cell. The
number in a cell counts the number of pebbles it contains.

The hyperparameters we used for PPO in this case study were 512 steps per
update, a 128 batch size, 4 optimization epochs, a clip range of ε = 0.2, and a
discount factor of λ = 0.99. The resulting reward curve is shown in Fig. 8.

Since the representation of the state is an FSA of the possible trajectories,
a linear program is solved at each step to find the highest cost path needed for
computing the reward. Note that when “up, left” is first performed, some pebbles
wrap around to the opposite side of the grid. If “down, right” was performed 3
times, instead of twice, then the agent would fail the objective since the 2 pebbles
at (1, 2) on the grid would duplicate and visit the trap state again after having
already visited it once.

Regular Reinforcement Learning 199

Fig. 7. Execution of the optimal policy for the duplicating pebbles case study.

Fig. 8. Reward curve for the duplicating pebbles case study.

5.3 Shunting Yard Algorithm

To showcase representation of unbounded data structures like stacks and queues
as a strength of RRL, we consider learning the shunting yard algorithm [28]
which transforms an expression in infix notation to postfix notation.

We represent the input as a regular language consisting of a single string
containing the concatenation of the infix notation input, the stack, and the
output, each separated by a special symbol “#”. The agent has three actions:

– moving the first character of the input to the output,
– pushing the first character of the input to the stack, and
– popping the top character on the stack to the output.

We generate random infix notation expressions and give a reward of −1 if the
output is an invalid postfix expression, a reward of 0.5 if the output is a valid

200 T. Dohmen et al.

Fig. 9. Runs produced by the learned policy for the shunting yard algorithm.

Fig. 10. Reward curve for the shunting yard algorithm case study.

postfix expression that evaluates to the wrong value, and a reward 1 if the output
evaluates to the correct value. The agent is able to learn an effective strategy in
about 100k time steps.

Figure 9 shows example runs produced by the learned policy. The represen-
tation used during learning is an FSA accepting a single string, but we print
the string for clarity. Actions are the actions selected upon observing that state.
The last state is the final state at termination.

The hyperparameters we used for PPO in this case study were 1024 steps per
update, a 128 batch size of, 10 optimization epochs, a clip range of ε = 0.2, and
a discount factor of λ = 0.99. The resulting reward curve is shown in Fig. 10.

5.4 Modified Tangrams

This case study examines the application of deep RRL to variations of geomet-
ric puzzles known as tangrams, which involve arranging a finite set of polygonal

Regular Reinforcement Learning 201

Fig. 11. A modified tangram. The goal is to cover the gray shape at the center resem-
bling the symbol “×” by rearranging the colored tiles {U, V, W, X, Y, Z}. (Color figure
online)

tiles on a flat surface to create a picture. The picture is typically a silhouette in
the shape of a common object such as a building or a tree, and the puzzle is com-
pleted once the tiles have been arranged into a configuration that covers the sil-
houette exactly. A standard tangram set includes a collection of target pictures,
5 right triangles (2 large, 1 medium, and 2 small), a square, and a parallelogram.
We consider modified tangrams, which we qualify as such because the pieces do
not coincide with the standard tile set. An example is displayed in Fig. 11.

In order to cast these sorts of puzzles into the RRL framework, we apply stan-
dard notions used in positional numeration systems to connect geometric shapes
and regular languages. More precisely, tiles are considered as sets of points in the
unit square [0, 1] × [0, 1] of the Euclidean plane. Then, sets of points are encoded
by regular languages consisting of digital expansions of these points.

For a numeration base b ∈ N, define a map 〈〈 · 〉〉b : {0, . . . , b − 1}∗ → (0, 1) as

〈〈 w 〉〉b =
|w|∑
k=1

wk

bk

to interpret each string of digits w as a base-b digital expansion (where the left-
most symbol is the most significant bit) of a number 〈〈 w 〉〉b in the unit interval.
Such interpretations extend to languages so that

〈〈 L 〉〉b = {〈〈 w 〉〉b : w ∈ L} .

We fix the base as b = 2, and consider automata over the alphabet the
two-dimensional boolean alphabet B

2 to encode points in the plane. We design
automata capturing languages that represent the sets of points included in par-
ticular shapes, as illustrated in Fig. 12.

202 T. Dohmen et al.

Fig. 12. Automata corresponding to some of the starting tiles shown in Fig. 11.1.

Remark 2. Automata AX and AZ may be obtained from the automata AW

(Fig. 12.3) and AY (Fig. 12.4), respectively. This can be done by taking the logi-
cal complement of the x-coordinate on every non-looping transition and exchang-
ing pairs of self loops on a common state labeled by

(
0 0

)
and

(
1 1

)
to ones

labeled by
(
0 1

)
and

(
1 0

)
.

We also design finite-state transducers, as illustrated in Fig. 13, for basic geo-
metric operations such as translation by 1/2, translation by 1/4, and reflection
across x = 1/2 and y = 1/2.

The agent’s goal is to apply these basic transformations to move each shape
from its initial position into the goal region. To reduce the number of actions, the
agent selects transformations for one of the shapes at a time and uses a special
“submit” action to move to the next shape. We treat the collection of automata
as a single nondeterministic FSA, and specially mark the alphabet of the active
automaton in the collection. Rewards are proportional to the overlap with the
remaining exposed target shape when the submit action is used. On all other
steps, a reward of −0.01 is given to encourage promptness.

Regular Reinforcement Learning 203

Fig. 13. FSTs implementing some rigid transformations on the unit square. Arbitrary
digits are represented by d, while ∗ represents arbitrary pairs of digits.

Fig. 14. Annotated reward curve for the modified tangram example.

The hyperparameters used for PPO in this case study were 256 steps per
update, a 64 batch size, 10 optimization epochs, a clip range of ε = 0.1, and a
discount factor of λ = 0.99. The resulting reward curve—which we annotate at
various points to show the agent’s progress—is shown in Fig. 14.

6 Conclusion
This paper introduced a framework for symbolic reinforcement learning, dubbed
regular reinforcement learning, where system states are modeled as regular lan-
guages and transition relations are modeled as rational transductions. We estab-
lished theoretical results about the limitations and capabilities of this framework,
proving that optimal values and policies are approximable and efficiently learnable
under discounted payoffs. Furthermore, we developed an approach to deep regular
reinforcement learning that combines aspects of deep learning and symbolic repre-
sentation via the use of graph neural networks. Through a variety of case studies,
we illustrated the effectiveness of deep regular reinforcement learning.

Acknowledgements. This work was supported in part by the NSF through grant
CCF-2009022 and the NSF CAREER award CCF-2146563.

204 T. Dohmen et al.

References

1. Abadi, E., Brafman, R.I.: Learning and solving regular decision processes. In: Inter-
national Joint Conference on Artificial Intelligence, IJCAI, pp. 1948–1954. ijcai.org
(2020). https://doi.org/10.24963/ijcai.2020/270

2. Abdulla, P.A.: Regular model checking. Int. J. Softw. Tools Technol. Transfer
14(2), 109–118 (2012). https://doi.org/10.1007/S10009-011-0216-8

3. Abdulla, P.A.: Regular model checking: evolution and perspectives. In: Olderog,
E.-R., Steffen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS,
vol. 13030, pp. 78–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91384-7_5

4. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_47

5. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_3

6. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: a
simulation-based approach. J. Logic Algebraic Program. 69(1–2), 93–121 (2006).
https://doi.org/10.1016/j.jlap.2006.02.001

7. Agarwal, A., Jiang, N., Kakade, S.M., Sun, W.: Reinforcement learning: Theory
and algorithms. CS Department, UW Seattle, Seattle, WA, USA, Technical Report
32, 96 (2019)

8. Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-structured
regular model checking, with applications to lossy channel systems. In: Hermann,
M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361.
Springer, Heidelberg (2006). https://doi.org/10.1007/11916277_24

9. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets - an Introduction to the Theory,
2nd edn. Vieweg (2002)

10. Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi,
D., Fischer, Q., Hashme, S., Hesse, C., et al.: Dota 2 with large scale deep rein-
forcement learning. arXiv preprint arXiv:1912.06680 (2019)

11. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theoret. Comput. Sci. 309(1–3), 413–468 (2003). https://doi.org/10.1016/S0304-
3975(03)00314-1

12. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45069-6_24

13. Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_41

14. Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying programs with
dynamic 1-selector-linked structures in regular model checking. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1_2

15. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006). https://doi.org/10.1007/
11823230_5

https://doi.org/10.24963/ijcai.2020/270
https://doi.org/10.1007/S10009-011-0216-8
https://doi.org/10.1007/978-3-030-91384-7_5
https://doi.org/10.1007/978-3-030-91384-7_5
https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1016/j.jlap.2006.02.001
https://doi.org/10.1007/11916277_24
http://arxiv.org/abs/1912.06680
https://doi.org/10.1016/S0304-3975(03)00314-1
https://doi.org/10.1016/S0304-3975(03)00314-1
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-24730-2_41
https://doi.org/10.1007/978-3-540-31980-1_2
https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/11823230_5

Regular Reinforcement Learning 205

16. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. Int. J. Softw. Tools Technol. Transfer 14(2), 167–191 (2012).
https://doi.org/10.1007/s10009-011-0205-y

17. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_29

18. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_31

19. Bouajjani, A., Touili, T.: Widening techniques for regular tree model checking. Int.
J. Softw. Tools Technol. Transfer 14(2), 145–165 (2012). https://doi.org/10.1007/
s10009-011-0208-8

20. Brafman, R.I., Giacomo, G.D.: Regular decision processes: A model for non-
markovian domains. In: International Joint Conference on Artificial Intelligence,
IJCAI, pp. 5516–5522. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/766

21. Brafman, R.I., Giacomo, G.D.: Regular decision processes: modelling dynamic sys-
tems without using hidden variables. In: International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS, pp. 1844–1846. International Founda-
tion for Autonomous Agents and Multiagent Systems (2019). http://dl.acm.org/
citation.cfm?id=3331938

22. Camacho, A., Varley, J., Zeng, A., Jain, D., Iscen, A., Kalashnikov, D.: Reward
machines for vision-based robotic manipulation. In: International Conference on
Robotics and Automation, ICRA, pp. 14284–14290. IEEE (2021). https://doi.org/
10.1109/ICRA48506.2021.9561927

23. Chatterjee, K., Fu, H., Goharshady, A.K., Okati, N.: Computational approaches
for stochastic shortest path on succinct MDPs. In: International Joint Conference
on Artificial Intelligence, IJCAI, pp. 4700–4707. ijcai.org (2018). https://doi.org/
10.24963/ijcai.2018/653

24. Corazza, J., Gavran, I., Neider, D.: Reinforcement learning with stochastic reward
machines. In: Conference on Artificial Intelligence, AAAI vol. 36, no. 6, pp. 6429–
6436 (2022). https://doi.org/10.1609/aaai.v36i6.20594

25. Dann, M., Yao, Y., Alechina, N., Logan, B., Thangarajah, J.: Multi-agent intention
progression with reward machines. In: International Joint Conference on Artificial
Intelligence, IJCAI, pp. 215–222. ijcai.org (2022). https://doi.org/10.24963/ijcai.
2022/31

26. Dave, V., Dohmen, T., Krishna, S.N., Trivedi, A.: Regular model checking with
regular relations. In: Bampis, E., Pagourtzis, A. (eds.) FCT 2021. LNCS, vol.
12867, pp. 190–203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86593-1_13

27. Delgado, K.V., Sanner, S., De Barros, L.N.: Efficient solutions to factored MDPs
with imprecise transition probabilities. Artif. Intell. 175(9–10), 1498–1527 (2011).
https://doi.org/10.1016/j.artint.2011.01.001

28. Dijkstra, E.W.: Algol 60 translation: An algol 60 translator for the x1 and making
a translator for algol 60. Stichting Mathematisch Centrum. Rekenafdeling (MR
34/61) (1961)

29. Dohmen, T., Topper, N., Atia, G.K., Beckus, A., Trivedi, A., Velasquez, A.:
Inferring probabilistic reward machines from non-Markovian reward signals for
reinforcement learning. In: International Conference on Automated Planning and
Scheduling, ICAPS, pp. 574–582. AAAI Press (2022). https://doi.org/10.1609/
icaps.v32i1.19844

https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/s10009-011-0208-8
https://doi.org/10.1007/s10009-011-0208-8
https://doi.org/10.24963/ijcai.2019/766
http://dl.acm.org/citation.cfm?id=3331938
http://dl.acm.org/citation.cfm?id=3331938
https://doi.org/10.1109/ICRA48506.2021.9561927
https://doi.org/10.1109/ICRA48506.2021.9561927
https://doi.org/10.24963/ijcai.2018/653
https://doi.org/10.24963/ijcai.2018/653
https://doi.org/10.1609/aaai.v36i6.20594
https://doi.org/10.24963/ijcai.2022/31
https://doi.org/10.24963/ijcai.2022/31
https://doi.org/10.1007/978-3-030-86593-1_13
https://doi.org/10.1007/978-3-030-86593-1_13
https://doi.org/10.1016/j.artint.2011.01.001
https://doi.org/10.1609/icaps.v32i1.19844
https://doi.org/10.1609/icaps.v32i1.19844

206 T. Dohmen et al.

30. Feinberg, E.A.: Total expected discounted reward MDPs: existence of optimal
policies (2011). https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.
eorms0906

31. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Compu-
tation and Machine Learning, MIT Press (2016). http://www.deeplearningbook.
org/

32. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algorithms
for factored MDPs. J. Artif. Intell. Res. 19, 399–468 (2003). https://doi.org/10.
1613/jair.1000

33. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular
languages. In: International Workshop on Verification of Infinite-State Systems,
INFINITY, pp. 21–36. Electronic Notes in Theoretical Computer Science, Elsevier
(2004). https://doi.org/10.1016/j.entcs.2005.01.044

34. Icarte, R.T.: Reward Machines. Ph.D. thesis, University of Toronto, Canada (2022).
http://hdl.handle.net/1807/110754

35. Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward
machines for high-level task specification and decomposition in reinforcement
learning. In: International Conference on Machine Learning, ICML. Proceedings
of Machine Learning Research, vol. 80, pp. 2112–2121. PMLR (2018). http://
proceedings.mlr.press/v80/icarte18a.html

36. Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Reward machines:
exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res.
73, 173–208 (2022). https://doi.org/10.1613/jair.1.12440

37. Icarte, R.T., Waldie, E., Klassen, T.Q., Valenzano, R.A., Castro, M.P.,
McIlraith, S.A.: Learning reward machines for partially observable reinforce-
ment learning. In: Conference on Neural Information Processing Systems,
NeurIPS, pp. 15497–15508 (2019). https://proceedings.neurips.cc/paper/2019/
hash/532435c44bec236b471a47a88d63513d-Abstract.html

38. Jonsson, B., Saksena, M.: Systematic acceleration in regular model checking.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 131–144.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_16

39. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations, ICLR. Open-
Review.net (2017). https://openreview.net/forum?id=SJU4ayYgl

40. Legay, A.: Extrapolating (omega-)regular model checking. Int. J. Softw. Tools
Technol. Transfer 14(2), 119–143 (2012). https://doi.org/10.1007/s10009-011-
0209-7

41. Legay, A., Wolper, P.: On (omega-)regular model checking. ACM Trans. Computat.
Logic 12(1), 2:1–2:46 (2010). https://doi.org/10.1145/1838552.1838554

42. Lenaers, N., van Otterlo, M.: Regular decision processes for grid worlds. In: Leiva,
L.A., Pruski, C., Markovich, R., Najjar, A., Schommer, C. (eds.) Benelux Confer-
ence on Artificial Intelligence, BNAIC/Benelearn. Communications in Computer
and Information Science, vol. 1530, pp. 218–238. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-93842-0_13

43. Lin, A.W., Rümmer, P.: Regular model checking revisited. In: Olderog, E.-R., Stef-
fen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS, vol. 13030,
pp. 97–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91384-7_6

44. Mnih, V., et al.: Human-level control through reinforcement learning. Nature 518,
529–533 (2015)

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0906
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0906
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1613/jair.1000
https://doi.org/10.1613/jair.1000
https://doi.org/10.1016/j.entcs.2005.01.044
http://hdl.handle.net/1807/110754
http://proceedings.mlr.press/v80/icarte18a.html
http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1613/jair.1.12440
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://doi.org/10.1007/978-3-540-73368-3_16
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/s10009-011-0209-7
https://doi.org/10.1007/s10009-011-0209-7
https://doi.org/10.1145/1838552.1838554
https://doi.org/10.1007/978-3-030-93842-0_13
https://doi.org/10.1007/978-3-030-93842-0_13
https://doi.org/10.1007/978-3-030-91384-7_6

Regular Reinforcement Learning 207

45. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 16–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4_2

46. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Am. Math. Soc. 74(2), 358–366 (1953)

47. Ronca, A., Giacomo, G.D.: Efficient PAC reinforcement learning in regular decision
processes. In: International Joint Conference on Artificial Intelligence, IJCAI, pp.
2026–2032. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/279

48. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 arxiv:1707.06347 (2017)

49. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

50. Sipser, M.: Introduction to the Theory of Computation, chap. 1. PWS Publishing
Company (1997)

51. Sutton, R.S., Barto, A.G.: Reinforcement learning - an Introduction. Adaptive
Computation and Machine Learning, MIT Press (1998). https://www.worldcat.
org/oclc/37293240

52. Touili, T.: Regular model checking using widening techniques. In: Verification of
Parameterized Systems, VEPAS 2001, Satellite Workshop of ICALP, pp. 342–356.
Electronic Notes in Theoretical Computer Science, Elsevier (2001). https://doi.
org/10.1016/S1571-0661(04)00187-2

53. Valiant, L.G.: A theory of the learnable. In: Symposium on Theory of Computing,
STOC, pp. 436–445. ACM (1984). https://doi.org/10.1145/800057.808710

54. Watkins, C.J.C.H., Dayan, P.: Technical note q-learning. Mach. Learn. 8, 279–292
(1992). https://doi.org/10.1007/BF00992698

55. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028736

56. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2021). https://doi.org/10.1109/TNNLS.2020.2978386

57. Xu, Z., Gavran, I., Ahmad, Y., Majumdar, R., Neider, D., Topcu, U., Wu, B.:
Joint inference of reward machines and policies for reinforcement learning. In:
International Conference on Automated Planning and Scheduling, Nancy, France,
October 26-30, 2020, pp. 590–598. AAAI Press (2020). https://doi.org/10.1609/
icaps.v30i1.6756

58. Xu, Z., Wu, B., Ojha, A., Neider, D., Topcu, U.: Active finite reward automa-
ton inference and reinforcement learning using queries and counterexamples. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2021. LNCS,
vol. 12844, pp. 115–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84060-0_8

59. Zhou, W., Li, W.: A hierarchical Bayesian approach to inverse reinforcement
learning with symbolic reward machines. In: International Conference on Machine
Learning, ICML. Proceedings of Machine Learning Research, vol. 162, pp. 27159–
27178. PMLR (2022). https://proceedings.mlr.press/v162/zhou22b.html

https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.24963/ijcai.2021/279
http://arxiv.org/abs/1707.06347
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1016/S1571-0661(04)00187-2
https://doi.org/10.1016/S1571-0661(04)00187-2
https://doi.org/10.1145/800057.808710
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BFb0028736
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1609/icaps.v30i1.6756
https://doi.org/10.1609/icaps.v30i1.6756
https://doi.org/10.1007/978-3-030-84060-0_8
https://doi.org/10.1007/978-3-030-84060-0_8
https://proceedings.mlr.press/v162/zhou22b.html

208 T. Dohmen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

LTL Learning on GPUs

Mojtaba Valizadeh1,2 , Nathanaël Fijalkow3 , and Martin Berger1,4(B)

1 University of Sussex, Brighton, UK
2 Neubla UK Ltd., Cambridge, UK

3 CNRS, LaBRI and Université de Bordeaux, Bordeaux, France
4 Montanarius Ltd., London, UK

contact@martinfriedrichberger.net

Abstract. Linear temporal logic (LTL) is widely used in industrial ver-
ification. LTL formulae can be learned from traces. Scaling LTL formula
learning is an open problem. We implement the first GPU-based LTL
learner using a novel form of enumerative program synthesis. The learner
is sound and complete. Our benchmarks indicate that it handles traces at
least 2048 times more numerous, and on average at least 46 times faster
than existing state-of-the-art learners. This is achieved with, among oth-
ers, a branch-free implementation of LTL that has O(log n) time complex-
ity, where n is trace length, while previous implementations are O(n2) or
worse (assuming bitwise boolean operations and shifts by powers of 2 have
unit costs—a realistic assumption on modern processors).

1 Introduction

Program verification means demonstrating that an implementation exhibits the
behaviour required by a specification. But where do specifications come from?
Handcrafting specifications does not scale. One solution is automatically to learn
them from example runs of a system. This is sometimes referred to as trace anal-
ysis. A trace, in this context, is a sequence of events or states captured during the
execution of a system. Once captured, traces are often converted into a form more
suitable for further processing, such as finite state automata or logical formulae.
Converting traces into logical formulae can be done with program synthesis. Pro-
gram synthesis is an umbrella term for the algorithmic generation of programs
(and similar formal objects, like logical formulae) from specifications, see [9,16]
for an overview. Arguably, the most popular logic for representing traces is lin-
ear temporal logic (LTL) [30], a modal logic for specifying properties of finite
or infinite traces. The LTL learning problem idealises the algorithmic essence of
learning specifications from example traces, and is given as follows.

– Input: Two sets P and N of traces over a fixed alphabet.
– Output: An LTL formula φ that is (i) sound : all traces in P are accepted by

φ, all traces in N are rejected by φ; (ii) minimal, meaning no strictly smaller
sound formula exists.

All code and benchmarks are available at [1].

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 209–231, 2024.
https://doi.org/10.1007/978-3-031-65633-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_10&domain=pdf
http://orcid.org/0000-0003-1582-3213
http://orcid.org/0000-0002-6576-4680
http://orcid.org/0000-0003-3239-5812
https://doi.org/10.1007/978-3-031-65633-0_10

210 M. Valizadeh et al.

When we weaken minimality to minimality-up-to-ε, we speak of approximate
LTL learning. Both forms of LTL learning are NP-hard [11,27]. A different and
simpler problem is noisy LTL learning, which is permitted to learn unsound
formulae, albeit only up-to a give error-rate.

LTL learning is an active research area in software engineering, formal meth-
ods, and artificial intelligence [2,5–7,12–15,19,20,23–26,28,29,32,34–36]. We
refer to [6] for a longer discussion. Many approaches to LTL learning have been
explored. One common and natural method involves using search-based program
synthesis, often paired with templates or sketches, such as parts of formulae,
automata, or regular expressions. Another leverages SAT solvers. LTL learning
is also being pursued using Bayesian inference, or inductive logic programming.
Learning specifically tailored small fragments of LTL often yields the best results
in practice [31,32]. Learning from noisy data is investigated in [15,26,29]. All
have in common is that they don’t scale, and have not been optimised for GPUs.
Traces arising in industrial practice are commonly long (millions of characters),
and numerous (millions of traces). Extracting useful information automatically
at such scale is currently a major problem, e.g., the state-of-the-art learner in
[31,32] cannot reliably learn formulae greater than size 10. This is less than ideal.
Our aim is to change this.

Graphics Processing Units (GPUs) are the work-horses of high-performance
computing. The acceleration they provide to applications compatible with their
programming paradigm can surpass CPU performance by several orders of mag-
nitude, as notably evidenced by the advancements in deep learning. A significant
spectrum of applications, especially within automated reasoning-like SAT/SMT
solvers and model checkers-has yet to reap the benefits of GPU acceleration.
In order for an application to be “GPU-friendly”, it needs to have high paral-
lelism, minimal data-dependent branching, and predictable data movement with
substantial data locality [8,17,18]. Current automated reasoning algorithms are
predominantly branching-intensive and appear sequential in nature, but it is
unclear whether they are inherently sequential, or can be adapted to GPUs.

Research question. Can we scale LTL learning to at least 1000 times
more traces without sacrificing trace length, learning speed or approxima-
tion ratio (cost increase of learned formula over minimum) compared to
existing work, by employing suitably adapted algorithms on a GPU?

We answer the RQ in the affirmative by developing the first GPU-accelerated
LTL learner. Our work takes inspiration from [33], the first GPU-accelerated
minimal regular expression inferencer. Scaling has two core orthogonal dimen-
sions: more traces, and longer traces. We solve one problem [33] left open: scaling
to more traces. Our key decision, giving up on learning minimal formula while
remaining sound and complete, enables two principled algorithmic techniques.

– Divide-and-conquer (D&C). If a learning task has too many traces, split
it into smaller specifications, learn those recursively, and combine the learned
formulae using logical connectives.

LTL Learning on GPUs 211

– Relaxed uniqueness checks (RUCs). Often generate-and-test program
synthesis caches synthesis results to avoid recomputation. [33] granted cache
admission only after a uniqueness check. We relax uniqueness checking by
(pseudo-)randomly rejecting some unique formulae.

In addition, we design novel algorithms and data structures, representing LTL
formulae as contiguous matrices of bits. This allows a GPU-friendly implemen-
tation of all logical operations with linear memory access and suitable machine
instructions, free from data-dependent branching. Both D&C and RUCs may
lose minimality and are thus unavailable to [33]. Our benchmarks show that the
approximation ratio is typically small.

Contributions. In summary, our contributions are as follows:

– A new enumeration algorithm for LTL learning, with a branch-free imple-
mentation of LTL semantics that is O(log n) in trace length (assuming unit
cost for logical and shift operations).

– A CUDA implementation of the algorithm, for benchmarking and inspection.
– A parameterised benchmark suite useful for evaluating the performance of

LTL learners, and a novel methodology for quantifying the loss of minimality
induced by approximate LTL learning.

– Performance benchmarks showing that our implementation is both faster, and
can handle orders of magnitude more traces, than existing work.

2 Formal Preliminaries

We write #S for the cardinality of set S. N = {0, 1, 2, ...}, [n] is for {0, 1, ..., n−1}
and [m,n] for {m,m + 1, ..., n − 1}. B is {0, 1} where 0 is falsity and 1 truth.
P(A) is the powerset of A. The characteristic function of a set S is the function
1A

S : A → B which maps a ∈ A to 1 iff a ∈ S. We usually write 1S for 1A
S .

An alphabet is a finite, non-empty set Σ, the elements of which are characters.
A string of length n ∈ N over Σ is a map w : [n] → Σ. We write ||w|| for n.
We often write wi instead of w(i), and v · w, or just vw, for the concatenation
of v and w, ε for the empty string and Σ∗ for all strings over Σ. A trace is
a string over powerset alphabets, i.e., (P(Σ))∗. We call Σ the alphabet of the
trace and write traces(Σ) for all traces over Σ. A word is a trace where each
character has cardinality 1. We abbreviate words to the corresponding strings,
e.g., 〈{t}, {i}, {n}〉 to tin. We say v is a suffix of w if w = uv, and if ||u|| = 1
then v is an immediate suffix. We write sc(S) for the suffix-closure of S. S
is suffix-closed if sc(S) ⊆ S. sc+(S) is the non-empty suffix closure of S, i.e.,
sc(S) \ {ε}. From now on we will speak of the suffix-closure to mean the non-
empty suffix closure. The Hamming-distance between two strings s and t of equal
length, written hamm(s, t), is the number of indices i where s(i) �= t(i). We write
Hamm(s, δ) for the set {t ∈ Σ∗ | hamm(s, t) = δ, ||s|| = ||t||}.

LTL formulae over Σ = {p1, ..., pn} are given by the following grammar.

φ ::= pi || ¬φ || φ ∧ φ || φ ∨ φ || Xφ || Fφ || Gφ || φ U φ

212 M. Valizadeh et al.

The subformulae of φ are denoted sf(φ). We say ψ ∈ sf(φ) is proper if φ �= ψ. A
formula is in negation normal form (NNF) if all subformulae containing negation
are of the form ¬p. It is U-free if no subformula is of the form φ U ψ. We write
LTL(Σ) for the set of all LTL formulae over Σ. We use true as an abbreviation for
p∨¬p and false for p∧¬p. We call X,F,G,U the temporal connectives, ∧,∨,¬ the
propositional connectives, p the atomic propositions and, collectively name them
the LTL connectives. Since we learn from finite traces, we interpret LTL over finite
traces [10]. The satisfaction relation tr, i |= φ, where tr is a trace over Σ and φ from
LTL(Σ) is standard, here are some example clauses: tr, i |= Xφ, if tr, i + 1 |= φ,
tr, i |= Fφ, if there is i ≤ j < ||tr|| with tr, j |= φ, and tr, i |= φ U φ′, if there is
i ≤ j < ||tr|| such that: tr, k |= φ for all i ≤ k < j, and tr, j |= φ′. If i ≥ ||tr|| then
tr, i |= φ is always false, and tr |= φ is short for tr, 0 |= φ.

A cost-homomorphism is a map cost(·) from LTL connectives to positive inte-
gers. We extend it to LTL formulae homomorphically: cost(φ op ψ) = cost(op) +
cost(φ) + cost(ψ), and likewise for other arities. If cost(op) = 1 for all LTL con-
nectives we speak of uniform cost. So the uniform cost of true and false is 4. From
now on all cost-homomorphisms will be uniform, except where stated otherwise.

A specification is a pair (P,N) of finite sets of traces such that P ∩ N =
∅. We call P the positive examples and N the negative examples. We say φ
satisfies, separates or solves (P,N), denoted φ |= (P,N), if for all tr ∈ P we
have tr |= φ, and for all tr ∈ N we have tr �|= φ. A sub-specification of (P,N) is
any specification (P ′, N ′) such that P ′ ⊆ P and N ′ ⊆ N . Symmetrically, (P,N)
is an extension of (P ′, N ′). We can now make the LTL learning problem precise:

– Input: A specification (P,N), and a cost-homomorphism cost(·).
– Output: An LTL formula φ that is sound, i.e., φ |= (P,N), and minimal,

i.e., ψ |= (P,N) implies cost(φ) ≤ cost(ψ).

Cost-homomorphisms let us influence LTL learning: e.g., by assigning a high cost
to a connective, we prevent it from being used in learned formulae. The language
at i of φ, written lang(i, φ), is {tr ∈ traces(Σ) | tr, i |= φ}. We write lang(φ) as
a shorthand for lang(0, φ) and speak of the language of φ. We say φ denotes a
language S ⊆ Σ∗, resp., a trace tr ∈ Σ∗, if lang(φ) = S, resp., lang(φ) = {tr}.
We say two formulae φ1 and φ2 are observationally equivalent, written φ1 � φ2,
if they denote the same language. Let S be a set of traces. Then we write

φ1 � φ2 mod S iff lang(φ1) ∩ S = lang(φ2) ∩ S

and say φ1 and φ2 are observationally equivalent modulo S. The following related
definitions will be useful later. Let (P,N) be a specification. The cardinality of
(P,N), denoted #(P,N), is #P + #N . The size of a set S of traces, denoted
||S|| is Σtr∈S ||tr||. We extend this to specifications: ||(P,N)|| is ||P || + ||Q||. The
cost of a specification (P,N), written cost(P,N) is the uniform cost of a minimal
sound formula for (P,N). An extension of (P,N) is conservative if any minimal
sound formula for (P,N) is also minimal and sound for the extension. We note
a useful fact: if φ is a minimal solution for (P,N), and also φ |= (P ′, N ′) then
(P ∪ P ′, N ∪ N ′) is a conservative extension.

LTL Learning on GPUs 213

Fig. 1. High-level structure of our algorithm. LC is short for language cache.

Overfitting. It is possible to express a trace tr, respectively a set S of traces, by
a formula φ, in the sense that lang(φ) = {tr}, resp., lang(φ) = S. We define the
function overfit(·) on sets of characters, traces, sets and specifications as follows.

– overfit({a1, ..., ak}) = (
∧

i ai) ∧ ∧
b∈Σ\{a1,...,ak} ¬b.

– overfit(ε) = ¬X(true) and overfit(a · tr) = overfit(a) ∧ X(overfit(tr)).
– overfit(S) =

∨
tr∈S overfit(tr)

– overfit(P,N) = overfit(P)

The following are immediate from the definitions: (i) For all specifications (P,N):
lang(overfit(P,N)) = P , (ii) overfit(P,N) |= (P,N), and (iii) the cost of overfit-
ting, i.e., cost(overfit(P,N)), is O(||P || + #Σ). Note that overfit(P,N) is overfit-
ting only on P , and (ii) justifies this choice.

3 High-Level Structure of the Algorithm

Figure 1 shows the two main parts of our algorithm: the divide-and-conquer unit,
short D&C-unit, and the enumerator. Currently, only the enumerator is imple-
mented for execution on a GPU. For convenience, our D&C-unit is in Python
and runs on a CPU. Implementing the D&C-unit on a GPU poses no technical
challenges and would make our implementation perform better.

Given (P,N), the D&C-unit checks if the specification is small enough to be
solved by the enumerator directly. If not, the specification is recursively decom-
posed into smaller sub-specifications. When the recursive invocations return for-
mulae, the D&C-unit combines them into a formula separating (P,N), see §7 for
details. For small enough (P,N), the enumerator performs a bottom-up enumer-
ation of LTL formulae by increasing cost, until it finds one that separates (P,N).
Like the enumerator in [33], our enumerator uses a language cache to minimise
re-computation, but with a novel cache admission policy (RUCs). The language
cache is append-only, hence no synchronisation is required for read-access. The
key difference from [33], our use of RUCs, is discussed in §4.

The enumerator has three core parameters.

– T = maximal number of traces in the specification (P,N).
– L = number of bits usable for representing each trace from (P,N) in memory.

214 M. Valizadeh et al.

– W = number of bits (P,N) hashed to during enumeration.

We write Enum(T, L, W) to emphasise those parameters. Our current imple-
mentation hard-codes all parameters as Enum(64, 64, 128)1, but the abstract
algorithm does not depend on this. The choice of W = 128 is a consequence of the
current limitations of WarpCore [21,22], a CUDA library for high-performance
hashing of 32 and 64 bit integers. All three parameters heavily affect mem-
ory consumption. We chose T = 64 and L = 64 for convenient comparison
with existing work in §8. While T,L and M are parameters of the abstract
algorithm, the implementation is not parameterised: changing these parameters
requires changing parts of the code. Making the implementation fully paramet-
ric is conceptually straightforward, but introduces a substantial number of new
edge cases, primarily where parameters are not powers of 2, which increases
verification effort.

We now sketch the high-level structure of enum, the entry point of the enu-
merator, taking a specification and a cost-homomorphism as arguments. For ease
of presentation, we use LTL formulae as search space. Their representation in
the implementation is discussed in §4.
1 language_cache = []

2
3 def enum(p, n, cost):

4 if (p, n) can be solved with Atom then return Atom

5 language_cache.append ([Atom])

6 for c in range(cost(Atom)+1, cost(overfit(p, n))):

7 language_cache.append ([])

8 for op in [F, U, G, X, And , Or , Not]:

9 handleOp(op , p, n, c, cost)

10 return overfit(p, n)

Line 4 checks if the learning problem can be solved with an atomic proposi-
tion. If not, Line 5 initialises the global language cache with the representation
of atomic propositions, and search starts from the lowest cost upwards. For each
cost c a new empty entry is added to the language cache. Line 8 then maps over
LTL connectives and calls handleOp to construct all formulae of cost c using all
suitable lower cost entries in the language cache. When no sound formula can be
found with cost less than cost(overfit(P,N)), the algorithm terminates, return-
ing overfit(P,N). This makes our algorithm complete, in the sense of learning a
formula for every specification.
11 def handleOp(op , p, n, c, cost):

12 match op:

13 case F:

14 for all phi in language_cache(c-cost(F)): # parallel

15 phi_new = branchfree_F(phi)

16 relaxedCheckAndCache(p, n, c, phi_new)

17 case U:

18 for all (cL , cR) in split(c-cost(U)): # parallel , split(x) gives all (i,j) s.t. i+j

= x

19 for all phi_L in language_cache(cL): # parallel

20 for all phi_R in language_cache(cR): # parallel

21 phi_new = branchfree_U(phi_L , phi_R)

22 relaxedCheckAndCache(p, n, c, phi_new)

23 case G: ...

24 case ...

The function handleOp dispatches on LTL connectives, retrieves all previously
constructed formulae of suitable cost from the language cache in parallel (we use
1 For pragmatic reasons, our implementation uses only 126 bits of W=128, and 63

bits of L = 64, details omitted for brevity.

LTL Learning on GPUs 215

forall to indicate parallel execution), calls the appropriate semantic function,
detailed in the next section, e.g., branchfree F for F, to construct phi new, and
then sends it to relaxedCheckAndCache to check if it already solves the learning
task, and, if not, for potential caching. Most parallelism in our implementation,
and the upside of the language cache’s rapid growth, is the concomitant growth
in available parallelism, which effortlessly saturates every conceivable processor.

25 def relaxedCheckAndCache(p, n, c, phi_new): # c is a concrete cost

26 if phi_new |= (p, n): # check if candidate is sound for (p, n)

27 exit(phi_new) # Terminate learning , return phi_new as learned formula

28 if relaxedUniquenessCheck (phi_new , language_cache):

29 language_cache[c]. append(phi_new) # parallel

This last step checks if phi new satisfies (P,N). If yes, the program terminates
with the formula corresponding to phi new. Otherwise, Line 28 conducts a RUC,
a relaxed uniqueness check, described in detail in §6, to decide whether to cache
phi new or not. Updating the language cache in Line 29 is done in parallel, and
needs little synchronisation, see [33] for details. The satisfaction check in Line
26 guarantees that our algorithm is sound. It also makes it trivial to implement
noisy LTL learning: just replace the precise check phinew |= (p, n) with a check
that phi new gets a suitable fraction of the specification right.

4 In-Memory Representation of Search Space

Fig. 2. Data representation in
memory (simplified).

Our enumerator does generate-and-check synthe-
sis. That means we have two problems: (i) min-
imising the cardinality of the search space, i.e.,
the representation of LTL formulae during syn-
thesis; (ii) making generation and checking as
cheap as possible. For each candidate φ checking
means evaluating the predicate

P ⊆ lang(φ) and N ∩ lang(φ) = ∅. (†)
LTL formulae, the natural choice of search space,
suffer from the redundancies of syntax: every
language that is denoted by a formula at all,
is denoted by infinitely many, e.g., lang(Fφ) =
lang(FFφ). Even observational equivalence dis-
tinguishes too many formulae: the predicate (†)
checks the language of φ only for elements of P ∪ N . Formulae modulo P ∪ N
contain exactly the right amount of information for (†), hence minimise the
search space. However, the semantics of formulae on P ∪ N is given composi-
tionally in terms of the non-empty suffix-closure of P ∪ N , which would have to
be recomputed at run-time for each new candidate. Since P ∪ N remains fixed,
so does sc+(P ∪ N), and we can avoid such re-computation by using formulae
modulo sc+(P ∪ N) as search space. Inspired by [33], we represent formulae φ
by characteristic functions 1lang(φ) : sc+(P ∪ N) → B, which are implemented as
contiguous bitvectors in memory, but with a twist. Fix a total order on P ∪ N .

216 M. Valizadeh et al.

– A characteristic sequence (CS) for φ over tr is a bitvector cs such that tr, j |=
φ iff cs(j) = 1. For Enum(64, 64, 128), CSs are unsigned 64 bit integers.

– A characteristic matrix (CM) representing φ over P ∪ N , is a sequence cm
of CSs, contiguous in memory, such that, if tr is the ith trace in the order,
then cm(i) is the CS for φ over tr.

This representation has two interesting properties, not present in [33]: (i) each CS
is suffix-contiguous: the trace corresponding to cs(j+1) is the immediate suffix of
that at cs(j); (ii) CMs contain redundancies whenever two traces in P ∪N share
suffixes. Redundancy is the price we pay for suffix-contiguity. Figure 2 visualises
our representation in memory.
Logical Operations as Bitwise Operations. Suffix-contiguity enables the
efficient representation of logical operations: if cs = 10011 represents φ over the
word abcaa, e.g., φ is the atomic proposition a, then Xφ is 00110, i.e., cs shifted
one to the left. Likewise ¬φ is represented by 01100, i.e., bitwise negation. As
we use unsigned 64 bit integers to represent CSs, X and negation are executed
as single machine instructions! In Python-like pseudo-code:
1 def branchfree_X(cm):

2 return [cs << 1 for cs in cm]

1def branchfree_Not(cm):

2return [~cs for cs in cm]

Conjunction and disjunction are equally efficient. More interesting is F which
becomes the disjunction of shifts by powers of two, i.e., the number of shifts is
logarithmic in the length of the trace (a naive implementation of F is linear). We
call this exponential propagation, and believe it to be novel in LTL synthesis2:

1 def branchfree_F(cm):

2 outCm = []

3 for cs in cm:

4 cs |= cs << 1

5 cs |= cs << 2

6 cs |= cs << 4

7 cs |= cs << 8

8 cs |= cs << 16

9 cs |= cs << 32

10 outCm.append(cs)

11 return outCm

1def branchfree_U(cm1 , cm2):

2outCm = []

3for i in range(len(cm1)):

4cs1 = cm1[i]

5cs2 = cm2[i]

6cs2 |= cs1 & (cs2 << 1)

7cs1 &= cs1 << 1

8cs2 |= cs1 & (cs2 << 2)

9cs1 &= cs1 << 2

10cs2 |= cs1 & (cs2 << 4)

11cs1 &= cs1 << 4

12cs2 |= cs1 & (cs2 << 8)

13cs1 &= cs1 << 8

14cs2 |= cs1 & (cs2 << 16)

15cs1 &= cs1 << 16

16cs2 |= cs1 & (cs2 << 32)

17outCm.append(cs2)

18return outCm

To see why this works, note that Fφ can be seen as the infinite disjunction
φ ∨ Xφ ∨ X2φ ∨ X3φ ∨ ..., where Xnφ is given by X0φ = φ and Xn+1φ = XXnφ.
Since we work with finite traces, tr, i �|= φ whenever i ≥ ||tr||. Hence checking
tr, 0 |= Fφ for tr of length n amounts to checking

tr, 0 |= φ ∨ Xφ ∨ X2φ ∨ ... ∨ Xn−1φ

The key insight is that the imperative update cs |= cs � j propagates the bit
stored at cs(i + j) into cs(i) without removing it from cs(i + j). Consider the

2 By representing φ as a CS, i.e., unsigned integer, we can also read Fφ as rounding
up φ to the next bigger power of 2 and then subtracting 1, cf. [3].

LTL Learning on GPUs 217

flow of information stored in cs(n − 1). At the start, this information is only
at index n − 1. This amounts to checking tr, n − 1 |= Xn−1φ. Thus assigning
cs |= cs � 1 puts that information at indices n − 2, n − 1. This amounts to
checking tr, 0 |= Xn−2φ ∨ Xn−1φ. Likewise, then assigning cs |= cs � 2 puts
that information at indices n − 4, n − 3, n − 2, n − 1. This amounts to checking
tr, 0 |= Xn−4φ ∨ Xn−3φ ∨ Xn−2φ ∨ Xn−1φ, and so on. In a logarithmic number
of steps, we reach tr, 0 |= φ ∨ Xφ ∨ ... ∨ Xn−1φ. This works uniformly for all
positions, not just n − 1. In the limit, this saves an exponential amount of work
over naive shifting.

We can implement U using similar ideas, with the number of bitshifts also
logarithmic in trace length. As with F, this works because we can see φ U ψ as
an infinite disjunction

ψ ∨ (φ ∧ Xψ) ∨ (φ ∧ X(φ ∧ Xψ)) ∨ . . .

We define (informally) φ U≤p ψ as: φ holds until ψ does within the next p posi-
tions, and G≥pφ if φ holds for the next p positions. The additional insight allowing
us to implement exponential propagation for U is to compute both, G≥2iφ and
φ U≤2i ψ, for increasing values of i at the same time.

In addition to saving work, exponential propagation maps directly to machine
instructions, and is essentially branch-free code for all LTL connectives3, thus
maximises GPU-friendliness of our learner. In contrast, previous learners like Flie
[28], Scarlet [32] and Syslite [4], implement the temporal connectives naively, e.g.,
checking tr, i |= φ U ψ by iterating from i as long as φ holds, stopping as soon
as ψ holds. Likewise, Flie encodes the LTL semantics directly as a propositional
formula. For U this is quadratic in the length of tr for Flie and Syslite.

5 Correctness and Complexity of the Branch-Free
Implementation of Temporal Operators

We reproduce here a slightly more general version (for any length) of the expo-
nentially propagating algorithms for computing F and U.

1 def branchfree_F(cs):

2 L = len(cs)

3 for i in range(log(L)+1):

4 cs |= cs << 2**i

5 return cs

1def branchfree_U(cs1 , cs2):

2L = len(cs1)

3for i in range(log(L)+1):

4cs2 |= cs1 & (cs2 << 2**i)

5cs1 &= cs1 << 2**i

6return cs2

They are lifted to CMs pointwise. As a warm-up, let us start with F.

Lemma 1. Let cs be the characteristic sequence for φ over a trace of length
L. The algorithm above computes the characteristic sequence for Fφ. Assum-
ing bitwise boolean operations and shifts by powers of two have unit costs, the
complexity of the algorithm is O(log(L)).

3 Including, mutatis mutandis, past-looking temporal connectives.

218 M. Valizadeh et al.

To ease notations, let us introduce F≤p with the semantics tr, j |= F≤pφ if
there is j ≤ k < min(j+p, ||tr||) with tr, k |= φ. The parameter p ∈ N in F≤pφ can
be read as the number of positions in tr where φ will be evaluated at, starting
from the current position j in tr.

Proof. Let us write cs for the characteristic sequence for φ over tr, and csi for
the characteristic sequence after the ith iteration. We write log(x) as a shorthand
for �log2(x)�. We write Fcs for Fφ, and F≤pcs for F≤p φ. We show by induction
that for all i ∈ [0, log(L) + 1], for all tr of length L we have:

∀j ∈ [0, L], tr, j |= csi ⇐⇒ tr, j |= F≤2ics.

This is clear for i = 0, as it boils down to cs0 = cs. Assuming it holds for i, by
definition csi+1(j) = csi(j) ∨ (csi � 2i)(j) = csi(j) ∨ csi(j + 2i), hence

tr, j |= csi+1 ⇐⇒ tr, j |= csi, or tr, j + 2i |= csi

⇐⇒ tr, j |= F≤2ics, or tr, j + 2i |= F≤2ics
⇐⇒ tr, j |= F≤2i+1cs.

This concludes the induction proof. For i = log(L) we obtain

∀j ∈ [0, L], tr, j |= csi ⇐⇒ tr, j |= F≤Lcs ⇐⇒ tr, j |= Fcs,

since clearly F = F≤L, when restricted to traces not exceeding L in length. ��
We now move to U.

Lemma 2. Let cs1, cs2 the characteristic sequences for φ1 and φ2, both over
traces of length L. The algorithm above computes the characteristic sequence for
φ1 U φ2. Assuming bitwise boolean operations and shifts by powers of two have
unit costs, the complexity of the algorithm is O(log(L)).

Again to ease notations, let us introduce U≤p with the semantics tr, j |=
φ1 U≤p φ2 if there is j ≤ k < min(j + p, ||tr||) such that tr, k |= φ2 and for all
i ≤ k′ < k we have tr, k′ |= φ1. We will also need G≤p defined with the semantics
tr, j |= G≤pφ if for all j ≤ k < min(j + p, ||tr||) we have tr, k |= φ.

Proof. Let us write cs1,i and cs2,i for the respective characteristic sequences
after the ith iteration. We show by induction that for all i ∈ [0, log(L) + 1], for
all tr of length L, for all j ∈ [0, L], we have:

– tr, j |= cs1,i ⇐⇒ tr, j |= G≤2ics1, and
– tr, j |= cs2,i ⇐⇒ tr, j |= cs1 U≤2i cs2.

This is clear for i = 0, as it boils down to cs1,0 = cs1 and cs2,0 = cs2. Assume
it holds for i. Let us start with cs1,i+1: by definition

cs1,i+1(j) = cs1,i(j) ∧ (cs1,i � 2i)(j)

= cs1,i(j) ∧ cs1,i(j + 2i),

LTL Learning on GPUs 219

hence it is the case that

tr, j |= cs1,i+1 ⇐⇒ tr, j |= cs1,i, and tr, j + 2i |= cs1,i

⇐⇒ tr, j |= G≤2ics1, and tr, j + 2i |= G≤2ics1
⇐⇒ tr, j |= G≤2i+1cs1.

Now, by definition cs2,i+1(j) = cs2,i(j) ∨ (cs1,i(j) ∧ (cs2,i � 2i)(j)), which is
equal to cs2,i(j) ∨ (cs1,i(j) ∧ cs2,i(j + 2i)). Hence

tr, j |= cs2,i+1 ⇐⇒ tr, j |= cs2,i, or (tr, j |= cs1,i, and tr, j + 2i |= cs2,i)
⇐⇒ tr, j |= cs1 U≤2i cs2, or(

tr, j |= G≤2ics1, and tr, j + 2i |= cs1 U≤2i cs2
)

⇐⇒ tr, j |= cs1 U≤2i+1 cs2.

This concludes the induction proof. For i = log(L) we obtain

∀j ∈ [0, L], tr, j |= cs2,i ⇐⇒ tr, j |= cs1 U≤L cs2 ⇐⇒ tr, j |= cs1 U cs2,

since clearly U = U≤L for all sufficiently short traces. ��

6 Relaxed Uniqueness Checks

Our choice of search space, formulae modulo sc+(P ∪ N), while more efficient
than bare formulae, still does not prevent the explosive growth of candidates:
uniqueness of CMs is not preserved under LTL connectives. [33] recommends
storing newly synthesised formulae in a “language cache”, but only if they pass
a uniqueness check. Without this cache admission policy, the explosive growth
of redundant CMs rapidly swamps the language cache with useless repetition.
While uniqueness improves scalability, it just delays the inevitable: there are
simply too many unique CMs. Worse: with Enum(64, 64, 128), CMs use up-to
32 times more memory than language cache entries in [33]. We improve memory
consumption of our algorithm by relaxing strictness of uniqueness checks: we
allow false positives (meaning that CMs are falsely classified as being already
in the language cache), but not false negatives. We call this new cache admis-
sion policy relaxed uniqueness checks (RUCs). False positives mean that less
gets cached. False positives are sound: every formula learned in the presence of
false positives is separating, but no longer necessarily minimal—every minimal
solution might have some of its subformulae missing from the language cache,
hence cannot be constructed by the enumeration. False positives also do not
affect completeness: in the worst case, our algorithm terminates by overfitting.

We implement the RUC using non-cryptographic hashing in several steps.

– We treat each CM as a big bitvector, i.e., ignore its internal structure. Now
there are two possibilities.

• The CM uses more than 126 bits. Then we hash it to 126 bits using a
variant of MuellerHash from WarpCore.

220 M. Valizadeh et al.

• Otherwise we leave the CM unchanged (except padding it with 0 s to 126
bits where necessary).

– Only if this 126 bit sequence is unique, it is added to the language cache.

If the CM is ≤ 126 bits, then the RUC is precise and enumeration performs
a full bottom-up enumeration of CMs, so any learned formula is minimal cost.
This becomes useful in benchmarking.

Note that RUCs implemented by hashing amount to a (pseudo-)random cache
admission policy. Using RUCs essentially means that hash-collisions (pseudo-)
randomly prevent formulae from being subformulae of any learned solution. It
is remarkable that this works well in practice, but it probably means that LTL
has sufficient redundancy in formulae vis-a-vis the probability of hash collisions.
We leave a detailed theoretical analysis as future work.

7 Divide & Conquer

The D&C-unit’s job is, recursively, to split specifications until they are small
enough to be solved by Enum(T, L, W) in one go, and, afterwards recombine
the results. A naive D&C-strategy could split (P,N), when needed, into four
smaller specifications (Pi, Nj) for i, j = 1, 2, such that P is the disjoint union of
P1 and P2, and N of N1 and N2. Then it learned the φij recursively from the
(Pi, Nj), and finally combine all into

(φ11 ∧ φ12) ∨ (φ21 ∧ φ22)

which is sound for (P,N), but is not necessarily minimal. E.g., whenever φ11

implies φ12, then φ11 ∨ (φ21 ∧ φ22) is lower cost4. Thus it might be tempting to
minimise D&C-steps. Alas, the enumerator may run out-of-memory (OOM): the
parameters in Enum(T, L, W) are static constraints, pertaining to data structure
layout, and do not guarantee successful termination. Let us call the maximal
cardinality #(P,N) that the D&C-unit sends directly to the enumerator, the
split window. In order to navigate the trade-offs between avoiding OOM and
minimising the approximation ratio, our refined D&C-units below use search
to find as large as possible a split window. We write win for the split window
parameter. Both implementations split specifications until they fit into the split
window, i.e., #(P,N) ≤ win, and then invoke the enumerator. The split window
is then successively halved, until the enumerator no longer runs OOM but returns
a sound formula.

4 Such redundancies can be eliminated, for example, by using theorem provers.

LTL Learning on GPUs 221

Deterministic Splitting. The idea behind detSplit(P,N,win) is: if #(P,N)
≤ win, we send (P,N) directly to the enumerator. Otherwise, assume P is
{p1, ..., pn}. Then P1 = {p1, ..., pn/2} and P2 = {pn/2+1, ..., pn} are the new
positive sets, and likewise for N . (If the specification is given as two lists of traces,
this is deterministic.) We then make 4 recursive calls, but remove redundancies
in the calls’ arguments.

– φ11 = detSplit(P1, N1, win),
– φ12 = detSplit(P1, N2 ∩ lang(φ11), win),
– φ21 = detSplit(P2 \ L,N1, win),
– φ22 = detSplit(P2 \ L,N2 ∩ lang(φ21), win),

Here L = lang(φ11) ∪ lang(φ12). Assuming that none of the 4 recursive calls
returns OOM, the resulting formula is (φ11 ∧ φ12) ∨ (φ21 ∧ φ22). Otherwise we
recurse with detSplit(P,N,win/2).

Random Splitting. This variant of the algorithm, written randSplit(P,N,win),
is based on the intuition that often a small number of traces already contain
enough information to learn a formula for the whole specification. (E.g., the
traces are generated by running the same system multiple times.)

– φ11 = aux(P,N,win)
– φ12 = randSplit(P ∩ lang(φ11), N ∩ lang(φ11), win)
– φ21 = randSplit(P \ lang(φ11), N \ lang(φ11), win)
– φ22 = randSplit(P \ lang(φ11), N ∩ lang(φ11), win)

The function aux(P,N,win) first construct a sub-specification (P0, N0) of (P,N)
as follows. Select two random subsets P0 ⊆ P and N0 ⊆ N , such that the
cardinality of (P0, N0) is as large as possible but not exceeding win; in addition
we require the cardinalities of P0 and N0 to be as equal as possible. Then (P0, N0)
is sent to the enumerator. If that returns OOM, aux(P,N,win/2) is invoked, then
aux(P,N,win/4), ... until the enumerator successfully learns a formula. Once
φ11 is available, the remaining φij can be learned in parallel. Finally, we return
(φ11 ∧ φ12) ∨ (φ21 ∧ φ22).

Our benchmarks in §8 show that deterministic and random splitting display
markedly different behaviour on some benchmarks.

8 Evaluation of Algorithm Performance

This section quantifies the performance of our implementation. We are interested
in a comparison with existing LTL learners, but also in assessing the impact on
LTL learning performance of different algorithmic choices. We benchmark along
the following quantitative dimensions: number of traces the implementation can
handle, speed of learning, and cost of inferred formulae. In our evaluation we are
facing several challenges.

– We are comparing a CUDA program running on a GPU with programs, some-
times written in Python, running on CPUs.

222 M. Valizadeh et al.

– We run our benchmarks in Google Colab Pro. It is unclear to what extent
Google Colab Pro is virtualised. We observed variations in CPU and GPU
running times, for all implementations measured.

– Existing benchmarks are too easy. They neither force our implementation to
learn costly formulae, nor terminate later than the measurement threshold
of around 0.2 s, a minimal time the Colab-GPU would take on any task,
including toy programs that do nothing at all on the GPU.

– Lack of ground-truth: how can we evaluate the price we pay for scale, i.e.,
the loss of formula minimality guarantees from algorithmic choices, when we
do not know what this minimum is?

Hardware and Software Used for Benchmarking. Benchmarks below run
on Google Colab Pro. We use Colab Pro because it is a widely used indus-
try standard for running and comparing ML workloads. Colab CPU parame-
ters: Intel Xeon CPU (“cpu family 6, model 79”), running at 2.20GHz, with 51
GB RAM. Colab GPU parameters: Nvidia Tesla V100-SXM2, with System
Management Interface 525.105.17, with 16 GB memory. We use Python version
3.10.12, and CUDA version: 12.2.140. All our timing measurements are end-to-
end (from invocation of learn(P,N) to its termination), using Python’s time
library.

Benchmark Construction. Since existing benchmarks for LTL learning are
too easy for our implementation, we develop new ones. A good benchmark should
be tunable by a small number of explainable parameters that allows users to
achieve hardness levels, from trivial to beyond the edge-of-infeasibility, and any
point in-between. We now describe how we construct our new benchmarks.

– By BenchBase(Σ, k, lo, hi) we denote the specifications generated using the
following process: uniformly sample 2 · k traces from {tr ∈ traces(Σ) | lo ≤
||tr|| ≤ hi}. Split them into two sets (P,N), each containing k traces.

– By Scarlet(Σ,φ, k, lo, hi) we mean using the sampler coming with Scarlet
[32] to sample specifications (P,N) that are separated by φ, where φ is a
formula over the alphabet Σ. Both, P and N , contain k traces each, and for
each tr ∈ P ∪ N we have lo ≤ ||tr|| ≤ hi. The probability distribution Scarlet
implements is detailed in [32].

– By Sampling(i, k, c), where i, k ∈ N and c ∈ {conservative,¬conservative},
we mean the following process, which we also call extension by sampling.
1. Generate (P,N) with BenchBase(B, i, 2, 5).
2. Use our implementation to learn a minimal formula φ for (P,N) that is

U-free and in NNF (for easier comparison with Scarlet, which can neither
handle general negation nor U).

3. Next we sample a specification (P ′, N ′) from Scarlet(B, φ, k, 63, 63).
4. The final specification is given as follows:

• (P ∪ P ′, N ∪ N ′) if c = conservative. Hence the final specification is
a conservative extension of (P,N) and its cost is cost(P,N).

• (P ′, N ′) otherwise.

LTL Learning on GPUs 223

Note that the minimal formula required in Step 2. exists because for i ≤ 8, any
(P,N) generated by BenchBase(B, i, 2, 5) has the property that #sc+(P ∪
N) ≤ 80 < 126, so our algorithm uses neither RUCs nor D&C, but, by
construction, does an exhaustive bottom-up enumeration that is guaranteed
to learn a minimal sound formula.

– By Hamming(Σ, l, δ), with l, δ ∈ N, we mean specifications ({tr},
Hamm(tr, δ)), where tr is sampled uniformly from all traces of length l
over Σ.

Benchmarks from Sampling(k, i, c) are useful for comparison with existing LTL
learners, and to hone in on specific properties of our algorithm. But they don’t
fully address a core problem of using random traces: they tend to be too easy.
One dimension of “too easy” is that specifications (P,N) of random traces often
have tiny sound formulae, especially for large alphabets. Hence we use binary
alphabets, the hardest case in this context. That alone is not enough to force
large formulae. Hamming(Σ, l, δ) works well in our benchmarking: it generates
benchmarks that are hard even for the GPU. We leave a more detailed investiga-
tion why as future work. Finally, in order to better understand the effectiveness
of MuellerHash in our RUC, we use the following deliberately simple map from
CMs to 126 bits.

First-k-percent (FKP). This scheme simply takes the first k% of each
CS in the CM. All remaining bits are discarded. The percentage k is chosen
such that the result is as close as possible to 126 bits. e.g., for a 64*63 bit
CM, k = 3.

Comparison with Scarlet. In this section we compare the performance of our
implementation against Scarlet [32], in order better to understand how much
performance we gain in comparison with a state-of-the-art LTL learner. Our
comparison with Scarlet is implicitly also a comparison with Flie [28] and Syslite
[4] because [32] already benchmarks Scarlet against them, and finds that Scarlet
performs better. We use the following benchmarks in our comparison.

– All benchmarks from [32], which includes older benchmarks for Flie and Sys-
lite.

– Two new benchmarks for evaluating scalability to high-cost formulae, and to
high-cardinality specifications.

In all cases, we learn U-free formulae in NNF for easier comparison with Scar-
let. This restriction hobbles our implementation which can synthesise cheaper
formulae in unrestricted LTL.

Scarlet on Existing Benchmarks. We run our implementation in 12 differ-
ent modes: D&C by deterministic, resp., random splitting, with two different
hash functions (MuellerHash and FKP), and three different split windows (16,
32, and 64). The results are visualised in Table 1. We make the following obser-
vations. On existing benchmarks, our implementation usually returns formulae
that are roughly of the same cost as Scarlet. They are typically only larger on

224 M. Valizadeh et al.

Table 1. Comparison of Scarlet with our implementation on existing benchmarks.
Timeout is 2000 s. On the existing benchmarks our implementation never runs OOM
or out-of-time (OOT), while Scarlet runs OOM in 5.9% of benchmarks and OOT in
3.8%. In computing the average speedup we are conservative: we use 2000 s whenever
Scarlet runs OOT, if Scarlet runs OOM, we use the time to OOM. The “Lower Cost”
column gives the percentages of instances where our implementation learns a formula
with lower cost than Scarlet, and likewise for “Equal” and “Higher”. Here and below,
“Ave” is short for the arithmetic mean. The column on the right reports the average
speedup over Scarlet of our implementation.

D&C / Hsh / Win Lower Cost Equal Cost Higher Cost Ave Speed-up

R
a
n
d
S
p
li
t

F
K
P

64 11.2% 81.9% 6.9% >515x

32 10.7% 79.8% 9.5% >483x

16 10.9% 76.3% 12.8% >320x

M
u
el
le
r 64 12.3% 77.9% 9.8% >58x

32 11.4% 72.7% 15.9% >433x

16 11.2% 67.2% 21.6% >236x

D
et

S
p
li
t

F
K
P

64 11.4% 74.4% 14.2% >173x

32 10.4% 70.5% 19.2% >103x

16 10.5% 66.1% 23.3% >52x

M
u
el
le
r 64 12.4% 78.1% 9.5% >263x

32 10.5% 72.5% 16.9% >114x

16 10.5% 66.5% 23.0% >46x

benchmarks with a sizeable specification, e.g., 100000 traces, which forces our
implementation into D&C, with the concomitant increase in approximation ratio
due to the cost of recombination. However the traces are generated by sampling
from trivial formulae (mostly Fp,Gp or G¬p). Scarlet handles those well. [32]
defines a parameterised family φn

seq that can be made arbitrarily big by letting n
go to infinity. However in [32] n < 6, and even on those Scarlet run OOM/OOT,
while our implementation handles all in a short amount of time. On existing
benchmarks, our implementation runs on average at least 46 times faster. We
believe that this surprisingly low worst-case average speedup is largely because
the existing benchmarks are too easy, and the timing measurements are dom-
inated by GPU startup latency. The comparison on harder benchmarks below
shows this.

Scarlet and High-Cost Specifications. The existing benchmarks can all be
solved with small formulae. This makes it difficult to evaluate how our implemen-
tation scales when forced to learn high-cost formulae. In order to ameliorate this
problem, we create a new benchmark using Hamming(B, l, δ) for l = 3, 6, 9, ..., 48
and δ = 1, 2. We benchmark with the aforementioned 12 modes. The left of
Table 2 summarises the results. This benchmark clearly shows that Scarlet is

LTL Learning on GPUs 225

Table 2. On the left, comparison between Scarlet and our implementation on
Hamming(B, l, δ) benchmarks with l = 3, 6, 9, ..., 48 and δ = 1, 2. Timeout is 2000
sec. Reported percentage is fraction of specifications that were successfully learned.
On the right, comparison on benchmarks from Sampling(5, 2k, conservative) for
k = 3, 4, 5, ..., 17. All benchmarks were run to conclusion, Scarlet’s OOMs occurred
between 1980.21 sec for (217, 217), and 16568.7 sec for (213, 213). Recall from §2 that
#S denotes the cardinality of set S.

D&C / Hsh / Win Delta=1 Delta=2

R
a
n
d

S
p
li
t

F
K

P

64 100% 100%

32 100% 100%

16 100% 100%

M
u
el

le
r 64 100% 75%

32 100% 75%

16 100% 100%

D
et

S
p
li
t F
K

P

64 100% 100%

32 100% 100%

16 100% 100%

M
u
el

le
r 64 100% 88%

32 100% 100%

16 100% 100%

Scarlet 7% 7%

(# P, # N)
Our impl.

Time (Cost)
Scarlet

Time (Cost)

(23, 23) 0.31s (12) 1532.85s (19)

(24, 24) 0.32s (12) 1463.67s (17)

(25, 25) 0.36s (12) 2867.47s (17)

(26, 26) 0.34s (12) 5691.98s (17)

(27, 27) 0.63s (20) OOM

(28, 28) 0.95s (19) OOM

(29, 29) 0.72s (19) OOM

(210, 210) 1.09s (19) OOM

(211, 211) 1.32s (19) OOM

(212, 212) 1.66s (19) OOM

(213, 213) 2.46s (19) OOM

(214, 214) 4.62s (20) OOM

(215, 215) 8.35s (19) OOM

(216, 216) 15.52s (19) OOM

(217, 217) 30.49s (19) OOM

mostly unable to learn bigger formulae, while our implementation handles all
swiftly.

Scarlet and High-Cardinality Specifications. The previous benchmark
addresses scalability to high-cost specifications. The present comparison with
Scarlet seeks to quantify an orthogonal dimension of scalability: high-cardinality
specifications. Our benchmark is generated by Sampling(i, 2k, conservative) for
i = 5, and k = 3, 4, 5, ..., 17. Using i = 5 ensures getting a few concrete times
from Scarlet rather than just OOM/OOT; k ≤ 17 was chosen as Scarlet’s sam-
pler makes benchmark generation too time-consuming otherwise. The choice of
parameters also ensures that the cost of each benchmark is moderate (≤ 20).
This means any difficulty with learning arises from the sheer number of traces.
Unlike the previous two benchmarks, we run our implementation only in one con-
figuration: using MuellerHash, and random splitting with window size 64 (the
difference between the variants is too small to affect the comparison with Scarlet
in a substantial way). The results are also presented on the right of Table 2. This
benchmark clearly shows that we can handle specifications at least 2048 times
larger, despite Scarlet having approx. 3 times more memory available. Moreover,
not only is our implementation much faster and can handle more traces, it also
finds substantially smaller formulae in all cases where a comparison is possible.

226 M. Valizadeh et al.

Fig. 3. Here RS means random-splitting, DS deterministic-splitting. The numbers 16,
32, 64 are the used splitting window. Hsh is short for MuellerHash. The x-axis is
annotated by (trLen, #N), giving the length of the single trace in P , and the cardinality
#N of N . TO denotes timeout. Timeout is 2000 s. On the left, the y-axis gives the
ratio cost of learned formula

cost of overfitting
, the dotted line at 1.0 is the cost of overfitting.

Hamming Benchmarks. We have already used Hamming(...) in our com-
parison with Scarlet. Now we abandon existing learners, and delve deeper into
the performance of our implementation by having it learn costly formulae. This
benchmark is generated using Hamming(B, l, δ) for l = 3, 6, 9, ..., 48 and δ = 1, 2.
As above, the implementation learns U-free formulae in NNF. Figure 3 gives a
more detailed breakdown of the results. The uniform cost of overfitting on each
benchmark is given for comparison5:

Length of tr 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Cost of overfitting 22 38 55 73 92 111 129 147 164 182 201 219 238 256 274 292

5 For this benchmark we disable returning overfit(P, N) when the cost of target for-
mulae matches cost(overfit(P, N)), cf. Line 10 in the sketch of enum in §3.

LTL Learning on GPUs 227

Table 3. All run times are below the measurement threshold.

(# P, # N) FKP MuellerHash

AveExtraCost OOM AveExtraCost OOM

(8, 8) 0.0% 0.0% 0.0% 0.0%

(12, 12) 2.4% 12.8% 1.9% 24.5%

(16, 16) 4.1% 19.3% 0.7% 32.6%

(20, 20) 4.1% 22.4% 0.4% 32.9%

(24, 24) 3.9% 24.0% 0.1% 33.6%

(28, 28) 3.6% 24.9% 0.0% 32.9%

(32, 32) 2.7% 26.3% 0.2% 40.3%

This benchmark shows the following. Hamming benchmarks are hard for our
implementation, and sometimes run for >3 min: we successfully force our imple-
mentation to synthesise large formulae, and that has an effect on running time.
The figures on the left show that random splitting typically leads to smaller for-
mulae in comparison with deterministic splitting, especially for δ = 2. Indeed,
we may be seeing a sub-linear increase in formula cost (relative to the cost of
overfitting) for random splitting, while for deterministic splitting, the increase
seems to be linear. In contrast, the running time of the implementation seems
to be relatively independent from the splitting mechanism. It is also remarkable
that the maximal cost we see is only about 3.5 times the cost of overfitting: the
algorithm processes P and N , yet over-fitting happens only on P , which con-
tains a single trace. Hence the cost of over-fitting (292 in the worst case) is not
affected by N , which contains up to 4560 elements (of the same length as the
sole positive trace).

Benchmarking RUCs. Our algorithm uses RUCs, a novel cache admission
policy, and it is interesting to gain a more quantitative understanding of the
effects of (pseudo-)randomly rejecting some CMs. We cannot hope to come to a
definitive conclusion here. Instead we simply compare MuellerHash with FKP,
which neither distributes values uniformly across the hash space (our 126 bits)
to minimise collisions, nor has the avalanche effect where a small change in the
input produces a significantly different hash output. This weakness is valuable
for benchmarking because it indicates how much a hash function can degrade
learning performance. (Note that for the edge case of specifications that can
be separated from just the first k% alone, FKP should perform better, since
it leaves the crucial bits unchanged.) The benchmark data is generated with
Sampling(8, 24, conservative). Table 3 summarises our measurements. We note
the following. The loss in formula cost is roughly constant for each hash: it sta-
bilises to around 0.2% for MuellerHash, and a little above 2.5% for FKP. Hence
MuellerHash is an order of magnitude better. Nevertheless, even 2.5% should
be irrelevant in practice, and we conjecture that replacing MuellerHash with a
cryptographic hash will have only a moderate effect on learning performance.

228 M. Valizadeh et al.

Fig. 4. Effects of masking on formula cost. Timeout is 200 s. Colours correspond to
different (P, N). The slight ‘wobble’ on all graphs is deliberately introduced for read-
ability, and is not in the data.

A surprising number of instances run OOM, more so as specification size grows,
with MuellerHash more than FKP. We leave a detailed understanding of these
phenomena as future work.

Masking. The previous benchmarks suggested that naive hash functions like
FKP sometimes work better than expected. Our last benchmark seeks to illumi-
nate this in more detail and asks: can we relate the information loss from hashing
and the concomitant increase in formula cost? A precise answer seems to be diffi-
cult. We run a small experiment: after MuellerHashing CMs of size 64*63 bits to
126 bits, we add an additional information loss phase: we mask out k bits, i.e.,
we set them to 0. This destroys all information in the k masked bits. After mask-
ing, we run the uniqueness check. We sweep over k = 1, ..., 126 with stride 5 to
mask out benchmarks generated with Sampling(8, 32,¬conservative). Figure 4
shows the results. Before running the experiments, the authors expected a grad-
ual increase of cost as more bits are masked out. Instead, we see a phase transi-
tion when approx. 75 to 60 bits are not masked out: from minimal cost formulae
before, to OOM/OOT after, with almost no intermediate stages. Only a tiny
number of instances have 1 or 2 further cost levels between these two extremes.
We leave an explanation of this surprising behaviour as future work.

9 Conclusion

The present work demonstrates the effectiveness of carefully tailored algorithms
and data structures for accelerating LTL learning on GPUs. We close by sum-
marising the reasons why we achieve scale: high degree of parallelism inherent in
generate-and-test synthesis; application of divide-and-conquer strategies; relaxed
uniqueness checks for (pseudo-)randomly curtailing the search space; and suc-
cinct, suffix-contiguous data representation, enabling exponential propagation

LTL Learning on GPUs 229

where LTL connectives map directly to branch-free machine instructions with
predictable data movement. All but the last are available to other learning tasks
that have suitable operators for recombination of smaller solutions.

LTL and GPUs, a match made in heaven.

Acknowledgement. The first author thanks the University of Sussex, School of Engi-
neering and Informatics for their generous funding, making this work possible. The
second author acknowledges the support of the French PEPR Intelligence Artificielle
SAIF project (ANR-23-PEIA-0006).

References

1. Github repository. https://github.com/MojtabaValizadeh/ltl-learning-on-gpus
(2024)

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 4–16. POPL ’02, Association for Computing Machinery, New York,
NY, USA (2002). https://doi.org/10.1145/503272.503275

3. Anderson, S.E.: Bit twiddling hacks: round up to the next highest power of 2
(2005). https://graphics.stanford.edu/∼seander/bithacks.html

4. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: Pro-
ceedings of the International Conference on Formal Methods in Computer Aided
Design, FMCAD, pp. 93–103 (2020). https://doi.org/10.34727/2020/isbn.978-3-
85448-042-6 16

5. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: Proceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling, ICAPS 2019, Berkeley, CA, USA, July 11-
15, 2019, pp. 621–630. AAAI Press (2019). https://ojs.aaai.org/index.php/ICAPS/
article/view/3529

6. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: International Conference on Automated Planning and Schedul-
ing, ICAPS. vol. 29, pp. 621–630 (2019). https://ojs.aaai.org/index.php/ICAPS/
article/view/3529

7. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp.
31–45. Springer, Berlin Heidelberg, Berlin, Heidelberg (2009)

8. Dally, W.J., Turakhia, Y., Han, S.: Domain-specific hardware accelerators. Com-
mun. ACM 63(7), 48–57 (2020). https://doi.org/10.1145/3361682

9. David, C., Kroening, D.: Program Synthesis: Challenges and Opportunities. Philos.
Trans. A 375(2104), 20150403 (2017)

10. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, pp. 854–860. IJCAI ’13, AAAI Press (2013)

11. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: Proceedings of the Fifteenth International Conference on Gram-
matical Inference. Proceedings of Machine Learning Research, vol. 153, pp. 237–
250. PMLR (2021). https://proceedings.mlr.press/v153/fijalkow21a.html

https://github.com/MojtabaValizadeh/ltl-learning-on-gpus
https://doi.org/10.1145/503272.503275
https://graphics.stanford.edu/~seander/bithacks.html
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_16
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_16
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1145/3361682
https://proceedings.mlr.press/v153/fijalkow21a.html

230 M. Valizadeh et al.

12. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal proper-
ties from dynamic traces. In: Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 339–349. SIGSOFT
’08/FSE-16, Association for Computing Machinery, New York, NY, USA (2008).
https://doi.org/10.1145/1453101.1453150

13. Gabel, M., Su, Z.: Symbolic Mining of Temporal Specifications. In: Proceedings of
the 30th International Conference on Software Engineering, pp. 51–60. ICSE ’08,
Association for Computing Machinery, New York, NY, USA (2008). https://doi.
org/10.1145/1368088.1368096

14. Gabel, M., Su, Z.: Online Inference and Enforcement of Temporal Properties. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, pp. 15–24. ICSE ’10, Association for Computing Machinery,
New York, NY, USA (2010). https://doi.org/10.1145/1806799.1806806

15. Gaglione, J., Neider, D., Roy, R., Topcu, U., Xu, Z.: Maxsat-based temporal logic
inference from noisy data. Innovations Syst. Softw. Eng. 18(3), 427–442 (2022).
https://doi.org/10.1007/S11334-022-00444-8

16. Gulwani, S., Polozov, O., Singh, R.: Program Synthesis. Now Foundations and
Trends (2017). http://ieeexplore.ieee.org/document/8187066

17. Hennessy, J., Patterson, D.: Computer Architecture: a quantitative approach. The
Morgan Kaufmann Series in Computer Architecture and Design, Morgan Kauf-
mann (2017)

18. Hwu, W.M.W., Kirk, D.B., Hajj, I.E.: Programming Massively Parallel Processors,
Morgan Kaufmann (2022)

19. Ielo, A., Law, M., Fionda, V., Ricca, F., De Giacomo, G., Russo, A.: Towards
ILP-Based LTLf Passive Learning. In: Inductive Logic Programming, pp. 30–45.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-
49299-0 3

20. Jeppu, N., Melham, T., Kroening, D., O’Leary, J.: Learning Concise Models from
Long Execution Traces. In: Proceedings of the 57th ACM/IEEE Design Automa-
tion Conference, DAC. pp. 1–6 (2020).https://doi.org/10.1109/DAC18072.2020.
9218613

21. Jünger, D.: WARPCORE: hashing at the speed of light on modern CUDA-
accelerators (2022). https://github.com/sleeepyjack/warpcore

22. Jünger, D., et al.: WarpCore: a library for fast hash tables on GPUs. In: Proceed-
ings of the 27th International Conference on High Performance Computing, Data,
and Analytics, HiPC, pp. 11–20 (2020). https://doi.org/10.1109/HiPC50609.2020.
00015

23. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear
temporal logic specifications for contrastive explanations. In: International Joint
Conference on Artificial Intelligence, IJCAI (2019). https://doi.org/10.24963/ijcai.
2019/776

24. Lemieux, C., Beschastnikh, I.: Investigating program behavior using the texada
LTL specifications miner. In: Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 870–875. IEEE Com-
puter Society, Los Alamitos, CA, USA (2015). https://doi.org/10.1109/ASE.2015.
94

25. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In: Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 81–92. IEEE Computer Society, Los Alamitos, CA, USA
(2015). https://doi.org/10.1109/ASE.2015.71

https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.1145/1368088.1368096
https://doi.org/10.1145/1806799.1806806
https://doi.org/10.1007/S11334-022-00444-8
http://ieeexplore.ieee.org/document/8187066
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1109/DAC18072.2020.9218613
https://doi.org/10.1109/DAC18072.2020.9218613
https://github.com/sleeepyjack/warpcore
https://doi.org/10.1109/HiPC50609.2020.00015
https://doi.org/10.1109/HiPC50609.2020.00015
https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.1109/ASE.2015.94
https://doi.org/10.1109/ASE.2015.94
https://doi.org/10.1109/ASE.2015.71

LTL Learning on GPUs 231

26. Luo, W., Liang, P., Du, J., Wan, H., Peng, B., Zhang, D.: Bridging LTLf inference
to GNN inference for learning LTLf formulae. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. vol. 36(9), 9849–9857 (2022). https://doi.org/10.
1609/aaai.v36i9.21221

27. Mascle, C., Fijalkow, N., Lagarde, G.: Learning temporal formulas from examples
is hard (2023). https://doi.org/10.48550/arXiv.2312.16336

28. Neider, D., Gavran, I.: Learning linear temporal properties. In: Formal Methods in
Computer Aided Design, FMCADm, pp. 1–10 (2018). https://doi.org/10.23919/
FMCAD.2018.8603016

29. Peng, B., et al.: PURLTL: mining LTL specification from imperfect traces in test-
ing. In: Proceedings of the 38th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 1766–1770. IEEE Computer Society, Los
Alamitos, CA, USA (2023). https://doi.org/10.1109/ASE56229.2023.00202

30. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, FOCS, pp. 46–57 (1977).
https://doi.org/10.1109/SFCS.1977.32

31. Raha, R., Rajarshi, R., Fijalkow, N., Neider, D.: Scarlet: scalable anytime algo-
rithms for learning fragments of linear temporal logic (2024)

32. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: TACAS 2022. LNCS, vol. 13243, pp.
263–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 14

33. Valizadeh, M., Berger, M.: Search-based regular expression inference on a GPU.
Proc. ACM Program. Lang. 7(PLDI), 1317–1339 (2023). https://doi.org/10.1145/
3591274, technical report available at https://arxiv.org/abs/2305.18575, imple-
mentation: https://github.com/MojtabaValizadeh/paresy

34. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 30

35. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
API rules from imperfect traces. In: Proceedings of the 28th International Confer-
ence on Software Engineering, pp. 282–291. ICSE ’06, Association for Computing
Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1134285.1134325

36. Yogananda Jeppu, N.: Learning symbolic abstractions from system execution
traces. Ph.D. thesis, University of Oxford (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1609/aaai.v36i9.21221
https://doi.org/10.1609/aaai.v36i9.21221
https://doi.org/10.48550/arXiv.2312.16336
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1109/ASE56229.2023.00202
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1145/3591274
https://doi.org/10.1145/3591274
https://arxiv.org/abs/2305.18575
https://github.com/MojtabaValizadeh/paresy
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1145/1134285.1134325
http://creativecommons.org/licenses/by/4.0/

Safe Exploration in Reinforcement
Learning by Reachability Analysis

over Learned Models

Yuning Wang and He Zhu(B)

Rutgers University, New Brunswick, NJ, USA
{yw895,hz375}@cs.rutgers.edu

Abstract. We introduce VELM, a reinforcement learning (RL) frame-
work grounded in verification principles for safe exploration in unknown
environments. VELM ensures that an RL agent systematically explores
its environment, adhering to safety properties throughout the learning
process. VELM learns environment models as symbolic formulas and
conducts formal reachability analysis over the learned models for safety
verification. An online shielding layer is then constructed to confine the
RL agent’s exploration solely within a state space verified as safe in the
learned model, thereby bolstering the overall safety profile of the RL sys-
tem. Our experimental results demonstrate the efficacy of VELM across
diverse RL environments, highlighting its capacity to significantly reduce
safety violations in comparison to existing safe learning techniques, all
without compromising the RL agent’s reward performance.

Keywords: Controller Synthesis · Reinforcement Learning · Safety
Verification · Safe Exploration

1 Introduction

Deep reinforcement learning (RL) is a promising approach for synthesizing con-
trollers [19] to govern cyber-physical systems like autonomous vehicles. State-
of-the-art RL algorithms can autonomously acquire motor skills through trial
and error, either in simulated environments or even in unknown terrains, thus
circumventing the need for laborious manual engineering. However, during train-
ing in most RL algorithms, agents perform a significant number of exploratory
steps that can lead to dangerous behavior. In many real-world scenarios where
ensuring high assurance is crucial, it becomes imperative for the RL agent to
behave safely during environment interactions, even in training scenarios when
the agent is not yet optimal [37,43].

To facilitate safe exploration, it is essential to have a mechanism that deter-
mines the safety of executing an action in a given environment state. Several
existing approaches utilize prior knowledge about system dynamics [5,6,52] to
make such assessments. When the environment dynamics are not known a priori,

This work is supported by the National Science Foundation under grant CCF-2007799.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 232–255, 2024.
https://doi.org/10.1007/978-3-031-65633-0_11

https://doi.org/10.5281/zenodo.11124030
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_11&domain=pdf
http://orcid.org/0009-0000-4317-9758
http://orcid.org/0000-0001-9606-150X
https://doi.org/10.1007/978-3-031-65633-0_11

Verified Exploration Through Learned Models 233

existing safe RL methods utilize learned predictors in the shape of neural net-
works [1,7,15,47] to predict the safety implications of particular control action.
Training these neural predictors may require numerous potentially unsafe envi-
ronment interactions.

There are also model-based safe RL techniques that leverage learned envi-
ronment models in unknown environments to filter out unsafe actions [4,34]. In
the recent CRABS framework [34], a barrier certificate and a model for envi-
ronment dynamics are co-trained in conjunction with a controller. The learned
neural barrier certificate serves as a predictive tool to assess whether a control
action from the policy aligns with the safety requirement. In cases where it does
not, a safeguard policy, trained on the environment model, is executed. While
rooted in formal methods concepts, CRABS cannot rigorously verify the accu-
racy of a learned barrier certificate. This challenge arises from the fact that both
the certificate and the underlying environment models are deep neural networks,
making formal verification a complex task. Another recent work SPICE [4] uses
weakest preconditions [16] to generate, from a learned environment model, a
predicate that decides if an action is safe to take at a current environment state
concerning a short time horizon H. However, H cannot be extended to cover
the entire horizon of an RL task, primarily because of the inherent challenge
in constructing precise weakest precondition transformers for neural networks.
As a result, although grounded in Hoare logic, SPICE still suffers from notable
safety violations in its environment exploration.

We present VELM, a model-based safe reinforcement learning framework
that engages in formally verified safe exploration through learned environment
models, covering the entire horizon of an RL task. VELM learns a symbolic envi-
ronment model linking the system’s future states, past states, and the controller’s
actions. Most non-linear control systems are characterized by dynamics dictated
by mathematical equations involving operators such as trigonometric functions
(like sine and cosine) and power functions. By leveraging this prior knowl-
edge of common operators that could appear in environment dynamics, VELM
searches a symbolic environment model in the space of interpretable mathemat-
ical expressions by symbolic regression techniques. Symbolic regression methods
have demonstrated remarkable extrapolation capabilities in recent studies and
have proven valuable across diverse domains including physics [10,28,30]. More
importantly, unlike neural environment models, symbolic environment models
are conducive to long-horizon reachability analysis, enabling the computation
of the reachable set of a control system across the entire task horizon. VELM
leverages this capability to establish a safe exploration regime for verified safe
learning.

VELM can be instantiated on top of any model-based reinforcement learn-
ing algorithms. It involves a two-step procedure repeated until convergence: (a)
interact with the true environment to collect a dataset of environment transi-
tions and learn from the data an environment state transition model F (i.e. a
function that maps current state st and action at to next state st+1) and (b)
derive a controller π from this learned model. In each learning iteration, VELM
aims to ensure that the data collection process of using the current controller π

234 Y. Wang and H. Zhu

to interact with the true environment in step (a) is safe. One way to do so is by
verifying the safety of π according to the learned model. However, conducting
reachability analysis of neural networks in a closed-loop control system remains a
challenging research problem [27]. Alternatively, VELM considers π as an oracle
and derives a much simpler and verification-friendly time-varying linear con-
trollers π′ to approximate the policy actions executed by π at each time step
within the RL task horizon. While alternative methods such as approximating a
neural controller as a polynomial function exist [48], our objective is to achieve a
balance between expressiveness and verifiability. Time-varying linear controllers
provide computational efficiency for reachability analysis, making verification
over learned models feasible in a learning loop. VELM solves a constrained opti-
mization problem aimed at optimizing the behavior of π′ to closely match that
of π while simultaneously ensuring that π′ can be formally verified as safe for
the learned environment model. Leveraging π′ as a reference, VELM computes a
safety shield that restricts the neural policy π to explore solely within the state
space where π′ is verified as safe in the learned model. The shield intervenes
whenever the neural policy π proposes a potentially unsafe control action that
could result in a next state outside the safe state space. It then substitutes this
action with a safe alternative provided by π′. The environment state transition
model F is repeatedly updated during the learning process using data safely
collected using the shielded neural controller. The computation of the shield is
accordingly repeated, leading to a more refined shield with each update to the
controller.

While there exists prior work that explored shielding for safe RL, they require
a calibrated piecewise linear dynamics model [5,52] or an abstract model of the
agent’s safe behavior [24], whereas VELM automatically learns a dynamics model
and a safe shielding policy. Adapting these techniques to learned environment
models that evolve across training iterations is challenging, given the inherent
difficulty of approximating nonlinear models as piecewise linear functions. Com-
pared with SPICE [4], VELM is computationally efficient as it only computes a
shield once for a policy while SPICE requires calling a QP (Quadratic Program-
ming) procedure at every timestep.

Across a suite of challenging continuous control benchmarks, VELM exhibits
reward performance comparable to fully neural approaches and significantly
fewer safety violations during training compared to state-of-the-art safe RL tech-
niques.

In summary, this paper makes the following contributions:

– We propose a novel approach for model-based safe reinforcement learning.
Our approach learns an environment model as a symbolic formula and con-
structs a shielding layer to confine an RL agent to explore within a state
space formally verified as safe for the learned model, thereby enhancing the
overall safety profile of the RL system.

– We present VELM as an efficient instantiation of this approach. The exper-
iment results show that VELM offers much greater safety than prior model-
based safe RL approaches without suffering a loss in reward performance.

Verified Exploration Through Learned Models 235

2 Problem Setup

Safety Specification. We define a safety specification as a logical formula spec-
ifying the safe states of a control system.

Definition 1 (Safety Specification). A safety specification ϕ is a quantifier-
free Boolean combination of linear inequalities over the environment state vari-
ables x:

〈ϕ〉 ::= 〈P 〉 — ϕ ∧ ϕ — ϕ ∨ ϕ;
〈P 〉 ::= A · x ≤ b where A ∈ R

|x|, b ∈ R;

A state s ∈ S satisfies a safety specification ϕ, denoted as s |= ϕ, iff ϕ(s) is true.
MDP. We formalize an RL system as a Markov decision process (MDP). Specif-
ically, an MDP is a structure M [·] = (S,A, P,R, S0,H, ·) where S is an infinite
set of continuous real-vector environment states which are valuations of the state
variables x1, x2, . . . , xn of dimension n (S ⊆ R

n), A is a set of continuous real-
vector control actions which are valuations of the action variables u1, u2, . . . , um

of dimension m. R : S ×A → R is a reward function that returns the immediate
reward after the transition from an environment state s ∈ S with action a ∈ A.
P (st+1 | st, at) is an (unknown) probabilistic state transition function where
st+1, st ∈ S and at ∈ A and t is a time step index. S0 is a set of initial states. H
is the time horizon of the control task (i.e. the maximum number of timesteps
of a trajectory). An MDP M [·] is parameterized with an (unknown) controller.
Controller (Policy). A controller is a stochastic function π : S → A mapping
states to distributions over actions. We explicitly model the deployment of a
(learned) controller π in M [·] as a closed-loop system M [π]. M [π] generates
trajectories (or rollouts) ζ = s0, a0, s1, a1, . . . , aH−1, sH where s0 ∈ S0, each
at ∼ π(st), and each st+1 ∼ P (st, at). Given a discount factor 0 ≤ β < 1, the
long-term reward of a policy π is R(π) = E(ζ=s0,a0,...,sH)∼M [π][

∑H
t=0 βtR(si, ai)].

Problem Formulation. The goal of reinforcement learning is to find a policy
π∗ = arg maxπ R(π). To achieve this goal, the learning process of (model-free or
model-based) reinforcement learning algorithms progressively refines and opti-
mizes policies π0, π1, . . . , πT over successive iterations. At each iteration, the
current policy is evaluated, and adjustments are made to improve its perfor-
mance. This learning process continues until the policy converges to the optimal
policy π∗. Given a bound δ, we define safe exploration as a learning process
π0, π1, . . . , πT such that

πT = π∗ and ∀1 ≤ j ≤ T, 0 ≤ t ≤ H. Pζ∼πj ,st∈ζ(¬ϕ(st)) < δ (1)

Essentially, the end goal is for the final policy πT in the sequence to optimize
long-term rewards, while each intermediate policy (excluding π0) is constrained
to a limited probability δ of unsafe behavior. This definition does not place safety
constraints on π0 as the environment dynamics is not known and hence π0 can
exhibit arbitrary (unsafe) behavior.

236 Y. Wang and H. Zhu

Algorithm 1. VELM: Verified Exploration based on Learned Models.
1: procedure VELM(M , ϕ)
2: Initialize an empty dataset D and a random NN policy πNN

3: for epoch in 0, . . . , T do
4: if epoch = 0 then
5: πS ← λs.λt. πNN(s)
6: else
7: πS ← Shield(M̂, πNN, ϕ) � Algorithm 2

8: Unroll real rollouts {(st, at, st+1)} in the real environment M under πS

9: D ← D ∪ {(st, at, st+1)}
10: M̂ ← LearnModel(D)
11: Optimize πNN using the learned environment M̂ via any RL algorithm

3 Verified Exploration Through Learned Models

The Main Algorithm. Our overall framework, Verified Exploration through
Learned Models (VELM), employs a learned environment model to facilitate
safety analysis during the training phase. Akin to existing model-based safe
RL techniques [4,5,12,26,34], VELM utilizes the learned environment model to
delineate safety regions for the underlying control policy. While VELM can also
be applied to safe model-based planning, a policy is in general more efficient than
a planner. The primary training procedure is outlined in Algorithm 1. It operates
within an unknown environment M and takes as input a safety property ϕ. The
algorithm concurrently learns an environment model represented as an MDP M̂
and a stochastic neural control policy πNN

1. The algorithm maintains a dataset D
comprising observed environment transitions, each of which is a tuple of future
and past states along with the controller’s actions (st, at, st+1). This dataset is
acquired by interaction with the real environment M (Line 9). Subsequently,
VELM utilizes this dataset to learn a symbolic environment model M̂ (Line 10)
and optimizes the neural policy πNN on this learned model via any model-free RL
algorithm of the user’s choice (Line 11). Notably, VELM uses a shielded policy
πS for exploring the real environment to construct D. πS takes a state s at a
timestep t as input and generates a safe action for the RL agent to execute at
t. This is necessary because directly executing the neural controller πNN in the
real environment M could result in safety violations. The shield policy πS is
constructed in Line 7 via the Shield procedure (Algorithm 2). This procedure
leverages reachability analysis on the learned environment model M̂ to establish
a safe exploration regime covering the entire task horizon. πS constrains πNN to
only explore the real environment within the established safe region.

In the following, we describe in detail the procedures to learn symbolic envi-
ronment models and construct shielded policies for verified safe exploration.

1 VELM integrates a stochastic policy for exploring the environment to seek high-
reward signals. This is not a strict requirement and VELM can also integrate any
deterministic policy learning algorithms.

Verified Exploration Through Learned Models 237

Fig. 1. Context-free grammar for defining state-transition functions.

3.1 Symbolic Environment Models

The LearnModel procedure (Line 10 in Algorithm 1) follows the conven-
tional model-based RL framework [25] to learn an environment MDP model
M̂ [·] = (S,A, F,R, S0,H, ·) where F : S × A → S is learned using the dataset D
to approximate the unknown probabilistic state transition P in the real environ-
ment2. VELM distinguishes itself from existing methods by learning a symbolic
environment state transition function F instead of a deep neural network model.

Given a dataset D = {(st, at, st+1)} of real environment state transitions, the
LearnModel procedure learns an approximate model f of the environment’s
dynamics to fit D:

f = argmax
f∈Fα

E(st,at,st+1)∈D‖f(st, at) − st+1‖ (2)

where Fα is a family of expressions that can be articulated using the grammar
outlined in Fig. 1. This grammar accommodates common mathematical opera-
tors such as trigonometric functions. The metavariables x and n represent state
variables and constants respectively. The symbolic function f establishes the
relation between the next state st+1 and the system’s past state st, as well as
the controller’s action at.

Why Symbolic Environment Models? First, we observe that the dynamics
of non-linear control systems often follow mathematical equations. Second, sym-
bolic environment models are suitable for long-horizon reachability analysis to
verify the safety of a control system. In contrast, performing reachability anal-
ysis over neural network models suffers from large accumulation errors arising
from over-approximation [27].

To infer a symbolic formula f to fit D in Eq. 2, the LearnModel procedure
employs off-the-shelf symbolic regression techniques [10]. Symbolic regression is
a machine learning approach that can learn the governing formulas of data. As
demonstrated in recent studies [10,28,30], symbolic regression exhibits excellent
extrapolation capabilities and has already proved useful in a variety of domains
such as physics. VELM uses it to search over the space of mathematical expres-
sion by manipulating the operators, constants, and variables in the grammar
depicted in Fig. 1.

Nondeterministic Environment Model. It is important to note that VELM
does not directly use the deterministic function f as the state transition function
F for learned models M̂ [·] = (S,A, F,R, S0,H, ·). In cases where control envi-
ronments are stochastic (common in RL tasks), deterministic state transition
2 If the real reward function is unknown, an approximate reward function R : S×A →
R can also be learned from data [25] by recording in D = {(st, at, st+1, rt)} the
immediate reward rt of taking an action at. We omit this detail in the paper.

238 Y. Wang and H. Zhu

functions are not adequate. For stochastic environments, we aim to bound the
deviation between f and the real environment. We identify ε such that for all
st and at, ‖f(st, at) − st+1‖ ≤ ε where st+1 ∼ P (·|st, at) is sampled from the
true environment transition at st by taking action at. We then express the state
transition function of a learned model M̂ [·] as a nondeterministic function:

F (st, at) = f(st, at) + [−ε, ε]

When used for simulation, F generates a next state at time step t by adding an
error vector uniformly sampled from [−ε, ε] to the result of f(st, at). When used
for reachability analysis and verification, we consider all possible error terms
within [−ε, ε] as an overapproximation to account for the worst-case deviation.

Fig. 2. Executing a random policy
on the real CartPole environment
and a learned model.

In practice, we estimate ε from data and
choose the most permissible ε such that
∀(st, at, st+1) ∈ D. ‖f(st, at) − st+1‖ ≤ ε.
Given f , with sufficient data in D, the model
learning procedure LearnModel returns a
model that is close to the actual environment
with high probability 1 − δM . That is, for all
s ∈ S, a ∈ A,

Prs′∼P (·|s,a)

[
s′ ∈ F (s, a)

]
< δM

In this paper, we learn F as a discrete dynam-
ics system model. With an Ordinary Differ-
ential Equation solver, we can also leverage
symbolic regression to learn a more accurate continuous-time dynamics model.
This is left for future work.

Example 1. Consider the classic CartPole environment [8]. The system’s state
is described by (x, ẋ, θ, θ̇) where x (resp. ẋ) denotes the position (resp. speed)
of the cart along the x-axis and θ (resp. θ̇) is the angle (resp. angular velocity)
of the pole with respect to the cart. The goal is to balance the pole straight
up and bound the deviation of the cart. VELM learns the following equation to
describe the state transition function of the system using the Operon [9] symbolic
regression tool where u represents the control action (we ignore ε for simplicity):

x = x + 0.02ẋ θ = θ + 0.02θ̇

ẋ = ẋ + 0.019u − (0.001u · sin(0.999θ) + 0.001) sin(θ) − 0.007 sin(2θ)

θ̇ = θ̇ − (0.029u + (0.001ẋ + 0.002θ̇2 + 0.001θ̇ − 0.02) sin(θ)) cos(θ) + 0.3 cos(θ − 1.58)

Figure 2 depicts the rollouts in the real environment and simulated in the learned
model by executing a random policy from (0,0,0,0). The learned model can
reasonably capture real trajectories within a small error bound.

Verified Exploration Through Learned Models 239

3.2 Shielding for Verified Safe Exploration

With a learned environment model M̂ [·], under the assumption of its high-
probability approximate accuracy, the verification of a neural controller πNN can
be directly pursued through reachability analysis over the closed-loop neural
network controlled system M̂ [πNN] (NNCS). However, the verification of NNCS
remains a significant challenge in the research literature [27].

Time-varying Linear Controllers. VELM instead distills a neural controller
πNN into a time-varying linear controller that is as similar as possible to πNN.
Simultaneously, this process ensures that the safety of the time-varying linear
controller can be formally verified concerning the learned model M̂ [·] and a
safety property ϕ. Principally, a time-varying linear controller can provide an
accurate local approximation of a neural controller at each time step (if the time
step is small) and incur a much-reduced verification cost owing to the linearity
of the representation. A time-varying linear controller πθ(s, t) with trainable
parameters θ for a time horizon H (0 ≤ t < H) can be expressed mathematically
as:

πθ(s, t) = θk(t)T · s + θb(t)

πθ(s, t) generates the control input at time t when observing the current envi-
ronment state s at t. The time-varying nature of the controller is captured by
the dependence of the time-varying gain matrix θk(t) and the time-varying bias
term θb(t), reflecting the dynamic adjustments in the control strategy over dif-
ferent time instances t. The overall objective of distilling πNN into a time-varying
linear controller πθ is:

min
θ

Es0,s1,...,sH∼M̂ [πθ]
‖πθ(st, t) − πNN(st)‖2

subject to Verify(M̂, πθ, ϕ) = True (3)

where ‖ · ‖2 is a loss function using the L2 norm.

Verifying Time-varying Linear Controllers. VELM verifies the safety of a
time-varying linear controller πθ for a learned model M̂ [·] using abstract inter-
pretation. While there exist other approaches such as synthesizing barrier cer-
tificates for controller verification, the techniques have difficulty handling non-
polynomial system dynamics. VELM soundly performs reachability analysis to
approximate the set of reachable states of a control system at each timestep:

Definition 2 (Symbolic Rollouts). Given an environment model M̂ [π] =
(S,A, F,R, S0,H, π) deployed with a controller π, an abstract domain D, an
abstract transformer FD for the state transition function F over D, a symbolic
rollout of M [π] over D is ζD = SD

0 , SD
1 , . . . , SD

H where SD
0 = α(S0) is the abstrac-

tion of the initial states S0 in D and α is the abstraction function of D. Each
symbolic state SD

t over-approximates the set of reachable states from an initial
state in S0 at timestep t. We have SD

t+1 = FD(
SD

t , AD
t

)
where AD

t overapproxi-
mates the set of actions at t. γ is the concretization function of D for obtaining
the set of concrete states represented by an abstract state SD

t .

240 Y. Wang and H. Zhu

Algorithm 2. Synthesize a shield πS for safe exploration of πNN. πS intervenes
to override potentially unsafe actions by πNN.
1: procedure Shield(M̂ [·] = {S, A, F, R, S0, H, ·}, πNN, ϕ)
2: πθ ← Approximate(M̂ [·], πNN, ϕ) � Algorithm 3
3: SD

0 , SD
1 , . . . , SD

H−1, S
D
H ← ReachSet(M̂ [πθ])

4: πS ← λs.λt. let aNN = πNN(s) in
5: if ∃0 ≤ i ≤ t + 1. F (s, aNN) ⊂ γ(SD

i) then aNN

6: else let i = max
({i | s ∈ γ(SD

i })
in πθ(s, i)

7: return πS

The abstract interpreter FD in VELM uses Taylor Model (TM) flowpipes
as the abstract domain D to reason about the safety of M̂ [πθ]. For reachability
analysis of M̂ [πθ] at each timestep t (where t > 0), VELM gets the TM flow-
pipe SD

t for the reachable set of states of M̂ [πθ] at timestep t − 1. To obtain
a TM representation for the output set of the time-varying linear controller
πθ at timestep t, VELM uses TM arithmetic to evaluate a TM flowpipe AD

t for
πθ(s, t) = θk(t)T ·s+θb(t) for all states s ∈ SD

t . The resulting TM representation
AD

t can be viewed as an overapproximation of the controller’s output at timestep
t. Finally, we use Flow∗ [11] to construct the TM flowpipe overapproximation
SD

t+1 for all reachable states at timestep t by reachability analysis over the state
transition function FD(SD

t , AD
t). To verify M̂(πθ) against a safety property ϕ,

VELM uses Flow∗ to check if for each abstract state SD
t in the symbolic rollout

of M̂(πθ), the concretized states in γ(SD
t) does not violate ϕ.

Verified Shielding. The safety of a distilled controller πθ does not imply its
oracle neural controller πNN is safe. For safe exploration using πNN, VELM con-
structs a shield for πNN based on πθ. The high-level algorithm for shield synthesis
is presented in Algorithm 2.

Given a learned environment model M̂ [·], a neural controller πNN, and a safety
specification ϕ, at Line 2, Algorithm 2 invokes Approximate to construct a dis-
tillation of πNN as a time-varying linear controller πθ. We describe Approximate
in detail in Algorithm 3 and Sect. 3.3. At Line 3, Algorithm 2 uses the symbolic
rollout ζD = SD

0 , SD
1 , . . . , SD

H of M̂ [πθ] to derive the reachable set of states of
πθ for the learned environment model M̂ [·]. As this reachable set of states has
been verified safe for M̂ [πθ], the shield constrains πNN to only explore within
the reachable set ∪0≤i≤Hγ(SD

i) to remain safe. Algorithm 2 returns a shield
πS for πNN in the form of a lambda function that takes an environment state
st at time step t and t as inputs. We show that assuming the learning model
soundly approximates the unknown state transition distribution P of the real
environment (Sect. 3.1), the shield is provably safe in the following lemma.

Lemma 1. Assume a learned environment model M̂ [·] = {S,A, F,R, S0,H, ·}
is a sound nondeterministic approximation of the true environment: ∀s ∈ S, a ∈
A. s′ ∼ P (·|s, a) ⇒ s′ ∈ F (s, a). Given a safety property ϕ, a neural policy
πNN, and its shield πS = Shield(M̂ [·], πNN, ϕ), for any rollouts s0, a0, s1, . . . , sH

Verified Exploration Through Learned Models 241

collected by πS in the true environment where s0 ∈ S0, at = πS(st, t), and
st+1 ∼ P (·|st, at), we have st |= ϕ (i.e. st is safe) for all 0 ≤ t ≤ H.

Proof. Since πS = Shield(M̂ [·], πNN, ϕ), there exists a πθ (Line 2 in Algo-
rithm 2) whose symbolic rollouts SD

0 , SD
1 , . . . , SD

H can be verified safe with respect
to ϕ (Line 3 of Algorithm 2). We show that for all 0 ≤ t ≤ H, we have

∨
0≤i≤t st ∈

γ(SD
i). This invariant implies that st is safe. We prove the invariant by induction.

When t = 0, the invariant holds as s0 ∈ γ(SD
0) by construction. Given an st that

satisfied the invariant, if ∃0 ≤ i ≤ t + 1. F (st, πNN(st)) ⊂ γ(SD
i) (Line 5), then

at = πNN(st) and by assumption st+1 ∼ P (·|st, at) ∈ F (st, at) ⊂ γ(SD
i), which

means the invariant holds on st+1 in this case. Otherwise (Line 6), at = πθ(st, i)
where i = max

({i | st ∈ γ(SD
i })

. Such i must exist as we assume st satisfied the
invariant. Since st+1 ∼ P (·|st, at) ∈ F (st, at) and the soundness of the abstract
interpreter FD ensures that if st ∈ γ(SD

i), then F (st, at) ⊆ γ(SD
i+1), which means

the invariant holds on st+1 in this case as well. By induction, the invariant is
true for all 0 ≤ t ≤ H.

Theorem 1 (Shield (Algorithm 2) is probabilistically safe). For a
learned environment model M̂ [·] = {S,A, F,R, S0,H, ·}, let δM be the probability
bound of the model: Prs′∼P (·|s,a)

[
s′ ∈ F (s, a)

]
< δM . Given a safety property

ϕ, a neural policy πNN, and its shield πS = Shield(M̂ [·], πNN, ϕ), for any roll-
outs s0, a0, s1, . . . , sH collected by πS in the true environment where s0 ∈ S0,
at = πS(st, t), and st+1 ∼ P (·|st, at), we have st |= ϕ (i.e. st is safe) with
probability at least (1 − δM)t for all 0 ≤ t ≤ H.

Proof. By Lemma 1, if st+1 ∈ F (st, at), then st+1 is safe for all 0 ≤ t < H. By
assumption, at each time step, we have st+1 ∈ F (st, at) with probability at least
1−δM . After t time steps, the probability that the assumption is valid is at least
(1 − δM)t, which means that st is safe with probability at least (1 − δM)t.

Fig. 3. Executing a shielded neu-
ral policy in ACC. The green
region denotes the safe space ver-
ified on a learned model. The yel-
low regions denote the control
steps where intervention takes
place. (Color figure online)

We can relate the probability guarantee in
Theorem 1 with our overall objective in Eq. 1
by bounding δM < 1 − (1 − δ)/exp(H). This
theorem illustrates that VELM only allows for
safety violations when there’s an inaccuracy
in the environment model. In contrast, exist-
ing approaches to safe exploration are suscep-
tible to safety violations stemming from both
modeling inaccuracies and actions that are not
safe even considering the environment model.
For example, SPICE [4] applies weakest pre-
condition generation from safety constraints
to a linearization of the learned environment
model to determine safe control actions. How-
ever, this linearization process introduces sub-
stantial approximation errors, compromising the safety of the computed actions
on the learned environment model. CRABS [34] uses neural networks for

242 Y. Wang and H. Zhu

representing environment models and control barrier certificates to identify safe
exploration regions. However, a neural control barrier certificate may converge
to a suboptimal model and CRABS does not have a procedure to rigorously
guarantee its correctness. This may result in delayed or absent intervention for
unsafe behaviors.

Example 2. Consider an adaptive cruise control (ACC) system [5]. The goal is
to control an ego car to closely follow a lead car without collision. The lead car
can apply acceleration to itself at any time. Figure 3 shows the rollouts (blue)
of a shielded neural controller πNN in the real environment. The x-axis shows the
distance to the lead car while the y-axis shows the relative velocities of the two
cars. The rollouts start by accelerating to close the gap with the lead car and
subsequently decelerating to prevent a collision. The green region denotes the
reachable set of a distilled time-varying linear controller πθ verified as safe on a
learned model of the ACC environment. The yellow regions indicate interventions
where πθ constrains πNN to stay within the safe region. Without such intervention,
the neural controller alone would fail to decelerate rapidly enough and crash into
the lead car (the dashed line on the right side). At times, πθ needs to intervene
well before the final steps to ensure the feasibility of avoiding a crash later.

3.3 Neural Controller Approximation

This section formalizes the Approximate procedure invoked by Algorithm 2
(Line 2) for distilling a neural controller πNN to a time-varying linear controller
πθ that can be verified safe according to a learned environment model.

Minimizing the gap between πθ and a (fixed) neural controller πNN as two
functions can be straightforwardly achieved by optimizing θ through gradient
descent. However, a binary verification result (true or false) does not offer guid-
ance on how θ should be optimized to ensure that πθ can be verified safe. Follow-
ing previous research [45], when facing verification failures, our approach utilizes
verification feedback, indicating the extent of safety violations, to guide the opti-
mization process for πθ. We first formalize the concept of safety violation within
the concrete environment state space and then lift it to abstract state spaces.

Definition 3 (State Safety Loss Function). For a safety specification ϕ
over states s ∈ S, we define a non-negative loss function L(s, ϕ) such that
L(s, ϕ) = 0 iff s satisfies ϕ, i.e. s |= ϕ. We define L(s, ϕ) recursively, based
on the possible shapes of ϕ (Definition 1):

– L(s,A · x ≤ b) := max(A · s − b, 0)
– L(s, ϕ1 ∧ ϕ2) := max(L(s, ϕ1),L(s, ϕ2))
– L(s, ϕ1 ∨ ϕ2) := min(L(s, ϕ1),L(s, ϕ2))

Notice that L(s, ϕ1 ∧ ϕ2) = 0 iff L(s, ϕ1) = 0 and L(s, ϕ2) = 0, and similarly
L(ϕ1 ∨ ϕ2) = 0 iff L(ϕ1) = 0 or L(ϕ2) = 0.

Verified Exploration Through Learned Models 243

We extend the safety loss definition (Definition 3) to the abstract state space
employed in a verification procedure.

Definition 4 (Abstract State Safety Loss Function). Given an abstract
state SD and a safety specification ϕ, we define an abstract safety loss function:

LD(SD, ϕ) = max
s∈γ(SD)

L(s, ϕ)

It quantifies the worst-case safety loss of ϕ across all concrete states encompassed
by SD. For an abstract domain D, we typically can approximate the concretiza-
tion of an abstract state γ(SD) using a tight interval γI(SD). For example, it is
straightforward to represent Taylor model flowpipes as intervals in Flow∗. Based
on the potential structure of ϕ, we redefine LD(SD, ϕ) as:

– LD(SD,A · x ≤ b) := maxs∈γI(SD)

(
max(A · s − b, 0)

)

– LD(SD, ϕ1 ∧ ϕ2) := max(LD(SD, ϕ1),LD(SD, ϕ2))
– LD(SD, ϕ1 ∨ ϕ2) := min(LD(SD, ϕ1),LD(SD, ϕ2))

By definition, we have LD(SD, ϕ) = 0 =⇒ ∀s ∈ γI(SD). s |= ϕ.
We further lift the definition of safety loss over abstract states (Definition 4)

to the symbolic rollout of an MDP (Definition 2).

Definition 5 (Symbolic Rollout Safety Loss). Given an environment
model M̂ [πθ] and a safety specification ϕ, assuming the symbolic rollout of M̂ [πθ]
over an abstract domain D is ζD

0:H = SD
0 , . . . , SD

H , we define an abstract safety
loss function to measure the degree to which ϕ is violated by M̂ [πθ]:

LD(M̂ [πθ], ϕ) = LD(ζ0:H , ϕ) = max
0≤i≤H

(LD(SD
i , ϕ))

Definition 5 enables a quantitative metric for the safety loss of a controller
πθ in the abstract state space of a safety verifier. By definition, we have

LD(M̂ [πθ], ϕ) = 0 =⇒ M̂ [πθ] |= ϕ.

We rewrite the overall objective of distilling a neural controller πNN into a
time-varying linear controller πθ in Eq. 3 as:

min
θ

Es0,s1,...,sH∼M̂ [πθ]
‖πθ(st, t) − πNN(st)‖2

subject to LD(M̂ [πθ], ϕ) = 0 (4)

The objective described in Eq. 4 frames a constraint optimization problem.
To address this, we employ Lagrangian optimization, which provides a principled
way to seamlessly incorporate the verification constraint (LD(M̂ [πθ], ϕ) = 0) into
the distillation objective. We introduce a Lagrangian function that incorporates
a Lagrange multiplier λ to account for constraint violation and transform Eq. 4
into an unconstrained optimization problem:

L(θ, λ) = LS(πθ, πNN) + λ · LD(M̂ [πθ], ϕ)

244 Y. Wang and H. Zhu

Algorithm 3. Approximate a neural control policy πNN with a time-varying
linear controller πθ while ensuring πθ is formally verified safe for the learned
model M̂ .
1: procedure Approximate(M̂ [·] = {S, A, F, R, S0, H, ·}, πNN, ϕ)
2: Initialize a time-varying linear policy πθ over H timesteps
3: θ ← all parameters in πθ for optimization
4: while true do
5: �S ← LS(πθ, πNN)
6: �D ← LD(M̂ [πθ], ϕ)
7: if �D = 0 and �S converges then
8: return πθ

9: θ ← θ − ηθ · (∇θLS(πθ, πNN) + λ · ∇θLD(M̂ [πθ], ϕ)
)

10: λ ← λ + ηλ · LD(M̂ [πθ], ϕ)

where LS(πθ, πNN) = Es0,s1,...,sH∼M̂ [πθ]
‖πθ(st, t) − πNN(st)‖2. VELM seeks to

optimize the primal parameter θ and the Lagrange multiplier λ to minimize
the function L(θ, λ), effectively reducing both the L2 loss for the distillation
objective and safety violations for the verification constraint.

Algorithm 3 outlines the procedure for distilling πNN to πθ. It iteratively
performs the following two gradient-based update rules to minimize L(θ, λ):

θ ← θ − ηθ · (∇θLS(πθ, πNN) + λ · ∇θLD(M̂ [πθ], ϕ)
)

λ ← λ + ηλ · LD(M̂ [πθ], ϕ)

where ηθ is a learning rate for θ and ηλ is a learning rate for λ. The Lagrange
multiplier λ is increased during the optimization process to penalize deviations
from satisfying the verification constraint. As such, even though the verification
procedure may introduce approximation errors, VELM can reduce this error
by conducting optimization in the abstract state space [45]. VELM repeats the
iterative update until the distillation loss (S) converges and the safety violation
loss (D) converges to 0 (Line 8).

Gradient Estimation for LD(M̂ [πθ], ϕ). Deriving the gradients of the ver-
ification constraint LD(M̂ [πθ], ϕ) directly poses a challenge, as it requires the
verification procedure to be differentiable, a feature not practical. To address
this obstacle, following prior research [45], VELM estimates the gradients of
LD through random search [36]. In each training iteration, given a closed-loop
environment M̂ [πθ], we generate perturbed systems M̂ [πθ+νω] and M̂ [πθ−νω] by
introducing sampled Gaussian noise ω to the current controller πθ’s parameters θ
in both directions. Here, ν represents a small positive real number. By assessing
the abstract safety losses of the symbolic rollouts for M̂ [πθ+νω] and M̂ [πθ−νω],
we update θ using a finite difference approximation along an unbiased estimator
of the gradient:

∇θLD(M̂ [πθ], ϕ) ← 1
N

N∑

k=1

(
LD(M̂ [πθ+νωk

], ϕ)−LD(M̂ [πθ−νωk
], ϕ)

)

ν
ωk

Verified Exploration Through Learned Models 245

Performance Guarantees. We conclude the technical section by discussing
the reward performance of VELM. One important concern is whether shielding
a neural control policy hinders the RL algorithm’s ability to learn the opti-
mal policy. Previous studies [4,5,44] have established the following regret bound
concerning the reward performance of a shielded policy for safe exploration com-
pared to the optimal policy that does not seek to restrict safety violations during
the learning process. Let πi

S = Shield(M̂ i[·], πi
NN, ϕ) for 1 ≤ i ≤ T be a sequence

of policies learned in Algorithm 1 where ϕ is the safety property, M̂ i[·] and πi
NN

are the learned environment model and neural controller at the ith iteration.
Introduce a safety indicator Z that takes the value 1 when πi

S(s, t) = πi
NN(s) and

0 otherwise, and let ξ = E[1 − Z] be the frequency with which πi
S intervenes

in neural policy controls. Assume the reward function is Lipschitz on the con-
troller parameter space and let LR be the corresponding Lipschitz constant. Let
β and τ2 be the bias and variance in the gradient estimate that is incurred due
to sampling. Let εS be an upper bound on the imprecision incurred by distill-
ing πi

NN to a linear time-varying controller. Let εm be an upper bound for the
Kullback-Leibler divergence between the learned environment model and the
true environment dynamics at all time steps. Let επ be an upper bound on the
total variational divergence between the policy used to gather data and the pol-
icy being trained at all time steps. Set the learning rate η of the RL algorithm

for updating πi
NN as

√
1
τ2 (1

T + εS). Assuming π∗ is the (unknown) the optimal
safe control policy, we have the following regret bound [4,5,44] for Algorithm 1:

R(π∗)−E
[
1
T

∑T
i=1 R(πi

S)
]

= O
(√

1
τ2 (1

T + εS)+β+LR ·ξ+εm+επ

)
. VELM does

not impose a significant penalty on the agent’s reward performance for achieving
safety as the regret bound becomes tighter when the frequency of interventions
in the decision of the neural controllers ξ decreases during training. As the envi-
ronment model improves during training (i.e. εm and επ decrease), the controller
converges to higher rewards. The remaining terms are associated with the stan-
dard error by using sampling to approximate policy update gradients.

4 Experiments

In our implementation of VELM3, we use SAC [23], a state-of-the-art reinforce-
ment learning algorithm, as the base algorithm to optimize neural network con-
trollers. We build the abstract interpreter for reachability analysis of a time-
varying linear controller against a learned model on top of Flow∗ [11] for rea-
soning about nonlinear state transition functions. We use Operon [9] to learn
a symbolic environment model for the LearnModel procedure at Line 10 in
Algorithm 1. In the implementation, we invoke the LearnModel procedure only
when the existing environment model is invalid for the newly collected trajecto-
ries from the real environment. Recall that our learned model is nondeterministic
(Sect. 3.1). Given a current state, it outputs a range for the next state. If the
3 VELM is available at https://github.com/RU-Automated-Reasoning-Group/

VELM.

https://github.com/RU-Automated-Reasoning-Group/VELM
https://github.com/RU-Automated-Reasoning-Group/VELM

246 Y. Wang and H. Zhu

Fig. 4. Rewards for all the tools throughout the training phase. The solid curve rep-
resents the mean across 5 random seeds. The shaded area indicates the standard
deviation.

actual next state is not within the range, we consider the model invalid (i.e.,
∃t.st+1 ∈ F (st, at)). This strategy significantly accelerates the learning process.

Baselines. We compared VELM with three baselines: SAC, SPICE [4], and
MBPPO-Lagrangian [26]. The SAC baseline acts as an upper bound on reward
performance since the agent does not need to explicitly handle safety constraints.
The other safe RL baselines are relevant because they are all model-based as
VELM. However, they all use neural networks for learning environment state
transition dynamics. SPICE applies weakest precondition generation from safety
constraints to a linearized form of learned environment models to ascertain safe
control actions for shielding. The linearization step may introduce approxima-
tion errors. MBPPO-Lagrangian finds a safety-constraint-satisfying policy by
using the Lagrangian method to reduce the cumulative safety violations through-
out trajectories executed on the learned model. This method does not consider
shielding to ensure safe exploration. We also tried to use CRABS [34] as another
model-based safe-learning baseline. In addition to a neural environment model,
CRABS uses another neural network to learn a control barrier certificate to iden-
tify a safe region on the neural environment model for shielding. However, we
found that CRABS is excessively time-consuming to execute, completing only an
average of 10 episodes within a day. Therefore, we have excluded CRABS in the
results presented in this section. In summary, these baselines suffer from safety
violations stemming from both (1) environment modeling imprecision and (2)

Verified Exploration Through Learned Models 247

Fig. 5. Cumulative safety violations for all the tools throughout the training phase.
The solid curve represents the mean across 5 random seeds. The shaded area indicates
the range between the minimum and maximum values.

control policies that are not safe even considering the environment model. VELM
eliminates the second source of errors. Our experiments aim to answer the ques-
tion - How does the performance of VELM compare to representative baseline
approaches, considering metrics such as rewards, number of unsafe steps, and
overall efficiency?

Benchmarks. We used the benchmarks considered in related work. Pendulum,
ACC, Obstacle, Obstacle2, Road2D, and CarRacing are taken from the SPICE
benchmarks [4,5]. In Road2D, an autonomous vehicle is controlled to reach a
designated destination while adhering to a specified speed limit. Obstacle and
Obstacle2 pose a challenge for a 2D robot to reach a specified goal while avoiding
an obstacle. In Obstacle, the obstruction is positioned to the side, affecting the
agent only during exploration, without cutting the shortest path to the goal.
In Obstacle2, the obstruction is placed between the initial region and the goal
region, requiring the learned controller to navigate around it. In the Pendulum
task, the objective is to maintain a pendulum in the upright position. The goal
of ACC (adaptive cruise control) is to closely follow a leading vehicle without
collision, with the lead car selecting acceleration randomly from a truncated
normal distribution at each time step. The CarRacing environment is similar
to Obstacle2 but the goal is to reach a goal region on the opposite side of the
obstacle and then return to the initial region. This requires the agent to complete

248 Y. Wang and H. Zhu

a loop around the obstacle to fulfill the objective. Cartpole is from Open AI
Gym [8]. The nonlinear benchmarks CartPoleMove and CartPoleSwing are taken
from CRABS [34]. The CartPoleMove task is challenging as high-reward policies
must carefully explore near the safety boundary. The user-specified safety set is
{(x, θ) : |θ| ≤ θmax = 0.2, |x| ≤ 0.9} where x is the cart horizontal position and
θ is the pole angle. θmax corresponds to approximately 11◦. The reward function
of the task is r(s, a) = x2. Consequently, the optimal policy must delicately
move the cart and pole toward the boundary of unsafe regions but remain safe.
Similarly, the CartPoleSwing task is also high-risk, high-reward environment.
The reward function is r(s, a) = θ2 and the user-specified safety set is {(x, θ) :
|θ| ≤ θmax = 1.5, |x| ≤ 0.9}. So the optimal policy will swing back and forth
to some degree close to 90◦ but prevent the pole from falling. LALO20 is a
challenging 7-dimensional nonlinear benchmark modeling a molecular network
taken from prior work [48]. This task is difficult because the initial states are
situated near the boundary of the unsafe region.

Results. We report the mean reward performance of the learned controllers as
well as cumulative safety violations over time during training of each benchmark
for VELM and each baseline in Fig. 4 and Fig. 5. The shield intervention rates
of VELM and SPICE are listed in Table 1. These results are averaged over 5
random seeds.

Table 1. Comparison of Shield
Intervention Rates between
VELM and SPICE.

Benchmarks VELM SPICE

Pendulum 0.07 0.00

ACC 0.23 0.78

Obstacle 0.11 0.70

Obstacle2 0.26 0.34

Road2D 0.03 0.18

CarRacing 0.17 0.44

CartPole 0.12 0.81

CartPoleMove 0.16 0.55

CartPoleSwing 0.01 0.78

LALO20 0.49 0.79

Figure 5 demonstrates that VELM exhibits
superior safety performance as it experiences
a significantly lower frequency of unsafe steps
compared to the baseline methods. Except for
the initial controller π0, the controllers learned
by VELM demonstrate nearly zero safety vio-
lations when interacting with the real environ-
ment in training. SPICE accumulates safety vio-
lations more quickly compared to VELM. Over-
all, VELM achieves a 99.7% reduction in unsafe
steps compared to SPICE. SPICE incurs signif-
icantly more safety violations in highly nonlin-
ear environments such as CartPole. This suggests
that the model linearization step in SPICE intro-
duces significant approximation errors, resulting
in either unnecessary interventions or a lack of intervention when there is truly
unsafe behavior. This kind of approximation error also limits SPICE to use a
bounded-time analysis to determine potential safety violations within the next
few time steps (5, as recommended in SPICE [4]). VELM instead can predict the
long-term safety of an action far into the future. For example, on CartPole, the
average shield intervention rate for SPICE over all the rollouts in the real envi-
ronment is 81%, while VELM only has an intervention rate of 12%. Similarly,
VELM is safer than MBPPO-Lagrangian in every benchmark. As can be seen
from Fig. 4, MBPPO-Lagrangian continues to violate the safety property more
over time than VELM. Principally, in contrast to VELM, MBPPO-Lagrangian

Verified Exploration Through Learned Models 249

seeks to limit safety violations in expectation and does not assure safety for all
visited states.

Table 2. Training time in seconds for model, network and shield updates

Benchmarks Model (s) Network (s) Shield (s)

Pendulum 6.4 184.0 17.1

ACC 489.9 616.4 57.0

Obstacle 18.6 657.0 33.3

Obstacle2 47.7 661.8 436.5

Road2D 19.8 884.0 62.0

CarRacing 41.2 648.3 209.4

CartPole 21.0 577.5 176.8

CartPoleMove 13.3 302.1 384.5

CartPoleSwing 13.2 311.1 10.5

LALO20 47.8 302.3 808.1

Figure 4 also demonstrates that in most cases, VELM attains comparable
(or slightly superior) reward performance to SAC. SPICE imposes a substan-
tial penalty on reward performance compared to SAC. This is because SPICE
in general exhibits significantly higher shield intervention rates than VELM.
As discussed in the performance guarantee analysis in Sect. 3, frequent shield
interventions hinder the RL algorithm from converging to the optimal policy.
LALO20 is the only benchmark that VELM does not achieve a comparable
reward performance to SAC. This is because, in this benchmark, the average
shield intervention rate for VELM over all the rollouts in the real environment
is relatively high at 49%. However, VELM achieves nearly 0 safety violations
during learning. The modest performance penalty is an acceptable trade-off for
safety. Although SPICE also achieves almost 0 safety violations on LALO20, its
shield intervention rate is 79%, preventing the neural policy from achieving high
reward performance.

We present the execution times for each component of VELM across all
benchmarks in Table 2, averaged over five random seeds. The Network column
in the table reports the time spent training a neural network controller using
the base RL algorithm. The Model and Shield columns report the time spent
on learning a symbolic environment model and constructing a formally veri-
fied shield, respectively. On average, VELM dedicates approximately 9% of its
execution time to model learning and 28% to shield construction. This modest
overhead is justified by the substantial safety guarantees provided.

250 Y. Wang and H. Zhu

5 Related Work

Prior Safe RL works consider constrained Markov decision processes (CMDP),
where observed safety violations should be bounded. Lagrangian methods are
widely used to solve CMDP with the Lagrangian multiplier controlled adap-
tively [41] or by PID [40]. Trust region methods [1,47,51] project a current
control policy to a feasible safe space around the current policy in each learning
iteration. The goal is to bound the number of safety violations under a threshold
in expectation, while VELM aims to ensure safety for all visited states. Com-
bining these methods with learning a dynamics model can further improve their
data efficiency [26,50]. There exist works that learn conservative safety critics
to underestimate the long-term safety cost of taking a particular action in a
particular state and use the conservative safety critics for safe exploration and
policy optimization [7,46,49]. However, training neural safety critics models may
require numerous potentially unsafe environment interactions. VELM instead
uses symbolic reachability analysis over learned environment models to identify
safe regions of the state space. Other approaches involve pre-training a policy in
a simpler environment and fine-tuning it in a more challenging setting [39], or
leveraging existing offline data and co-training a recovery policy [42]. Integrat-
ing VELM with pretraining and offline data is an interesting avenue for future
research.

Another research direction explores Lyapunov functions and barrier certifi-
cates. The work in [6] uses Lyapunov functions to identify policy attraction
regions where safe operation is guaranteed for discretized deterministic control
systems, provided that certain Lipschitz continuity conditions hold. However,
this method requires access to system dynamics models. Additionally, a neu-
ral network controller may not exhibit Lipschitz continuity with a reasonable
coefficient. In [13], it is shown that Lyapunov functions can be co-learned with
controllers for discrete action spaces. This work was extended to continuous
action spaces by utilizing the Deterministic Policy Gradient theorem [38]. The
work by Chow et al. [14] projects control actions to guarantee a decrease in the
Lyapunov function after each timestep. In contrast, Donti et al. [17] construct
sets of stabilizing actions using a Lyapunov function and then project actions
onto this set. A handcrafted barrier function is leveraged in [12] to secure safe
exploration in reinforcement learning. A line of research, exemplified by a prior
study [48], focuses on verifying an RL controller upon convergence against safety
and reachability properties by inferring barrier certificates but does not address
safety during training. Combining VELM with such work is promising for future
investigation.

Model-based safe reinforcement learning approaches ensure the safety of an
RL agent through a model of its environment. When a pre-established model of
environmental dynamics is available, a safety shield and a backup controller can
be constructed from the model using formal methods to regulate agent behav-
ior [3]. To enforce the safety of a deep neural network controller, the backup con-
troller is run in tandem with the neural controller [2,5,18,20–22,24,29,31,52].
Whenever the neural controller is about to leave the provably safe state space

Verified Exploration Through Learned Models 251

governed by the backup controller, the backup controller overrides the poten-
tially unsafe neural actions to enforce the neural controller to stay within the
certified safe space. When environment dynamics models are not known a pri-
ori, several works [26,32,33,35] maintain a learned environment model and
employ various statistical techniques to devise a policy that is likely to be safe
according to the model. This gives rise to two sources of unsafe conduct: the
policy may exhibit unsafety in relation to the model, or the model could provide
an imprecise depiction of the environment. VELM addresses the first source of
error by assuring control policies are safe within the confines of an environment
model. REVEL [5] involves an iterative learning approach where a neural pol-
icy is trained, potentially resulting in unsafety. Subsequently, the learned neural
policy is distilled into a piecewise linear policy. Automatic verification is then
applied to certify the piecewise linear policy, a process akin to constructing a
barrier function. First, this certification method assumes a calibrated dynamics
model, whereas VELM, in contrast, learns the dynamics model. Second, the ver-
ification algorithm in REVEL requires a piecewise linear environment model to
be manually constructed to approximate the calibrated dynamics model, a con-
dition not practical in VELM (learned environment models evolve across learn-
ing iterations in VELM). CRABS [34] iteratively learns a barrier certificate, a
dynamics model, and a control policy where the barrier certificate, learned via
adversarial training, ensures the policy’s safety assuming the learned dynamics
model. Yet, formally verifying the correctness of the barrier certificate faces chal-
lenges as both the certificate and the underlying environment model are complex,
deep neural network models. SPICE [4] determines action safety using weakest
preconditions derived from a learned neural environment model within a short
time horizon H. However, extending H to cover the entire horizon of an RL task
faces challenges due to the difficulty of constructing precise weakest precondition
transformers for neural networks and the accumulation of approximation errors
inherent in linearizing a neural environment model. Instead, VELM conducts
formally verified exploration for RL agents, covering the entire horizon of an RL
task through learned environment models.

6 Conclusion

In summary, we present VELM, a novel framework for ensuring verified safe
exploration in model-based reinforcement learning. VELM learns environment
models as symbolic formulas. Through formal reachability analysis over learned
models, VELM constructs an online shielding layer that acts as a safeguard, con-
fining RL agent exploration to a state space verified as safe in the learned model.
The results of our experiments in various RL environments, alongside compar-
isons with state-of-the-art safe RL techniques, highlight the efficacy of VELM in
significantly mitigating safety violations during online exploration while main-
taining strong learning performance. VELM thus establishes a foundation for
building trustworthy and secure RL systems capable of navigating complex envi-
ronments while adhering to stringent safety constraints.

252 Y. Wang and H. Zhu

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization.
In: Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learn-
ing Research, vol. 70 (2017)

2. Akametalu, A.K., Kaynama, S., Fisac, J.F., Zeilinger, M.N., Gillula, J.H., Tom-
lin, C.J.: Reachability-based safe learning with gaussian processes. In: 53rd IEEE
Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, 15–17
December, 2014 (2014)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA,
2–7 February, 2018 (2018)

4. Anderson, G., Chaudhuri, S., Dillig, I.: Guiding safe exploration with weakest pre-
conditions. In: The Eleventh International Conference on Learning Representations
(2023)

5. Anderson, G., Verma, A., Dillig, I., Chaudhuri, S.: Neurosymbolic reinforcement
learning with formally verified exploration. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

6. Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe model-based rein-
forcement learning with stability guarantees. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, 4–9 December, 2017, Long Beach, CA, USA (2017)

7. Bharadhwaj, H., Kumar, A., Rhinehart, N., Levine, S., Shkurti, F., Garg, A.: Con-
servative safety critics for exploration. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, 3–7 May, 2021 (2021)

8. Brockman, G., et al.: Openai gym (2016)
9. Burlacu, B., Kronberger, G., Kommenda, M.: Operon c++: an efficient genetic pro-

gramming framework for symbolic regression. In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, GECCO 2020 (2020)

10. Cava, W.G.L., et al.: Contemporary symbolic regression methods and their relative
performance. In: Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, Virtual,
December 2021

11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

12. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Hon-
olulu, Hawaii, USA, 27 January–1 February, 2019 (2019)

13. Chow, Y., Nachum, O., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: A lyapunov-
based approach to safe reinforcement learning. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada (2018)

14. Chow, Y., Nachum, O., Faust, A., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: Safe
policy learning for continuous control. In: 4th Conference on Robot Learning, CoRL

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

Verified Exploration Through Learned Models 253

2020, 16–18 November 2020, Virtual Event/Cambridge, MA, USA. Proceedings of
Machine Learning Research, vol. 155 (2020)

15. Dalal, G., Dvijotham, K., Veceŕık, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. CoRR abs/1801.08757 (2018)

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
17. Donti, P.L., Roderick, M., Fazlyab, M., Kolter, J.Z.: Enforcing robust control guar-

antees within neural network policies. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, 3–7 May, 2021 (2021)

18. Fisac, J.F., Akametalu, A.K., Zeilinger, M.N., Kaynama, S., Gillula, J.H., Tomlin,
C.J.: A general safety framework for learning-based control in uncertain robotic
systems. IEEE Trans. Autom. Control. 64(7) (2019)

19. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An
introduction to deep reinforcement learning. Found. Trends. Mach. Learn. 11(3-4)
(2018)

20. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe
control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA,
2–7 February, 2018 (2018)

21. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 413–430. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0 28

22. Gillula, J.H., Tomlin, C.J.: Guaranteed safe online learning via reachability: track-
ing a ground target using a quadrotor. In: IEEE International Conference on
Robotics and Automation, ICRA 2012, 14–18 May, 2012, St. Paul, Minnesota,
USA (2012)

23. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80 (2018)

24. Hunt, N., Fulton, N., Magliacane, S., Hoang, T.N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. In: HSCC ’21:
24th ACM International Conference on Hybrid Systems: Computation and Control,
Nashville, Tennessee, 19–21 May, 2021 (2021)

25. Janner, M., Fu, J., Zhang, M., Levine, S.: When to trust your model: Model-based
policy optimization. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
8–14 December, 2019, Vancouver, BC, Canada (2019)

26. Jayant, A.K., Bhatnagar, S.: Model-based safe deep reinforcement learning via a
constrained proximal policy optimization algorithm. In: NeurIPS (2022)

27. Johnson, T.T., et al.: ARCH-COMP21 category report: artificial intelligence and
neural network control systems (AINNCS) for continuous and hybrid systems
plants. In: 8th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH21), Brussels, Belgium, July 9, 2021. EPiC Series in Com-
puting, vol. 80 (2021)

28. Kamienny, P., d’Ascoli, S., Lample, G., Charton, F.: End-to-end symbolic regres-
sion with transformers. In: NeurIPS (2022)

29. Koller, T., Berkenkamp, F., Turchetta, M., Krause, A.: Learning-based model pre-
dictive control for safe exploration. In: 57th IEEE Conference on Decision and
Control, CDC 2018, Miami, FL, USA, 17–19 December, 2018 (2018)

https://doi.org/10.1007/978-3-030-17462-0_28

254 Y. Wang and H. Zhu

30. Kronberger, G., de França, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape-
constrained symbolic regression - improving extrapolation with prior knowledge.
Evol. Comput. 30(1) (2022)

31. Li, S., Bastani, O.: Robust model predictive shielding for safe reinforcement learn-
ing with stochastic dynamics. In: 2020 IEEE International Conference on Robotics
and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020 (2020)

32. Li, Y., Li, N., Tseng, H.E., Girard, A., Filev, D.P., Kolmanovsky, I.V.: Safe rein-
forcement learning using robust action governor. In: Proceedings of the 3rd Annual
Conference on Learning for Dynamics and Control, L4DC 2021, 7–8 June 2021,
Virtual Event, Switzerland. Proceedings of Machine Learning Research, vol. 144
(2021)

33. Liu, Z., Zhou, H., Chen, B., Zhong, S., Hebert, M., Zhao, D.: Safe model-based
reinforcement learning with robust cross-entropy method. CoRR abs/2010.07968
(2020)

34. Luo, Y., Ma, T.: Learning barrier certificates: towards safe reinforcement learning
with zero training-time violations. In: Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, 6–14 December, 2021, virtual (2021)

35. Ma, Y.J., Shen, A., Bastani, O., Jayaraman, D.: Conservative and adaptive penalty
for model-based safe reinforcement learning. In: Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, Virtual Event, February 22 - March 1, 2022
(2022)

36. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is
competitive for reinforcement learning. In: Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada (2018)

37. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. In:
Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26–July 1, 2012 (2012)

38. Sikchi, H., Zhou, W., Held, D.: Lyapunov barrier policy optimization. CoRR
abs/2103.09230 (2021)

39. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be safe: Deep
RL with a safety critic. CoRR abs/2010.14603 (2020)

40. Stooke, A., Achiam, J., Abbeel, P.: Responsive safety in reinforcement learning by
PID Lagrangian methods. In: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of
Machine Learning Research, vol. 119 (2020)

41. Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (2019)

42. Thananjeyan, B., et al.: Safe reinforcement learning with learned recovery zones.
IEEE Robot. Autom. Lett. 6(3) (2021)

43. Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration in finite Markov deci-
sion processes with gaussian processes. In: Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, 5–10 December, 2016, Barcelona, Spain (2016)

44. Verma, A., Le, H.M., Yue, Y., Chaudhuri, S.: Imitation-projected programmatic
reinforcement learning. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8–14 December, 2019, Vancouver, BC, Canada (2019)

Verified Exploration Through Learned Models 255

45. Wang, Y., Zhu, H.: Verification-guided programmatic controller synthesis. In: Tools
and Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, 22–27 April, 2023,
Proceedings, Part II. LNCS, vol. 13994 (2023)

46. Yang, Q., Simão, T.D., Tindemans, S.H., Spaan, M.T.J.: WCSAC: worst-case soft
actor critic for safety-constrained reinforcement learning. In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual Event, 2–9 February,
2021 (2021)

47. Yang, T., Rosca, J., Narasimhan, K., Ramadge, P.J.: Projection-based constrained
policy optimization. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 26–30 April, 2020 (2020)

48. Yang, Z., Zhang, L., Zeng, X., Tang, X., Peng, C., Zeng, Z.: Hybrid controller
synthesis for nonlinear systems subject to reach-avoid constraints. In: Computer
Aided Verification: 35th International Conference, CAV 2023, Paris, France, July
17-22, 2023, Proceedings, Part I (2023)

49. Yu, D., Ma, H., Li, S., Chen, J.: Reachability constrained reinforcement learning.
In: International Conference on Machine Learning, ICML 2022, 17–23 July 2022,
Baltimore, Maryland, USA. Proceedings of Machine Learning Research, vol. 162
(2022)

50. Zanger, M.A., Daaboul, K., Zöllner, J.M.: Safe continuous control with constrained
model-based policy optimization. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 -
October 1, 2021 (2021)

51. Zhang, Y., Vuong, Q., Ross, K.W.: First order constrained optimization in policy
space. In: Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 Decem-
ber, 2020, virtual (2020)

52. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, 22–26 June, 2019 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Cyberphysical and Hybrid Systems

Using Four-Valued Signal Temporal Logic
for Incremental Verification of Hybrid

Systems

Florian Lercher(B) and Matthias Althoff

School for Computation, Information and Technology,
Technical University of Munich, 85748 Garching, Germany

{florian.lercher,althoff}@tum.de

Abstract. Hybrid systems are often safety-critical and at the same time
difficult to formally verify due to their mixed discrete and continuous
behavior. To address this issue, we propose a novel incremental verifica-
tion algorithm for hybrid systems based on online monitoring techniques
and reachability analysis. To this end, we develop a four-valued seman-
tics for signal temporal logic that allows us to distinguish two types of
uncertainty: one arising from set-based evaluation and another one from
the incremental nature of our algorithm. Using these semantics to con-
tinuously update the verification verdict, our verification algorithm is
the first to run alongside the reachability analysis of the system to be
verified. This makes it possible to stop the reachability analysis as soon
as we obtain a conclusive verdict. We demonstrate the usefulness of our
novel approach by several experiments.

Keywords: Hybrid systems verification · Many-valued temporal
logic · Online verification

1 Introduction

Hybrid systems are a powerful modeling concept, as they can exhibit both con-
tinuous and discrete dynamics. As such, they are applicable in many contexts,
including autonomous vehicles, power systems, robotics, and systems biology.
As the typical application areas indicate, hybrid systems are often safety-critical
and thus require formal verification. Specifications for the formal verification of
hybrid systems are often formalized using signal temporal logic (STL) [26], which
is evaluated on real-valued signals over continuous time. STL monitoring algo-
rithms can determine whether a concrete execution of a system satisfies an STL
specification [8]. By considering the reachable set, i.e., the set of states reached
by at least one execution, rather than single executions, monitoring algorithms
can be adapted to verify a specification for all executions [22,35]. While [22,35]
focus on offline monitoring algorithms, we adapt an online algorithm for incre-
mental verification. This allows us to stop the computation of the reachable set
as soon as the specification can be verified or falsified. Thus, we can use our
novel method online to, e.g., verify motion plans of autonomous vehicles [3].
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 259–281, 2024.
https://doi.org/10.1007/978-3-031-65633-0_12

https://doi.org/10.5281/zenodo.10926462
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_12&domain=pdf
http://orcid.org/0009-0007-7202-5417
http://orcid.org/0000-0003-3733-842X
https://doi.org/10.1007/978-3-031-65633-0_12

260 F. Lercher and M. Althoff

1.1 Related Work

Online Monitoring of Real-Time Temporal Logics: The paper that originally
introduced STL also presents an offline monitoring algorithm propagating satis-
faction signals of atomic subformulas up the syntax tree of the specification [26].
Later, [27] calls this method offline marking and adapts it for online monitor-
ing. The new procedure, called incremental marking, essentially performs offline
marking for each new observation and discards the already propagated parts
of the signals. The tool AMT [28] implements both algorithms. Other online
monitoring approaches for real-time logics rely on translating the formula to
timed [10,17] or untimed [20] automata. The algorithm in [34] rewrites the mon-
itored metric temporal logic formula to represent remaining constraints whenever
an observation is made. For robust monitoring, [15] adapts incremental marking
to quantitative semantics of STL [16].

Many-Valued Semantics of Temporal Logics: In the context of monitoring, [10]
employs three-valued semantics for linear temporal logic (LTL) and timed LTL to
handle uncertainty due to finite traces. To obtain a more expressive monitoring
result for finite traces, [9] extends this to a four-valued semantics that distin-
guishes presumably true or false finite traces. The authors of [13] use a five-valued
semantics of LTL to deal with uncertainties arising from finite traces and race
conditions in parallel systems. Most closely related to our approach are [22,35],
which employ three-valued semantics for verification of hybrid systems. Based
on reachable sets, previous work constructs three-valued satisfaction signals for
the atomic predicates of an STL formula implicitly [22] or explicitly [35]. The
third truth value indicates that both satisfying and violating states are reach-
able. To decide whether the specification is met, these are propagated akin to
offline marking. Moreover, [35] employs statically determined masks to evalu-
ate atomic predicates only where they are relevant; masking is an orthogonal
approach to our proposed incremental verification.

Hybrid Systems Verification: Besides the aforementioned approaches based on
three-valued semantics of STL [22,35], there are other verification methods using
only the usual two truth values. The authors of [32] introduce a variant of STL
called reachset temporal logic that is interpreted directly over the reachable set.
They provide a sound transformation of STL into their logic, which is complete
if all intervals in the STL formula range from 0 to a globally fixed time step. In
[7], the authors propose a syntactic separation procedure for STL, which splits
a formula into subformulas referring to disjoint time intervals. Based on the
separated formula, they use satisfiability modulo theories (SMT) techniques to
search for counterexamples bounded in length and the number of value changes;
the SMT encoding is improved in [25]. Finally, there are deductive verification
approaches that adapt dynamic logic suitable for software verification into dif-
ferential dynamic logic suitable for hybrid systems [29,30]. Differential dynamic
logic has been augmented with a fragment of STL to derive temporal proper-
ties [1] and assumption-commitment reasoning to handle parallel hybrid sys-
tems [12].

Using Four-Valued STL for Incremental Verification of Hybrid Systems 261

1.2 Contributions

We propose a novel algorithm for verifying STL specifications on hybrid systems
based on reachability analysis. Following the idea of the incremental marking
procedure for STL monitoring [27, Sect. 3.2], our algorithm runs alongside the
reachability analysis. As soon as the reachability algorithm determines the reach-
able set for new time steps, our algorithm uses the new information to update
its verdict on specification satisfaction. Thus, we can terminate the reachability
analysis as soon as we obtain a conclusive verdict. The theoretical foundation
of our algorithm is a novel four-valued semantics for STL. The two new truth
values handle uncertainty arising from set-based (sets might contain both states
satisfying and violating a predicate) and incremental (the entire reachable set
over time is not immediately available) computation.

This paper is organized as follows: After discussing preliminaries and our
problem statement in Sect. 2, we give an overview of our solution concept in
Sect. 3. We present our four-valued semantics for STL in Sect. 4, followed by
the novel incremental verification algorithm in Sect. 5. In Sect. 6, we apply
a prototype implementation to systems occurring in autonomous driving and
systems biology before coming to a conclusion in Sect. 7.

2 Preliminaries and Problem Statement

After introducing the necessary interval operations, we establish the required
truth values. We then define signals as functions over time and briefly discuss
set-based reachability analysis of hybrid systems. Finally, we recapitulate the
syntax and Boolean semantics of STL before providing our problem statement.

2.1 Intervals

We work with intervals over R, admitting ∞ and −∞ as endpoints if the interval
is open. The left-closure cll(I) of an interval I always includes its left endpoint,
except if the endpoint is infinite (e.g., cll((a, b]) = [a, b] if a �= −∞). Analogously,
the right-closure clr(I) always includes the right endpoint.

For sets A and B, their Minkowski sum A ⊕ B is {a + b | a ∈ A, b ∈ B}. We
will write a ⊕ B instead of {a} ⊕ B. We also use A ⊕ (−B) for back shifting [26],
where −B := {−b | b ∈ B}. If A and B are intervals, so are A ⊕ B and −B.

2.2 Truth Values

We use the values B := {�,⊥} to denote truth � and falsehood ⊥. By extend-
ing the semantics of the usual Boolean connectives to handle a third value �1

denoting unknown, we can indicate that a statement could be true or false.
This results in a three-valued propositional logic, such as that of Kleene [23].
For uncertainty arising from incremental computations, we add a fourth value
�2 to denote inconclusive, indicating that the statement is either true, false, or

262 F. Lercher and M. Althoff

0 1 2 3 4 5 6 7 8
⊥

�
I+λ1

I+λ2

λ

Fig. 1. A Boolean signal λ and its unitary decomposition {λ1, λ2}

unknown. In other words, �1 means “we know that we don’t know,” while �2

means “we don’t know whether we don’t know.” We define the sets of truth val-
ues U1 := B∪{�1} and U2 := U1 ∪{�2}. Moreover, we introduce the truth order

t, where v
t v′ for v, v′ ∈ U2 means that v is “less true” than v′. Thus, we
define ⊥
t �1
t � and ⊥
t �2
t �; �1 and �2 are incomparable.

2.3 Signals

Let us fix R≥0 as our time domain. A signal over the domain D, or D-signal for
short, is a function σ : R≥0 → D. A partial D-signal σ̃ : T → D is only defined
over a subset T ⊆ R≥0 of the time domain. We refer to signals over B, U1, and
U2 as logical signals; in particular, Boolean signals are logical signals over B. We
adopt the following naming convention for logical signals: λ indicates Boolean
signals, Λ indicates U1-signals, and Λ̃ indicates U2-signals.

A Boolean signal λ is unitary if there is one contiguous interval I+λ ⊆ R≥0

such that λ(t) = � for all t ∈ I+λ and λ(t) = ⊥ everywhere else [26]. Every
Boolean signal can be represented as a disjunction of unitary signals, as shown
in Fig. 1 [26]. In this work, we require this unitary decomposition to be minimal,
i.e., the number of involved unitary signals must be minimal.

2.4 Reachability Analysis of Hybrid Systems

The literature provides numerous methods for describing hybrid systems. Our
verification method is independent of the chosen description method as long as
the system model is amenable to set-based reachability analysis (see [4] for an
overview). Given the mixed continuous and discrete state space X of the hybrid
system H, an execution of H is a signal ξ : R≥0 → X .

We are interested in the reachable set of the system H, i.e., the set of all
states that are part of at least one execution of H. Formally, the reachable set
of H is a signal R : R≥0 → 2X given by

R(t) := {ξ(t) | ξ is an execution of H}.

Since determining the exact reachable set is often computationally infeasible,
tools like CORA [2], JuliaReach [11], and SpaceEx [18] typically return a discrete-
time overapproximation when performing reachability analysis. To this end, they
represent R as a sequence of sets so that the set RI for the time interval I sub-
sumes

⋃
t∈I R(t). Our verification algorithm assumes that this sequence is incre-

mentally computed for consecutive time intervals, as is the case with the tools

Using Four-Valued STL for Incremental Verification of Hybrid Systems 263

mentioned. To handle Taylor model representations (e.g., as used by Flow* [14]),
a preprocessing step would be required to obtain a sequence of sets.

2.5 Signal Temporal Logic with Boolean Semantics

Suppose AP is a fixed set of atomic predicates, where each predicate is a function
a : X → B. An STL formula ϕ over AP is constructed according to the grammar

ϕ:: = true | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2,

where a ∈ AP and I is an interval over R≥0 with rational endpoints [26]. We use
the common abbreviations ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2), FI ϕ := trueUI ϕ (finally),
and GI ϕ := ¬FI ¬ϕ (globally). Note that we define true as basic syntax rather
than introducing it as an abbreviation for a ∨ ¬a, because the law of excluded
middle does not transfer well to the four-valued semantics we define later.

In Boolean semantics, an STL formula ϕ is interpreted over an execution
ξ : R≥0 → X to obtain a yes-or-no answer whether ξ satisfies ϕ [26,27]. We
define the Boolean satisfaction signal �ϕ�ξ : R≥0 → B of ϕ over ξ inductively as

�true�ξ(t) := �,

�a�ξ(t) := a(ξ(t)),
�¬ϕ�ξ(t) := ¬�ϕ�ξ(t),

�ϕ1 ∧ ϕ2�ξ(t) := �ϕ1�ξ(t) ∧ �ϕ2�ξ(t),

�ϕ1 UI ϕ2�ξ(t) :=

⎧
⎪⎨

⎪⎩

� if ∃t′ ∈ t ⊕ I : �ϕ2�ξ(t′) = �
and ∀t′′ ∈ (t, t′) : �ϕ1�ξ(t′′) = �

⊥ otherwise
,

where a ∈ AP. The value of the satisfaction signal at time t indicates whether
ϕ holds at t. Thus, an execution ξ satisfies ϕ, denoted by ξ |= ϕ, if and only if
�ϕ�ξ(0) = �. A hybrid system H satisfies ϕ, written as H |= ϕ, if ξ |= ϕ for all
executions ξ of H. Note that we use the strict until semantics from [27], which
does not require ϕ1 to hold at t or t′, unlike the version in [26,35]. This semantics
is more expressive, as we can recover the until from [26,35] as ϕ1∧ϕ1 UI(ϕ1∧ϕ2).

To exclude Zeno behavior, we limit ourselves to executions ξ such that, for
all a ∈ AP, the Boolean signal given by point-wise application of a to ξ is of
finite variability. That is, it changes its value only a finite number of times in
any finite time interval [6, Sect. 2.3.5]. This is a common assumption in related
work [17,26,27,35], albeit not always under this name; we refer the reader to
[26, Sect. 4] and [27, Sect. 4] for a discussion.

2.6 Problem Statement

Given an STL formula ϕ and a hybrid system H, we want to determine whether
H |= ϕ based on the reachable set of H. As reachability analysis is often incre-
mental, we need to interpret ϕ over a reachable set that is only known for some

264 F. Lercher and M. Althoff

time intervals to form a preliminary verification verdict. Formally, this means
we want to define and compute a U2-satisfaction signal �ϕ�R̃ : R≥0 → U2 over
a partial reachable set R̃ : T → 2X , where T ⊆ R≥0. If our preliminary ver-
dict is inconclusive due to partial knowledge of the reachable set, we aim to
efficiently update our verdict as soon as more information becomes available. If
the final verdict turns out to be �1, we need to refine our overapproximation of
the reachable set to verify or falsify the specification.

This paper focuses on the four-valued semantics and the efficient update of
the preliminary verdict. We only briefly discuss refinements of the overapproxi-
mation, as this often amounts to tuning the parameters of the reachability analy-
sis. Moreover, it is a common step in verification approaches based on reachable
sets [22,32,35]. An automatic refinement technique for the reachset temporal
logic approach [32] is presented in [24].

3 Basic Idea and Solution Concept

As a motivating example, consider the intentionally simple dynamical system
given by the differential equation ẋ = u, where the input u lies somewhere in
[0.9, 1.1] and initially x ∈ [−0.5, 0.5]. Suppose we want to verify that x eventually
becomes larger than 1 within the next five seconds, which we formalize in STL
as ϕ := F[0,5] x > 1. To this end, we exploit that the reachable set R of our
system encloses all executions of the system. Thus, if we can prove that there
exists a t ∈ [0, 5] such that x > 1 for all states x ∈ R(t), we have shown ϕ for
all executions of our system.

Recall that the reachable set is usually computed incrementally for consec-
utive time intervals. We are thus dealing with a partial reachable set R̃, which
is only determined for a subset of the time domain. For example, a reachability
algorithm might first compute the reachable set for up to 1 s (top left in Fig. 2)
and then continue to determine the reachable set in the next 0.8 s (top right).

If we are able to interpret our specification ϕ over such partial reachable sets,
we can re-evaluate its satisfaction with every newly determined time interval and
terminate the algorithm once we obtain a conclusive result. To this end, we derive
a set-based version â : 2X → U1 of every atomic predicate a ∈ AP so that

â(X ′) :=

⎧
⎪⎨

⎪⎩

� if X ′ �= ∅ and X ′ ⊆ �a�

⊥ if X ′ �= ∅ and X ′ ∩ �a� = ∅
�1 otherwise

for X ′ ⊆ X , where �a� := {x ∈ X | a(x) = �} denotes the set of states satisfying
a. This enables us to construct a U2-satisfaction signal for atomic predicates over
R̃ by assigning �2 at times where the reachable set has not yet been determined.
As shown in the second row of Fig. 2, this signal becomes �1 as soon as the
reachable set starts intersecting with our atomic predicate and changes to � once
it lies fully inside. Thus, �1 means that we do not know whether a predicate is

Using Four-Valued STL for Incremental Verification of Hybrid Systems 265

x

⊥
�1

�2

�

�x
>

1�
R̃

0 0.5 1 1.5 2
⊥

�1

�2

�

Time t [s]

�F
[0

,5
]
x

>
1�

R̃

0 0.5 1 1.5 2

Time t [s]

-1

0

1

2

R̃ x > 1

Fig. 2. Reachable set R̃ and U2-satisfaction signals of x > 1 and F[0,5] x > 1 for the
simple example system after reachability analysis for up to 1 s (left) and 1.8 s (right)

true or false since the reachable set contains satisfying and violating states; �2

means that we do not know as we have not yet computed the set for this time.
Now that we have satisfaction signals for the atomic predicates, it remains

to combine them in order to obtain satisfaction signals for compound formulas.
For this, we develop operators that preserve the intended meaning of our two
uncertain values �1 and �2 in Sect. 4. The third row of Fig. 2 shows the resulting
satisfaction signal �ϕ�R̃ for our example specification: After reachability analysis
for up to 1 s, the verification verdict is inconclusive, since �ϕ�R̃(0) = �2. Once we
update the satisfaction signal to incorporate information about the next 0.8 s,
we can verify that ϕ holds and terminate early. In Sect. 5, we use ideas of the
incremental marking procedure [27] to perform this update efficiently.

4 Four-Valued Signal Temporal Logic

To compute the U2-satisfaction signal for an STL formula ϕ with respect to a
partial reachable set, we proceed by structural recursion on ϕ. The base case for
true is clear, and we treat atomic predicates as described in Sect. 3. For com-
pound formulas, i.e., negation, conjunction, and until, we combine the recursively
computed satisfaction signals of their subformulas using suitable operators on
signals. Instead of defining these operators directly on U2-signals, we under-
and overapproximate a U2-signal using U1-signals. Similarly, we represent U1-
signals by Boolean signals. Utilizing this representation, we can use the negation,

266 F. Lercher and M. Althoff

�1 ∧∧∧ �2 �2

�1 ∧∧∧ �
�1 ∧∧ ⊥

�1

⊥

� ∧∧ �
⊥ ∧∧ �
� ∧∧ ⊥
⊥ ∧∧ ⊥

�
⊥
⊥
⊥

U2

U1

B

� Sect. 4.3

� Sect. 4.2

� Sect. 4.1

Fig. 3. Evaluating �1 ∧ �2 in U2-semantics: On the way down, we under- and overap-
proximate the input values with respect to the truth order by replacing the uncertain
value of the current layer with ⊥ and �. In the Boolean layer, we evaluate the conjunc-
tion as usual. To move back up, we check whether the results for both approximations
agree, and assign the appropriate uncertain value if this is not the case.

conjunction, and until operators defined for Boolean signals to combine U2-
satisfaction signals. Figure 3 shows this concept simplified to the propositional
case, in which we are dealing with truth values instead of logical signals.

4.1 Computing Boolean Satisfaction Signals

To define the operators for combining Boolean satisfaction signals, we closely
follow the procedure from [27]. For negation and conjunction, we lift ¬ and ∧
from Boolean values to Boolean signals by point-wise application [27, Sect. 3.1.1].
Unlike [27], we handle until directly instead of expressing it as a combination of
untimed until and timed finally, thus avoiding the rather involved specification
rewriting of [27, Lemma 1]. To this end, we adapt the method from [26, Sect. 3]
for arbitrary intervals and strict semantics.

We first define an until operator that works only for unitary Boolean signals
and generalize it later using the unitary decomposition. Unitary signals have the
helpful property that λ(t) = � = λ(t′) for times t ≤ t′ implies λ(t′′) = � for all
t′′ ∈ [t, t′]. Given unitary signals λ1, λ2 and an interval I over R≥0, we define the
unitary until UI so that (λ1 UI λ2)(t) = � if and only if t ∈ I1 ∪ I2, where

I1 :=
[(

I+λ2
∩ clr(I+λ1

)
)

⊕ (−(I \ {0}))
]
∩ cll(I+λ1

), I2 :=

{
I+λ2

if 0 ∈ I

∅ otherwise
. (1)

Here, I \ {0} is always an interval, since I ⊆ R≥0 = [0,∞). We prove that UI

implements the until semantics for unitary signals.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 267

Lemma 1. Suppose λ1 and λ2 are unitary Boolean signals, and I is an interval
over R≥0. For all t ∈ R≥0, we have

(λ1 UI λ2)(t) =

{
� if ∃t′ ∈ t ⊕ I : λ2(t′) = � and ∀t′′ ∈ (t, t′) : λ1(t′′) = �
⊥ otherwise

.

Proof. Let I1 and I2 be given as in (1) so that (λ1 UI λ2)(t) = � if and only if
t ∈ I1 ∪ I2. For an arbitrary t ∈ R≥0, we first prove that I1 treats the case t′ > t:

t ∈ I1 ⇐⇒ t ∈
[(

I+λ2
∩ clr(I+λ1

)
)

⊕ (−(I \ {0}))
]
∩ cll(I+λ1

)

⇐⇒ ∃t′ ∈ t ⊕ (I \ {0}) : t′ ∈ I+λ2
and t′ ∈ clr(I+λ1

) and t ∈ cll(I+λ1
)

⇐⇒ ∃t′ ∈ t ⊕ (I \ {0}) : λ2(t′) = � and ∀t′′ ∈ (t, t′) : λ1(t′′) = �.

For the second step, observe that A ⊕ (−B) = {x | ∃a ∈ x ⊕ B : a ∈ A}. The
last equivalence uses that λ1 is unitary: If λ1 is � both immediately after t,
i.e., t ∈ cll(I+λ1

), and immediately before t′, i.e., t′ ∈ clr(I+λ1
), the signal must

also be � throughout (t, t′), since I+λ1
is contiguous. For the converse, note that

∅ � (t, t′) ⊆ I+λ1
implies t ∈ cll(I+λ1

) and t′ ∈ clr(I+λ1
). If 0 /∈ I, we are done, as

I = I \{0} and I2 = ∅. Otherwise, I2 handles the case t′ = t, where t⊕{0} = {t}
and the universal quantifier is vacuously satisfied:

t ∈ I2 ⇐⇒ t ∈ I+λ2

⇐⇒ λ2(t) = �
⇐⇒ ∃t′ ∈ t ⊕ {0} : λ2(t′) = � and ∀t′′ ∈ (t, t′) : λ1(t′′) = �. �

Using that all Boolean signals admit a unitary decomposition, we generalize
UI to Boolean signals λ1 and λ2 that are not necessarily unitary. We define

(λ1 UI λ2)(t) :=
∨

1≤i≤n1

∨

1≤j≤n2

(λ1,i UI λ2,j)(t),

where t ∈ R≥0 and {λk,1, . . . , λk,nk
} is the unitary decomposition of λk for

k ∈ {1, 2}. We prove that this is a general implementation of the until semantics.

Lemma 2. Let λ1 and λ2 be Boolean signals and I be an interval over R≥0.
For all t ∈ R≥0, we have

(λ1 UI λ2)(t) =

{
� if ∃t′ ∈ t ⊕ I : λ2(t′) = � and ∀t′′ ∈ (t, t′) : λ1(t′′) = �
⊥ otherwise

.

In particular, we obtain �ϕ1 UI ϕ2�ξ = �ϕ1�ξ UI�ϕ2�ξ.

268 F. Lercher and M. Althoff

Proof. Observe that the second statement is a specialization of the first by the
Boolean semantics of STL. Let t ∈ R≥0 be arbitrary. If (λ1 UI λ2)(t) = �, there
must be i and j so that (λ1,i UI λ2,j)(t) = �, and we can immediately conclude
with Lemma 1. Conversely, let t′ ∈ t ⊕ I so that λ2(t′) = � and λ1(t′′) = � for
all t′′ ∈ (t, t′). Since λ2(t′) = �, there exists j such that λ2,j(t′) = �. As the
unitary decomposition of λ1 is minimal, the union of two or more of the I+λ1,i

cannot yield a contiguous interval (otherwise, we could merge them for a smaller
decomposition). Hence, there exists i such that (t, t′) ⊆ I+λ1,i

, or, in other words,
λ1,i(t′′) = � for all t′′ ∈ (t, t′). Applying Lemma 1 again concludes the proof. ��

4.2 Computing Three-Valued Satisfaction Signals

To compute the U1-satisfaction signal of an STL formula over a reachable set, we
represent U1-signals using Boolean signals and then reuse the techniques from
Sect. 4.1. Recall from Sect. 2.2 that �1 means that we do not know whether a
statement is true or false. Thus, every U1-signal Λ induces a set of Boolean
signals, called refinements of Λ, in which the occurrences of �1 are replaced with
� or ⊥. Formally, a Boolean signal λ refines Λ, denoted as λ ≺ Λ, if Λ(t) �= �1

implies λ(t) = Λ(t) for all t ∈ R≥0. Since the set of refinements is unique for each
U1-signal Λ, we use it to represent Λ. We argue that the two special refinements

�Λ�(t) :=
{

⊥ if Λ(t) = �1

Λ(t) otherwise
and �Λ�(t) :=

{
� if Λ(t) = �1

Λ(t) otherwise

adequately characterize this set. Lifting the truth order
t to a partial order on
logical signals by point-wise application, we find that the Boolean signal λ refines
Λ if and only if �Λ�
t λ
t �Λ�. Hence, �Λ� underapproximates the refinements
of Λ, while �Λ� overapproximates them. We can recover Λ(t) as �Λ�(t)�1 �Λ�(t),
where v �1 v′ with v, v′ ∈ B yields v if and only if v = v′ and �1 otherwise.

The operator UI on Boolean signals is monotone, i.e., we have λ1 UI λ2
t

λ′
1 UI λ′

2 given that λi
t λ′
i for i ∈ {1, 2}. Intuitively, this means that if we

set the inputs to � at more time points, the output signal will also be � more
often. Thus, �Λ1�UI�Λ2� is a faithful underapproximation of λ1 UI λ2, given
that λi ≺ Λi for i ∈ {1, 2}. Similarly, �Λ1�UI�Λ2� is an overapproximation.
Figure 4 visualizes this for a derived finally operator FI λ := λ� UI λ, where λ�
is � everywhere. To show monotonicity of UI , we apply Lemma 2 and use that
λi(t) = � implies λ′

i(t) = �. The operator ∧ is also monotone. In contrast, ¬ is
antitone, i.e., λ
t λ′ implies ¬λ′
t ¬λ. So, ¬�Λ� is an underapproximation,
while ¬�Λ� is an overapproximation. We define the operators ¬, ∧, and UI on
U1-signals such that they recover a U1-signal from these over- and underapprox-
imations:

(¬Λ)(t) := (¬�Λ�)(t) �1 (¬�Λ�)(t),
(Λ1 ∧ Λ2)(t) := (�Λ1� ∧ �Λ2�)(t) �1 (�Λ1� ∧ �Λ2�)(t),

(Λ1 UI Λ2)(t) := (�Λ1�UI�Λ2�)(t) �1 (�Λ1�UI�Λ2�)(t).

Using Four-Valued STL for Incremental Verification of Hybrid Systems 269

Fig. 4. Top: All refinements λ of a U1-signal Λ lie between the underapproximation �Λ�
and the overapproximation �Λ	. Bottom: After applying the monotone finally operator
to all three Boolean signals, the refinement is still between the approximations. We
omit the markers at the jumps, as they are irrelevant to the point of this example.

Finally, we define the U1-satisfaction signal �ϕ�R : R≥0 → U1 of an STL
formula ϕ with respect to a reachable set R : R≥0 → 2X using our operators.
For all t ∈ R≥0, we define

�true�R(t) := � and �a�R(t) := â(R(t)),

where a ∈ AP and â is defined as in Sect. 3. Moreover, we define

�¬ϕ�R := ¬�ϕ�R,

�ϕ1 ∧ ϕ2�R := �ϕ1�R ∧ �ϕ2�R,

�ϕ1 UI ϕ2�R := �ϕ1�R UI�ϕ2�R.

To relate this to the Boolean semantics, we show that �ϕ�ξ refines �ϕ�R, if R
covers the execution ξ. We say a reachable set R covers an execution ξ, denoted
as ξ ≺ R, if ξ(t) ∈ R(t) for all t ∈ R≥0.

Theorem 1. Suppose R is a reachable set and ϕ an STL formula. For every
execution ξ covered by R, we have �ϕ�ξ ≺ �ϕ�R. In other words, if �ϕ�R(t) = v,
we have �ϕ�ξ(t) = v for all ξ ≺ R, v ∈ B, and t ∈ R≥0.

Proof. We proceed by structural induction on ϕ. Let t ∈ R≥0 be arbitrary.

Base Cases: The case for ϕ = true is straightforward, as true always evaluates
to � in Boolean and U1-semantics. For an atomic predicate a ∈ AP, we find

â(R(t)) = � ⇐⇒ R(t) �= ∅ and R(t) ⊆ �a� =⇒ ∀ξ ≺ R : a(ξ(t)) = �,

and thus �a�R(t) = � =⇒ ∀ξ ≺ R : �a�ξ(t) = �. The argument for ⊥ is similar.

Direct Semantics: Turning to the inductive cases, we notice that our operators
on U1-signals depend on their Boolean counterparts. This makes them easy to

270 F. Lercher and M. Althoff

implement, but difficult to handle in proofs. Therefore, we first show that they
adhere to the following direct semantics that work without this dependency:1

(¬Λ)(t) =

⎧
⎪⎨

⎪⎩

� if Λ(t) = ⊥
⊥ if Λ(t) = �
�1 otherwise

,

(Λ1 ∧ Λ2)(t) =

⎧
⎪⎨

⎪⎩

� if Λ1(t) = � and Λ2(t) = �
⊥ if Λ1(t) = ⊥ or Λ2(t) = ⊥
�1 otherwise

, (2)

(Λ1 UI Λ2)(t) =

⎧
⎪⎨

⎪⎩

� if ∃t′ ∈ t ⊕ I : Λ2(t′) = � and ∀t′′ ∈ (t, t′) : Λ1(t′′) = �
⊥ if ∀t′ ∈ t ⊕ I : Λ2(t′) = ⊥ or ∃t′′ ∈ (t, t′) : Λ1(t′′) = ⊥
�1 otherwise

.

Proof of the Direct Semantics: First, consider the case where (Λ1 UI Λ2)(t) is
�. Recalling that v �1 v′ only yields � if v = � = v′, we derive

(Λ1 UI Λ2)(t) = � ⇐⇒ (�Λ1�UI�Λ2�)(t) = � = (�Λ1�UI�Λ2�)(t)
⇐⇒ ∀λ1 ≺ Λ1 : ∀λ2 ≺ Λ2 : (λ1 UI λ2)(t) = �.

The second equivalence is due to the monotonicity of UI over Boolean signals:
If λi ≺ Λi, we know that �Λi�
t λi
t �Λi� for i ∈ {1, 2}. Thus, we also have
�Λ1�UI�Λ2�
t λ1 UI λ2
t �Λ1�UI�Λ2�. Hence, (λ1 UI λ2)(t) must be � due
to the antisymmetry of
t. The converse is clear, as �Λi� and �Λi� are particular
refinements of Λi. We continue our derivation by applying Lemma 2 and find

. . . ⇐⇒ ∀λ1 ≺ Λ1 : ∀λ2 ≺ Λ2 :
∃t′ ∈ t ⊕ I : λ2(t′) = � and ∀t′′ ∈ (t, t′) : λ1(t′′) = �

⇐⇒ ∃t′ ∈ t ⊕ I : Λ2(t′) = � and ∀t′′ ∈ (t, t′) : Λ1(t′′) = �.

To explain the forward direction of the last equivalence, we consider the refine-
ments �Λ1� and �Λ2�. Instantiating the universal quantifiers, we find that

∃t′ ∈ t ⊕ I : �Λ2�(t′) = � and ∀t′′ ∈ (t, t′) : �Λ1�(t′′) = �.

Since �Λi�(t) = � if and only if Λi(t) = �, this establishes the forward direction.
For (Λ1 UI Λ2)(t) = ⊥, we argue analogously, and then the case for �1 follows
by elimination. The reasoning for the remaining operators is similar.

1 These semantics arise naturally from the Boolean semantics in Sect. 2.5 by making
the Boolean “otherwise” case explicit and adding a new “otherwise” to handle �1.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 271

Inductive Cases: We are now equipped to prove the inductive cases for our main
statement. Using the direct semantics (2), we exemplarily show the case for until:

�ϕ1 UI ϕ2�R(t) = � ⇐⇒ ∃t′ ∈ t ⊕ I : �ϕ2�R(t′) = �
and ∀t′′ ∈ (t, t′) : �ϕ1�R(t′′) = �

=⇒ ∃t′ ∈ t ⊕ I : (∀ξ ≺ R : �ϕ2�ξ(t′) = �)
and ∀t′′ ∈ (t, t′) : ∀ξ ≺ R : �ϕ1�ξ(t′′) = �

(IH)

=⇒ ∀ξ ≺ R : ∃t′ ∈ t ⊕ I : �ϕ2�ξ(t′) = �
and ∀t′′ ∈ (t, t′) : �ϕ1�ξ(t′′) = �

(∗)

⇐⇒ ∀ξ ≺ R : �ϕ1 UI ϕ2�ξ(t) = �.

To derive �ϕ1 UI ϕ2�R(t) = ⊥ =⇒ ∀ξ ≺ R : �ϕ1 UI ϕ2�ξ(t) = ⊥, we argue
similarly. Note that the step marked with (∗) is not an equivalence since we
need to swap an existential and a universal quantifier. Intuitively, this means
that the Boolean semantics allow us to choose the time when ϕ2 becomes true
for each refinement individually, while we have to choose the same time for all
refinements in the U1-semantics. A similar step is necessary in the ⊥ case of
conjunction, where we have to choose which subformula is false. ��

4.3 Computing Four-Valued Satisfaction Signals

In the previous section, we used two Boolean signals to over- and underapprox-
imate the refinements of a U1-signal. This enabled us to reuse the operators
defined on Boolean signals for computing a U1-satisfaction signal of an STL for-
mula with respect to a reachable set. Following the same pattern, we can over-
and underapproximate the refinements of a U2-signal by two U1-signals to com-
pute U2-satisfaction signals over partial reachable sets. Hence, many concepts,
definitions, and proofs are analogous to Sect. 4.2, so we only sketch them here.

Given a U2-signal Λ̃, the U1-signal Λ refines Λ̃, denoted by Λ ≺ Λ̃, if Λ̃(t) �= �2

implies Λ(t) = Λ̃(t) for all t ∈ R≥0. We define the underapproximation �Λ̃� and
the overapproximation �Λ̃� analogously to Sect. 4.2, i.e., by replacing �2 with
⊥ and �, respectively. Again, we have �Λ̃�
t Λ
t �Λ̃� if and only if Λ ≺ Λ̃.
Moreover, we can reconstruct Λ̃(t) as �Λ̃�(t)�2�Λ̃�(t). Here, v�2v

′ with v, v′ ∈ U1

is v if and only if v = v′ and �2 otherwise.
To define the operators for negation, conjunction, and until on U2-signals,

we first show that the U1-operators are monotone or antitone.

Lemma 3. The operators ∧ and UI on U1-signals are monotone; ¬ is antitone.

Proof. Using the direct semantics (2) of the operators shown in the proof of
Theorem 1 and case distinction, the proof is straightforward. We exemplarily
consider the case (Λ1 UI Λ2)(t) = �1, where we need to show �1
t (Λ′

1 UI Λ′
2)(t)

given Λi
t Λ′
i for i ∈ {1, 2}. From the direct semantics, we know

∃t′ ∈ t ⊕ I : Λ2(t′) �= ⊥ and ∀t′′ ∈ (t, t′) : Λ1(t′′) �= ⊥.

272 F. Lercher and M. Althoff

Since Λ′
i can only be ⊥ where Λi is also ⊥, the same statement holds for Λ′

1 and
Λ′
2. Thus, (Λ′

1 UI Λ′
2)(t) cannot be ⊥. Consequently, it must be either �1 or �,

and we know that �1
t �. ��

Due to Lemma 3, it is justified to define the operators ¬, ∧, and UI on
U2-signals like in Sect. 4.2 using �2 instead of �1. With these, we can define
the satisfaction signal �ϕ�R̃ : R≥0 → U2 of an STL formula ϕ with respect to
a partial reachable set R̃ : T → 2X , where T ⊆ R≥0. For atomic formulas true
and a ∈ AP, we define

�true�R̃(t) := � and �a�R̃(t) :=

{
â(R̃(t)) if t ∈ T
�2 otherwise

for all t ∈ R≥0. The satisfaction signal for compound formulas is defined anal-
ogously to Sect. 4.2 using our operators. Finally, we state the equivalent of
Theorem 1 to relate U2- and U1-satisfaction signals: We show that �ϕ�R refines
�ϕ�R̃, if R is an extension of R̃. Given R̃ : T → 2X with T ⊆ R≥0, we say that
the reachable set R extends R̃, denoted as R ≺ R̃, if R(t) = R̃(t) for all t ∈ T .

Theorem 2. Suppose R̃ is a partial reachable set and ϕ an STL formula. For
every reachable set R that extends R̃, we have �ϕ�R ≺ �ϕ�R̃. In other words, if
�ϕ�R̃(t) = v, we have �ϕ�R(t) = v for all R ≺ R̃, v ∈ U1, and t ∈ R≥0.

Sketch of Proof. The proof proceeds by structural induction on ϕ. For the most
part, it is analogous to the proof of Theorem 1, except that we now have to
consider an additional case for v = �1. In the base case for ϕ = a with a ∈ AP,
we derive:

�a�R̃(t) = �1 ⇐⇒ t ∈ T and â(R̃(t)) = �1

=⇒ ∀R ≺ R̃ : â(R(t)) = �1

⇐⇒ ∀R ≺ R̃ : �a�R(t) = �1,

where the partial reachable set R̃ is defined over T ⊆ R≥0. For � and ⊥, we argue
similarly. For the inductive cases with compound formulas, we can determine
direct semantics for our operators on U2-signals similar to those in the proof of
Theorem 1. Like (2), they follow the pattern of making the “otherwise” case of
the U1-semantics explicit and introducing a new “otherwise” case to handle �2.
As for Theorem 1, the crucial points in the proof are those where we need to use
a statement about all refinements of a U2-signal Λ̃ to infer something about Λ̃
itself. In particular, we need variations of the following property

∀Λ ≺ Λ̃ : ∃t ∈ R≥0 : Λ(t) ∈ U ⇐⇒ ∃t ∈ R≥0 : Λ̃(t) ∈ U ,

where U � U1. To prove the forward direction, we choose a value v ∈ U1 \ U ,
which must exist since U is a proper subset of U1. We consider the refinement
Λv ≺ Λ̃ in which all occurrences of �2 are replaced by v and find that Λv(t) ∈ U
if and only if Λ̃(t) ∈ U to establish the forward direction. Using the direct
semantics, we show the inductive cases analogously to the proof of Theorem 1.��

Using Four-Valued STL for Incremental Verification of Hybrid Systems 273

5 Incremental Verification of Hybrid Systems

Theorems 1 and 2 provide a sound, but incomplete, method of proving or dis-
proving that a hybrid system H satisfies an STL specification ϕ. We note that
incompleteness is unavoidable to some extent since the reachability problem for
hybrid systems is undecidable in general [19, Sect. 4]. We summarize the verifi-
cation method in the following corollary.

Corollary 1. Let ϕ be an STL formula and R̃ a partial reachable set. Let R be
an extension of R̃. If �ϕ�R̃(0) is

– �, we have ξ |= ϕ for all executions ξ covered by R.
– ⊥, we have ξ �|= ϕ for all executions ξ covered by R.
– �1, the result is unknown. Based on the reachable set R, we cannot make a

statement about all covered executions.
– �2, the result is inconclusive. The partial reachable set R̃ does not contain

enough information to support a claim about all its extensions.

If R̃ is a partial overapproximation of the reachable set of a hybrid system H,
�ϕ�R̃(0) = � implies H |= ϕ, while �ϕ�R̃(0) = ⊥ implies H �|= ϕ.

The last claim above holds because there must exist some extension of R̃ covering
all executions of the system by definition of the reachable set.

5.1 Incremental Verification Algorithm

Algorithm 1 implements the approach outlined in Corollary 1. It incrementally
computes a U2-satisfaction signal of the specification ϕ as the reachability anal-
ysis of the hybrid system H progresses. At its core, the algorithm alternates
between computing the reachable states of the system, which allows it to observe
the satisfaction or violation of predicates in new time intervals, and propagat-
ing these observations up the syntax tree of ϕ to update the satisfaction signal.
The algorithm terminates as soon as the satisfaction signal provides a conclusive
verdict. Below, we explain Algorithm 1 in more detail.

Before entering the main loop, we initialize the reachability analysis of H and
construct the syntax tree of ϕ. We assume that ϕ is written without syntactic
sugar. Each node n of the syntax tree stores the U2-satisfaction signal of the
subformula of ϕ that its subtree represents. Initially, the satisfaction signal,
which we refer to as n.signal , is �2 on the entire time domain, except for nodes
representing true, where it is � everywhere.

In the main loop, we first compute one step of the reachability analysis, which
yields the set of states RI that the system can reach in the time interval I. For
each node representing an atomic predicate a ∈ AP, we determine â(RI) based
on the observed set (function Eval) and update its satisfaction signal during I
accordingly. Afterward, we propagate the new observations up the syntax tree.
Note that all occurring signals are guaranteed to be of finite variability as long
as the computed sequence of reachable sets does not exhibit Zeno behavior. If

274 F. Lercher and M. Althoff

Algorithm 1. Incremental Verification
Input: STL formula ϕ, hybrid system H, time horizon th
Output: Verdict from U2 on whether H satisfies ϕ

1: reach ← InitializeReachabilityAnalysis(H, th)
2: tree ← SyntaxTree(ϕ)
3: while ¬reach.Done() do � Did we reach th?
4: RI ← reach.NextStep() � Reachable states in time interval I
5: for ap ∈ tree.aps do � Iterate nodes representing atomic predicates
6: v ← ap.Eval(RI) � Set-based predicate evaluation to v ∈ U1

7: ap.signal .Set(I, v)
8: end for
9: tree.root .Propagate() � See Algorithm 2

10: verdict ← tree.root .signal(0)
11: if verdict �= �2 then � Is the verdict conclusive?
12: return verdict
13: end if
14: end while
15: return tree.root .signal(0)

we obtain a conclusive verdict on the satisfaction of the top-level formula ϕ at
time 0, we return the verdict early. Otherwise, we continue until the reachable
set is determined up to a given time horizon th. After reaching th, we return the
current verdict, even if it is the inconclusive �2.

Algorithm 2 propagates new observations up the syntax tree. It closely follows
the incremental marking procedure of Maler and Ničković [27, Algorithm 2].
The algorithm traverses the syntax tree in post-order and applies the operators
developed in Sect. 4.3 to update the satisfaction signal of each node based on
the satisfaction signals of its children (function Combine).

Since we only admit future connectives, the satisfaction of a formula at time t
depends only on the truth values of its subformulas at times t′ ≥ t [27, Sect. 3.2].
To exploit this, every node n stores a time interval n.irr of the form [0, t) or [0, t],
indicating the prefix of n.signal that is irrelevant for updates of the parent node.
Initially, n.irr is empty. After updating the signal of n, we also need to revise
the irrelevant prefixes of its children. To this end, we find the largest interval I
containing 0 such that n.signal has a conclusive value, i.e., not �2, everywhere in
I \n.irr ; if n.signal(0) = �2 and 0 /∈ n.irr , we return an empty interval (function
ConclusiveInterval). We exclude n.irr from consideration because n.signal
itself is irrelevant at these times. Then, we can drop the irrelevant prefix from
memory by overwriting it with �2.

Remark 1 (Propagation Frequency). If we conduct the reachability analysis with
a small time step size, we obtain numerous observations. To reduce the overhead
incurred by signal propagation, we can accumulate the observations of several
reachability steps and then propagate them all at once. However, in doing so,
we might compute more reachability steps than required to reach a conclusive

Using Four-Valued STL for Incremental Verification of Hybrid Systems 275

Algorithm 2. Signal Propagation
Input: Syntax tree node n

1: function n.Propagate()
2: if n.IsLeaf() then
3: return
4: end if
5: for c ∈ n.children do
6: c.Propagate()
7: end for
8: Δ ← n.Combine({c.signal | c ∈ n.children})
9: n.signal .Merge(Δ) � Overwrite n.signal with Δ where Δ is not �2

10: for c ∈ n.children do
11: c.irr ← ConclusiveInterval(n.signal , n.irr)
12: c.signal .Set(c.irr , �2) � Drop the irrelevant prefix from memory
13: end for
14: end function

verdict. Choosing a propagation frequency is thus a trade-off similar to the one
mentioned in [27, Sect. 5.3]. In the extreme case, where we never propagate
before reaching the time horizon, we obtain an offline method similar to [22,35].

5.2 Refinement via Branching the Reachability Analysis

Since we use the reachable set as the basis for verification, our approach works
best if all executions of the system under scrutiny behave roughly similarly. The
intuition for this is given at the end of the proof of Theorem 1: To verify that
ϕ1 UI ϕ2 holds, we require that all executions covered by the reachable set satisfy
the eventuality ϕ2 at the same time. However, hybrid systems can have execu-
tions with vastly different behavior, e.g., due to discrete transitions changing the
continuous dynamics. Moreover, the system behavior might strongly depend on
the initial state. For these systems, our algorithm would often return �1, as the
executions covered by the reachable set do not synchronize as required.

The underlying problem is that we compute just one reachable set to cover all
system executions. If these executions have significant differences, the reachable
set also covers many additional spurious executions that are infeasible according
to the system dynamics. To alleviate this issue, we can perform the reachability
analysis in multiple branches so that each branch only covers similar executions.
For example, we could start a new branch whenever a discrete transition occurs.
In addition, we could partition the set of initial states so that we analyze initial
states that lead to vastly different behavior in separate branches.

To adapt Algorithm 1 for several branches, we clone the syntax tree whenever
a new branch starts. We then process each branch using its copy of the syntax
tree and combine the verdicts. If the verdicts are conclusive for all branches, we
merge them using �1, i.e., we return � or ⊥ if all branches agree on the verdict,
and �1 otherwise. If the analysis is inconclusive for at least one branch after

276 F. Lercher and M. Althoff

reaching the time horizon th, the combined verdict is also �2. In this case, we
need to extend the time horizon only for the inconclusive branches.

6 Evaluation

We implemented our algorithm in MATLAB using CORA2 [2] for reachability
analysis. First, we demonstrate the capabilities and limitations of our method on
a simple hybrid system. Then, we apply it to autonomous driving and systems
biology. For all experiments, our algorithm is configured to accumulate 20 obser-
vations before propagation. Note that CORA continues the reachability analysis
in a new branch (cf. Sect. 5.2) after the system takes a discrete transition.

6.1 Bouncing Ball

First, let us consider a bouncing ball, which is a classic example of a hybrid
system. The bouncing ball has two state variables: height h and velocity v. It
accelerates under the influence of gravity and bounces back up once it hits the
ground (h = 0). Bouncing is modeled as a discrete transition that reduces the
velocity and flips its sign (see, e.g., [33, Sect. 2.2.3] for a full derivation). Initially,
we have h ∈ [0.95, 1.05] and v ∈ [−0.05, 0.05], which means that the first bounce
happens after about 0.5 s. The time horizon for our verification algorithm is
th := 2.5 s and the reachability analysis uses a time step size of 0.01 s.

Table 1 summarizes the results of our experiments. The future reach of a
formula is the amount of time it maximally looks into the future [21, Sect. 3].
Thus, approaches like [22,35] need to perform reachability analysis up to the
future reach of the specification. We can successfully verify the first two spec-
ifications and falsify the third while terminating the reachability analysis well
before their future reach. Even though the fourth property also holds for the
system (recall that the ball bounces after about 0.5 s), we cannot verify it since
the reachable set is not sufficiently accurate. However, as �1 is already returned
after 0.7 s, we know early that we need to refine the reachable set. After refining
the reachability analysis by using a time step size of 0.002 s, we can also prove
this specification. The final property demonstrates the drawbacks of accumulat-
ing observations: While we could reject it already after observing the initial set,
our algorithm only returns ⊥ after 20 time steps.

For the last column of Table 1, we applied the verification algorithm by
Roehm et al. [32] to the bouncing ball. Since this algorithm requires the reach-
able set for the entire future reach of the specification in order to start the
verification, it is not applicable to the first property. We cannot compute the
reachable set for an infinite time horizon here, as no fixed point is detected.
As shown by the fourth specification, [32] returns ⊥ whenever it fails to verify a
property. Therefore, in contrast to our algorithm, it does not distinguish between
insufficient accuracy of the reachable set and actual falsification of the property
by the system. For the other properties, its verdict is the same as ours.
2 https://cora.in.tum.de.

https://cora.in.tum.de

Using Four-Valued STL for Incremental Verification of Hybrid Systems 277

Table 1. Application of our approach and the approach from [32] to the bouncing ball

Our approach [32]
Specification Future reach Verdict Termination Verdict

F[0.2,∞) h < 0.5 ∞ � 0.4 s N/A
F[0,0.1](v < 0U[0,1] h < 0.25) 1.1 s � 0.6 s �
F[0,1](h < 0.1 ∧ G[0,2] h < 0.3) 3.0 s ⊥ 1.3 s ⊥
F[0,0.1](v < 0U[0,1] h < 0.01) 1.1 s �1 0.6 s ⊥
G[0,1] h < 0.1 1.0 s ⊥ 0.2 s ⊥

6.2 Autonomous Driving

Next, we examine an application for autonomous driving in the context of the
CommonRoad3 [5] framework. In our example scenario, an autonomous vehicle is
driving in the middle lane of an interstate with another vehicle in front indicating
to change from the left to the middle lane (see Fig. 5; CommonRoad scenario
ID: ZAM_HW-1_1_S-1). Suppose the motion planner has determined two reference
trajectories that the autonomous vehicle could follow for the next five seconds:
one where it stays in its current lane and another where it changes to the right
lane. We want to verify that the autonomous vehicle avoids collisions with other
vehicles for the entire planned trajectory, even if it cannot precisely follow the
trajectory due to disturbances. Moreover, it should eventually enter the right
lane and stay there for at least 1 s. We formalize these requirements in STL as
(G[0,4](x, y) /∈ O) ∧ F[0,4] G[0,1](x, y) ∈ L, where (x, y) is the position of the
autonomous vehicle, O is the area occupied by other vehicles according to a set-
based prediction, and L is the right lane. Here, obtaining a verdict as soon as
possible is particularly important since the autonomous vehicle has limited time
to decide which trajectory to follow. With our algorithm, the vehicle can quickly
reject the “stay” trajectory after computing the reachable set up to 1 s. Then, it
can spend the remaining time on verifying the “change” trajectory, which yields
the verdict � after performing reachability analysis up to 4 s. For the reachability
analysis, we adopted a kinematic single-track model [31, Sect. 2.2] of the vehicle
and assumed it tracks the reference trajectory using a P controller.

6.3 Genetic Oscillator

Finally, we consider the 9-dimensional genetic oscillator example (state vari-
ables x1, . . . , x9) from [35, Sect. 5]. In [35], the authors verified the specifi-
cation G[0,1](a1 ∨ G[3,3.5] a2), where a1 := x6 − 1 > 0 and a2 := 0.032 −
1252(x4 − 0.003)2 − 3(x6 − 0.5)2 > 0. We could not verify the original prop-
erty since the reachable sets computed by CORA were not accurate enough,

3 https://commonroad.in.tum.de.

https://commonroad.in.tum.de

278 F. Lercher and M. Althoff

Reach. set Obstacles (set-based prediction) Ref. trajectory

(a) Staying in the middle lane

(b) Changing to the right lane

Fig. 5. Reachable set projected to the position domain for two reference trajectories

resulting in the verdict �1. After slightly relaxing the property by using a′
2 :=

0.04− 1252(x4 − 0.003)2 − 3(x6 − 0.5)2 > 0 instead of a2, verification succeeded.
The reachability analysis was stopped after 4.5 s, matching the future reach of
the formula. If we change the specification to G[0,2](a1∨G[0,0.5] a

′
2), we can reject

it early after computing the reachable set for up to 1.3 s.

7 Conclusion

We proposed an incremental STL verification algorithm for hybrid systems based
on reachability analysis and a four-valued semantics for STL. Due to its incre-
mental nature, our algorithm can run alongside the reachability analysis and
continuously update its verdict. Consequently, it can stop the computation of
the reachable set as soon as the verdict becomes conclusive. This makes our
approach particularly worthwhile for high-dimensional systems, for which reach-
ability analysis is computationally expensive. The evaluation of our prototype
showed promising results across several application domains.

Acknowledgments. The authors gratefully acknowledge funding from the German
Research Foundation (DFG) under grant numbers AL 1185/20-1 and GRK 2428. More-
over, they thank Benedikt Seidl for implementing the system models used for the eval-
uation in CORA.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Using Four-Valued STL for Incremental Verification of Hybrid Systems 279

References

1. Ahmad, H., Jeannin, J.B.: A program logic to verify signal temporal logic spec-
ifications of hybrid systems. In: Proceedings of the International Conference on
Hybrid Systems: Computation and Control (HSCC), pp. 1–11 (2021). https://doi.
org/10.1145/3447928.3456648

2. Althoff, M.: An introduction to CORA 2015. In: Proc. of the 1st and 2nd Workshop
on Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015).
https://doi.org/10.29007/zbkv

3. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Rob. 30(4), 903–918 (2014). https://doi.org/
10.1109/TRO.2014.2312453

4. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachabil-
ity analysis. Annual Rev. Control Robot. Autonom. Syst. 4(1), 369–395 (2021).
https://doi.org/10.1146/annurev-control-071420-081941

5. Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: composable benchmarks
for motion planning on roads. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), pp. 719–726 (2017). https://doi.org/10.1109/IVS.2017.7995802

6. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

7. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 51:1–51:30 (2019).
https://doi.org/10.1145/3290364

8. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: A
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification: Introductory and Advanced Topics, pp. 135–175
(2018). https://doi.org/10.1007/978-3-319-75632-5_5

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/logcom/
exn075

10. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/10.
1145/2000799.2000800

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the International Conference
on Hybrid Systems: Computation and Control (HSCC), pp. 39–44 (2019). https://
doi.org/10.1145/3302504.3311804

12. Brieger, M., Mitsch, S., Platzer, A.: Dynamic logic of communicating hybrid pro-
grams (2023). https://doi.org/10.48550/arXiv.2302.14546

13. Chai, M., Schlingloff, B.H.: Online monitoring of distributed systems with a five-
valued LTL. In: Proceedings of the IEEE International Symposium on Multiple-
Valued Logic (ISMVL), pp. 226–231 (2014). https://doi.org/10.1109/ISMVL.2014.
47

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
(CAV), pp. 258–263 (2013). https://doi.org/10.1007/978-3-642-39799-8_18

15. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Design 51(1),
5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7

https://doi.org/10.1145/3447928.3456648
https://doi.org/10.1145/3447928.3456648
https://doi.org/10.29007/zbkv
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.48550/arXiv.2302.14546
https://doi.org/10.1109/ISMVL.2014.47
https://doi.org/10.1109/ISMVL.2014.47
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/s10703-017-0286-7

280 F. Lercher and M. Althoff

16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of
Timed Systems (FORMATS), pp. 92–106 (2010). https://doi.org/10.1007/978-3-
642-15297-9_9

17. Ferrère, T., Maler, O., Ničković, D., Pnueli, A.: From real-time logic to timed
automata. J. ACM 66(3), 19:1–19:31 (2019). https://doi.org/10.1145/3286976

18. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) Computer Aided Verification (CAV), pp. 379–395
(2011). https://doi.org/10.1007/978-3-642-22110-1_30

19. Henzinger, T.A.: What’s decidable about hybrid automata? J. Comput. Syst. Sci.
57(1), 94–124 (1998). https://doi.org/10.1006/jcss.1998.1581

20. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification (RV), pp. 178–192
(2014). https://doi.org/10.1007/978-3-319-11164-3_15

21. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal
logic. In: Proceedings of the ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 349–357 (2013). https://doi.org/10.1109/LICS.2013.41

22. Ishii, D., Yonezaki, N., Goldsztejn, A.: Monitoring temporal properties using inter-
val analysis. IEICE Trans. Fundament. Electr. Commun. Comput. Sci. E99-A(2),
442–453 (2016). https://doi.org/10.1587/transfun.E99.A.442

23. Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic 3(4), 150–155
(1938). https://doi.org/10.2307/2267778

24. Kochdumper, N., Bak, S.: Fully automated verification of linear time-invariant
systems against signal temporal logic specifications via reachability analysis. Non-
linear Anal. Hybrid Syst 53, 101491 (2024). https://doi.org/10.1016/j.nahs.2024.
101491

25. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal tempo-
ral logic. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 343–354 (2021). https://doi.org/10.1109/
ASE51524.2021.9678719

26. Maler, O., Ničković, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems (FORMATS/FTRTFT) pp. 152–166 (2004).
https://doi.org/10.1007/978-3-540-30206-3_12

27. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013). https://doi.org/10.
1007/s10009-012-0247-9

28. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: Qualita-
tive and quantitative trace analysis with extended signal temporal logic. Inter. J.
Software Tools Technol. Transf. 22(6), 741–758 (2020). https://doi.org/10.1007/
s10009-020-00582-z

29. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

30. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer International
Publishing (2018). https://doi.org/10.1007/978-3-319-63588-0

31. Rajamani, R.: Vehicle Dynamics and Control. Springer (2012). https://doi.org/10.
1007/978-1-4614-1433-9

32. Roehm, H., Oehlerking, J., Heinz, T., Althoff, M.: STL model checking of con-
tinuous and hybrid systems. In: Artho, C., Legay, A., Peled, D. (eds.) Automated
Technology for Verification and Analysis (ATVA), pp. 412–427 (2016). https://doi.
org/10.1007/978-3-319-46520-3_26

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1145/3286976
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/LICS.2013.41
https://doi.org/10.1587/transfun.E99.A.442
https://doi.org/10.2307/2267778
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1016/j.nahs.2024.101491
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/978-3-319-46520-3_26

Using Four-Valued STL for Incremental Verification of Hybrid Systems 281

33. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems.
Springer (2000). https://doi.org/10.1007/BFb0109998

34. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electr. Notes Theoretical Comput. Sci. 113, 145–162 (2005). https://doi.org/10.
1016/j.entcs.2004.01.029

35. Wright, T., Stark, I.: Property-directed verified monitoring of signal temporal logic.
In: Deshmukh, J., Ničković, D. (eds.) Runtime Verification (RV), pp. 339–358
(2020). https://doi.org/10.1007/978-3-030-60508-7_19

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0109998
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1007/978-3-030-60508-7_19
http://creativecommons.org/licenses/by/4.0/

Optimization-Based Model Checking
and Trace Synthesis for Complex STL

Specifications

Sota Sato1,3(B) , Jie An1,4(B) , Zhenya Zhang1,2(B) ,
and Ichiro Hasuo1,3(B)

1 National Institute of Informatics, Tokyo, Japan
{sotasato,jiean,hasuo}@nii.ac.jp
2 Kyushu University, Fukuoka, Japan

zhang@ait.kyushu-u.ac.jp
3 SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan

4 Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. Techniques of light-weight formal methods, such as moni-
toring and falsification, are attracting attention for quality assurance
of cyber-physical systems. The techniques require formal specs, however,
and writing right specs is still a practical challenge. Commonly one relies
on trace synthesis—i.e. automatic generation of a signal that satisfies a
given spec—to examine the meaning of a spec. In this work, motivated
by 1) complex STL specs from an automotive safety standard and 2) the
struggle of existing tools in their trace synthesis, we introduce a novel
trace synthesis algorithm for STL specs. It combines the use of MILP
(inspired by works on controller synthesis) and a variable-interval encod-
ing of STL semantics (previously studied for SMT-based STL model
checking). The algorithm solves model checking, too, as the dual of trace
synthesis. Our experiments show that only ours has realistic performance
needed for the interactive examination of STL specs by trace synthesis.

1 Introduction

Safety and quality assurance of cyber-physical systems (CPSs) is an important
and multifaceted problem. The pervasiveness and safety-critical nature of CPSs
makes the problem imminent and pressing; at the same time, the problem comes
with very different flavors in different application domains, calling for different
solutions. For example, in the aerospace domain, full formal verification all the
way up from the codebase seems feasible [33]. Such is a luxury that the automo-
tive domain may not afford, however, because of short product cycles, depen-
dence on third-party (thus black-box) components, heterogeneous environmental
uncertainties, and fierce competition (thus tight budget).

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), the START Grant No. JPMJST2213, the ASPIRE grant
No. JPMJAP2301, JST. S.S. is supported by KAKENHI No. 23KJ1011, JSPS. Z.Z. is
supported by JSPS KAKENHI Grant No. JP23K16865 and No. JP23H03372.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 282–306, 2024.
https://doi.org/10.1007/978-3-031-65633-0_13

https://doi.org/10.5281/zenodo.11001313
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_13&domain=pdf
http://orcid.org/0000-0001-7147-3989
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-65633-0_13

Optimization-Based Trace Synthesis for Complex STL Specifications 283

The above limitations in the automotive domain point, in the formal meth-
ods terms, to the absence of white-box system models. This has led to the flourish
of light-weight formal methods, such as monitoring [8], runtime verification, and
hybrid system falsification [16]. These are logic-based methods that operate on
formal specifications, often given in signal temporal logic (STL) [24]. These meth-
ods give up comprehensive guarantee due to the absence of white-box system
models; yet their values in practical usage scenarios are widely acknowledged.

Trace Synthesis and Model Checking. In this paper, we are motivated by
some automotive instances of the trace synthesis problem: it asks to synthesize
an execution trace σ of a system M that satisfies a given STL specification ϕ.
There are two major approaches to trace synthesis for CPSs.

One common approach is via hybrid system falsification [16]: here, we try
many input signals τ for M, iteratively modifying them in the direction of
satisfying ϕ; the quantitative robust semantics of STL [17] serves as an objective
function that allows hill-climbing optimization. It is notable that the system
model M can be black-box : we do not need to know its internal working; it is
enough to compute the execution trace M(τ) under given input τ . Falsification
has attracted a lot of interest especially in the automotive domain; see e.g. [16].

We take the other approach to trace synthesis, namely as the dual of the
model checking problem. Here model checking decides if, under any input τ , the
execution trace M(τ) satisfies ϕ. Our choice of this approach may be puzzling—
it requires a white-box model M, but it is rare in the automotive domain.

Analyzing Specifications (Rather Than Models). Our choice of the model
checking approach to trace synthesis comes from the following basic scope of the
paper: we use trace synthesis to analyze the quality of specifications (specs).

This is in stark contrast with many falsification tools whose scope is analyzing
models. There, a model M is extensive and complex (typically a Simulink model
of an actual product), and counterexample traces are used for “debugging” M.

In this paper, instead, a model M is simple and white-box (it can even be the
trivial model, where the input and output are the same), but a spec ϕ tends to be
complex. One typical usage scenario for our framework is when ϕ is a normative
rule—such as a law, a traffic rule, or a property required in an international
standard—in which case ϕ is imposed on many different systems (e.g. different
vehicle models). Then M should be a simple overapproximation of a variety of
systems, rather than a detailed system model.

Another typical usage scenario of our framework is an early “requirement
development” phase of the V-model of the automotive system design. Here, engi-
neers fix specs that pin down the later development efforts, in which those specs
get refined and realized. They want to confirm that the specs are sensible (e.g.
there is no mutual conflict) and faithful to their intentions. Since a system is yet
to be developed, a system model M cannot be detailed.

284 S. Sato et al.

Fig. 1. Rear-end near colli-
sion

Motivating Example. More specifically, the cur-
rent work is motivated by the work [30] on formal-
izing disturbance scenarios in the ISO 34502 stan-
dard for automated driving vehicles. There, a vehi-
cle dynamics model is simple (the scenarios should
apply to different vehicle models—see above), but
STL formulas are complex. It is observed that existing algorithms have a hard
time handling the complexity of specs (see §6 for experiments). This moti-
vated our current technical development, namely a trace synthesis algorithm
that exploits white-box models and MILP optimization for efficiency.

The following example illustrates the challenge encountered in [30].

Example 1.1 (rear-end near collision). We would like to express, in STL, a
rear-end near collision scenario for two cars. It refers to those driving situations
where a rear car Carr comes too close to a front car Carf . We assume a single-lane
setting (Fig. 1), so we can ignore lateral dynamics.

Consider the following STL formulas. Here, xf , vf , af are the variables for the
position, velocity, and acceleration of Carf ; the other variables are for Carr.

danger :≡ xf − xr ≤ 10
dyn inv :≡ xf − xr ≥ 0 ∧ 2 ≤ vf ≤ 27 ∧ 2 ≤ vr ≤ 27

trimming :≡ (♦danger) ⇒ (
(�[0,0.2]ar ≥ 0.5) U danger

)

RNC1 :≡ �(dyn inv ∧ trimming) ∧ ♦[0,9]�[0,1]danger

(1)

The last formula RNC1 formalizes rear-end near collision; in particular, its sub-
formula ♦[0,9]�[0,1]danger requires that danger occurs within 9 s and persists
for at least one second.

The formula RNC1 comes with two auxiliary conditions: dyn inv and
trimming. We shall now exhibit their content and why they are needed. In fact,
these conditions arose naturally in the course of trace synthesis, the problem of
our focus.

Specifically, in [30], we conducted trace synthesis repeatedly in order to 1)
illustrate the meaning of STL specifications and 2) confirm that they reflect
informal intentions. The generated traces were animated for graphical illustra-
tion. This workflow is much like in the tool STLInspector [31].

The formula dyn inv imposes basic constraints on the dynamics of the cars.
In the trace synthesis in [30], without this basic constraint, we obtained a number
of nonsensical example traces in which a car warps and instantly passes the other,
drives much faster than the legal maximum, and so on.

The formula trimming requires Carr to accelerate until danger occurs. It
was added to limit a generated trace to an interesting part. For example, a trace
can have danger only after a 8-s pacific journey; animating this whole trace can
easily bore users. The condition trims such a trace to the part where Carr is
accelerating towards danger.

Optimization-Based Trace Synthesis for Complex STL Specifications 285

The dynamics model used in [30] is the following simple one:

ẋf = vf , v̇f = af ; ẋr = vr, v̇r = ar. (2)

This relates x, v and a in the spec (1). The double integrator model is certainly
simplistic, but it suffices the purpose in [30] of illustrating and confirming specs.

Remark 1.2. In [30], after illustrating and confirming STL specs through trace
synthesis, the final goal was to use them for monitoring actual driving data.
Neither the dynamics model (2) nor the condition dyn inv is really relevant to
monitoring—actual driving data should comply with them anyway. In contrast,
trimming is important, in order to extract only relevant parts of the data.

Technical Solution: MILP-Based Trace Synthesis. We present a novel
trace synthesis algorithm. Note that it also solves the dual problem, namely
STL model checking. It originates from two recent lines of work: MILP-based
optimal control [14,28,29] and SMT-based STL model checking [7,23,34].

The controller synthesis techniques in [14,28,29] exploit mixed-integer linear
programming (MILP) for efficiency. The optimal control problem that they solve
can be specialized to our trace synthesis problem (detailed discussions come
later). But we found their capability of handling complex specs (as in Ex. 1.1)
limited, largely because of their constant-interval encoding to MILP.

We solve this challenge by our novel variable-interval encoding of the STL
semantics to MILP. It is inspired by the stable partitioning technique introduced
in [7]: the technique is used in [7,23,34] for logical encoding towards SMT-based
model checking; we use it for numerical encoding to MILP. This way we will solve
the bounded trace synthesis problem—in the sense that variability of the truth
values of the relevant formulas is bounded—much like in [7,23,34]. For our MILP
encoding, however, we need special care since MILP does not accommodate strict
inequalities (partitions such as . . . , (γi−1, γi), {γi}, (γi, γi+1), . . . in [7] cannot be
expressed). We therefore use a novel technique called δ-stable partitioning.

Overall, our algorithm works as follows. We assume that a system model M
can be MILP-encoded, either exactly or approximately. Some model families are
discussed in §5. This assumption, combined with our key technique of variable-
interval MILP encoding of STL, reduces trace synthesis to an MILP problem,
which we solve by Gurobi Optimizer [20]. We conduct experimental evaluation
to confirm the scalability of our algorithm, especially for complex specs (§6).

Our algorithm is anytime (i.e. interruptible): even if the budget runs out
in the course of optimization, a best-effort result (the trace that is the closest
to a solution so far) is obtained. A similar benefit is there in case there is no
execution trace σ that satisfies the spec ϕ: we obtain a trace σ′ that is the closest
to satisfy ϕ. Accommodation of parameters is another advantage thanks to our
use of MILP; we exploit it for parameter mining for PSTL formulas. See §3.

Both controller synthesis techniques [14,28,29] and SMT-based model check-
ing techniques [7,23,34] can be used for trace synthesis. The methodological
differences are discussed later in §1; experimental comparison is made in §6.

286 S. Sato et al.

Contributions and Organization. We summarize our contributions.

– We introduce an optimization-based algorithm for bounded trace synthesis for
STL specs. It assumes that a system model is white-box and MILP-encodable;
it also solves the dual problem (namely bounded model checking).

– As a key element, we introduce a variable-interval encoding of STL to MILP.
– MILP encodings of some system models, notably rectangular hybrid automata

and double integrator dynamics (suited for the automotive domain).
– We experimentally confirm scalability of our algorithm, especially for complex

specs. Comparison is made with MILP-based optimal control [14], SMT-based
model checking [34], and optimization-based falsification [11,37].

– Through the algorithm, case studies and experiments, we argue for the impor-
tance and feasibility of spec analysis for CPSs.

After exhibiting preliminaries on STL and stable partitioning in §2, we formulate
our problems (bounded trace synthesis, model checking, etc.) in §3. In §4 we
present a novel variable-interval MILP encoding of STL; in §5 we discuss MILP
encoding of a few families of models. Our main algorithm combines these two
encodings. In §6 we present experiment results.

Related Work I: Optimal STL Control with MILP. The works [14,28,29]
inspire our use of MILP for STL. Their problem is optimal controller synthesis
under STL constraints, i.e. to find an input signal τ to a system model M so
that 1) the output signal M(τ) satisfies a given STL spec ϕ and 2) it optimizes
J(M(τ)), where J is a given objective function. This problem subsumes our
problem of trace synthesis, by taking a constant function as J .

The algorithms in [14,28,29] reduce their problem to MILP by a constant-
interval encoding of the robust semantics [13,17] of STL (an enhanced encoding
is presented in [22]). Specifically, their system model is discrete-time dynamics
x(t + Δt) = fd(x(t), u(t), w(t)) with a constant interval Δt.

In contrast, in our variable-interval encoding (§4), continuous time is dis-
cretized into the intervals . . . , (γi−1, γi), {γi}, (γi, γi+1), . . . where the end points
γi are also variables in MILP. This is advantageous not only in modeling pre-
cision but also in scalability: for system models that are largely continuous,
constant-interval discretization incurs more integer variables in MILP, hamper-
ing the performance of MILP solvers. See §6 for experimental comparison.

Related Work II: SMT-Based STL Model Checking. Our key techni-
cal element (a variable-interval MILP encoding of STL) uses the idea of stable
partitioning from [7,23,34]. They solve bounded STL model checking, and also
its dual (trace synthesis). The main difference is the class of system models M
accommodated. SMT solvers accommodate more theories than MILP solving,
and thus allows encoding of a greater class of models. In contrast, by restricting
the model class to MILP-encodable, our algorithm benefits speed and scalabil-
ity (MILP is faster than SMT). Iterative optimization in MILP also makes our
algorithm an anytime one. Native support of parameter synthesis is another plus.

Optimization-Based Trace Synthesis for Complex STL Specifications 287

Other Related Work. Optimization-based falsification has its root in the
quantitative robust semantics of STL [13,17]; the successful combination with
stochastic optimization metaheuristics has made falsification an approach of both
scientific and industrial interest. See the ARCH competition report [16] for state-
of-the-art. Falsification is most of the time thought of as search-based testing ;
therefore, unlike the model checking approach, the absence of counterexamples
is usually not proved. Exceptions are [25,35] where they strive for probabilistic
guarantees for such absence.

The current work is motivated by the observation that falsification solvers
often struggle in trace synthesis for complex STL specs, even if a system model
is simple. It is known that specs with more connectives pose a performance
challenge, and many countermeasures are proposed, including [2] (for temporal
operators) and [36,37] (for Boolean connectives).

2 Preliminaries

We let N, R denote the sets of natural numbers and reals, respectively; R≥0

denotes an obvious subset. The set R = R ∪ {−∞,∞} is that of extended reals.
The set B = {	,⊥} is for Boolean truth values. The powerset of a set X is
denoted by ℘(X). An interval is a subset of R≥0 of the form (a, b), [a, b), (a, b],
or [a, c], where a < b and a ≤ c. Therefore a singleton {a} is an interval.

Definition 2.1 (linear predicate pand �p�, πp). Given a set V of variables, a
(closed) linear predicate is a function p : R

V → B defined as follows, using some
c ∈ R

V and b ∈ R: p(x) = 	 if and only if c�x + b ≥ 0. We write �p� for the
closed half-space {x | p(x) = 	} ⊆ R

V .
For the above p, we define a function πp(x) : R

V → R by πp(x) := c�x + b.
This is understood as the degree of satisfaction (or violation, if negative) of a
linear predicate p by x ∈ R

V . Indeed, πp(x) is the (signed) Euclidean distance
to the boundary of �p�, assuming that the Euclidean norm of c is ‖c‖ = 1.

Definition 2.2 (signal). Let V be a finite set of variables and T a positive
real. A signal over V with a time horizon T is a function σ : [0, T] → R

V . We
write SignalTV for the set of all signals over V with time horizon T , or simply
SignalV when T is clear from the context.

If necessary, the domain [0, T] of σ can be extended to R≥0 by setting σ(t) :=
σ(T) for all t > T . This allows us to define the notion of t-postfix, which will
serve as the basis of the STL semantics (§2.1). Precisely, the t-postfix of σ is a
signal σt defined by σt(t′) := σ(t + t′). The domain of σt can be chosen freely
but we set it to [0, T] for consistency.

Definition 2.3 (system model, trace set L(M)). Let V, V ′ be finite sets of
variables. A system model M from V ′ to V with a time horizon T is a function
M : SignalTV ′ → ℘(SignalTV). The trace set L(M) :=

⋃
τ∈SignalT

V ′
M(τ) is the

set of all output signals of M where an input signal τ can vary.

288 S. Sato et al.

We allow system models to be nondeterministic (note the the powerset construc-
tion ℘); the models in §1 were deterministic for simplicity. A special case of the
above is when V ′ = ∅, that is, when M does not have any input. In this case, a
system model M can be identified with a subset L(M) ⊆ SignalV .

Example 2.4 (MRNC). The dynamics model in Ex. 1.1 is formalized as a sys-
tem model MRNC whose input variables (in V ′) are af , v

init
f , xinit

f , ar, v
init
r , xinit

r ,
and output variables (in V) are af , vf , xf , ar, vr, xr. Here, the input is acceler-
ation rates (af , ar) and the initial values of velocities and positions (modeled
using signals vinit

f etc. for convenience). The time horizon T of M represents its
simulation time; here we set T = 20. Given an input signal τ , the output M(τ)
is a singleton M(τ) = {σ}, and σ is determined by the ODE (2). Specifically,
σ(t)(af) = τ(t)(af), σ(t)(vf) = τ(0)(vinit

f) +
∫ t

0
τ(t′)(af) dt′, and so on.

2.1 Signal Temporal Logic

Definition 2.5 (signal temporal logic (STL)). In STL, an atomic proposi-
tion over a variable set V is represented as p :≡ (f(
w) ≥ 0), where f : R

V → R

is a function that maps a V -dimensional vector
w to a real. The syntax of an
STL formula ϕ (over V) is defined as follows: ϕ :≡ p | ⊥ | 	 | ¬ϕ | ϕ1 ∨ ϕ2 |
ϕ1 ∧ ϕ2 | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2, where I is a nonsingular closed time
interval, and ♦I , �I ,UI , RI are temporal operators eventually, always, until and
release. Implication is defined: ϕ1 ⇒ ϕ2 :≡ ¬ϕ1 ∨ ϕ2. We write temporal opera-
tors without the subscript I when I = [0,∞] (e.g., ♦). Note that we do not lose
generality by restricting the inequality in p :≡ (f(
w) ≥ 0). Indeed, ≤, <,> can
be encoded using (a combination of) −f and ¬.

The set Sub(ϕ) collects all subformulas of an STL formula ϕ; the set AP(ϕ)
collects all atomic propositions α occurring in ϕ.

Proposition 2.6. Every STL formula has a formula in the negation normal
form (NNF)—i.e. one in which negation ¬ appears only in front of atomic
propositions—that is semantically equivalent. ��
Assumption 2.7. We assume that each atomic proposition p is a linear pred-
icate (Def. 2.1), that is, f(x) = c�x + b with some c ∈ R

V , b ∈ R in each
p :≡ (f(
w) ≥ 0).

The Boolean semantics σ |= ϕ and robust semantics �σ, ϕ� ∈ R of STL are
standard. See [32, Appendix A].

PSTL is a parametric extension of STL. It is from [4]; see also [9]. Its defini-
tion is in [32, Appendix A]. The semantics of PSTL formula is defined naturally
by fixing
u,
v; see Prob. 3.3 for the specific forms we use.

2.2 Finite Variability

The satisfiability checking problem for STL—this is equivalent to the model
checking problem under the trivial (identity) system model—is already

Optimization-Based Trace Synthesis for Complex STL Specifications 289

EXPSPACE-complete [3]. To ease computational complexity, bounded model
checking has been a common approach [23,26]. Its main idea is to bound the
number of time-points at which the truth value of each subformula can vary.

Definition 2.8 (finite variability [27]). A (finite) partition P of an interval
D ⊆ R is a sequence P = (Ji)N

i=1 of nonempty and mutually disjoint intervals
such that

⋃N
i=1 Ji = D, and sup(Ji) ≤ inf(Ji′) for any i < i′. A Boolean signal

q : R≥0 → B is constant on an interval J ⊆ R≥0 if q(t) = q(t′) for any t, t′ ∈ J .
We say q(t) has N -bounded variability if there exists a partition P of [0,∞) and
q(t) is constant on every interval J ∈ P.

Let σ : [0, T] → R
V be a signal and ϕ be an STL formula over V . We say that

σ has the N -bounded variability with respect to ϕ if the Boolean (truth value)
signal t �→ (σt |= ϕ) has the N -bounded variability. We say σ is finitely variable
with respect to ϕ if it has the N -bounded variability for some N .

Finally, we say σ has the hereditary N -bounded variability with respect to
ϕ if, for each subformula ψ ∈ Sub(ϕ), σ has the N -bounded variability with
respect to ψ. We write N -HBV for the hereditary N -bounded variability.

Lemma 2.9 ([7]). Let ϕ be an STL formula. A signal σ has the N -HBV with
respect to ϕ for some N if and only if it is finitely variable with respect to each
atomic proposition p ∈ AP(ϕ) occurring in ϕ. ��

The following is the basis of bounded model checking in [7,23].

Definition 2.10 (stable partition). Let σ be a signal, ϕ be an STL formula,
and P be a partition of [0, T] such that every J ∈ P is singular or open. Intu-
itively, P looks like {γ0}, (γ0, γ1), {γ1}, (γ1, γ2), . . . , {γN}. We say P is a stable
partition for σ and ϕ if t �→ σt |= ψ is constant on J for each J ∈ P, ψ ∈ Sub(ϕ).

3 Problem Formulation

We formulate our problems and discuss their mutual relationship. The next
problem is studied in [7,23,34].

Problem 3.1 (bounded STL model checking). Given an STL formula ϕ
(over V), a system model M (from V ′ to V) with time horizon T , and a vari-
ability bound N ∈ N, decide if the following is true or not: σ |= ϕ holds for
an arbitrary trace σ ∈ L(M) (cf. Def. 2.3) that has the hereditary N -bounded
variability (N -HBV) with respect to ϕ.

The following is the dual of Prob. 3.1, and is our main scope.

Problem 3.2 (bounded STL trace synthesis). Given ϕ,M, T and N as in
Prob. 3.1, find a trace σ ∈ L(M) such that 1) σ has the N -HBV with respect
to ϕ and 2) σ |= ϕ holds, or prove that such σ does not exist.

290 S. Sato et al.

Prob. 3.2 resembles the falsification problem [17]: given M (that can be black-
box) and ϕ′, find a counterexample input τ such that M(τ) �|= ϕ′. The emphases
and the settings are often different though; see §1.

The following is a special case of the STL parameter mining problem; see
e.g. [9, § 3.5]. Recall from [32, Def. A.3] that ϕ�u,�v instantiates parameters
p,
q in
ϕ with real values
u,
v from the domains P,Q, respectively.

Problem 3.3 (bounded existential parameter mining). Let ϕ be a PSTL
formula over parameters (
p,
q), and M, T and N be as in Prob. 3.1. Find the set{

(
u,
v) ∈ P × Q
∣
∣ σ |= ϕ�u,�v for some σ ∈ L(M) that has the N -HBV wrt. ϕ

}
.

In §6, we study a further special case where there is only one parameter p and
the goal is to find the maximum p in the above set.

Fig. 2. A stable partition (cf. [7]) for σ
and ϕ :≡ x ≥ 1. The symbols � and ⊥
denote the (constant) truth value of ϕ
each interval Ji.

Fig. 3. A δ-stable partition (Def. 4.7) for
σ and ϕ. Here ϕδ ≡ (x ≥ 1+δ). � and ⊥
are much like in Fig. 2; the symbol ? indi-
cates that the truth value is not necessar-
ily constant. In some regions (shaded),
σt |= ϕ is true but σt |= ϕδ is not.

4 Variable-Interval Encoding of STL to MILP

4.1 δ-Stable Partitions

We shall adapt the idea of stable partitioning [7], reviewed in §2.2, to the current
MILP setting. A major difference we need to address is that SMT is symbolic
while MILP is numerical: most MILP solvers do not distinguish < from ≤ and
do not accommodate strict inequalities. See e.g. [20].

In order to address this difference, we develop a theory of δ-stable partitions.
Here is its outline. Firstly, we replace partitions . . . , (γi−1, γi), {γi}, (γi, γi+1), . . .
used in [7] (see also Def. 2.10) with new “partitions” . . . , [γi−1, γi], [γi, γi+1],
The latter can be expressed only using ≤; but they have overlaps (at γi). The
original stability notion (see §2.2) does not fit the new partition notion—it
requires “constantly true” or “never true,” and prohibits overlaps. Therefore
we introduce δ-stability ; it requires either “constantly true” or “never robustly
true.”

Optimization-Based Trace Synthesis for Complex STL Specifications 291

Example 4.1. Let σ be a continuous signal. Suppose that a sequence P =
(Ji)

M
i=1 is a stable partition for σ and an STL formula ϕ, as illustrated in Fig. 2.
In this paper, since MILP solvers do not accommodate strict inequalities,

we are forced to use closed intervals; see Γ1, . . . , Γ4 in Fig. 3. Notice that the
truth value of the formula ϕ not constant in Γ2 or Γ4. To regain stability, we
introduce the δ-tightening ϕδ of the formula ϕ with some δ > 0 (Def. 4.4); here
ϕδ ≡ (x ≥ 1 + δ). Then the truth value of ϕδ (instead of ϕ) is constantly false
in Γ2 and Γ4, that is, ϕ is “never δ-robustly true” in Γ2 and Γ4.

Definition 4.2 (timed state sequence). A time sequence of [0, T] is a
sequence Γ = (0 = γ0 < · · · < γN = T). Such a time sequence induces a “parti-
tion of [0, T] with singular overlaps,” namely Γ =

(
[γi−1, γi]

)N

i=1
. We identify it

with the original time sequence, writing Γi for the interval [γi−1, γi].
Given a time sequence, a timed state sequence over V is a sequence ς =(

(x0, γ0), . . . , (xN , γN)
)
, where x0, . . . , xN in R

V .

In MILP, it is efficient to represent signals as (continuous) piecewise-linear sig-
nals, so that values within an interval can be deduced by linear interpolation.

Definition 4.3 (piecewise-linear signal). Given a timed state sequence ς =
((x0, γ0), . . . , (xN , γN)), the signal ςpwl : [0, γN] → R

V is defined by the following
linear interpolation: ςpwl(t) := (1 − λ)xi−1 + λxi if γi−1 ≤ t ≤ γi (where λ =

1
γi−γi−1

(t − γi−1)).
In this paper, a piecewise-linear signal is a signal of the form ςpwl for some

timed state sequence ς. Note that it is continuous everywhere, and is linear every-
where except for only finitely many points. Obviously, ςpwl is finitely variable
with respect to any linear predicate p (Def. 2.1).

Definition 4.4 (δ-tightening of linear predicates). Let δ > 0 be a positive
real and p be a linear predicate defined by p(x) = 	 ⇐⇒ c�x + b ≥ 0. The
δ-tightening of p is a linear predicate defined by pδ(x) = 	 ⇐⇒ c�x + b ≥ δ.

Note that pδ is stronger than p, i.e., [[pδ]] � [[p]]. We further extend the concept
of δ-tightening for general STL formulas in NNF (cf. Prop. 2.6). Let p− be the
linear predicate defined by p−(x) = 	 ⇐⇒ −c�x − b ≥ 0.

Definition 4.5 (δ-tightening of STL formulas in NNF). Let ϕ be an STL
formula in NNF. The δ-tightening ϕδ of ϕ is the STL formula obtained from ϕ
by replacing all occurrences of atomic predicates p (resp. ¬p) by pδ (resp. (p−)δ).

The δ-tightening construction is related to robust semantics [32, Def. A.2].

Proposition 4.6. Let σ be a signal, ϕ be an STL formula in NNF, and δ > 0.
Then σ |= ϕδ implies [[σ, ϕ]] ≥ δ. ��

292 S. Sato et al.

Since the closed halfspace [[p−]] coincides with the closure of the open halfspace
R

V \ [[p]], the robust semantics is not affected by the difference between p− and
¬p. For simplicity, in the following, we assume that any STL formula in NNF
does not contain negation, i.e., ¬p is replaced by a new atomic proposition p−.

We are ready to define δ-stability.

Definition 4.7 (δ-stability). Let ϕ be an STL formula over V in NNF, σ ∈
SignalTV be a signal, and Γ = (γ0, . . . , γN) be a time sequence (Def. 4.2) with
γN = T . We say Γ is δ-stable for σ and ϕ if, for each i ∈ [1, N] and each
subformula ψ ∈ Sub(ϕ), either of the following holds: 1) σt |= ψ for each t ∈ Γi,
or 2) σt �|= ψδ for each t ∈ Γi.

In the above definition, in each interval Γi, a subformula ψ is either 1) always true
or 2) never robustly true. The two conditions are not mutually exclusive—both
hold if σt |= ψ ∧ ¬ψδ for all t ∈ Γi.

The next notion of conservative valuation records which of 1) and 2) is true
in each interval. It conservatively approximates the actual truth of ϕ (Fig. 3).

Definition 4.8 (conservative valuation). Let ϕ be an STL formula in NNF,
and Γ = (γ0, . . . , γN) be a time sequence . A valuation of ϕ in Γ is a function
Θ : Sub(ϕ) × [1, N] → B that assigns, to each subformula and index of the
intervals of Γ , a Boolean truth value. Let σ be a signal with a time horizon
T = γN . We say that Θ is a conservative valuation of ϕ in Γ on σ (up to δ) if
1) Θ(ψ, i) = 	 implies that, for each t ∈ Γi, σt |= ψ holds; and 2) Θ(ψ, Γi) = ⊥
implies, for each t ∈ Γi, σt �|= ψδ.

We simply write 〈ψ〉i for Θ(ψ, i) when Θ is clear from context.
Suppose there exists a conservative valuation Θ of an STL formula ϕ in a

time sequence Γ on a signal σ up to δ. Then Γ is δ-stable for σ and ϕ.
We shall argue in §4.2 that, for each piecewise-linear signal σ (Def. 4.3), an

STL formula ϕ, there is a time sequence Γ in which ϕ is δ-stable on σ. We start
with a special case where ϕ is an atomic proposition p.

Definition 4.9. Let x, x′ ∈ R
V , and p be a linear predicate on V . We say (x, x′)

is a δ-crossing pair with respect to p if x ∈ �pδ� and x′ �∈ �pδ� (cf. Def. 2.1), or
vice versa. A δ-crossing pair is stationary if x ∈ �p� and x′ ∈ �p�.

Lemma 4.10. Let p be a linear predicate and σ be a piecewise-linear signal.
There is a time sequence Γ = (γ0, . . . , γN) such that, for any i ∈ [1, N], 1) σ is
linear in the interval [γi−1, γi], and 2) if (σ(γi−1), σ(γi)) is a δ-crossing pair, it
is stationary. It follows that there is a conservative valuation Θ of p in Γ on σ.

Proof. The lemma argues that, whenever σ enters or leaves �pδ�, it has to do so
via �p� \ �pδ�. See Fig. 4. This can be enforced by adding suitable points to Γ ,
exploiting continuity of σ (Def. 4.3) and the intermediate value theorem. ��

Optimization-Based Trace Synthesis for Complex STL Specifications 293

Fig. 4. A conservative valuation
Θ of a linear predicate p on σ.
The red segments are assigned �
by Θ. (Color figure online)

We note another advantage of δ-stable parti-
tions: the number of invervals is roughly halved
compared to (original) stable partitions (see
Figs. 2 and 3). This advantage may be exploited
also in SMT-based approaches [7] for scalability.

4.2 Variable-Interval MILP Encoding

Our MILP encoding of STL relies on the con-
structs in §4.1. For the purpose of trace synthe-
sis for an STL formula ϕ, our basic strategy is to
search for 1) a time sequence Γ = (γ0, . . . , γN)
(i.e. a “partition,” see Def. 4.2) and 2) a valua-
tion Θ : Sub(ϕ) × [1, N] → B, such that

– Θ is consistent in the sense that the truth values assigned to subformulas
comply with the STL semantics (§2.1);

– Θ is fulfilling in the sense that it assigns 	 to the top-level formula ϕ in Γ1

(the first interval); and
– Θ is realizable in the sense that there is a piecewise-linear trace σ ∈ L(M) of

M that yields Θ. That is, precisely, Θ must be a conservative valuation of ϕ
in Γ on σ (Def. 4.8).

The entities Γ,Θ we search for are expressed as MILP variables, and the above
three conditions are expressed as MILP constraints. We describe these MILP
variables and constraints in the rest of the section. The constraints expressing
σ ∈ L(M) require system model encoding and are thus deferred to later sections.

Variables. We use the following MILP variables. Their collection is denoted by
Var(ϕ,N). Here N ∈ N is a constant for variability bound (Prob. 3.2).

– Real-valued variables {γ0, . . . , γN} for a time sequence Γ .
– Boolean variables {〈ψ〉i | 1 ≤ i ≤ N,ψ ∈ Sub(ϕ)} for the value Θ(ψ, i) of a

valuation Θ that we search for.
– Real-valued variables {xi,v | 0 ≤ i ≤ N, v ∈ V } for the values of a piecewise-

linear trace σ ∈ L(M).
– Boolean variables {ζp

i , ζδ,p
i | 0 ≤ i ≤ N, p ∈ AP(ϕ)} for the truth values of p

and pδ at time γi. These variables are used to detect crossing pairs (Def. 4.9).
– Real-valued variables {Sψ

i | 0 ≤ i ≤ N,�Iψ ∈ Sub(ϕ)}. This auxiliary vari-
able records for how long ψ has been true before γi.

– Real-valued variables {Pψ
i | 0 ≤ i ≤ N,♦Iψ ∈ Sub(ϕ)}. This auxiliary vari-

able records for how long ψ has been false before γi.

By an assignment we refer to a function v : Var(ϕ,N) → R such that v(y) ∈
{0, 1} for each Boolean variable y. The MILP problem is to find an assignment
v that optimizes an objective under given constraints.

294 S. Sato et al.

Notation 4.11. In what follows, as a notational convention, we simply write
a variable y for the value v(y) when the assignment v is clear from context.
We further write ς for the timed state sequence composed of the time sequence
{γ0, . . . , γN} and the trace values {xj,v | 0 ≤ j ≤ N, v ∈ V }.

Note that, in this paper, we encode the Boolean semantics of STL [32, Def.
A.1], unlike [28,29] where the robust semantics is encoded in a constant-interval
manner. The combination of variable-interval encoding and quantitative robust
semantics is future work; for example, a quantitative extension of δ-stable par-
titions (§4.1) seems quite nontrivial.

Shorthands for Propositional Connectives. We use standard shorthands
for Boolean connectives in MILP constraints (such as ¬A,A∧B where A,B are
Boolean variables). See [32, Appendix B] for the formal encodings.

Realizability Constraints: Traces and Atomic Propositions. We need to
constrain γ0, . . . , γN to be a time sequence (Def. 4.2), using some constant ε > 0
and letting · · · ≥ ε stand for · · · > 0.

γ0 = 0, γN = T, γi − γi−1 ≥ ε for all i ∈ [1, N] (3)

For each i and p ∈ AP(ϕ) (say p is defined by c�x+ b ≥ 0), the variables ζp
i , ζδ,p

i

are constrained as follows,

ζp
i = 1 ⇒ c�xi + b ≥ 0 ζp

i = 0 ⇒ c�xi + b ≤ −ε

ζδ,p
i = 1 ⇒ c�xi + b ≥ δ ζδ,p

i = 0 ⇒ c�xi + b ≤ δ − ε
(4)

Moreover, we impose the following to ensure that Γ is the one in Lem. 4.10:

ζδ,p
i = 0 ∧ ζδ,p

i+1 = 1 ⇒ ζp
i = 1, ζδ,p

i = 1 ∧ ζδ,p
i+1 = 0 ⇒ ζp

i+1 = 1 (5)

Under constraints (3) to (5), Γ is δ-stable for ςpwl (cf. Def. 4.3) and p, by Lem.
4.10. By the definition of δ-stability, we can now constrain the variable 〈p〉i by
〈p〉i = ζp,δ

i−1 ∨ ζp,δ
i for each i and p ∈ AP(ϕ).

Remark 4.12. Note that ε must be chosen to be small enough for the complete-
ness of the encoding (Thm. 4.18). Thereafter we assume that, given a piecewise-
linear signal σ and an STL formula ϕ, ε is small enough to find a δ-stable
partition for σ and ϕ, and we omit ε from the constraints for simplicity.

Consistency Constraints I: Boolean Connectives. We can directly encode
conjunction

∧m
j=1 ψj in STL by recursively applying the shorthand ∧ in [32,

Appendix B]: 〈∧m
j=1 ψj〉i = 〈ψ1〉i∧〈∧m

j=2 ψj〉i for each i ∈ [1, N]. It is known that
the following alternative encoding avoids auxiliary variables 〈∧m

j=k ψj〉i (where
k varies): for each i ∈ [1, N], 〈∧m

j=1 ψj〉i ≥ 1−m +
∑m

j=1〈ψj〉i and 〈∧m
j=1 ψj〉i ≤

〈ψj〉i. An encoding for disjunction is given similarly: 〈∨m
j=1 ψj〉i ≤ ∑m

j=1〈ψj〉i,
〈∨m

j=1 ψj〉i ≥ 〈ψj〉i.

Optimization-Based Trace Synthesis for Complex STL Specifications 295

Consistency Constraints II: Unbounded Temporal Modalities. For tem-
poral operators with I = [0,∞), the following encodings are straightforward.

〈ψ1U ψ2〉i = 〈ψ2〉i ∨ (〈ψ1U ψ2〉i+1 ∧ 〈ψ1〉i),
〈ψ1R ψ2〉i = 〈ψ2〉i ∧ (〈ψ1R ψ2〉i+1 ∨ 〈ψ1〉i) for each i ∈ [1, N − 1],
〈ψ1U ψ2〉N = 〈ψ2〉N , 〈ψ1R ψ2〉N = 〈ψ2〉N for i = N .

(6)

The encodings for ♦,� are special cases.

Consistency Constraints III: Bounded Temporal Modalities. This is
the most technically involved part. The challenge here is that the stability for
�[a,b]ψ is not guaranteed by the stability for ψ (similarly for ♦[a,b]ψ). Therefore
we need additional MILP constraints for the stability for �[a,b]ψ.

Our encoding is inspired by the results from [26]; ours is simpler thanks to
our theory in §4.1 where intervals are all closed.

Recall that we use the variables Sψ
i , Pψ

i for this purpose. We focus on �[a,b]ψ;
the encoding of ♦[a,b]ψ is similar. The constraints on Sψ

i are as follows.

Sψ
0 = 0, 〈ψ〉i = 0 ⇒ Sψ

i = 0,

〈ψ〉i = 1 ⇒ Sψ
i ≥ Sψ

i−1 + (γi − γi−1) for each i ∈ [1, N].

It follows that, for any non-negative real number L ∈ [0, γj), we have Sψ
j ≤ L if

and only if there exists k ∈ [1, j] such that 〈ψ〉k = 0 and γj − γk ≤ L.
We proceed to the constraints that describe the relationship between Sψ

i and
the semantics of �Iψ. Suppose Γ = (γ0, . . . , γN) is δ-stable for a signal σ and
ψ. Let us write γN+1 = ∞ and 〈ψ〉N+1 = 〈ψ〉N for simplicity.

We consider consistency for the positive and negative cases separately. For
the positive one (i.e. 〈�[a,b]ψ〉i = 1), the following observation is used.

Proposition 4.13. Let ϕ ≡ �Iψ be an STL formula in NNF, and Θ be a
conservative valuation of ψ in Γ = (γ0, . . . , γN) on a signal σ. Given i ∈ [1, N],
suppose (Γi + I) ∩ (γj−1, γj] �= ∅ implies 〈ψ〉j = 1 for each j ∈ [i,N + 1]. Then
σt |= ϕ holds for any t ∈ Γi. ��
Prop. 4.13 leads to the following MILP constraint:

¬〈ϕ〉i ∨ (γi + b ≤ γj−1) ∨ (γi−1 + a > γj) ∨ 〈ψ〉j for each i ∈ [1, N],j ∈ [i, N + 1].

The constraint itself does not follow the MILP format; we can nevertheless
express it in MILP using an auxiliary Boolean variable Zf . Specifically, an
inequality f(x) ≥ 0 in a disjunctive constraint is constrained by Zf = 1 ⇒
f(x) ≥ 0.

For the consistency in the negative case (i.e. 〈�[a,b]ψ〉i = 0), the counterpart
of Prop. 4.13 also involves Sψ

j . See below; it leads to an MILP constraint much
like Prop. 4.13 does.

296 S. Sato et al.

Proposition 4.14. Suppose ϕ, σ, Γ , and Θ are as in Prop. 4.13. For any t ∈ Γi,
σt �|= ϕδ holds if the following conditions are satisfied for each j ∈ [i,N]:

⎧
⎪⎨

⎪⎩

Sψ
j ≤ b − a if γj ∈ (γi−1 + b, γi + b),

Sψ
j ≤ γj − γi − a if γi + b ∈ [γj−1, γj],

Sψ
N ≤ max(0, γN − γi − a) if γi + b > γN .

(7)

Proof. Let jt ∈ [i,N +1] be the unique index such that t+b ∈ [γjt−1, γjt). When
jt ≤ N and γjt < γi + b, we have γjt ∈ (γi−1 + b, γi + b) and by assumption
Sψ

jt
≤ b − a. There is k ∈ [1, jt] such that 〈ψ〉k = 0 and γk ≥ γjt − b + a > t + a.

We obtain Γk ∩ (t + [a, b]) �= ∅ and then σt �|= ϕδ holds. The other cases can be
checked in a similar manner. ��
Remark 4.15. For Prop. 4.13, the converse of the statement does not hold.
This is because σt |= ψ does not guarantee 〈ψ〉i := Θ(ψ, i) = 1 where t ∈ Γi—we
allow 〈ψ〉i = 0 when σt |= ψ ∧ ¬ψδ. It is similar for Prop. 4.14. However, this
does not affect the completeness of the encoding (Thm. 4.18): while the converse
of Prop. 4.13 does not hold for fixed Γ , in our workflow we also search for Γ , in
which case it is easily shown that the MILP constraints derived from Prop. 4.13
are complete. The same is true for Prop. 4.14.

The remaining cases (ϕ ≡ ψ1 UI ψ2 and ϕ ≡ ψ1 RI ψ2) can be reduced to the
cases for �I and ♦I . It is by the rewriting techniques shown in [12]:

ψ1 U[a,b] ψ2 ∼ ♦[a,b]ψ2 ∧ �[0,a](ψ1U ψ2), (8)
ψ1 R[a,b] ψ2 ∼ �[a,b]ψ2 ∨ ♦[0,a](ψ1R ψ2). (9)

These equivalences hold in both Boolean and robust semantics.

Correctness of Encoding. Let EncSTL(ϕ,N, T, δ) denote the polyhedron
defined by the above MILP constraints. It is correct in the following sense; see
also the goal we announced in the beginning of §4.2. Its proof is by induction on
ϕ.

Lemma 4.16. Let ϕ be an STL formula in NNF, N ∈ N, T > 0 and δ > 0.
Given an assignment v : Var(ϕ,N) → R that lies in EncSTL(ϕ,N, T, δ), let Γ , ς
be the time sequence and the timed state sequence determined by v, and define a
valuation Θ by Θ(ψ, i) := 〈ψ〉i (cf. Def. 4.8). Then Θ is a conservative valuation
of ϕ in Γ on the signal ςpwl. ��

We define Enc(ϕ,M, N, T, δ) by the intersection of EncSTL(ϕ,N, T, δ), the
MILP encoding Encmodel(M, N, T) of a system model M, and 〈ϕ〉1 = 1.

Theorem 4.17 (soundness). Let ϕ be an STL formula in NNF, M be a
model with a time horizon T , N ∈ N and δ > 0. If an assignment v lies in
Enc(ϕ,M, N, T, δ), the induced ςpwl has ςpwl ∈ L(M) and �ςpwl, ϕ� ≥ 0. ��
Theorem 4.18 (completeness). Assume the setting of Thm. 4.17. If there is
piecewise-linear σ ∈ L(M) such that �σ, ϕ� ≥ δ, there is an assignment v that
lies in Enc(ϕ,M, N, T, δ) for some N ∈ N. ��

Optimization-Based Trace Synthesis for Complex STL Specifications 297

5 System Models and Their MILP Encoding

We introduce the MILP encoding Encmodel(M, N, T) for some families of mod-
els M. We introduce an exact encoding for rectangular hybrid automata (RHAs),
and an approximate one for HAs with closed-form solutions. We also introduce
a refinement of the latter—it is more precise and efficient—restricting to double
integrator dynamics. The last is useful for automotive examples such as Ex. 1.1.

We defer the discussion of RHAs for the space reason; see [32, Appendix C].
We thus focus on the other two families.

5.1 HAs with Closed-Form Solutions

Fig. 5. MILP encoding of
f(t)

Here we are interested in hybrid automata (HAs)
whose continuous flow dynamics at each control
mode has a closed-form solution. The basic idea is
simple and it is illustrated in Fig. 5, where the solu-
tion f(t) of dynamics (blue) is approximated by a
piecewise linear function (red). Such MILP encod-
ing is standard; see e.g. [5].

We formalize this intuition. Firstly, to accom-
modate input signals τ ∈ SignalV ′ (Def. 2.3), we
extend the HA definition so that some variables xin

can be designated to be input variables. This means that there are no ODEs
whose left-hand side is ˙xin, and that the variable updates associated with mode
transitions never change xin.

Then the above “closed-form solution” assumption on an HA H is precisely
described as follows. Let
xin = (xin

1 , . . . , xin
k) enumerate H’s input variables, and

x = (x1, . . . , xl) enumerate its other variables. We assume that, for the flow
dynamics at each control mode u, there is a closed-form solution

x(t) = fu(t,
xin,
x0) such that, for each t0 ∈ R≥0, fu(t0,
xin,
x0) is a
linear function over the variables
xin,
x0.

(10)

Here, the variable t is the elapsed time since the arrival at the current control
mode u; the variables
xin refer to the input variables (their values are assumed
to be constant within the same mode); and the variables
x0 refer to the initial
values of
x on the arrival at u. The assumption holds in many examples, such
as polynomial dynamics.

Let us motivate the assumption. A closed-form solution fu helps precision: in
piecewise linear approximation such as in Fig. 5, errors do not accumulate over
time; in contrast, if a closed-form solution is not given, our alternative will be
numerical integration e.g. by the Euler method, where errors accumulate. The
linearity assumption in (10) is there for MILP encoding; see below.

Our approximate MILP encoding poses the closed-form solution assumption
and follows the intuition of Fig. 5. Specifically, 1) it fixes a constant Δt ∈ R≥0 as

298 S. Sato et al.

a sampling interval; 2) it obtains a family
(
fu(k·Δt,
xin,
x0)

)
k

of linear functions

over the variables
xin,
x0; and 3) the value of
x at the elapsed time t is expressed
by the linear interpolation

(k+1)Δt−t
Δt fu(kΔt,
xin,
x0) + t−kΔt

Δt fu

(
(k + 1)Δt,
xin,
x0

)
, (11)

where k is such that kΔt ≤ t ≤ (k + 1)Δt. This encoding of flow dynamics is
combined with the HA structure, much like in [32, Appendix C], yielding an
approximate MILP encoding of the whole HA.

The above encoding has two sources of numerical errors. One is linear interpo-
lation. Errors caused by it are illustrated in Fig. 5 as the vertical margin between
blue and red.

The other source is binary expansion [18,19], a standard MILP technique
for encoding bilinear functions. Indeed, in (11), t,
xin,
x0 are all continuous vari-
ables in MILP, and the expression (11) can contain their products. The linearity
assumption in (10) has been posed to restrict (11) to bilinear.

5.2 HAs with Double Integrator Dynamics

Our next focus is a special case of the model family of §5.1, where each continuous
flow is double integrator dynamics. This is important because 1) it gets rid of one
of the two error sources in §5.1, namely linear interpolation, by the trapezoidal
rule, and 2) it can be used for many automotive dynamics models (cf. Ex. 1.1).

The trapezoidal rule is a basic technique in numerical integration [6], where∫ b

a
g(t) dt is approximated by (b − a) g(a)+g(b)

2 . For double integrator dynamics,
we apply the trapezoidal rule to the velocity v, and it is exact since v’s evolution
is linear. This allows us to express the position x in the bilinear form x = t · v0+v

2 ,
using the variables t (elapsed time), v0 (initial velocity), and v (current velocity).
Thus we can dispose of the sampling points and their interpolation (11) in §5.1.

We exploit this encoding for our automotive case studies such as Ex. 1.1.

6 Implementation and Experiments

We implemented, in Python, our MILP encodings of the STL semantics (§4)
and two model families, namely RHAs [32, Appendix C] and double integrator
dynamics (§5.2; multiple modes are not supported since our benchmarks do not
need them). The hyperparameter δ in our encoding is fixed at 0.1 for all bench-
marks. The resulting MILP constraints are solved by Gurobi Optimizer [20].
This prototype implementation is called STLts—STL trace synthesizer.

Our experiments are designed to address the following research questions.

RQ1 Assess the effect of variability bounds N (Prob. 3.2) on the performance.
RQ2 Compare the performance of STLts with optimization-based falsification,

and with SMT-based model checking.
RQ3 Assess the performance of STLts for real-world complex scenarios.

Optimization-Based Trace Synthesis for Complex STL Specifications 299

RQ4 Assess the performance of STLts in parameter mining (Prob. 3.3).

We used three classes of benchmarks: rear-end near collision (RNC), navi-
gation (NAV), and disturbance scenarios in ISO 34502 (ISO). In each class, we
have multiple STL specs, resulting in benchmarks such as RNC1, RNC2, etc.

Rear-End Near Collision (RNC1–3). As discussed in Ex. 1.1, these auto-
motive benchmarks are simplifications of the ISO benchmarks below. The spec
RNC1 is presented in Ex. 1.1. The system model (2) (see also MRNC in Ex. 2.4)
is double integrator dynamics (§5.2) and is shared by the benchmarks RNC1–3.

The other two specs RNC2, RNC3 are defined as follows, using formulas in (1):

RNC2 :≡ (
�(xf − xr ≥ 0)

)∧
♦[0,9]

(
(�[0,1]danger) ∧ (�[0,1]ar ≥ 1) ∧ (♦[1,5]¬danger)

)

trimming2 :≡ (♦danger) ⇒ (
(�[0,1]ar ≥ 1) U danger

)

RNC3 :≡ �(dyn inv ∧ trimming2) ∧ ♦[0,9]�[0,1]danger

(12)

Fig. 6. The RHA MNAV for NAV1–2

Navigation (NAV1–2). Here we use
a system model that adapts NAV-2
from [15]. The latter is a standard
example of an RHA [32, Appendix C],
used e.g. in [10].

Our system model MNAV is an
RHA that describes the motion of a
point robot in a 2 × 2 grid where each
region has a rectangular vector field,
with a time horizon T = 40. See Fig. 6.
We have 4 regions �1, . . . , �4, each asso-
ciated with rectangular bounds for
ẋ, ẏ and invariants; besides, we set an
unsafe region unsafeR (x ∈ [9, 10])
and a goal region goalR (x ∈ [4, 6]∧y ∈
[2, 5]). The robot starts from an initial position (x0, y0) where x0 ∈ [0, 3]∧y0 = 0.

We consider two specs: NAV1 :≡ ♦(�[0,3]((x, y) ∈ goalR)) ∧ �(x �∈ unsafeR)
and NAV2 ≡ �((x, y) ∈ �3 → ♦[0,3](x, y) ∈ �4). NAV1 is almost a standard
reach-avoid constraint, but it additionally requires the persistence to the goal
region for three seconds. Such specifications are not accommodated in many
control and model checking frameworks specialized in reach-avoid constraints
(see e.g. [10]). NAV2 is a response specification—the trigger (being in �3) must
be responded by moving to �4 within a three-second deadline. Such specs are
common in manufacturing; see e.g. [36].

ISO 34502 Disturbance Scenarios for Automated Driving (ISO1, ISO3,
. . . , ISO8). These benchmarks motivated the current work. As discussed in §1
(see Ex. 1.1), we obtained in [30] complex STL specs as the formalization of the

300 S. Sato et al.

disturbance scenarios in the ISO 34502 standard, but in our illustration efforts
by trace synthesis, we found that existing techniques such as optimization-based
falsification struggle.

Table 1. Disturbance scenarios in the ISO
34502 standard. Table from [21]

In our experiments, the sys-
tem model is similar to MRNC

(Ex. 1.1 and 2.4), while lateral
dynamics is added and the time
horizon is 10 time units here.
As for specs, we use seven STL
specs ISO1, ISO3, . . . , ISO8; these
are obtained in [30] as the formal-
ization of the disturbance scenar-
ios No. 1,3,. . . ,8 in the ISO 34502
standard for automated driving
vehicles. See Table 1. Scenario No.
2 was omitted in [30] since it
involves three vehicles; we omit Scenarios No. 9–24 since they are the same
with No. 1–8 except in the road shape.

Specifically, the specs ISOi follow the common format shown below [30]:

ISOi ≡ initSafe ∧ disturbi,
disturbi ≡ initialConditioni ∧ behaviourSVi ∧ behaviourPOVi

where SV refers to the subject (“ego”) vehicle and POV refers to the princi-
pal other vehicle. The component formulas initialConditioni, behaviourSVi

and behaviourPOVi vary for different scenarios (No. i). Going into their defini-
tions are beyond the scope of this paper; we highlight ISO5 as an example to
demonstrate the complexity of the specs ISOi.

initialCondition5 ≡ � behaviourSV5 ≡ leavingLane(SV, L)
behaviourPOV5 ≡ cutIn(POV, SV)

leavingLane(a, L) ≡ atLane(a, L) ∧ ♦(¬atLane(a, L))
cutIn(POV, SV, L) ≡ ¬sameLane(POV, SV, L) ∧ ♦

(
danger(SV, POV)

∧♦[0,minDanger](sameLane(SV, POV, L) ∧ aheadOf(SV, POV))
)

danger(SV, POV) ≡ �[0,minDanger]rssViolation(SV, POV)

(13)

The formulas not defined here are suitably defined atomic propositions.

Experiment Settings. Our implementation STLts is compared with the fol-
lowing tools: 1) a widely used optimization-based falsification tool Breach [11];
2) another falsification tool ForeSee [1,37] that emphasizes optimized treatment
of Boolean connectives in STL; 3) an MILP-based STL optimal control tool
bluSTL [14]; and 4) STLmc, an SMT-based bounded STL model checker [34].

The experiments were conducted on an Amazon EC2 c4.4xlarge instance
(2.9 GHz Intel Xeon E502666 v3, 30.0GB RAM) running Ubuntu Server 20.04.

Optimization-Based Trace Synthesis for Complex STL Specifications 301

RQ1: the Effect of the Variability Bound N .

Fig. 7. Execution time of
STLts for different var. bd. N ,
on ISO6

There is an obvious trade-off about the choice of a
variability bound N (Prob. 3.2): bigger N means
the search is more extensive, but it incurs greater
computational cost.

This tendency is confirmed in our experiments;
the result for the ISO6 benchmark is in Fig. 7 for
illustration. Here, synthesis was successful for N =
4 for the first time.

We also observe in the figure that computa-
tional cost is low when trace synthesis is unsuc-
cessful. This suggests the following strategy: we
start with small N and increment it if trace syn-
thesis is unsuccessful. We might waste time by trying too small N ’s; but the
wasted time should be small.

Table 2. Experimental results for trace
synthesis, showing execution time (sec-
onds). (N) for STLts is the first suc-
cessful bound. Timeout (t/o) is 600 s.

STLts Breach ForeSee bluSTL STLmc

RNC1 0.1 (3) 59.4 546.8 (¶) t/o
RNC2 0.3 (4) 9.3 104.3 14.3 t/o
RNC3 0.1 (3) 81.3 197.4 (¶) t/o

NAV1 32.5 (17) (∗) (∗) (‡) 16.5
NAV2 2.1 (11) 10.0

ISO1 0.4 (3) 8.9 t/o

(†) (†)

ISO3 0.2 (2) t/o t/o
ISO4 0.4 (2) t/o t/o
ISO5 9.9 (4) 31.2 435.8
ISO6 2.4 (4) t/o 58.9
ISO7 0.6 (3) 33.6 187.2
ISO8 1.5 (3) 38.8 t/o

Experimental Results, Overview.
Our experimental results are in summa-
rized in Table 2, where the best perform-
ers are highlighted by color.

We explain the missing entries. In (∗),
the tool is not applicable due to the non-
determinism of the benchmark. In (†),
we did not conduct experiments since
the performance comparison with STLts
is already clear with simpler RNC bench-
marks. In (‡), bluSTL does not support
multiple control modes. (¶) is because
bluSTL (at least its implementation avail-
able to us) does not support the until U
modality.

Overall, our STLts is clearly the best
performer in all benchmarks but one. The other tools time out, or takes tens
of seconds. For our motivation of illustrating STL specs by trace synthesis in
close interaction with users, tens of seconds is prohibitively long. The results
adequately demonstrate satisfactory performance of our algorithm, in trace syn-
thesis for complex STL specs.

RQ2: Comparison with Other Approaches. A summary of comparison is
in Table 3. The comparison with optimization-based falsification tools is as we
expected—their struggle with complex specs motivated this work (§1). Boolean
connectives in STL specs have been found problematic in falsification: this is
called the scale problem [36,37]. The results in Table 2 show that our benchmark
specs are even beyond the capability of ForeSee, a tool that incorporates Monte
Carlo tree search to specifically handle the scale problem. After all, one can say

302 S. Sato et al.

Table 3. Comparison of our approach (STLts) with baselines (Breach, ForeSee,
bluSTL, STLmc). Highlited cells represent positive features.

Feature STLts Breach/ForeSee bluSTL STLmc

Trace synthesis for
analyzing specs

Successful in all
benchmarks with
large STL formulas

Good for
falsifying models
but not good with
large STL formulas

- Timeout in most
of benchmarks

Timeout except
for linear dynamics

Model checking Complete up to
N and δ

- Control
synthesis with
guarantee

Complete up to
N

Parameter mining By MILP - By MILP By binary search

Continuous STL
semantics

Variable-interval
encoding

- Discretized - Discretized Variable-interval
encoding

Accommodated class
of nonlinear
dynamics

MILP-encodable,
can be
nondeterministic

Black-box,
deterministic

MILP-encodable,
can be
nondeterministic

SMT-encodable,
can be
nondeterministic

= full support; = partial support; = very limited support; - = not supported.

that falsification tools are aimed at complex models, while our STLts is aimed
at complex specs.

STLmc has a similar (“dual”) scope and utilizes a similar technique (stable
partitioning) to our STLts; the main difference is that STLmc is SMT-based
while STLts is MILP-based. Therefore STLts accommodates a smaller class of
models, but it can be faster on them exploiting numeric optimization. Table 2
suggests the advantage of STLts for common STL specs in manufacturing.

RQ3: Performance in Real-World Scenarios. For this RQ, we refer to
STLts’s performance on the ISO benchmarks. Illustrating the specs ISOi by trace
synthesis is a real-world problem about safety standards for automated driving
(§1), and Table 2 shows that STLts has sufficient performance and scalability to
handle complex specs there (see (13)).

Fig. 8. STLts for parameter synthesis. Red
is execution time (axis left, seconds); blue
is the maximum p (axis right). (Color figure
online)

RQ4: Performance in Parameter
Mining. We conducted parameter
mining experiments with the ISO8
benchmark. Its specification has a
subformula fasterThan(SV, POV, p)
that requires that SV’s velocity is
bigger than POV’s by at least a
parameter p. We used STLts to solve
Prob. 3.3, that is, to find the max-
imum p for which a satisfying trace
exists.

Figure 8 shows the results with
varying variability bound N . Param-
eter mining is generally more expensive than trace synthesis. This is because
the former has a nontrivial objective function (namely p in this example), while

Optimization-Based Trace Synthesis for Complex STL Specifications 303

the latter does not (it is thus a constraint satisfaction problem). We observe
the optimization with N ≥ 10 resulted in a timeout. The tendency, much like
in trace synthesis, is that the result (max p) improves but execution time gets
larger as N becomes bigger (there are some exceptions such as N = 8, 9 though).
Taking the same strategy as above (incrementing N), it takes roughly 10 min
to obtain a largely converged value (∼ 14.9 for the maximum p). Overall, we
believe this is a realistic performance for practical usage.

References

1. ForeSee falsification solver (2021). https://github.com/choshina/ForeSee
2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system

falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

4. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

5. Asghari, M., Fathollahi-Fard, A.M., Mirzapour Al-e hashem, S.M.J., Dulebenets,
M.A.: Transformation and linearization techniques in optimization: a state-of-the-
art survey. Mathematics 10(2), 283 (2022). https://doi.org/10.3390/math10020283

6. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York, second
edn. (1989). http://www.worldcat.org/isbn/0471500232

7. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 51:1–51:30 (2019).
https://doi.org/10.1145/3290364

8. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

9. Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining signal tem-
poral logic specifications. Inf. Comput. 289(Part), 104957 (2022). https://doi.org/
10.1016/J.IC.2022.104957

10. Bu, L., Frehse, G., Kundu, A., Ray, R., Shi, Y., Zaffanella, E.: Arch-comp22 cate-
gory report: Hybrid systems with piecewise constant dynamics and bounded model
checking. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 44–57. EasyChair
(2022). https://doi.org/10.29007/lnzf

11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

12. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

https://github.com/choshina/ForeSee
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.3390/math10020283
http://www.worldcat.org/isbn/0471500232
https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.29007/lnzf
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19

304 S. Sato et al.

13. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

14. Donzé, A., Raman, V.: BluSTL: controller synthesis from signal temporal logic
specifications. In: ARCH14-15. 1st and 2nd International Workshop on Applied
veRification for Continuous and Hybrid Systems, pp. 160–150. https://doi.org/10.
29007/g39q

15. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: 2011
IEEE/ACM Second International Conference on Cyber-Physical Systems, pp. 22–
31. IEEE (2011). https://doi.org/10.1109/ICCPS.2011.24

16. Ernst, G., et al.: ARCH-COMP 2021 category report: falsification with valida-
tion of results. In: Frehse, G., Althoff, M. (eds.) 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21), Brussels, Bel-
gium, July 9, 2021. EPiC Series in Computing, vol. 80, pp. 133–152. EasyChair
(2021). https://doi.org/10.29007/XWL1

17. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

18. Glover, F.: Improved linear integer programming formulations of nonlinear integer
problems. Manag. Sci. 22, 455–460 (1975). https://doi.org/10.1287/mnsc.22.4.455

19. Gupte, A., Ahmed, S., Cheon, M.S., Dey, S.: Solving mixed integer bilinear prob-
lems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013). https://
doi.org/10.1137/110836183

20. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

21. Road vehicles - Test scenarios for automated driving systems - Scenario based
safety evaluation framework. Standard, International Organization for Standard-
ization, Geneva, CH (2022)

22. Kurtz, V., Lin, H.: A more scalable mixed-integer encoding for metric temporal
logic. IEEE Control. Syst. Lett. 6, 1718–1723 (2022). https://doi.org/10.1109/
LCSYS.2021.3132839

23. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal
logic. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 343–354 (2021). https://doi.org/10.1109/ASE51524.2021.
9678719

24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

25. Pedrielli, G., et al.: Part-X: A family of stochastic algorithms for search-based
test generation with probabilistic guarantees. IEEE Trans. Autom. Sci. Eng. 1–22
(2023). https://doi.org/10.1109/TASE.2023.3297984

26. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal
logic. In: 2018 IEEE Real-Time Systems Symposium (RTSS), pp. 208–217. IEEE,
Nashville, TN (2018). https://doi.org/10.1109/RTSS.2018.00038

27. Rabinovich, A.M.: On the decidability of continuous time specification formalisms.
J. Log. Comput. 8(5), 669–678 (1998). https://doi.org/10.1093/logcom/8.5.669

28. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli,
A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifica-
tions. In: 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles,

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/g39q
https://doi.org/10.29007/g39q
https://doi.org/10.1109/ICCPS.2011.24
https://doi.org/10.29007/XWL1
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1137/110836183
https://doi.org/10.1137/110836183
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/LCSYS.2021.3132839
https://doi.org/10.1109/LCSYS.2021.3132839
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/TASE.2023.3297984
https://doi.org/10.1109/RTSS.2018.00038
https://doi.org/10.1093/logcom/8.5.669

Optimization-Based Trace Synthesis for Complex STL Specifications 305

CA, USA, December 15-17, 2014, pp. 81–87. IEEE (2014). https://doi.org/10.
1109/CDC.2014.7039363

29. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 239–248. ACM,
Seattle Washington (2015). https://doi.org/10.1145/2728606.2728628

30. Reimann, J., et al.: Temporal logic formalisation of ISO 34502 critical scenarios:
modular construction with the RSS safety distance. In: Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing (SAC 2024) to appear (2024).
arXiv:2403.18764

31. Roehm, H., Heinz, T., Mayer, E.C.: STLInspector: STL Validation with Guar-
antees. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
225–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 11

32. Sato, S., An, J., Zhang, Z., Hasuo, I.: Optimization-based model checking and trace
synthesis for complex STL specifications (extended version) (2024). available on
arXiv

33. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 532–546. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-05089-3 34

34. Yu, G., Lee, J., Bae, K.: Stlmc: Robust STL model checking of hybrid systems
using SMT. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part I. LNCS, vol. 13371, pp. 524–537. Springer (2022). https://doi.org/10.1007/
978-3-031-13185-1 26

35. Zhang, Z., Arcaini, P.: Gaussian process-based confidence estimation for hybrid
system falsification. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 330–348. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 18

36. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

37. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using monte carlo tree search guided by QB-robustness. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8 29

https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1145/2728606.2728628
http://arxiv.org/abs/2403.18764
https://doi.org/10.1007/978-3-319-63387-9_11
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-031-13185-1_26
https://doi.org/10.1007/978-3-031-13185-1_26
https://doi.org/10.1007/978-3-030-90870-6_18
https://doi.org/10.1007/978-3-030-90870-6_18
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-81685-8_29

306 S. Sato et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Inner-Approximate Reachability
Computation via Zonotopic Boundary

Analysis

Dejin Ren1,2(B) , Zhen Liang3 , Chenyu Wu1,2 , Jianqiang Ding4 ,
Taoran Wu1,2 , and Bai Xue1,2(B)

1 Key Laboratory of System Software (Chinese Academy
of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences,
Beijing, China

{rendj,wucy,wutr,xuebai}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 College of Computer Science and Technology, National University of Defense
Technology, Changsha, China

liangzhen@nudt.edu.cn
4 Department of Electrical Engineering and Automation, Aalto University, Espoo,

Finland
jianqiang.ding@aalto.fi

Abstract. Inner-approximate reachability analysis involves calculating
subsets of reachable sets, known as inner-approximations. This analysis
is crucial in the fields of dynamic systems analysis and control theory as
it provides a reliable estimation of the set of states that a system can
reach from given initial states at a specific time instant. In this paper,
we study the inner-approximate reachability analysis problem based on
the set-boundary reachability method for systems modelled by ordinary
differential equations, in which the computed inner-approximations are
represented with zonotopes. The set-boundary reachability method com-
putes an inner-approximation by excluding states reached from the initial
set’s boundary. The effectiveness of this method is highly dependent on
the efficient extraction of the exact boundary of the initial set. To address
this, we propose methods leveraging boundary and tiling matrices that
can efficiently extract and refine the exact boundary of the initial set rep-
resented by zonotopes. Additionally, we enhance the exclusion strategy
by contracting the outer-approximations in a flexible way, which allows
for the computation of less conservative inner-approximations. To eval-
uate the proposed method, we compare it with state-of-the-art methods
against a series of benchmarks. The numerical results demonstrate that
our method is not only efficient but also accurate in computing inner-
approximations.

Keywords: Inner-approximations · Reachability Analysis ·
Set-boundary analysis · Zonotopal tiling · Nonlinear systems

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 307–328, 2024.
https://doi.org/10.1007/978-3-031-65633-0_14

https://zenodo.org/records/10888880
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_14&domain=pdf
http://orcid.org/0000-0001-7779-0096
http://orcid.org/0000-0002-1171-7061
http://orcid.org/0009-0003-1571-4831
http://orcid.org/0000-0003-0705-0345
http://orcid.org/0000-0003-3398-0466
http://orcid.org/0000-0001-9717-846X
https://doi.org/10.1007/978-3-031-65633-0_14

308 D. Ren et al.

1 Introduction

Reachability analysis involves the computation of reachable sets, which are sets
of states achieved either through trajectories originating in a given initial set
(i.e., forward reachable sets) or through the identification of initial states from
which a system can reach a specified target set (i.e., backward reachable sets) [23].
This problem is fundamental and finds motivation in various applications such as
formal verification, controller synthesis, and estimation of regions of attraction.
As a result, it has garnered increasing attention from both industrial and aca-
demic communities, leading to the development of numerous theoretical results
and computational approaches [2]. For many systems, exact reachability analy-
sis is shown to be undecidable [14], particularly in the case of nonlinear systems.
Hence, approximation methods are often employed. However, in order to use these
approximations as a basis for formal reasoning about the system, it is crucial
that they possess certain guarantees. Specifically, it is desirable for the computed
approximation to either contain or be contained by the true reachable set, result-
ing in what are known as outer-approximations and inner-approximations.

This paper focuses on inner-approximate reachability analysis, which calcu-
lates an inner-approximation of the reachable set for systems described by ordi-
nary differential equations (ODEs). The inner-approximate reachability analysis
has various applications. For instance, it can be used to falsify a safety property
by performing forward inner-approximate reachability analysis, which computes
an inner-approximation of the forward reachable set [21]. If the computed inner-
approximation includes states that violate the safety property, then the safety
property is not satisfied. On the other hand, it can be used to find a set of initial
states that satisfy a desired property by performing backward inner-approximate
reachability analysis [20]. Recently, it has been applied to path-planning prob-
lems with collision avoidance [30]. Several methods have been proposed for the
inner-approximate reachability analysis, such as Taylor models [7], intervals [12],
and polynomial zonotopes [18].

In the computation of inner-approximations, the accumulation of compu-
tational errors, known as the wrapping effect [25], becomes pronounced with
the propagation of the initial set. To overcome this, a common approach is
to partition the initial set into smaller subsets, enabling independent compu-
tations on each subset. However, this widely used method often results in an
excessively large number of subsets, causing burdensome computation. Conse-
quently, in [18,33], set-boundary reachability methods were developed based on
a meticulous examination of the topological structure. These methods contract
a pre-computed outer-approximation by excluding the reachable set from the
boundary of the initial set, resulting in an inner-approximation. Compared to
the partition of the entire initial set, set-boundary methods alleviate the com-
putational burden and enhance the tightness of results by focusing on splitting
only the boundary of the initial set. Hence, the precision of extracting and refin-
ing1 the boundary of initial set significantly influences the non-conservativeness

1 If P and Q are partitions (or covers) of a set X, then P refines Q if for every U ∈ P,
there is V ∈ Q such that U ⊂ V .

Inner-Approximate Reachability Computation 309

of inner-approximation aimed to compute. However, existing boundary opera-
tions have limitations that impact the precision and application of set-boundary
reachability methods, either restricting the initial sets to be interval-formed [18]
or utilizing interval sets to outer-approximate the set boundary [33], which leads
to an overly conservative inner-approximation and hinders the application of
set-boundary reachability methods.

On this concern, this paper proposes a novel set-boundary reachability method
focusing on efficient extraction and refinement of the initial set’s boundary,
along with flexible inner-approximation generations. We adopt zonotopes as the
abstract representation of states due to their remarkable advantages: the facets
of a zonotope remain zonotopes and can be split into non-overlapping subsets
while preserving their zonotopic nature. Based on the symmetric property of zono-
tope’s boundary, we propose an algorithm which can efficiently extract all facets
of zonotopes. To further refine the extracted boundary, a fundamental algorithm
is developed to partition a zonotope into smaller, non-overlapping zonotopes,
termed tiling algorithm. This algorithm leverages two innovative data structures,
named as boundary and tiling matrices, providing a clear and efficient implemen-
tation of the partition procedure. Complexity analysis demonstrates the superior
advantages of the tiling algorithm in computational complexity compared to the
existing method [17]. Finally, we contract a pre-computed outer-approximation
of reachable set to obtain an inner-approximation, which is achieved by exclud-
ing the outer-approximation of the reachable set from the refined boundary of the
initial set. In contrast to proportionally shrinking the shape of computed outer-
approximation utilized in existing method [33], we provide a more flexible strat-
egy that allows an adaptive modification on the configuration of zonotopic outer-
approximations, leading to more non-conservative inner-approximations.

The main contributions of this paper are as follows:

– A Non-overlapping Zonotope Splitting Algorithm. We present a novel algo-
rithm that efficiently splits a zonotope into non-overlapping subsets, while
preserving their zonotopic properties. By utilizing boundary and tiling
matrices, our algorithm offers a more straightforward implementation with
improved computational complexity compared to existing methods.

– An Adaptive Contraction Strategy. We put forward an adaptive contraction
strategy for computing a zonotopic inner-approximation of the reachable set.
This strategy, compared to existing methods, provides a more flexible app-
roach for the contraction of the pre-computed outer-approximations, gener-
ating less conservative inner-approximations.

– A Prototype Tool - BdryReach. We have developed a prototype tool
named BdryReach to implement our proposed approach, which is available
from https://github.com/ASAG-ISCAS/BdryReach. Numerous evaluations
on various benchmarks demonstrate that BdryReach outperforms state-of-
the-art tools in terms of efficiency and accuracy.

Related Work

Inner-Approximation Analysis. The methods for inner-approximation com-
putation are generally categorized into two main groups: constraint solving

https://github.com/ASAG-ISCAS/BdryReach

310 D. Ren et al.

methods and set-propagation methods. Constraint solving methods avoid the
explicit computation of reachable sets, but have to address a set of quantified
constraints, which are generally constructed via Lyapunov functions [6], occu-
pation measures [19] and equations relaxation [32,34]. However, solving these
quantified constraints is usually computationally intensive (except the case of
polynomial constraints for which there exists advanced tools such as semi-definite
programming).

The set propagation method is an extension of traditional numerical methods
for solving ODEs using set arithmetic rather than point arithmetic. While this
method is simple and interesting, a major challenge is the propagation and accu-
mulation of approximation errors over time. To ease this issue efficiently, various
methods employing different representations have been developed. [28] presented
a Taylor model backward flowpipe method that computes inner-approximations
by representing them as the intersection of polynomial inequalities. However,
this approach relied on a computationally expensive interval constraint propa-
gation technique to ensure the validity of the representation. In [12], an approach
is proposed to compute interval inner-approximations of the projection of the
reachable set onto the coordinate axes for autonomous nonlinear systems. This
method is later extended to systems with uncertain inputs in [13]. However, they
cannot compute an inner-approximation of the entire reachable set, as studied in
the present work. [33] proposed a set-boundary reachability method which prop-
agates the initial set’s boundary to compute an polytopic inner-approximation of
the reachable set. However, it used computationally expensive interval constraint
satisfaction techniques to compute a set of intervals which outer-approximates
the initial set’s boundary. Recently, inspired by the computational procedure in
[18,33] introduced a promising method based on polynomial zonotopes to com-
pute inner-approximations of reachable sets for systems with an initial set in
interval form. The method presented in this work is also inspired by the in [33].
However, we propose efficient and accurate algorithms for extracting and refin-
ing the boundary of the initial set represented by zonotopes and an adaptive
strategy for contracting outer-approximations, facilitating the computation of
non-conservative inner-approximations.

Splitting and Tiling of Zonotopes. To mitigate wrapping effect [25] and
enhance computed results, it is a common way to split a zonotope into smaller
zonotopes during computation. Despite zonotopes being special convex poly-
topes with centrally symmetric faces in all dimensions [36], traditional polytope
splitting methods such as [4,15] cannot be directly applied. The results obtained
through these approaches are polytopes, not necessarily zonotopes. In the works
[3,31], they split a zonotope by bisecting it along one of its generators. However,
the sub-zonotopes split by this way often have overlap parts, resulting in loss
of precision and heavy computation burden. Hence, there is a pressing need for
methods that split a zonotope into non-overlapping sub-zonotopes. The prob-
lem of zonotopal tiling, i.e., paving a zonotope by tiles (sub-zonotopes) without
gaps and overlaps, is an important topic in combinatorics and topology [5,36].
In the realm of zonotopal tiling, Bohne-Dress theorem [27] plays a crucial role
by proving that a tiling of a zonotope can be uniquely represented by a collec-

Inner-Approximate Reachability Computation 311

tion of sign vectors or oriented matroid. Inspired by this theorem, [17] developed
a tiling method by enumerating the vertices of the tiles as sign vectors of the
so-called hyperplane arrangement [22] corresponding to a zonotope. However, in
this paper we provide a novel and more accessible method for constructing a
zonotopal tiling, which has better computational complexity.

The remainder of this paper is organized as follows. The inner-approximate
reachability problem of interest is presented in Sect. 2. Then, we elucidate our
reachability computational approach in Sect. 3 and evaluate it in Sect. 4. Finally,
we summarize the paper in Sect. 5. Due to space limitations, proofs, examples,
some tables and figures are omitted and can be found in the extended version
[26], the “Appendix” appeared in this paper is referred to the appendix in [26].

2 Preliminaries

2.1 Notation

The notations and operations concerning space, vectors, matrices, and sets uti-
lized in this paper are presented in Table 1, where the symbols and descriptions
for operations on vectors, matrices, and sets are mainly illustrated with specific
examples of a vector x, a matrix M , and a set Δ.

Table 1. Notations utilized in the paper

Symbol Description Symbol Description

R
k k-dimensional real space R

m,n space of m × n real matrices
N[m,n] non-negative integers in [m, n] x1 · x2 inner product of x1 and x2

x, y, · · · vectors, boldface lowercase M , N , · · · matrices, boldface uppercase
0 vectors with all zero entries 1 vectors with all one entries
M (i, ·) i-th row vector of M M (·, j) j-th column vector of M

x(i) i-th entry of x M (i, j) j-th entry in i-th row of M

rows(M) number of rows of M cols(M) number of columns of M

M (−1, ·) last row of M M (·, −1) last column of M

M [i] delete i-th row of M M 〈i〉 delete i-th column of M

[M ;xᵀ] add x to last row of M (M , x) add x to last column of M

rank(M) rank of M ‖x‖ norm of x

Δ◦ interior of set Δ ∂Δ boundary of set Δ

|Δ| cardinality of set Δ S1 \ S2 {s | s ∈ S1 ∧ s /∈ S2}

2.2 Problem Statement

This paper considers nonlinear systems which are modelled by ordinary differ-
ential equations of the following form:

ẋ = f(x) (1)

312 D. Ren et al.

where x ∈ R
n and f is a locally Lipschitz continuous function. Thus, given an

initial state x0, there exists an unique solution φ(·;x0) : [0, Tx0) → R
n to system

(1), where [0, Tx0) is the maximal time interval on which φ(·;x0) is defined.
Given a set X0 of initial states, the reachable set is defined as follows:

Definition 1 (Reachable Set). Given system (1) and an initial set X0, the
reachable set at time t > 0 is

Φ(t;X0) � {φ(t;x0) | x0 ∈ X0}.

The exact reachable set Φ(t;X0) is usually impossible to be computed, especially
for nonlinear systems. Outer-approximations and inner-approximations are often
computed for formal reasoning on the system.
Definition 2. Given an initial set X0 and a time instant t > 0, an outer-
approximation O(t;X0) of the reachable set Φ(t;X0) is a superset of the set
Φ(t;X0), i.e.,

Φ(t;X0) ⊆ O(t;X0);

an inner-approximation U(t;X0) of the reachable set Φ(t;X0) is a subset of the
set Φ(t;X0), i.e.,

U(t;X0) ⊆ Φ(t;X0).

In this paper, we focus on the computation of an inner-approximation rep-
resented by zonotopes. Zonotope is a special class of convex polytopes with the
centrally symmetric nature. It can be viewed as a Minkowski sum of a finite set
of line segments, known as G-representation, which is defined as the following.
Definition 3 (Zonotope). A zonotope Z with p generators is a set

Z =
{

x ∈ R
n
∣∣∣x = c +

∑p

i=1
αi · gi ,−1 ≤ αi ≤ 1

}

=
{

x ∈ R
n
∣∣∣x = c + Gα,−1 ≤ α ≤ 1

}
,

denoted by Z = 〈c,G〉, where c ∈ R
n is referred as center and g1, · · · , gp ∈ R

n

as generators of zonotope. G = (gi)1≤i≤p ∈ R
n,p is called generator matrix.

For a zonotope Z = 〈c,G〉 in space R
n, it is called k-dimensional if

rank(G) = k, k ≤ n. A k-dimensional zonotope can be reduced into space R
k

without altering its shape. Furthermore, the facets of a k-dimensional (k ≥ 1)
zonotope are (k −1)-dimensional zonotopes. If an n-dimensional zonotope has n
independent generators, then it’s called parallelotope. Additionally, If there is a
zonotope Z ′ such that Z ′

� Z, Z ′ is called a sub-zonotope of Z.

3 Methodology

In this section we introduce our set-boundary reachability method to compute
inner-approximations of reachable sets. Firstly, the framework of our method
is presented in Subsect. 3.1. Then, we introduce the algorithm of extracting
the exact boundary of a zonotope in Subsect. 3.2, the tiling algorithm for
boundary refinement in Subsect. 3.3 and the strategy for computing an inner-
approximation via contracting an outer-approximation in Subsect. 3.4.

Inner-Approximate Reachability Computation 313

3.1 Inner-Approximation Computation Framework

The framework of computing inner-approximations in this paper follows the one
proposed in [33], but with minor modifications.

Given system (1) with an initial set X0, represented by a zonotope, and a
time duration T = Nh, where h > 0 is the time step and N is a non-negative
integer, we compute a zonotopic inner-approximation U((k + 1)h;X0) of the
reachable set Φ((k + 1)h;X0) for k ∈ {0, 1, · · · , N}. The inner-approximation
Uk+1 = U((k + 1)h;X0) is computed based on Uk = U(kh;X0) (U0 := X0) with
the following procedures:

1. extract and refine the boundary ∂Uk of Uk ;
2. compute a zonotopic outer-approximation O(h;Uk) of reachable set Φ(h;Uk),

and an outer-approximation O(h; ∂Uk) of reachable set Φ(h; ∂Uk). These
outer-approximations can be computed using existing zonotope-based
approaches such as [3];

3. contract O(h;Uk) to obtain a zonotopic inner-approximation candidate U ′
k+1

by excluding the set O(h; ∂Uk), i.e., let U ′
k+1 ∩ O(h; ∂Uk) = ∅;

4. compute an outer-approximation of the reachable set O(h; c) of the time-
inverted system ẋ = −f(x) with the single initial state c, where c is the
center of the zonotope U ′

k+1. If the computed outer-approximation O(h; c) is
included in the set Uk, then Uk+1 := U ′

k+1 is an inner-approximation of the
reachable set Φ((k + 1)h;X0);

Fig. 1. Illustration of inner-approximation computation framework

The overall computational workflow is visualized in Fig. 1. There are three
computational procedures that affect the efficacy (i.e., accuracy and efficiency) of
inner-approximation computation in the aforementioned framework: the extrac-
tion and refinement of the boundary ∂Uk, reachability analysis for computing

314 D. Ren et al.

outer-approximations O(h;Uk), O(h; ∂Uk), and contraction of O(h;Uk) to obtain
an inner-approximation candidate U ′

k+1. Since there are well-developed reacha-
bility algorithms in existing literature for computing outer-approximations such
as [3,11], we in the following focus on other two computational procedures. For
the first one, as the outer-approximation computed O(h; ∂Uk) would be excluded
from O(h;Uk), the accuracy of O(h; ∂Uk) significantly affects the one of Uk+1.
Additionally, the accuracy of O(h; ∂Uk) strongly correlates with the size of ∂Uk.
To improve the accuracy of Uk+1, two algorithms are proposed: one for extracting
and the other for tiling the boundary of a zonotope (i.e., splitting the boundary
into sub-zonotopes without overlaps). As for the third one, an adaptive strat-
egy is developed to make the inner-approximation Uk+1 much tighter. This is
achieved by contracting O(h;Uk) in a flexible way, deviating from the propor-
tional reduction of the size of O(h;Uk) in the existing methods [33].

3.2 Extraction of Zonotopes’ Boundaries

In this subsection we introduce the algorithm for extracting the exact boundary
of a zonotope. The concept of cross product of a matrix provided by [24] will be
utilized herein, which is formulated below.

Definition 4 (Cross Product). Given a matrix M ∈ R
n,n−1 in which the

column vectors are linearly independent. The cross product of M is a vector of
the following form:

CP(M) =
(
det

(
M [1]

)
, · · · , (−1)i+1 det

(
M [i]

)
, · · · , (−1)n+1 det

(
M [n]

))ᵀ
,

where det(·) is the determinant of a matrix.

The cross product of M ∈ R
n,n−1 can be viewed as the normal vector of the

hyperplane spanned by n − 1 linearly independent column vectors in M .

Fig. 2. Illustration of boundary extraction algorithm

The boundary extraction algorithm is established on the fact that a zonotope
is centrally symmetric and each facet, which is a zonotope, has congruent facets
on the opposite side of the center (e.g., two dark blue facets in Fig. 2).

Inner-Approximate Reachability Computation 315

Algorithm 1. Boundary Extraction Algorithm
Input: An n-dimensional zonotope Z = 〈c, G〉 , G = (gi)1≤i≤p ∈ R

n×p.
Output: The boundary of the zonotope Z, i.e., ∂Z.
1: ∂Z := ∅
2: B := {Bb = (gi)i∈{k1,··· ,kn−1}, 1 ≤ k1 < · · · < kn−1 ≤ p | rank(Bb) = n − 1}
3: while B
= ∅ do
4: v := CP(Bb)

5: B := Bb = (gk1 , gk2 , · · · , gkn−1) ∈ B, c
(i)
b := c, i ∈ {1, 2}

6: for all gk = G(·, k), k ∈ {1, 2, · · · , p} \ {k1, k2, · · · , kn−1} do
7: if v · gk = 0 then
8: B := (B, gk)
9: else if v · gk > 0 then

10: c
(i)
b := c

(i)
b + (−1)igk, i ∈ {1, 2}

11: else
12: c

(i)
b := c

(i)
b − (−1)igk, i ∈ {1, 2}

13: end if
14: Z

(i)
b :=

〈
c
(i)
b , B

〉
, i ∈ {1, 2}

15: ∂Z := ∂Z ∪ {Z
(1)
b , Z

(2)
b }

16: end for
17: for all Bb ∈ B do
18: if Bb is a submatrix of B then
19: B := B \ {Bb}
20: end if
21: end for
22: end while
23: return ∂Z

Given an n-dimensional zonotope Z = 〈c,G〉, where c ∈ R
n and G =

(gi)1≤i≤p ∈ R
n,p, for each two symmetric facets, they lie in parallel hyperplanes

and share the same generators. The two parallel hyperplanes are spanned by
a part of generators of Z, which can form a submatrix of G with rank n − 1.
In boundary extraction algorithm, i.e., Algorithm 1, we firstly enumerate all
potential n × (n − 1) submatrices of G which are able to span a hyperplane.
For a certain hyperplane spanned by a submatrix Bb, to confirm the center
and generators of its corresponding facets, we compute its normal vector by the
cross product operator CP(·), then the center of the two symmetric facets can be
respectively determined by moving the center c along the positive and negative
directions of generators which are not perpendicular to CP(Bb), and the gener-
ator matrix of these corresponding facets can be represented by Bb appending
generators parallel to the hyperplane. The visible operations stated above are
shown in Fig. 2.

The computation of a zonotope’s boundary is summarized in Algorithm 1. Its
soundness, i.e., the set computed by Algorithm 1 is equal to the boundary ∂Z of
the zonotope Z, is justified in Theorem 1, whose proof is available in Appendix
A. In order to enhance the understanding of Algorithm 1, we provide a simple
example, Example 1 in Appendix B, to illustrate the computational process of
Algorithm 1.

316 D. Ren et al.

Remark 1. In space R
n, if a zonotope Z = 〈c,G〉 isn’t n-dimensional, i.e.,

rank(G) < n, then the boundary of this zonotope is itself.

Theorem 1 (Soundness of boundary extraction algorithm). Given an
n-dimensional zonotope Z = 〈c,G〉 with p generators, the set computed by Alg.
1 is equal to its boundary ∂Z.

The Complexity of Boundary Extraction Algorithm. For an n-
dimensional zonotope Z = 〈c,G〉 ,G ∈ R

n,p, it has M facets, where M ≤ (
p

n−1

)
.

The number of n × (n − 1) submatrices of G is
(

p
n−1

)
, and the computa-

tion of the rank of an n × (n − 1) matrix has the complexity O(n(n − 1)2)
(using QR decomposition), then the computation in Line 2 has the complexity
O(n(n − 1)2

(
p

n−1

)
). In “while” Loop (Line 3–22), it has M

2 iterations. For the
operation CP(·) on an n × (n − 1) matrix, its complexity is nDET(n − 1), where
DET(n) denote the complexity of computing a determinant of an n × n square
matrix. By LU-decomposition, DET(n) is O(n3), however by Coppersmith-
Winograd algorithm [10], it can reach O(n2.373). For each Bb ∈ B, check-
ing the inner product between v and remaining generators has p − n + 1
loops, and the inner product has complexity O(n). Thus, the complexity
of Algorithm 1 is M

2 (nDET(n − 1) + n(p − n + 1)) + O(n(n − 1)2
(

p
n−1

)
) =

O
(
Mn(DET(n − 1) + p) + n(n − 1)2

(
p

n−1

))
.

3.3 Zonotopal Tiling and Boundary Refinement

This subsection introduces our tiling algorithm which can split a zonotope into
sub-zonotopes without overlaps and then elaborates how this tiling algorithm is
employed to refine the boundaries of zonotopes.

The boundary matrix, which is constructed according to Algorithm 1, plays
an important role in our tiling algorithm. Its entries are able to characterize the
centers and generators for all facets of a zonotope.

Definition 5 (Boundary Matrix). Given an n-dimensional zonotope Z =
〈c,G〉 with M facets, where c ∈ R

n and G ∈ R
n,p, its boundary matrix B ∈ R

M,p

is a matrix whose each entry is 0,1,or -1, where

1. B(i, j) = 0 implies that the j-th generator gj is a generator of the i-th facet
(corresponding to Line 8 in Algorithm 1);

2. B(i, j) = −1 implies that in order to obtain the center of the i-th facet, the
MINUS operator is applied to the j-th generator gj (corresponding to Line 10
and 12 in Algorithm 1);

3. B(i, j) = 1 implies that in order to obtain the center of the i-th facet, the
PLUS operator is applied to the j-th generator gj (corresponding to Line 10
and 12 in Algorithm 1).

From the boundary matrix of a zonotope, one can obtain all its facets.
Appendix B provides an example (Example 2) to illustrate this claim.

Inner-Approximate Reachability Computation 317

Another matrix, tiling matrix, is constructed to store the outcomes of the
tiling algorithm, i.e., all the non-overlapping sub-zonotopes whose union covers
the original zonotope. Similar to the boundary matrix, a row of tiling matrix
represents a sub-zonotope.

Definition 6 (Tiling Matrix). Given an n-dimensional zonotope Z = 〈c,G〉,
where c ∈ R

n and G ∈ R
n,p, its tiling matrix T ∈ R

s,p is a matrix satisfying the
following conditions:

1. its each entry is 0,1 or -1, which has the same meaning with the one in the
boundary matrix;

2. each row defines a sub-zonotope Zi such that
⋃s

i=1 Zi = Z and Z◦
i ∩ Z◦

j = ∅
for i �= j.

Our tiling algorithm is based an intuitive observation: for a zonotope, moving
its one-sided facets towards to the opposite side along the direction of a gener-
ator results in a new zonotope with this generator removed, simultaneously,
several sub-zonotopes are generated by adding this generator to all these facets.
This process, which is visualized in Fig. 3, can be iteratively conducted, until a
parallelotope remains. At this point, the tiling algorithm terminates, yielding a
collection of tiles denoted as zonotopes that tile the original zonotope.

Fig. 3. Illustration of one-step tiling

The tiling algorithm leverages operations on boundary matrix B to imple-
ment the facets’ movement and sub-zonotopes generation aforementioned. The
results of each step, namely the sub-zonotopes after one-step tiling, are recorded
in the tiling matrix T .

Given an n-dimensional zonotope Z = 〈c,G〉 , where G = (gi)1≤i≤p ∈ R
n,p,

we require that the right-most n × n submatrix of G is full rank to ensure that
the sub-zonotopes with one generator removed after one-step tiling remain n-
dimensional. For the specific j-th column of boundary matrix B, where 1 ≤ j ≤
(p − n), we process the following operations to its entries:

1. if there exist i’s such that B(i, j) = −1, we add these rows in the boundary
matrix B into the tiling matrix T as new rows, but change their j-th entry
to 0 in the tiling matrix T . Meanwhile, the j-th entries of these rows in the
boundary matrix B are modified into 1, i.e., B(i, j) = 1;

318 D. Ren et al.

2. if there exist i’s such that B(i, j) = 0, we delete these rows from the boundary
matrix B.

After the j-th iteration, the updated boundary matrix B characterizes the
boundary of a new zonotope. This new zonotope is derived by removing the
first through the j-th generators from the original zonotope Z. Simultaneously,
the sub-zonotopes generated by adding the generator gj to the facets are incor-
porated into the tiling matrix T . Finally, after p − n iterations, there remains
one parallelotope, whose generator matrix is the right-most n × n submatrix of
G, we put this parallelotope into the tiling matrix T and then output the result.

The above computational procedures are summarized in Algorithm 2. Its
soundness is justified by Theorem 2, whose proof is available in Appendix A.
Moreover, Appendix B supplements an example (Example 3) to illustrate the
main steps tiling a zonotope using Algorithm 2.

Remark 2. For an n-dimensional parallelotope, Algorithm 2 only return itself
since there is no generator to remove while keeping it n-dimensional. However,
one can use some simple methods to tile it such as parallelepiped grid.

Algorithm 2. Tiling Algorithm
Input: An n-dimensional zonotope Z = 〈c, G〉 , G = (gi)1≤i≤p ∈ R

n,p, the right-most
n × n submatrix of G is full rank, i.e., rank((gi)i∈N[p−n+1,p]) = n.
Output: Tiling matrix T .
1: Call Alg. 1 to get boundary matrix B
2: T := []
3: for j = 1 to p − n do
4: for i = 1 to rows(B) do
5: if B(i, j) = 0 then
6: B := B [i]

7: end if
8: if B(i, j) = −1 then
9: vᵀ := B(i, ·)

10: v(j) := 0
11: T := [T ; vᵀ]
12: B(i, j) := 1
13: end if
14: end for
15: end for
16: vᵀ = B(−1, ·)
17: for j = p − n + 1 to p do
18: v(j) := 0
19: end for
20: T := [T ; vᵀ]
21: return T

Inner-Approximate Reachability Computation 319

Remark 3. The sub-zonotopes obtained by Algorithm 2 aren’t necessarily par-
allelotopes. To make the results of tiling are exclusively paralletopes, one can
recursive applying Alg. 2 on each sub-zonotope in tiling matrix T until each
sub-zonotope has n generators. Additionally, Algorithm 2 allows terminating
at any iteration, and the result of each iteration can serve as a tiling of the
original zonotope. This flexibility is valuable for controlling the number of par-
titioned sub-zonotopes. Therefore, our proposed tiling algorithm is particularly
well-suited for the inner-approximation computation scenario outlined in this
paper, it enables a balance between the computational burden and precision of
evaluating O(h; ∂Uk) by constraining the number of sub-zonotopes in the tiling.

Theorem 2 (Soundness of tiling algorithm). Given an n-dimensional
zonotope Z = 〈c,G〉 with p generators, the tiling matrix T obtained by Algo-
rithm 2 satisfies the conditions in Def. 6.

The Complexity of Tiling Algorithm. For an n-dimensional zonotope Z =
〈c,G〉 ,G = (gi)1≤i≤p ∈ R

n,p, where rank((gi)i∈N[p−n+1,p]) = n, assume Z has
M facets. The calling of Algorithm 1 is O

(
Mn(DET(n − 1) + p) + n(n − 1)2(

p
n−1

))
. The size of boundary matrix B is M × p, the two-layer “for” Loop

(Line 3–15) has iterations less than M(p − n), thus the calling of Algorithm 1
is dominant in the complexity of tiling algorithm. Consequently, the complexity
of Algorithm 2 is O

(
Mn(DET(n − 1) + p) + n(n − 1)2

(
p

n−1

))
.

Complexity Comparison. Here we compare the complexity of tiling algorithm
proposed in [17] with ours. For an n-dimensional zonotope Z = 〈c,G〉 ,G ∈ R

n,p,
assume Z has M facets and N vertexes. The main computation procure of algo-
rithm in [17] is computing Σ (a set of sign vectors of cells of the arrangement),
which is equivalent to enumerate the sign vectors of all the vertexes of Z. The
computation of Σ, utilizing a reverse search algorithm [9], owns the complexity of
O(npLP(p, n)|Σ|) = O(NnpLP(p, n)) (the number of sign vectors in Σ is equal
to N), where LP(p, n) is the time to solve a linear programming (LP) with p
inequalities in n variables. There are various algorithms for solving LPs including
simplex algorithm, interior point method and their variants. The state-of-the-
art algorithms for solving LPs take complexity around O(n2.37) [8]. As for the
complexity of our algorithm, we have clarified that dominant part in complexity
is the procure extracting the boundary of a zonotope, which has the complexity
O

(
Mn(DET(n − 1) + p) + n(n − 1)2

(
p

n−1

))
. Additionally for zonotope Z, the

number of its vertexes N is usually much larger than the one of its facets M ,
particularly in high dimension (for example, a hypercube in R

n has 2n vertexes
and 2n facets). According to the analysis above, we can conclude the complexity
of our tiling algorithm is better than the one of algorithm (O(NnpLP(p, n))) in
[17].

320 D. Ren et al.

Fig. 4. Illustration of boundary refinement

Boundary Refinement via Tiling Algorithm. Given an n-dimensional
zonotope Z = 〈c,G〉 ,G ∈ R

n,p, for one of its facet F = 〈cb,Gb〉, we transform it
into the space R

n−1 with transformation matrix Bᵀ
b , where Bb is the n× (n−1)

submatrix of Gb with rank n−1, then the (n−1)-dimensional transformed zono-
tope can be denoted as F̃ = 〈Bᵀ

b cb,B
ᵀ
b Gb〉. Using tiling algorithm, F̃ can be

split into some smaller sub-zonotopes {F̃ (1), F̃ (2), · · · , F̃ (M)}. For each of (n−1)-
dimensional sub-zonotopes such as F̃ (1) =

〈
c̃(1), G̃(1)

〉
, an inverse transforma-

tion recovers it to the zonotope in the space R
n, i.e., F (1) =

〈
c(1),G(1)

〉
, where

c(1) = [Bᵀ
b ; CP(Bb)ᵀ]−1[c̃(1); CP(Bb) · cb], G(1) = [Bᵀ

b ; CP(Bb)ᵀ]−1[G̃(1);0ᵀ]. The
main steps of boundary refinement are visualized in Fig. 4.

3.4 Contracting Computed Outer-Approximation

In this subsection we present our contraction method, yielding the inner approx-
imation candidate U ′

k+1 by contracting O(h;Uk). In contrast to the approaches
in [33], which contracts O(h;Uk) by reducing size proportionally, our contraction
method offers a more flexible way. Specifically, the length of each generator of
O(h;Uk) can be adjusted and some generators can be removed. The incorpora-
tion of this adaptive contraction method enhances the tightness of the computed
inner-approximation.

By extracting and refining of boundary ∂Uk of Uk, we get a collection of sub-
zonotopes, i.e., {∂U

(i)
k }i∈N[1,s] , where

⋃s
i=1 ∂U

(i)
k = ∂Uk. Then O(h; ∂Uk) can be

obtained by uniting all the out-approximations ∂O
(i)
k+1 := O(h; ∂U

(i)
k), i ∈ N[1,s],

i.e., O(h; ∂Uk) =
⋃s

i=1 ∂O
(i)
k+1.

Noticing that the shape of every outer-approximation ∂O
(i)
k+1 = 〈co,Go〉 is

usually long and narrow (refer to Fig. 1), we choose the top n − 1 independent
generators by norm (such as Euclidean norm) to span a hyperplane, which can
be seen as an (n−1)-dimensional form approximating ∂O

(i)
k+1. Then we compute

the cross product CP(·) of this hyperplane as its normal vector to represent the
attitude of ∂O

(i)
k+1, denoted by AT

(
∂O

(i)
k+1

)
(i.e. CP(Ĝo), where Ĝo contains top

n − 1 indenpent generators of Go by norm).

Inner-Approximate Reachability Computation 321

Initially, we set the inner-approximation candidate U ′
k+1 := O(h;Uk). Sub-

sequently, we iteratively reduce the length of generators and adjust the position
(by changing the center) of U ′

k+1 until the intersections between U ′
k+1 and all

outer-approximations ∂O
(i)
k+1 become empty sets. For each outer-approximation

∂O
(i)
k+1, we begin by shortening the length of generators that are most likely to

yield collisions between U ′
k+1 and ∂O

(i)
k+1, which would prevent the unnecessary

contraction of U ′
k+1 and make the result tighter. Heuristically, the generators

with directions closest to AT
(
∂O

(i)
k+1

)
, or in other words, those most likely to

“perpendicular” to ∂O
(i)
k+1 (precisely, perpendicular to hyperplane spanned by

column vectors of Ĝo) should be given priority considerations. When encoun-
tering a generator that dose not need to be shortened, indicating that U ′

k+1

and ∂O
(i)
k+1 have no overlapping parts, we turn to the next outer-approximation

∂O
(i+1)
k+1 . The details of contraction method proposed is summarized below.

1. Initialize inner-approximation candidate U ′
k+1 := 〈cu,Gu〉 = O(h;Uk).

2. For every boundary outer-approximations ∂O
(i)
k+1 = 〈co,Go〉 , i ∈ N[1,s], carry

out the following processing steps.
2a. Sort the generators {gl}1≤l≤cols(Gu) of U ′

k+1 according the angle with

AT
(
∂O

(i)
k+1

)
from small to large (i.e., ‖cosθ‖ =

‖gl·AT
(

∂O
(i)
k+1

)
‖

‖gl‖‖AT
(

∂O
(i)
k+1

)
‖

from large

to small).
2b. Loop all the generators according to the sorted order, for the gener-

ator gl, compute its domain [αl, αl] which intersects with ∂O
(i)
k+1 by

LPs (2) and (3) (using approach in [16, Chapter 4.2.5]), where α =
(α1, · · · , αl, · · · , αcols(Gu))

ᵀ, β = (β1, · · · , βcols(Go))
ᵀ.

min αl

s.t. cu + Guα = co + Goβ

− 1 ≤ α ≤ 1,−1 ≤ β ≤ 1
(2)

max αl

s.t. cu + Guα = co + Goβ

− 1 ≤ α ≤ 1,−1 ≤ β ≤ 1
(3)

When the optimal value of (2) or (3) can’t be found, then terminate this
loop and continue for the next boundary outer-approximation ∂O

(i+1)
k+1 .

2c. If [αl, αl] = [−1, 1], then delete gl from generator matrix Gu. Else, update
the range of al ∈ max{[−1, al −ε], [al+ε, 1]} � [γ, γ], where the operation
max{·, ·} means choosing the interval with maximum length and ε is a
user-defined small positive number.

2d. Update cu := cu + 0.5(γ + γ)gl and gl := 0.5(γ − γ)gl.

Remark 4. The introducing of the user-defined small positive number ε is to
ensure U ′

k+1 ∩ ∂O
(i)
k+1 = ∅.

322 D. Ren et al.

Remark 5. In practice, it is a common case that [αl, αl] = [−1, 1], thus the
number of generators of inner-approximation candidate U ′

k+1 is usually less than
O(h;Uk)’s, which shows that this contraction method has the advantage for
zonotope order reduction [35].

Appendix B provides an example (Example 4) to illustrate the procedure of the
contraction method and why is necessary to sort the generators {gl}1≤l≤cols(Gu)

of U ′
k+1 according to the angle with AT

(
∂O

(i)
k+1

)
.

Verification of Inner-Approximation Candidate. According to Theorem
1 and 3 in [18], after obtaining inner-approximation candidate U ′

k+1, it’s crucial
to check whether the outer-approximation O(h; c) (c is the center of U ′

k+1) of
the time-inverted system ẋ = −f(x) is within Uk, which confirms the correct-
ness of computed inner-approximation Uk+1. Since both U ′

k+1 and O(h; c) are
zonotopes, this verification reduces a zonotope containment problem. In our app-
roach, we leverage a sufficient condition outlined in [29], which can be encoded
into LP to perform the inclusion verification.

4 Experiments

In this section we demonstrate the performance of our approach on various
benchmarks. Our implementation utilizes the floating point linear programming
solver GLPK and C++ library Eigen. We adopt the approach outlined in [3] to
compute outer-approximations appeared in our method. All experiments herein
are run on Ubuntu 20.04.3 LTS in virtual machine with CPU 12th Gen Intel
Core i9-12900K × 8 and RAM 15.6 GB.

To evaluate the precision of the computed inner-approximations, we use the
minimum width ration γmin similar to [18], which is defined as

γmin = min
v∈V

|γi(v)|
|γo(v)|

with γi(v) = max
x∈Uk

vᵀx + max
x∈Uk

−vᵀx

γo(v) = max
x∈Ok

vᵀx + max
x∈Ok

−vᵀx

(4)

where Uk and Ok are the inner-approximation and outer-approximation of the
reachable set at k step respectively. v ∈ V ⊂ R

n, and V is the set consisting
of n axis-aligned unit-vectors. To ensure a fair comparison, the Ok is chosen
to be the interval enclosure of 1000 random points at the final time instant
simulated via ode45 in MATLAB. Intuitively, the larger this ratio, the better
the approximation.

Our approach is systematically compared with the state-of-the-art method
presented in [18], which is publicly available in the reachability analysis toolbox
CORA [1]. Benchmarks with system’s dimension from 2 to 12 are utilized to
show the the comprehensive advantages of our approach. Their configurations
including dimensions, initial sets and references are listed in Table 2.

Inner-Approximate Reachability Computation 323

Table 2. Benchmarks and their dimensions, initial sets and references

Dim Benchmark Initial Set Reference

2 ElectroOsc c1 + [−0.1, 0.1]2 Example 3 in [33]
3 Rossler c2 + [−0.15, 0.15]3 Example 3.4.3 in [7]
4 Lotka-Volterra c3 + [−0.2, 0.2]4 Example 5.2.3 in [7]
6 Tank6 c4 + [−0.2, 0.2]6 [3]
7 BiologicalSystemI c5 + [−0.01, 0.01]7 Example 5.2.4 in [7]
9 BiologicalSystemII c6 + [−0.01, 0.01]9 Example 5.2.4 in [7]
12 Tank12 c7 + [−0.2, 0.2]12 [3]
Note: for the parameters of Tank6 and Tank12, all Ai are set to
Ai = 1, and all ki are set to ki = 0.015, κ = 0.01, v = 0, g = 9.81, for
Tank6 n = 6 and for Tank12 n = 12; for the centers of initial sets,
c1 = (0, 3)�, c2 = (0.05, −8.35, 0.05)�, c3 = (0.6, 0.6, 0.6, 0.6)�,
c4 = (2, 4, 4, 2, 10, 4)�, c5 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)�, c6 =
(1, 1, 1, 1, 1, 1, 1, 1, 1)�, c7 = (2, 4, 4, 2, 10, 4, 2, 2, 2, 2, 2, 2)�.

4.1 Advantage in Efficiency and Precision

For each benchmark stated in Table 2, we compute the inner-approximations at
the time instant T using our approach and the one in CORA. Table 3 demon-
strates the time cost and γmin for tow methods. The advantages of our approach
are evident from low dimensional scenario (2-dimensional) to high dimensional
scenario (12-dimensional), showcasing improved efficiency and precision, par-
ticularly in higher dimensions. Taking the benchmark Tank12 as an instance,
our approach achieves nearly 38% improvement in precision while requiring
only 12% of the time compared to CORA. The visualization of the inner-
approximations computed by our approach and CORA is illustrated in Fig. 7
provided in Appendix C, together with the outer-approximations computed by
CORA in this figure for sake of convenient comparison.

Table 3. Comparison between our approach and CORA for each benchmark

Dim Benchmark T Our Approach CORA
time (s) γmin time (s) γmin

2 ElectroOsc 2.5 23.56 0.88 36.50 0.57
3 Rossler 1.5 27.72 0.76 36.63 0.78

4 Lotka-Volterra 1 10.43 0.65 335.06 0.34
6 Tank6 80 50.83 0.82 201.05 0.63
7 BiologicalSystemI 0.2 1.74 0.96 125.73 0.90
9 BiologicalSystemII 0.2 72.47 0.95 188.25 0.88
12 Tank12 60 235.88 0.77 1834.65 0.56

324 D. Ren et al.

4.2 Advantage in Long Time Horizons

Further, we extend the time horizon in Table 3 and compare the performance
of inner-approximation computation between our approach and CORA. As evi-
denced by the results in Table 4, our approach demonstrates the reliable capa-
bility to compute inner-approximations in relatively longer time horizons com-
pared to CORA. It shows that our approach can consistently compute all inner-
approximations while maintaining benign efficiency and precision. In contrast,
the approach in CORA fails to compute inner-approximations for all bench-
marks. The visualization of the inner-approximations computed by our approach
and CORA is illustrated in Fig. 8 provided in Appendix C.

Table 4. Comparison between our approach and CORA for each benchmark in rela-
tively longer time horizons

Dim Benchmark T Our Approach CORA
time (s) γmin time (s) γmin

2 ElectroOsc 3 73.76 0.90 − −
3 Rossler 2.5 63.42 0.60 − −
4 Lotka-Volterra 1.5 81.81 0.62 − −
6 Tank6 120 129.58 0.65 − −
7 BiologicalSystemI 1.3 462.87 0.41 − −
9 BiologicalSystemII 0.375 261.78 0.66 − −
12 Tank12 100 377.85 0.49 − −
Note: the symbol “−” means that in this experimental configura-
tion CORA cannot compute inner-approximations.

4.3 Advantage in Big Initial Sets

We also expand the initial sets as listed in Table 2 to highlight our advantage in
computing inner-approximations from larger initial sets. For each benchmark, we
set both a short and a long time instant to compute inner-approximations using
our approach and CORA. As shown in Table 5, our approach can accomplish all
the inner-approximation computations while maintaining high levels of efficiency
and precision. In contrast, for the short time instant scenario, the performance
of CORA is worse than ours in both computation time and accuracy, and CORA
fails to compute inner-approximations at long time instant for all benchmarks.
The visualization of the inner-approximations computed by our approach and
CORA is illustrated in Fig. 9 and Fig. 10 provided in Appendix C.

Inner-Approximate Reachability Computation 325

Table 5. Comparison between our approach and CORA for each benchmark in big
initial sets.

Dim Benchmark Initial Set T Our Approach CORA
time (s) γmin time (s) γmin

2 ElectroOsc c1 + 0.5I2 1.5 4.79 0.92 24.32 0.43
2 11.29 0.84 − −

3 Rossler c2 + 0.5I3 1 15.88 0.59 36.54 0.53
1.5 24.01 0.58 − −

4 Lotka-Volterra c3 + 0.5I4 0.4 15.45 0.71 153.57 0.38
1 64.17 0.52 − −

6 Tank6 c4 + 0.5I6 80 66.83 0.60 463.28 0.13
100 80.91 0.53 − −

7 BiologicalSystemI c5 + 0.05I7 0.5 118.65 0.62 615.89 0.38
0.7 281.05 0.41 − −

9 BiologicalSystemII c6 + 0.05I9 0.26 142.17 0.65 1494.38 0.32
0.28 142.02 0.55 − −

12 Tank12 c7 + 0.5I12 40 162.46 0.73 1693.68 0.41
60 235.57 0.54 − −

Note: the symbol “−” means that in this experimental configuration CORA
cannot compute inner-approximations. Id denotes the box [−1, 1]d.

5 Conclusion

In this paper we propose a novel approach to compute inner-approximations
of reachable sets for nonlinear systems based on zonotopic boundary analysis.
To enhance the efficiency and precision of the computed inner-approximations,
we introduce three innovative and efficient methods, including the algorithm of
extracting boundaries of zonotopes, the algorithm of tiling zonotopes for bound-
ary refinement, and contraction strategy for obtaining inner-approximations
from pre-computed outer-approximations. In comparison to the state-of-the-
art methods for inner-approximation computation, our approach demonstrates
superior performance in terms of efficiency and precision, particularly within
high dimensional cases. Moreover, our proposed approach exhibits a remarkable
capability to compute inner-approximations for scenarios with long time hori-
zons and large initial sets, where the inner-approximations are usually failed to
be computed by existing methods.

Acknowledgement. This work is funded by the CAS Pioneer Hundred Talents Pro-
gram, Basic Research Program of Institute of Software, CAS (Grant No. ISCAS-JCMS-
202302) and National Key R&D Program of China (Grant No. 2022YFA1005101).

326 D. Ren et al.

References

1. Althoff, M.: An introduction to cora 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)

2. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Annual Rev. Control, Robot. Autonomous Syst. 4, 369–395 (2021)

3. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: 2008 47th IEEE
Conference on Decision and Control, pp. 4042–4048. IEEE (2008)

4. Bajaj, C.L., Pascucci, V.: Splitting a complex of convex polytopes in any dimen-
sion. In: Proceedings of the Twelfth Annual Symposium on Computational Geom-
etry, pp. 88–97 (1996)

5. Björner, A.: Oriented matroids. No. 46, Cambridge University Press (1999)
6. Branicky, M.S.: Multiple lyapunov functions and other analysis tools for switched

and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)
7. Chen, X.: Reachability analysis of non-linear hybrid systems using taylor models.

Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)
8. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix

multiplication time. J. ACM (JACM) 68(1), 1–39 (2021)
9. Ferrez, J.A., Fukuda, K., Liebling, T.M.: Solving the fixed rank convex quadratic

maximization in binary variables by a parallel zonotope construction algorithm.
Eur. J. Oper. Res. 166(1), 35–50 (2005)

10. Fisikopoulos, V., Penaranda, L.: Faster geometric algorithms via dynamic deter-
minant computation. Comput. Geom. 54, 1–16 (2016)

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

12. Goubault, E., Putot, S.: Forward inner-approximated reachability of non-linear
continuous systems. In: Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, pp. 1–10 (2017)

13. Goubault, E., Putot, S.: Inner and outer reachability for the verification of control
systems. In: Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pp. 11–22 (2019)

14. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proceedings of the twenty-seventh annual ACM symposium on The-
ory of computing, pp. 373–382 (1995)

15. Herrmann, S., Joswig, M.: Splitting polytopes. arXiv preprint arXiv:0805.0774
(2008)

16. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Interval analysis. In: Applied interval
analysis, pp. 11–43. Springer (2001). https://doi.org/10.1007/978-1-4471-0249-6

17. Kabi, B.: Synthesizing invariants: a constraint programming approach based on
zonotopic abstraction. Ph.D. thesis, Institut polytechnique de Paris (2020)

18. Kochdumper, N., Althoff, M.: Computing non-convex inner-approximations of
reachable sets for nonlinear continuous systems. In: 2020 59th IEEE Conference
on Decision and Control (CDC), pp. 2130–2137. IEEE (2020)

19. Korda, M., Henrion, D., Jones, C.N.: Inner approximations of the region of attrac-
tion for polynomial dynamical systems. IFAC Proc. Vol. 46(23), 534–539 (2013)

20. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical stability of nonlinear
systems. World Scientific (1990)

https://doi.org/10.1007/978-3-540-31954-2_19
http://arxiv.org/abs/0805.0774
https://doi.org/10.1007/978-1-4471-0249-6

Inner-Approximate Reachability Computation 327

21. Li, J., Dureja, R., Pu, G., Rozier, K.Y., Vardi, M.Y.: SimpleCAR: an efficient bug-
finding tool based on approximate reachability. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 37–44. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2_5

22. McMullen, P.: On zonotopes. Trans. Am. Math. Soc. 159, 91–109 (1971)
23. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety

analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 428–443. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71493-4_34

24. Mortari, D.: n-dimensional cross product and its application to the matrix eigen-
analysis. J. Guid. Control. Dyn. 20(3), 509–515 (1997)

25. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence
regions. Springer (1993). https://doi.org/10.1007/978-3-7091-6918-6_14

26. Ren, D., Liang, Z., Wu, C., Ding, J., Wu, T., Xue, B.: Inner-approximate reachabil-
ity computation via zonotopic boundary analysis. arXiv preprint arXiv:2405.11155
(2024)

27. Richter-Gebert, J., Ziegler, G.M.: Zonotopal tilings and the bohne-dress theorem.
Contemp. Math. 178, 211–211 (1994)

28. Rwth, X.C., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes
for non-linear continuous systems. In: 2014 Formal Methods in Computer-Aided
Design (FMCAD), pp. 59–66. IEEE (2014)

29. Sadraddini, S., Tedrake, R.: Linear encodings for polytope containment problems.
In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4367–4372.
IEEE (2019)

30. Schoels, T., Palmieri, L., Arras, K.O., Diehl, M.: An nmpc approach using con-
vex inner approximations for online motion planning with guaranteed collision
avoidance. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3574–3580. IEEE (2020)

31. Wan, J., Vehi, J., Luo, N.: A numerical approach to design control invariant sets for
constrained nonlinear discrete-time systems with guaranteed optimality. J. Global
Optim. 44, 395–407 (2009)

32. Xue, B., Fränzle, M., Zhan, N.: Inner-approximating reachable sets for polynomial
systems with time-varying uncertainties. IEEE Trans. Autom. Control 65(4), 1468–
1483 (2019)

33. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_25

34. Xue, B., Zhan, N., Fränzle, M., Wang, J., Liu, W.: Reach-avoid verification based
on convex optimization. IEEE Trans. Autom. Control 69(1), 598–605 (2024)

35. Yang, X., Scott, J.K.: A comparison of zonotope order reduction techniques. Auto-
matica 95, 378–384 (2018)

36. Ziegler, G.M.: Lectures on polytopes, vol. 152. Springer Science & Business Media
(2012)

https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1007/978-3-540-71493-4_34
https://doi.org/10.1007/978-3-540-71493-4_34
https://doi.org/10.1007/978-3-7091-6918-6_14
http://arxiv.org/abs/2405.11155
https://doi.org/10.1007/978-3-319-41528-4_25

328 D. Ren et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Scenario-Based Flexible Modeling
and Scalable Falsification
for Reconfigurable CPSs

Jiawan Wang , Wenxia Liu, Muzimiao Zhang, Jiaqi Wei, Yuhui Shi,
Lei Bu(B) , and Xuandong Li

State Key Laboratory of Novel Software Technology, Nanjing University,
Nanjing, China

wangjw@smail.nju.edu.cn, bulei@nju.edu.cn

Abstract. Cyber-physical systems (CPSs) are used in many safety-
critical areas, making it crucial to ensure their safety. However, with
CPSs increasingly dynamically deployed and reconfigured during run-
time, their safety analysis becomes challenging. For one thing, reconfig-
urable CPSs usually consist of multiple agents dynamically connected
during runtime. Their highly dynamic system topologies are too intri-
cate for traditional modeling languages, which, in turn, hinders formal
analysis. For another, due to the growing size and uncertainty of recon-
figurable CPSs, their system models can be huge and even unavailable at
design time. This calls for runtime analysis approaches with better scal-
ability and efficiency. To address these challenges, we propose a scenario-
based hierarchical modeling language for reconfigurable CPS. It provides
template models for agent inherent features, together with an instanti-
ation mechanism to activate single agent’s runtime behavior, communi-
cation configurations for multiple agents’ connected behaviors, and sce-
nario task configurations for their dynamic topologies. We also present
a path-oriented falsification approach to falsify system requirements. It
employs classification-model-based optimization to explore search space
effectively and cut unnecessary system simulations and robustness calcu-
lations for efficiency. Our modeling and falsification are implemented in
a tool called SNIFF. Experiments have shown that it can largely reduce
modeling time and improve modeling accuracy, and perform scalable
CPS falsification with high success rates in seconds.

1 Introduction

A cyber-physical system (CPS) consists of multiple computing devices that com-
municate with each other and interact with the physical world in a feedback loop.

The authors are supported in part by the Leading-edge Technology Program of Jiangsu
Natural Science Foundation (No. BK20202001), the National Natural Science Founda-
tion of China (No. 62232008, 62172200), the Fundamental Research Funds for the
Central Universities (No. 2023300180), and the Program A for Outstanding PhD Can-
didates of Nanjing University.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 329–355, 2024.
https://doi.org/10.1007/978-3-031-65633-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_15&domain=pdf
http://orcid.org/0000-0002-6170-5675
http://orcid.org/0000-0003-0517-7801
https://doi.org/10.1007/978-3-031-65633-0_15

330 J. Wang et al.

It is vital to ensure that CPSs work correctly as intended, especially in safety-
critical applications like aircrafts, automobiles, and medical devices [4,41,42].

Model checking is a powerful, computer-assisted technique to analyze CPS
correctness [11,19]. It involves formalizing system behavior in mathematical
models, describing system requirements in logic specifications, and analyz-
ing whether specifications are satisfied in models through complete verifica-
tion algorithms or incomplete falsification algorithms. Verification algorithms
prove system correctness automatically but are typically limited to CPS with
few dimensions and simple dynamics [16,18,30,35,36,54,55]. Falsification algo-
rithms, on the other hand, satisfy weaker forms of completeness but can handle
complex system dynamics and disprove system correctness via counterexam-
ples [3,8,27,33,53,63,66]. As a result, they are of practical interest and are the
main focus of model checking in industrial applications [19,20,53].

However, with real-world CPSs increasingly deployed in uncertain environ-
ments and dynamically reconfigured during runtime [1,2,23,32,37,59], their for-
mal modeling and falsification face great challenges.

Challenge 1: CPS modeling is complicated due to changing agent behaviors
and dynamic system topologies. For one thing, in a reconfigurable CPS, each
agent’s role, function, and behavior may vary across scenarios to meet changing
requirements. Therefore, it needs to be frequently modeled, especially when there
are many different scenarios. For another, agents are usually dynamically wired
due to changing demands or limitations. Some agents may even be part of the
system in one scenario but leave in another. Traditional modeling languages,
however, lack flexible mechanisms to formalize dynamic topology shifts.

Challenge 2: CPS falsification requires better scalability and efficiency due to
the growing size and complexity of reconfigurable CPSs. Models of reconfigurable
CPSs become huge and may even unavailable at design time. This calls for more
scalable falsification approaches with improved runtime performance.

For challenge 1, we designed a hierarchical scenario-based modeling language
for reconfigurable CPSs. To simplify agent modeling, we introduced a template
model to formalize agent inherent features, including potential dynamics and
communication capabilities. Based on template models, an instantiation mech-
anism is provided so that users can model and update agent runtime behav-
iors easily. Further, to capture the dynamically wired behaviors of multiple
agents, we introduced communication configurations and scenario task config-
urations for instantiated agent models. Users can formalize agents’ intricately
connected behaviors through brief communication configurations, and abstract
their dynamic topologies flexibly through intuitive scenario task configurations.

For challenge 2, we developed a path-oriented falsification approach for recon-
figurable CPSs, searching for counterexample system behavior along generated
paths. For the vast behavior space along each path, we designed a two-layered,
classification-model-based optimization method to explore it effectively. Besides,
since system simulation and robustness calculation are most time-consuming
during falsification, we introduced concepts of time-context and lifespan for

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 331

temporal specifications, to cut unnecessary system simulations and robustness
calculations that do not affect the satisfaction of specifications.

The main contributions of this work are as follows:

– We designed a scenario-based hierarchical modeling language to formalize
reconfigurable CPSs. We also extended a topology-aware temporal logic to
specify their system requirements. (See Sect.3)

– We developed a path-oriented approach to falsify temporal logic specifications
for CPSs. It employs classification-model-based optimization and lifespan-
guided robustness calculation to improve efficiency. (See Sect.4)

– We implemented a tool called SNIFF, which supports scenario-based graphical
modeling and falsification for reconfigurable CPSs. Studies show that it can
greatly reduce modeling time and improve modeling accuracy. Experiments
demonstrated its scalability and efficiency in falsification. (See Sect.5)

2 Background

2.1 Preliminaries

Hybrid Automaton (HA) is a popular formal language for modeling tightly cou-
pled discrete and continuous CPS behaviors. Dense-time formalisms like Signal
Temporal Logic (STL) serve as the basis for specifying CPS requirements.

Definition 1 (Hybrid Automaton [5]). An HA is a tuple H = (X,U,Q, F,
Inv,E,G,R), where X are continuous variables; U are external inputs1; Q are
discrete operating modes; F = {Fq| q ∈ Q} are flow functions, defining the flow
of variables in mode q by differential equation Ẋ = Fq(X,U); Inv = {Invq| q ∈
Q} are invariant conditions, constraining conditions of mode q by constraints
Invq(X,U); E ⊆ Q × Q are discrete transitions, denoting jumps of modes; G =
{Ge| e ∈ E} are guard conditions on transitions; R = {Re| e ∈ E} are reset
functions on transitions, resetting variables by X := Re(X,U).

Semantics: The state space of H is S = Q × X. Its state, denoted by the pair
s = (q, x) ∈ S, evolves in the following two ways. It can stay in the current
mode q and evolve continuously based on the flow function Fq, within the space
constrained by the invariant condition Invq. It can also jump from the mode q
to q′ discretely and instantaneously through transition e = (q, q′) ∈ E when its
guard condition Ge is met, and be reset by the function Re.

Note that under nondeterministic semantics, HA can choose arbitrarily
between staying in the current mode and jumping to another mode, as long as
conditions of current mode and target transition are both satisfied. It can also
choose among multiple transitions when their guard conditions are all met [44].

1 External inputs are often assumed to be time-varying, smooth, and parameterized.

332 J. Wang et al.

Fig. 1. The Formation Target of the Multi-UAV System in Each Flight Mission

Definition 2 (Signal Temporal Logic [46,47]). Let X denotes variables
defined over domain R

n
, where R=R ∪ {�,⊥} is the totally ordered set of real

numbers with the smallest and greatest boolean elements ⊥ and �, � = −⊥,
−� = ⊥. Let w : T → R

n
denotes a multi-dimensional signal of X , with

T = [0, t) ⊆ R. The syntax of an STL formula ϕ interpreted over X is defined
as:

ϕ := true | θ(X) ≥ d | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1UIϕ2.
Here, θ : R

n → R denotes a function that maps X ’s valuations into a real,
and d is a constant. U denotes the until operator and I ⊆ R

+ denotes a timing
interval, which can be omitted when it is [0,∞). In a formula ϕ, other standard
operators can be derived as follows: false ≡ ¬true, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2),
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ♦Iϕ ≡ trueUIϕ, and �Iϕ ≡ ¬♦I(¬ϕ).

Semantics: For a given signal, an STL formula ϕ has both boolean and quan-
titative semantics [29,46]. Its boolean semantics indicates ϕ’s validity on this
signal at some given time t via a binary satisfaction relation, while its quantita-
tive semantics indicates how well this signal satisfies ϕ at time t via a real-valued
robustness degree. Due to space limitations, we only provide quantitative seman-
tics here. Given an STL formula ϕ, a signal w of variables X , and time t, the
quantitative semantics of its robustness degree ρ(ϕ,w, t) is defined by induction:

ρ(true, w, t) = �
ρ(θ(X) ≥ d,w, t) = θ(w(t)) − d

ρ(¬ϕ1, w, t) = −ρ(ϕ1, w, t) (1)
ρ(ϕ1 ∨ ϕ2, w, t) = max{ρ(ϕ1, w, t), ρ(ϕ2, w, t)}
ρ(ϕ1UIϕ2, w, t) = sup

t′∈t⊕I
min{ρ(ϕ2, w, t′), inf

t′′∈[t,t′)
ρ(ϕ1, w, t′′)}

Here, ⊕ denotes the Minkowski sum, t ⊕ I = {t + i|i ∈ I}. This quantitative
semantics is used in most STL falsification. The degree is positive only if the
signal satisfies the formula, and the higher the better.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 333

2.2 Motivating Example: A Multi-UAV System

Consider a reconfigurable CPS with eight UAV (Unmanned Aerial Vehicle)
agents (u1-u8). Each agent’s position, speed, and acceleration are continuous
variables, with communication delay as an external input. The system undertakes
various flight missions based on runtime demands. To execute missions, agents
collaborate through different communication strategies and composition archi-
tectures (e.g., classical virtual structures, leader-follower, behavior-based, and
consensus-based ones [26]). Below is a example of its runtime mission sequence
(M1-M4), with formation details in Fig. 1.

M1 All UAVs communicate with each other to locate their 3-D central point O.
They then calculate and move to their target positions, forming a clockwise
ring around the center O with a radius of r1, at the same height of O.

M2 It is similar to M1, but forms a counter-clockwise ring with a radius of r2.
M3 Upon receiving commands from the ground control center, odd-numbered

and even-numbered UAVs adjust their speed to v1 and v2, respectively.
M4 It employs a hierarchical leader-follower architecture for tree formation.

Phase 1: according to the leader u1, followers u2−4 change their heading
angles and move to desired relative positions. Phase 2: u2−4 act as leaders
for u5, u6−7, and u8 respectively, forming the third row of the tree similarly.

Fig. 2. HA Models of u3 in Scenarios with Differently Activated Functions

Although all agents are homogeneous in this case, each plays a different role.
Moreover, even the same agent behaves differently across scenarios, and there-
fore, has different models. For example, in the models of u3 shown in Fig. 2(a)-(c),

– in M1, it cruises while waiting for others’ states. Once received, it calculates
control parameters to adjust its position to the target location accordingly.

– in M3, it cruises while waiting for ground commands, and then adjusts veloc-
ity.

– in the phase 2 of M4, it cruises while broadcasting its state to followers, u6−7.

These functions are embedded in UAV codes, activated dynamically at runtime.
Furthermore, the topology of the entire multi-UAV system changes dynam-

ically, resulting in a complex and vast system model. In M1 and M2, vehicle-
to-vehicle communication exists among all agents for central point calculation.

334 J. Wang et al.

While in M3, agents are divided into two groups, equipped with ground-to-
vehicle communication. In M4, system topology even shifts inside the mission
and becomes hierarchical. Across scenarios, system models should be structured
differently, and their shifts should also be formally modeled as a whole. Besides,
specifying system requirements, especially topology-related ones, is also difficult.
Many extra intermediate variables are required to describe system topology. We
will address these modeling and specifying challenges in the next section.

3 Scenario-Based Formalism for Reconfigurable Systems

In this section, we present our formalism for reconfigurable CPSs with dynamic
behaviors, compositions, and system topologies. It includes scenario-based sys-
tem behavior modeling and topology-aware system property specifying.

3.1 Scenario-Based System Modeling

Our modeling language A) provides static template models for agents, along with
an instantiation mechanism to customize each agent’s actual internal behavior
in each scenario; B) offers communication configurations to formalize multiple
agents’ interconnected behaviors in each single scenario; C) introduces scenario
task configurations to describe system dynamic topologies in multiple scenarios.
Finally, in D), we conclude the hierarchy of our modeling language.

A. Modeling Agent Runtime Behavior by Template Instantiation.

Definition 3 (Template Hybrid Automaton). A template-HA is a tuple
HT = (XT , U,Q, F, Inv,ET , G,R, α, β), where

– XT are variables classified by the function α: XT → {Xinp,Xout,Xlocal}.
Xinp denotes global input variables, whose values can be updated by other
agents during communication. Xout denotes global output variables that others
can read during communication. Xlocal refers to private local variables.

– ET are transitions classified by the function β: E → {Eglobal, Elocal}. Global
transitions are public to other agents, therefore, communicating with others on
global transitions is allowed. Local transitions are fixed in the agent’s imple-
mentation, and are private to the agent itself.

– U,Q, F, Inv,G,R are parameters defined identically as HA in Definition 1.

Template-HA formalizes the inherent features implemented in an agent. It con-
strains the agent’s potential modes, transitions, and communication capabili-
ties, including available communication ports, content, and channels, denoted
as Xinp, Xout, and Eglobal respectively. To further constrain the agent’s actual
runtime behaviors in a specific scenario, we define Instance Hybrid Automaton.

Definition 4 (Instance Hybrid Automaton). An instance-HA is a tuple
HI = (X,U,Q, F, Inv,E,G,R, α, β, γ), which can be instantiated from the
template-HA HT = (X,U,Q, F, Inv,E,G,R, α, β) through a transition activa-
tion function γ: Eglobal → {Eact, Edeact}.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 335

Semantics: The state of HI , denoted as s = (q, x) ∈ Q×X, evolves either con-
tinuously in mode q or discretely by jumping to mode q′ as defined in Definition
1. However, when it jumps via a global transition e = (q, q′), there is an extra
constraint: the transition e must be activated by the function γ as γ(e) = Eact.

This instantiation mechanism improves template-HAs’ flexibility and
reusability, enabling adaptation to changing demands and reuse across scenar-
ios by agents of the same type. For instance, in the multi-UAV system, agents
are homogeneous and share the same template-HA, shown in brief in Fig. 3. It
has three modes and five transitions. Variables are categorized by function α.
For example, agent positions are global output variables, serving as permissible
communication content among agents, and inps are global input variables as
legal communication ports. Transitions are classified by function β, with global
ones marked by dotted arrows, including comm, commP, and commV. Agents can
be registered with ID and template-HA as shown in the purple box (line 2) in
Fig. 4. During mission M4, when u3 is leading u6−7, the comm transition should
be activated in u3’s instance-HA to inform its followers of its position, while
u6−7’s commP transitions should be activated for target calculation and position
control. It can be concisely configured, as shown in the green box (line 15) in
Fig. 4.

Fig. 3. An Overview of the Template-HA Model for UAV Agents

Fig. 4. Multi-UAV System Modeling Snippet in a Structured Configuration File (Color
figure online)

336 J. Wang et al.

B. Modeling Agent Composition by Communication Configurations
Agents are usually complexly coupled rather than isolated in a CPS. To formalize
agents’ composition, we define communication items and configurations for them.

Definition 5 (Communication Item). Given two runtime agents modeled as
HI

1=(X1, U1, Q1, F1, Inv1, E1, G1, R1, α1, β1, γ1) and HI
2=(X2, U2, Q2, F2, Inv2,

E2, G2, R2, α2, β2, γ2), where X1∩X2 = ∅, U1∩U2 = ∅, E1∩E2 = ∅, Q1∩Q2 = ∅,
a communication item for them is a tuple c = (HI

1 , e1, I,HI
2 , e2, O,R′

e1), where

– e1 ∈ E1, e2 ∈ E2, β1(e1) = β2(e2) = Eglobal, γ1(e1) = γ2(e2) = Eact;
– I, O are ordered sets, |I| = |O|,2 elements in I must be global input variables

in HI
1 , while elements in O must be global output variables in HI

2 , i.e.,
∀x ∈ I, x ∈ X1

∧
α1(x) = Xinp; ∀x ∈ O, x ∈ X2

∧
α2(x) = Xout;

– R′
e1 is an additional reset function for variables in X1.

A communication item formalizes a composition relationship between two agents.
Under the item c, global transitions e1 and e2 are bound together as a communi-
cation channel, expected to happen simultaneously under their guard conditions.
Once they happen, communication contents in O will be received by ports in I
in sequence. The additional reset function R′

e1 will be executed next, followed
by agents’ original reset functions.

Definition 6 (Communication Configuration). Given two agents modeled
as HI

1 and HI
2 as above, a communication configuration C=()|(c)|(c1, · · · , cn),

where ci=(HI
1 i, e1i, Ii,H

I
2 i, e2i, Oi, R

′
e1 i

) is a communication item for HI
1 and HI

2 .

– C = (): HI
1 and HI

2 are independent;
– C = (c): HI

1 and HI
2 are connected by the item c as Definition 5;

– C = (c1, · · · , cn): for any ci and cj(1≤i<j≤n), if e1i ∩ e2i ∩ e1j ∩ e2j �= ∅,
then all these transitions are expected to happen simultaneously, together with
the communication between Ii and Oi, Ij and Oj. Otherwise, transitions e1i,
e2i are bound together as Definition 5, so are transitions e1j and e2j.

Semantics: Communication configuration, consisting of none, one, or multiple
items, formalizes two agents’ composition. Their composition under a communi-
cation configuration can be formalized as another larger instance-HA as follows.

Definition 7 (Instance-HA Composition). Given two instance-HA HI
1 =

(X1, U1, Q1, F1, Inv1, E1, G1, R1, α1, β1, γ1) and HI
2 = (X2, U2, Q2, F2, Inv2, E2,

G2, R2, α2, β2, γ2), where X1 ∩X2 = ∅, U1 ∩U2 = ∅, E1 ∩E2 = ∅, Q1 ∩Q2 = ∅,
the composition of HI

1 and HI
2 under communication configuration C can be

modeled as instance-HA HI = (X,U,Q, F, Inv,E,G,R, α, β, γ), where

– X = X1 ∪X2 = {X1,X2} are variables, classified by α(x) =
{α1(x), x ∈ X1

α2(x), x ∈ X2
.

2 For any set A, |A| denotes the number of elements in A.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 337

– U = U1∪U2 = {U1, U2} are external inputs; Q = Q1×Q2 are discrete modes;

– F = {F(qi,qj)| (qi, qj) ∈ Q} are flow functions, where
{ Ẋ1 = F1qi(X1, U1)

Ẋ2 = F2qj (X2, U2)
.

– Inv = {Inv(qi,qj) = Inv1(qi)∩Inv2(qj)| (qi, qj) ∈ Q} are invariant conditions;
– E ⊆ Q × Q are discrete transitions constructed in the following two ways:

for ∀ea = (qa, q′
a) ∈ E1,∀eb = (qb, q′

b) ∈ E2,
1) if ∃c = (HI

1 , e1, I,HI
2 , e2, O,R′

e1) ∈ C, {ea, eb}={e1, e2} or
{ea, eb}={e2, e1}:

• ec=((qa, qb), (q′
a, q

′
b)) ∈ E, classified by β(ec)=Eglobal, activated by

γ(ec)=Eact;
• Gec=Gea ∩ Geb is the guard condition, and Rec resets X := Rec(X,U)

as:
* X := {Re1(R

′
e1(RI/O(X1), U1), U1), Re2(X2, U2)} when {ea, eb} =

{e1, e2};
* X := {Re2(X1, U1), Re1(R

′
e1(RI/O(X2), U2), U2)} when {ea, eb} =

{e2, e1};
where function RI/O(x) =

{O(i) , I(i) = x
x , x ∈ X − I .

2) otherwise:
• ec = ((qa, qb), (q′

a, qb)) ∈ E, ed = ((qa, qb), (qa, q′
b)) ∈ E;

• β(ec) = β(ea), γ(ec) = γ(ea), Gec = Gea , Rec(X) := {Rea(X1, U1),X2};
• β(ed) = β(eb), γ(ed) = γ(eb), Ged = Geb , Red(X) := {X1, Reb(X2, U2)}.

The composition of multiple agents can be formalized by applying Definition
7 recursively. With communication configurations, agents’ static compositions
are efficiently configured, and always adhere to their inherent communication
capabilities. For example, as shown in the orange box (line 17-22) in Fig. 4, com-
munication configuration defines the composition of u3 and its followers u6−7 in
mission M4, where u6−7 gets u3’s position to calculate their own target positions.

C. Modeling Dynamic Typology by Scenario Task Configurations
In a reconfigurable CPS, agents usually interconnect dynamically, and the system
topology shifts across scenarios during runtime. To capture this dynamic feature,
we introduce atom tasks and scenario tasks below.

Definition 8 (Atom Task). Given a system with multiple agents indexed by
unique IDs, an atom task of the system is a tuple AT=(A, HI , Q0, Qf , C), where

– A = {Ai}ni=1 are the IDs of all involvezd agents in the current scenario;
– H

I={HI
i }ni=1 are involved agents’ instance-HAs, HI

i instantiated from HT
Ai

;
– Q0={Q0

i }ni=1, Qf={Qf
i }ni=1are agents’ initial and final modes, Q0

i , Q
f
i ∈ QAi

;
– C={Ci}mi=1 are communication configurations defined on H

I .

An atom task describes a scenario, detailing active agents, behaviors, and com-
positions. It begins with agents evolving simultaneously from initial modes. It
ends once all agents have reached final modes. For example, the scenario where
u3 leads u6−7 in mission M4 is described in the blue box (line 13-23) in Fig. 4.

338 J. Wang et al.

Fig. 5. The Hierarchy of Our Scenario-based Modeling Language

Besides, we offer a template mechanism for atom tasks to enhance task
reusability. In a task template, involved agents’ types, behaviors, and compo-
sitions are defined, leaving their IDs and some const variables for customization.
For example, missions M1 and M2 can be customized by the same task template.

Definition 9 (Scenario Task). A scenario task ST=AT |(ST ;ST)|(ST ||ST),
where (ST ;ST) denotes the sequential execution of two scenario tasks, while
(ST ||ST) denotes the parallel execution of two scenario tasks. Therefore, it can
either be a single atom task or a sequential/parallel compositional task.

Agents involved in the two subtasks of a parallel compositional task should be
disjoint. Besides, if an agent is involved first in atom task AT1 and then in AT2,
its initial mode in AT2 should be consistent with its final mode in AT1.

Scenario task specifies the flow of scenarios recursively, which in turn, con-
figures the dynamic shifts of system topologies. Therefore, it is also called
scenario task configuration in this work. For example, as shown in the
red box (line 5-10) in Fig. 4, the dynamic topology of the multi-UAV system
in mission M1-4 is defined by scenario task configurations. The scenario task
Tmission=((Tring;Tspeed);Ttree) represents the sequential execution of three sce-
nario tasks: Tring for M1-2, Tspeed for M3, and Ttree for M4. See Fig. 8a for a
graphical illustration.

D. Hierarchical Modeling for Reconfigurable CPSs
The hierarchy of our modeling language is summarized in Fig. 5. The design idea
is to abstract agents’ inherent features into template-HA models, so that recon-
figurable CPSs can be modeled through simple instantiations and configurations.

Agent internal runtime behavior is modeled by an instance-HA, which is
instantiated from its inherent template-HA model. Multiple agents’ intercon-
nected behaviors are modeled by the composition of their instance-HAs, which
are connected by communication configurations. Then, the behavior of a recon-
figurable CPS in a specific scenario is modeled by an atom task, with its involved
agents’ compositional instance-HAs. Finally, the CPS’s runtime behaviors in
changing scenarios with dynamic topologies are structured by scenario task
configurations.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 339

3.2 Specifying System Requirements in Topology-Aware STL

Topology-aware STL is a domain-specific extension of STL, designed to spec-
ify requirements for multi-agent systems with dynamic topologies. Although it
shares the same expressiveness as STL, it facilitates the construction and eval-
uation of specifications related to system topologies.

Definition 10 (Topology-Aware STL). A topology-aware STL formula ϕ
interpreted over boolean, integer, and real variables X={Xb,Xi,Xr} is defined
as:

ϕ := true | ψ | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1UIϕ2, with the atomic predicate ψ as
ψ := End[T] | Mode[A] = dq | θ(Xr) ≥ d , where
End[T] ∈ Xb indicates whether a scenario task T has been completed.

Mode[A] ∈ Xi denotes the mode index of an agent A, while dq is an integer
mode index constant. Real variables Xr consist of agents’ variables, external
inputs, and scenario tasks’ run time, denoted as Time[T] for the scenario task
T . Function θ: R

n → R maps valuations of Xr into real numbers, and d is a
constant.

Semantics: Given a topology-aware STL formula ϕ, a signal w of X , and time
t, the quantitative semantics of its robustness degree ρ(ϕ,w, t) is defined as
Definition 2, except the robustness of atomic predicates is defined as below:

ρ (End[T], w, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 , T is a completed atom task
−1 , T is an uncompleted atom task

(
2∑

i=1

ρ(End[Ti], w, t))/2 , T = (T1;T2) is a sequential task

min
i∈[1,2]

ρ(End[Ti], w, t) , T = (T1||T2) is a parallel task

(2)

ρ (Mode[A] = dq, w, t) = −DistA(Mode[A](t), dq) (3)
ρ (θ(Xr) ≥ d, w, t) = θ(w(t)) − d (4)

The robustness of End(T) indicates scenario task T ’s completion extent. The
robustness of the predicate q(A) = dq indicates agent A’s distance to the target
mode dq. The function DistA: QA×QA → Z

+ maps two modes in agent A to the
minimum number of hops required to jump from the first mode to the second by
transitions in A. The robustness degree is negative only if the signal of variables
violates the formula, and it decreases as the severity of the violation increases.
In this work, signals are interpreted according to system trajectories. When the
trajectory is clear, we use a simpler notation ρ(ϕ), instead of ρ(ϕ,w, 0), to denote
the robustness of formula ϕ on trajectory signal w at time zero.

Topology-aware STL is augmented with customized variables, predicates, and
semantics. Predefined elements for task duration, completion, and mode iden-
tification help to describe topology-related requirements while avoiding intro-
ducing loads of extra variables, constraints, and functions to system models. For
example, Table 1 lists some topology-aware STL specifications for the multi-UAV
system modeled in the scenario task Tmission. Furthermore, topology-aware STL

340 J. Wang et al.

provides more meaningful quantitative semantics with better robustness degrees.
This can facilitate CPS falsification by offering more effective guidance.

Table 1. Examples of Topology-Aware STL Specifications

Topology-Aware STL Specification Description

�(¬(Time[Ttree] ≥ 10)) tree formation takes less than 10 s
♦(End[Tring] ∧ Time[ATr5ccw]

Time[ATr1cw]
≥ 1) ring formations are completed eventually and

the second ring takes no less time than the first
¬♦(�[0,4](Mode[u2] = 1 ∧ u2.μ≥6.6)) u2 never stays in the Cruise mode (index 1)

with dangerous horizontal speeds for 4 s

Fig. 6. The Path-oriented Optimization-based Falsification Framework

4 Path-Oriented Optimization-Based System Falsification

4.1 Falsification Framework

For a reconfigurable CPS modeled in a scenario task T and its requirement spec-
ified as a topology-aware STL ϕ, falsification aims to find a witness trajectory
that violates ϕ, i.e. specification ϕ’s robustness is negative on this trajectory.
We denote a counterexample pair as (x0, wµ, p, τ), under which the trajectory
is a witness. Here, x0 represents the initial value of agents’ variables, wµ repre-
sents the signal of external inputs, p represents the path of agents’ mode and
transition sequence, and τ represents agents’ dwelling time in modes along p.

To fully explore both discrete and continuous dimensions of the vast search
space, our falsification approach uses a path-oriented strategy, as shown in Fig. 6.
At the bottom, it explores discrete space, generating paths based on the discrete

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 341

structure of agents and scenario tasks. On the top, it explores continuous space
for each generated path p, performing path falsification to find an optimal pair
(x0, wµ, τ) that minimizes the specification ϕ’s robustness on trajectories along
p. The falsification problem is solved when the minimal robustness is negative.

Our SAT-based path generation and optimization-based path falsification
are given next. For brevity, we will only consider models with nondeterministic
semantics, since deterministic models can be viewed as a simplified case.

4.2 Path Generation for Hierarchical Scenario Tasks

For a scenario task, its path determines how its involved agents change their
modes and make their transitions during it. Below is the definition of path.

Definition 11 (Path of Scenario Task). For a given scenario task ST , if

– ST=AT=(A, HI , Q0, Qf , C) is an atom task: a path of it with length l is a
tuple p=({Mi, T i}l−1

i=0,Ml), where Mi=(Mi
1, ...,Mi

|A|) denotes all agents’
modes in the i-th step, and T i=(T i

1 , ..., T i
|A|) denotes their next transitions

after this step. For each agent Ak ∈ A, the tuple p should satisfy:
• agent discrete structure: Mi

k should be a mode of agent Ak’s instance-
HA HI

k ∈ H
I ; T i

k can either be a transition that jumps from Mi
k to Mi+1

k

in HI
k or a stutter transition S that indicates no mode shift.

• atom task requirement: agent Ak should start from its initial mode
Q0

k and end in its final mode Qf
k . If Ak is connected to another agent by

a communication item in C, their synchronized transitions should occur
simultaneously.

– ST is a sequential task: its path is the concatenation of its subtasks’ paths.
– ST is a parallel task: its path is the combination of its subtasks’ paths.

A composition scenario task’s paths are produced by recursively generating its
subtasks’ paths and then concatenating or combining them. An atom task’s
paths are generated by SAT encoding, solving, and decoding.

We transform the length-bounded path generation for atom tasks into a SAT
problem. Constraints for paths with lengths no longer than m are encoded as
the propositional formula set Fm in Eq.(8). Specifically, constraints on each
agent’s discrete structure are encoded as Eq.(5)-(6), and requirements on the
atom task are encoded as Eq.(7). To solve this SAT problem, advanced SAT
solvers like Glucose [9] and CryptoMiniSat [60] can be used, and then the solu-
tions can be decoded into paths. For instance, ((Cruise, Cruise, Cruise), (comm,
commP, commP), (Cruise, Position Control, Position Control), (S, goHover,
S), (Cruise, Cruise, Position Control), (S, S, goHover), (Cruise, Cruise,

342 J. Wang et al.

Cruise)) is a path of the atom task ATmiddle in the running example.

NEXT i
k :=

∧

q∈QAk

((Mi
k = q) → ((

∨

e=(q,q′)∈EAk
∧γAk

(e)=Eact

(T i
k = e ∧ Mi+1

k = q′)) ∨ (T i
k = S ∧ Mi+1

k = q)))(5)

EXCLD i
k := (

∧

q,q′∈QAk
∧q �=q′
(Mi

k = q → Mi
k �= q′)) ∧ (

∧

e,e′∈(EAk
∪ S)∧e�=e′

(T i
k = e → T i

k �= e′)) (6)

INITk := (M0
k = Q0

k), END l
k := (Ml

k = Qf
k), SYNC i

k :=
∧

(HI
k

,e1,I,HI
k′ ,e2,O,R′

e1
)∈Cj∈C

(T i
k = e1 ↔ T i

k′ = e2)(7)

Fm :=
∧

Ak∈A

(INITk ∧ (
∨

0<l≤m

(END l
k ∧

∧

0≤i<l

SYNC i
k ∧

∧

0≤i<l

NEXT i
k ∧

∧

0≤i≤l

EXCLD i
k)))(8)

4.3 Optimization-Based Falsification for Paths

Path falsification is achieved by optimizing for a trajectory that minimizes the
target specification’s robustness along the path. However, this optimization prob-
lem can be high-dimensional, nonlinear, nonconvex, and challenging, due to the
complexity of agents, topologies, and scenarios involved. Therefore, we devel-
oped a two-layered classification-model-based optimization method for it, along
with an efficient robustness calculation algorithm.

Two-Layered Classification-Model-Based Optimization. In Fig. 6, the
first layer optimizes for the best pair of initial values and external inputs that
minimizes robustness. For each pair (x0, wµ), the second layer performs multi-
objective optimization for the best dwelling time τ that minimizes robust-
ness while maximizes the number of reachable modes along the path. τ is
evaluated by the two objective functions’ weighted sum, i.e. min f=w1ρ(ϕ) +
w2ρ(p) (|w1|+|w2|=1, w1 >0, w2<0), with weighting coefficients updated dynam-
ically during optimization.

Both optimization layers are solved with classification models. Unlike clas-
sical heuristic optimization methods with weak theoretical guarantees or poor
scalability, classification-model-based optimization has a grounded theory about
complexity and convergence [39,64]. It has been theoretically proven to solve
problems with local-Lipschitz continuity in polynomial time, and empirically
proven to be scalable to high-dimensional problems. Its basic idea is to learn a
classification model iteratively to discriminate bad solutions from good ones.

We employ a hyper-rectangle M1 in the first layer as the classification model
to represent the positive region, and a hyper-rectangle M2 in the second layer
as Fig. 6. In both layers, solutions are sampled from corresponding models, eval-
uated accordingly, and classified into positive/negative ones to refine models.
The sampling, evaluating, and model refinement cycles iterate to enhance classi-
fication models’ accuracy and optimize solutions. Our two-layered optimization
enables accurate model refinement and alleviates the scalability issue.

Efficient Robustness Calculation. During falsification, system simulation
and robustness calculation are compute-intensive and time-consuming. We intro-
duce time-context and lifespan in temporal logic to reduce them.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 343

Fig. 7. An Example of Lifespan Calculation for the Target Specification ϕ

Definition 12 (Time-Context, Lifespan). Given a target temporal logic
specification ϕ, for any formula ϕ′ in it (including ϕ itself), its time-context
C(ϕ′|ϕ) is the period during which its satisfaction affects ϕ’s satisfaction, its
lifespan L(ϕ′|ϕ) is the period during which the signals affect its satisfaction in
its time-context. We omit the target specification ϕ when it is clear. Relations
between ϕ′ and its subformulas, in terms of time-context and lifespan are:

ϕ′ := true → C(true) = C(ϕ′) L(ϕ′) = ∅ (9)
ϕ′ := ψ → C(ψ) = C(ϕ′) L(ϕ′) = L(ψ) = C(ψ) (10)

ϕ′ := ¬ϕ1 → C(ϕ1) = C(ϕ′) L(ϕ′) = L(ϕ1)
ϕ′ := ϕ1 ∨ ϕ2 → C(ϕ1) = C(ϕ2) = C(ϕ′) L(ϕ′) = L(ϕ1) ∪ L(ϕ2)

ϕ′ := ϕ1U[lb,ub]ϕ2 → C(ϕ1) = C(ϕ′) ∪ (ub ⊕ C(ϕ′)) L(ϕ′) = L(ϕ1) ∪ L(ϕ2)
C(ϕ2) = (lb ⊕ C(ϕ′)) ∪ (ub ⊕ C(ϕ′))

To compute the target specification ϕ’s robustness, we only need to simulate
and record system trajectory within ϕ’s lifespan. This helps to avoid unneces-
sary trajectory simulations, saving computation time and memory. The lifespan
of the target specification ϕ is computed as defined in Definition 12. We demon-
strate an example of it in Fig. 7. Note that the time-context of ϕ is [0, 0], as our
goal is to evaluate ρ(ϕ,w, 0), the target specification’s quantitative satisfaction
on the trajectory signal starting at time zero. As shown in blue boxes in Fig. 7,
starting with ϕ’s time-context [0, 0], the time-context of all subformulas is com-
puted from top to bottom along the parse tree. Next, we get the lifespan of all
atomic predicates according to Eq.(9)–(10). Finally, the lifespan of all formulas,
including the root ϕ, is computed from bottom to top as yellow boxes.

During the robustness calculation of the target specification, its subformulas’
time-context also can be utilized, avoiding unnecessary robustness calculations.
Efficient dynamic programming algorithms have been developed for temporal
logic robustness calculation [34,56]. Our algorithm follows the dynamic program-
ming principle and further improves efficiency by considering the time-context
of formulas in the target specification. Pseudocode appears in Algorithm 1.

This algorithm calculates the robustness of all formulas in ϕ’s parse tree at
each timestamp in the simulated trajectory, constructing a dynamic program-
ming table R to store the robustness of formula φ[i] at time t[j] in R[i, j].

344 J. Wang et al.

Algorithm 1: Time-Context Guided Robustness Calculation
Input: ϕ: target specification, w = (t,X): trajectory signal.
Output: ρ: Robustness of the target specification.

1 Function computeRobustness(ϕ, w)
2 φ=parse(ϕ); � formulas in ϕ’s parse tree in partial order

(top-down)
3 for i = |φ| to 1 do � from bottom atoms up to the root ϕ
4 for j = |t| to 1 do � from last timestamp to time zero
5 if t[j]<φ[i].C[1] then break; � skip this robustness calculation
6 else if t[j] > φ[i].C[2] && φ[i] �= ϕ1U[c,∞)ϕ2 then continue; � skip
7 else � calculate robustness at timestamps within time-context
8 if φ[i] := true then R[i, j] = �;
9 else if φ[i] := ψ then R[i, j] = ρ(ψ, w, t[j]); � as Eq.(2)-(4)

10 else if φ[i] := ¬φ[k] then R[i, j] = −R[k, j]; � as Eq.(1)
11 else if φ[i] := φ[k1] ∨ φ[k2] then R[i, j] = max(R[k1, j], R[k2, j]);
12 else if φ[i] := φ[k1]UIφ[k2] then � as Eq.(1)
13 m = j; R[i, j] = ⊥; r1 = �;
14 while (t[m] − t[j]) �∈ I do r1 = min(r1, R[k1, m ++]);
15 while (t[m] − t[j]) ∈ I do
16 if I = [c, ∞) && j �= |t| && (t[m] − t[j + 1]) ∈ I then break;
17 R[i, j] = max(R[i, j], min(r1, R[k2, m]));
18 r1 = min(r1, R[k1, m ++]);
19 if I=[c, ∞)&&j �= |t| then

R[i,j]=max(R[i,j],min(R[k1,j], R[i,j+1]));
20 return ρ = R[1, 1] � output ϕ’s robustness at time zero

It calculates robustness for atomic predicates, higher-level subformulas, and the
root specification sequentially (line 3-19). Each is calculated from the last times-
tamp backwards to the initial timestamp (line 4-22). It skips unnecessary robust-
ness calculations for timestamps outside the formula’s time-context (line 5-6),
i.e., the formula’s satisfaction at that point does not affect the target spec-
ification’s satisfaction. For timestamps inside the time-context, the formula’s
robustness is calculated by reusing its robustness at future timestamps and its
subformulas’ robustness (line 8-19), according to its robustness definitions in
Eq.(1)–(4).

5 Implementation and Evaluation

5.1 Implementation and Research Questions

We have implemented our SceNarIo-based reconfigurable CPS modeling and
FalsiFication approach in a tool called SNIFF3 in C++. It provides a graphical
user interface (GUI) for modeling, supporting the construction of agent template
models and agents’ runtime instantiations, communication configurations and

3 SNIFF is available at https://github.com/njuwjw/SNIFF.

https://github.com/njuwjw/SNIFF

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 345

scenario task configurations. It also provides path-oriented CPS falsification,
displaying witness paths and signals.
Below are research questions to evaluate our modeling and falsification approach:

RQ1: Can SNIFF help users reduce modeling time for reconfigurable CPS?
RQ2: Can SNIFF help users improve CPS modeling accuracy?
RQ3: Is SNIFF effective and efficient at CPS falsification? In particular, how
is its scalability and runtime performance?

Next, we introduce the reconfigurable CPSs used in our evaluations in detail.

Example 1: Multi-UAV System. The motivating example system is used for
our evaluations. Initially, eight UAVs are scattered in a closed space, x, y ∈
[−10, 10], z ∈ [1, 10]. During runtime, they are dynamically connected with
uncertain communication delays of d ∈ [0.05, 0.2]. Its behavior is modeled by
the scenario task Tmission, as shown in Fig. 8a. Atom tasks are in grey. Sequen-
tial and parallel compositional tasks are drawn in white-filled rectangles with
square and rounded corners, respectively. Besides, for fair modeling evaluations,
the flight mission was slightly modified as shown in Fig. 8b. Four UAVs are
involved and its scenario task includes three compositional tasks and six atom
tasks.

Fig. 8. Scenario Tasks for the Multi-UAV System

Example 2: Automatic Assembly System. It consists of four conveyors,
three robots with grippers, and six robots with welding guns for car production.
Conveyors transport floor, door, and roof panels along the assembly line, starting
at x ∈ [−2, 0]. Grabbing robots communicate with conveyors with a delay of
t ∈ [0, 0.1], and wheel around to grasp, move, and place doors and roofs. Welding
robots work together to spot weld joints in x ∈ [8, 12], y ∈ [8, 12].

Its behavior is modeled by the scenario task Tassembly as Fig. 9. Initially, in
TconveyGrasp, conveyors and grabbing robots collaborate to convey and grasp
four panels in parallel. Then, in task Tmove, grabbing robots first move doors
and then slot the roof. Finally, in TspotWeld, welding robots simultaneously weld
joints while grabbing robots return home once relevant joints are welded, ready
for the next assembly.

Experimental Setup. To evaluate SNIFF’s modeling time and accuracy, we
conducted a user study comparing it to another tool called SpaceEx [36],

346 J. Wang et al.

Fig. 9. Scenario Tasks for the Automatic Assembly System

which is a well-established platform for hybrid system modeling and verifica-
tion. SpaceEx’s modeling language, called SX [21,28], is based on compositional
hybrid automata, presented as base or network components. Both tools provide
a graphical modeling editor with automatic user action logging, which allows us
to evaluate modeling time accurately. Also, graphical models are saved automat-
ically in their respective modeling languages, enabling our checks for modeling
accuracy.

This user study was conducted with 111 computer science department stu-
dents, including undergraduates, graduates, and PhDs. They received a 50-
minute training session on CPS modeling and were required to model a multi-
UAV system, described as Fig. 8b, using both tools in a week. Participants were
given with a UAV template model and the templates for half atom tasks (in the
blue box in Fig. 8b) in SNIFF format. They are also provided with base compo-
nents in SpaceEx formats, containing the same information as the SNIFF tem-
plates we provided. Specifically, it contains information on all potential dynamics
of a UAV agent and agent compositional information in three atom tasks.

To evaluate SNIFF’s falsification performance, we conducted a experiment
comparing it with S-TaLiRo [8], an advanced optimization-based CPS falsifi-
cation tool. We ran S-TaLiRo with its SOAR [48] option, which outperformed
all of its other optimization options in our benchmarks. Systems are modeled
in ‘hautomaton’ class as its input. We falsified various temporal specifications
for the above two example systems on both tools. We conducted all experi-
ments 100 times on the same PC (Intel Core i5-12500, 16GB RAM) with a time
limit of 1800 s. The system simulation limit is 1000 iterations for deterministic
benchmarks and 25000 for non-deterministic ones. We did not use SpaceEx for
nonlinear systems’ temporal logic falsification comparison since it mainly focuses
on reachability verification for hybrid systems with piecewise affine dynamics.

5.2 Experimental Evaluation and Analysis

Time Cost of Modeling. According to participants’ modeling logs, models
were constructed in an average of 46.9min in SNIFF, while it took 308.1min,
6.6 times longer, in SpaceEx. To further analyze how time was saved in SNIFF,
Table 2 compares their time cost in different modeling elements.

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 347

Table 2. Time Costs to Model Different System Elements in SNIFF and SpaceEx

Type of Elements Number Time (min) Average Time (min)
SNIFF SpaceEx SNIFF SpaceEx

Agent 4 2.3 31.4 0.6 7.9
Atom Task (without Template) 3 8.4 3.1 11.4 41.8 16.4 29.4 7.6 29.2
Atom Task (with Template) 3 5.1 2.4 3.0 40.0 15.4 25.0 3.5 26.8
Compositional Scenario Task 3 1.4 2.3 1.3 21.8 18.8 31.9 1.6 24.2
Others (Other GUI Actions) — 6.3 36.4 — —
Total 46.9 308.1

– Agent internal behavior was modeled 13 times faster by SNIFF than by
SpaceEx. SNIFF’s agent-instantiation mechanism allows quick updates to
agent internal behavior, while SpaceEx requires additional components to
be built.

– For both tools, modeling system behaviors in atom tasks took the longest.
On average, it took 7.6min with SNIFF when no task template was given,
while nearly half an hour with SpaceEx. It indicates that communication
configurations in SNIFF were helpful in defining agent composition in atom
tasks.

– With task templates, atom tasks’ modeling time was reduced by half in SNIFF,
from 7.6min to 3.5min. SNIFF’s support for task templates makes agent com-
position more convenient.

– To describe topologies in compositional scenario tasks, it averagely took
1.6min in SNIFF, but 24.2min in SpaceEx. Dynamic topologies can be set
quickly by SNIFF’s scenario task configurations, but challenging in SpaceEx.

The Answer to RQ1: SNIFF’s template models, together with its flexible
instantiation and configuration mechanisms, simplify the modeling of reconfig-
urable CPS, saving considerable modeling time and effort for users.

Accuracy of Modeling. Among the models submitted by participants, 70.27%
of SNIFF models were accurate, while only 7.21% of SpaceEx models were accu-
rate. We analyzed all submitted modeling errors and classified them into four
major types in Table 3. It lists their sources and probabilities, which are counted
per source to eliminate the influence of the number of sources.

– Compared to SpaceEx, SNIFF reduces all types of modeling errors signifi-
cantly.

– In SpaceEx, more than half (59.46%) of system behaviors with parallel topol-
ogy shifts were incorrectly modeled, whereas SNIFF’s scenario task configu-
rations simplify this modeling process and eliminate such errors completely.

– In SNIFF, modeling agents’ compositions has the highest error rate (6.91%).
Our additional statistics found that only 13% of these errors occur when
task templates are used, indicating that task templates can help reduce such
errors.

348 J. Wang et al.

Table 3. Probabilities of Different Modeling Errors in SNIFF and SpaceEx

Type of Errors Source of Errors Probability (per Source)
SNIFF SpaceEx

Agent Internal Behavior Error Agent 1.13% 15.32%
Agents’ Composition Error Atom Task 6.91% 38.89%
Sequential Topology Shift Error Sequential Compositional Task 0.90% 17.12%
Parallel Topology Shift Error Parallel Compositional Task 0.00% 59.46%
Others1 — 1.80% 29.73%
1 This includes misnamed, incomplete and undefined parameters, agents, tasks, etc.

The Answer to RQ2: SNIFF significantly improves the accuracy of CPS models
constructed by users, reducing all types of modeling errors.

Falsification Performance. Two example systems are falsified under various
scenarios, ranging from the simplest to the most complex. Table 4 lists the size
of each scenario task, including the number of atom tasks. Scenarios within 20 s
are highlighted in green, others in red. We listed the falsification performance of
SNIFF and S-TaLiRo for each specification, including success rates, and costs of
time and simulation iterations to find a witness. We also calculated the average
falsification time for each atom task, presented in grey.

Generally, SNIFF supports falsification for models with richer semantics and
can handle a wider range of specifications. The multi-UAV system follows deter-
ministic semantics, but the assembly system follows nondeterministic semantics,
which is not specifically supported in S-TaLiRo. Out of the total thirty specifi-
cations, six are unsupported in S-TaLiRo and are underlined in the table.

– Effectiveness: On average, SNIFF’s success rate is 99.7%, whereas S-TaLiRo
is below 45%, indicating that our path-oriented falsification approach helps
explore search space effectively. Especially, SNIFF’s success rate is at least
97% in all cases, while S-TaLiRo achieved this in only two cases.

– Efficiency: SNIFF is more efficient than S-TaLiRo. It takes 0.1–39.2 s to falsify
these specifications, while S-TaLiRo takes an average of 730.9 s, more than
12min. Also, in the 16 cases that S-TaLiRo supports, SNIFF averagely requires
only one-fifth as many simulation iterations as S-TaLiRo.

– Scalability: As the scenario grows in size and complexity, system behav-
iors become more intricate, and falsification inevitably becomes challenging
and time-consuming. The table shows that S-TaLiRo’s success rate decreases
greatly in complex scenarios, whereas SNIFF’s success rate barely drops. The
rise in SNIFF’s time-cost and simulation iterations is also reasonable.

– Runtime Performance: CPSs may need online modeling and analysis due to
runtime reconfiguration [13]. To evaluate our performance for runtime atom
task scenarios, we roughly divide the falsification time by the number of
atom tasks, as highlighted in grey. It indicates that SNIFF can handle such
scenarios in around 1.7 s on average. Since automatic modeling in our language

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 349

Table 4. Falsification Results of Example Systems in SNIFF and S-TaLiRo

Scenario Task SNIFF S-TaLiRo3

size1System
name

s1 s2 s3

Spec2 success
rate

time
(s)

time per
AT (s)

sim-
iter

success
rate

time
(s)

time per
AT (s)

sim-
iter

s1 100% 0.7 0.7 31 100% 20.1 20.1 179
s2 100% 2.2 2.2 110 100% 33.9 33.9 179
s3* 100% 0.5 0.5 25 91% 211.1 211.1 653

treeL1 1 4 16

s4* 100% 0.9 0.9 47 78% 207.1 207.1 588
s5 100% 1.8 0.5 42 40% 776.0 194.0 373
s6 100% 2.3 0.6 51 62% 492.3 123.1 276
s7* 100% 2.1 0.5 22 45% 905.7 226.4 308

tree 4 8 32

s8* 100% 2.1 0.5 22 79% 728.7 182.2 348
s9 99% 25.3 3.2 55 0% #N/A #N/A #N/A
s10 97% 39.2 4.9 120 12% 1330.3 166.3 341
s11 98% 38.2 4.8 87 3% 989.1 123.6 333
s12 100% 34.6 4.3 129 43% 1154.9 144.4 336
s13* 100% 23.1 2.9 130 1% 1532.5 191.6 346
s14* 100% 17.7 2.2 65 34% 1269.3 158.7 350
s15* 100% 30.2 3.8 111 4% 1220.9 152.6 339
s16* 100% 37.9 4.7 83 24% 91.8 11.5 202
s17 100% 10.1 1.3 73 / / / /
s18 100% 15.3 1.9 68 / / / /
s19 100% 13.6 1.7 62 / / / /

Multi
-UAV

System

mission 8 8 32

s20 100% 28.9 3.6 108 / / / /
s21* 100% 0.1 0.1 1414 / / / /

weld2 1 1 2
s22* 100% 0.2 0.2 2123 / / / /
s23 100% 0.8 0.4 3865 / / / /

wRoof 2 2 4
s24* 100% 0.6 0.3 2799 / / / /
s25* 99% 1.9 0.5 2335 / / / /convey

-Grasp 4 7 14
s26* 99% 2.7 0.7 2172 / / / /
s27 100% 14.2 0.9 1260 / / / /
s28* 100% 13.9 0.9 1219 / / / /
s29* 100% 18.3 1.2 1635 / / / /

Automatic
Assyembly

System

assembly 15 13 26

s30* 98% 16.3 1.1 1803 / / / /

Average 99.7% 13.2 1.7 736 44.8% 730.9 143.1 343

1 This column indicates the complexity of scenarios. s1, s2, and s3 respectively denote the number of
involved atom tasks, involved agents, and uncertain variables/external inputs.

2 Asterisked specifications are topology-related and are indirectly supported by S-TaLiRo. Underlined
specifications involve nonlinear arithmetic that are unsupported by S-TaLiRo.

3 ‘#N/A’ denotes unknown costs to falsify when a case hasn’t been successfully falsified. ‘/’ denotes
unavailable falsification performance due to an unsupported model or specification.

barely costs time, we can handle the entire online configuring, modeling, and
falsification process in seconds, improving system runtime safety.

The Answer to RQ3: SNIFF is highly effective, efficient, and scalable for
temporal logic falsification in CPSs. It also demonstrates satisfactory runtime
performance, handling runtime scenarios with a single atom task in seconds.

350 J. Wang et al.

5.3 Threats to Validity

In this section, we discuss possible threats to the validity of our user study.

Internal Validity. is the assessment of modeling accuracy. In our user study,
to evaluate modeling accuracy accurately, we restricted names of agents and
tasks in SNIFF and components in SpaceEx. In this way, SNIFF/SpaceEx models
could be automatically checked by examining their scripts. Another threat is
that participants’ familiarity with the target CPS could affect modeling. After
collecting participants’ modeling logs (automatically logged by both tools), we
examined the order in which participants used the tools. It shows that 60% of
participants used SNIFF first, and 84% of participants completed modeling in
SNIFF first. This may introduce bias into our modeling evaluation.

External Validity. The main external threat arises from the representative
of subjects of our user study. Formal modeling is typically conducted by engi-
neers with relevant expertise. To conduct the user study with representative
subjects, we recruited 111 participants from a course called Formal Languages
and Automata, ensuring that they had a basic understanding of modeling and
were close to real-world industry target users. Another threat is that our conclu-
sions might not generalize to all reconfigurable CPS. We alleviate the threat by
deriving the Multi-UAV system from a real-world case. Results from real-world
CPS will help us evaluate our approach better. Additionally, we plan to conduct
larger-scale experiments on more real-world reconfigurable CPSs in the future.

6 Related Work

Formalizing CPS is complex due to its hybrid and compositional nature. Formal
models, such as hybrid automata [38,45] and hybrid process algebras [12,22], are
used to formalize the tangled continuous and discrete behaviors in CPS. Further,
compositional hybrid models formalize the behavior of multiple agents, by com-
posing hybrid automata [6,45], processes [15], etc. Based on these formalisms,
various modeling languages have been developed for multi-agent systems, includ-
ing Unified Modeling Language (UML) based notations such as AUML [40], Con-
straint Logic Programming (CLP) notations [50,51], and Verse [43], a Python
library for systems with multiple agents moving on a map, etc. However, for
reconfigurable multi-agent CPS whose system topologies change dynamically at
runtime [37,59,62], these models and notations do not provide sufficient mech-
anisms to support such flexibility. Although there have been works on mod-
eling reconfigurable systems, they focus mainly on general architectural mod-
eling [10,17,58]. In contrast, this work aims to provide a behavior modeling
formalism that can effectively capture the reconfigurability of these systems.

CPS falsification is an effective way to detect system behaviors that vio-
late specifications. Many falsification approaches search for witness behaviors
by applying optimization algorithms to minimize robustness, including opti-
mistic optimization [65,66], Bayesian optimization [25,61], classical heuristic-
based methods [7,49,52,57], etc. Our falsification approach also falls under this

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 351

category. Its most closely related work is [63], which also applies classification-
model-based optimization [39,64]. However, it is limited to the safety falsification
of a single agent. In contrast, we support broader temporal logic falsification
for CPSs with multiple dynamically wired compositional agents. Apart from
optimization-based ones, there are also other falsification approaches, such as
motion-planning-based falsification [24,31,53], gradient-based falsification [14],
and learning-based falsification [3].

7 Conclusion and Future Work

We present a hierarchical formal modeling language for reconfigurable CPSs. It
provides templates for agent inherent features and allows for the formalization
of reconfigurable CPS through agent instantiations, agents’ communication con-
figurations, and scenario task configurations. While it doesn’t add expressivity
beyond HA, its flexible hierarchy can simplify the complex modeling process,
saving time and improving accuracy. Our future plans involve providing support
for more CPS architectures and system topology variations.

We also propose a path-oriented falsification approach for reconfigurable
CPSs. It employs a two-layered optimization approach to explore the search
space effectively and cuts unnecessary calculations to improve efficiency. Exper-
iments have shown that it can perform scalable falsification with high success
rates. In the future, we plan to further enhance its runtime performance by
leveraging offline and past online analysis results.

References

1. Acharya, S., Bharadwaj, A., Simmhan, Y., Gopalan, A., Parag, P., Tyagi, H.:
Cornet: A co-simulation middleware for robot networks. In: 2020 International
Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 245–
251. IEEE (2020)

2. Ahmadi, A., Moradi, M., Cherifi, C., Cheutet, V., Ouzrout, Y.: Wireless connec-
tivity of cps for smart manufacturing: a survey. In: 2018 12th International Confer-
ence on Software, Knowledge, Information Management & Applications (SKIMA),
pp. 1–8. IEEE (2018)

3. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_27

4. Alur, R.: Principles of cyber-physical systems. MIT press (2015)
5. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.

138(1), 3–34 (1995)
6. Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refinement

for hierarchical hybrid systems. J. Logic Algebraic Program. 68(1–2), 105–128
(2006)

7. Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification
of hybrid systems. In: IECON 2010-36th Annual Conference on IEEE Industrial
Electronics Society, pp. 91–96. IEEE (2010)

https://doi.org/10.1007/978-3-319-95582-7_27

352 J. Wang et al.

8. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_21

9. Audemard, G., Simon, L.: Glucose: a solver that predicts learnt clauses quality.
SAT Competition pp. 7–8 (2009)

10. Bazydło, G.: Designing reconfigurable cyber-physical systems using unified mod-
eling language. Energies 16(3), 1273 (2023)

11. Bérard, B., et al.: Systems and software verification: model-checking techniques
and tools. Springer Science & Business Media (2013)

12. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theoret.
Comput. Sci. 335(2-3), 215–280 (2005)

13. Bersani, M.M., García-Valls, M.: Online verification in cyber-physical systems:
Practical bounds for meaningful temporal costs. J. Softw. Evolution Proc. 30(3)
(2018)

14. Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.: Falsification of
hybrid systems using symbolic reachability and trajectory splicing. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 1–10 (2019)

15. Brinksma, E., Krilaviĉius, T., Usenko, Y.S.: Process algebraic approach to hybrid
systems. IFAC Proc. Vol. 38(1), 325–330 (2005)

16. Bu, L., Li, Y., Wang, L., Li, X.: Bach: bounded reachability checker for linear
hybrid automata. In: 2008 Formal Methods in Computer-Aided Design, pp. 1–4.
IEEE (2008)

17. Cavalcante, E., Batista, T., Oquendo, F.: Supporting dynamic software architec-
tures: From architectural description to implementation. In: 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pp. 31–40. IEEE (2015)

18. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_18

19. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of model
checking, vol. 10. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

20. Copty, F., et al.: Benefits of bounded model checking at an industrial setting. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_43

21. Cotton, S., Frehse, G., Lebeltel, O.: The spaceex modeling language. SpaceEx tool
(2010)

22. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Logic Algebraic Pro-
gram. 62(2), 191–245 (2005)

23. Dafflon, B., Moalla, N., Ouzrout, Y.: The challenges, approaches, and used tech-
niques of cps for manufacturing in industry 4.0: a literature review. Inter. J. Adv.
Manufact. Technol. 113, 2395–2412 (2021)

24. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods Syst. Design 34, 183–213 (2009)

25. Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Comput.
Syst. (TECS) 16(5s), 1–18 (2017)

26. Do, H.T., et al.: Formation control algorithms for multiple-uavs: a comprehensive
survey. EAI Endorsed Trans. Indus. Netw. Intell. Syst. 8(27), e3–e3 (2021)

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-44585-4_43

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 353

27. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6_17

28. Donzé, A., Frehse, G.: Modular, hierarchical models of control systems in spaceex.
In: 2013 European Control Conference (ECC), pp. 4244–4251. IEEE (2013)

29. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9_9

30. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems.
In: Handbook of Model Checking, pp. 1047–1110 (2018)

31. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10

32. Du, Y., Lu, X., Wang, J., Chen, B., Tu, H., Lukic, S.: Dynamic microgrids in
resilient distribution systems with reconfigurable cyber-physical networks. IEEE
J. Emerging Selected Topics Power Electr. 9(5), 5192–5205 (2020)

33. Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I.: Fast falsification of hybrid systems
using probabilistically adaptive input. In: Parker, D., Wolf, V. (eds.) QEST 2019.
LNCS, vol. 11785, pp. 165–181. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30281-8_10

34. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using s-taliro. In: 2012 American Control Conference
(ACC), pp. 3567–3572. IEEE (2012)

35. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J.
Softw. Tools Technol. Transfer 10, 263–279 (2008)

36. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

37. Gray, J., Rumpe, B.: Modeling dynamic structures (2020)
38. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual

IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE (1996)
39. Hu, Y.Q., Qian, H., Yu, Y.: Sequential classification-based optimization for direct

policy search. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31 (2017)

40. Huget, M.P.: Agent uml notation for multiagent system design. IEEE Internet
Comput. 8(4), 63–71 (2004)

41. Lee, E.A.: The past, present and future of cyber-physical systems: a focus on
models. Sensors 15(3), 4837–4869 (2015)

42. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical sys-
tems approach. MIT press (2016)

43. Li, Y., Zhu, H., Braught, K., Shen, K., Mitra, S.: Verse: a python library for
reasoning about multi-agent hybrid system scenarios. In: International Conference
on Computer Aided Verification, pp. 351–364. Springer (2023). https://doi.org/10.
1007/978-3-031-37706-8_18

44. Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., Sastry, S.S.: Dynamical prop-
erties of hybrid automata. IEEE Trans. Autom. Control 48(1), 2–17 (2003)

45. Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inform. Comput.
185(1), 105–157 (2003)

https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-030-30281-8_10
https://doi.org/10.1007/978-3-030-30281-8_10
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-031-37706-8_18
https://doi.org/10.1007/978-3-031-37706-8_18

354 J. Wang et al.

46. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3_12

47. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. Pillars of Computer Science: Essays Dedicated to Boris
(Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, pp. 475–505 (2008)

48. Mathesen, L., Pedrielli, G., Ng, S.H., Zabinsky, Z.B.: Stochastic optimization with
adaptive restart: a framework for integrated local and global learning. J. Global
Optim. 79, 87–110 (2021)

49. Mathesen, L., Yaghoubi, S., Pedrielli, G., Fainekos, G.: Falsification of cyber-
physical systems with robustness uncertainty quantification through stochastic
optimization with adaptive restart. In: 2019 IEEE 15th International Conference
on Automation Science and Engineering (CASE), pp. 991–997. IEEE (2019)

50. Mohammed, A., Furbach, U.: Multi-agent systems: modeling and verification using
hybrid automata. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS
2009. LNCS (LNAI), vol. 5919, pp. 49–66. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14843-9_4

51. Mohammed, A., Stolzenburg, F.: Implementing hierarchical hybrid automata using
constraint logic programming. In: Proceedings of 22nd Workshop on (Constraint)
Logic Programming, Dresden, pp. 60–71 (2008)

52. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 211–220 (2010)

53. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to falsi-
fication by combining motion planning and discrete search. Formal Methods Syst.
Design 34(2), 157–182 (2009)

54. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

55. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

56. Rosu, G., Havelund, K.: Synthesizing dynamic programming algorithms from linear
temporal logic formulae (2001)

57. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of the 15th ACM inter-
national conference on Hybrid Systems: Computation and Control, pp. 125–134
(2012)

58. Selić, B.: Specifying dynamic software system architectures. Softw. Syst. Model.
20(3), 595–605 (2021)

59. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: A new
frontier. In: 2008 IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (Sutc 2008), pp. 1–9. IEEE (2008)

60. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

61. Waga, M.: Falsification of cyber-physical systems with robustness-guided black-box
checking. In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control, pp. 1–13 (2020)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-14843-9_4
https://doi.org/10.1007/978-3-642-14843-9_4
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-642-02777-2_24

Scenario-Based Modeling and Falsification for Reconfigurable CPSs 355

62. Wan, K., Hughes, D., Man, K.L., Krilavicius, T., Zou, S.: Investigation on compo-
sition mechanisms for cyber physical systems. Inter. J. Design, Anal. Tools Inte-
grated Circ. Syst. 2(1), 30 (2011)

63. Wang, J., Bu, L., Xing, S., Li, X.: Path-oriented, derivative-free approach for safety
falsification of nonlinear and nondeterministic cps. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 41(2), 238–251 (2021)

64. Yu, Y., Qian, H., Hu, Y.Q.: Derivative-free optimization via classification. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

65. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

66. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using monte carlo tree search guided by QB-robustness. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8_29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-81685-8_29
http://creativecommons.org/licenses/by/4.0/

Probabilistic Systems

Playing Games with Your PET: Extending
the Partial Exploration Tool to Stochastic

Games

Tobias Meggendorfer1 and Maximilian Weininger2(B)

1 Lancaster University Leipzig, Leipzig, Germany
tobias@meggendorfer.de

2 Institute of Science and Technology Austria,
Klosterneuburg, Austria
mweining@ista.ac.at

Abstract. We present version 2.0 of the Partial Exploration Tool (Pet),
a tool for verification of probabilistic systems. We extend the previ-
ous version by adding support for stochastic games, based on a recent
unified framework for sound value iteration algorithms. Thereby, Pet2
is the first tool implementing a sound and efficient approach for solv-
ing stochastic games with objectives of the type reachability/safety and
mean payoff. We complement this approach by developing and imple-
menting a partial-exploration based variant for all three objectives. Our
experimental evaluation shows that Pet2 offers the most efficient partial-
exploration based algorithm and is the most viable tool on SGs, even
outperforming unsound tools.

Keywords: Probabilistic verification · Stochastic games · Partial
exploration · Model checker

1 Introduction

Stochastic games (SGs) [12] are a foundational model for sequential decision
making in the presence of uncertainty and two antagonistic agents. They are
practically relevant, with applications ranging from economics [1] over IT secu-
rity [35] to medicine [7]; and they are theoretically fundamental, in particular
because many associated classical decision problems are representative of the
important complexity class NP ∩ co-NP, e.g. deciding whether the value of a
reachability or mean payoff objective is greater than a given threshold [2,22]
(see [10] for recent advances). See [36, Chp. 1.3] for further motivation.

However, even mature tools either do not support SGs at all (Storm [21])
or employ approaches without formal guarantees, i.e. their results can be wrong

M. Weininger has received funding from the EU’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 101034413.
Data availability: We refer to the artefact with the exact code used for the submission
and all logs [31], and the gitlab with the continually developed source code [30].
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 359–372, 2024.
https://doi.org/10.1007/978-3-031-65633-0_16

https://zenodo.org/records/10927672
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_16&domain=pdf
http://orcid.org/0000-0002-1712-2165
http://orcid.org/0000-0002-1825-0097
https://doi.org/10.1007/978-3-031-65633-0_16

360 T. Meggendorfer and M. Weininger

(Prism-games [27] and Tempest [33]), which is unacceptable in the context
of safety-critical applications. This is because value iteration (VI), the de-facto
standard approach to solving stochastic systems, lacks a sound and efficient stop-
ping criterion, i.e. a “rule” to check whether the current iterates are sufficiently
close to the correct value. For Markov decision processes (MDPs) (SGs with only
one player) such a sound variant of VI (often called interval iteration) was devel-
oped a decade ago [8,17] and subsequently implemented in practically all major
model checkers. However, extending the underlying reasoning to SGs proved to
be surprisingly tricky, with sound variants even for special cases only developed
quite recently [15]. Just a year ago, [24] presented a unified way of ensuring
the soundness of VI for solving SGs with various quantitative objectives, which
forms the theoretical basis for this work.

Note that the classical approaches strategy iteration and quadratic program-
ming are sound in theory, but (i) the available implementations of [26] are pro-
totypical and unsound [26, Sec. 5], and (ii) these approaches usually either are
not practically efficient or use heuristics that actually make them unsound [18].

Contributions. We present version 2.0 of the Partial Exploration Tool (Pet),
the first tool implementing a sound and efficient approach for solving SGs with
objectives of the type reachability/safety and mean payoff (a.k.a. long-run aver-
age reward). In the following, we write Pet1 and Pet2 to refer to the previous
and now presented version of Pet, respectively.

Theoretically, Pet2 is based on the results of [24]. We provide two flavours of
their approach: Firstly, we implement the basic complete-exploration (CE) algo-
rithm, enhanced with several theoretical improvements, both new and suggested
in the literature. Secondly, we develop a partial-exploration (PE) approach, the
focus of Pet2, by combining the ideas of [24] with those in [8,15,29].

Practically, Pet2 is an extension of Pet1 [29] (only applicable to MDPs).
Apart from adding support for dealing with SGs and completely replacing the
approach of Pet1 with the ideas of [24], we implemented many engineering
improvements. Concretely, despite employing a more general algorithm, our
experimental evaluation shows that Pet2’s performance is on par with Pet1.
Moreover, Pet2 outperforms the existing SG solvers Prism-games and Tem-
pest, despite those not providing guarantees (and indeed returning wrong
results).

2 Preliminaries

Here, we very briefly recall turn-based stochastic games as far as they are nec-
essary to understand this paper, with more details in [32, App. A] and [24].

A (turn-based) stochastic game (SG) (e.g. [12]) consists of a set of states
S that belong to either the Maximizer or Minimizer player; a set of available
actions for every state, denoted A(s); and a probabilistic transition function δ
that for a state-action pair gives a probability distribution over successor states.
An SG where all states belong to one player is called Markov decision process
(MDP), see [34]; without nondeterministic choices, it is a Markov chain (MC).

Extending PET for Solving SGs 361

SGs are played in turns as follows: Starting in an initial state s0, the player
to whom this state belongs chooses an action a0 ∈ A(s). Then, the play advances
to the next state s1, which is sampled according to the probability distribution
given by δ(s, a). Repeating this process indefinitely yields an infinite path ρ =
s0a0s1a1 We write PathsG for the set of all such infinite paths in a game G.

A memoryless deterministic (MD) strategy σ of Maximizer assigns an action
to every Maximizer state s, i.e. σ(s) ∈ A(s). Minimizer strategies τ are defined
analogously. By fixing a pair of strategies (σ, τ) and thereby resolving all non-
deterministic choices, we obtain a Markov chain that together with an initial
state ŝ induces a unique probability distribution over the set of all infinite paths
PathsG [6, Sec. 10.1]. For a random variable over paths Φ : PathsG → R we write
E

σ,τ
G,ŝ[Φ] for its expected value under this probability measure.

An objective Φ : PathsG → R formalizes the “goal” of both players by assign-
ing a value to each path. In this paper, we focus on mean payoff (also called
long-run average reward) [16], which assign to every path the average reward that
is obtained in the limit. The presented algorithms and tools can also explicitly
handle reachability/safety objectives, which compute the probability of reaching
a given set of states while avoiding another. Such objectives are special cases of
mean payoff, see e.g. [4]. Another prominent objective is total reward [11], but
this is practically incompatible with our approach and goals (see [32, App. B]).

Given an SG and an objective, we want to compute the value of the game,
i.e. the optimal value the players can ensure by choosing optimal strategies.
Formally, the value of state s is defined as VG,Φ(s) := supσ infτ E

σ,τ
G,s[Φ](=

infτ supσ E
σ,τ
G,s[Φ]). We are interested in approximate solutions, i.e. given a con-

crete state ŝ and precision requirement ε, our goal is to determine a number v
such that |VG,Φ(ŝ) − v| < ε.

An end component (EC) intuitively is a set of states in which the system can
remain forever, given suitable strategies. Inclusion-maximal ECs are maximal
end components (MECs). The play of an SG eventually remains inside a single
MEC with probability one [14]. In other words, MECs capture all relevant long-
run behaviour of the system. The set of MECs can be identified in PTIME [13].

3 Complete-Exploration Algorithm for Solving SGs

In this section, we very briefly recall Alg. 2 of [24], a generic value-iteration based
approach for SGs, which in particular is the first such algorithm that provides
guarantees on the precision for mean payoff. This recapitulation is the basis for
the following descriptions of both (i) the main practical improvements over [24,
Alg. 2] added in our implementation (see the end of this section); and (ii) the
new partial-exploration approach described in Sec.4.

Intuition. The key insight of [24] is to “split” the analysis of SGs into infinite and
transient behaviour. Infinite behaviour occurs in ECs where both players want
to remain under optimal strategies; this is where the mean payoff is actually
“obtained”. Transient behaviour occurs in states that are not part of such an

362 T. Meggendorfer and M. Weininger

Fig. 1. Example SGs to explain deflating and inflating. States with upward and down-
ward triangles denote Maximizer and Minimizer states, respectively.

EC, i.e. that are almost surely only visited finitely often; such states in turn
achieve their value by trying to reach ECs that give them the best mean payoff.

Algorithm. Based on this intuition, we can summarize the overall structure of
the algorithm. It maintains two functions L and U, which map every state to
a lower and upper bound on its true value, respectively. Our aim is to improve
these bounds until they are sufficiently close to each other; then we can derive the
correct value up to precision ε. After initializing the bounds to safe under- and
over-approximations (e.g. the minimum and maximum reward occurring in the
SG), we repeatedly perform two operations, further described below: Firstly, we
use so-called Bellman updates to back-propagate bounds through the SG, which
also is the classical “value iteration step”. This corresponds to the transient
behaviour, intuitively computing the optimal choice of actions to reach the ECs
with the best value. Secondly, we use the operations of deflating and inflating.
These essentially inform states about the value obtainable by staying.

Bellman Updates. Bellman updates are at the core of all value iteration
style algorithms (see e.g. [9]). Intuitively, they update the current estimates
by “taking one step”, i.e. computing the expectation of following the action
that is optimal according to the current estimates. Formally, given a func-
tion x : S → R, the Bellman update B computes a new estimate function as
B(x)(s) := optsa∈A(s)

∑
s′∈S δ(s, a)(s′) · x(s′), where opts = max if s is a Max-

imizer state and min otherwise. Importantly, if x is a correct lower or upper
bound on the true value, then B(x)(s) is, too. However, only applying B(x) may
not converge!

Deflating and Inflating. We briefly describe why the convergence problem arises
and how deflating and inflating solve the issue, summarizing [24, Sec. V-C].

Recall the intuition that a state can get its value either from infinite behaviour
(i.e. “staying” in the current area of the game) or from transient behaviour (“leav-
ing” the current area). As a simple example, consider the SG (even MDP) in
Fig. 1 (left). Assume we have U = 5 in the grey area, i.e. by taking action b we
obtain at most 5, but for s the current upper bound is the conservative over-
approximation U(s) = 10. The Bellman update prefers a over b and keeps U(s)
at 10, even though following a forever will only yield a mean payoff of 4. This is
due to a cyclic dependency: s “believes” it can (eventually) achieve 10 because it
“promises” to achieve 10 by having U(s) = 10. Deflating now identifies that Max-
imizer wants to “stay” in s using a, computes the actual value that is obtained
by staying, i.e. 4, and compares it to the best possible exit from this region,

Extending PET for Solving SGs 363

namely leaving with b to obtain at most 5. Maximizer has to either stay forever
or eventually leave, thus we can decrease the upper bound to the maximum of
these two actions, i.e. 5. Dually, inflating raises the value of Minimizer states to
the minimum of leaving and staying. In other words, de-/inflating complement
Bellman updates by informing players about the consequences of staying forever,
forcing them to choose between this staying value and the best exit.

While this reasoning is simple for single-state, single-player cycles, it gets
much more involved in the general case of stochastic games. In particular, and
in contrast to MDPs, in two-player SGs the opponent can restrict which cycles
and exits are reachable from certain states. For example, consider the SG in
Fig. 1 (right): States p and s can form a cycle. However, if s goes to p, it depends
on the choice of Minimizer in p whether the play stays in the cycle {p, s} or
leaves towards X. To tackle this issue, [24, Alg. 2] repeatedly identifies regions
where players want to remain based on their current estimates, called simple end
component (SEC)-candidates. It does so by fixing one player’s choices (pretend-
ing that this is the strategy they “commit” to), and the regions where the other
player could remain are the SEC-candidates. These are then de-/inflated. We
highlight that as the player’s estimates change, the SEC-candidates do, too.

Improvements. We provide several practical improvements to this approach. We
briefly describe their ideas here and refer to [32, App. C] for further information.

– Instead of searching SEC-candidates in the complete SG, we once identify all
MECs and then search for SEC-candidates in each MEC independently.

– SEC-candidate search is not performed every iteration, but only heuristically
(improving a suggestion from [15, Sec. 6.2]).

– Instead of computing staying values precisely, which is often unnecessary, we
successively approximate them (as suggested in [25, App. E-B]).

– If possible, we locally employ MDP solution approaches, collapsing ECs that
are completely “controlled” by a single player into one state that then is
handled by the normal Bellman updates (as suggested in [15, Sec. 6.2]). This
transparently generalizes the existing algorithms for MDPs [4,8,17].

4 Partial-Exploration Algorithm for Solving SGs

Here, we present the novel partial-exploration (PE) algorithm obtained by com-
bining the complete-exploration (CE) algorithm of Sect. 3 with the ideas of par-
tial exploration [8,15,29]. Intuitively, for particular models and objectives, some
states are hardly relevant, and computing their exact value is unnecessary for an
ε-precise result. For example, in the zeroconf protocol (choosing an IP address
in a nearly empty network), it is hardly interesting what we should do when
we run into a collision 10 times: Since this is so unlikely to happen, the exact
outcome in this case barely influences the true result. Thus, we avoid exploring
what exactly is possible in this case and just assume the worst.

364 T. Meggendorfer and M. Weininger

More generally, we want to avoid working on the complete model when exe-
cuting Bellman updates or de-/inflating SEC-candidates. Instead, we use sim-
ulations to partially explore the model, finding the states that are likely to be
reached under optimal strategies, and focus computations on these. If the “rele-
vant” part of the state space (see [23]) is small in comparison to the whole model,
we can save a large amount of time and memory. We refer to the [8,15,29] for a
comprehensive discussion of the (dis-)advantages of this approach.

Algorithm. The algorithm follows the established structure of [8,15]: We sample
a path through the model, at every state picking an action and a successor
according to a guidance heuristic that prefers “relevant” states. We terminate
the simulation when it has reached a state where continuing the path does not
generate new information (e.g. an EC that cannot be exited). Then, we perform
Bellman updates, but only on the states of the sampled path. Additionally,
we repeatedly identify both collapsible areas and SEC-candidates in the partial
model and de-/inflate if necessary. This final step is the main technical difference
to the previous algorithms [8,15], which only employed collapsing and deflating,
respectively. It also is one of the major engineering difficulties, see [32, App. D.1].

Soundness and Correctness. In [32, App. D.2], we extend the proof of correctness
and termination from reachability [15, Thm. 3] to mean payoff. In the process of
proving correctness, we found and fixed an error in the guidance heuristic of [15].

Practical Improvements. As before, we applied several optimizations and heuris-
tics to this algorithm. Broadly speaking, the overall ideas are the same as for the
complete exploration approach, however with several intricacies. In particular,
observe that the partial model constantly changes as new states are explored.
Thus, efficiently tracking and updating SEC-candidates or collapsible parts of
the game is much more involved and intertwined with the rest of the algorithm.

5 Tool Description

In this section, we briefly describe relevant aspects of Pet2, focussing on new
features and changes compared to its predecessor Pet1. Like Pet1, Pet2 is
implemented in Java, reads models and objectives specified in the PRISM mod-
elling language, and outputs the computed value in JSON format.

Design Choices. Firstly, Pet2 exclusively employs (sound) VI-based approaches,
as opposed to, e.g., SI or LP. It offers two variants, based on complete exploration
(CE) and partial exploration (PE), as presented above.

Secondly, Pet2 deliberately comes without any configuration flags. In con-
trast, model checkers such as Prism [27] and Storm [21] implement numerous
different approaches and variants, each of which offers several hyper-parameters.
While our choice eliminates the potential for fine-tuning, we experienced that
even expert users often do not know how to best choose such parameters. Thus,

Extending PET for Solving SGs 365

we tried to select internal parameters such that the tool works reasonably well
out-of-the-box on all models. This comes with the additional benefit of greatly
reducing the number of code paths, which in turn makes testing much easier.

Thirdly, Pet2 fully commits to solving a single combination of model and
objective. This allows us to exploit information about the objective already when
building the model; for example, in reachability/safety objectives, we can directly
re-map goal and unsafe states to dedicated absorbing states. Arguably, this might
become a drawback when solving multiple queries on the same model, since the
model would need to be explored several times. However, by caching the parts
of the model constructed so far, we can effectively eliminate this problem. We
discuss further ways to exploit this design choice in [32, App. E].

Finally, Pet2 does not differentiate between Markov chains, MDPs, and SGs.
The algorithms are written for SGs, and, whenever possible, apply specialized
solutions locally. For example, if a part of an SG “looks like” an MDP (because
only one player has meaningful choices), PET locally applies MDP reasoning
where applicable. Aside from transparently gaining the performance of these
specialized solutions in most cases, this also eliminates code duplication, result-
ing in a code base that is more understandable, maintainable, and extendable.

Differences to Pet1. Pet2 effectively constitutes a complete re-write of nearly
all aspects of Pet, with roughly 9k lines of code added and 5k deleted compared
to Pet1 (according to git); for comparison, the overall source code of Pet2 has
roughly 14k lines. Most importantly, Pet2 now also parses SGs, fully focusses on
solving one model-objective combination, and also provides efficient CE variants
of the algorithms. These CE variants also come with numerous optimizations,
such as graph analysis to identify states with value 0 and 1 for reachability
and safety, collapsing end components, etc. Moreover, each PE variant is now
specialized to the concrete objective. Pet1 tried to unify as many aspects of
the sampling approach as possible, which however proved to be a major design
obstacle and performance penalty when incorporating all the different special-
ized solutions and practical optimizations for stochastic games. Additionally, we
also found and fixed a bug in the mean payoff computation of Pet1. In terms of
data structures, we improved several smaller aspects of working with probabilis-
tic models. For example, the “standard” internal model representation of Pet2
offers dedicated support for merging / collapsing sets of states while simultane-
ously tracking predecessors of each state. We note that the model representation
etc. is still provided by our separately available, generic purpose library, making
many of these improvements available independently of Pet.

Engineering Improvements. We evaluated several practical improvements, which
sometimes led to quite surprising effects. We highlight some insights which we
deem relevant for other developers.

1) “Unrolling” loops in hot zones of the code can lead to significant performance
improvements. For example, to find the optimal action for a Bellman update,
we need to use a for-loop to iterate over all available actions. This process is

366 T. Meggendorfer and M. Weininger

performed millions of times during a normal execution. Unrolling and special-
izing these loops for small action sets (≤ 3 actions) led to noticeable perfor-
mance improvements. Similarly, switching from for-each loops (which allocate
an iterator) to index-based for loops also yielded notable improvements.

2) We trade memory for time by adding additional data structures to optimize
certain access patterns. For example, maintaining the set of predecessors for
each state speeds up graph algorithms such as attractor computations. More-
over, in several cases it proved beneficial to store information in multiple
formats. For example, on top of a sorted array-based set, we explicitly store
the set of successors of a distribution object as a (roaring) bitmap [28], offering
fast “bulk” operations, such as intersection or subset checks.

3) We also investigated ahead-of-time compilation through GraalVM. While this
improved start-up time, it did not result in significant speed-ups but rather
even increased the runtime on some of the larger models (even with profile-
guided optimization). We conjecture that this is mainly due to Java’s just-
in-time compiler being able to apply better fine-tuning.

6 Experimental Evaluation

We now discuss our evaluation. The first goal of our experiments is to validate
that Pet2 can indeed solve SGs with reachability and mean payoff objectives in
a sound way. Secondly, we assess the impact of our performance improvements
and design choices, in particular having only the general algorithm for SG, by
comparing Pet1 and Pet2. Finally, we investigate whether our implementation
is competitive with other tools. We report some further insights in [32, App. F.3].
Our artefact, including all data, tools, scripts, logs, etc., is available at [31].

6.1 Experimental Setup

Technical Setup. We ran each experiment in a separate Docker container and,
as usual, restricted it to a single CPU core (of an AMD Ryzen 5 3600) and 8 GB
RAM. The timeout is 60 s (including the startup time of the Docker container).
We ran every instance three times to even out potential fluctuations in execution
times. While the PE approach is randomized by design, even “deterministic”
algorithms may behave differently due to, e.g., non-deterministic iteration order
of hash sets. We observed that the variance is negligible (the geometric standard
deviation usually was ≤ 1.05). We thus only report the geometric average of
the three runs in seconds. We require an absolute precision of ε = 10−6 for all
experiments.

Metrics. To summarize relative performance of Pet2 compared to tool X, we
introduce a four-figure score, written t[m+k/l], computed as follows: Let M the
set of instances where both tools terminated in time. Then, t equals the geometric
mean of timeX(I)/timePet2(I) over all instances I ∈ M , with timeT referring to
the overall runtime of tool T on an instance, m = |M | refers to the number of

Extending PET for Solving SGs 367

such instances, while k describes how often X timed out where Pet2 did not
and l vice versa. Note that t > 1 indicates that Pet2 is faster on average (on
M). When t < 1 but k � l, we see that on instances that both tools solved,
Pet2 was slower, but overall, Pet2 solved much more models, which one may
still consider advantageous.

Tools. Aside from both versions of Pet, for Markov chains and MDPs we con-
sider Prism-games1 [27], and Storm [21]. On SGs, we compare to the unsound
algorithms in Prism-games and Tempest [33] (an extension of Storm), as well
as Prism-ext, an extension of Prism-games with sound algorithms described
in [5,26]. Note that this selection includes all tools that participated in the SG
performance comparison in QComp 2023 [3]. For all tools, we provide the exact
version, ways to obtain them, and invocations in [32, App. F.1] and the artefact.

Performance Considerations. Restricting to a single CPU is commonly done
to ensure that no tool accidentally exploits parallelism. However, we observed
a significant decrease in performance for Pet, even though all algorithms are
sequential. This turned out to be due to garbage collection. Using jhsdb, we ver-
ified that in the single CPU case Java by default selects the Serial GC (instead of
the overall default G1GC). On some instances, we consistently observed improve-
ments of up to 33% (!), nearly on par with the performance without any CPU
restriction, by simply changing to the parallel GC (-XX:+UseParallelGC), even
though the parallel GC uses only one thread. Concretely, comparing CE and
PE with Serial and (single-thread) parallel GC, we get scores of 1.06 and 1.04,
respectively, meaning that even on average this change leads to a significant
difference. Interestingly, for Prism-games the Serial GC performed better. We
configured Pet2 to always use the Parallel GC by default. In a similar manner,
the hybrid engine of Storm experienced a slowdown of more than 30x due to
being restricted to a single CPU, which we addressed by adding appropriate
switches (see [32, App. F.1] for details). We are working with the authors of
Storm to automatically detect this case.

While these differences would not invalidate our conclusions in particular, we
still want to highlight these observations and emphasize the importance of both
careful evaluation and choosing good default parameters.

Benchmarks. We consider benchmarks from multiple sources. Firstly, we include
applicable models from the quantitative verification benchmark set (QVBS) [20],
which however does not provide SGs. Secondly, we consider the SGs used in
QComp 2023 [3]. Finally, we also gather several models from literature, provide
variations of existing models, and create completely new models. For details on
the models, we refer to [32, App. F.2]. All models are included in the artefact.

To ease the evaluation, we remove instances of QVBS that are very simple
(CE- and PE-approach of Storm and Pet2 taking less than one second) or

1 Personal communication with the lead developer confirmed that on Markov chains
and MDPs Prism-games uses the same approach as Prism.

368 T. Meggendorfer and M. Weininger

very time-consuming (all four approaches taking more than 30 s). With such a
timespan, differences and trends are clearly visible, but models remain small
enough for the experiments to be reproducible within reasonable time. This
filtering reduces the number of executions from nearly 10000 to about 1800.
Even then, the overall evaluation still takes about 24 h (with timeout of 60 s).

6.2 Results

We present central results in Fig. 2 and discuss each of our research questions.

Soundness and Scalability. We empirically validate the correctness of Pet2 by
(i) comparing against the reference results in QVBS (this only affects the special-
ized MDP reasoning of our algorithm), (ii) ensuring that both algorithms inside
Pet2 yield the same results, and (iii) comparing against manually computed
values, both for existing SG benchmarks as well as handcrafted ones exhibiting
various graph structures (some of which arose as test or corner cases). In all
cases, Pet2’s results are sound, i.e. within the allowed precision of ε = 10−6. In
contrast, throughout the whole SG benchmark set, Prism-games and Tempest
return several wrong answers, see [32, App. F.3] for details. In particular, Tem-
pest returns wrong answers in 6 out of 13 cases where we have known reference
results, often by a significant margin, e.g. returning 0.0003 instead of 0.481.

Additionally, we see that Pet2 can solve models with millions of states and
various difficult graph structures within a minute. Thus, we conclude that both
our algorithm and implementation scale well.

Comparison to Pet1. When solving Markov chains or MDPs, Pet2 still uses
algorithms that can handle SGs. This generality comes with some overhead,
for example because data structures for tracking ownership of states are not
necessary in MDPs. However, a score of 1.07[85+8/1] and Fig. 2 (left) show that
PE in both versions of Pet performs remarkably similar, with Pet2 even slightly

Fig. 2. Comparison of Pet2 to other tools. From left to right we compare Pet2-PE
and Pet1-PE, Pet2-CE on MDP and MC with Storm () and Prism-games (),
and finally Pet2-CE on SG with Tempest (), Prism-games (), and Prism-ext
(). A point (x, y) denotes that tool X and Pet2 needed x and y seconds, respectively.
If a point is above/below the diagonal, tool X is faster/slower. Plots are on logarithmic
scale, dashed diagonals indicate that one tool is twice as fast. Timeouts are pushed to
the orthogonal dashed line.

Extending PET for Solving SGs 369

faster. We conclude that the improvements in the implementation make up for
the algorithmic overhead.

Comparison to other Tools. It is well known that the structure of a model
is the determining factor for the relative performance of different algorithmic
approaches, see e.g. [5,18,29], in particular far more than the number of states
or transitions. (This is also supported by our comparison of CE and PE in [32,
App. F.3], sometimes showing order of magnitude advantages in either direc-
tion.) Thus, instead of comparing tools as a whole, we compare matching algo-
rithmic approaches (CE and PE based value/interval iteration) to assess only
the impact of different implementations. For similar reasons, here we only com-
pare the explicit engines and not symbolic or hybrid approaches (results on the
latter are provided in [32, App. F.3]).

Comparing PE approaches, Pet2 outperforms the only competitor Storm
with a score of 0.3[27+29/1] (Pet2 solves more than twice the number of
models); see [32, App. F.3] for details. For CE algorithms, across all instances
where both tools are applicable, the score of Pet2 against the Java-based tools
Prism-games and Prism-ext is 1.3[104+10/4] and 1.3[53+4/0], respectively,
while against the C++ tools Storm and Tempest it achieves 0.3[69+0/12] and
0.4[54+13/1], respectively. For a more detailed comparison, Fig. 2 (middle) com-
pares the CE algorithms of Pet2 with those in Storm and Prism-games on
Markov chains and MDPs. Here, as expected, Storm outperforms other tools, at
least partially due to performance differences of C++ and Java. However, Pet2
performs favourably against the state-of-the-art tool Prism-games. This shows
that our first, generic implementation of the CE algorithm for SG is comparable
to established tools even on Markov chains and MDPs. Finally, Fig. 2 (right)
compares Pet2 with the other tools on SGs, namely Prism-games, Tempest,
and Prism-ext. Recall that only Prism-ext uses a sound algorithm, while
the other tools use an unsound stopping criterion and thus require less work.
Nonetheless, Pet2 often outperforms the other tools (even Tempest, which
builds on the highly optimized Storm), making it the most viable tool on SGs
not only because of soundness, but also because of performance.

Finally, to (superficially) evaluate how much objective-specific optimizations
yield, we implemented viewing reachability objectives as “trivial” mean payoff
objective, i.e. goal states are set to be absorbing with reward 1, and all others
with reward zero. This modified query is then passed to our generic mean payoff
algorithm. Notably, even then Pet2 slightly outperforms Prism-games solving
the reachability objective directly (1.1[98+8/10]), and in turn the dedicated
reachability approach of Pet2 “only” scores 1.2[106+8/0] against this variant.

7 Conclusion

We presented Pet2, the first tool implementing a sound and efficient approach
for solving SGs with objectives of the type reachability/safety and mean pay-
off. Our experimental evaluation shows that (i) it is sound, while other tools

370 T. Meggendorfer and M. Weininger

indeed return wrong answers in practice, (ii) it offers the most efficient partial-
exploration based algorithm, and (iii) it is the most viable tool on SGs.

For future work, there is still a lot of room for heuristics and engineer-
ing improvements, for example adaptively choosing internal parameters, more
efficient tracking and handling of SEC-candidates, using topological order of
updates in VI, improved pre-computation for mean payoff, etc. Additionally,
support for total reward is planned; however, as described in [32, App. B], this
requires using ideas such as optimistic value iteration [5,19] in order to be rea-
sonably efficient.

References

1. Amir, R.: Stochastic games in economics and related fields: an overview. In: Ney-
man, A., Sorin, S. (eds.) Stochastic Games and Applications. NATO Science Series,
vol. 570, pp. 455–470. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-
010-0189-2_30

2. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on
graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp.
112–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-
6_13

3. Andriushchenko, R., et al.: Tools at the frontiers of quantitative verification:
QComp 2023 competition report. TOOLympics (to appear)

4. Ashok, P., Chatterjee, K., Daca, P., Křetínský, J., Meggendorfer, T.: Value iter-
ation for long-run average reward in Markov decision processes. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 201–221. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9_10

5. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A., Weininger, M.: Optimistic
and topological value iteration for simple stochastic games. In: Bouajjani, A., Holík,
L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 285–302. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19992-9_18

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
7. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game the-

ory to modelling mutations, onset, progression and immune competition of cancer
cells. Phys. Life Rev. 5(4), 183–206 (2008). https://doi.org/10.1016/j.plrev.2008.
07.001

8. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

9. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0_7

10. Chatterjee, K., Meggendorfer, T., Saona, R., Svoboda, J.: Faster algorithm for
turn-based stochastic games with bounded treewidth. In: SODA, pp. 4590–4605.
SIAM (2023). https://doi.org/10.1137/1.9781611977554.CH173

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-031-19992-9_18
https://doi.org/10.1016/j.plrev.2008.07.001
https://doi.org/10.1016/j.plrev.2008.07.001
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1137/1.9781611977554.CH173
https://doi.org/10.1007/s10703-013-0183-7

Extending PET for Solving SGs 371

12. Condon, A.: On algorithms for simple stochastic games. In: Advances In Compu-
tational Complexity Theory. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 13, pp. 51–71. DIMACS/AMS (1990)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

14. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

15. Eisentraut, J., Kelmendi, E., Kretínský, J., Weininger, M.: Value iteration for
simple stochastic games: stopping criterion and learning algorithm. Inf. Comput.
285(Part), 104886 (2022). https://doi.org/10.1016/j.ic.2022.104886

16. Gillette, D.: Stochastic games with zero stop probabilities. Contrib. Theory Games
3, 179–187 (1957)

17. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

18. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: Sankaranarayanan, S., Sharygina, N. (eds.)
TACAS 2023. LNCS, vol. 13993, pp. 469–488. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30823-9_24

19. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

20. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

21. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/S10009-021-00633-Z

22. Johnson, D.S.: The NP-completeness column: finding needles in haystacks. ACM
Trans. Algorithms 3(2), 24 (2007). https://doi.org/10.1145/1240233.1240247

23. Kretínský, J., Meggendorfer, T.: Of cores: a partial-exploration framework for
Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020). https://lmcs.
episciences.org/6833

24. Kretínský, J., Meggendorfer, T., Weininger, M.: Stopping criteria for value itera-
tion on stochastic games with quantitative objectives. In: LICS, pp. 1–14 (2023).
https://doi.org/10.1109/LICS56636.2023.10175771

25. Kretínský, J., Meggendorfer, T., Weininger, M.: Stopping criteria for value iteration
on stochastic games with quantitative objectives. CoRR abs/2304.09930 (2023)

26. Kretínský, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of algo-
rithms for simple stochastic games. Inf. Comput. 289(Part), 104885 (2022).
https://doi.org/10.1016/j.ic.2022.104885

27. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 475–487. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_25

28. Lemire, D., Kai, G.S.Y., Kaser, O.: Consistently faster and smaller compressed
bitmaps with roaring. SPE 46(11), 1547–1569 (2016)

29. Meggendorfer, T.: PET - a partial exploration tool for probabilistic verification. In:
Bouajjani, A., Holík, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 320–326.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_20

https://doi.org/10.1016/j.ic.2022.104886
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1145/1240233.1240247
https://lmcs.episciences.org/6833
https://lmcs.episciences.org/6833
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-031-19992-9_20

372 T. Meggendorfer and M. Weininger

30. Meggendorfer, T., Weininger, M.: Partial exploration tool gitlab. https://gitlab.
lrz.de/i7/partial-exploration

31. Meggendorfer, T., Weininger, M.: Artifact for “Partial Exploration Tool 2.0” (2024).
https://doi.org/10.5281/zenodo.10927672

32. Meggendorfer, T., Weininger, M.: Playing games with your pet: extending the
partial exploration tool to stochastic games. CoRR abs/2405.03885 (2024). https://
doi.org/10.48550/ARXIV.2405.03885

33. Pranger, S., Könighofer, B., Posch, L., Bloem, R.: TEMPEST - synthesis tool for
reactive systems and shields in probabilistic environments. In: Hou, Z., Ganesh,
V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 222–228. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88885-5_15

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

35. Roy, S., Ellis, C., Shiva, S.G., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of
game theory as applied to network security. In: HICSS, pp. 1–10. IEEE Computer
Society (2010). https://doi.org/10.1109/HICSS.2010.35

36. Weininger, M.: Solving Stochastic Games Reliably. Ph.D. thesis, Technical Univer-
sity of Munich, Germany (2022). https://mediatum.ub.tum.de/node?id=1661588

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://gitlab.lrz.de/i7/partial-exploration
https://gitlab.lrz.de/i7/partial-exploration
https://doi.org/10.5281/zenodo.10927672
https://doi.org/10.48550/ARXIV.2405.03885
https://doi.org/10.48550/ARXIV.2405.03885
https://doi.org/10.1007/978-3-030-88885-5_15
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1109/HICSS.2010.35
https://mediatum.ub.tum.de/node?id=1661588
http://creativecommons.org/licenses/by/4.0/

What Should Be Observed for Optimal Reward
in POMDPs?

Alyzia-Maria Konsta(B) , Alberto Lluch Lafuente , and Christoph Matheja

Technical University of Denmark, Kongens Lyngby,
Denmark

{akon,albl,chmat}@dtu.dk

Abstract. Partially observable Markov Decision Processes (POMDPs) are a
standard model for agents making decisions in uncertain environments. Most
work on POMDPs focuses on synthesizing strategies based on the available capa-
bilities. However, system designers can often control an agent’s observation capa-
bilities, e.g. by placing or selecting sensors. This raises the question of how one
should select an agent’s sensors cost-effectively such that it achieves the desired
goals. In this paper, we study the novel optimal observability problem (OOP):
Given a POMDP M , how should one change M ’s observation capabilities within
a fixed budget such that its (minimal) expected reward remains below a given
threshold? We show that the problem is undecidable in general and decidable
when considering positional strategies only. We present two algorithms for a
decidable fragment of the OOP: one based on optimal strategies of M ’s under-
lying Markov decision process and one based on parameter synthesis with SMT.
We report promising results for variants of typical examples from the POMDP
literature.

Keywords: POMDPs · Partial Observability · Probabilistic Model Checking

1 Introduction

Partially observable Markov Decision Processes (POMDPs) [1,15,28] are the reference
model for agents making decisions in uncertain environments. They appear naturally in
various application domains, including software verification [4], planning [5,15,16],
computer security [24], and cyber-physical systems [13].

Most work on POMDPs focuses on synthesizing strategies for making decisions
based on available observations. A less explored, but relevant, question for system
designers is how to place or select sensors cost-effectively such that they suffice to
achieve the desired goals.

To illustrate said question, consider a classical grid(world) POMDP [21], (cf.
Fig. 1), where an agent is placed randomly on one of the states s0 - s7. The agent’s
goal is to reach the goal state s8 (indicated with green color). The agent is free to move

This work has been supported by Innovation Fund Denmark and the Digital Research Centre
Denmark, through the bridge project “SIOT – Secure Internet of Things – Risk analysis in design
and operation”.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 373–394, 2024.
https://doi.org/10.1007/978-3-031-65633-0_17

https://github.com/alyziakonsta/Optimal-Observability-Problem?tab=readme-ov-file
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_17&domain=pdf
http://orcid.org/0000-0002-0206-5217
http://orcid.org/0000-0001-7405-0818
http://orcid.org/0000-0001-9151-0441
https://doi.org/10.1007/978-3-031-65633-0_17

374 A.-M. Konsta et al.

through the grid using the actions {left,right,up,down}. For simplicity, self-loops are
omitted and the actions are only shown for state s4. We assume that every time the agent
picks an action, (s)he takes one step. With an unlimited budget, one can achieve full
observability by attaching one sensor to each state. In this case, the minimum expected
number of steps the agent should take to reach the goal is 2.25.

Fig. 1. 3×3 grid

However, the number of available sensors might be lim-
ited. Can we achieve the same optimal reward with fewer
sensors? What is the minimal number of sensors needed?
Where should they be located? It turns out that, in this exam-
ple, 2 sensors (one in s2 and one in s5) suffice to achieve
the minimal expected number of steps, i.e., 2.25. Intuitively,
the agent just needs a simple positional (aka memory-less),
deterministic strategy: if no sensor is present, go right; oth-
erwise, go down. A “symmetric” solution would be to place
the sensors in s6 and s7. Any other choice for placing 2 sen-
sors yields a higher expected number of steps. For example,
placing the sensors in s1 and s2 yields a minimal expected
number of steps of 2.75. The problem easily becomes more complex. Indeed, we show
that this class of problems (our main focus of study) is undecidable.

The Problem. We introduce the optimal observability problem which is concerned with
turning an MDP M into a POMDP M such that M ’s expected reward remains below a
given threshold and, at the same time, the number of available observations (i.e. classes
of observationally-equivalent states) is limited by a given budget. We show that the
problem is undecidable in the general case, by reduction to the (undecidable) policy-
existence problem for POMDPs [22]. Consequently, we focus on decidable variants of
the problem, where POMDPs can use positional strategies only, for which we provide
complexity results, decision procedures, and experiments.

Contributions. Our main contributions can be summarized as follows:

1. We introduce the novel optimal observability problem (OOP) and show that it is
undecidable in general (Sect. 3) by reduction to the (undecidable) policy-existence
problem for POMDPs [22]. Consequently, we study four decidable OOP variants
by restricting the considered strategies and observation capabilities.

2. We show in Sect. 4.1 that, when restricted to positional and deterministic strategies,
the OOP becomes NP-complete. Moreover, we present an algorithm that uses opti-
mal MDP strategies to determine the minimal number of observations required to
solve the OOP for the optimal threshold.

3. We show in Sect. 4.2 that the OOP becomes decidable in PSPACE if restricted to
positional, but randomized, strategies. The proofs are by a reduction to the feasibility
problem for a typed extension of parametric Markov chains [12,14].

4. We provide in Sect. 5 an experimental evaluation of approaches for the decidable
OOP variants on common POMDP benchmarks.

Missing proofs and additional experiments are found in an extended version of this
paper, which is available online [17].

Related Work. To the best of our knowledge, this is the first work considering the opti-
mal observability problem and its variants. The closest problem we have found in the

What Should Be Observed for Optimal Reward in POMDPs? 375

literature is the sensor synthesis problem for POMDPs with reachability objectives pre-
sented in [6]. Said problem departs from a POMDP with a partially defined observation
function and consists of finding a completion of the function by adding additional obser-
vations subject to a budget on the number of observations (as in our case) and the size of
the (memory-bounded) strategies. The main difference w.r.t. our problem is in the class
of POMDP objectives considered. The problem in [6] focuses on qualitative almost-
sure reachability properties (which is decidable for POMDPs [7]), while we focus on
quantitative optimal expected reward properties, which are generally undecidable for
POMDPs [22]. This leads to different complexity results for the decision problem stud-
ied (NP-complete for [6], undecidable in our general case) and their solution methods
(SAT-based in [6], SMT-based for the decidable variants we study).

Optimal placement or selection of sensors has been studied before (e.g. [18,26,30]).
However, the only work we are aware of in this area that uses POMDPs is [30]. The
problem studied in [30] is concerned with having a POMDP where the selection of k
out of n sensors is part of the set of states of the POMDP together with the location
of some entities in a 2D environment. At each state, the agent controlling the sensors
has one of the

(n
k

)
choices to select the next k active sensors. The goal is to synthesize

and find strategies that dynamically select those sensors that optimize some objective
function (e.g. increasing certainty of specific state properties). The observation function
in the POMDPs used in [30] is fixed whereas we aim at synthesizing said function. The
same holds for security applications of POMDPs, such as [29].

We discuss further related work, particularly about decidability results for
POMDPs, parametric Markov models (cf. [12]), and related tools in the relevant sub-
sections.

2 Preliminaries

We briefly introduce the formal models underlying our problem statements and their
solution: Markov decision processes (MDPs) in Sect. 2.1 and partially observable
MDPs (POMDPs) in Sect. 2.2. A comprehensive treatment is found in [2,28].

Notation. A probability distribution over a countable set X is a function μ : X → [0,1]⊆
R such that the (real-valued) probabilities assigned to all elements of X sum up to one,
i.e. ∑x∈X .μ(x) = 1. For example, the Dirac distribution δx assigns probability 1 to an
a-priori selected element x ∈ X and probability 0 to all other elements. We denote by
Dist(X) the set of all probability distributions over X .

2.1 Markov Decision Processes (MDPs)

We first recap Markov decision processes with rewards and dedicated goal states.

Definition 1 (MDPs). A Markov decision process is a tuple M = (S, I,G,Act,P,rew)
where S is a finite set of states, I ⊆ S is a set of (uniformly distributed) initial states,
G ⊆ S is a set of goal states, Act is a finite set of actions, P : S×Act → Dist(S) is a
transition probability function, and rew : S → R≥0 is a reward function.

376 A.-M. Konsta et al.

Fig. 2. MDP Mline for some fixed constant p ∈ [0,1]; the initial states are s0,s1,s3,s4.

Example 1. As a running example, consider an agent that is placed at one of four ran-
dom locations on a line. The agent needs to reach a goal by moving to the �(eft) or
r(ight). Whenever (s)he decides to move, (s)he successfully does so with some fixed
probability p ∈ [0,1]; with probability 1 − p, (s)he stays at the current location due to
a failure. Figure 2 depicts1 an MDP Mline modeling the above scenario using five states

s0-s4. Here, s2 is the single goal state. All other states are initial. An edge si
α:q−−→ s j

indicates that P(si,α)(s j) = q. The reward (omitted in Fig. 2) is 0 for s2, and 1 for all
other states.

We often write SM , PM , and so on, to refer to the components of an MDP M. An MDP
M is a Markov chain if there are no choices between actions, i.e. |ActM| = 1. We omit
the set of actions when considering Markov chains. If there is more than one action, we
use strategies to resolve all non-determinism.

Definition 2 (Strategy). A strategy for MDPM is a function σ : S+M →Dist(ActM) that
maps non-empty finite sequences of states to distributions over actions. We denote by
S(M) the set of all strategies for MDP M.

Expected rewards. We will formalize the problems studied in this paper in terms of the
(minimal) expected reward MinExpRew(M) accumulated by an MDP M over all paths
that start in one of its initial states and end in one of its goal states. Towards a formal
definition, we first define paths. A path fragment of an MDP M is a finite sequence
π = s0 α0 s1 α1 s2 . . . αn−1 sn for some natural number n such that every transition from
one state to the next one can be taken for the given action with non-zero probability,
i.e. PM(si,αi)(si+1) > 0 holds for all i ∈ {0, . . . ,n}. We denote by first(π) = s0 (resp.
last(π) = sn) the first (resp. last) state in π . Moreover, we call π a path if s0 is an initial
state, i.e. s0 ∈ IM , and sn ∈ GM is the first encountered goal state, i.e. s1, . . . ,sn−1 ∈
SM \GM and sn ∈ GM . We denote by Paths(M) the set of all paths of M.

The cumulative reward of a path fragment π = s0 α0 . . . αn−1 sn of M is the sum of
all rewards along the path, that is,

rewM(π) =
n

∑
i=0

rewM(si).

Furthermore, for a given strategy σ , the probability of the above path fragment π is2

Pσ
M(π) =

n−1

∏
i=0

PM(si,αi)(si+1) ·σ(s0 . . .si)(αi).

1 The red and blue colors as well as the @s-labels will become relevant later.
2 If π is a path, notice that our definition does not include the probability of starting in first(π).

What Should Be Observed for Optimal Reward in POMDPs? 377

Put together, the expected reward of M for strategy σ is the sum of rewards of all paths
weighted by their probabilities and divided by the number of initial states (since we
assume a uniform initial distribution) – at least as long as the goal states are reachable
from the initial states with probability one; otherwise, the expected reward is infinite
(cf. [2]). Formally, ExpRewσ (M) = ∞ if 1

|IM | ·∑π∈Paths(M)P
σ
M(π) < 1. Otherwise,

ExpRewσ (M) =
1

|IM| · ∑
π∈Paths(M)

Pσ
M(π) · rewM(π).

The minimal expected reward of M (over an infinite horizon) is then the infimum among
the expected rewards for all possible strategies, that is,

MinExpRew(M) = inf
σ∈S(M)

ExpRewσ (M).

The (maximal) expected reward is defined analogously by taking the supremum instead
of the infimum. Throughout this paper, we focus on minimal expected rewards.

Optimal, positional, and deterministic strategies. In general, strategies may choose
actions randomly and based on the history of previously encountered states. We will
frequently consider three subsets of strategies. First, a strategy σ for M is optimal if it
yields the minimal expected reward, i.e. ExpRewσ (M) =MinExpRew(M). Second, a
strategy is positional if actions depend on the current state only, i.e. σ(ws) = σ(s) for
all w ∈ S∗

M and s ∈ SM . Third, a strategy is deterministic if the strategy always chooses
exactly one action, i.e. for all w ∈ S+M there is an a ∈ ActM such that σ(w) = δa.

Example 2 (cntd.). An optimal, positional, and deterministic strategy σ for the MDP
Mline (Fig. 2) chooses action r(ight) for states s0, s1 and �(eft) for s3, s4. For p= 2/3, the
(minimal) expected number of steps until reaching s2 is ExpRewσ (Mline) = 3.

Every positional strategy for an MDP M induces a Markov chain over the same states.

Definition 3 (Induced Markov Chain). The induced Markov chain of an MDP M
and a positional strategy σ of M is given by M[σ] = (SM, IM,GM,P,rewM), where the
transition probability function P is given by

P(s,s′) = ∑
α∈ActM

PM(s,α)(s′) ·σ(s)(a).

For MDPs, there always exists an optimal strategy that is also positional and determin-
istic (cf. [2]). Hence, the minimal expected reward of such an MDP M can alternatively
be defined in terms of the expected rewards of its induced Markov chains:

MinExpRew(M) = min{ ExpRew(M[σ]) | σ ∈ S(M) positional}

2.2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is an MDP with imperfect
information about the current state, that is, certain states are indistinguishable.

378 A.-M. Konsta et al.

Definition 4 (POMDPs). A partially observable Markov decision process is a tuple
M = (M,O,obs), where M = (S, I,G,Act,P,rew) is an MDP, O is a finite set of obser-
vations, and obs : S → O� {�} is an observation function such that obs(s) = � iff
s ∈ G.3

For simplicity, we use a dedicated observation � for goal states and only consider
observation functions of the above kind. We write O� as a shortcut for O�{�}.

Example 3 (cntd.). The colors in Fig. 2 indicate a POMDP obtained from Mline by
assigning observations o1 to s0 and s4, o2 to s1 and s4, and � to s2. Hence, we know
how far away from the goal state s2 we are but not which action leads to the goal.

In a POMDP M , we assume that we cannot directly see a state, say s, but only its
assigned observation obsM (s) – all states in obs−1

M (o) = {s | obsM (s) = o} thus become
indistinguishable. Consequently, multiple path fragments in the underlying MDP M
might also become indistinguishable. More formally, the observation path fragment
obsM (π) of a path fragment π = s0α0s1 . . .sn ∈ Paths(M) is defined as

obsM (π) = obsM (s0)α0 obsM (s1) . . . obsM (sn).

We denote by OPaths(M) the set of all observation paths obtained from the paths of
M ’s underlying MDP M, i.e. OPaths(M) = {obsM (π) | π ∈ Paths(M)}. Strategies for
POMDPs are defined as for their underlying MDPs. However, POMDP strategies must
be observation-based, that is, they have to make the same decisions for path fragments
that have the same observation path fragment.

Definition 5 (Observation-Based Strategies). An observation-based strategy σ for a
POMDP M = (M,O,obs) is a function σ : OPaths(M) → Dist(ActM) such that:

– σ is a strategy for the MDP M, i.e. σ ∈ S(M) and
– for all path fragments π = s0α0s1...sn and π ′ = s′0α ′

0s
′
1...s

′
n, if obs(π) = obs(π ′),

then σ(s0s1 . . .sn) = σ(s′0s
′
1 . . .s′n).

We denote by O(M) the set of all observation-based strategies of M . The minimal
expected reward of a POMDP M = (M,O,obs) is defined analogously to the expected
reward of the MDP M when considering only observation-based strategies:

MinExpRew(M) = inf
σ∈O(M)

ExpRewσ (M).

Strategies for POMDPs. Optimal, positional, and deterministic observation-based
strategies for POMDPs are defined analogously to their counterparts for MDPs. Fur-
thermore, given a positional strategy σ , we denote by M [σ] = (MM [σ],OM ,obsM)
the POMDP in which the underlying MDP M is changed to the Markov chain induced
by M and σ .

When computing expected rewards, we can view a POMDP as an MDP whose
strategies are restricted to observation-based ones. Hence, the minimal expected reward
of a POMDP is always greater than or equal to the minimal expected reward of its
underlying MDP. In particular, if there is one observation-based strategy that is also
optimal for the MDP, then the POMDP and the MDP have the same expected reward.

3 Here, A�B denotes the union A∪B of sets A and B if A∩B= /0; otherwise, it is undefined.

What Should Be Observed for Optimal Reward in POMDPs? 379

Example 4 (cntd.). Consider the POMDP M in Fig. 2 for p = 1/2. For the underlying
MDP Mline, we have MinExpRew(Mline) = 4. Since we cannot reach s2 from s1 and
s3 by choosing the same action, every positional and deterministic observation-based
strategy σ yields ExpRewσ (M) = ∞. An observation-based positional strategy σ ′ can
choose each action with probability 1/2, which yields ExpRewσ ′

(M) = 10. Moreover,
for deterministic, but not necessarily positional, strategies, MinExpRew(M) ≈ 4.74.4

Notation for (PO)MDPs. Given a POMDP M = (M,O,obs) and an observation func-
tion obs′ : SM → O′

�, we denote by M 〈obs′〉 the POMDP obtained from M by set-
ting the observation function to obs′, i.e. M 〈obs′〉 = (M,O′,obs′). We call M fully
observable if all states can be distinguished from one another, i.e. s1 �= s2 implies
obs(s1) �= obs(s2) for all s1,s2 ∈ SM . Throughout this paper, we do not distinguish
between a fully-observable POMDP M and its underlying MDP M. Hence, we use
notation introduced for POMDPs, such as M 〈obs′〉, also for MDPs.

3 The Optimal Observability Problem

We now introduce and discuss observability problems of the form “what should be
observable for a POMDP such that a property of interest can still be guaranteed?”.

As a simple example, assume we want to turn an MDP M into a POMDP M =
(M,O,obs) by selecting an observation function obs : SM → O� such that M and M
have the same expected reward, that is, MinExpRew(M) = MinExpRew(M). Since
every MDP is also a POMDP, this problem has a trivial solution: We can introduce one
observation for every non-goal state, i.e. O= (SM \GM), and encode full observability,
i.e. obs(s) = s if s ∈ SM \GM and obs(s) = � if s ∈ GM . However, we will see that the
above problem becomes significantly more involved if we add objectives or restrict the
space of admissible observation functions obs.

In particular, we will define in Sect. 3.1 the optimal observability problem which is
concerned with turning an MDP M into a POMDP M such that M ’s expected reward
remains below a given threshold and, at the same time, the number of available obser-
vations, i.e. how many non-goal states can be distinguished with certainty, is limited by
a budget. In Sect. 3.2, we show that the problem is undecidable.

3.1 Problem Statement

Formally, the optimal observability problem is the following decision problem:

Definition 6 (Optimal Observability Problem (OOP)). Given an MDP M, a bud-
get B ∈ N≥1, and a (rational) threshold τ ∈ Q≥0, is there an observation function
obs : SM → O� with |O| ≤ B such that MinExpRew(M〈obs〉) ≤ τ?

Example 5 (cntd.). Recall from Fig. 2 the MDP Mline and consider the OOP-instance
(Mline,B,τ) for p= 1/2, B= 2, and τ =MinExpRew(Mline) = 4. As discussed in Exam-
ple 4, the observation function given by the colors in Fig. 2 is not a solution. However,

4 Approximate solution provided by PRISM’s POMDP solver.

380 A.-M. Konsta et al.

Fig. 3. Sketch of the MDP M′ constructed in the undecidability proof (Theorem 1). We assume
the original POMDP M uses actions Act = {α ,β} and observations O = {o, õ}. Edges with a
black dot indicate the probability distribution selected for the action(s) next to it. Edges without
a black dot are taken with probability one. Concrete probabilities, rewards, and transitions of
unnamed states have been omitted for simplicity.

there is a solution: For obs(s0) = obs(s1) = o1, obs(s2) = �, and obs(s2) = obs(s3) =
o2, we have MinExpRew(Mline〈obs〉) = 4, because the optimal strategy for Mline dis-
cussed in Example 2 is also observation-based for Mline〈obs〉.

3.2 Undecidability

We now show that the optimal observability problem (Definition 6) is undecidable.

Theorem 1 (Undecidability). The optimal observability problem is undecidable.

The proof is by reduction to the policy-existence problem for POMDPs [22].

Definition 7 (Policy-Existence Problem). Given a POMDPM and a rational thresh-
old τ ∈ Q≥0, does MinExpRew(M) ≤ τ hold?

Proposition 1 (Madani et al. [22]). The policy-existence problem is undecidable.

Proof (of Theorem 1). By reduction to the policy-existence problem. Let (M ,τ) be an
instance of said problem, where M =(M,O,obs) is a POMDP, M=(S, I,G,Act,P,rew)
is the underlying MDP, and τ ∈ Q≥0 is a threshold. Without loss of generality, we
assume that G is non-empty and that |range(obs)| = |O|+ 1, where range(obs) =
{obs(s) | s ∈ S}. We construct an OOP-instance (M′,B,τ), where B = |O|, to decide
whether MinExpRew(M) ≤ τ holds.

Construction of M′. Figure 3 illustrates the construction of M′; a formal definition is
found in Fig. 4. Our construction extends M in three ways: First, we add a sink state s∞
such that reaching s∞ with some positive probability immediately leads to an infinite
total expected reward. Second, we add a new initial state so for every observation o ∈
O. Those new initial states can only reach each other, the sink state s∞, or the goal

What Should Be Observed for Optimal Reward in POMDPs? 381

Fig. 4. Formal construction of the MDP M′ in the proof of Theorem 1. Here, M′ is derived from
the POMDP M = (M,O,obs), where M = (S, I,G,Act,P,rew). Moreover, uniform(S′′) assigns
probability 1/|S′′ | to states in S′′ and probability 0, otherwise.

states via the new state sτ . Third, we tag every action α ∈ Act with an observation
from O, i.e. for all α ∈ Act and o ∈ O, we introduce an action αo. For every state
s ∈ S \G, taking actions tagged with obs(s) behaves as in the original POMDP M .
Taking an action with any other tag leads to the sink state. Intuitively, strategies for M′
thus have to pick actions with the same tags for states with the same observation in
M . However, it could be possible that a different observation function than the original
obs could be chosen. To prevent this, every newly introduced initial state so (for each
observation o∈O) leads to s∞ if we take an action that is not tagged with o. Each so thus
represents one observable, namely o. To rule out observation functions with less than
|O| observations, our transition probability function moves from every new initial state
so ∈ SO to every s′o ∈ SO and to sτ with some positive probability (uniformly distributed
for convenience). If we would assign the same observation to two states in so,s′o ∈ SO,
then there would be two identical observation-based paths to so and s′o. Hence, any
observation-based strategy inevitably has to pick an action with a tag that leads to s∞.
In summary, the additional initial states enforce that – up to a potential renaming of
observations – we have to use the same observation function as in the original POMDP.

Clearly, the MDP M′ is computable (even in polynomial time). Our construction
also yields a correct reduction (see [17, Appendix A.1] for details), i.e. we have

MinExpRew(M) ≤ τ
︸ ︷︷ ︸

policy-existence problem

⇐⇒ ∃obs′ : MinExpRew(M′〈obs′〉) ≤ τ.
︸ ︷︷ ︸

optimal observability problem, where |range(obs′)| ≤ |O�|

��

4 Optimal Observability for Positional Strategies

Since the optimal observability problem is undecidable in general (cf. Theorem 1), we
consider restricted versions. In particular, we focus on positional strategies throughout
the remainder of this paper. We show in Sect. 4.1 that the optimal observability prob-
lem becomes NP-complete when restricted to positional and deterministic strategies.
Furthermore, one can determine the minimal required budget that still yields the exact
minimal expected reward by analyzing the underlying MDP (Sect. 4.1). In Sect. 4.2, we

382 A.-M. Konsta et al.

explore variants of the optimal observability problem, where the budget is lower than
the minimal required one. We show that an extension of parameter synthesis techniques
can be used to solve those variants.

4.1 Positional and Deterministic Strategies

We now consider a version of the optimal observability problem in which only posi-
tional and deterministic strategies are taken into account. Recall that a positional and
deterministic strategy for M assigns one action to every state, i.e. it is of the form
σ : SM → ActM . Formally, let Spd(M) denote the set of all positional and determin-
istic strategies for M . The minimal expected reward over strategies in Spd(M) is

MinExpRewpd(M) = inf
σ∈Spd(M)

ExpRewσ (M).

The optimal observability problem for positional and deterministic strategies is then
defined as in Definition 6, but using MinExpRewpd(M) instead of MinExpRew(M):

Definition 8 (Positional Deterministic Optimal Observability Problem (PDOOP)).
Given an MDP M, B ∈ N≥1, and τ ∈ Q≥0, does there exist an observation function
obs : SM → O� with |O| ≤ B such that MinExpRewpd(M 〈obs〉) ≤ τ?

Example 6 (ctnd.). Consider the PDOOP-instance (Mline,2,4), where Mline is the MDP
in Fig. 2 for p = 1/2. Then there is a solution by assigning the observation o1 to s0 and
s1 (and moving r(ight) for o1), and o2 to s3 and s4 (and moving �(eft) for o2).

Analogously, we restrict the policy-existence problem (cf. Definition 7) to positional
and deterministic strategies.

Definition 9 (Positional Deterministic Policy-Existence Problem (PDPEP)). Given
a POMDP M and τ ∈ Q≥0, does MinExpRewpd(M) ≤ τ hold?

Proposition 2 (Sec. 3 from [20]). PDPEP is NP-complete.

NP-hardness of PDOOP then follows by a reduction from PDPEP, which is similar
to the reduction in our undecidability proof for arbitrary strategies (cf. Theorem 1). In
fact, PDOOP is not only NP-hard but also in NP.

Theorem 2 (NP-completeness). PDOOP is NP-complete.

Proof (Sketch). To see that PDOOP is in NP, consider a PDOOP-instance (M,B,τ).
We guess an observation function obs : SM → {1, . . . , |B|} � {�} and a positional and
deterministic strategy σ : SM → ActM . Both are clearly polynomial in the size of M and
B. Then obs is a solution for the PDOOP-instance (M,B,τ) iff (a) σ is an observation-
based strategy and (b) ExpRewσ (M〈obs〉)≤ τ . Since σ is positional and deterministic,
property (a) amounts to checking whether obs(s) = obs(t) implies σ(s) = σ(t) for
all states s, t ∈ SM , which can be solved in time quadratic in the size of M. To check
property (b), we construct the induced Markov chain M〈obs〉[σ], which is linear in the

What Should Be Observed for Optimal Reward in POMDPs? 383

size of M (see Definition 3). Using linear programming (cf. [2]), we can determine the
Markov chain’s expected reward in polynomial time, i.e. we can check that

ExpRew(M〈obs〉[σ]) = ExpRewσ (M〈obs〉) ≤ τ.

We show NP-hardness by polynomial-time reduction from PDPEP to PDOOP. The
reduction is similar to the proof of Theorem 1 but uses Proposition 2 instead of Propo-
sition 1. We refer to [17, Appendix A.3] for details. In particular, notice that the con-
struction in Fig. 4 is polynomial in the size of the input M , because the constructed
MDP M′ has |S|+ |OM |+2 states and |ActM | · |OM | actions. ��
Before we turn to the optimal observability problem for possibly randomized strategies,
we remark that, for positional and deterministic strategies, we can also solve a stronger
problem than optimal observability: how many observables are needed to turn an MDP
into POMDP with the same minimal expected reward?

Definition 10 (Minimal Positional Budget Problem (MPBP)). Given an MDP M,
determine an observation function obs : SM → O� such that

– MinExpRewpd(M〈obs〉) =MinExpRewpd(M) and
– MinExpRewpd(M〈obs〉) < MinExpRewpd(M〈obs′〉) for all observation functions

obs′ : SM → O′
� with |O′| < |O|.

The main idea for solving the problem MPBP is that every optimal, positional, and
deterministic (OPD, for short) strategy σ : SM → ActM for an MDP M also solves
PDOOP for M with threshold τ = MinExpRewp(M) and budget B = |range(σ)|:
A suitable observation function obs : SM → range(σ) assigns action α to every state
s ∈ SM with σ(s) = α . It thus suffices to find an OPD strategy for M that uses a min-
imal set of actions. A brute-force approach to finding such a strategy iterates over all
subsets of actions A ⊆ ActM: For each A, we construct an MDP MA from M that keeps
only the actions in A, and determine an OPD strategy σA for MA. The desired strat-
egy is then given by the strategy for the smallest set A such that ExpRewσA(MA) =
MinExpRewp(M). Since finding an OPD strategy for a MDP is possible in polynomial

time (cf. [2]), the problem MPBP can be solved in O(2|ActM | ·poly(size(M))).

Example 7 (ctnd.). An OPD strategy σ for the MDP Mline in Fig. 2 with p= 1 is given
by σ(s0) = σ(s1) = r and σ(s3) = σ(s4) = �. Since this strategy maps to two different
actions, two observations suffice for selecting an observation function obs such that
MinExpRewpd(Mline〈obs〉) =MinExpRewpd(Mline) = 3/2.

4.2 Positional Randomized Strategies

In the remainder of this section, we will remove the restriction to deterministic strate-
gies, i.e. we will study the optimal observability problem for positional and possibly
randomized strategies. Our approach builds upon a typed extension of parameter syn-
thesis techniques for Markov chains, which we briefly introduce first. For a comprehen-
sive overview of parameter synthesis techniques, we refer to [12,14].

384 A.-M. Konsta et al.

Typed Parametric Markov Chains. A typed parametric Markov chain (tpMC) admits
expressions instead of constants as transition probabilities. We admit variables (also
called parameters) of different types in expressions. The types R and B represent real-
valued and {0,1}-valued variables, respectively. We denote by R=C (resp. B=C) a type
for real-valued (resp. {0,1}-valued) variables such that the values of all variables of
this type sum up to some fixed constantC.5 Furthermore, we denote byV (T) the subset
of V consisting of all variables of type T . Moreover, Q[V] is the set of multivariate
polynomials with rational coefficients over variables taken from V .

Definition 11 (Typed Parametric Markov Chains). A typed parametric Markov
chain is a tuple D = (S, I,G,V,P,rew), where S is a finite set of states, I ⊆ S is a
set of initial states, G ⊆ S is a set of goal states, V is a finite set of typed variables,
P : S×S → Q[V] is a parametric transition probability function, and rew : S → R≥0 is
a reward function.

An instantiation of a tpMC D is a function ι : VD → R such that

– for all x ∈VD (B)∪VD(B=C), we have ι(x) ∈ {0,1};
– for all VD (D=C) = {x1, . . . ,xn} �= /0 with D ∈ {B,R}, we have ∑n

i=1 ι(xi) =C.

Given a polynomial q ∈ Q[VD], we denote by q[ι] the real value obtained from replac-
ing in q every variable x ∈ VD by ι(x). We lift this notation to transition probabil-
ity functions by setting PD [ι](s,s′) = PD (s,s′)[ι] for all states s,s′ ∈ SD . An instan-
tiation ι is well-defined if it yields a well-defined transition probability function, i.e.
if ∑s′∈SD PD [ι](s,s′) = 1 for all s ∈ SD . Every well-defined instantiation ι induces a
Markov chain D [ι] = (SD , ID ,GD ,P[ι],rewD).

We focus on the feasibility problem – is there a well-defined instantiation satisfying
a given property? – for tpMCs, because of a closed connection to POMDPs.

Definition 12 (Feasibility Problem for tpMCs). Given a tpMC D and a threshold
τ ∈ Q≥0, does there exist a well-defined instantiation ι such that ExpRew(D [ι]) ≤ τ .

Junges [14] studied decision problems for parametric Markov chains (pMCs) over real-
typed variables. In particular, he showed that the feasibility problem for pMCs over
real-typed variables is ETR-complete. Here, ETR refers to the Existential Theory of
Reals, i.e. all true sentences of the form ∃x1 . . .∃xn.P(x1, ...,xn), where P is a quantifier-
free first-order formula over (in)equalities between polynomials with real coefficients
and free variables x1, . . . ,xn. The complexity class ETR consists of all problems that can
be reduced to the ETR in polynomial time. We extend this result to tpMCs.

Lemma 1. The feasibility problem for tpMCs is ETR-complete.

A proof is found in [17, Appendix A.5]. Since ETR lies between NP and PSPACE (cf.
[3]), decidability immediately follows:

Theorem 3. The feasibility problem for tpMCs is decidable in PSPACE.

5 We allow using multiple types with different names of this form. For example, R1
=1 and R

2
=1

are types for two different sets of variables whose values must sum up to one.

What Should Be Observed for Optimal Reward in POMDPs? 385

Positional Optimal Observability via Parameter Synthesis. We are now ready to
show that the optimal observability problem over positional strategies is decidable.
Formally, let Sp(M) denote the set of all positional strategies for M . The minimal
expected reward over strategies in Sp(M) is then given by

MinExpRewp(M) = inf
σ∈Sp(M)

ExpRewσ (M).

Definition 13 (Positional Observability Problem (POP)). Given an MDP M, a bud-
get B ∈ N≥1, and a threshold τ ∈ Q≥0, is there a function obs : SM → O� with |O| ≤ B
such that MinExpRewp(M〈obs〉) ≤ τ?

To solve a POP-instance (M,B,τ), we construct a tpMC D such that every well-defined
instantiation corresponds to an induced Markov chain M〈obs〉[σ] obtained by selecting
an observation function obs : SM → {1, . . . ,B}�{�} and a positional strategy σ . Then
the POP-instance (M,B,τ) has a solution iff the feasibility problem for (D ,τ) has a
solution, which is decidable by Theorem 3.

Our construction of D is inspired by [14]. The main idea is that a positional random-
ized POMDP strategy takes every action with some probability depending on the given
observation. Since the precise probabilities are unknown, we represent the probability
of selecting action α given observation o by a parameter xo,α . Those parameters must
form a probability distribution for every observation o, i.e. they will be of type R

o
=1. In

the transition probability function, we then pick each action with the probability given
by the parameter for the action and the current observation. To encode observation func-
tion obs, we introduce a Boolean variable ys,o for every state s and observation o that
evaluates to 1 iff obs(s) = o. Formally, the tpMC D is constructed as follows:

Definition 14 (Observation tpMC of an MDP). For an MDP M and a budget B ∈
N≥1, the corresponding observation tpMC DM = (SM, IM,GM,V,P,rewM) is given by

O = {1, . . . ,B} V =
⊎

s∈SM\GM

V (Bs
=1) �

⊎

o∈O
V (Ro

=1)

V (Bs
=1) = {ys,o | o ∈ O} V (Ro

=1) = {xo,α | α ∈ ActM}
P(s,s′) = ∑

α∈ActM
∑
o∈O

ys,o · xo,α ·PM(s,α)(s′),

where, to avoid case distinctions, we define ys,o as the constant 1 for all s ∈ GM.

Our construction is sound in the sense that every Markov chain obtained from an MDP
M by selecting an observation function and an observation-based positional strategy
corresponds to a well-defined instantiation of the observation tpMC of M.

Lemma 2. Let M be an MDP and D the observation tpMC of M for budget B ∈ N≥1.
Moreover, let O= {1, . . . ,B}. Then, the following sets are identical:

{M〈obs〉[σ] | obs : SM →O�,σ ∈Sp(M〈obs〉)} = {D [ι] | ι : VDM →R well-defined}

386 A.-M. Konsta et al.

Fig. 5. Observation tpMC for the MDP Mline in Fig. 2 with p= 1 and budget 2.

Proof. Intuitively, the values of ys,o determine the observation function obs, and the
values of xs,α determine the positional strategy. See [17, Appendix A.6] for details. ��
Put together, Lemma 2 and Theorem 3 yield a decision procedure for the positional
observability problem: Given a POP-instance (M,B,τ), construct the observation tpMC
D of M for budget B. By Theorem 3, it is decidable in ETR whether there exists a well-
defined instantiation ι such that ExpRew(D [ι]) ≤ τ , which, by Lemma 2, holds iff
there exists an observation function obs : S → {1, . . .B}�{�} and a positional strategy
σ ∈Sp(M〈obs〉) such that MinExpRewp(M〈obs〉)≤ExpRewσ (M〈obs〉)≤ τ . Hence,

Theorem 4. The positional observability problem POP is decidable in ETR.

In fact, POP is ETR-complete because the policy-existence problem for POMDPs is
ETR-complete when restricted to positional strategies [14, Theorem 7.7]. The hardness
proof is similar to the reduction in Sect. 3.2. Details are found in [17, Appendix A.3].

Example 8 (ctnd.). Figure 5 depicts the observation tpMC of the MDP Mline in Fig. 2
for p= 1 and budget B= 2. The Boolean variable ys,o is true if we observe o for state s.
Moreover, xo,α represents the rate of choosing action α when o is been observed. As is
standard for Markov models [27], including parametric ones [14], the expected reward
can be expressed as a set of recursive Bellman equations (parametric in our case). For
the present example those equations yield the following ETR constraints:

r0 = 1+(ys0,o1 · xo1,� + ys0,o2 · xo2,�) · r0 +(ys0,o1 · xo1,r+ ys0,o2 · xo2,r) · r1

r1 = 1+(ys1,o1 · xo1,� + ys1,o2 · xo2,�) · r0 +(ys1,o1 · xo1,r+ ys1,o2 · xo2,r) · r2

r2 = 0
r3 = 1+(ys3,o1 · xo1,� + ys3,o2 · xo2,�) · r2 +(ys3,o1 · xo1,r+ ys3,o2 · xo2,r) · r4

r4 = 1+(ys4,o1 · xo1,� + ys4,o2 · xo2,�) · r3 +(ys4,o1 · xo1,r+ ys4,o2 · xo2,r) · r4

τ ≥ 1
4 · (r0 + r1 + r3 + r4)

where ri is the expected reward for paths starting at si, i.e. ri = ∑π∈Paths(Mline)|π[0]=si

Pσ
Mline

(π) · rewMline(π). Note that ExpRewσ (Mline) = 1
4 · (r0 + r1 + r3 + r4) for the strat-

egy σ defined by the parameters xo,α .

Sensor Selection Problem. We finally consider a variant of the positional observability
problem in which observations can only be made through a fixed set of location sensors
that can be turned on or off for every state. In this scenario, a POMDP can either observe

What Should Be Observed for Optimal Reward in POMDPs? 387

its position (i.e. the current state) or nothing at all (represented by ⊥).6 Formally, we
consider location POMDPs M with observations OM = D�{⊥}, where D ⊆ {@s |
s ∈ (SM \GM)} are the observable locations and the observation function is

obsM (s) =

⎧
⎪⎨

⎪⎩

@s, if @s ∈ D

�, if s ∈ GM

⊥, if @s /∈ D and s /∈ GM .

Example 9 (ctnd.). Consider the MDP Mline with p= 1 and location sensors assigned as
in Fig. 2. With a budget of 2 we can only select 2 of the 4 location sensors. For example,
we can turn on the sensors on one side, say @s0, @s1. The observation function is then
given by obs(s0) = @s1, obs(s1) = @s2, and obs(s3) = obs(s4) =⊥. This is an optimal
sensor selection as it reveals whether one is located left or right of the goal.

The sensor selection problem aims at turning an MDP into a location POMDP with a
limited number of observations such that the expected reward stays below a threshold.

Definition 15 (Sensor Selection Problem (SSP)). Given an MDP M, a budget B ∈
N≥1, and τ ∈ Q≥0, is there an observation function obs : SM → O� with |O| ≤ B such
that M = (M,O,obs) is a location POMDP and MinExpRewp(M) ≤ τ?

To solve the SSP, we construct a tpMC similar to Definition 14. The main difference is
that we use a Boolean variable yi to model whether the location sensor @si is on (1) or
off (0). Moreover, we require that at most B sensors are turned on.

Definition 16 (Location tpMC of an MDP). For an MDP M and a budget B ∈ N≥1,
the corresponding location tpMC DM = (SM, IM,GM,V,P,rewM) is given by

V =V (B=B)�
⊎

o∈O
V (Ro

=1) V (B=B) = {ys | s ∈ SM \GM} V (Ro
=1) = {xs,α | α ∈ ActM}

P(s,s′) = ∑
α∈Act

ys · xs,α ·P(s,α)(s′)+(1− ys) · x⊥,α ·P(s,α)(s′),

where, to avoid case distinctions, we define ys as the constant 1 for all s ∈ GM.

Analogously, to Lemma 2 and Theorem 5, soundness of the above construction then
yields a decision procedure in PSPACE for the sensor selection problem (see [17,
Appendix A.7]).

Lemma 3. Let M be an MDP and D the location tpMC of M for budget B ∈ N≥1.
Moreover, let LocObs be the set of observation functions obs : SM → O� such that
M〈obs〉 is a location MDP. Then, the following sets are identical:

{M〈obs〉[σ] | obs ∈ LocObs, σ ∈ Sp(M〈obs〉)} = {D [ι] | ι : VDM → R well-defined}
Theorem 5. The sensor selection problem SSP is decidable in ETR, and thus in
PSPACE.
6 We provide a generalized version for multiple sensors per state in [17, Appendix A.8].

388 A.-M. Konsta et al.

Fig. 6. Location tpMC for the location POMDP in Fig. 2 with p= 1 and budget 2.

Example 10. Figure 6 shows the location tpMC of the location POMDP in Fig. 2 for
p= 1 and budget 2. The Boolean variable ys indicates if the sensor @s is be turned on,
while the variables xs,α indicates the rate of choosing action α if sensor @s is turned
on; otherwise, i.e. if sensor @s is turned off, x⊥,α is used, which is the rate of choosing
action α for unknown locations.

5 Implementation and Experimental Evaluation

Our approaches for solving the optimal observability problem and its variants fall into
two categories: (a) parameter synthesis (cf. Section 4.2) and (b) brute-force enumera-
tion of observation functions combined with probabilistic model checking (cf. Theorem
2). In this section, we evaluate the feasibility of both approaches. Regarding approach
(a), we argue in Sect. 5.1 why existing parameter synthesis tools cannot be applied out-
of-the-box to the optimal observability problem. Instead, we performed SMT-backed
experiments based on direct ETR-encodings (see Theorems 4 and 5); the implementa-
tion and experimental setup is described in Sect. 5.2. Section 5.3 presents experimental
results using our ETR-encodings for approach (a) and, for comparison, an implementa-
tion of approach (b) using the probabilistic model checker PRISM [19].

5.1 Solving Optimal Observability Problems with Parameter Synthesis Tools

Existing tools that can solve parameter synthesis problems for Markov models, such as
PARAM [10], PROPHESY [8,9,12], and STORM [11], are, to the best of our knowledge,
restricted to (1) real-valued parameters and (2) graph-preserving models. Restriction
(1) means that they do not support typed parametric Markov chains, which are needed
to model the search for an observation function and budget constraints. Restriction (2)
means that the choice of synthesized parameter values may not affect the graph struc-
ture of the considered Markov chain. For example, it is not allowed to set the probability
of a transition to zero, which effectively means that the transition is removed. While the
restriction to graph-preserving models is sensible for performance reasons, it rules out
Boolean-typed variables, which we require in our tpMC-encodings of the positional
observability problem (Definition 13) and the sensor selection problem (Definition 15).
For example, the tpMCs in Fig. 5 and Fig. 6, which resulted from our running exam-
ple, are not graph-preserving models. It remains an open problem whether the same
efficient techniques developed for parameter synthesis of graph-preserving models can

What Should Be Observed for Optimal Reward in POMDPs? 389

be applied to typed parametric Markov chains. It is also worth mentioning that for
both POP and SSP the typed extension for pMCs is not strictly necessary. However,
the types simplify the presentation and are straightforward to encode into ETR. Alter-
natively, one can encode Boolean variables in ordinary pMCs as in [14, Fig. 5.23 on
page 144]. We opted for the typed version of pMCs to highlight what is challenging for
existing parameter synthesis tools.

5.2 Implementation and Setup

As outlined above, parameter synthesis tools are currently unsuited for solving the posi-
tional observability (POP, Definition 13) and the sensor selection problem (SSP, Def-
inition 15). We thus implemented direct ETR-encodings of POP and SSP instances for
positional, but randomized, strategies based on the approach described in Sect. 4.2. We
also consider the positional-deterministic observability problem (PDOOP, Definition
8) by adding constraints to our implementation for the POP to rule out randomized
strategies. Our code is written in Python with Z3 [25] as a backend. More precisely, for
every tpMC parameter in Definition 14 and Definition 16 there is a corresponding vari-
able in the Z3 encoding. For example, if a Z3 model assigns 1 to the Z3 variable ys01,
which corresponds to the tpMC parameter ys0,o1 (Definition 14), we have obs(s0) = o1.
Thus, we can directly construct the observation function. Similarly, we can map the
results for the SSP. Furthermore, the expected reward for each state is computed using
standard techniques based on Bellmann equations as explained in Example 8.

For comparison, we also implemented a brute-force approach for positional and
deterministic strategies described in Sect. 4.1, which enumerates all observation func-
tions and corresponding observation-based strategies, hence analyzing the resulting
induced DTMCs with PRISM [19].7 Our code and all examples are available online.8

Benchmark Selection. To evaluate our approaches for P(D)OP and SSP, we created
variants (with different state space sizes, probabilities, and thresholds) of two standard
benchmarks from the POMDP literature, grid(world) [21] and maze [23], and our run-
ning example (cf. Example 1). Overall, we considered 26 variants for each problem.
Setup. All experiments were performed on an HP EliteBook 840 G8 with an 11th Gen
Intel(R) Core(TM) i7@3.00GHz and 32GB RAM. We use Ubuntu 20.04.6 LTS, Python
3.8.10, Z3 version 4.12.4, and PRISM 4.8 with default parameters (except for using exact
model checking). We use a timeout of 15 min for each individual execution.

5.3 Experimental Results

Tables 1 and 2 show an excerpt of our experiments for selected variants of the three
benchmarks, including the largest variant of each benchmark that can be solved for ran-
domized and deterministic strategies, respectively. The full tables containing the results
of all experiments are found in [17, Appendix A.10]. The left-hand side of Tables 1 and

7 Brute-force enumeration of POMDPs has not been considered as PRISM’s POMDP solver
uses approximation techniques and does not allow to restrict to positional strategies.

8 https://github.com/alyziakonsta/Optimal-Observability-Problem.

https://github.com/alyziakonsta/Optimal-Observability-Problem

390 A.-M. Konsta et al.

Table 1. Excerpt of experimental results for randomised strategies.

POP - Randomised Strategies

Problem Instance Z3

Model Threshold Budget Time(s) Reward

L(249)
≤ 250

2 2 t.o. N/A
≤ 125

2 2 19.051 125
2

< 125
2 2 15.375 N/A

G(20)
≤ 15200

399 2 t.o. N/A

≤ 7600
399 2 19.164 7600

399

< 7600
399 2 15.759 N/A

M(7)
≤ 168

15 4 t.o. N/A

≤ 84
15 4 15.598 84

15

< 84
15 4 31.986 N/A

SSP - Randomised Strategies

Problem Instance Z3

Model Threshold Budget Time(s) Reward

L(61)
≤ 31 30 t.o. N/A
≤ 31

2 30 17.894 31
2

< 31
2 30 30.198 N/A

G(6)
≤ 360

35 5 t.o. N/A

≤ 180
35 5 16.671 180

35

< 180
35 5 30.204 N/A

M(15)
≤ 868

35 21 t.o. N/A

≤ 434
35 21 19.067 434

35

< 434
35 21 30.463 N/A

2 show our results for the P(D)OP, whereas the right-hand side shows our results for
the SSP. We briefly go over the columns used in both tables.

The considered variant is given by the columns model, threshold and budget. There
are three kinds of models. We denote by L(k) a variant of our running example MDP
Mline scaled up to k states. We choose k as an odd number such that the goal is always in
the middle of the line. Likewise, we write G(k) to refer to an k×k grid model, where the
goal state is in the bottom right corner. Finally, M(k) refers to the maze model, where k
is the (odd) number of states; an example is found in [17, Appendix A.4].

The column Z3 represents the runtime for our direct ETR-encoding with Z3 as a
backend. The column PRISM shows the runtime for the brute-force approach. All run-
times are in seconds. We write t.o. if a variant exceeds the timeout. If the (expected)
reward is not available due to a timeout, we write N/A in the respective column. In both
cases, we color the corresponding cells grey. If our implementation manages to prove
that there is no solution, we also write N/A, but leave the cell white.

We choose three different threshold constraints in each problem, if the optimal
cumulative expected reward is τ we use the threshold constraints ≤ 2τ , ≤ τ , and < τ .
The last one should yield no solution. The budget is always the minimal optimal one.

Randomised Strategies. Table 1 shows that our implementation can solve several non-
trivial POP/SSP-instances for randomized strategies. Performance is better when the
given thresholds are closer to the optimal one (namely ≤ τ and < τ). For large thresh-
olds (≤ 2τ) the implementation times out earlier (see [17, Appendix A.10] for details).
We comment on this phenomenon in more detail later.

Deterministic Strategies. Table 2 shows our results for deterministic strategies. We
observe that we can solve larger instances for deterministic strategies than for ran-
domized ones. Considering the performances of both tools, the SMT-backed approach
outperforms the brute-force PRISM-based one. For the PDOOP, we observe that Z3
can solve some of the problems for the L(377) states, whereas PRISM times our for
instances larger than L(9). Also, Z3 is capable of solving problems for grid instances
G(y) up to k = 24 and maze instances M(k) up to k = 39, while PRISM cannot solve
any problem instance of these models. For the SSP, we can see that Z3 manages to
solve L(y) instances up to k = 193, whereas PRISM gives up after k = 7.

What Should Be Observed for Optimal Reward in POMDPs? 391

On The Impact of Thresholds. For both randomized and deterministic strategies we
observe that larger thresholds yield considerably longer solver runtimes and often lead
to a time-out. At first, this behavior appears peculiar because larger thresholds allow
for more possible solutions. To investigate this peculiar further, we studied the bench-
mark L(7) considering the PDOOP with thresholds ≤ τ , for τ ranging from 1 to 1000.
An excerpt of the considered thresholds and verification times is provided in Table 3.
For the optimal threshold 2, Z3 finds a solution in 0.079 s. Increasing the threshold
(step size 0.25) until 4.5 leads to a steady increase in verification time up to 15.027 s.
Verification requires more than 10min for thresholds in [4.75, 5.5]. For larger thresh-
olds, verification time drops to less than 0.1 s. Hence, increasing the threshold first
decreases performance, but at some point, performance becomes better again. We have
no definitive answers on the threshold’s impact, but we conjecture that a larger thresh-
old increases the search space, which might decrease performance. At the same time, a
larger threshold can also admit more models, which might increase performance.

Table 2. Excerpt of experimental results for deterministic strategies.

PDOOP - Deterministic Strategies

Problem Instance Z3 PRISM

Model Thresh. Budg. Time(s) Rew. Time(s) Rew.

L(9)
≤ 5 2 0.081 5

2

205.615 5
2≤ 5

2 2 0.082 5
2

< 5
2 2 0.086 N/A

L(377)
≤ 189 2 55.735 189

2

t.o. N/A≤ 189
2 2 19.148 189

2 t.o. N/A
< 189

2 2 353.311 N/A

G(24)
≤ 26496

575 2 t.o. N/A
t.o. N/A≤ 13248

575 2 19.751 13248
575 t.o. N/A

< 13248
575 2 30.843 N/A

M(39)
≤ 6232

95 4 t.o. N/A
t.o. N/A≤ 3116

95 4 20.424 3116
95 t.o. N/A

< 3116
95 4 30.149 N/A

SSP - Deterministic Strategies

Problem Instance Z3 PRISM

Model Thresh. Budg. Time(s) Rew. Time(s) Rew.

L(7)
≤ 4 3 0.086 2

186.257 2≤ 2 3 0.087 2
< 2 3 0.123 N/A

L(193)
≤ 97 96 t.o. N/A
≤ 97

2 96 20.530 97
2 t.o. N/A

< 97
2 96 30.412 N/A

G(15)
≤ 3150

112 14 t.o. N/A
t.o. N/A≤ 3150

224 14 20.204 3150
224 t.o. N/A

< 3150
224 14 30.804 N/A

M(49)
≤ 9912

120 72 t.o. N/A
t.o. N/A≤ 4956

120 72 20.35 4956
120 t.o. N/A

< 4956
120 72 30.333 N/A

Table 3. PDOOP L(7) with deterministic strategies.

Thresh. 1 1.5 2 3 4 4.5 4.75 5.5 5.75 50 100 500 1000

Time (s) 30.125 30.444 0.079 1.498 8.803 15.027 t.o. t.o. 0.083 0.089 0.083 0.079 0.083

Discussion. Our experiments demonstrate that SMT solvers, specifically Z3, can be
used out-of-the-box to solve small-to-medium sized POP- and SSP-instances that have
been derived from standard examples in the POMDP literature. In particular, for deter-
ministic strategies, the SMT-backed approach clearly outperforms a brute-force app-
roach based on (exact) probabilistic model checking.

Although the considered problem instances are, admittedly, small-to-medium
sized9, they are promising for several reasons: First, our SMT-backed approach is a

9 At least for notoriously-hard POMDP problems; some instances have ca. 600 states.

392 A.-M. Konsta et al.

faithful, yet naive, ETR-encoding of the POP, and leaves plenty of room for optimiza-
tion. Second, Z3 does, to the best of our knowledge, not use a decision procedure specif-
ically for ETR, which might further hurt performance. Finally, we showed in Sect. 4.2
that POP can be encoded as a feasibility problem for (typed) parametric Markov chains.
Recent advances in parameter synthesis techniques (cf. [8,12]) demonstrate that those
techniques can scale to parametric Markov chains with tens of thousands of states.
While the available tools cannot be used out-of-the-box for solving observability prob-
lems because of the graph-preservation assumption, it might be possible to extend them
in future work.

It is also worth mentioning that our implementation not only provides an answer to
the decidability problems P(D)OP and SSP, but it also synthesizes the corresponding
observation function and the strategy if they exist. However, the decision problem and
the problem of synthesising such observation function have the same complexities.

6 Conclusion and Future Work

We have introduced the novel optimal observability problem (OOP). The problem is
undecidable in general, NP-complete when restricted to positional and deterministic
strategies. We have also shown that the OOP becomes decidable in PSPACE if restricted
to positional, but randomized, strategies, and that it can be reduced to parameter synthe-
sis on a novel typed extension of parametric Markov chains [12,14], which we exploit
in our SMT-based implementation. Our experiments show that SMT solvers can be
used out-of-the-box to solve small-to-medium-sized instances of observability prob-
lems derived from POMDP examples found in the literature. Although we have focused
on proving upper bounds on minimal expected rewards, our techniques also apply to
other observability problems on POMDPs that can be encoded as a query on tpMCs,
based on our faithful encoding of POMDPs as tpMCs with the observation function as a
parameter. For example, the sensor synthesis for almost-sure reachability properties [6]
can be encoded. Moreover, one obtains dual results for proving lower bounds on maxi-
mal expected rewards. For future work, we believe that scalability could be significantly
improved by extending parameter synthesis tools such that they can deal with typed and
non-graph-preserving parametric Markov chains.

References

1. Åström, K.J.: Optimal control of Markov processes with incomplete state information I. J.
Math. Anal. Appl. 10, 174–205 (1965)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press (2008)
3. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: STOC, pp. 460–

467. ACM (1988)
4. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthe-

sis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 243–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 20

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20

What Should Be Observed for Optimal Reward in POMDPs? 393

5. Chades, I., Carwardine, J., Martin, T.G., Nicol, S., Sabbadin, R., Buffet, O.: MOMDPs: a
solution for modelling adaptive management problems. In: AAAI, pp. 267–273. AAAI Press
(2012)

6. Chatterjee, K., Chmelik, M., Topcu, U.: Sensor synthesis for POMDPs with reachability
objectives. In: Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 28, pp. 47–55 (2018)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-observable
Markov decision processes. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 258–269. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 24

8. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale
of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 10

9. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 13

10. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov mod-
els. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

11. Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., Volk, M.: The probabilistic model
checker storm. Int. J. Softw. Tools Technol. Transfer 24(4), 589–610 (2022). https://doi.org/
10.1007/s10009-021-00633-z, https://doi.org/10.1007/s10009-021-00633-z

12. Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis in Markov models: a gentle survey.
In: Raskin, JF., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design:
Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, vol. 13660,
pp. 407–437 (2022). https://doi.org/10.1007/978-3-031-22337-2 20

13. Jdeed, M., et al.: The CPSwarm technology for designing swarms of cyber-physical systems.
In: STAF (Co-Located Events). CEUR Workshop Proceedings, vol. 2405, pp. 85–90. CEUR-
WS.org (2019)

14. Junges, S.: Parameter synthesis in Markov models. Ph.D. thesis, Dissertation, RWTH Aachen
University, 2020 (2020)

15. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observ-
able stochastic domains. Artif. Intell. 101(1), 99–134 (1998). https://doi.org/10.1016/S0004-
3702(98)00023-X, https://www.sciencedirect.com/science/article/pii/S000437029800023X

16. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application. MIT
press (2015)

17. Konsta, A.M., Lafuente, A.L., Matheja, C.: What should be observed for optimal reward in
pomdps? arXiv preprint arXiv:2405.10768 (2024)

18. Krause, A., Singh, A.P., Guestrin, C.: Near-optimal sensor placements in gaussian pro-
cesses: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284
(2008). https://doi.org/10.5555/1390681.1390689, https://dl.acm.org/doi/10.5555/1390681.
1390689

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

20. Littman, M.L.: Memoryless policies: theoretical limitations and practical results. In: From
Animals to Animats 3: Proceedings of the third International Conference on Simulation of
Adaptive Behavior, vol. 3, p. 238. MIT Press Cambridge, MA, USA (1994)

21. Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially observ-
able environments: scaling up. In: Prieditis, A., Russell, S. (eds.) Machine Learning Pro-
ceedings 1995, pp. 362–370. Morgan Kaufmann, San Francisco (CA) (1995). https://doi.
org/10.1016/B978-1-55860-377-6.50052-9, https://www.sciencedirect.com/science/article/
pii/B9781558603776500529

https://doi.org/10.1007/978-3-642-15155-2_24
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/978-3-031-22337-2_20
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
http://arxiv.org/abs/2405.10768
https://doi.org/10.5555/1390681.1390689
https://dl.acm.org/doi/10.5555/1390681.1390689
https://dl.acm.org/doi/10.5555/1390681.1390689
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/B978-1-55860-377-6.50052-9
https://doi.org/10.1016/B978-1-55860-377-6.50052-9
https://www.sciencedirect.com/science/article/pii/B9781558603776500529
https://www.sciencedirect.com/science/article/pii/B9781558603776500529

394 A.-M. Konsta et al.

22. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems. In: AAAI/IAAI, pp. 541–
548 (1999)

23. McCallum, R.A.: Overcoming incomplete perception with utile distinction memory. In:
Machine Learning Proceedings 1993, pp. 190–196. Morgan Kaufmann, San Francisco (CA)
(1993). https://doi.org/10.1016/B978-1-55860-307-3.50031-9, https://www.sciencedirect.
com/science/article/pii/B9781558603073500319

24. Miehling, E., Rasouli, M., Teneketzis, D.: A POMDP approach to the dynamic defense of
large-scale cyber networks. IEEE Trans. Inf. Forensics Secur. 13(10), 2490–2505 (2018)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

26. Pahalawatta, P., Pappas, T., Katsaggelos, A.: Optimal sensor selection for video-based tar-
get tracking in a wireless sensor network. In: 2004 International Conference on Image Pro-
cessing, 2004. ICIP 2004, vol. 5, pp. 3073–3076 (2004). https://doi.org/10.1109/ICIP.2004.
1421762

27. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.org/10.1002/
9780470316887, https://doi.org/10.1002/9780470316887

28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson (2020)
29. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation and analysis

of attack graphs. In: Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 273–
284 (2002). https://doi.org/10.1109/SECPRI.2002.1004377

30. Spaan, M., Lima, P.: A decision-theoretic approach to dynamic sensor selection in cam-
era networks. In: Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 19, pp. 297–304 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1016/B978-1-55860-307-3.50031-9
https://www.sciencedirect.com/science/article/pii/B9781558603073500319
https://www.sciencedirect.com/science/article/pii/B9781558603073500319
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ICIP.2004.1421762
https://doi.org/10.1109/ICIP.2004.1421762
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1109/SECPRI.2002.1004377
http://creativecommons.org/licenses/by/4.0/

Stochastic Omega-Regular Verification
and Control with Supermartingales

Alessandro Abate1(B) , Mirco Giacobbe2(B) , and Diptarko Roy1(B)

1 University of Oxford, Oxford, UK
{alessandro.abate,diptarko.roy}@cs.ox.ac.uk

2 University of Birmingham, Birmingham, UK
m.giacobbe@bham.ac.uk

Abstract. We present for the first time a supermartingale certificate for
ω-regular specifications. We leverage the Robbins & Siegmund conver-
gence theorem to characterize supermartingale certificates for the almost-
sure acceptance of Streett conditions on general stochastic processes,
which we call Streett supermartingales. This enables effective verification
and control of discrete-time stochastic dynamical models with infinite
state space under ω-regular and linear temporal logic specifications. Our
result generalises reachability, safety, reach-avoid, persistence and recur-
rence specifications; our contribution applies to discrete-time stochas-
tic dynamical models and probabilistic programs with discrete and con-
tinuous state spaces and distributions, and carries over to determinis-
tic models and programs. We provide a synthesis algorithm for control
policies and Streett supermartingales as proof certificates for ω-regular
objectives, which is sound and complete for supermartingales and control
policies with polynomial templates and any stochastic dynamical model
whose post-expectation is expressible as a polynomial. We additionally
provide an optimisation of our algorithm that reduces the problem to
satisfiability modulo theories, under the assumption that templates and
post-expectation are in piecewise linear form. We have built a prototype
and have demonstrated the efficacy of our approach on several exemplar
ω-regular verification and control synthesis problems.

Keywords: Probabilistic model checking · Stochastic control
synthesis · ω-regular verification · Linear temporal logic · Martingale
theory

1 Introduction

Stochastic processes describe phenomena, systems and computations whose
behaviour is probabilistic. They are ubiquitous in science and engineering and,
in particular, are employed in artificial intelligence and control theory to char-
acterize dynamical models subject to stochastic disturbances, whose correctness
is crucial when modelling systems that are deployed to safety-critical environ-
ments. Ensuring their correctness with mathematical certainty is an important
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 395–419, 2024.
https://doi.org/10.1007/978-3-031-65633-0_18

https://doi.org/10.5281/zenodo.10948982
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_18&domain=pdf
http://orcid.org/0000-0002-5627-9093
http://orcid.org/0000-0001-8180-0904
http://orcid.org/0009-0003-4306-2076
https://doi.org/10.1007/978-3-031-65633-0_18

396 A. Abate et al.

yet challenging question, in particular for processes with infinite and possibly
continuous state spaces. Systems of this kind include sequential decision and
planning problems in stochastic environments, auto-regressive time series as well
as probabilistic programs, cryptographic protocols, randomised algorithms and
much more. Specifications of correctness for complex systems entail complex
temporal behaviour, which can be described using linear temporal logic (LTL)
or, more generally, ω-regular properties.

Probabilistic verification algorithms for finite state systems based on explicit-
state techniques or symbolic algorithms based on multi-terminal decision dia-
grams are inapplicable to systems with enumerably infinite or continuous (i.e.
uncountably infinite) state spaces [37,41]. For stochastic processes with infinite
state space, existing methods usually build upon finite abstractions or proof
rules based on martingale theory. Finite abstractions first partition the state
space into a grid that forms an equivalent (or an approximately equivalent)
finite state process, which is then checked using a finite-state verification algo-
rithm [4,5,68]. Instead, proof rules directly reduce the verification problem to
that of computing proof certificates—known as supermartingale certificates—
which are synthesised using constraint solving, guess-and-check procedures, or
are learned from data [3,15,19]. Proof rules based on supermartingale certificates
enable effective verification for infinite-state systems without the intermediate
step of computing an abstraction, and have been employed with success in the
termination and correctness analysis of probabilistic programs as well as the
verification of stochastic dynamical models.

Fig. 1. A simple infinite-state stochastic process over variable x ∈ Z. Above, the value
of a Streett supermartingale for the reactivity property GF(x is even) ∨ FG(x < 0).

Supermartingale certificates for stochastic models have been developed in the
past for specific classes of properties. Previous results introduced proof rules for
the almost-sure and the quantitative questions of whether a process eventually
hits a target condition (guarantee) [6,15,21,23], always avoids an undesirable
condition (safety) [16,20], and for Boolean combinations of them (obligation),
such as reach-avoid specifications [22]. Supermartingale certificates were further
generalised to the properties for which the system eventually satisfies a condition
permanently (persistence) [8,17], or hits it infinitely often (recurrence) [17]. Yet,
arbitrary Boolean combinations of the latter two, which define the ω-regular
properties (reactivity) and include LTL [45], are beyond reach for existing tech-
niques. This includes the example of Fig. 1, which exhibits a process over one
integer variable x that, when initialised at x = 0, chooses with 0.5 probability to

Stochastic Omega-Regular Verification and Control with Supermartingales 397

either enumerate the positive numbers or the odd negative numbers. This pro-
cess satisfies almost surely the property requiring that either x is even infinitely
often or that x stays strictly negative from some time onwards; however, as we
illustrate in Sect. 6, previous proof rules cannot verify this property.

Notably, reducing ω-regular verification to Büchi acceptance does not easily
apply to stochastic processes [28,51,63]. This is because, to express ω-regular as
well as LTL properties, this introduces nondeterminism for which standard mar-
tingale theory falls short. To reason about ω-regular specifications while preserv-
ing the probabilistic nature of the system, it is necessary to reason about Rabin,
Streett, Muller or Parity acceptance conditions, as the respective automata
express ω-regular languages in their deterministic form [10,56].

We introduce a proof rule for the probabilistic verification of Streett accep-
tance conditions. Our proof rule leverages the Robbins & Siegmund convergence
theorem for nonnegative almost supermartingales [9,55], which we show to char-
acterise the almost-sure acceptance of Streett pairs. A Streett pair (A,B) is
satisfied when either A is visited finitely many times or B is visited infinitely
often. To conclude that a stochastic process satisfies a Streett pair (A,B) almost
surely, we show that it is sufficient to present a nonnegative real function of the
state space that strictly decreases in expectation when visiting A \ B, possi-
bly increases in expectation when visiting B, and never increases in expecta-
tion in any other case. Such functions—which we call Streett supermartingales—
constitute formal proof certificates that stochastic processes satisfy Streett pairs
almost surely. For example, consider the reactivity property in Fig. 1, which cor-
responds to the Streett pair where A = {x | x ≥ 0} and B = {x | x is even}.
A Streett supermartingale for (A,B) is a function V : Z → R≥0 that strictly
decreases in expectation when visiting positive odd numbers, possibly increases
in expectation when visiting nonnegative even numbers, and does not increase
in expectation when visiting negative numbers: a valid Streett supermartingale
is the function V (x) that takes value 1 if x is odd and takes value 0 if x is even.
Notably, for general Streett acceptance conditions with multiple pairs, it suffices
to compute one Streett supermartingale for each pair.

Our result enables effective and automated ω-regular and LTL verification
and control of discrete-time stochastic dynamical models. We leverage our novel
proof rule together with the standard result that deterministic Streett automata
(DSA) recognise ω-regular languages. Our proof rule readily applies to the syn-
chronous product between a stochastic process and a DSA, where it suffices
to compute one Streett supermartingale for each Streett pair together with a
supporting invariant, essential to exclude unreachable states for which the spec-
ification fails to hold. We provide an automated synthesis algorithm to compute
a (1) Streett supermartingale for each pair, (2) a supporting invariant and (3) a
control policy simultaneously, with one call to a decision procedure.

We show that for time-homogeneous Markov processes with real-valued state
space and piecewise polynomial post-expectation, synthesising Streett super-
martingales, supporting invariants and policies with piecewise polynomial tem-
plate of known degree reduces to quantifier elimination over the first-order theory

398 A. Abate et al.

of the reals with one quantifier alternation. Moreover, we show that synthesising
piecewise linear Streett supermartingales and policies, and polyhedral support-
ing invariants for processes with piecewise linear post-expectation reduces to the
first-order existential theory of reals. Finally, we show that when a polyhedral
inductive invariant is externally provided, then the synthesis of piecewise linear
controllers and Streett supermartingales reduces to quadratically-constrained
programming (QCP); furthermore, when the system is autonomous, the sole
synthesis of Streett supermartingales reduces to linear programming (LP).

We showcase the practical efficacy of our method on continuous-state prob-
abilistic systems with piecewise affine dynamics, with a prototype implementa-
tion. Our implementation is fully automated and capable of synthesizing Streett
supermartingale certificates, supporting invariants and control policies simulta-
neously with a single invocation of a satisfiability modulo theory (SMT) solver.
As an experimental benchmark, we consider a collection of ω-regular proper-
ties ranging over safety, guarantee, recurrence, persistence and reactivity. This
demonstrates that our approach is computationally feasible in practice and that
it effectively unifies and generalises prior work on supermartingale certificates.

Our contribution is threefold: we present theory, methods, and experiments
for a novel approach to automated stochastic ω-regular verification and control.

Theory We introduce the first supermartingale certificate for full ω-regular
specifications: the Streett supermartingale. By preserving the probabilistic
nature of the model, our proof rule enables effective ω-regular verification of
infinite state models by reasoning about their post-expectation.

Methods We provide sound and complete algorithms for ω-regular verification
and control based on our proof rule. Our algorithms compute Streett super-
martingales, supporting invariants and control policies with known templates,
and are complete relative to provided templates and post-expectations.

Experiments We have built a prototype showcasing the efficacy of our algo-
rithms on a set of continuous-state probabilistic systems and ω-regular prop-
erties that include and extend beyond the scope of existing approaches.

Our theoretical contribution applies to any discrete-time deterministic and
stochastic dynamical model as well as deterministic and probabilistic programs
with discrete and continuous distributions, whose semantics are all special cases
of general stochastic processes. Our synthesis algorithm applies to any model
whose post-expectation is expressible in piecewise polynomial closed form.

2 Streett Supermartingales

We define stochastic processes on a filtered probability space whose space of
outcomes Ω defines an F-measurable space of infinite runs, and {Ft} is the
associated filtration Ft ⊆ Ft+1 ⊆ F for all t ≥ 0. A discrete-time stochastic pro-
cess over a Σ-measurable state space S is a sequence {Xt} with Xt : Ω → S that
maps every outcome to the state of a trajectory at time t. We say that {Xt} is
adapted to {Ft} if every Xt is Ft-measurable, namely for all A ∈ Σ it holds that

Stochastic Omega-Regular Verification and Control with Supermartingales 399

X−1
t [A] ∈ Ft. A trajectory τ is an infinite sequence of states τ = τ0, τ1, τ2, . . .

such that τt = Xt(ω) for all t ≥ 0, for some ω ∈ Ω. Stochastic processes pro-
vide a general characterisation for the semantics of stochastic dynamical models
described as stochastic difference equations as well as reactive probabilistic pro-
grams that run over infinite time.

Our supermartingale certificate for almost-sure ω-regular verification and
control of stochastic processes is underpinned by the Robbins & Siegmund the-
orem for the convergence of nonnegative almost supermartingales.

Theorem 1 (Robbins & Siegmund Convergence Theorem [55]). Let
{Ft} be a filtration and let {Vt}, {Ut}, and {Wt} be three real-valued nonnegative
stochastic processes adapted to {Ft}. Suppose that, for all t ∈ N, the following
statement holds almost surely:

E(Vt+1 | Ft) ≤ Vt − Ut + Wt. (1)

Then,

Pr

(∞∑
t=0

Ut < ∞ ∨
∞∑

t=0

Wt = ∞
)

= 1. (2)

This result generalises the classic convergence theorem for nonnegative super-
martingales [54, Theorem 22, p.148], allowing the real-valued process {Vt} to sat-
isfy the weaker almost-supermartingale condition of Eq. (1) with respect to the
two other real-valued processes {Ut} and {Wt} [9,55]. The statement establishes
that the event that either series

∑∞
t=0 Ut converges or series

∑∞
t=0 Wt diverges

has probability 1. As we show below, this naturally characterises almost-sure
Streett acceptance for general stochastic processes.

A Streett pair (A,B) consists of two measurable regions of the state space
A,B ∈ Σ. A trajectory τ = τ0, τ1, τ2, . . . satisfies (A,B) if either it visits all
states in A finitely many times or it visits any states in B infinitely many times;
more formally, τ satisfies (A,B) if

∑∞
t=0 1Ai

(τt) < ∞ ∨ ∑∞
t=0 1Bi

(τt) = ∞,
where 1S(·) denotes the indicator function of set S, which takes value 1 when its
argument is a member of S and takes value 0 otherwise. Our result establishes
that, to conclude that a stochastic process {Xt} satisfies (A,B) almost surely,
it suffices to present a function V that maps {Xt} to a nonnegative almost-
supermartingale whose expected value decreases strictly when visiting A \ B,
possibly increases when visiting B, and never increases anywhere else almost
surely. We call function V a Streett supermartingale for (A,B).

Theorem 2 (Streett Supermartingales). Let {Xt} be a stochastic process
over state space S and (A,B) be a Streett pair. Suppose that there exists a non-
negative function V : S → R≥0 and positive constants ε,M > 0 such that, for
all t ∈ N, the following condition holds almost surely:

E[V (Xt+1) | Ft] ≤ V (Xt) − ε · 1A�B(Xt) + M · 1B(Xt). (3)

400 A. Abate et al.

Then, {Xt} satisfies (A,B) almost surely, i.e.,

Pr

(∞∑
t=0

1A(Xt) < ∞ ∨
∞∑

t=0

1B(Xt) = ∞
)

= 1. (4)

Fig. 2. Intuition for Theorem 2 on exemplar trajectories.

Example 1. Figure 2 illustrates Theorem 2 over four exemplar trajectories,
with respect to the Streett pair ({s | s has label a}, {s | s has label b}). In
this example, we illustrate that a Streett supermartingale V —which must be
nonnegative—cannot be constructed for the third trajectory, as Eq. (3) requires
V to strictly decrease by ε infinitely many times in the tail behaviour of the tra-
jectory while being never allowed to increase. For all other trajectories instead, a
Streett supermartingale V and suitable constants ε,M > 0 exist. In particular,
in the first and second trajectories any V is only required to strictly decrease
finitely many times. In the fourth trajectory, V is permitted to compensate its
requirement to decrease infinitely many times by increasing infinitely many times
in the tail behaviour. Notably, the first, the second, and the fourth trajectory
are precisely those trajectories that satisfy the specification. 	

We provide a specialisation of Theorem 2 (which applies to general stochastic
processes) to time-homogeneous Markov processes, whose dynamics only depend
on their transition kernel. A transition kernel T : S × Σ → [0, 1] gives the prob-
ability that the process makes a transition from state s ∈ S into the set S′ ∈ Σ,
independently of time, i.e., for all t ∈ N, T (Xt, S

′) = Pr(Xt+1 ∈ S′ | Ft).

Stochastic Omega-Regular Verification and Control with Supermartingales 401

The transition kernel in turn determines the post-expectation (Post h) : S → R

of any real-valued measurable function h : S → R, defined as the conditional
expectation of h after one time step (regardless of absolute time t) as follows:

Post h(Xt) =
∫

S

h(s) T (Xt,ds) = E(h(Xt+1) | Ft). (5)

This denotes the expected value of h when evaluated in the subsequent state,
given the current state being Xt. For time-homogeneous Markov processes, we
establish that to obtain a valid Streett supermartingale it suffices to enforce the
requirement of Eq. (3) over Post V of a Streett supermartingale V whose domain
is restricted to a sufficiently strong supporting invariant I.

Theorem 3 (Supporting Invariants). Let {Xt} be a time-homogeneous
Markov process with initial state s0 ∈ S and transition kernel T : S ×Σ → [0, 1].
Let (A,B) be a Streett pair. Suppose there exists a measurable set I ∈ Σ, a non-
negative function V : I → R≥0 and positive constants ε,M > 0 that satisfy the
following five conditions:

s0 ∈ I (6)
∀s ∈ I : T (s, I) = 1 (7)
∀s ∈ (A \ B) ∩ I : Post V (s) ≤ V (s) − ε (8)
∀s ∈ B ∩ I : Post V (s) ≤ V (s) + M (9)
∀s ∈ I \ (A ∪ B) : Post V (s) ≤ V (s) (10)

Then, V is a Streett supermartingale for (A,B).

Example 2. Consider the time-homogeneous Markov process in Fig. 1 and
the LTL property GF(x is even), corresponding to the Streett pair (Z, {x |
x is even}). Provided the supporting invariant {x ∈ Z | x > 0}, the function
that maps the positive even numbers to 0 and the positive odd numbers to 1 is
a valid Streett supermartingale if the process is initialised on a positive num-
ber. Without a supporting invariant, function V would be required to strictly
decrease along all negative numbers, necessarily violating nonnegativity. Notably,
the process satisfies GF(x is even) almost surely only on the positive numbers.
	

Finally, a general Streett acceptance condition consists of a finite set of
Streett pairs, and a trajectory satisfies the acceptance condition if it satisfies
all pairs. To establish that a stochastic process satisfies a general Streett accep-
tance condition, it suffices to present one Streett supermartingale for each pair.

Theorem 4. Let {Xt} be a stochastic process and {(Ai, Bi) : i = 1, . . . , k} be a
Streett acceptance condition. If every Streett pair admits a Streett supermartin-
gale, then {Xi} satisfies the acceptance condition almost surely:

Pr

(
k∧

i=1

(∞∑
t=0

1Ai
(Xt) < ∞ ∨

∞∑
t=0

1Bi
(Xt) = ∞

))
= 1. (11)

402 A. Abate et al.

3 Stochastic Omega-Regular Verification and Control

A stochastic dynamical model M over R
n consists of an initial state vector

x0 ∈ R
n and a parameterised update function f : Rn × W × K → R

n with a
space W of input disturbances and a space K of control parameters. This defines
a time-homogeneous Markov process over the B(Rn)-measurable state space R

n

given by the following equation:

XM
t+1 = f(XM

t ,Wt;κ), XM
0 = x0, (12)

where {Wt} is a sequence of i.i.d. stochastic input disturbances, each of which
draws from the sample space W. This assumption restricts our model to time-
homogeneous Markov processes, for which Theorem 3 applies. This model sub-
sumes autonomous systems as well as control systems with parameterised poli-
cies. For example, a stochastic dynamical model f ′ : Rn × U × W → R

n with
finite or infinite space of control inputs U and a parameterised (memoryless
deterministic) policy π : Rn × K → U results in the special case f(x,w;κ) =
f ′(x, π(x;κ), w). Notably, our model also encompasses finite memory policies
with known template and known memory size, for which it is sufficient to add
extra state variables and extra input disturbances.

We associate our model with a finite set of observable propositions Π and an
observation function 〈〈·〉〉 : Rn → 2Π that maps every state to the set of proposi-
tions that hold true in that state. This defines a (measurable) set of traces—the
trace language of M—where a trace τ̂ is an infinite sequence τ̂ = τ̂0, τ̂1, τ̂2, . . .
where τ̂i = 〈〈τi〉〉 for all i ≥ 0, with τ = τ0, τ1, τ2, . . . being some trajectory of
{XM

t }. We treat the question of synthesizing a controller for which M satisfies
an LTL formula over atomic propositions in Π or, more generally, satisfies an
ω-regular property over alphabet 2Π almost surely. For this purpose, we lever-
age the standard result that deterministic Streett automata (DSA) recognise
the ω-regular languages. The control synthesis problem amounts to computing
a control parameter κ ∈ K for which the event that the trace language of M is
accepted by DSA A has probability 1. The verification problem for autonomous
systems or systems with fixed control policy can be simply seen as the special
case where K is a singleton.

A deterministic Streett automaton A over alphabet 2Π consists of a finite
set of states Q, an initial state q0, a transition function δ : Q × 2Π → Q, and
a finite set of Streett pairs Acc = {(A1, B1), . . . , (Ak, Bk)} where Ai ⊆ Q and
Bi ⊆ Q for all i = 1, . . . , k. The run ρ of A on input trace τ̂ = τ̂0, τ̂1, τ̂2, . . . is
the infinite sequence of states ρ = ρ0, ρ1, ρ2, . . . such that ρ0 = q0 and ρt+1 =
δ(ρt, τ̂t) for all t ≥ 0. The automaton accepts τ̂ if either ρ visits Ai finitely many
times or Bi infinitely many times for all i = 1, . . . k, i.e.,

∧k
i=1

∑∞
t=1 1Ai

(ρt) <
∞ ∨ ∑∞

t=1 1Bi
(ρt) = ∞. Our approach to probabilistic ω-regular verification

leverages the fact that a DSA (indeed, any deterministic automaton) recognising
the traces of a stochastic process forms in its turn a stochastic process:

XA
t+1 = δ(XA

t , 〈〈XM
t 〉〉), XA

0 = q0. (13)

Stochastic Omega-Regular Verification and Control with Supermartingales 403

Our approach determines whether {XA
t } satisfies the Streett acceptance con-

dition of A with probability 1. We note that Streett automata are dual to Rabin
automata, thus any tool to translate an LTL formula ϕ to a Rabin automaton,
equivalently produces a Streett automaton for ¬ϕ [30,39]. Our output can thus
be equivalently cast as Rabin acceptance with probability 0.

To determine whether {XA
t } satisfies the acceptance condition of A, we lever-

age Theorems 3 and 4 to synthesize a Streett supermartingale for each Streett
pair and a supporting invariant over the synchronous product of M and A.
This is because the process {XA

t } is not time-homogeneous when considered in
isolation, as the distribution of next states in the automaton requires informa-
tion about {XM

t } to be determined. Therefore, we define the product process
{XM⊗A

t } as XM⊗A
t = (XM

t ,XA
t) for all t ∈ N, where XM⊗A

t+1 = (f(XM
t ,Wt;κ),

δ(XA
t , 〈〈XM

t 〉〉)) and XM⊗A
0 = (x0, q0). We then extend the acceptance condition

of A to the product state space R
n × Q. Concretely, we define Ai = R

n × Ai

and Bi = R
n × Bi for i = 1, . . . , k, and we define the acceptance condition

of the product process as {(A1, B1), . . . , (Ak, Bk)}. Finally, we establish that
{XM⊗A

t } satisfies the given acceptance condition almost surely by computing k
Streett supermartingales and one supporting invariant over R

n × Q.
We assume a known parameterised form for Streett supermartingales and

invariant as well as for the control policy (as described above) and, by using
Theorems 3 and 4, we express the verification and control problem as the problem
of deciding a quantified first-order logic formula. Let V : Rn × Q × Θ → R≥0 be
a parameterised non-negative function of Rn × Q (the Streett supermartingale
certificate), with parameter space Θ. The post-expectation of V results in the
parameterised function (PostV) : Rn × Q × Θ × K → R≥0 over the certificate
parameters Θ of V and the control parameters K defined as

Post V (x, q; θ, κ) =
∫

W
V (f(x,w;κ), δ(q, 〈〈x〉〉); θ) Pr(dw) (14)

To construct our first-order logic decision problem, it is essential to express
Post V in a symbolic closed-form representation. Notably, computing symbolic
closed-form representations for the post-expectation is a general problem in
probabilistic verification, for which automated tools exist [35]. Provided that
Post V is computable, we template k parameterised Streett supermartingale cer-
tificates V1, . . . , Vk with parameter spaces Θ1, . . . , Θk respectively, and template
one parameterised invariant predicate I : Rn×Q×H → {true, false} with param-
eter space H. Then, solving the ω-regular control problem with our method
amounts to searching for certificate parameters θ1 ∈ Θ1, . . . , θk ∈ Θk, invariant
parameter η ∈ H, control parameter κ ∈ K and coefficients ε,M > 0 such that,
for every i = 1, . . . , k, the following universally quantified sentences hold:

404 A. Abate et al.

I(x0, q0; η) (15)
∀x ∈ R

n, q ∈ Q,w ∈ W : I(x, q; η) =⇒ I(f(x,w;κ), δ(q, 〈〈x〉〉); η) (16)
∀x ∈ R

n, q ∈ (Ai \ Bi) : I(x, q; η) =⇒ Post Vi(x, q; θi, κ) ≤ Vi(x, q; θi) − ε (17)
∀x ∈ R

n, q ∈ Bi : I(x, q; η) =⇒ Post Vi(x, q; θi, κ) ≤ Vi(x, q; θi) + M (18)
∀x ∈ R

n, q ∈ Q \ (Ai ∪ Bi) : I(x, q; η) ⇒ Post Vi(x, q; θi, κ) ≤ Vi(x, q; θi) (19)
∀x ∈ R

n, q ∈ Q : I(x, q; η) =⇒ Vi(x, q; θi) ≥ 0 (20)

In particular, Eqs. (15) and (16) respectively indicate the conditions of initiation
and consecution for the supporting invariant, yielding a subset of the product
space satisfying Eqs. (6) and (7). Equations (17) to (19) indicate the drift condi-
tions, which ensure that V1, . . . , Vk satisfy Eqs. (8) to (10) w.r.t. the acceptance
conditions extended to the product space. Equation (20) enforces the premise of
Theorem 3 that requires V to be non-negative over its domain I.

Fig. 3. Deterministic Streett Automaton for (x ≥ −1)UG(−1 ≤ x ≤ 1)

Example 3. Consider a simple Markov process over one real-valued variable x
and control parameter κ, described by the following stochastic difference equa-
tion:

xt+1 = κ · xt + wt, x0 = 100, wt ∼ Uniform(−0.1, 0.1) (21)

We wish to synthesise a control parameter κ for which the process satisfies the
stabilize-while-avoid property Φ = (x ≥ −1)UG(−1 ≤ x ≤ 1), which requires the
system to avoid x < −1 until it stabilizes within (−1 ≤ x ≤ 1). This corresponds
to the DSA in Fig. 3, whose states define the necessary drift conditions.

Applying Theorem 3 to the DSA of Fig. 3, we make two observations. Firstly,
recalling the intuition of the first trajectory in Fig. 2, we note that the specifica-
tion is satisfied only if q0 is visited finitely many times by the product process,
and this must be established by a Streett supermartingale that strictly decreases
when x ≥ 1 and does not increase otherwise. Secondly, recalling the intuition of
the third trajectory, we note that such a Streett supermartingale exists only if
q2 is never reached, and this must be established by a supporting invariant. A
control parameter for which Φ is satisfied is κ = 0.5, and this is established by

Stochastic Omega-Regular Verification and Control with Supermartingales 405

the following Streett supermartingale and supporting invariant:

V (x, q) =

{
x + 1 if q = q0

0 otherwise
I(x, q) =

⎧⎪⎨
⎪⎩

x ≥ −0.2 if q = q0

−0.2 ≤ x ≤ 0.9 if q = q1

false if q = q2

(22)

Here, the post-expectation of V results in the function below; note that no term
for the stochastic disturbance appears because, in this case, the expected value
of w is 0, and so is its contribution to the post-expectation of V :

Post V (x, q) =

{
0.5 · x + 1 if x ≥ 1 and q ∈ {q0, q1}
0 otherwise

(23)

Altogether, we obtain the following (satisfied) system of universally quantified
sentences. The initiation condition (cf. Eq. (15)) results in the following sentence:

100 ≥ −0.2 ≡ I(x0, q0) (24)

The consecution condition (cf. Eq. (16)) expands into the following three impli-
cations, each of which corresponds to a case of I, a feasible transition in the
automaton, and a feasible transition of the dynamical model according to the
sample space W = [−0.1, 0.1] of stochastic disturbances:

∀x ∈ R, w ∈ W : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

∧ x ≥ 1︸ ︷︷ ︸
δ(q0,·)=q0

=⇒ 0.5x + w ≥ −0.2︸ ︷︷ ︸
I(0.5x+w,q0)

(25)

∀x ∈ R, w ∈ W : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

∧ −1 ≤ x < 1︸ ︷︷ ︸
δ(q0,·)=q1

=⇒ −0.2 ≤ 0.5x + w ≤ 0.9︸ ︷︷ ︸
I(0.5x+w,q1)

(26)

∀x ∈ R, w ∈ W : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

∧ x < −1︸ ︷︷ ︸
δ(q0,·)=q2

=⇒ false︸︷︷︸
I(0.5x+w,q2)

(27)

∀x ∈ R, w ∈ W : −0.2 ≤ x ≤ 0.9︸ ︷︷ ︸
I(x,q1)

∧ x ≥ 1︸ ︷︷ ︸
δ(q1,·)=q0

=⇒ 0.5x + w ≥ −0.2︸ ︷︷ ︸
I(0.5x+w,q0)

(28)

∀x ∈ R, w ∈ W : −0.2 ≤ x ≤ 0.9︸ ︷︷ ︸
I(x,q1)

∧ −1 ≤ x < 1︸ ︷︷ ︸
δ(q1,·)=q1

⇒ −0.2 ≤ 0.5x + w ≤ 0.9︸ ︷︷ ︸
I(0.5x+w,q1)

(29)

∀x ∈ R, w ∈ W : −0.2 ≤ x ≤ 0.9︸ ︷︷ ︸
I(x,q1)

∧ x < −1︸ ︷︷ ︸
δ(q1,·)=q2

=⇒ false︸︷︷︸
I(0.5x+w,q2)

(30)

∀x ∈ R, w ∈ W : false︸︷︷︸
I(x,q2)

∧ true︸︷︷︸
δ(q2,·)=q2

=⇒ false︸︷︷︸
I(0.5x+w,q2)

(31)

The strict decrease drift condition associated with q0 (cf. Eq. (17)) results, with
ε = 0.5, in the following two sentences associated with each case of Post V :

∀x ∈ R : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

∧(x ≥ 1) =⇒ 0.5 · x + 1︸ ︷︷ ︸
PostV (x,q0)

≤ x + 1︸ ︷︷ ︸
V (x,q0)

− 0.5︸︷︷︸
ε

(32)

∀x ∈ R : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

∧(x < 1) =⇒ 0︸︷︷︸
PostV (x,q0)

≤ x + 1︸ ︷︷ ︸
V (x,q0)

− 0.5︸︷︷︸
ε

(33)

406 A. Abate et al.

Similarly, the non-increase drift condition associated with q1 (cf. Eq. (19)) results
in the following two implications:

∀x ∈ R : −0.2 ≤ x ≤ 0.9︸ ︷︷ ︸
I(x,q1)

∧(x ≥ 1) =⇒ 0.5 · x + 1︸ ︷︷ ︸
PostV (x,q1)

≤ 0︸︷︷︸
V (x,q1)

(34)

∀x ∈ R : −0.2 ≤ x ≤ 0.9︸ ︷︷ ︸
I(x,q1)

∧(x < 1) =⇒ 0︸︷︷︸
PostV (x,q1)

≤ 0︸︷︷︸
V (x,q1)

(35)

We note that the invariant in state q1 is sufficiently strong to exclude the possi-
bility of a transition back to q0 from q1 (which is associated with x ≥ 1), making
the premise of the implication in Eq. (34) false. The drift condition of q2 is also
trivially satisfied, as the premise of the respective implication is false:

∀x ∈ R : false︸︷︷︸
I(x,q2)

=⇒ 0︸︷︷︸
PostV (x,q2)

≤ 0︸︷︷︸
V (x,q2)

− 0.5︸︷︷︸
ε

(36)

Finally, the non-negativity condition (cf. Eq. (20)) is trivially satisfied on q1 and
q2 as V (x, q1) = V (x, q2) = 0. For q0 instead, the condition is the following:

∀x ∈ R : x ≥ −0.2︸ ︷︷ ︸
I(x,q0)

=⇒ x + 1︸ ︷︷ ︸
V (x,q0)

≥ 0 (37)

Notably, every sentence consists of a conjunction of inequalities implying an
inequality. As we show in Sect. 4, difference equations, Streett supermartingales
and supporting invariants that are piecewise-defined according to a template
as in Eq. (22) always result in systems of constraints in this form. This enables
effective algorithmic synthesis of Streett supermartingales, supporting invariants
and control parameters using symbolic or numerical decision procedures. 	

4 Algorithmic Synthesis of Streett Supermartingales

Exhibiting Streett supermartingales and supporting invariants constitutes a wit-
ness that the stochastic dynamical model and its control parameter comply with
the ω-regular property at hand. Under the assumption that these three objects
are constrained to be in the form of a template, the verification and control
problem is reducible to a decision procedure for quantified first-order formulae.
In this section, we define templates that allow effective synthesis using standard
symbolic and numerical decision procedures.

We show that under different assumptions and problem settings, the verifi-
cation and control problem reduces to the following decision procedures:

General Control This refers to the general synthesis of a Streett supermartin-
gale, supporting invariant, and control parameters. When these and the asso-
ciated post-expectation are in piecewise polynomial form (Sect. 4.1), then the
synthesis problem is reducible to a quantified formula (with one quantifier
alternation) in non-linear real arithmetic (NRA). When they are in piecewise
linear form (Sect. 4.2) then the synthesis problem reduces to the existential
theory of non-linear real arithmetic (QF NRA).

Stochastic Omega-Regular Verification and Control with Supermartingales 407

Shielded Control This refers to the synthesis of a Streett supermartingale and
control parameter, given an externally provided inductive invariant. Exter-
nally provided invariants are relevant when a shield that ensures the safety of
the policy (but not necessarily its liveness) is computed beforehand [7]. This
reduces to quadratically constrained programming (QCP) with piecewise lin-
ear templates (Sect. 4.3 and Example 5).

Verification This refers to the sole synthesis of Streett supermartingales, when
the system has a known invariant that is provided a priori. This reduces to
linear programming (LP) when templates and post-expectation are piecewise
linear (Sect. 4.3 and Example 6).

We introduce a functional template F : RN × Q × Λ → R that maps an N -
dimensional real-valued vector, a state of the automaton q ∈ Q, and a generic
template parameter λ ∈ Λ to a real-valued output according to a number of
cases, guarded by logical predicates:

F (x, q;λ) =

⎧⎪⎪⎨
⎪⎪⎩

g1,l+1(x;λ) if
∧l

i=1 g1,i(x;λ) �1,i 0, and q ∈ Q1

...
gm,l+1(x;λ) if

∧l
i=1 gm,i(x) �m,i 0, and q ∈ Qm,

(38)

The value N is a placeholder for either the dimensionality of the state space
R

n, or the joint dimensionality of the system and the stochastic disturbance
inputs R

n × W, according to context. The sets Q1, . . . , Qm ⊆ Q denote
constraints on the automaton states and � denotes either a strict- or non-
strict inequality. This makes the form of Eq. (38) suitable as a template for
expressing Streett supermartingales V (x, q; θ) ≡ F (x, q; θ), supporting invariants
I(x, q; η) ≡ ∧

[F (x, q; η) ≤ 0], dynamical models f(x,w;κ) ≡ F ((x,w),−;κ) as
well as the symbolic post-expectation Post V (x, q; θ, κ) ≡ F (x, q; θ, κ).

Assuming, without loss of generality, that each observable proposition in
Π (cf. Sect. 3) corresponds to a single inequality over the state space R

n, the
transition function δ(q, 〈〈x〉〉) of the automaton takes the form of template D :
R

n × Q → Q:

D(x, q) =

⎧⎪⎪⎨
⎪⎪⎩

q′
1 if

∧l
i=1 g1,i(x) �1,i 0, and q = q1

...
q′
m if

∧l
i=1 gm,i(x) �m,i 0, and q = qm.

(39)

where each of the automaton’s transitions corresponds to a case of Eq. (39).
The requirements of Eqs. (15) to (20) reduce to a conjunction of sentences

of the form Eq. (40), namely, a universally quantified implication over N -
dimensional real-valued variables, where each implication has a premise that
is a finite conjunction of inequalities (where L is a placeholder for the number
of conjuncts), and a consequent that is a single non-strict inequality:

∀y ∈ R
N :

L∧
i=1

gi(y;λ) �i 0 =⇒ gL+1(y;λ) ≤ 0, (40)

408 A. Abate et al.

This is because our construction only invokes compositions of the templates F
and D that produce results that are representable in the form of template F ,
namely, a piecewise function over RN ×Q with parameters λ ∈ Λ. In combination
with rewriting at the level of propositional logic, we establish Eq. (40).

Finally, we note that the conjunction of sentences of the form Eq. (40) is exis-
tentially quantified over the certificate, invariant and control parameters, as well
as the parameters ε and M , all of which we notationally subsume within λ. We
now discuss algorithms for finding a satisfying assignment to these existentially
quantified parameters under the problem scenarios outlined earlier.

4.1 Piecewise Polynomial Systems and Templates

Under the assumption that all functions g in the templates Eqs. (38) and (39)
are polynomials in x ∈ R

N and λ ∈ Λ, the synthesis problem reduces to an
existentially quantified conjunction of statements in the form of Eq. (40), which
are in turn universally quantified implications over polynomial inequalities. This
synthesis problem belongs to the first-order theory of nonlinear real arithmetic
(NRA) and is decidable using quantifier elimination [24].

4.2 Piecewise Linear Systems and Templates with Parametric
Guards

Despite its decidability, the decision procedures for NRA are computationally
feasible only for small problems. By making additional assumptions about the
system dynamics and templates, we improve the feasibility of the synthesis prob-
lem using Farkas’ Lemma. The Farkas’ Lemma [44, p.32 & Table 2.4.1, p.34]
states that the following two sentences are equivalent:

∀y ∈ R
N : Ay ≤ b =⇒ cTy ≤ d (41)

∃z ∈ R
L
≥0 :

(
ATz = c
∧ bTz ≤ d

)
∨

(
ATz = 0
∧ bTz < 0

)
(42)

with z constituting a freshly introduced set of variables. This rewrite eliminates
the quantifier alternation and yields a decision problem in the first-order exis-
tential theory of non-linear real arithmetic (QF NRA). In the case where the
functions g in Eq. (40) are linear in the variables y ∈ R

N , and with the help
of a technical result that allows strict inequalities in Eq. (40) to be replaced by
non-strict inequalities (cf. [20, Lemma 1]), we find that Eq. (40) takes the form
of Eq. (41), allowing Farkas’ Lemma to be applied.

Example 4 (General Control). Considering Example 3, suppose we want to
synthesise a value for the control parameter κ such that the specification
Φ is satisfied almost surely, along with a Streett supermartingale and sup-
porting invariant. For this purpose, we introduce template parameters θ =
(α0, β0, α1, β1, α2, β2), η = (η1, η2, η3, η4) and template the Streett supermartin-
gale and supporting invariant using the following form:

Stochastic Omega-Regular Verification and Control with Supermartingales 409

V (x, q1; θ) = α1 · x + β1

I(x, q1; η) = fv(η1 · x ≤ η2) ∧ (η3 · x ≤ η4)
(43)

proceeding analogously for states other than q1, which yields for q ∈ {q0, q1, q2}
the following expression for Post V in terms of the control parameter κ:

Post V (x, q; θ, κ) =

⎧⎪⎨
⎪⎩

α0κ · x + β0 if x ≥ 1
α1κ · x + β1 if − 1 ≤ x < 1
α2κ · x + β2 if x < −1

(44)

Substituting these expressions into Eqs. (15) to (20) results in a conjunction of
implications of the form Eq. (40) over inequalities that are linear in the variable
x ∈ R, but polynomial over the existentially quantified parameters. For example,
the non-increasing drift condition associated with q1 (cf. Eqs. (19), (34) and
(35)) corresponds to a number of implications, one for each case of the piecewise-
defined PostV (x, q1; θ, κ). Considering the case x ≥ 1, we see that the templated
implication analogous to Eq. (34) is:

∀x ∈ R :

⎡
⎣ η1

η3
−1

⎤
⎦ [

x
] ≤

⎡
⎣ η2

η4
−1

⎤
⎦

︸ ︷︷ ︸
I(x,q1;η)∧(x≥1)

=⇒ [
α0κ − α1

] [
x
] ≤ [

β1 − β0

]
︸ ︷︷ ︸

PostV (x,q1;θ,κ)≤V (x,q1;θ)

(45)

which is in the form of Eq. (41) and yields an existentially quantified disjunc-
tion of polynomial inequalities (over the existentially quantified variables, which
include the template and control parameters) once rewritten into form Eq. (42),
namely a problem in the existential first-order theory of non-linear real arith-
metic. 	

4.3 Piecewise Linear Systems and Templates with Known Guards

Supposing additionally that an inductive invariant is externally provided, we fur-
ther improve the computational feasibility of the synthesis problem by reducing
it to a quadratically-constrained programming (QCP) problem. In this setting,
all inequalities in the premise of Eq. (40) are known linear inequalities of the
vector y, and the matrix A and vector b in Eq. (41) are constant (i.e. contain
no existentially quantified variables). Therefore, the satisfiability of the premise
of Eq. (41) is decidable using linear programming to check whether Ay ≤ b
admits any solution for y. After removing any implications of the form Eq. (41)
which possess an unsatisfiable premise, we may exploit a special case of Farkas’
Lemma that assumes a satisfiable premise [20, Theorem 3]. This version states
that if there exists a solution to the system Ay ≤ b, then the formula Eq. (41)
is equivalent to

∃z ∈ R
L
≥0 :

(
ATz = c
∧ bTz ≤ d

)
. (46)

410 A. Abate et al.

This formula is an existentially quantified conjunction of inequalities, thus trans-
forming the synthesis problem into deciding the satisfiability of a conjunction
of polynomial constraints. Such a system of polynomial constraints is reducible
to QCP, since higher degree polynomial expressions may be constructed from
quadratic constraints by introducing fresh variables. This establishes the reduc-
tion to QCP for shielded control when applied to piecewise linear systems and
templates, with known invariant. Furthermore, as illustrated in Example 6, if
additionally the system is autonomous, the synthesis problem reduces to an LP.

Example 5 (Shielded Control). Continuing from Example 4, we note that if a
sufficiently strong invariant is provided a priori (such as that of Eq. (22)), then
the synthesis problem reduces to implications of the form Eq. (40) with the prop-
erty that the linear inequalities occurring within the premise of an implication
have constant coefficients. Instead of Eq. (45), for example, we obtain:

∀x ∈ R :

⎡
⎣ 1

−1
−1

⎤
⎦ [

x
] ≤

⎡
⎣0.9

0.2
−1

⎤
⎦

︸ ︷︷ ︸
I(x,q1;1,0.9,−1,0.2)∧(x≥1)

=⇒ [
α0κ − α1

] [
x
] ≤ [

β1 − β0

]
︸ ︷︷ ︸

PostV (x,q1;θ,κ)≤V (x,q1;θ)

(47)

The premise of Eq. (47) is a known system of linear inequalities, so if its premise
is satisfiable (decidable via linear programming) an application of Eq. (46)
transforms the synthesis problem into an existentially quantified conjunction of
polynomial constraints. The particular constraint Eq. (47) has an unsatisfiable
premise, however, and is thus vacuously true. 	

Example 6 (Verification). Assuming that κ = 0.5, the dynamical model results
in an autonomous system, and if a sufficiently strong supporting invariant is
provided a priori (as is precisely the case in Example 3), then the implication
Eq. (47) becomes:

∀x ∈ R :

A︷ ︸︸ ︷⎡
⎣ 1

−1
−1

⎤
⎦ [

x
] ≤

b︷ ︸︸ ︷⎡
⎣0.9

0.2
−1

⎤
⎦

︸ ︷︷ ︸
I(x,q1;1,0.9,−1,0.2)∧(x≥1)

=⇒
cT︷ ︸︸ ︷[

0.5 · α0 − α1

] [
x
] ≤

d︷ ︸︸ ︷[
β1 − β0

]
︸ ︷︷ ︸

PostV (x,q1;θ,0.5)≤V (x,q1;θ)

(48)

In this case, for an implication with satisfiable premise, we may apply Eq. (46)
to obtain an existentially quantified conjunction of inequalities that are linear
in x, but further note that matrix A and vector b have constant entries, whereas
the vector c and scalar d are linear expressions over template variables. Thus,
an application of Eq. (46) generates an existentially quantified conjunction of
linear constraints, which is decidable using a linear program. 	

5 Experimental Evaluation

We implement our algorithmic technique for the synthesis of Streett supermartin-
gales, supporting invariants, and control policies. Our implementation does not

Stochastic Omega-Regular Verification and Control with Supermartingales 411

require externally provided invariants, and assumes a template for the Streett
supermartingale that is linear in the state variables, and thereby of the form Eq.
(38) with a single case for each automaton state. We assume a convex polyhedral
template for the supporting invariant, and apply Farkas’ Lemma to produce a
decision problem in QF NRA (Sect. 4.2). In Table 1, we demonstrate examples
of ω-regular properties and of infinite-state probabilistic systems, with piece-
wise linear dynamics, certificates and supporting invariants. The Output column
of Table 1 describes the synthesis problem (cf. Sect. 4): VIC indicates general
control ; VC indicates shielded control ; VI indicates synthesis of Streett super-
martingales and supporting invariants for an autonomous stochastic dynamical
model; V indicates verification (namely, synthesis of only Streett supermartin-
gales, using an externally provided invariant).

We use the Spot library [30] to translate the LTL formulae shown in Table 1
into deterministic Streett automata with state-based acceptance conditions. We
use SymPy [47] to perform symbolic manipulations and generate the corre-
sponding decision problem, which we solve using an off-the-shelf SMT solver,
Z3 [38,50]. The systems in Table 1 are all infinite-state, namely continuous-state
models, with the exception of evenOrNegative that has a countably-infinite
state space. The benchmarks make use of discrete random variables, which allows
for the post-expectation to be calculated by weighted enumeration of probabilis-
tic choices in the product process (with the exception of evenOrNegative, for
which the post-expectation is provided manually). Since our implementation
entails deterministic algorithms, we provide the time associated with a single
execution owing to negligible variance in these timings.

Table 1. Output of our experiments for a range of infinite-state probabilistic systems
and ω-regular properties.

Benchmark ω-Regular Specification Output Time [s]

evenOrNegative (Fig. 1) GF(x even) ∨ FG(x < 0) V 0.09

SafeRWalk1 G(x < 100) VIC 1.09

PersistRW FG(x ≤ 10) VI 1.16

RecurRW GF(x > 100) VI 1.49

SafeRWalk2 G(x ≥ 10) VIC 1.09

GuaranteeRW G(x ≥ −10) → F(x ≥ 103) VI 5.61

Temperature1 FG(¬Hot ∧ ¬Cold) VIC 4.11

Temperature2 GF(t ≤ 30) ∧ G(t ≤ 60) VI 28.93

Temperature3 G(Safe) ∧ [GF(Cold) → GF(Hot)] VIC 28.58

Temperature4 G(Safe) ∧ [GF(Cold) → GF(Hot)] VC 4.64

FinMemoryControl GF(x ≤ 0) → GF(x ≥ 100) VIC 16.73

The benchmark Temperature1 (Table 1) is an instance of a general control
problem (Sect. 4) that models an air-conditioned room that dissipates heat to

412 A. Abate et al.

its surroundings (at temperature xext), with stochastic fluctuations of the room
temperature. The state xt ∈ R is the temperature of the room, xext = 280K
is the external temperature, and the desired temperature is xset = 295K, with
x0 = xext. The system has the following dynamics:

xt+1 = xt − 1
100

(xt − xext) + (αxt + β) +
1
10

(2wt − 1), (49)

with wt ∼ Bernoulli(0.5). The dynamics depend upon the parameters α, β of
the controller, restricted to α, β ∈ [−10, 10], to reflect the capabilities of the
controller. We define two observations, Π = {Hot,Cold} with 〈〈x〉〉 = {Hot}
when the temperature x exceeds xset + 3, 〈〈x〉〉 = {Cold} when the temperature
falls below xset−3, and 〈〈x〉〉 = ∅ otherwise. The specification is FG(¬Hot∧¬Cold),
namely, that the temperature eventually persists within the interval (292, 298)
around xset = 295. Our method synthesises a certificate, supporting invariant,
and controller with α = −1/32, β = 4787/512. The supporting invariant is a
conjunction of two linear inequalities at each automaton state.

We next illustrate how shielding improves the efficiency of our synthesis
algorithm. Temperature3 involves the same controlled dynamics as Eq. (49),
but we add a new observation {Safe} associated with the temperature being
under 310 K, and aim to satisfy the property G(Safe) ∧ (GF(Cold) → GF(Hot)).
To synthesise a memoryless controller α = −1/64, β = 9/2 for Temperature3
along with a suitable inductive invariant requires a total of 28.58 s (of which
the QF NRA solver requires 23.65 s). In Temperature4 we consider a shielded
memoryless controller that ensures the temperature always stays under 310 K:

xt+1 = xt − 1
100

(xt − xext) +
1
10

(2wt − 1) +

{
αxt + β xt < 305
−3 xt ≥ 305

(50)

and we desire a certified controller for the same reactivity property as in bench-
mark Temperature3. We constrain α, β ∈ [−5, 5] (as modelling assumptions),
and we impose 305 · α + β < 5.24 to ensure that the temperature never exceeds
310K. We provide an invariant a priori, and the resulting QCP is solvable in
0.03 s to obtain α = −43/3200, β = 4.

To illustrate how our framework is applicable to finite memory controllers, we
consider in FinMemoryControl (Table 1) a controller that has one bit of memory
(denoted by b ∈ {0, 1}), which is updated according to the current state x. That
is, the system has state space R × {0, 1}, with update function (cf. Eq. (12)):

f(x, b, w;κ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x + α + w, 1) if b = 1 ∧ l · x ≤ m

(x + α + w, 0) if b = 1 ∧ l · x > m

(x + w − 1, 1) if b = 0 ∧ p · x ≤ q

(x + w − 1, 0) if b = 0 ∧ p · x > q

(51)

where κ = (l,m, p, q, α) is the set of control parameters. That is, we wish to
synthesise the output of the controller, α, but also the logic that determines

Stochastic Omega-Regular Verification and Control with Supermartingales 413

how the controller’s memory is to be updated, given the reactivity specification
GF(x ≤ 0) → GF(x ≥ 100). This is a decision problem in QF NRA given that the
guards of the template for f(x, b, w;κ) contain template parameters (Sect. 4.2).
Our method finds α = 56, l = 1/8,m = 14, p = 1/2, q = 51.

In summary, we find that our synthesis procedure based on Farkas’ Lemma
(Sect. 4.2) allows for the practical synthesis of Streett supermartingales, sup-
porting invariants and control parameters for a range of ω-regular properties
for infinite (countable/continuous) state piecewise linear probabilistic systems,
with our tool terminating in under 30 s for the examples considered. We further
illustrate that stronger assumptions (e.g. the external provision of shields or sup-
porting invariants) improve the computational efficiency of control synthesis (cf.
Temperature3 vs. Temperature4).

6 Related Work

The verification of finite Markov chains is a classic topic for which automated
and scalable algorithmic tools exist [41], which combine graph algorithms and
linear algebra to directly compute the probability of satisfying an ω-regular
specification [10]. This approach exploits the limit behaviour of finite Markov
chains, reducing the problem to computing the reachability probabilities of bot-
tom strongly connected components by leveraging the finite graph structure.
These techniques do not, however, apply to probabilistic processes over count-
ably infinite or continuous state spaces, which are the focus of this work.

Verification of continuous-state Markov processes has been addressed via
two main strategies [42]. The first approximates the continuous-state process
with an abstract finite state process (e.g., through state space discretisation)
and performs finite-state model checking on the abstraction [29,58,62,69]. The
second strategy certifies the property of interest by providing a suitable certifi-
cate, using supermartingale theory to analyse Markov chains over general state
spaces [48, Chapter 8.4]. This includes supermartingale certificates for specific
linear-time properties including almost-sure reachability [15], probabilistic safety
[21,23,59], reach-avoidance [22], persistence, and recurrence [17,43]. These rules
are justified using martingale theory, including concentration inequalities (e.g.
Azuma’s inequality [23]) and the supermartingale convergence theorem [31, The-
orem 5.2.9, p.236], with recent order-theoretic justifications [59].

Although prior work introduced supermartingale proof rules for almost-sure
persistence and recurrence [17], these are too conservative for general reactivity
properties. For instance, in Fig. 1, a reactivity property (a disjunction of per-
sistence and recurrence requirements) holds almost-surely, even though neither
disjunct holds almost-surely. Recent work [8] addressed proving ω-regular prop-
erties with deterministic Streett automata by synthesising a control policy and
barrier certificates for the persistence component of each Streett pair. However,
as the authors mention, this approach disregards the recurrence component and
is thus conservative and mainly suited to safety specifications [8, Section 8.1].

414 A. Abate et al.

Our approach, by contrast, applies to general Streett pairs, using the Rob-
bins & Siegmund convergence theorem (Theorem 1) to establish that the dis-
junction of persistence and recurrence properties in each Streett pair is satisfied
with probability one, without requiring either disjunct to hold almost surely.
While the Robbins & Siegmund convergence theorem has applications in statis-
tics [9], stochastic optimisation [49, Theorem 17.15], and reinforcement learning
[12, Proposition 4.2], we are the first to apply it to derive a supermartingale
certificate for Streett conditions and, as a result, ω-regular properties.

The algorithmic synthesis of supermartingale certificates for reachability,
probabilistic safety, persistence, and recurrence has been addressed for affine
programs and certificates using Farkas’ Lemma [6,15,20,23] and for polynomial
programs and certificates using Putinar’s Positivstellensatz [19,21], producing
linear- or quadratically-constrained programs, assuming suitably strong induc-
tive invariants are provided a priori. These techniques were first introduced for
the synthesis of ranking certificates and invariants for deterministic programs
[26,27]. We apply these techniques to synthesise Streett supermartingales, sup-
porting invariants, and control policies by deciding the satisfiability of a single
query in the existential first-order theory of reals (Sect. 5), or by solving a QCP
or LP when suitable invariants are externally provided (Sect. 4.3), which may
be derived from a shield associated with the controller [7], or when a polyhe-
dral enclosure for the reachable states is known or computed a priori with other
methods [25,32,46,53,57]. Our approach to the joint synthesis of certificates and
supporting invariants is in principle applicable to other supermartingale notions
studied by prior work [6,17,21,59].

The problem of certified control synthesis in infinite state Markov decision
processes (MDPs) has been addressed for specific objectives, such as reachability-
reward objectives in countable-state MDPs [11] and reach-avoid specifications for
continuous-state MDPs [22,64,66], as well as specific infinite-horizon properties
[60,61]. Here, we provide an automated synthesis approach (Sect. 4) applicable
to general reactivity properties over continuous-state stochastic processes.

Further automata-theoretic approaches such as recursive Markov chains
(RMC) [33,67] and probabilistic pushdown automata (pPDA) [13,40,65] provide
means for specifying stochastic processes over countably infinite state spaces.
The ω-regular model checking problem for these has been studied which, under
some restrictions on the model, is decidable [14]. By contrast, our Streett super-
martingale theorems (Sect. 2) apply to general stochastic processes (including
over uncountably infinite state spaces), though identifying the class of ω-regular
properties and stochastic processes for which Streett supermartingales are com-
plete (analogous to the notion of positive almost-sure termination [34]) remains
an open problem. However, the algorithms in Sect. 4 are relatively complete: if a
Streett supermartingale in linear or polynomial form with a known degree exists,
our algorithm will compute it.

Stochastic Omega-Regular Verification and Control with Supermartingales 415

7 Conclusion

We have introduced the first supermartingale certificate for ω-regular proper-
ties, by exploiting the Robbins & Siegmund convergence theorem applied to
deterministic Streett automata. Our result is the most expressive supermartin-
gale certificate to date, enabling effective almost-sure verification of reactivity
properties without requiring each persistence and recurrence component to hold
with probability one, as in previous work. We have provided an algorithm to
reduce the problem of synthesising Streett supermartingales along with support-
ing inductive invariants and control policies to symbolic (SMT) and numerical
(QCP, LP) decision procedures, and have demonstrated the practical efficacy of
our method on several verification and control examples.

Our approach lends itself to extension towards quantitative verification [21,
59], and towards effective algorithmic synthesis of supermartingale certificates
via Positivstellensatz [19]. Furthermore, it is open to data-driven techniques
along the lines of recent work on neural certificate learning [1–3,18,22,36,52].

Acknowledgments. This research was supported in part by the EPSRC Doctoral
Training Partnership, and the Department of Computer Science Scholarship at the
University of Oxford.

References

1. Abate, A., Ahmed, D., Giacobbe, M., Peruffo, A.: Formal synthesis of Lyapunov
Neural Networks. IEEE Control. Syst. Lett. 5(3), 773–778 (2021)

2. Abate, A., Edwards, A., Giacobbe, M., Punchihewa, H., Roy, D.: Quantitative
verification with neural networks. In: CONCUR. LIPIcs, vol. 279, pp. 22:1–22:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

3. Abate, A., Giacobbe, M., Roy, D.: Learning probabilistic termination proofs. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 3–26. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 1

4. Abate, A., Giacobbe, M., Schnitzer, Y.: Bisimulation learning. In: Ganesh, V.,
Gurfinkel, A. (eds.) CAV 2024. LNCS, vol. 14683, pp. 161–183. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-65633-0 8

5. Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of
stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010)

6. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018)

7. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI, pp. 2669–2678. AAAI Press (2018)

8. Anand, M., Lavaei, A., Zamani, M.: Compositional synthesis of control barrier cer-
tificates for networks of stochastic systems against ω-regular specifications. Non-
linear Anal. Hybrid Syst 51, 101427 (2024)

9. Anbar, D.: An application of a theorem of Robbins and Siegmund. Ann. Stat. 4(5),
1018–1021 (1976)

10. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-031-65633-0_8

416 A. Abate et al.

11. Batz, K., Biskup, T.J., Katoen, J., Winkler, T.: Programmatic strategy synthesis:
resolving nondeterminism in probabilistic programs. Proc. ACM Program. Lang.
8(POPL), 2792–2820 (2024)

12. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Optimization and
Neural Computation Series, vol. 3. Athena Scientific (1996)

13. Brázdil, T., Esparza, J., Kiefer, S., Kucera, A.: Analyzing probabilistic pushdown
automata. Formal Methods Syst. Des. 43(2), 124–163 (2013)

14. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties
of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31856-9 12

15. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

16. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 85–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10936-7 6

17. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 15

18. Chang, Y., Roohi, N., Gao, S.: Neural Lyapunov control. In: NeurIPS, pp. 3240–
3249 (2019)

19. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

20. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018)

21. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Žikelić, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs. In:
Shoham, S., Vizel, Y. (eds.) CAV (2022. LNCS, vol. 13371, pp. 55–78. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 4

22. Chatterjee, K., Henzinger, T.A., Lechner, M., Žikelić, D.: A learner-verifier frame-
work for neural network controllers and certificates of stochastic systems. In:
Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13993, pp.
3–25. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9 1

23. Chatterjee, K., Novotný, P., Žikelić, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160. ACM (2017)

24. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition-preliminary report. SIGSAM Bull. 8(3), 80–90 (1974)

25. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 39

26. Colóon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45319-9 6

https://doi.org/10.1007/978-3-540-31856-9_12
https://doi.org/10.1007/978-3-540-31856-9_12
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1007/978-3-031-30823-9_1
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45319-9_6

Stochastic Omega-Regular Verification and Control with Supermartingales 417

27. Colón, M.A., Sipma, H.B.: Practical methods for proving program termination.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 36

28. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: POPL, pp. 265–276. ACM (2007)

29. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: QEST, pp. 264–273. IEEE Computer
Society (2008)

30. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: Shoham, S.,
Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 174–187. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13188-2 9

31. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University
Press, Cambridge (2010)

32. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

33. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1), 1:1–1:66 (2009)

34. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness,
and compositionality. In: POPL, pp. 489–501. ACM (2015)

35. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 4

36. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In:
ESEC/SIGSOFT FSE, pp. 633–645. ACM (2022)

37. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

38. Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. ACM Commun. Com-
put. Algebra 46(3/4), 104–105 (2012)

39. Křet́ınský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96145-3 30

40. Kucera, A., Esparza, J., Mayr, R.: Model checking probabilistic pushdown
automata. Log. Methods Comput. Sci. 2(1) (2006)

41. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

42. Lavaei, A., Soudjani, S., Abate, A., Zamani, M.: Automated verification and syn-
thesis of stochastic hybrid systems: a survey. Automatica 146(12) (2022)

43. Lechner, M., Žikelić, D., Chatterjee, K., Henzinger, T.A.: Stability verification in
stochastic control systems via neural network supermartingales. In: AAAI, pp.
7326–7336. AAAI Press (2022)

44. Mangasarian, O.L.: Nonlinear Programming. Society for Industrial and Applied
Mathematics (1994)

45. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–410.
ACM (1990)

46. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

47. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Prepr. 4, e2083
(2016)

https://doi.org/10.1007/3-540-45657-0_36
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-4612-4222-2

418 A. Abate et al.

48. Meyn, S., Tweedie, R.L., Glynn, P.W.: Markov Chains and Stochastic Stability,
2nd edn. Cambridge Mathematical Library. Cambridge University Press, New York
(2009)

49. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
Adaptive computation and Machine Learning. MIT Press, Cambridge (2012)

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

51. Murali, V., Trivedi, A., Zamani, M.: Closure certificates. In: HSCC, pp. 10:1–10:11.
ACM (2024)

52. Nadali, A., Murali, V., Trivedi, A., Zamani, M.: Neural closure certificates. In:
AAAI, pp. 21446–21453. AAAI Press (2024)

53. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: DIG: a dynamic invariant genera-
tor for polynomial and array invariants. ACM Trans. Softw. Eng. Methodol. 23(4),
30:1–30:30 (2014)

54. Pollard, D.: A User’s Guide to Measure Theoretic Probability. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, New York
(2001)

55. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost super-
martingales and some applications. Optim. Methods Stat. 1971, 233–257 (1971)

56. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327. IEEE
Computer Society (1988)

57. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1 7

58. Soudjani, S.E.Z., Abate, A.: Adaptive and sequential gridding for abstraction and
verification of stochastic processes. SIAM J. Appl. Dyn. Syst. 12(2), 921–956 (2012)

59. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 5:1–5:46 (2021)

60. Tkachev, I., Abate, A.: Characterization and computation of infinite horizon spec-
ifications over markov processes. Theoret. Comput. Sci. 515, 1–18 (2014)

61. Tkachev, I., Mereacre, A., Katoen, J.P., Abate, A.: Quantitative model checking
of controlled discrete-time markov processes. Inf. Comput. 253(1), 1–35 (2017)

62. Tkachev, I., Abate, A.: Formula-free finite abstractions for linear temporal verifi-
cation of stochastic hybrid systems. In: HSCC, pp. 283–292. ACM (2013)

63. Vardi, M.Y.: Verification of concurrent programs: the automata-theoretic frame-
work. Ann. Pure Appl. Log. 51(1–2), 79–98 (1991)

64. Wang, Y., Zhu, H.: Verification-guided programmatic controller synthesis. In:
Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13994, pp.
229–250. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8 16

65. Winkler, T., Gehnen, C., Katoen, J.-P.: Model checking temporal properties of
recursive probabilistic programs. In: FoSSaCS 2022. LNCS, vol. 13242, pp. 449–
469. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99253-8 23

66. Yang, Z., Zhang, L., Zeng, X., Tang, X., Peng, C., Zeng, Z.: Hybrid controller
synthesis for nonlinear systems subject to reach-avoid constraints. In: Enea, C.,
Lal, A. (eds.) CAV 2023. LNCS, vol. 13964, pp. 304–325. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37706-8 16

67. Yannakakis, M., Etessami, K.: Checking LTL properties of recursive markov chains.
In: QEST, pp. 155–165. IEEE Computer Society (2005)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-27864-1_7
https://doi.org/10.1007/978-3-031-30820-8_16
https://doi.org/10.1007/978-3-030-99253-8_23
https://doi.org/10.1007/978-3-031-37706-8_16

Stochastic Omega-Regular Verification and Control with Supermartingales 419

68. Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A., Lygeros, J.: Symbolic con-
trol of stochastic systems via approximately bisimilar finite abstractions. IEEE
Trans. Autom. Control 59(12), 3135–3150 (2014)

69. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. Eur. J. Control. 18(6), 572–587 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Lexicographic Ranking Supermartingales
with Lazy Lower Bounds

Toru Takisaka1(B), Libo Zhang2, Changjiang Wang1, and Jiamou Liu2

1 University of Electronic Science and Technology of China,
Chengdu, China

takisaka@uestc.edu.cn, 202222080938@std.uestc.edu.cn
2 The University of Auckland, Auckland, New Zealand

lzha797@aucklanduni.ac.nz, jiamou.liu@auckland.ac.nz

Abstract. Lexicographic Ranking SuperMartingale (LexRSM) is a prob-
abilistic extension of Lexicographic Ranking Function (LexRF), which is
a widely accepted technique for verifying program termination. In this
paper, we are the first to propose sound probabilistic extensions of LexRF
with a weaker non-negativity condition, called single-component (SC)
non-negativity. It is known that such an extension, if it exists, will be
nontrivial due to the intricacies of the probabilistic circumstances.

Toward the goal, we first devise the notion of fixability, which offers
a systematic approach for analyzing the soundness of possibly negative
LexRSM. This notion yields a desired extension of LexRF that is sound
for general stochastic processes. We next propose another extension,
called Lazy LexRSM, toward the application to automated verification;
it is sound over probabilistic programs with linear arithmetics, while its
subclass is amenable to automated synthesis via linear programming.
We finally propose a LexRSM synthesis algorithm for this subclass, and
perform experiments.

1 Introduction

Background 1: Lexicographic RFs with Different Non-negativity Con-
ditions. Ranking function (RF) is one of the most well-studied tools for verify-
ing program termination. An RF is typically a real-valued function over program
states that satisfies: (a) the ranking condition, which requires an RF to decrease
its value by a constant through each transition; and (b) the non-negativity con-
dition, which imposes a lower bound on the value of the RF so that its infi-
nite descent through transitions is prohibited. The existence of such a function
implies termination of the underlying program, and therefore, one can automate
verification of program termination by RF synthesis algorithms.

Improving the applicability of RF synthesis algorithms, i.e., making them able
to prove termination of a wider variety of programs, is one of the core interests
in the study of RF. A lexicographic extension of RF (LexRF) [8,10] is known
as a simple but effective approach to the problem. Here, a LexRF is a function
to real-valued vectors instead of the reals, and its ranking condition is imposed
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 420–442, 2024.
https://doi.org/10.1007/978-3-031-65633-0_19

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_19

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 421

Fig. 1. A demo of different non-negativity conditions for LexRFs. There, the ranking
dimensions of the LexRF η are indicated by underlines, and the last column of the
table shows where each condition requires η to be non-negative.

with respect to the lexicographic order. For example, the value of a LexRF
may change from (1, 1, 1) to (1, 0, 2) through a state transition; here, the value
“lexicographically decreases by 1” through the transition, that is, it decreases
by 1 in some dimension while it is non-increasing on the left to that dimension.
LexRF is particularly good at handling nested structures of programs, as vectors
can measure the progress of different “phases” of programs separately. LexRF is
also used in top-performing termination provers (e.g., [1]).

There are several known ways to impose non-negativity on LexRFs (see also
Fig. 1): (a) Strong non-negativity, which requires non-negativity in every dimen-
sion of the LexRF; (b) leftward non-negativity, which requires non-negativity on
the left of the ranking dimension of each transition, i.e., the dimension where
the value of the LexRF should strictly decrease through the transition; and (c)
single-component non-negativity, which requires non-negativity only in the rank-
ing dimensions. It is known that any of these non-negativity conditions makes
the resulting LexRF sound [8,10], i.e., a program indeed terminates whenever
it admits a LexRF with either of these non-negativity conditions. For better
applicability, single-component non-negativity is the most preferred, as it is the
weakest constraint among the three.
Background 2: Probabilistic Programs and Lexicographic RSMs. One
can naturally think of a probabilistic counterpart of the above argument. One can
consider probabilistic programs that admit randomization in conditional branch-
ing and variable updates. The notion of RF is then generalized to Ranking Super-
Martingale (RSM), a function similar to RFs except that the ranking condition
requires an RSM to decrease its value in expectation. The existence of an RSM
typically implies almost-sure termination of the underlying program, i.e., termi-
nation of the program with probability 1.

Such a probabilistic extension has been actively studied, in fact: probabilistic
programs are used in e.g., stochastic network protocols [33], randomized algo-
rithms [18,26], security [6,7,27], and planning [11]; and there is a rich body
of studies in RSM as a tool for automated verification of probabilistic pro-
grams (see Sect. 8). Similar to the RF case, a lexicographic extension of RSM
(LexRSM, [2,15]) is an effective approach to improve its applicability. In addition
to its advantages over nested structures, LexRSM can also witness almost-sure
termination of certain probabilistic programs with infinite expected runtime [2,
Fig. 2]; certifying such programs is known as a major challenge for RSMs.

422 T. Takisaka et al.

Problem: Sound Probabilistic Extension of LexRF with Weaker Non-
negativity. Strongly non-negative LexRF soundly extends to LexRSM in a
canonical way [2], i.e., basically by changing the clause “decrease by a con-
stant” in the ranking condition of LexRF to “decrease by a constant in expec-
tation”. In contrast, the similar extension of leftward or single-component
non-negative LexRF yields an unsound LexRSM notion [15,20]. To date, a
sound LexRSM with the weakest non-negativity in the literature is General-
ized LexRSM (GLexRSM) [15], which demands leftward non-negativity and an
additional one, so-called expected leftward non-negativity. Roughly speaking, the
latter requires LexRSMs to be non-negative in each dimension (in expectation)
upon “exiting” the left of the ranking dimension. For example, in Fig. 1, it
requires b2 to be non-negative, as the second dimension of η “exits” the left
of the ranking dimension upon the transition �1 → �2. GLexRSM does not gen-
eralize either leftward or single-component non-negative LexRF, in the sense that
the former is strictly more restrictive than the latter two when it is considered
over non-probabilistic programs.

These results do not mean that leftward or single-component non-negative
LexRF can never be extended to LexRSM, however. More concretely, the follow-
ing problem is valid (see the last paragraph of Sect. 3 for a formal argument):

KEY PROBLEM: Find a sound LexRSM notion that instantiates1

single-component non-negative LexRF, i.e., a LexRSM notion whose con-
dition is no stronger than that of single-component non-negative LexRF
in non-probabilistic settings.

We are motivated to study this problem for a couple of reasons. First, it is
a paraphrase of the following fundamental question: when do negative values of
(Lex)RSM cause trouble, say, to its soundness? This question is a typical example
in the study of RSM where the question becomes challenging due to its proba-
bilistic nature. The question also appears in other topics in RSM; for example, it
is known that the classical variant rule of Floyd-Hoare logic does not extend to
almost-sure termination of probabilistic programs in a canonical way [24], due to
the complicated treatment of negativity in RSMs. To our knowledge, this ques-
tion has only been considered in an ad-hoc manner through counterexamples
(e.g., [15,20,24]), and we do not yet have a systematic approach to answering it.

Second, relaxing the non-negativity condition of LexRSM is highly desirable
if we wish to fully unlock the benefit of the lexicographic extension in automated
verification. A motivating example is given in Fig. 2. The probabilistic program
in Fig. 2 terminates almost-surely, but it does not admit any linear GLexRSM
(and hence, the GLexRSM synthesis algorithms in [15] cannot witness its almost-
sure termination); for example, the function η ranks every transition of the
program, but violates both leftward and expected leftward non-negativity at the
transition �1 → �2 (note η ranks this transition in the third dimension; to check
the violation of expected leftward non-negativity, also note η ranks �2 → �4 in
the first dimension). Here, the source of the problem is that the program has two

1 We use the term “instantiate” to emphasize that we compare LexRSM and LexRF.

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 423

Fig. 2. A probabilistic modification of speedDis1 [4], where Unif [a, b] is a uniform sam-
pling from the (continuous) interval [a, b]. Inequalities on the right represent invariants.
While η is not a GLexRSM, it is an LLexRSM we propose; thus it witnesses almost-sure
termination of the program.

variables whose progress must be measured (i.e., increment y to 10 in �3; and
increment x to 5 in �4), but one of their progress measures can be arbitrarily
small during the program execution (y can be initialized with any value). Not
only that this structure is rather fundamental, it is also expected that our desired
LexRSM could handle it, if it exists. Indeed, modify the probabilistic program
in Fig. 2 into a non-probabilistic one by changing “Unif [1, 2]” to “1”; then the
program admits η as a single-component non-negative LexRF.

Contributions. In this paper, we are the first to introduce sound LexRSM
notions that instantiate single-component non-negative LexRF. Our contribu-
tions are threefold, as we state below.

– First, in response to the first motivation we stated above, we devise a novel
notion of fixability as a theoretical tool to analyze if negative values of a
LexRSM “cause trouble”. Roughly speaking, we identify the source of the
trouble as “ill” exploitation of unbounded negativity of LexRSM; our ε-fixing
operation prohibits such exploitation by basically setting all the negative
values of a LexRSM into the same negative value −ε, and we say a LexRSM
is ε-fixable if it retains the ranking condition through such a transformation.
We give more details about its concept and key ideas in Sect. 2.
The soundness of ε-fixable LexRSM immediately follows from that of strongly
non-negative one [2] because any LexRSM becomes strongly non-negative
through the ε-fixing operation (after globally adding ε). Fixable LexRSM
instantiates single-component non-negative LexRF for general stochastic pro-
cesses (Theorem 4.3), while also serving as a technical basis for proving the
soundness of other LexRSMs. Meanwhile, fixable LexRSM cannot be directly
applied to automated verification algorithms due to the inherent non-linearity
of ε-fixing; this observation leads us to our second contribution.

– Second, in response to the second motivation we stated above, we intro-
duce Lazy LexRSM (LLexRSM) as another LexRSM notion that instanti-
ates single-component non-negative LexRF. LLexRSM does not involve the
ε-fixing operation in its definition; thanks to this property, we have a subclass
of LLexRSM that is amenable to automated synthesis via linear programming

424 T. Takisaka et al.

(see Sect. 6). The LLexRSM condition consists of the single-component non-
negative LexRSM condition and stability at negativity we propose (Defini-
tion 5.1), which roughly requires the following: Once the value of a LexRSM
gets negative in some dimension, it must stay negative until that dimension
exits the left of the ranking one. For example, η in Fig. 2 is an LLexRSM;
indeed, �2 → �4 and �1 → �5 are the only transitions where η possibly changes
its value from negative to non-negative in some dimension (namely, the second
one), which is although the right to the ranking dimension (the first one).
We prove linear LLexRSM is sound for probabilistic programs over linear
arithmetics (see Theorem 5.4 for the exact assumption). The proof is highly
nontrivial, which is realized by subtle use of a refined variant of fixability; we
explain its core idea in Sect. 2. Furthermore, Theorem 5.4 shows that expected
leftward non-negativity in GLexRSM [15] is actually redundant under the
assumption in Theorem 5.4. This is surprising, as expected leftward non-
negativity has been invented to restore the soundness of leftward non-negative
LexRSM, which is generally unsound.

– Third, we present a synthesis algorithm for the subclass of LLexRSM we
mentioned above, and do experiments; there, our algorithms verified almost-
sure termination of various programs that could not be handled by (a better
proxy of) the GLexRSM-based one. The details can be found in Sect. 7.

2 Key Observations with Examples

Here we demonstrate by examples how intricate the treatment of negative values
of LexRSM is, and how we handle it by our proposed notion of fixability.

Blocking “Ill” Exploitation of Unbounded Negativity. Figure 3 is a coun-
terexample that shows leftward non-negative LexRSM is generally unsound (con-
ceptually the same as [15, Ex. 1]). The probabilistic program in Fig. 3 does
not terminate almost-surely because the chance of entering �4 from �3 quickly
decreases as t increases. Meanwhile, η = (η1, η2, η3) in Fig. 3 is a leftward non-
negative LexRSM over a global invariant [0 ≤ x ≤ 1]; in particular, observe η2
decreases by 1 in expectation from �3, whose successor location is either �4 or
�1.

Fig. 3. An example of “ill” exploitation.

This example reveals an incon-
sistency between the ways how the
single-component non-negativity and
ranking condition evaluate the value
of a LexRSM, say η = (η1, . . . , ηn).
The single-component non-negativity
claims η cannot rank a transition in a
given dimension k whenever ηk is neg-
ative; intuitively, this means that any
negative value in the ranking domain
R should be understood as the same state, namely the “bottom” of the domain.
Meanwhile, the ranking condition evaluates different negative values differently;

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 425

a smaller negative value of ηk can contribute more to satisfy the ranking condi-
tion, as one can see from the behavior of η2 in Fig. 3 at �3. The function η in
Fig. 3 satisfies the ranking condition over a possibly non-terminating program
through “ill” exploitation of this inconsistency; as t becomes larger, the value of
η2 potentially drops more significantly through the transition from �3, but with
a smaller probability.

The first variant of our fixability notion, called ε-fixability, enables us to
ensure that such exploitation is not happening. We simply set every negative
value in a LexRSM η to a negative constant −ε, and say η is ε-fixable if it
retains the ranking condition through the modification2. For example, the ε-
fixing operation changes the value of η2 in Fig. 3 at �4 from −2t to −ε, and η
does not satisfy the ranking condition after that. Therefore, η in Fig. 3 is not
ε-fixable for any ε > 0 (i.e., we successfully reject this η through the fixability
check). Meanwhile, an ε-fixable LexRSM witnesses almost-sure termination of
the underlying program; indeed, the fixed LexRSM is a strongly non-negative
LexRSM (by globally adding ε to the fixed η), which is known to be sound [2].

The notion of ε-fixability is operationally so simple that one might even feel
it is a boring idea; nevertheless, its contribution to revealing the nature of pos-
sibly negative LexRSM is already significant in our paper. Indeed, (a) ε-fixable
LexRSM instantiates single-component non-negative LexRF with an appropri-
ate ε (Theorem 4.3); (b) ε-fixable LexRSM generalizes GLexRSM [15], and the
proof offers an alternative proof of soundness of GLexRSM that is significantly
simpler than the original one (Theorem 4.4); and (c) its refined variant takes the
crucial role in proving soundness of our second LexRSM variant, lazy LexRSM.

Allowing “Harmless” Unbounded Negativity. While ε-fixable LexRSM
already instantiates single-component non-negative LexRF, we go one step fur-
ther to obtain a LexRSM notion that is amenable to automated synthesis, in
particular via Linear Programming (LP). The major obstacle to this end is the
case distinction introduced by ε-fixability, which makes the fixed LexRSM non-
linear. Lazy LexRSM (LLexRSM), our second proposed LexRSM, resolves this
problem while it also instantiates single-component non-negative LexRF.

Linear LLexRSM is sound over probabilistic programs with linear arithmetics
(Theorem 5.4). The key to the proof is, informally, the following observation:
Restrict our attention to probabilistic programs and functions η that are allowed
in the LP-based synthesis. Then “ill” exploitation in Fig. 3 never occurs, and
therefore, a weaker condition than ε-fixability (namely, the LLexRSM one) suf-
fices for witnessing program termination. In fact, Fig. 3 involves (a) non-linear
arithmetics in the program, (b) parametrized if-branch in the program (i.e., the
grammar “if prob(p) then P else Q fi” with p being a variable), and (c) non-
linearity of η. None of them are allowed in the LP-based synthesis (at least,
in the standard LP-based synthesis via Farkas’ Lemma [2,12,15]). Our informal
statement above is formalized as Theorem 5.3, which roughly says: Under such

2 To give the key ideas in a simpler way, the description here slightly differs from the
actual definition in Sect. 4; referred results in Sect. 2 are derived from the latter. See
Remark 4.1.

426 T. Takisaka et al.

a restriction to probabilistic programs and η, any LLexRSM is (ε, γ)-fixable.
Here, (ε, γ)-fixability is a refined version of ε-fixability; while it also ensures that
“ill” exploitation is not happening in η, it is less restrictive than ε-fixability by
allowing “harmless” unbounded negative values of η.

Fig. 4. An example of “harmless”
unbounded negativity.

Figure 4 gives an example of such
a harmless behavior of η rejected by
ε-fixability. It also shows why we can-
not simply use ε-fixability to check an
LLexRSM does not do “ill” exploita-
tion. The function η = (η1, η2) in
Fig. 4 is leftward non-negative over
the global invariant [0 ≤ x ≤ 1 ∧ t ≥
1], so it is an LLexRSM for the prob-
abilistic program there; the program
and η are also in the scope of LP-
based synthesis; but η is not ε-fixable for any ε > 0. Indeed, the ε-fixing oper-
ation changes the value of η2 at �4 from −2t − 4 to −ε, and η does not satisfy
the ranking condition at �2 after the change. Here we notice that, however, the
unbounded negative values of η2 are “harmless”; that is, the “ill-gotten gains”
by the unbounded negative values of η2 at �4 are only “wasted” to unnecessarily
increase η2 at �3. In fact, η still satisfies the ranking condition if we change the
value of η2 at �1, �2, �3 to 2, 1, and 0, respectively.

We resolve this issue by partially waiving the ranking condition of η after
the ε-fixing operation. It is intuitively clear that the program in Fig. 4 almost-
surely terminates, and the intuition here is that the program essentially repeats
an unbiased coin tossing until the tail is observed (here, “observe the tail” cor-
responds to “observe prob(0.5) = false at �2”). This example tells us that, to
witness the almost-sure termination of this program, we only need to guarantee
the program (almost-surely) visits either the terminal location �5 or the “coin-
tossing location” �2 from anywhere else. The ε-fixed η in Fig. 4 does witness such
a property of the program, as it ranks every transition except those that are from
a coin-tossing location, namely �2.

We generalize this idea as follows: Fix γ ∈ (0, 1), and say a program state is
a “coin-tossing state” for η = (η1, . . . , ηn) in the k-th dimension if ηk drops from
non-negative to negative (i.e., the ranking is “done” in the k-th dimension) with
the probability γ or higher. Then we say η is (ε, γ)-fixable (Definition 4.6) if
the ε-fixed η is a strongly non-negative LexRSM (after adding ε) except that, at
each coin-tossing state, we waive the ranking condition of η in the correspond-
ing dimension. For example, η in Fig. 4 is (ε, γ)-fixable for any γ ∈ (0, 0.5]. As
expected, (ε, γ)-fixable LexRSM is sound for any ε > 0 and γ ∈ (0, 1) (Corol-
lary 4.7).

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 427

3 Preliminaries

We recall the technical preliminaries. Omitted details are in [36, Appendix A].

Notations. We assume the readers are familiar with the basic notions of measure
theory, see e.g. [5,9]. The sets of non-negative integers and reals are denoted by
N and R, respectively. The collection of all Borel sets of a topological space X
is denoted by B(X). The set of all probability distributions over the measurable
space (Ω,B(Ω)) is denoted by D(Ω). The value of a vector x at the i-th index
is denoted by x[i] or xi. A subset D ⊆ R of the reals is bounded if D ⊆ [−x, x]
for some x > 0.

For a finite variable set V and the set valV of its valuations, we form pred-
icates as first-order formulas with atomic predicates of the form f ≤ g, where
f, g : valV → R and R is linearly ordered. Often, we are only interested in
the value of a predicate ϕ over a certain subset X ⊆ valV , in which case, we
call ϕ a predicate over X . We identify a predicate ϕ over X with a function
ϕ̃ : X → {0, 1} such that ϕ̃(x) = 1 if and only if ϕ(x) is true. The semantics of
ϕ, i.e., the set {x ∈ X | ϕ(x) is true}, is denoted by �ϕ�. The characteristic func-
tion 1A : X → {0, 1} of a subset A of X is a function such that �1A = 1� = A. For
a probability space (Ω,F ,P), we say ϕ over Ω is (F-)measurable when �ϕ� ∈ F .
For such a ϕ, the satisfaction probability of ϕ w.r.t. P, i.e., the value P(�ϕ�), is
also denoted by P(ϕ); we say ϕ holds P-almost surely (P-a.s.) if P(ϕ) = 1.

3.1 Syntax and Semantics of Probabilistic Programs

Syntax. We define the syntax of Probabilistic Programs (PPs) similarly to
e.g., [2,35]. More concretely, PPs have the standard control structure in imper-
ative languages such as if-branches and while-loops, while the if-branching and
variable assignments can also be done in either nondeterministic or probabilistic
ways. Namely, ‘if �’ describes a nondeterministic branching; ‘ndet(D)’ describes
a nondeterministic assignment chosen from a bounded3 domain D ⊆ B(R);
‘if prob(p)’ with a constant p ∈ [0, 1] describes a probabilistic branching that
executes the ‘then’ branch with probability p, or the ‘else’ branch with prob-
ability 1 − p; and ‘sample(d)’ describes a probabilistic assignment sampled
from a distribution d ∈ D(R). We consider PPs without conditioning, which
are also called randomized programs [35]; PPs with conditioning are considered
in e.g. [32]. The exact grammar is given in [36, Appendix A].

In this paper, we focus our attention on PPs with linear arithmetics; we
say a PP is linear if each arithmetic expression in it is linear, i.e., of the form
b +

∑n
i=1 ai · vi for constants a1, . . . , an, b and program variables v1, . . . , vn.

Semantics. We adopt probabilistic control flow graph (pCFG) as the semantics
of PPs, which is standard in existing RSM works (e.g., [12,15,35]). Informally, it
is a labeled directed graph whose vertices are program locations, and whose edges
represent possible one-step executions in the program. Edges are labeled with
the necessary information so that one can reconstruct the PP represented by the

3 This is also assumed in [15] to avoid a complication in possibly negative LexRSMs.

428 T. Takisaka et al.

pCFG; for example, an edge e can be labeled with the assignment commands
executed through e (e.g., ‘x := x + 1’), the probability p ∈ [0, 1] that e will be
chosen (through ‘if prob(p)’), the guard condition, and so on. Below we give
its formal definition for completeness; see [36, Appendix A] for how to translate
PPs into pCFGs.

Definition 3.1 (pCFG). A pCFG is a tuple (L, V,Δ,Up, G), where

1. L is a finite set of locations.
2. V = {x1, . . . , x|V |} is a finite set of program variables.
3. Δ is a finite set of (generalized) transitions4, i.e., tuples τ = (�, δ) of a location

� ∈ L and a distribution δ ∈ D(L) over successor locations.
4. Up is a function that receives a transition τ ∈ Δ and returns a tuple (i, u)

of a target variable index i ∈ {1, . . . , |V |} and an update element u. Here,
u is either (a) a Borel measurable function u : R|V | → R, (b) a distribution
d ∈ D(R), or (c) a bounded measurable set R ∈ B(R). In each case, we
say τ is deterministic, probabilistic, and non-deterministic, respectively; the
collections of these transitions are denoted by Δd, Δp, and Δn, respectively.

5. G is a guard function that assigns a G(τ) : R|V | → {0, 1} to each τ ∈ Δ.

Below we fix a pCFG C = (L, V,Δ,Up, G). A state of C is a tuple s = (�,x)
of location � ∈ L and variable assignment vector x ∈ R

|V |. We write S to denote
the state set L × R

|V |. Slightly abusing the notation, for τ = (�, δ), we identify
the set �G(τ)� ⊆ R

|V | and the set {�} × �G(τ)� ⊆ S; in particular, we write
s ∈ �G(τ)� when τ is enabled at s, i.e., s = (�,x), τ = (�, δ) and x ∈ �G(τ)�.

A pCFG C with its state set S can be understood as a transition system
over S with probabilistic transitions and nondeterminism (or, more specifically,
a Markov decision process with its states S). Standard notions such as successors
of a state s ∈ S, finite paths, and (infinite) runs of C are defined as the ones over
such a transition system. The set of all successors of s ∈ �G(τ)� via τ is denoted
by succτ (s). The set of runs of C is denoted by ΠC .

Schedulers resolve nondeterminism in pCFGs. Observe there are two types
of nondeterminism: (a) nondeterministic choice of τ ∈ Δ at a given state (corre-
sponds to ‘if �’), and (b) nondeterministic variable update in a nondeterministic
transition τ ∈ Δn (corresponds to ‘xi := ndet(D)’). We say a scheduler is Δ-
deterministic if its choice is non-probabilistic in Case (a).

We assume pCFGs are deadlock-free; we also assume that there are desig-
nated locations �in and �out that represent program initiation and termination,
respectively. An initial state is a state of the form (�in,x). We assume a transition
from �out is unique, denoted by τout; this transition does not update anything.

By fixing a scheduler σ and an initial state sI , the infinite-horizon behavior of
C is determined as a distribution P

σ
sI

over ΠC ; that is, for a measurable A ⊆ ΠC ,
the value P

σ
sI

(A) is the probability that a run of C from sI is in A under σ. We
call the probability space (ΠC ,B(ΠC),Pσ

sI
) the dynamics of C under σ and sI .

See [9] for the formal construction; a brief explanation is in [36, Appendix A].

4 Defining these as edges might be more typical, as in our informal explanation. We
adopt the style of [2,15] for convenience; it can handle ‘if prob(p)’ by a single τ .

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 429

We define the termination time of a pCFG C as the function T C
term : ΠC →

N ∪ {+∞} such that T C
term(s0s1 . . .) = inf{t ∈ N | ∃x.st = (�out,x)}. Now we

formalize our objective, i.e., almost-sure termination of pCFG, as follows.

Definition 3.2 (AST of pCFG). A run ω ∈ ΠC terminates if T C
term(ω) < ∞.

A pCFG C is a.s. terminating (AST) under a scheduler σ and an initial state sI

if a run of C terminates P
σ
sI

-a.s. We say C is AST if it is AST for any σ and sI .

3.2 Lexicographic Ranking Supermartingales

Here we recall mathematical preliminaries of the LexRSM theory. A (Lex)RSM
typically comes in two different forms: one is a vector-valued function η : S → R

n

over states S of a pCFG C, and another is a stochastic process over the runs ΠC
of C. We recall relevant notions in these formulations, which are frequently used
in existing RSM works [12,15]. We also recall the formal definition of LexRSMs
with three different non-negativity conditions in Fig. 1.

LexRSM as a Quantitative Predicate. Fix a pCFG C. An (n-dimensional)
measurable map (MM) is a Borel measurable function η : S → R

n. For a given
1-dimensional MM η and a transition τ , The (maximal) pre-expectation of η
under τ is a function that formalizes “the value of η after the transition τ”.
More concretely, it is a function Xτη : �G(τ)� → R that returns, for a given
state s, the maximal expected value of η at the successor state of s via τ . Here,
the maximality refers to the set of all possible nondeterministic choices at s.

A level map Lv : Δ → {0, . . . , n} designates the ranking dimension of the
associated LexRSM η : S → R

n. We require Lv(τ) = 0 if and only if τ = τout.
We say an MM η ranks a transition τ in the dimension k (under Lv) when
k = Lv(τ). An invariant is a measurable predicate I : S → {0, 1} such that �I�
is closed under transitions and �in × R

|V | ⊆ �I�. The set �I� over-approximates
the reachable states in C.

Suppose an n-dimensional MM η and an associated level map Lv are given.
We say η satisfies the ranking condition (under Lv and I) if the following holds
for each τ �= τout, s ∈ �I ∧ G(τ)�, and k ∈ {1, . . . , Lv(τ)}:

Xτη[k](s) ≤
{

η[k](s) if k < Lv(τ),
η[k](s) − 1 if k = Lv(τ).

We also define the three different non-negativity conditions in Fig. 1, i.e., STrong
(ST), LeftWard (LW), and Single-Component (SC) non-negativity, as follows:

(ST non-neg.) ∀s ∈ �I�.∀k ∈ {1, . . . , n}. η[k](s) ≥ 0,

(LW non-neg.) ∀τ �= τout.∀s ∈ �I ∧ G(τ)�.∀k ∈ {1, . . . , Lv(τ)}. η[k](s) ≥ 0,

(SC non-neg.) ∀τ �= τout.∀s ∈ �I ∧ G(τ)�. η[Lv(τ)](s) ≥ 0.

All the materials above are wrapped up in the following definition.

430 T. Takisaka et al.

Definition 3.3 ((ST/LW/SC)-LexRSM map). Fix a pCFG C with an
invariant I. Let η be an MM associated with a level map Lv. The MM η is
called a STrongly non-negative LexRSM map (ST-LexRSM map) over C sup-
ported by I if it satisfies the ranking condition and the strong non-negativity
under Lv and I. If it satisfies the leftward or single-component non-negativity
instead of the strong one, then we call it LW-LexRSM map or SC-LexRSM map,
respectively.

LexRSM as a Stochastic Process. When it comes to automated synthesis,
a (Lex)RSM is usually a function η over program states, as defined in Defini-
tion 3.3. Meanwhile, when we prove the properties of (Lex)RSMs themselves
(e.g., soundness), it is often necessary to inspect the behavior of η upon the
program execution under given scheduler σ and initial state sI . Such a behavior
of η is formalized as a sequence (Xt)∞

t=0 of random variables over the dynamics
of the underlying pCFG, which forms a stochastic process.

A (discrete-time) stochastic process in a probability space (Ω,F ,P) is a
sequence (Xt)∞

t=0 of F-measurable random variables Xt : Ω → R
n for t ∈ N.

In our context, it is typically associated with another random variable T : Ω →
N∪{+∞} that describes the termination time of ω ∈ Ω. We say T is AST (w.r.t.
P) if P(T < ∞) = 1; observe that, if (Ω,F ,P) is the dynamics of a pCFG C
under σ and sI , then C is AST under σ and sI if and only if T C

term is AST w.r.t.
P. As standard technical requirements, we assume there is a filtration (Ft)∞

t=0

in (Ω,F ,P) such that (Xt)∞
t=0 is adapted to (Ft)∞

t=0, T is a stopping time w.r.t.
(Ft)∞

t=0, and (Xt)∞
t=0 is stopped at T ; see [36, Appendix A] for their definitions.

For a stopping time T w.r.t. (Ft)∞
t=0, we define a level map (Lvt)∞

t=0 as a
sequence of Ft-measurable functions Lvt : Ω → {0, . . . n} such that �Lvt = 0� =
�T ≤ t� for each t. We call a pair of a stochastic process and a level map an
instance for T ; just like we construct an MM η and a level map Lv as an AST
certificate of a pCFG C, we construct an instance for a stopping time T as its
AST certificate. We say an instance ((Xt)∞

t=0, (Lvt)∞
t=0) for T ranks ω ∈ Ω in the

dimension k at time t when T (ω) > t and k = Lvt(ω).
For c > 0, we say an instance ((Xt)∞

t=0, (Lvt)∞
t=0) satisfies the c-ranking con-

dition if, for each t ∈ N, ω ∈ �Lvt �= 0�, and k ∈ {1, . . . , Lvt(ω)}, we have:

E[Xt+1[k] | Ft](ω) ≤ Xt[k](ω) − c · 1�k=Lvt�(ω) (P-a.s.) (1)

Here, the function E[Xt+1[k] | Ft] denotes the conditional expectation of Xt+1[k]
given Ft, which takes the role of pre-expectation. We mostly let c = 1 and simply
call it the ranking condition; the only result sensitive to c is Theorem 4.3.

We also define the three different non-negativity conditions for an instance
as follows. Here we adopt a slightly general (but essentially the same) variant
of strong non-negativity instead, calling it uniform well-foundedness; we simply
allow the uniform lower bound to be any constant ⊥ ∈ R instead of fixing it to

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 431

be zero. This makes the later argument simpler.

(UN well-fnd.) ∃⊥ ∈ R.∀t ∈ N.∀ω ∈ Ω.∀k ∈ {1, . . . , n}. Xt[k](ω) ≥ ⊥,

(LW non-neg.) ∀t ∈ N.∀ω ∈ �Lvt �= 0�.∀k ∈ {1, . . . , Lvt(ω)}. Xt[k](ω) ≥ 0,

(SC non-neg.) ∀t ∈ N.∀ω ∈ �Lvt �= 0�. Xt[Lvt(ω)](ω) ≥ 0.

Definition 3.4 ((UN/LW/SC)-LexRSM). Suppose the following are given:
a probability space (Ω,F ,P); a filtration (Ft)∞

t=0 on F ; and a stopping time T
w.r.t. (Ft)∞

t=0. An instance I = ((Xt)∞
t=0, (Lvt)∞

t=0) is called a UNiformly well-
founded LexRSM (UN-LexRSM) for T with the bottom ⊥ ∈ R and a constant
c ∈ R if (a) (Xt)∞

t=0 is adapted to (Ft)∞
t=0; (b) for each t ∈ N and 1 ≤ k ≤ n,

the expectation of Xt[k] exists; (c) I satisfies the c-ranking condition; and (d)
I is uniformly well-founded with the bottom ⊥. We define LW-LexRSM and
SC-LexRSM by changing (d) with LW and SC non-negativity, respectively.

We mostly assume c = 1 and omit to mention the constant. UN-LexRSM
is known to be sound [2]; meanwhile, LW and SC-LexRSM are generally
unsound [15,20]. We still mention the latter two as parts of sound LexRSMs.

From RSM Maps to RSMs. Let η be an MM over a pCFG C with a level map
Lv. Together with a Δ-deterministic scheduler σ and initial state sI , it induces
an instance ((Xt)∞

t=0, (Lvt)∞
t=0) over the dynamics of C, by letting Xt(s0s1 . . .) =

η(st); it describes the behavior of η and Lv through executing C from sI under σ.
Properties of η such as ranking condition or non-negativity are inherited to the
induced instance (if the expectation of Xt[k] exists for each t, k). For example,
an instance induced by an ST-LexRSM map is an UN-LexRSM with ⊥ = 0.

Non-probabilistic Settings, and Instantiation of SC-LexRF. The key
question in this paper is to find a LexRSM notion that instantiates SC non-
negative LexRF (or SC-LexRF for short); that is, we would like to find a LexRSM
notion whose conditions are satisfied by SC-LexRSM5 in the non-probabilistic
setting, which we formalize as follows. We say a pCFG is a (non-probabilistic)
CFG if (a) δ is Dirac for each (�, δ) ∈ Δ, and (b) Δp = ∅; this roughly means
that a CFG is a model of a PP without ‘if prob(p)’ and ‘sample(d)’. We say a
probability space (Ω,F ,P) is trivial if Ω is a singleton, say {ω}.

4 Fixable LexRSMs

In Sect. 4–6 we give our novel technical notions and results. In this section,
we will introduce the notion of fixability and related results. Here we focus on
technical rigorousness and conciseness, see Sect. 2 for the underlying intuition.
Proofs are given in appendices of [36]. We begin with the formal definition of
ε-fixability.
5 One would perhaps expect to see “SC-LexRF” here; such a change does not make

a difference under a canonical definition of SC-LexRF, so we define the notion of
instantiation in this way to save space. See also [36, Appendix A].

432 T. Takisaka et al.

Remark 4.1. As in Footnote 2, our formal definitions of fixability in this section
slightly differ from an informal explanation in Sect. 2. One difference is that
the ε-fixing in Definition 4.2 changes the value of a LexRSM at dimension k
whenever it is negative or k is strictly on the right to the ranking dimension.
This modification is necessary to prove Theorem 4.4. Another is that we define
fixability as the notion for an instance I, rather than for an MM η. While the
latter can be also done in an obvious way (as informally done in Sect. 2), we do
not formally do that because it is not necessary for our technical development.
One can “fix” the argument in Sect. 2 into the one over instances by translating
“fixability of η” to “fixability of an instance induced by η”.

Definition 4.2 (ε-fixing of an instance). Let I = ((Xt)∞
t=0), (Lvt)∞

t=0) be
an instance for a stopping time T , and let ε > 0. The ε-fixing of I is another
instance Ĩ = ((X̃t)∞

t=0, (Lvt)∞
t=0) for T , where

X̃t[k](ω) =

{
−ε if Xt[k](ω) < 0 or k > Lvt(ω),
Xt[k](ω) otherwise.

We say an SC-LexRSM I is ε-fixable, or call it an ε-fixable LexRSM, if its ε-fixing
Ĩ is an UN-LexRSM with the bottom ⊥ = −ε.

Observe that the ε-fixing of any instance is uniformly well-founded with
the bottom ⊥ = −ε, so the ε-fixability only asks if the ranking condition is
preserved through ε-fixing. Also, observe that the soundness of ε-fixable LexRSM
immediately follows from that of UN-LexRSM [2].

While we do not directly use ε-fixability as a technical tool, the two theorems
below show its conceptual value. The first one answers our key problem: ε-fixable
LexRSM instantiates SC-LexRF with sufficiently large ε.

Theorem 4.3 (fixable LexRSM instantiates SC-LexRF). Suppose I =
((xt)∞

t=0, (Lvt)∞
t=0) is an SC-LexRSM for a stopping time T over the trivial prob-

ability space with a constant c, and let ε ≥ c. Then I is ε-fixable. ��

The second theorem offers a formal comparison between ε-fixable
LexRSM and the state-of-the-art LexRSM variant in the literature, namely
GLexRSM [15]. We show the former subsumes the latter. In our terminology,
GLexRSM is LW-LexRSM that also satisfies the following expected leftward non-
negativity :

∀t ∈ N.∀ω ∈ �Lvt �= 0�.∀k ∈ {1, . . . , Lvt(ω)}. E[1�k>Lvt+1� · Xt+1[k] | Ft](ω) ≥ 0.

We note that our result can be also seen as an alternative proof of the sound-
ness of GLexRSM [15, Thm. 1]. Our proof is also significantly simpler than the
original one, as the former utilizes the soundness of UN-LexRSM as a lemma,
while the latter does the proof “from scratch”.

Theorem 4.4 (fixable LexRSM generalizes GLexRSM). Suppose I is a
GLexRSM for a stopping time T . Then I is ε-fixable for any ε > 0. ��

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 433

Now we move on to a refined variant, (ε, γ)-fixability. Before its formal defini-
tion, we give a theorem that justifies the partial waiving of the ranking condition

described in Sect. 2. Below,
∞
∃ t.ϕt stands for ∀k ∈ N.∃t ∈ N.[t > k ∧ ϕt].

Theorem 4.5 (relaxation of the UN-LexRSM condition). Suppose the
following are given: a probability space (Ω,F ,P); a filtration (Ft)∞

t=0 on F ; and
a stopping time T w.r.t. (Ft)∞

t=0. Let I = ((Xt)∞
t=0, (Lvt)∞

t=0) be an instance
for T , and let ⊥ ∈ R. For each k ∈ {1, . . . , n}, let (ϕt,k)∞

t=0 be a sequence of
predicates over Ω such that

∞
∃ t.ϕt,k(ω) ⇒

∞
∃ t.[Xt[k](ω) = ⊥ ∨ k > Lvt(ω)] (P-a.s.) (2)

Suppose I is an UN-LexRSM with the bottom ⊥ except that, instead of the rank-
ing condition, I satisfies the inequality (1) only for t ∈ N, k ∈ {1, . . . , n}, and
ω ∈ �k ≤ Lvt ∧ ¬(Xt[k] > ⊥ ∧ ϕt,k)� (with c = 1). Then T is AST w.r.t. P. ��

The correspondence between the argument in Sect. 2 and Theorem 4.5 is as
follows. The predicate ϕt,k is an abstraction of the situation “we are at a coin-
tossing state at time t in the k-th dimension”; and the condition (2) corresponds
to the infinite coin-tossing argument (for a given k, if ϕt,k is satisfied at infinitely
many t, then the ranking in the k-th dimension is “done” infinitely often, with
probability 1). Given these, Theorem 4.5 says that the ranking condition of UN-
LexRSM can be waived over �Xt[k] > ⊥ ∧ ϕt,k�. In particular, the theorem
amounts to the soundness of UN-LexRSM when ϕt,k ≡ false for each t and k.

Based on Theorem 4.5, we introduce (ε, γ)-fixability as follows. There, P[ϕ |
F ′] := E[1�ϕ� | F ′] is the conditional probability of satisfying ϕ given F ′.

Definition 4.6 ((ε, γ)-fixability). Let I = ((Xt)∞
t=0, (Lvt)∞

t=0) be an instance
for T , and let γ ∈ (0, 1). We call I a γ-relaxed UN-LexRSM for T if I satisfies
the properties in Theorem 4.5, where ϕt,k is as follows:

ϕt,k(ω) ≡ P[Xt+1[k] = ⊥ | Ft](ω) ≥ γ. (3)

We say I is (ε, γ)-fixable if its ε-fixing Ĩ is a γ-relaxed UN-LexRSM.

The predicate ϕt,k(ω) in (3) is roughly read “the ranking by (Xt)∞
t=0 is done

at time t + 1 in dimension k with probability γ or higher, given the information
about ω at t”. This predicate satisfies Condition (2); hence we have the following
corollary, which is the key to the soundness of lazy LexRSM in Sect. 5.

Corollary 4.7 (soundness of (ε, γ)-fixable instances). Suppose there exists
an instance I over (Ω,F ,P) for a stopping time T that is (ε, γ)-fixable for any
ε > 0 and γ ∈ (0, 1). Then T is AST w.r.t. P. ��

434 T. Takisaka et al.

5 Lazy LexRSM and Its Soundness

Here we introduce another LexRSM variant, Lazy LexRSM (LLexRSM). We
need this variant for our LexRSM synthesis algorithm; while ε-fixable LexRSM
theoretically answers our key question, it is not amenable to LP-based synthesis
algorithms because its case distinction makes the resulting constraint nonlinear.

We define LLexRSM map as follows; see Contributions in Sect. 1 for its intu-
itive meaning with an example. The definition for an instance is in [36, Appendix
C].

Definition 5.1 (LLexRSM map). Fix a pCFG C with an invariant I. Let η
be an MM associated with a level map Lv. The MM η is called a Lazy LexRSM
map (LLexRSM map) over C supported by I if it is an SC-LexRSM map over C
supported by I, and satisfies stability at negativity defined as follows:

∀τ �= τout.∀s ∈ �I ∧ G(τ)�.∀k ∈ {1, . . . , Lv(τ) − 1}.

η[k](s) < 0 ⇒ ∀s′ ∈ succτ (s).
[

η[k](s′) < 0 ∨ k > max
τ ′:s′∈�G(τ ′)�

Lv(τ ′)
]

.

We first observe LLexRSM also answers our key question.

Theorem 5.2 (LLexRSM instantiates SC-LexRF). Suppose η is an SC-
LexRSM over a non-probabilistic CFG C supported by an invariant I, with a
level map Lv. Then η is stable at negativity under I and Lv, and hence, η is an
LLexRSM map over C supported by I, with Lv. ��

Below we give the soundness result of LLexRSM map. We first give the nec-
essary assumptions on pCFGs and MMs, namely linearity and well-behavedness.
we say a pCFG is linear if the update element of each τ ∈ Δd is a linear function
(this corresponds to the restriction on PPs to the linear ones); and an MM η
is linear if λx.η(�,x) is linear for each � ∈ L. We say a pCFG is well-behaved
if its variable samplings are done via well-behaved distributions, which roughly
means that their tail probabilities vanish to zero toward infinity quickly enough.
Its formal definition is given in [36, Def. C.4], which is somewhat complex; an
important fact from the application perspective is that the class of such distribu-
tions covers all distributions with bounded supports and some distributions with
unbounded supports such as the normal distributions [36, Prop. C.6]. Possibly
negative (Lex)RSM typically requires some restriction on variable samplings of
pCFG (e.g., the integrability in [15]) so that the pre-expectation is well-defined.

The crucial part of the soundness proof is the following theorem, where (ε, γ)-
fixability takes the key role. Its full proof is given in [36, Appendix C].

Theorem 5.3. Let η : S → R
n be a linear LLexRSM map for a linear, well-

behaved pCFG C. Then for any Δ-deterministic scheduler σ and initial state sI

of C, the induced instance is (ε, γ)-fixable for some ε > 0 and γ ∈ (0, 1).

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 435

Proof (sketch). We can show that the ε-fixing Ĩ = ((X̃t)∞
t=0, (Lvt)∞

t=0) of an
induced instance I = ((Xt)∞

t=0, (Lvt)∞
t=0) almost-surely satisfies the inequality

(1) of the ranking condition for each t, ω, and k such that X̃t[k](ω) = −ε and
1 ≤ k ≤ Lvt(ω) [36, Prop. C.2]. Thus it suffices to show, for each ω, k, and t
such that X̃t[k](ω) ≥ 0 and 1 ≤ k ≤ Lvt(ω), either Ĩ satisfies the inequality (1)
or (1) as a requirement on Ĩ is waived due to the γ-relaxation.

Now take any such t, ω, and k, and suppose the run ω reads the program line
prog at time t. Then we can show the desired property by a case distinction over
prog as follows. Here, recall ω is a sequence s0s1 . . . stst+1 . . . of program states;
we defined Xt by Xt[k](ω) = η[k](st); and E[Xt+1[k] | Ft](ω) is the expectation
of η[k](s′), where s′ is the successor state of s0 . . . st under σ (which is not
necessarily st+1). Also observe the requirement (1) on Ĩ is waived for given t, ω,
and k when the value of η[k](s′) is negative with the probability γ or higher.

1. Suppose prog is a non-probabilistic program line, e.g., ‘xi := f(x)’ or ‘while
ϕ do’. Then the successor state s′ of st is unique. If η[k](s′) is non-negative,
then we have E[X̃t+1[k] | Ft](ω) = E[Xt+1[k] | Ft](ω), so the inequality
(1) is inherited from I to Ĩ; if negative, then the requirement (1) on Ĩ is
waived. The same argument applies to ‘if � then’ (recall I is induced from a
Δ-deterministic scheduler).

2. Suppose prog ≡ ‘ifprob(p)then’. By letting γ strictly smaller than p, we see
either η[k](s′) is never negative, or it is negative with a probability more than
γ. Thus we have the desired property for a similar reason to Case 1 (we note
this argument requires p to be a constant).

3. Suppose prog ≡ ‘xi := sample(d)’. We can show the desired property by
taking a sufficiently small γ; roughly speaking, the requirement (1) on Ĩ is
waived unless the chance of η[k](s′) being negative is very small, in which case
the room for “ill” exploitation is so small that the inequality (1) is inherited
from I to Ĩ. Almost the same argument applies to ‘xi := ndet(D)’.

We note, by the finiteness of program locations L and transitions Δ, we can
take γ ∈ (0, 1) that satisfies all requirements above simultaneously. ��

Now we have soundness of LLexRSM as the following theorem, which is
almost an immediate consequence of Theorem 5.3 and Corollary 4.7.

Theorem 5.4 (soundness of linear LLexRSM map over linear, well-
behaved pCFG). Let C be a linear, well-behaved pCFG, and suppose there is
a linear LLexRSM map over C (supported by any invariant). Then C is AST. ��

6 Automated Synthesis Algorithm of LexRSM

In this section, we introduce a synthesis algorithm of LLexRSM for automated
AST verification of linear PPs. It synthesizes a linear MM in a certain subclass
of LLexRSMs. We first define the subclass, and then introduce our algorithm.

436 T. Takisaka et al.

Our algorithm is a variant of linear template-based synthesis. There, we fix a
linear MM η with unknown coefficients (i.e., the linear template), and consider an
assertion “η is a certificate of AST”; for example, in the standard 1-dimensional
RSM synthesis, the assertion is “η is an RSM map”. We then reduce this asser-
tion into a set of linear constraints via Farkas’ Lemma [34]. These constraints
constitute an LP problem with an appropriate objective function. A certificate
is synthesized, if feasible, by solving this LP problem. The reduction is standard,
so we omit the details; see e.g. [35].

Subclass of LLexRSM for Automated Synthesis. While LLexRSM resolves
the major issue that fixable LexRSM confronts toward its automated synthesis,
we still need to tweak the notion a bit more, as the stability at negativity condi-
tion involves the value of an MM η in its antecedent part (i.e., it says “whenever
η[k] is negative for some k...”); this makes the reduced constraints via Farkas’
Lemma nonlinear. Therefore, we augment the condition as follows.

Definition 6.1 (MCLC). Let η : S → R
n be an MM supported by an invariant

I, with a level map Lv. We say η satisfies the multiple-choice leftward condition
(MCLC) if, for each k ∈ {1, . . . , n}, it satisfies either (4) or (5) below:

∀τ ∈ �k < Lv�.∀s ∈ �I ∧ G(τ)�. η[k](s) ≥ 0, (4)
∀τ ∈ �k < Lv�.∀s ∈ �I ∧ G(τ)�.∀s′ ∈ succτ (s). η[k](s′) ≤ η[k](s). (5)

Condition (4) is nothing but the non-negativity condition in dimension k.
Condition (5) augments the ranking condition in the strict leftward of the rank-
ing dimension (a.k.a. the unaffecting condition) so that the value of η[k] is
non-increasing in the worst-case. MCLC implies stability at negativity; hence,
by Theorem 5.4, linear SC-LexRSM maps with MCLC certify AST of linear,
well-behaved pCFGs. They also instantiate SC-LexRFs as follows.

Theorem 6.2 (SC-LexRSM maps with MCLC instantiate SC-
LexRFs). Suppose η is an SC-LexRSM map over a non-probabilistic CFG C
supported by I, with Lv. Then η satisfies MCLC under I and Lv. ��

The Algorithm. Our LexRSM synthesis algorithm mostly resembles the exist-
ing ones [2,15], so we are brief here; a line-to-line explanation with a pseudocode
is in [36, Appendix D]. The algorithm receives a pCFG C and an invariant I, and
attempts to construct a SC-LexRSM with MCLC over C supported by I. The
construction is iterative; at the k-th iteration, the algorithm attempts to con-
struct a one-dimensional MM ηk that ranks transitions of C that are not ranked
by the current construction η = (η1, . . . , ηk−1), while respecting MCLC. If the
algorithm finds ηk that ranks at least one new transition, then it appends ηk to
η and goes to the next iteration; otherwise, it reports a failure. Once η ranks all
transitions, the algorithm reports a success, returning η as an AST certificate
of C.

Our algorithm attempts to construct ηk in two ways, by adopting either
(4) or (5) as the leftward condition at the dimension k. The attempt with the

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 437

condition (4) is done in the same manner as existing algorithms [2,15]; we require
ηk to rank the unranked transitions as many as possible. The attempt with
the condition (5) is slightly nontrivial; the algorithm demands a user-defined
parameter Class(U) ⊆ 2U for each U ⊆ Δ \ {τout}. The parameter Class(U)
specifies which set of transitions the algorithm should try to rank, given the set
of current unranked transitions U ; that is, for each T ∈ Class(U), the algorithm
attempts to find ηk that exactly ranks transitions in T .

There are two canonical choices of Class(U). One is 2U \ {∅}, the brute-force
trial; the resulting algorithm does not terminate in polynomial time, but ranks
the maximal number of transitions (by trying each T in the descending order
w.r.t. |T |). This property makes the algorithm complete. Another choice is the
singletons of U , i.e., {{τ} | τ ∈ U}; while the resulting algorithm terminates in
polynomial time, it lacks the maximality property. It is our future work to verify
if there is a polynomial complete instance of our proposed algorithm. Still, any
instance of it is complete over yet another class of LLexRSMs, namely linear
LW-LexRSMs. For a formal statement and its proof, see [36, Thm. D.1].

7 Experiments

We performed experiments to evaluate the performance of our proposed algo-
rithm. The implementation is publicly available6.

Our evaluation criteria are twofold: one is how the relaxed non-negativity
condition of our LexRSM—SC non-negativity and MCLC—improves the appli-
cability of the algorithm, compared to other existing non-negativity conditions.
To this end, we consider two baseline algorithms.

(a) The algorithm STR: This is the one proposed in [2], which synthesizes an
ST-LexRSM. We use the implementation provided by the authors [3].

(b) The algorithm LWN : This synthesizes an LW-LexRSM. LWN is realized as
an instance of our algorithm with Class(U) = ∅. We use LWN as a proxy
of the synthesis algorithm of GLexRSM [16, Alg. 2], whose implementation
does not seem to exist. We note [16, Alg. 2] synthesizes an LW-LexRSM
with some additional conditions; therefore, it is no less restrictive than
LWN.

Another criterion is how the choice of Class(U) affects the performance of our
algorithm. To this end, we consider two instances of it: (a) Singleton Multiple
Choice (SMC), given by Class(U) = {{τ} | τ ∈ U}; and (b) Exhaustive Multiple
Choice (EMC), given by Class(U) = 2U \ ∅. SMC runs in PTIME, but we do
not know if it is complete; EMC does not run in PTIME, but is complete.

We use benchmarks from [2], which consist of non-probabilistic programs
collected in [4] and their probabilistic modifications. The modification is done
in two different ways: (a) while loops “while ϕ do P od” are replaced with
probabilistic ones “while ϕ do (if prob(0.5) then P else skip fi) od”; (b)

6 https://doi.org/10.5281/zenodo.10937558.

https://doi.org/10.5281/zenodo.10937558

438 T. Takisaka et al.

in addition to (a), variable assignments “x := f(x) + a” are replaced with
“x := f(x) + Unif [a − 1, a + 1]”. We include non-probabilistic programs in
our benchmark set because the “problematic program structure” that hinders
automated LexRSM synthesis already exists in non-probabilistic programs (cf.
our explanation to Fig. 2). We also tried two PPs from [15, Fig. 1], which we call
counterexStr1 and counterexStr2.

We implemented our algorithm upon [2], which is available at [3]. Similar
to [2], our implementation works as follows: (1) it receives a linear PP as an
input, and translates it into a pCFG C; (2) it generates an invariant for C; (3)
via our algorithm, it synthesizes an SC-LexRSM map with MCLC. Invariants
are generated by ASPIC [19], and all LP problems are solved by CPLEX [25].

Table 1. The list of benchmarks in which a feasibility difference is observed between
baselines and proposed algorithms. Ticks in “p.l.” and “p.a.” indicate the benchmark
has a probabilistic loop and assignment, respectively. Numbers in the result indicate
that the algorithm found a LexRSM with that dimension; the crosses indicate failures;
“N/A” means we did not run the experiment.

Benchmark spec. Synthesis result Benchmark spec. Synthesis result

Baselines Our algs. Baselines Our algs.

Model p.l. p.a STR LWN SMC EMC Model p.l. p.a. STR LWN SMC EMC

complex – – × × 7 5 serpent – – × × 3 3

complex
√

– × × 7 5 speedDis1 – – × × 4 4

complex
√ √ × × 3 3 speedDis2 – – × × 4 4

cousot9 – – × 3 3 3 spdSimMul – – × × 4 4

cousot9
√

– × × 4 4 spdSimMulDep – – × × 4 4

loops – – × × 4 3 spdSglSgl2
√ √ × × 5 5

nestedLoop
√ √ × × 4 3 speedpldi3 – – × 3 3 3

realheapsort – – × 3 3 3 speedpldi3
√

– × × 4 4

RHS step1 – – × 3 3 3 counterexStr1 –
√

N/A 3 3 3

RHS step1
√ √ × 3 3 3 counterexStr2 –

√ × × 4 4

realshellsort
√ √ × 2 2 2

Results. In 135 benchmarks from 55 models, STR succeeds in 98 cases, LWN
succeeds in 105 cases while SMC and EMC succeed in 119 cases (we did not
run STR for counterexStr1 because it involves a sampling from an unbounded
support distribution, which is not supported by STR). Table 1 summarizes the
cases where we observe differences in the feasibility of algorithms. As theoret-
ically anticipated, LWN always succeeds in finding a LexRSM whenever STR
does; the same relation is observed between SMC vs. LWN and EMC vs. SMC.
In most cases, STR, LWN, and SMC return an output within a second7, while
EMC suffers from an exponential blowup when it attempts to rank transitions
with Condition (5) in Definition 6.1. The full results are in [36, Appendix E].

On the first evaluation criterion, the advantage of the relaxed non-negativity
is evident: SMC/EMC have unique successes vs. STR on 21 programs (21/135

7 There was a single example for which more time was spent, due to a larger size.

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 439

= 15.6% higher success rate) from 16 different models; SMC/EMC also have
unique successes vs. LWN in 14 programs (14/135 = 10.4% higher success rate)
from 12 models. This result shows that the program structure we observed in
Fig. 2 appears in various programs in the real world.

On the second criterion, EMC does not have any unique success compared
to SMC. This result suggests that SMC can be the first choice as a concrete
instance of our proposed algorithm. Indeed, we suspect that SMC is actually
complete—verifying its (in)completeness is a future work. For some programs,
EMC found a LexRSM with a smaller dimension than SMC.

Interestingly, LWN fails to find a LexRSM for counterexStr2, despite it being
given in [15] as a PP for which a GLexRSM (and hence, an LW non-negative
LexRSM) exists. This happens because the implementation in [3] translates the
PP into a pCFG with a different shape than the one in [15] (for the latter, a
GLexRSM indeed exists); the former possesses a similar structure as in Fig. 2
because different locations are assigned for the while loop and if branch. This
demonstrates the advantage of our algorithm from another point of view, i.e.,
robustness against different translations of PPs.

8 Related Work

There is a rich body of studies in 1-dimensional RSM [12–14,17,20–23,28–30],
while lexicographic RSM is relatively new [2,15]. Our paper generalizes the lat-
est work [15] on LexRSM as follows: (a) Soundness of LexRSM as a stochastic
process: soundness of ε-fixable LexRSMs (Definition 4.2) generalizes [15, Thm.
1] in the sense that every GLexRSM is ε-fixable for any ε > 0 (Theorem 4.4); (b)
Soundness of LexRSM as a function on program states: our result (Theorem 5.4)
generalizes [15, Thm. 2] under the linearity and well-behavedness assumptions;
(c) Soundness and completeness of LexRSM synthesis algorithms: our result gen-
eralizes the results for one of two algorithms in [15] that assumes boundedness
assumption on assignment distribution [15, Thm. 3].

The work [24] also considers a relaxed non-negativity of RSMs. Their descent
supermartingale, which acts on while loops, requires well-foundedness only at
every entry into the loop body. A major difference from our LexRSM is that
they only consider 1-dimensional RSMs; therefore, the problem of relaxing the
LW non-negativity does not appear in their setting. Compared with their RSM,
our LexRSM has an advantage in verifying PPs with a structure shown in Fig. 2,
where the value of our LexRSM can be arbitrarily small upon the loop entrance
(at some dimension; see η2 at �1 in Fig. 2).

The work [29] extends the applicability of standard RSM on a different aspect
from LexRSM. The main feature of their RSM is that it can verify AST of the
symmetric random walk. While our LexRSM cannot verify AST of this process,
the RSM by [29] is a 1-dimensional one, which typically struggles on PPs with
nested structures. Such a difference can be observed from the experiment result
in [31] (compare [31, Table 2] and nested loops, sequential loops in [31, Table 1]).

440 T. Takisaka et al.

9 Conclusion

We proposed the first variants of LexRSM that instantiate SC-LexRF. An algo-
rithm was proposed to synthesize such a LexRSM, and experiments have shown
that the relaxation of non-negativity contributes applicability of the resulting
LexRSM. We have two open problems: one is if the class of well-behaved dis-
tributions matches with the one of integrable ones; and another is if the SMC
variant of our algorithm (see Sect. 7) is complete.

Acknowledgment. We thank anonymous reviewers for their constructive comments
on the previous versions of the paper. The term “ill exploitation” is taken from one
of the reviews that we found very helpful. We also thank Shin-ya Katsumata, Takeshi
Tsukada, and Hiroshi Unno for their comments on the paper.

This work is partially supported by National Natural Science Foundation of China
No. 62172077 and 62350710215.

References

1. Ultimate automizer. https://www.ultimate-pa.org/?ui=tool&tool=automizer
2. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:

an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018). https://doi.org/10.1145/3158122

3. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs: implementation
(2018). https://github.com/Sheshansh/prob termination

4. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

5. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Academic
Press, San Diego (2000)

6. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 749–758 (2016)

7. Barthe, G., Gaboardi, M., Hsu, J., Pierce, B.: Programming language techniques
for differential privacy. ACM SIGLOG News 3(1), 34–53 (2016)

8. Ben-Amram, A.M., Genaim, S.: Complexity of Bradley-Manna-Sipma lexico-
graphic ranking functions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015,
Part II. LNCS, vol. 9207, pp. 304–321. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21668-3 18

9. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, Belmont (2007)

10. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 48

11. Canal, G., Cashmore, M., Krivić, S., Alenyà, G., Magazzeni, D., Torras, C.: Prob-
abilistic planning for robotics with ROSPlan. In: Althoefer, K., Konstantinova, J.,
Zhang, K. (eds.) TAROS 2019, Part I. LNCS (LNAI), vol. 11649, pp. 236–250.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23807-0 20

https://www.ultimate-pa.org/?ui=tool&tool=automizer
https://doi.org/10.1145/3158122
https://github.com/Sheshansh/prob_termination
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-030-23807-0_20

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 441

12. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

13. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016, Part I. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4 1

14. Chatterjee, K., Fu, H., Novotnỳ, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 327–342 (2016)

15. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Žikelić, -D: On lex-
icographic proof rules for probabilistic termination. In: Huisman, M., Păsăreanu,
C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 619–639. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90870-6 33

16. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Zikelic, D.: On
lexicographic proof rules for probabilistic termination. CoRR abs/2108.02188
(2021). https://arxiv.org/abs/2108.02188

17. Chatterjee, K., Novotnỳ, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, pp. 145–160 (2017)

18. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, New York (2009)

19. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with
aspic and C2Fsm. Electron. Notes Theoret. Comput. Sci. 267(2), 3–13 (2010)

20. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 489–501 (2015)

21. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468–490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 22

22. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant proba-
bility programs. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp.
269–286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 16

23. Huang, M., Fu, H., Chatterjee, K.: New approaches for almost-sure termination
of probabilistic programs. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275, pp.
181–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-1 11

24. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019). https://doi.org/10.1145/3360555

25. IBM: IBM ILOG CPLEX 12.7 user’s manual (IBM ILOG CPLEX division, incline
village, NV) (2017)

26. Karp, R.M.: An introduction to randomized algorithms. Discret. Appl. Math.
34(1–3), 165–201 (1991)

27. Lobo-Vesga, E., Russo, A., Gaboardi, M.: A programming language for data pri-
vacy with accuracy estimations. ACM Trans. Program. Lang. Syst. (TOPLAS)
43(2), 1–42 (2021)

28. McIver, A., Morgan, C.: A new rule for almost-certain termination of probabilistic-
and demonic programs. arXiv preprint arXiv:1612.01091 (2016)

29. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A new proof rule for almost-
sure termination. Proc. ACM Program. Lang. 2(POPL), 1–28 (2017)

https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-030-90870-6_33
https://arxiv.org/abs/2108.02188
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1145/3360555
http://arxiv.org/abs/1612.01091

442 T. Takisaka et al.

30. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: Automated termina-
tion analysis of polynomial probabilistic programs. In: ESOP 2021. LNCS, vol.
12648, pp. 491–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72019-3 18

31. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: The probabilistic ter-
mination tool amber. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 36

32. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J., McIver, A.: Con-
ditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1),
4:1–4:50 (2018). https://doi.org/10.1145/3156018

33. Parker, D.: Verification of probabilistic real-time systems. In: Proceedings of the
2013 Real-time Systems Summer School (ETR 2013) (2013)

34. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
35. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-

gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 5:1–5:46 (2021). https://doi.org/10.1145/3450967

36. Takisaka, T., Zhang, L., Wang, C., Liu, J.: Lexicographic ranking supermartin-
gales with lazy lower bounds. CoRR abs/2304.11363 (2024). https://doi.org/10.
48550/arXiv.2304.11363

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3450967
https://doi.org/10.48550/arXiv.2304.11363
https://doi.org/10.48550/arXiv.2304.11363
http://creativecommons.org/licenses/by/4.0/

Probabilistic Access Policies
with Automated Reasoning Support

Shaowei Zhu1(B) and Yunbo Zhang2

1 Princeton University, Princeton, NJ 08540, USA
shaoweiz@cs.princeton.edu

2 Georgia Institute of Technology, Atlanta, GA 30332, USA
ybzhang3027@gatech.edu

Abstract. Existing access policy languages like Cedar equipped with
SMT-based automated reasoning capabilities are effective in providing
formal guarantees about the policies. However, this scheme only supports
access control based on deterministic information. Observing that certain
information useful for access control can be described by random vari-
ables, we are motivated to develop a new paradigm of access control in
which access policies contain rules about uncertainty, or more precisely,
probabilities of random events. To compute these probabilities, we rely
on probabilistic programming languages. Additionally, we show that the
probabilistic part of these policies can be encoded in linear real arith-
metic, which enables practical automated reasoning tasks such as proving
relative permissiveness between policies. We demonstrate the advantages
of the proposed probabilistic policies over the existing paradigm through
two case studies on real-world datasets with a prototype implementation.

Keywords: access policy · access control · domain-specific language ·
probability theory · uncertainty · automated reasoning · SMT

1 Introduction

Policy based access control is used by major cloud service providers such as
Amazon Web Services, necessitating customers to write correct access policies
to secure their services and data. Incorrectly specified policies have led to major
issues like exposure of private data [2,4], which motivate research on automated
reasoning techniques that can automatically identify issues with the policies
[9,10,22]. It has been shown that SMT-based techniques are effective in detecting
issues in real policies and formally verifying properties of access policies. In
the current access control and SMT-based policy verification paradigm, access
decisions are made based on deterministic information in access requests, such
as user identity, role, IP address, or other attributes. For example, we could
implement an access policy that only allows an access request if it comes from a
certain IP range.

Emerging application domains call for new schemes of access control that con-
sider uncertainty, e.g., augmented reality (AR) applications have raised security
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 443–466, 2024.
https://doi.org/10.1007/978-3-031-65633-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_20&domain=pdf
http://orcid.org/0000-0002-0335-1151
http://orcid.org/0009-0009-3612-1203
https://doi.org/10.1007/978-3-031-65633-0_20

444 S. Zhu and Y. Zhang

and privacy concerns under a unique context [5,15,19,46]. In addition to deter-
ministic attributes, prior work has explored access control based on information
such as user location [6,7,17,30], or the type of environment the user is currently
in [47]. For example, one might want to disable video recording features when
entering private property, or when the user seems to be in a sensitive or private
space such as a restroom. Information like the precise indoor location of the user,
or the type of room where user currently resides is usually not readily available
as a deterministic attribute to the access control system. This information could
be supplied by annotating the rooms through posted QR code or wireless sig-
naling [47], yet a more natural and general method would be to infer essential
information from observations such as video streams or other sensor readings
based on techniques like simultaneous location and mapping (SLAM) [41] and
scene classification [47]. Uncertainty is inherent to these inference processes, and
should be taken into consideration when evaluating information for the purpose
of access control. In this work, we consider such uncertain attributes to be sup-
plied as a random variable drawn from a probability distribution. Methods that
provide such distributions include Bayesian filter, which estimates a probabil-
ity density function over time based on observations and a process model, and
probabilistic (Bayesian) machine learning, which is a machine learning (ML)
framework that combines ML techniques and Bayesian methods that can rea-
son about uncertainty. In particular, Bayesian neural networks (BNNs) [27,40]
could be viewed as a generalization of ordinary neural networks to have stochas-
tic weights that are learned using a Bayesian paradigm, which yield predictions
as well as uncertainty associated with the predictions.

Enriching current policy languages with the notion of uncertainty represented
by probabilities is also beneficial when incorporating machine learning based
access control (MLBAC) [14,18,33,35,37,43,44] into the current policy-based
access control paradigm. MLBAC uses ML models to implement access control
systems that learn from data such as access logs, which offers an alternative
to the potentially costly and error-prone process of manual policy engineering
[11,23,49]. However, MLBAC poses new challenges in interpretability, policy
adaptability [43], and formal guarantees of correctness. Based on the Bayesian
interpretation of probability as degree of belief that an ML prediction is correct,
we can think of the following scenarios where MLBAC could benefit from our
proposed policy language equipped with probabilities:

1. We can consider only trusting the ML predictions for access rights if the
amount of uncertainty in their predictions is low, which would be useful to
guard against out-of-distribution access requests.

2. ML could be used along with traditional policy-based approaches for various
decision problems. In certain applications such as spam filtering or firewalls,
we can maintain deterministic and explicit rules that encode the allow-lists
and deny-lists created by the user, and let an ML model decide what to
do with the rest. Using our proposed policy language, one can encode all
these rules into one policy so that we could automatically reason about their
combined effects.

Probabilistic Access Policies 445

3. We might want to write policies that reflect our prior knowledge of the prob-
lem and combine existing models. For example, consider a scenario where
access rights of company employees depend on the role r = 1, . . . , n of the
employee and we have trained n ML models M1, . . . , Mn that predict access
rights for employees with each role. It might be infeasible to retrain a large
ML model that works well for all roles, due to not having access to historic
access data, or the insufficient amount of data for each role. Using our pro-
posed policy language, one can create a set of n allow policies “allow if the
user has role r and Mr predicts allow with low uncertainty”. Furthermore, one
could even deploy a hierarchical prediction model that predicts the role r first,
and grants access if all probabilistic ML predictions have low uncertainty.

The aforementioned paradigms require us to enrich the semantics of our
policy languages with a notion of uncertainty that is absent from current lan-
guages such as Cedar [1] or XACML [3,52]. We thus introduce a new probabilis-
tic access policy language PAPL with the intuition that some access rules are
best implemented using the traditional, deterministic rule-based access control
scheme, while some other rules may benefit from the capability of specifying
the probability of random events, i.e., predicates over variables whose values are
sampled from some probability distributions. The idea of combining symbolic
and probabilistic/neural reasoning is not new, and has been studied extensively
in many adjacent fields like neurosymbolic reasoning [24,25] or statistical rela-
tional learning [8,26]. Our work specifically focuses on adapting this philosophy
to the application domain of access control, and also enabling automated rea-
soning to formally verify properties of the resulting probabilistic access policies.
The theory of probability normally requires nonlinear reasoning1, and it is not
immediately clear whether we can implement practical SMT-based automated
reasoning procedures for these policies. The key observation here is that we need
an “interface” for the probabilistic part of the policy that restrains the form of
probabilities that could be specified, so that we could reason about them using
linear arithmetic. Specifically, we achieve this by allowing deterministic rules
that involve probabilities of random events defined by logical formulas rather
than probabilistic policies, which allows us to capture the semantics of probabil-
ity theory axioms using linear arithmetic reasoning.

We implemented a prototype system that can parse and evaluate access
requests against PAPL policies, and a sound and complete encoding of PAPL
policies into linear integer and real arithmetic (LIRA) for automated reasoning
with SMT solvers. We demonstrate the practicality of the language through two
case studies, focusing on the potential improvement it could bring over MLBAC
and existing deterministic policy languages.

The rest of the paper is organized as follows: an overview of access control
process with PAPL policies (Sect. 2), the formalization of PAPL and the encod-
ing of policies into SMT formulas decision (Sect. 3), implementation details and
case studies (Sect. 4), and finally related work (Sect. 5).
1 Consider two independent random events A and B where Pr[A] = p and Pr[B] = q.

Then Pr[A ∩ B] = pq.

446 S. Zhu and Y. Zhang

2 Overview of the Probabilistic Access Control Paradigm

In this section, we provide intuitions on the semantics of PAPL access policies
and the automated reasoning process through a hypothetical use case. Consider
AR3D, an augmented reality (AR) service for AR glasses, that renders user-
defined virtual objects and also provides an indoor navigation service akin to
GPS-based applications like Apple Maps or Google Maps. These functionalities
involve potentially private or proprietary virtual objects, visual features of the
environment, and other sensitive data. This information could be safeguarded
by location-based access control [6,7,17,30], similar to how similar information
is secured through physical access control in reality. The access control system
infers the user’s location based on sensor data and checks access rights against
relevant access policies accordingly.

Access Control Requirements. Imagine a company M wants to implement an
access policy that only its employees can use AR3D within its buildings, also
excluding private areas like restricted offices or conference rooms. Traditional
methods like GPS are inadequate for indoor localization; instead, AR3D employs
WiFi-based localization using the received signal strength intensity (RSSI) from
wireless access points (WAPs). This localization procedure, effectively a regres-
sion problem in a high-dimensional space that involves complex nonlinearity, is
usually implemented using ML. Here we suppose that a probabilistic ML model
nondeterministically predicts user location and the variance in its predictions
could be seen as a measure of uncertainty. We visualize the uncertain predic-
tions of user trajectory using a model trained on a real-world indoor localization
dataset [51] in Fig. 1. Given the variance in the predictions, considering uncer-
tainty when making access decisions is essential for the robustness of the access
control system. PAPL addresses this by enabling access policies to define access
rights while referring to probabilities that a user is in some space. This app-
roach is intuitively more robust than the deterministic predicate mean predicted
location of the user is in some space, since mean can be affected by extreme
values and also two predictions with the same mean but different variance can
be treated differently by the access control system (in Sect. 4 we demonstrate
that this can indeed be useful).

Evaluating Access Requests. When a user Alice requests access to some resource
M::internal::data::visual, the access control system constructs an access
request by collecting relevant attributes from the user. Here, suppose that the
system collects a boolean indicating whether Alice is an M employee, and a vector
for the RSSI of each WAP. The system then invokes the trained probabilistic
ML models to infer the 3D location of the user. The output of these models
are probability distributions (essentially conditioned on the training data and
observations), e.g., PredictX.posterior(rssi), and the predicted location of
the user is modeled as random variables x, y, z sampled from these distributions.

Probabilistic Access Policies 447

Fig. 1. Predicting user location based on RSSI of WAPs. Transparent boxes represent
three buildings. The ground truth location and trajectory of the user at each time step
is given by the red dots connected with red lines. At each time step, the RSSI from
nearby WAPs is used to predict the user location in this 3D space. The blue dots are
the mean prediction of the BNN and the thin blue lines emanating from the blue dots
are randomly sampled predictions for each time step. The green lines connecting red
and blue dots visualize errors of the mean predictions. The visualization clearly shows
there is a varying degree of uncertainty in the predictions made by the BNN. (Color
figure online)

This access request is given in Fig. 2c2. After the access request is constructed,
it is evaluated against all relevant policies that may apply. Suppose that Figs. 2a
and 2b are the only two relevant policies. To evaluate against these policies,
the system needs to calculate probabilities of random events based on the a
posteriori knowledge about the user location given in the access request. The
system synthesizes a NumPyro program to estimate the probabilities (Fig. 2d)
for all random events that appear in the policies. This program is constructed
to collect the source code of the probabilistic ML model (in this case PredictX),
run a large number of inferences given a new observation (the rssi vector),
assign the values to variables based on information given in the access request
context, and compute how many times the boolean predicates that correspond

2 Notice that in the current design, arrays can only be used to supply a feature vec-
tor as input to the probabilistic ML models to compute the posterior probability
distribution. Other parts of the policy cannot refer to the arrays or their elements.

448 S. Zhu and Y. Zhang

to the random events in the policies evaluate to true in order to estimate the
probability of these events.

Automated Reasoning. Over time, the company M and other users may have
implemented complicated access policies that involve various buildings and
spaces owned by M and other parties. Suppose that M wants formal guaran-
tees that other existing allow policies in the system do not conflict with the
company policy on its buildings, e.g., are not allowing principals without the
isMEmployee attribute to access any portion of the buildings that M owns. This
could be ensured by encoding the relevant policies into SMT formulas and invoke
SMT solvers to do automated reasoning, which we will cover in the next section.

Threat Model. In this work, we focus on the semantics and automated verification
of the probabilistic access policies. We thus assume that the device that collects
attributes such as RSSI are uncompromised and trusted; the access policies are
authentic; all communications are properly protected by cryptographic protocols;
procedures include ML inferences, the construction of NumPyro programs, and
the evaluation of policies are all executed on a trusted and secure server.

3 Formalization and SMT Encoding of PAPL Policies

In this section, we first define the formal syntax and semantics of requests and
PAPL policies. Then we present a sound and complete encoding of PAPL
policies into linear arithmetic formulas, and discuss how this could be useful to
formally prove properties of policies.

3.1 Syntax and Semantics of Access Requests and Policies

Encoding of String Literals. Handling string literals and encoding conditions
involving predicates on strings is not central for the purpose of this work. To
simplify the presentation, we assume all string literals are encoded as integers
and attributes include Principal, Action, and Resource are encoded as integer-
typed variables. This limitation is not fundamental to the constructions in this
paper and possible extensions to other SMT theories including strings have been
explored by previous work [10].

Example 1. For the rest of this section, we assume the following integer encoding
of string literals:

"Alice" �→ 0, "AR3D::read" �→ 1, "M::internal::data::visual" �→ 2 .

Access Requests. The syntax of access requests is given in Fig. 3a, assuming
the encoding for string literals has been applied. A request is parsed into a 4-
tuple 〈RP , RA, RR, (M,D)〉 containing information for Principal, Action, and
Resource, and Context. The Context part contains a map M of deterministic
variables to their values and the field D is a joint distribution from which the

Probabilistic Access Policies 449

Fig. 2. Performing access control for a particular access request based on access policies
written in the PAPL language.

450 S. Zhu and Y. Zhang

Fig. 3. Syntax for PAPL policies and requests.

random variables are drawn3. Since attributes like Principal are also determin-
istic variables, we merge these into M and simply write (M,D) to represent an
access request.

Example 2. Figure 2c gives a request (M,D) where M contains a boolean
attribute isMEmployee �→ �, and three integer attributes principal �→ 0,
action �→ 1, and resource �→ 2. D gives the predicted user location as continuous,
real-typed, independent random variables x, y, z, e.g., prediction for dimension
3 The access control system defines the names and types of deterministic and random

variables that are used consistently in both access requests and access policies.

Probabilistic Access Policies 451

x is given by a probabilistic ML model that takes as input rssi and generates
predictions by sampling from a posterior distribution PredictX(rssi).

Random Events. Syntax for random events e is given in Fig. 3b. Each event is a
ground LIRA formula e(V ∪ X) over a set of free deterministic variables V and
a set of free random variables X4. Given a map M containing valuations of all
deterministic variables in e and a probability distribution D from which all ran-
dom variables in e are drawn from, we use notation e[v �→ M [v] : v ∈ dom(M)]
or more succinctly e[M] to denote the formula obtained by substituting all e
variables that appear in M with their valuations. Assuming this substitution,
we use PrX∼D[e[M] = �] to denote the probability for the random event to be
evaluated to true when the random variables X is drawn from distribution D.

Example 3. The random event e1 in Fig. 2a is given by the formula

M.building1.xmin ≤ x ∧ x ≤ M.building1.xmax

∧ M.building1.ymin ≤ y ∧ y ≤ M.building1.ymax

∧ M.building1.zmin ≤ z ∧ z ≤ M.building1.zmax

where x, y, z are real-typed free random variables (M.building1.xmin, etc. are
real constants).

Probability Distributions. In this work, instead of pursuing a measure-theoretic
formalization, we regard a probability distribution D as a function that maps
random events described by LIRA formulas to rational numbers in [0, 1]. More
concretely, given a set of arbitrary LIRA formulas F = {e1, . . . , en}, let U =
{f1 ∧ · · · ∧ fn : fi ∈ {ei,¬ei}} be the set of all random events for which we
care about their probabilities. We require that distribution D satisfies (c.f. Kol-
mogorov axioms of probability [34])

∀f ∈ U. 0 ≤ D(f) ≤ 1
∀f ∈ U. f is unsat =⇒ D(f) = 0
∀f1, f2 ∈ U. f1 ∧ f2 = ⊥ =⇒ (D(f1 ∨ f2) = D(f1) + D(f2))

Access Policies. Full syntax for PAPL access policies is given in Fig. 3b. An
access policy is parsed into a 5-tuple P = 〈E, VP , VA, VR, C〉. The Effect E
indicates whether a policy is an allow or deny policy. The fields VP , VA, VR rep-
resent Principal, Action, and Resource. Notably, C describes the Condition
under which this policy takes effect, represented by an LIRA formula with an
uninterpreted function prob(·) that intends to represent the probability of ran-
dom events. For convenience, we define a procedure randEvents(P) that extracts
the set of all random events mentioned in P , i.e., all e such that P contains an
expression prob(e) in its Condition field. We define I�C�(M,D), or the interpre-
tation of some condition formula C given access request R = (M,D) as follows.
4 Syntax of random events in the policies actually does not distinguish between deter-

ministic versus random variables.

452 S. Zhu and Y. Zhang

Let the interpretation of the function symbol prob(e) for some random event
e(V ∪ X) be

I�prob(e)�(M,D) � Pr
X∼D

[e[M] = �]

while the interpretation I�·� of other constructs in C are defined as if we are
interpreting an LIRA formula according to an LIRA model M . We further define
I�P �(M,D), or the interpretation of a (deny or allow) policy P given request
R = (M,D) as

I�C�(M,D) ∧ I�principal = VP ∧ action = VA ∧ resource = VR�(M,D)

where the second clause of the conjunction simply checks if the principal, action,
and resource fields in the policy matches the request. We say a policy P applies
to a request R = (M,D) if I�P �(M,D) is true. An access reqeust R is allowed
by a set of policies S (denoted by R |= S) if and only if some allow policy in S
applies to R and no deny policy in S applies to R [10].

Probabilistic Programs. Let E be a set of random events, R = (M,D) be a
request. A probabilistic program PP(E,R) estimates (or computes symbolically)
the probability of random events in E given R. More precisely, it returns a
mapping PP (·) from E to a rational number in [0, 1] such that for each e ∈ E

PP (e) ≈ Pr
X∼D

[e[M] = �] .

We mostly take a black-box view on probabilistic programs in this work. In prac-
tice, the probabilistic program may be implemented by either symbolic methods
such as the sum-product probabilistic language (SPPL) [48] or sampling based
methods such as Discrete Gibbs sampling or Mixed-HMC [38,53]. For the access
control use cases (Sect. 4), it is difficult to train an SPPL model that performs
as well as more expressive models like BNNs. Although we have an interesting
observation that if the distribution from which the random variables are sampled
can be written as an SPPL program, then we can use prob queries in SPPL to
compute the probability of any random event exactly [48]. The sampling based
methods only require that we could sample from distribution D.

3.2 Automated Reasoning About Policies with Probabilities

Having defined the semantics of access requests and policies, we now encode
policies as SMT formulas to enable automated reasoning about their behaviors.
For a policy P = 〈E, VP , VA, VR, C〉, we define its LIRA encoding �P � as

�P � � �VP � ∧ �VA� ∧ �VR� ∧ �C� .

For �VP �, we introduce a fresh integer symbol principal and define

�VP � =

{
�, if VP = ∗
principal = VP otherwise

Probabilistic Access Policies 453

The encodings �VA�, �VC�, �VR� are defined similarly. To define �C�, we first
introduce fresh real symbols probe for each e ∈ randEvents(P) and then define
�C� as C[prob(e) �→ probe], i.e., with all uninterpreted function terms prob(e)
substituted with probe. The combined effect of a set of policies S is described
by formula [10]

�S� =
∨

p∈S is allow

�p� ∧
∧

q∈S is deny

¬�q� .

Example 4. The LIRA encodings for the allow and deny policies in Fig. 2a and
2b are written as formulas P1 and P2, where

P1 � action = 1 ∧ resource = 2 ∧ isMEmployee ∧ 0.95 ≤ prob1
P2 � action = 1 ∧ 0.2 ≤ prob2

The effect of these two policies is encoded by P1 ∧ ¬P2.

The LIRA encoding �P � above simply introduces fresh real symbols probe

for the event probabilities in P but ignores the fact that these are probabilities
of events that might relate to each other in nontrivial ways. For example, given
that Pr[x ≥ 1 ∧ y = 0] ≥ 0.5, we should be able to deduce Pr[x ≥ 0 ∧ y ≥
0] ≥ 0.5 according to the probability theory axioms. Algorithm 1 describes a
procedure for discovering additional constraints these probabilities must satisfy.
The algorithm works by computing a set U containing the probability of disjoint
events, and then decomposing the probability probe for each random event e ∈
randEvents(P) as a sum of elements in U .

Example 5. Consider a bijective map between events and symbols K = {(x <
l ∨ x ≥ r) ↔ prob1, (m ≤ x < r) ↔ prob2} and an LIRA formula C = l ≤
r ∧ prob1 ≥ 0.6 ∧ (l ≤ m ≤ r) ∧ prob2 > 0.5, where l,m, r are real-typed
deterministic variables and x is a real-typed random variable. Let e1 = (x <
l ∨ x ≥ r), e2 = (m ≤ x < r). Given as input (K,C), Algorithm 1 enumerates
the combinations {e1 ∧ e2,¬e1 ∧ e2, e1 ∧ ¬e2,¬e1 ∧ ¬e2} and finds out that
only e1 ∧ e2 is UNSAT given C. The algorithm returns a set of symbols that
represents probabilities of disjoint events U = {u1, u2, u3} and a constraint on
the probabilities Q = 0 ≤ u1 ≤ 1 ∧ 0 ≤ u2 ≤ 1 ∧ 0 ≤ u3 ≤ 1 ∧ u1 + u2 + u3 =
1 ∧ prob1 = u1 ∧ prob2 = u2.

Denotation of Policies. Following previous work [9], we define the denotation of
a policy set S as the set of requests it allows: γ(S) � {R : R |= S}. Consider
an LIRA formula F (Y,X,U) over sets of variables Y,X,U = {u1, . . . , uN}, and
a bijective map K : E → Y that maps a set of random events E to a set of
real symbols Y that represent their probabilities, where every e ∈ E is a ground
formula over a set of deterministic variables V and random variables X. For any
y ∈ Y , let K−1

y be the random event whose probability is represented by y. We
define an abstract denotation γ�(F,K) as a set of requests (M,D) such that the
domain of M is V and

∃u1, . . . , uN .F [y �→ Pr
X∼D

[K−1
y [M] = �] : y ∈ Y][M]

454 S. Zhu and Y. Zhang

Algorithm 1: Computing the constraint formula for the reals representing
probabilities for a set of policies.
1 Function constraints(K,C)

Input: A map K from a set of random events E to a set of symbols probe;
an LIRA formula C for the constraints that originates from the
deterministic part of the policy.

Output: A formula Q in LIRA that encodes all constraints on the real
constants created to represent probabilities must satisfy, and a set
of symbols U for the real-typed auxiliary symbols introduced.

2 U ← ∅ ; // set of symbols to represent event probabilities
3 Q ← � ; // formula that contains constraints on symbols in U
4 E ← dom(K);
5 s ← Solver();
6 s.push(C);
7 foreach e ∈ E do

/* We decompose ce, the probability of event e, into a sum of
probabilities of disjoint events. */

8 ce ← 0;
9 while s.check() = sat do

/* Enumerating all satisfiable boolean combinations of e ∈ E that are
disjoint from each other and do not violate C. Random events that
violate C have probability 0 by axiom. */

10 m ← s.getModel();
/* Introducing fresh real symbol for the probability of each boolean

combination. */
11 u ← mkReal();
12 U ← U ∪ {u};

/* Adding constraints on probability u based on axioms of probability
theory. */

13 Q ← Q ∧ 0 ≤ u ∧ u ≤ 1;
14 b ← � ; // Blocking clause to avoid selecting the same model
15 foreach e ∈ E do
16 if m |= e then

/* Event e evaluates to � under model m, thus u should appear
as a term in the decomposition for the probability of e. */

17 ce ← ce + u;
18 b ← b ∧ e;
19 else
20 b ← b ∧ ¬e;
21 s.push(¬b)
22 foreach e ∈ E do
23 probe ← K[e];
24 Q ← Q ∧ probe = ce;

/* Probabilities of all satisfiable boolean combinations add up to 1. */
25 Q ← Q ∧ ∑

u∈U u = 1;
26 return U,Q

Probabilistic Access Policies 455

holds. Intuitively, each symbol y ∈ Y is intended to represent the probability
of some random event, and F includes constraints on the auxiliary variables
u1, . . . , uN and y ∈ Y so that they behave like probabilities.

We now prove the soundness and completeness of our encoding algorithm
(Algorithm 1).

Theorem 1 (Correctness of LIRA encoding). Consider a policy P with
LIRA encoding �P �. Let E be the set of random events in P . Let K be a bijective
map such that e �→ probe, where probe is the symbol introduced in the encoding
�P � for the probability of e ∈ E. Let U,Q = constraints(K, �P �) and U =
{u1, . . . , uN}. Then ∃u1, . . . , uN .(�P � ∧ Q) is satisfiable modulo LIRA if and
only if there exists a request (M,D) such that (M,D) |= P .

Corollary 1. Given a set of policies S = {P1, . . . , Pn}. Let E be the set of all
random events that appear in S. Let K be a bijective map from E to the set of
probability symbols introduced in �S�. Then

γ� (�S� ∧ Q,K) = γ(S)

where U,Q = constraints (K, �S�).

Given Corollary 1, we can reason about the set of requests allowed by a policy
P through an SMT formula to fulfill the requirements laid out in 2. Suppose we
want to prove that a user policy P1 is not more permissive than some company
policy P2, i.e., γ(P1) ⊆ γ(P2). We first construct K, a bijective map between the
random events in P1 and P2 and the introduced symbols in their encodings �P1�
and �P2�. Let U,Q = constraints(K, �P1�∧¬�P2�), we check if �P1�∧¬�P2�∧Q
is unsatisfiable using an LIRA theory solver.

Example 6. Consider policies with non-trivial conditions P1 � l ≤ r ∧ prob(x <
l ∨ x ≥ r) ≥ 0.6 and P2 � ¬(l ≤ m ≤ r) ∨ prob(m ≤ x ∧ x < r) ≤ 0.5, for
which a bijective map K = {(x < l ∨ x ≥ r) ↔ prob1, (m ≤ x < r) ↔ prob2}
could be constructed along with the encodings �P1� = l ≤ r ∧ prob1 ≥ 0.6 and
�P2� = ¬(l ≤ m ≤ r) ∨ prob2 ≤ 0.5. We construct C = �P1� ∧ ¬�P2� and obtain
U,Q = constraints(K,C) as in Example 5. Then

�P1� ∧ ¬�P2� ∧ Q = l ≤ r ∧ prob1 ≥ 0.6
∧ (l ≤ m ≤ r) ∧ prob2 > 0.5
∧ 0 ≤ u1 ≤ 1 ∧ 0 ≤ u2 ≤ 1 ∧ 0 ≤ u3 ≤ 1
∧ u1 + u2 + u3 = 1 ∧ prob1 = u1 ∧ prob2 = u2

which is unsatisfiable modulo LIRA, since prob1 + prob2 = u1 + u2 ≤ 1 by the
last line of the formula but that contradicts the first two lines. We have thus
proved that policy P1 is not more permissive than P2.

In the worst case, Algorithm 1 introduces 2n additional real symbols when
there are n random events in a policy P , resulting in large SMT formulas. Here
we show that the number of additional auxiliary symbols will not be too large
for particular kinds of condition formulas that are useful for reasoning about
PAPL policies that implement location-based access control.

456 S. Zhu and Y. Zhang

Theorem 2. Given a policy P such that every probability term prob(e) refers
to the probability for a point to be in a 3D space represented by a boolean com-
bination of axis-aligned bounding boxes. If there are N bounding boxes in total
in P , then the number of auxiliary symbols introduced in Algorithm 1 for P is
bounded by O(N3).

4 Implementation and Evaluation

We implemented a parser for access requests and policies in PAPL that could
perform access control as outlined in Fig. 2. For evaluating requests against poli-
cies, we use the probabilistic programming language NumPyro [12,45] as the
backend probabilistic programming language. We also implemented the proce-
dure that encodes policies and the constraints on the fresh symbols that represent
random event probabilities (Algorithm 1), and a procedure for checking relative
permissivenss based on this encoding. We use z3 [20] as the backend SMT solver
for LIRA and the probabilistic programming language NumPyro [12,45] as the
backend probabilistic programming language.

To demonstrate the usefulness and practicality of the PAPL language, we
present two case studies to show that a combination of symbolic and deter-
ministic rules and the ability to reason about uncertainty could lead to better
outcomes.

Threats to Validity and Limitations. Due to the lack of access policy datasets
available to the public [22] and also the novel nature of our proposed policy
language, we have considered synthetic access control scenarios and policies in
the case studies. Although such practices are standard in access control litera-
ture [43,44], this poses questions on whether the proposed solution is useful or
performs as well in practice for real-world access control tasks. Also, we do not
claim any contribution on the ML methods in this work. Thus, the ML model
we have implemented in the case study might not be optimal for the datasets
considered.

4.1 Case Study: Location-Based Access Control with Uncertainty

In this case study, we implement a system for location-based access control using
WiFi-based indoor localization (see Sect. 2) using the PAPL policy language
that considers uncertainty in the predications of user location. The key question
we want to answer here is RQ: Are PAPL policies more robust than
deterministic policies for location-based access control?

Dataset and Probabilistic ML Models. We use a WiFi localization dataset [51]
comprised of trajectories of cellphone positions in terms of latitude, longitude,
and floor levels, along with the RSSI collected from a fixed set of WAPs. We
use Bayesian neural networks [27] to provide predictions of user location with
uncertainty. We train three BNNs, each predicting the latitude, longitude, and

Probabilistic Access Policies 457

floor level of the cellphone at each time step, given the observed RSSI as features.
Each BNN model has two hidden layers of 128 and 64 units, and outputs both
the mean and standard deviation of a prediction. The prior distribution of each
network weight in the BNN models is initialized as a normal distribution N(0, 1).
All BNN models are trained to optimize the evidence lower bound (ELBO)
through stochastic variance inference (SVI).

Access Control Tasks and Policies. We consider two access control tasks: (1)
allow the user when the user is probably in a space, and (2) deny the user when
the user might be in a space. For both tasks, we assume it is desirable to have
high accuracy (the proportion of correct access decisions among all decisions),
and err on the safe side. In other words, it is desirable to minimize the number of
“false positives” in granting access, i.e., allowing what should have been denied,
while not denying access too often for those that should have been allowed. For
these tasks, we specify the following PAPL policies “allow the user when the
probability for the user to be in a bounding box (BB) exceeds 0.7”, and “deny the
user when the probability for the user to be in a BB exceeds 0.2”. Further inves-
tigation is needed for how to set the probability thresholds optimally for each
access control context and the particular probabilistic ML models used. Basi-
cally, the thresholds could be used to balance security and usability of the access
control system, i.e., the number of “false positives” (FP) and “false negatives”
(FN).

Experimental Setup. We randomly generate 300 axis-aligned BBs and assess
the access decisions made by the PAPL policy and the deterministic policy. We
approximate the probability for the user to be in a BB by the empirical frequency
of the event “predictions sampled from the posterior distribution of the BNN fall
inside a BB” among 2000 samples. For a deterministic policy language, we could
not make use of the uncertainty information and the best we could do is to
compute the most probable location given the BNN’s predictions by taking the
mean of all predictions, and check if the mean location falls inside the BB.

Results. The overall accuracies for deciding access rights on the test set using
both PAPL policies (0.9778 for task 1, 0.9681 for task 2) and deterministic poli-
cies (0.9787 for task 1, 0.9787 for task 2) are high. We then focus on comparing
the number of “false positives”. For task 1, an FP is a user location that is actu-
ally outside the allowing BB but is predicted to be in the BB and thus allowed
by the access control system. For task 2, an FP is a user location that is actually
inside the denying BB but is predicted to be outside and thus allowed by the
system. The comparison of PAPL policies versus deterministic policies is shown
in Fig. 4. Results show that compared to a deterministic policies language, using
PAPL leads to more robust access control without sacrificing usability, i.e., it
reduces FPs while maintaining the overall accuracy in its decisions.

Latency in Making Access Decisions. We have observed that the current imple-
mentation of the access control system on a Laptop needs up to a few seconds

458 S. Zhu and Y. Zhang

Fig. 4. PAPL vs deterministic policy in the number of FP for 2 tasks on a user tra-
jectory. The first row visualizes results for task 1. In Fig. 4a, the x-axis is the difference
in #FPs and y-axis is the count of the BBs on which the deterministic versus PAPL
policies exhibit that difference. Notably, for 2 BBs, using PAPL leads to more than
10 fewer FPs. Figure 4b and 4c visualizes whether the system predicts a user location
is in the box (red cross) or not (blue dot), by deterministic and PAPL policies on the
BB that yields the largest difference in FPs. Here all the points are actually outside
the yellow box, thus the fewer the red crosses are the better. The second row similarly
visualizes comparison on the FPs for task 2.

to evaluate an access request, which is inadequate for real-time access control.
The main latency bottleneck is within the NumPyro programs that perform
BNN inference and sampling to estimate random event probabilities. We have
not tried to optimize the current proof-of-concept implementation for inference
speed, and we conjecture that this overhead in performing access control could be
reduced by running on customized hardware accelerators and batch-processing
of access requests.

Scalability for Automated Reasoning. To demonstrate the scalability of the LIRA
encoding procedure presented in Sect. 3 for reasoning about location policies, we
create two PAPL policies that involve a variable number of BBs and record the
time needed to prove relative permissivenss between these policies. Each policy
is an allow policy containing a disjunction of bounding boxes. For “structured”
comparisons, we generate the BBs and the policies such that the one policy is
guaranteed to be less permissive than the other. And for “random” comparisons,

Probabilistic Access Policies 459

we generate random BBs. The scaling of the average running time across 10
executions is shown in Fig. 5. It shows that the procedure usually finishes in a
few minutes for policies involving up to a few thousand BBs on a Macbook Pro
with M1 Pro processor.

4.2 Case Study: Administering Deny-Lists for Machine Learning
Based Access Control

For the second case study, we consider a problem that involves access control pol-
icy administration, in particular implementing a deny-list in a machine learning
based access control (MLBAC) system. Specifically, we have an MLBAC system
running but we would like to implement changes in the access control rules to
deny certain accesses when new requests are received. This problem is studied in
literature [43], and ML based methods are proposed to fulfill this requirement.
The key research question is RQ: Can PAPL policies help reduce the num-
ber of mistakes made by MLBAC when implementing a deny-list?

Dataset and Preparation. We use the Amazon employee access challenge dataset
[29] from Kaggle for the case study. This dataset requires ML models to use
eight features (encoded as integers) to predict whether an Amazon employee
should be granted access to some resource, and evaluates models using AUC
score, i.e., the area under the receiver operating characteristic (ROC) curve. We
first divide the data available into training and testing sets. Since the integer
features originally represent categorical variables, we apply target encoding on
the training and test data. We notice that the dataset is highly imbalanced–the
number of allowed accesses is much larger than the number of denied accesses,
which might make the ML models bias towards predicting accesses as allowed.
Thus, we also perform random oversampling on the training data.

Experiments. For the three experiments, we inject three synthetic deny-lists on
top of the original dataset. Each deny-list is a predicate over the attributes, for

Fig. 5. Scalability for proving relative permissivenss of PAPL policies based on LIRA
encodings.

460 S. Zhu and Y. Zhang

example the first deny-list can be written as

role_family = 19732 ∨ role_rollup_1 = 119062 ∨ role_rollup_2 = 118300

where role_family, role_rollup_1, and role_rollup_2 are three features in
access requests. A request is allowed only if it was allowed in the original dataset
and is not included in the synthetic deny-list. Our main goal for this policy
administration task is to enforce the deny-list, i.e., deny access requests if they
conform to the injected deny rules, but we also observe how the system performs
on the entire modified dataset. We implemented a random forest classifier and a
BNN that predicts the allow probability for binary classification, based on which
we considered four access control systems and we train them from scratch for each
experiment. In the following, RF refers to the random forest classifier baseline
considered by previous MLBAC work [43]. PAPL refers to a PAPL policy that
first checks the access request using a symbolic deny rule that implements the
deny-list. If the request is not governed by the rule, the system computes the
empirical frequency of sampling a predicted probability of more 0.5 among all
BNN predictions is greater than 0.8.

Results. Table 1 shows that in terms of AUC score for predicting access rights
in this dataset, BNN offers comparable or even better predictions compared to
RF. Table 2 shows that the PAPL-based access control system is effective in
eliminating all false positives for the injected deny-list, and also for the whole
synthetic dataset, at the cost of an increased number of FNs. A fundamental
advantage of the PAPL-based access control system compared to RF is that
the deny-list is guaranteed to be enforced correctly on all access requests. Also,

Table 1. RF vs BNN based on AUC score.

Exp RF-AUC BNN-AUC

1 0.8935 0.9422
2 0.7969 0.8841
3 0.6885 0.8122

Table 2. Comparing the number of FPs within the injected deny-list, the number of
FPs and FNs on the entire test set with the injected deny-list, and the overall accuracy
(percentage of correct predictions within the test set) for access control systems based
on RF and PAPL using three experiments.

Exp RF PAPL
FP(list) FP(all) FN(all) Acc FP(list) FP(all) FN(all) Acc

1 4/935 208/1254 250/5300 0.9301 0/935 121/1254 738/5300 0.8689
2 35/367 272/715 150/5839 0.9356 0/367 168/715 853/5839 0.8442
3 9/77 260/435 155/6119 0.9367 0/77 179/435 833/6119 0.8456

Probabilistic Access Policies 461

as mentioned in the previous case study, we could adjust the probability thresh-
olds in the policies to balance FPs and FNs in an interpretable way within the
framework provided by PAPL.

5 Related Work

Reasoning About Policies. Automated reasoning about policies encodes policies
as SMT formulas and then invokes SMT solver like Z3 [20] to prove properties
of policies [10,22,28,32,52]. Our work extends this scheme by presenting a way
of encoding clauses involving probabilities into LIRA formulas.

Machine Learning for Access Control. In additional to traditional access control
schemes, an alternative is to use machine learning to make access decisions [14,
18,33,35,37,43,44]. The survey [42] offers a more comprehensive overview on
this subject. The PAPL language offers an extension to existing MLBAC work
by allowing policy writers to refer to the uncertainty in the ML predictions.
Furthermore, PAPL allows combinations of ML models and traditional access
policies, which is difficult to achieve in existing MLBAC methods.

Probabilistic Machine Learning. In certain application domains, it is important
to capture uncertainty in the ML predictions [39]. Our work provides a method
for using uncertainty in the particular domain of MLBAC, where knowledge
about uncertainty in the ML models can be crucial in making more robust deci-
sions. Within the realm of probabilistic/bayesian ML, it has been shown that
Bayesian neural networks [27,40] could effectively accumulate domain knowledge
(from similar tasks) in its prior to yield good uncertainty [36], and they can pro-
duce more robust predictions for out-of-distribution data [40], making it a good
candidate model to be used in access control systems based on PAPL.

Probability and Programming. Research on probabilistic programming languages
[8,12,13,21,45,48] (PPL) aims to bridge probabilistic reasoning together with
general purpose programming diagrams. In particular, [13] presents a program-
ming abstraction for representing and using uncertainty. In general, PPL pro-
vides ways to specify probabilistic models, do inferencing, and compute prob-
abilities. Our work provides a scheme to compute and reason about probabili-
ties in the context of access control, utilizing the capability of an existing PPL
NumPyro [12].

Access Control. Location-based [6,7,17,30], risk-based [16,35], and context-
aware [31,47,50] access control paradigms involves uncertain information, and
are useful for different application domains, including augmented reality (AR)
devices and applications. PAPL could be used to implement these paradigms as
long as the uncertain information involved in access control could be expressed
as probabilities of random events.

462 S. Zhu and Y. Zhang

References

1. Cedar Language. https://www.cedarpolicy.com/en. Accessed 27 Jan 2024
2. Cloud leak: WSJ parent company dow jones exposed customer data. https://www.

upguard.com/breaches/cloud-leak-dow-jones. Accessed 27 Jan 2023
3. eXtensible access control markup language (XACML) version 3.0. https://www.

oasis-open.org/standard/xacmlv3-0. Accessed 27 Jan 2024
4. Another misconfigured Amazon S3 server leaks data of 50,000 Australian

employees. SC Media (2017). https://www.scmagazine.com/news/breach/another-
misconfigured-amazon-s3-server-leaks-data-of-50000-australian-employees

5. Akter, T., Dosono, B., Ahmed, T., Kapadia, A., Semaan, B.: “I am uncomfortable
sharing what i can’t see”: privacy concerns of the visually impaired with camera
based assistive applications. In: Proceedings of the 29th USENIX Conference on
Security Symposium. SEC’20, USA. USENIX Association (2020). https://doi.org/
10.5555/3489212.3489321

6. Ardagna, C., Cremonini, M., di Vimercati, S.D.C., Samarati, P.: Privacy-enhanced
location-based access control. In: Gertz, M., Jajodia, S. (eds.) Handbook of
Database Security, pp. 531–552. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-48533-1_22

7. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:
Supporting location-based conditions in access control policies. In: Proceedings
of the 2006 ACM Symposium on Information, Computer and Communications
Security - ASIACCS ’06, Taipei, Taiwan, p. 212. ACM Press (2006). https://doi.
org/10.1145/1128817.1128850

8. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random
fields and probabilistic soft logic. J. Mach. Learn. Res. 18(1), 3846–3912 (2017).
https://doi.org/10.5555/3122009.3176853

9. Backes, J., et al.: Stratified abstraction of access control policies. In: Lahiri, S.K.,
Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 165–176. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53288-8_9

10. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp. 1–
9 (2018). https://doi.org/10.23919/FMCAD.2018.8602994

11. Bauer, L., Cranor, L.F., Reeder, R.W., Reiter, M.K., Vaniea, K.: Real life chal-
lenges in access-control management. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’09, New York, NY, USA, pp.
899–908. Association for Computing Machinery (2009). https://doi.org/10.1145/
1518701.1518838

12. Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach.
Learn. Res. 20(1), 973–978 (2019). https://doi.org/10.5555/3322706.3322734

13. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain<T>: A first-order type
for uncertain data. In: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASPLOS
’14, pp. 51–66, New York, NY, USA. Association for Computing Machinery (2014).
https://doi.org/10.1145/2541940.2541958

14. Cappelletti, L., Valtolina, S., Valentini, G., Mesiti, M., Bertino, E.: On the Quality
of Classification Models for Inferring ABAC Policies from Access Logs. In: 2019
IEEE International Conference on Big Data (Big Data). pp. 4000–4007 (2019).
https://doi.org/10.1109/BigData47090.2019.9005959

https://www.cedarpolicy.com/en
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://www.oasis-open.org/standard/xacmlv3-0
https://www.oasis-open.org/standard/xacmlv3-0
https://www.scmagazine.com/news/breach/another-misconfigured-amazon-s3-server-leaks-data-of-50000-australian-employees
https://www.scmagazine.com/news/breach/another-misconfigured-amazon-s3-server-leaks-data-of-50000-australian-employees
https://doi.org/10.5555/3489212.3489321
https://doi.org/10.5555/3489212.3489321
https://doi.org/10.1007/978-0-387-48533-1_22
https://doi.org/10.1007/978-0-387-48533-1_22
https://doi.org/10.1145/1128817.1128850
https://doi.org/10.1145/1128817.1128850
https://doi.org/10.5555/3122009.3176853
https://doi.org/10.1007/978-3-030-53288-8_9
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1145/1518701.1518838
https://doi.org/10.1145/1518701.1518838
https://doi.org/10.5555/3322706.3322734
https://doi.org/10.1145/2541940.2541958
https://doi.org/10.1109/BigData47090.2019.9005959

Probabilistic Access Policies 463

15. Chen, S., Li, Z., Dangelo, F., Gao, C., Fu, X.: A case study of security and privacy
threats from augmented reality (AR). In: 2018 International Conference on Com-
puting, Networking and Communications (ICNC), pp. 442–446 (2018). https://
doi.org/10.1109/ICCNC.2018.8390291

16. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: an experiment on quantified risk-adaptive access control.
In: 2007 IEEE Symposium on Security and Privacy (SP ’07), pp. 222–230 (2007).
https://doi.org/10.1109/SP.2007.21, iSSN: 2375-1207

17. van Cleeff, A., Pieters, W., Wieringa, R.: Benefits of location-based access con-
trol: a literature study. In: 2010 IEEE/ACM International Conference on Green
Computing and Communications & International Conference on Cyber, Physical
and Social Computing, pp. 739–746 (2010). https://doi.org/10.1109/GreenCom-
CPSCom.2010.148

18. Das, S., Mitra, B., Atluri, V., Vaidya, J., Sural, S.: Policy engineering in RBAC and
ABAC. In: Samarati, P., Ray, I., Ray, I. (eds.) From Database to Cyber Security.
LNCS, vol. 11170, pp. 24–54. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-04834-1_2

19. De Guzman, J.A., Thilakarathna, K., Seneviratne, A.: Security and privacy
approaches in mixed reality: A literature survey. ACM Comput. Surv. 52(6), 110:1-
110:37 (2019). https://doi.org/10.1145/3359626

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

21. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence. IJCAI’07, San Francisco, CA, USA, pp. 2468–
2473. Morgan Kaufmann Publishers Inc. (2007). https://doi.org/10.5555/1625275.
1625673

22. Eiers, W., Sankaran, G., Li, A., O’Mahony, E., Prince, B., Bultan, T.: Quanti-
fying permissiveness of access control policies. In: Proceedings of the 44th Inter-
national Conference on Software Engineering. ICSE ’22„ New York, NY, USA,
pp. 1805–1817. Association for Computing Machinery (2022). https://doi.org/10.
1145/3510003.3510233

23. Frank, M., Basin, D., Buhmann, J.M.: A class of probabilistic models for role
engineering. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security. CCS ’08, New York, NY, USA, pp. 299–310. Association for
Computing Machinery (2008). https://doi.org/10.1145/1455770.1455809

24. d’Avila Garcez, A., et al.: Neural-symbolic learning and reasoning: a survey and
interpretation. Neuro-Symbolic Artif. Intell. State Art 342(1), 327 (2022)

25. d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. Artif. Intell. Rev.
56(11), 12387–12406 (2023). https://doi.org/10.1007/s10462-023-10448-w

26. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press (2007). https://doi.org/10.
5555/1296231

27. Goan, E., Fookes, C.: Bayesian neural networks: an introduction and survey. In:
Mengersen, K.L., Pudlo, P., Robert, C.P. (eds.) Case Studies in Applied Bayesian
Data Science. LNM, vol. 2259, pp. 45–87. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-42553-1_3

28. Guelev, D.P., Ryan, M., Schobbens, P.Y.: Model-checking access control policies.
In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 219–230. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30144-8_19

https://doi.org/10.1109/ICCNC.2018.8390291
https://doi.org/10.1109/ICCNC.2018.8390291
https://doi.org/10.1109/SP.2007.21
https://doi.org/10.1109/GreenCom-CPSCom.2010.148
https://doi.org/10.1109/GreenCom-CPSCom.2010.148
https://doi.org/10.1007/978-3-030-04834-1_2
https://doi.org/10.1007/978-3-030-04834-1_2
https://doi.org/10.1145/3359626
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5555/1625275.1625673
https://doi.org/10.5555/1625275.1625673
https://doi.org/10.1145/3510003.3510233
https://doi.org/10.1145/3510003.3510233
https://doi.org/10.1145/1455770.1455809
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.5555/1296231
https://doi.org/10.5555/1296231
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007/978-3-540-30144-8_19

464 S. Zhu and Y. Zhang

29. Hamner, B., kenmonta, Cukierski, W.: Amazon employee access challenge (2013).
https://www.kaggle.com/c/amazon-employee-access-challenge

30. He, W., et al.: Rethinking access control and authentication for the home internet
of things (IoT). In: Proceedings of the 27th USENIX Conference on Security Sym-
posium, pp. 255–272. SEC’18, USA. USENIX Association (2018). https://doi.org/
10.5555/3277203.3277223

31. Jana, S., et al.: Enabling fine-grained permissions for augmented reality applica-
tions with recognizers. In: Proceedings of the 22nd USENIX Conference on Secu-
rity. SEC’13, USA, pp. 415-430. USENIX Association (2013). https://doi.org/10.
5555/2534766.2534802

32. Jeffrey, A., Samak, T.: Model checking firewall policy configurations. In: 2009 IEEE
International Symposium on Policies for Distributed Systems and Networks, pp.
60–67 (2009). https://doi.org/10.1109/POLICY.2009.32

33. Karimi, L., Abdelhakim, M., Joshi, J.: Adaptive ABAC Policy Learning: A Rein-
forcement Learning Approach (2021). https://doi.org/10.48550/arXiv.2105.08587

34. Kolmogoroff, A.: Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer, Hei-
delberg (1933). https://doi.org/10.1007/978-3-642-49888-6

35. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Towards attribute-
based access control policy engineering using risk. In: Bauer, T., Großmann, J.,
Seehusen, F., Stølen, K., Wendland, M.F. (eds.) Risk Assessment and Risk-Driven
Testing. LNCS, pp. 80–90. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07076-6_6

36. Lacoste, A., Oreshkin, B., Chung, W., Boquet, T., Rostamzadeh, N., Krueger,
D.: Uncertainty in multitask transfer learning (2018). https://arxiv.org/abs/1806.
07528

37. Liu, A., Du, X., Wang, N.: Efficient access control permission decision engine based
on machine learning. Secur. Commun. Networks 2021, e3970485 (2021). https://
doi.org/10.1155/2021/3970485

38. Liu, J.S.: Peskun’s theorem and a modified discrete-state Gibbs sampler.
Biometrika 83(3), 681–682 (1996). https://doi.org/10.1093/biomet/83.3.681

39. Murphy, K.P.: Probabilistic Machine Learning: An Introduction. The MIT press
(2022)

40. Murphy, K.P.: Probabilistic Machine Learning: Advanced Topics. The MIT Press
(2023)

41. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and map-
ping in real-time. In: Proceedings of the 2011 International Conference on Com-
puter Vision. ICCV ’11, USA, pp. 2320–2327. IEEE Computer Society (2011).
https://doi.org/10.1109/ICCV.2011.6126513

42. Nobi, M.N., Gupta, M., Praharaj, L., Abdelsalam, M., Krishnan, R., Sandhu, R.:
Machine Learning in Access Control: A Taxonomy and Survey (2022). https://doi.
org/10.48550/arXiv.2207.01739

43. Nobi, M.N., Krishnan, R., Huang, Y., Sandhu, R.: Administration of machine learn-
ing based access control. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.)
Computer Security – ESORICS 2022. LNCS, pp. 189–210. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17146-8_10

44. Nobi, M.N., Krishnan, R., Huang, Y., Shakarami, M., Sandhu, R.: Toward deep
learning based access control. In: Proceedings of the Twelfth ACM Conference
on Data and Application Security and Privacy. CODASPY ’22, New York, NY,
USA, pp. 143–154. Association for Computing Machinery (2022).https://doi.org/
10.1145/3508398.3511497

https://www.kaggle.com/c/amazon-employee-access-challenge
https://doi.org/10.5555/3277203.3277223
https://doi.org/10.5555/3277203.3277223
https://doi.org/10.5555/2534766.2534802
https://doi.org/10.5555/2534766.2534802
https://doi.org/10.1109/POLICY.2009.32
https://doi.org/10.48550/arXiv.2105.08587
https://doi.org/10.1007/978-3-642-49888-6
https://doi.org/10.1007/978-3-319-07076-6_6
https://doi.org/10.1007/978-3-319-07076-6_6
https://arxiv.org/abs/1806.07528
https://arxiv.org/abs/1806.07528
https://doi.org/10.1155/2021/3970485
https://doi.org/10.1155/2021/3970485
https://doi.org/10.1093/biomet/83.3.681
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/10.48550/arXiv.2207.01739
https://doi.org/10.48550/arXiv.2207.01739
https://doi.org/10.1007/978-3-031-17146-8_10
https://doi.org/10.1145/3508398.3511497
https://doi.org/10.1145/3508398.3511497

Probabilistic Access Policies 465

45. Phan, D., Pradhan, N., Jankowiak, M.: Composable Effects for Flexible and Accel-
erated Probabilistic Programming in NumPyro (2019). https://doi.org/10.48550/
arXiv.1912.11554

46. Roesner, F., Kohno, T., Molnar, D.: Security and privacy for augmented reality
systems. Commun. ACM 57(4), 88–96 (2014). https://doi.org/10.1145/2580723.
2580730

47. Roesner, F., Molnar, D., Moshchuk, A., Kohno, T., Wang, H.J.: World-driven
access control for continuous sensing. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’14, pp. 1169–1181.
Association for Computing Machinery (2014). https://doi.org/10.1145/2660267.
2660319, event-place: New York, NY, USA

48. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: probabilistic programming
with fast exact symbolic inference. In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
PLDI 2021, New York, NY, USA, pp. 804–819. Association for Computing Machin-
ery (2021). https://doi.org/10.1145/3453483.3454078

49. Sinclair, S., Smith, S.W.: Preventative directions for insider threat mitigation via
access control. In: Stolfo, S.J., Bellovin, S.M., Keromytis, A.D., Hershkop, S.,
Smith, S.W., Sinclair, S. (eds.) Insider Attack and Cyber Security: Beyond the
Hacker. Advances in Information Security, pp. 165–194. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-77322-3_10

50. Templeman, R., Korayem, M., Crandall, D., Kapadia, A.: PlaceAvoider: Steering
first-person cameras away from sensitive spaces. In: Proceedings 2014 Network and
Distributed System Security Symposium. Internet Society (2014). https://doi.org/
10.14722/ndss.2014.23014, event-place: San Diego, CA

51. Torres-Sospedra, J., et al.: UJIIndoorLoc: a new multi-building and multi-floor
database for WLAN fingerprint-based indoor localization problems. In: 2014 Inter-
national Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 261–
270 (2014). https://doi.org/10.1109/IPIN.2014.7275492

52. Turkmen, F., den Hartog, J., Ranise, S., Zannone, N.: Analysis of XACML policies
with SMT. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 115–
134. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7_7

53. Zhou, G.: Mixed hamiltonian monte carlo for mixed discrete and continuous vari-
ables. In: Proceedings of the 34th International Conference on Neural Information
Processing Systems. NIPS ’20, Red Hook, NY, USA. Curran Associates Inc. (2020).
https://doi.org/10.5555/3495724.3497158

https://doi.org/10.48550/arXiv.1912.11554
https://doi.org/10.48550/arXiv.1912.11554
https://doi.org/10.1145/2580723.2580730
https://doi.org/10.1145/2580723.2580730
https://doi.org/10.1145/2660267.2660319
https://doi.org/10.1145/2660267.2660319
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1007/978-0-387-77322-3_10
https://doi.org/10.14722/ndss.2014.23014
https://doi.org/10.14722/ndss.2014.23014
https://doi.org/10.1109/IPIN.2014.7275492
https://doi.org/10.1007/978-3-662-46666-7_7
https://doi.org/10.5555/3495724.3497158

466 S. Zhu and Y. Zhang

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compositional Value Iteration
with Pareto Caching

Kazuki Watanabe1,2(B), Marck van der Vegt3, Sebastian Junges3,
and Ichiro Hasuo1,2

1 National Institute of Informatics, Tokyo, Japan
kazukiwatanabe@nii.ac.jp

2 The Graduate University for Advanced Studies
(SOKENDAI), Kanagawa, Japan

3 Radboud University, Nijmegen, The Netherlands

Abstract. The de-facto standard approach in MDP verification is based
on value iteration (VI). We propose compositional VI, a framework for
model checking compositional MDPs, that addresses efficiency while
maintaining soundness. Concretely, compositional MDPs naturally arise
from the combination of individual components, and their structure can
be expressed using, e.g., string diagrams. Towards efficiency, we observe
that compositional VI repeatedly verifies individual components. We
propose a technique called Pareto caching that allows to reuse verifi-
cation results, even for previously unseen queries. Towards soundness,
we present two stopping criteria: one generalizes the optimistic value
iteration paradigm and the other uses Pareto caches in conjunction
with recent baseline algorithms. Our experimental evaluations shows the
promise of the novel algorithm and its variations, and identifies chal-
lenges for future work.

1 Introduction

MDP Model Checking and Value Iteration. Markov decision processes
(MDPs) are the standard model for sequential decision making in stochastic set-
tings. A standard question in the verification of MDPs is: what is the maximal
probability that an error state is reached. MDP model checking is an active topic
in the formal verification community. Value iteration (VI) [44] is an iterative
and approximate method whose performance in MDP model checking is well-
established [11,29,30]. Several extensions with soundness have been proposed;
they provide, in addition to under-approximations, also over-approximations
with a desired precision [4,24,30,43,46], so that an approximate answer comes

K.W. and I.H. are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603) and the ASPIRE grant No. JPMJAP2301, JST. K.W. is
supported by the JST grants No. JPMJFS2136 and JPMJAX23CU. S.J. is supported
by the NWO Veni ProMiSe (222.147).
K. Watanabe and M. van der Vegt—Equal contribution.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 467–491, 2024.
https://doi.org/10.1007/978-3-031-65633-0_21

https://doi.org/10.5281/zenodo.11002681
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_21

468 K. Watanabe et al.

with an error bound. These sound algorithms are implemented in mature model
checkers such as Prism [37], Modest [27], and Storm [32].

Compositional Model Checking. Even with these state-of-the-art algo-
rithms, it is a challenge to model check large MDPs efficiently with high preci-
sion. Experiments observe that MDPs with more than 108 states are too large
for those algorithms [35,53,54]—they simply do not fit in memory. However,
such large MDPs often arise as models of complicated stochastic systems, e.g. in
the domains of network and robotics. Furthermore, even small models may be
numerically challenging to solve due to their structure [4,24,29].

Compositional model checking is a promising approach to tackle this scalabil-
ity challenge. Given a compositional structure of a target system, compositional
model checking executes a divide-and-conquer algorithm that avoids loading the
entire state space at once, often solving the above memory problem. Moreover,
reusing the model checking results for components can lead to speed-up by mag-
nitudes. Although finding a suitable compositional structure for a given “mono-
lithic” MDP is still open, many systems come with such an a priori composi-
tional structure. For example, such compositional structures are often assumed
in robotics and referred to as hierarchical models [5,23,31,35,40,48,51].

Fig. 1. open MDPs A and B.

Recently, string diagrams
of MDPs are introduced
for compositional model
checking [53,54]; the cur-
rent paper adopts this
formalism. There, MDPs
are extended with (open)
entrances and exits (Fig. 1),
and they get composed by sequential composition � and sum ⊕. See Fig. 2, where
the right-hand sides are simple juxtapositions of graphs (wires get connected in
�). This makes the formalism focused on sequential (as opposed to parallel) com-
position. This restriction eases the design of compositional algorithms; yet, the
formalism is rich enough to capture the compositional structures of many system
models.

Current Work: Compositional Value Iteration. In this paper, we present
a compositional value iteration (CVI) algorithm that solves reachability prob-
abilities of string diagrams of MDPs, operating in a divide-and-conquer man-
ner along compositional structures. Our approximate VI algorithm comes with
soundness—it produces error bounds—and exploits compositionality for effi-
ciency.

Specifically, for soundness, we lift the recent paradigm of optimistic value
iteration (OVI) [30] to the current compositional setting. We use it both for local
(component-level) model checking and—in one of the two global VI stopping
criteria that we present—for providing a global over-approximation.

Compositional Value Iteration with Pareto Caching 469

For efficiency, firstly, we adopt a top-down compositional approach where
each component is model-checked repeatedly, each time on a different weight w,
in a by-need manner. Secondly, in order to suppress repetitive computation on
similar weights, we introduce a novel technique of Pareto caching that allows
“approximate reuse” of model checking results. This closely relates to multi-
objective probabilistic model checking [17,20,45], without the explicit goal of
building Pareto curves. Our Pareto caching also leads to another (sound) global
VI stopping criterion that is based on the approximate bottom-up approach [54].

Our algorithm is approximate (unlike the exact one in [53]), and top-down
(unlike the bottom-up approximate one in [54]). Experimental evaluation demon-
strates its performance thanks to the combination of these two features.

Contributions and Organization. We start with an overview (Sect. 2) that
presents graphical intuitions. After formalizing the problem setting in Sect. 3,
we move on to describe our technical contributions:
– compositional value iteration for string diagrams of MDPs where VI is run in

a top-down and thus by-need manner (Sect. 4.2),
– the Pareto caching technique for reusing results for components (Sect. 5.2),
– two global stopping criteria that ensure soundness (Sect. 6).

We evaluate and discuss our approach through experiments (Sect. 7), show
related work (Sect. 8), and conclude this paper (Sect. 9).

Fig. 2. sequential composition A � B and sum A ⊕ B of open MDPs. The framework is
bidirectional (edges can be left- and right-ward); thus loops can arise in A � B.

Notations. For a natural number m, we write [m] for {1, . . . ,m}. For a set X,
we write D(X) for the set of distributions on X. For sets X,Y , we write X � Y
for their disjoint union and f : X ⇀ Y for a partial function f from X to Y .

2 Overview

This section illustrates our take on CVI with so-called Pareto caches using
graphical intuitions. We describe MDPs as string diagrams over so-called open
MDPs [53]. Open MDPs, such as A,B in Fig. 1, extend MDPs with open ends
(entrances and exits). We use two operations � and ⊕; see Fig. 2. That figure also
illustrates the bidirectional nature of the formalism: arrows can point left and
right; thus acyclic MDPs can create cycles when combined. String diagrams come
from category theory (see [53]) and they are used in many fields of computer
science [8,9,22,52].

470 K. Watanabe et al.

2.1 Approximate Bottom-Up Model Checking

Fig. 3. A � B

The first compositional model check-
ing algorithm for string diagrams of
MDPs is in [53], which is exact. Subse-
quently, in [54], an approximate com-
positional model checking algorithm
is proposed. This is the basis of our
algorithm and we shall review it here. Consider, for illustration, the sequen-
tial composition A � B in Fig. 3, where the exit o3 is the target. The algorithm
from [54] proceeds in the following bottom-up manner.

First Step: Model Checking Each Component. Firstly, model checking is
conducted for component oMDPs A and B separately, which amounts to iden-
tifying an optimal scheduler for each. At this point, however, it is unclear what
constitutes an optimal scheduler:

Example 1. In the MDP A in Fig. 3, let’s say the reachability probabilities(
RPrσ1(i1 → o1), RPrσ1(i1 → o2)

)
are (0.2, 0.7) under a scheduler σ1, and

(0.6, 0.2) under another σ2. One cannot tell which scheduler (σ1 or σ2) is better
for the global objective (i.e. reaching o3 in A � B) since B is a black box.

Concretely, the context �B of A is unknown. Therefore we have to compute
all candidates of optimal schedulers, instead of one. This set is given by, for each
component C and its entrance i,

{
schedulers σ

∣
∣ (

RPrσ(i → o)
)
o:C ’s exit

is Pareto optimal
}
. (1)

Fig. 4. Pareto-optimal points

Here the Pareto optimality is
a usual notion from multi-objective
model checking (e.g. [17,41]); here, it
means that there is no scheduler σ′

that dominates σ in the sense that
RPrσ(i → o) ≤ RPrσ′

(i → o) holds
for each o and < holds for some o.
The two points from the example can
be plotted, see Fig. 4.

The Pareto curve—the set of
points

(
RPrσ(i → o)

)
o

for the Pareto
optimal schedulers σ in (1)—will look
like the dashed blue line in Fig. 4.The
solid blue line is realizable by a convex combination of the schedulers σ1 and σ2.
It is always below the Pareto curve.

Compositional Value Iteration with Pareto Caching 471

Fig. 5. approximations (Li1 , Ui1).

The algorithm in [54] com-
putes guaranteed under- and over-
approximations (L,U) of Pareto-
optimal points (1) for every
open MDP. See Fig. 5; here the
green area indicates the under-
approximation, and the red area
is the complement of the over-
approximation, so that any Pareto-
optimal points are guaranteed to
be in their gap (white). These
approximations are obtained by repeated application of (optimistic) value iter-
ation on the open MDPs, i.e., a standard approach for verifying MDPs, based
on [20,47]. We formalize these notions in Sect. 5.1.

Second Step: Combination along. �,⊕ The second (inductive) step of
the bottom-up algorithm in [54] is to combine the results of the first step—
approximations as in Fig. 5, and the corresponding (near) optimal schedulers (1),
for each component C—along the operations �,⊕ in a string diagram.

Here we describe this second step through the example in Fig. 3. It computes
reachability probabilities

RPrσ,τ (i1 → o3) = RPrσ(i1 → o1) · RPrτ (i2 → o3)
+RPrσ(i1 → o2) · RPrτ (i3 → o3)

(2)

for each combination of Pareto-optimal schedulers σ (for A) and τ (for B) to
find which combinations of σ, τ are Pareto optimal for A � B.

The equality (2)—called the decomposition equality in [53]—enables composi-
tional reasoning on Pareto-optimal points and on their approximations: Pareto-
optimal schedulers for A � B can be computed from those for A and B. This
compositional reasoning can be exploited for performance. In particular, when
the same component A occurs multiple times in a string diagram D, the model
checking result of A can be reused multiple times.

2.2 Key Idea I: From Bottom-Up to Top-Down

The bottom-up approaches compute the Pareto curves independent of the con-
text of the open MDP. One key idea is to move from bottom-up to top-down, a
direction followed by other compositional techniques too, see Sect. 8.

Fig. 6. A � B

For illustration, consider the sequen-
tial composition A � B in Fig. 6; we
have concretized B in Fig. 3. For this
B, it follows that RPr(i2 → o3) = 0.8
and RPr(i3 → o3) = 0.3. Therefore
the equality (2) boils down to

RPrσ(i1 → o3) = 0.8 · RPrσ(i1 → o1) + 0.3 · RPrσ(i1 → o2). (3)

472 K. Watanabe et al.

The equation (3) is a significant simplification compared to (2):

– in (2), since the weight
(
RPrτ (i2 → o3),RPrτ (i3 → o3)

)
is unknown, we must

compute multidimensional Pareto curves as in Figs. 4 and 5;
– in (3), since the weight is known to be (0.8, 0.3), we can solve the equation

using standard single-objective model checking.

Exploiting this simplification is our first key idea. We introduce a systematic
procedure for deriving weights (such as (0.8, 0.3) above) that uses the context of
an oMDP, i.e., it goes top-down along the string diagram. The procedure works
for bi-directional sequential composition (thus for loops, cf. Fig. 2), not only for
uni-directional as in Fig. 6. In the procedure, we first examine the context of
a component C, approximate a weight w for C, and then compute maximum
weighted reachability probabilities in C. We formalize the approach in Sect. 4.2.

Potential performance advantages compared to the bottom-up algorithm
in [54] should be obvious from Fig. 6. Specifically, the bottom-up algorithm draws
a complete picture for Pareto-optimal points (such as Fig. 5) once for all, but a
large part of this complete picture may not be used. In contrast, the top-down
one draws the picture in a by-need manner, for a weight w only when the weight
w is suggested by the context.

Fig. 7. top-down approximation.

The top-down approximation of
Pareto-optimal points is illustrated in
Fig. 7. Here a weight w is the nor-
mal vector of the blue lines; the figure
shows a situation after considering
two weights.

Fig. 8. A � B � A � D � A � E , an example

2.3 Key Idea II: Pareto Caching

Our second key idea (Pareto caching) arises when we try to combine the
last idea (top-down compositionality) with the key advantage of the bottom-
up approach [54], namely exploiting duplicates. Consider the string diagram
A�B�A�D�A�E in Fig. 8, for motivation, where we designate multiple occurrences
of A by A1,A2,A3 for distinction, from left to right.

Let us run the top-down algorithm. The component E suggests the weight
(0.8, 0.3) for the two exits of A3, and D suggest the weight (0.2, 0.7) for the exits

Compositional Value Iteration with Pareto Caching 473

of A2. Recalling that A2 and A3 are identical, the weighted optimization results
for these two weights can be combined, leading to a picture like Fig. 7.

Now, in Fig. 8, we go on to the component B. It suggests the weight (0.75, 0.3).

– In the bottom-up approach [54], performance advantages are brought by
exploiting duplicates, that is, by reusing the model checking result of a com-
ponent C for its multiple occurrences.

– Therefore, also here, we wish to use the previous analysis results for A—for
the weights (0.8, 0.3) and (0.2, 0.7)—for the weight (0.75, 0.3).

– Intuitively, (0.75, 0.3) seems close enough to (0.8, 0.3), suggesting that we can
use the previously obtained result for (0.8, 0.3).

But this casts the following questions: what is it for two weights to be “close
enough”? Is (0.75, 0.3) really closer to (0.8, 0.3) than to (0.2, 0.7)? Can we bound
errors—much like in Sect. 2.1—that arise from this “approximate reuse”?

Fig. 9. Pareto caching

In Sect. 5.2, we use the existing
theory on Pareto curves in multi-
objective model checking from [17,20,
45] to answer these questions. Intu-
itively, the previous analysis result
(red and green regions) gets queried
on a new weight w (the normal vec-
tor of the blue lines), as illustrated
in Fig. 9. We call answering weighted
reachability based on the Pareto curve Pareto caching. The technique can pre-
vent many invocations of using VI to compute the weighted reachability for w.
The distance between the under- and over-approximations computed this way
can be big; if so (“cache miss”), we run VI again for the weight w.

2.4 Global Stopping Criteria (GSCs)

On top of two key ideas, we provide two global stopping criteria (GSCs) in Sect. 6:
one is based on the ideas from OVI [30] and the other is a symbiosis of the Pareto
caches with the bottom-up approach. Although ensuring the termination of our
algorithm in finite steps with our GSCs remains future work, we show that our
GSCs are sound, that is, its output satisfies a given precision upon termination.

3 Formal Problem Statement

We recall (weighted) reachability in Markov decision processes (MDPs) and for-
malize string diagrams as their compositional representation. Together, this is
the formal basis for our problem statement as already introduced above.

474 K. Watanabe et al.

3.1 Markov Decision Process (MDP)

Definition 3.1 (MDP). An MDP M = (S,A, P) is a tuple with a finite
set S of states, a finite set A of actions, and a probabilistic transition function
P : S × A ⇀ D(S) (which is a partial function, cf. notations in Sect. 1).

A (finite) path (on M) is a finite sequence of states π := (πi)i∈[m]. We write
FPathM for the set of finite paths on M. A memoryless scheduler σ is a function
σ : S → D(A); in this paper, memoryless schedulers suffice [20,44]. We say σ is
deterministic memoryless (DM) if for each s ∈ S, σ(s) is Dirac. We also write
σ : S → A for a DM scheduler σ. The set of all memoryless schedulers on M is
ΣM, and the set of all DM schedulers on M is ΣM

d .
For a memoryless scheduler σ and a target state t ∈ S, the reach-

ability probability RPrM,σ,t(s) from a state s is given by RPrM,σ,t(s) :=∑
π∈FPathM(t) PrM

σ,s(π), where (i) the set FPathM(t) ⊆ FPathM is defined
by FPathM(t) := {(πi)i∈[m] ∈ FPathM | last(π) = t, and πi �= t for i ∈
[m − 1]}, and (ii) the probability PrM

σ,s(π) is defined by PrM
σ,s(π) :=

∏
i∈[m−1]

∑
a∈A P (πi, a, πi+1) · σ(πi−1)(a) if π1 = s and PrM

σ,s(π) := 0 other-
wise.

Towards our compositional approach for a reachability objective, we must
generalize the objective to a weighted reachability probability objective: we want
to compute the weighted sum—with respect to a certain weight vector w—over
reachability probabilities to multiple target states. The standard reachability
probability problem is a special case of this weighted reachability problem using
a suitable unit vector e as the weight w.

Definition 3.2 (weighted reachability probability). Let M be an MDP,
and T be a set of target states. A weight w on T is a vector w := (wt)t∈T ∈
[0, 1]T .

Let s be a state, and σ be a scheduler. The weighted reachability probability
WRPrM,σ,T (w, s) ∈ [0, 1] from s to T over σ with respect to a weight w is
defined naturally by a weighted sum, that is, WRPrM,σ,T (w, s) :=

∑
t∈T wt ·

RPrM,σ,t(s). We write WRPrM,T
max (w, s) for the maximum weighted reachability

probability supσ WRPrM,σ,T (w, s). (The supremum is realizable; see e.g. [28].)

3.2 String Diagram of MDPs

Definition 3.3 (oMDP). An open MDP (oMDP) A = (M, IO) is a pair con-
sisting of an MDP M with open ends IO = (Ir, Il, Or, Ol), where Ir, Il, Or, Ol ⊆ S
are pairwise disjoint and each of them is totally ordered. The states in I := Ir∪Il
are the entrances, and the states in O := Or ∪ Ol are the exits, respectively. We
often use superscripts to designate the oMDP A in question, such as IA and
OA.

We write arity(A) : (mr,ml) → (nr, nl) for the arities of A, where mr := |Ir|,
ml := |Ol|, nr := |Or|, and nl := |Il|. We assume that every exit s is a sink state,

Compositional Value Iteration with Pareto Caching 475

that is, P (s, a) is undefined for any a ∈ A. We can naturally lift the definitions of
schedulers and weighted reachability probabilities from MDPs to oMDPs: we will
be particularly interested in the following instances; 1) the weighted reachability
probability WRPrA,σ(w, i) := WRPrA,σ,OA

(w, i) from a chosen entrance i to
the set OA of all exits; and 2) the maximum weighted reachability probability
WRPrA

max(w, i) := supσ WRPrA,σ(w, i) from i to OA weighted by w.
We define string diagrams of MDPs [53] syntactically, as syntactic trees

whose leaves are oMDPs and non-leaf nodes are algebraic operations. The latter
are syntactic operations and they are yet to be interpreted.

Definition 3.4 (string diagram of MDPs). A string diagram D of MDPs
is a term adhering to the grammar D ::= cA | D � D | D ⊕ D, where cA is a
constant designating an oMDP A.

The above syntactic operations �,⊕ are interpreted by the semantic operations
below. The following definitions explicate the graphical intuition in Fig. 2.

Definition 3.5 (sequential composition �). Let A, B be oMDPs, arity(A) =
(mr,ml) → (lr, ll), and arity(B) = (lr, ll) → (nr, nl). Their sequential com-
position A � B is the oMDP (M, IO′) where IO′ = (IA

r , IB
l , OB

r , OA
l), M :=(

(SA � SB) \ (OA
r � OB

l), AA � AB, P
)

and P is

P (s, a, s′) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PD(s, a, s′) if D ∈ {A,B} , s ∈ SD , a ∈ AD , and s′ ∈ SD,

PA(s, a, oA
r,i) if s ∈ SA , a ∈ AA , s′ = iBr,i for some 1 ≤ i ≤ lr ,

PB(s, a, oB
l,i) if s ∈ SB , a ∈ AB , s′ = iAl,i for some 1 ≤ i ≤ ll,

0 otherwise.

Definition 3.6 (sum ⊕). Let A,B be oMDPs. Their sum A⊕B is the oMDP
(M, IO′) where IO′ = (IA

r �IB
r , IA

l �IB
l , OA

r �OB
r , OA

l �OB
l), M = (SA �SB, AA �

AB, P), and P is given by P (s, a, s′) := PD(s, a, s′) if D ∈ {A,B}, s ∈ SD,
a ∈ AD, and s′ ∈ SD, and otherwise P (s, a, s′) := 0.

Definition 3.7 (operational semantics �D�). Let D be a string diagram of
MDPs. The operational semantics �D� is the oMDP which is inductively defined
by Defs 3.5 and 3.6, with the base case �cA� = A. Here we assume that every
string diagram D has matching arities so that compositions are well-defined. We
call I�D� and O�D� global entrances and global exits of D, respectively.

Fig. 10. �D� in Ex. 3.10

For describing the occur-
rence of oMDPs and their
duplicates in a string diagram
D, we formally define nomi-
nal components nCP(D) and
components CP(D). The lat-
ter for graph-theoretic opera-
tions in our compositional VI (CVI) (Algorithm 1), while the former is for Pareto
caching (Sect. 5.2). Examples are provided later in Ex. 3.10.

476 K. Watanabe et al.

Definition 3.8 (nCP(D), CP(D)). The set nCP(D) of nominal components is
the set of constants occurring in D (as a term). The set CP(D) of components is
inductively defined by the following: CP(cA) := {A}, and CP(E∗F) := CP(E)�
CP(F) for ∗ ∈ {�,⊕}; here we count multiplicities, unlike nCP(D).

We introduce local open ends of string diagrams, in contrast to global open ends
defined in Def. 3.7.

Definition 3.9 (Ilc(D), Olc(D) (local)). The sets Ilc(D) and Olc(D) of local
entrances and exits of D are given by Ilc(D) :=

⊎
A∈CP(D) IA, and Olc(D) :=

⊎
A∈CP(D) OA, respectively. Clearly we have I�D� ⊆ Ilc(D), O�D� ⊆ Olc(D).

Example 3.10 Let D = cA � cA � cB, where A and B are from Fig. 1. The
oMDP �D� is shown in Fig. 10. Then nCP(D) = {cA, cB}, while CP(D) =
{A1,A2,B} with subscripts added for distinction. We have I�D� = {iA1

1 }
and O�D� = {oA1

1 , oB
2 }, and Ilc(D) = {iA1

1 , iA1
2 , iA2

1 , iA2
2 , iB1 } and Olc(D) =

{oA1
1 , oA1

2 , oA2
1 , oA2

2 , oB
1 , oB

2 }. Note also that Olc(D) does not suppress exits
removed in sequential composition, such as {oA1

2 , oA2
1 , oA2

2 , oB
1 }.

Problem: Near-Optimal Weighted Reachability Probability
Given a string diagram D, an entrance i ∈ I�D�, a weight w ∈ [0, 1]O

�D�

over exits, and an error bound ε ∈ [0, 1], compute an under-approximation
l ∈ [0, 1] such that l ≤ WRPr�D�

max(w, i) ≤ l + ε.

We remark that as a straightforward extension, we can also extract a scheduler
that achieves the under-approximation.

4 VI in a Compositional Setting

We recap value iteration (VI) [3,44] and its extension to optimistic value itera-
tion (OVI) [30] before presenting our compositional VI (CVI).

4.1 Value Iteration (VI) and Optimistic Value Iteration (OVI)

VI relies on the characterization of maximum reachability probabilities as a least
fixed point (lfp), specifically the lfp μΦM,T of the Bellman operator ΦM,T : the
Bellman operator ΦM,T is an operator on the set [0, 1]S that intuitively returns
the t+1-step reachability probabilities given the t-step reachability probabilities.
A formal treatment can be found in [55, Appendix B]. Then the Kleene sequence
⊥ ≤ ΦM,T (⊥) ≤ Φ2

M,T (⊥) ≤ · · · gives a monotonically increasing sequence that
converges to the lfp μΦM,T , where ⊥ is the least element. This also applies to
weighted reachability probabilities.

While VI gives guaranteed under-approximations, it does not say how close
the current approximation is to the solution μΦM,T

1. The capability of providing
1 The challenge applies to VI in (our) undiscounted setting, where the Bellman opera-

tor is not a contraction operator. With discounting, one can easily approximate the
gap.

Compositional Value Iteration with Pareto Caching 477

guaranteed over-approximations as well is called soundness in VI, and many
techniques come with soundness [24,30,43,46]. Soundness is useful for stopping
criteria: one can fix an error bound η ∈ [0, 1]; VI can terminate when the distance
between under- and over-approximations is at most η.

Among sound VI techniques, in this paper we focus on optimistic VI (OVI)
due to its proven performance record [11,29]. We use OVI in many places, specif-
ically for 1) stopping criteria for local VIs in Sect. 4.2, 2) caching heuristics
in Sect. 5.2, and 3) a stopping criterion for global (compositional) VI in Sect. 6.

The main steps of OVI proceed as follows: 1) a VI iteration produces
an under-approximation l for every state; 2) we heuristically pick an over-
approximation candidate u, for example by u := l + ε; and 3) we verify the
candidate u by checking if ΦM,T (u) ≤ u. If the last holds, then by the Park
induction principle [42], u is guaranteed to over-approximate the lfp μΦM,T . If
it does not, then we refine l, u and try again. See [30] for details.

4.2 Going Top-Down in Compositional Value Iteration

We move on to formalize the story of Sect. 2.2. Algorithm 1 is a prototype of our
proposed algorithm, where compositional VI is run in a top-down manner. It

Algorithm 1. A prototype of compositional value iteration (CVI)

Input: a string diagram D of MDPs and a weight w ∈ [0, 1]O
�D�

, as in the target
problem.
Output: a function f : I�D� → [0, 1].

1: initialize g : Ilc(D) → [0, 1] as the least element ⊥ (i.e. everywhere 0)
2: initialize h : Olc(D) → [0, 1] as everywhere 0, except for global exits o where h(o) :=

wo (depending on the weight w = (wo)o)
4: while not GlobalStoppingCriterion(g) do
5: for each A ∈ CP(D) do � for each component A, counting multiplicities
6: gA ← LocalVI(A, h|OA) � run VI locally in A and obtain gA : IA → [0, 1]

11: g ← ∐
A∈CP(D) gA � g : Ilc(D) → [0, 1] is obtained by patching (gA)A

12: h ← PropagateSeqComp(g,w)
� g’s update is propagated to h along sequential composition, see Fig. 11c

13: return g|I�D� � restrict g : Ilc(D) → [0, 1] along I�D� ⊆ Ilc(D)

Fig. 11. an overview of Algorithm 1. In the MDP �D�, the exit oA
1 and the entrance

iB1 get merged in A � B (Def. 3.5); here they are distinguished, much like in Def. 3.9.
Numbers in red are the values of h; those in blue are the values of g.

478 K. Watanabe et al.

will be combined with Pareto caching (Sect. 5.2) and the stopping criteria intro-
duced in Sect. 6. A high-level view of Algorithm 1 is the iteration of the following
operations: 1) running local VI in each component oMDP, and 2) propagating
its result along sequential composition, from an entrance of a succeeding compo-
nent, to the corresponding exit of a preceding component. See Fig. 11 for illustra-
tion. The algorithm maintains two main constructs: functions g : Ilc(D) → [0, 1]
and h : Olc(D) → [0, 1] that assign values to local entrances and exits, respec-
tively. They are analogues of the value function f : S → [0, 1] in (standard) VI
(Sect. 4.1); g and h get iteratively increased as the algorithm proceeds.

Lines 4–12 are the main VI loop, where we combine local VI (over each
component A) and propagation along sequential composition. The algorithm
LocalVI takes the target oMDP A and its “local weight” as arguments; the
latter is the restriction h|OA : OA → [0, 1] of the function h : Olc(D) → [0, 1].
Any VI algorithm will do for LocalVI; we use OVI as announced in Sect. 4.1.
The result of local VI is a function gA : IA → [0, 1] for values over entrances
of A. These get patched up to form g : Ilc(D) → [0, 1] in line 11. The function∐

A∈CP(D) gA is defined by obvious case-distinction: it returns gA(i) for a local
entrance i ∈ IA. Recall from Def. 3.9 that Ilc(D) =

⊎
A∈CP(D) IA. In line 12, the

values at entrances are propagated to the connected exits.
On PropagateSeqComp in line 12, its graphical intuition is in Fig. 11c; here

are some details. We first note that the set Olc(D) of local exits is partitioned
into 1) global exits (i.e. those in O�D�) and 2) those local exits that get removed
by sequential composition. Indeed, by examining Defs 3.5 and 3.6, we see that
sequential composition � is the only operation that removes local exits, and
the local exits that are not removed eventually become global exits. It is also
obvious (Def. 3.5) that each local exit o removed in sequential composition has
a corresponding local entrance io. Using these, we define the function h :=
PropagateSeqComp(g,w), of the type Olc(D) → [0, 1], as follows: h(o) = wo if o
is a global exit (much like line 2); h(o) = g(io) otherwise.

Theorem 4.1 Algorithm 1 satisfies the following properties:
1. (Guaranteed under-approximation) For the output f of Algorithm 1, we have

f(i) ≤ WRPr�D�
max(w, i) for each i ∈ I�D�.

2. (Convergence) Assume that GlobalStoppingCriterion is false. Algorithm
1 converges to the optimal value, that is, f converges to WRPr�D�

max(w, I�D�).
�

The correctness of the under-approximation of Algorithm 1 follows easily from
those of (non-compositional, asynchronous) VI. The convergence depends on the
fact that line 6 of Algorithm 1 iterates over all components.

5 Pareto Caching in Compositional VI

In our formulation of Algorithm 1, there is no explicit notion of Pareto curves.
However, in line 6, we do (implicitly) compute under-approximations on points
on the Pareto curves. Here we recap approximate Pareto curves. We then show
how we conduct Pareto caching, the key idea sketched in Sect. 2.3.

Compositional Value Iteration with Pareto Caching 479

5.1 Approximating Pareto Curves

We formalize the Pareto curves illustrated in Sect. 2. For details, see [17,20,
41,45]. Model checking oMDPs is a multi-objective problem, that determines
different trade-offs between reachability probabilities for the individual exits.

Definition 5.1 (Pareto curve for an oMDP [54]). Let A be an oMDP, and
i be a (chosen) entrance. Let p,p′ ∈ [0, 1]O

A
. The relation � between them is

defined by p � p′ if p(o) ≤ p′(o) for each o ∈ OA. When p ≺ p′ (i.e. p � p′

and p �= p′), we say p′ dominates p. Let σ be a scheduler for A. We define the
point realized by σ, denoted by pσ

i , by pσ
i (o) := RPrA,σ,o(i), the reachability

probability from i to o under σ.
The set Achσ

i of points achievable by σ is Achσ
i := {p | p � pσ

i }. The set
Achi of achievable points is given by Achi :=

⋃
σ∈ΣA Achσ

i . The Pareto curve
Paretoi ⊆ [0, 1]O

A
is the set of maximal elements in Achi wrt. �. We say a

scheduler σ is Pareto-optimal if pσ
i ∈ Paretoi.

The set Achi ⊆ [0, 1]O
A

is convex, downward closed, and finitely generated
by DM schedulers; it follows that, for our target problem, Pareto-optimal DM
schedulers suffice. This is illustrated in Fig. 9, where a weight w is the normal
vector of blue lines, and the maximum is achieved by a generating point for Achi.

The last observations are formally stated as follows.

Proposition 5.2 ([17,20,45]). For any entrance i ∈ I, the set Achi of
achievable points is finitely generated by DM schedulers, that is, Achi =
DwConvCl(AchΣA

d
i). Here, DwConvCl(X) denotes the downward and convex

closed set generated by X ⊆ R
n, and Ach

ΣA
d

i is given by Ach
ΣA

d
i :=

⋃
σ∈ΣA

d
Achσ

i ,
where ΣA

d is the set of DM schedulers.

Proposition 5.3 ([17,20,45]). Given a weight w ∈ [0, 1]O
A

and an entrance i,
there is a scheduler σ such that WRPr�D�,σ(w, i) = WRPr�D�

max(w, i). Moreover,
this σ can be chosen to be DM and Pareto-optimal.

We now formulate sound approximations of Pareto curves, which is a foun-
dation of our Pareto caching (and a global stopping criterion in Sect. 6).

Definition 5.4 (sound approximation [54]). Let i be an entrance. An under-
approximation Li of the Pareto curve Paretoi is a downward closed subset Li ⊆
Achi; an over-approximation is a downward closed superset Ui ⊇ Achi. A pair
(Li, Ui) is called a sound approximation of the Pareto curve Paretoi. In this
paper, we focus on Li and Ui that are finitely generated, i.e. the convex and
downward closures of some finite generators Lg

i , U
g
i ⊆ [0, 1]O

A
, respectively. A

sound approximation of an oMDP A is a pair (L,U), where L = (Li)i∈IA ,
U = (Ui)i∈IA , and (Li, Ui) is a sound approximation for each entrance i.

480 K. Watanabe et al.

5.2 Pareto Caching

We go on to formalize our second key idea, Pareto caching, outlined in Sect. 2.3.
In Def. 5.5, an index cA ∈ nCP(D) is a nominal component that ignores

multiplicities, since we want to reuse results for different occurrences of A.

Definition 5.5 (Pareto cache). Let D be a string diagram of MDPs. A Pareto
cache C is an indexed family C :=

(
(LA, UA)

)
cA∈nCP(D)

, where (LA, UA) is a
sound approximation for each nominal component cA, defined in Def. 5.4.

As announced in Sect. 2.3, a Pareto cache C—its component (LA, UA), to be
precise—gets queried on a weight w ∈ [0, 1]O

A
. It is not trivial what to return,

however, since the specific weight w may not have been used before to construct
C. The query is answered in the way depicted in Fig. 9, finding an extremal
point where LA intersects with a plane with its normal vector w.

Definition 5.6 (cache read). Assume the above setting, and let i be an
entrance of interest. The cache read (LA

i (w), UA
i (w)) ∈ [0, 1]2 on w at i is

defined by LA
i (w) := supp∈Li

w · p and UA
i (w) := supp∈Ui

w · p.

Recall from Sect. 5.1 that we can assume Li and Ui are finitely generated as
convex and downward closures. It follows [20,45] that each supremum above is
realized by some generating point, much like in Prop. 5.3, easing computation.

We complement Algorithm 1 by Algorithm 2 that introduces our Pareto
caching. Specifically, for the weight h|OA in question, we first compute the error
maxi∈IA UA

i (h|OA) − LA
i (h|OA) of the Pareto cache C =

(
(LA, UA)

)
cA

with
respect to this weight. The error can be greater than a prescribed bound η—we
call this cache miss—in which case we run OVI locally for A (line 9). When
the error is no greater than η—we call this cache hit—we use the cache read
(Def. 5.6), sparing OVI on a component A ∈ CP(D). In the case of a cache miss,
the result (l, σ) of local OVI (line 9) is used also to update the Pareto cache C
(line 10); see below.

Using a Pareto cache may prevent the execution of local VI on every com-
ponent, which can be critical for the convergence of Algorithm 1; see Thm. 4.1.
A simple solution is to disregard Pareto caches eventually.

Algorithm 2. Updating gA with a Pareto cache C and a bound η ∈ [0, 1]

3: initialize a Pareto cache C by ((∅, [0, 1]O
A

))cA

6: if maxi∈IA
(
UA

i (h|OA) − LA
i (h|OA)

) ≤ η then
� computing the error of cache C for weight h|OA (cf. Def. 5.6)

7: gA ← LA(h|OA) � “cache hit”; use the cache read LA(h|OA)
8: else
9: (l, σ) ← LocalOVI(A, h|OA , η)

� “cache miss”; run local VI as in Alg. 1
10: gA ← l and C ← Update(A,C, l, σ, h|OA , η) � see the end of §5.2

Compositional Value Iteration with Pareto Caching 481

Updating the Cache. Pareto caches get incrementally updated using the
results for weighted reachabilities with different weights w. We build upon
data structures in [20,45]. Notable is the asymmetry between under- and over-
approximations (Li, Ui): we obtain 1) a point in Li and 2) a plane that bounds Ui.

We update the cache after running OVI on a weight w ∈ [0, 1]O
A
, which

approximately computes the optimal weighted reachability to exits o ∈ OA.
That is, it returns l, u ∈ [0, 1] such that

l ≤ supσ

(
w · (

RPrσ(i → o)
)
o∈OA

) ≤ u. (4)

Here i is any entrance and RPrσ(i → o) is the probability RPrA,σ,{o}(i) in
Sect. 3.1.

What are the “graphical” roles of l, u in the Pareto curve? The role of u is
easier: it follows from (4) that any achievable reachability vector

(
RPrσ(i → o)

)
o

resides under the plane {p | w · p = u}. This plane thus bounds an over-
approximation Ui. The use of l takes some computation. By (4), the existence
of a good scheduler σ is guaranteed; but this alone does not carry any graphical
information e.g. in Fig. 9. We have to go constructive, by extracting a near-
optimal DM scheduler σ0 (we can do so in VI) and using this fixed σ0 to compute(
RPrσ0(i → o)

)
o
. This way we can plot an achievable point—a corner point in

Fig. 9—in Li.

6 Global Stopping Criteria (GSC)

We present the last missing piece, namely global stopping criteria (GSC in short,
in line 4 of Algorithm 1). It has to ensure that the computed underapproximation
f is ε close to the exact reachability probability. We provide two criteria, called
optimistic and bottom-up.

Optimistic GSC (Opt-GSC). The challenge in adapting the idea of OVI
(see Sect. 4.1) to CVI is to define a suitable Bellman operator for CVI. Once
we define such a Bellman operator for CVI, we can immediately apply the idea
of OVI. For simplicity, we assume that CVI solves exactly in each local com-
ponent (line 6 in Algorithm 1) without Pareto caching; this can be done, for
example, by policy iteration [29]. Then, CVI (without Pareto caching and a
global stopping criterion) on D is exactly the same as the (non-compositional)
VI on a suitable shortcut MDP [54] of D. Intuitively, a shortcut MDP sum-
marizes a Pareto-optimal scheduler by a single action from a local entrance to
exit, see [55, Appendix C] for the definition. Thus, we can regard the standard
Bellman operator on the shortcut MDP as the Bellman operator for CVI, and
define Opt-GSC as the standard OVI based on this characterisation. CVI with
Opt-GSC (and Pareto caching) actually uses local under-approximations (not
exact solutions) for obtaining a global under-approximation (line 7 in Algorithm
2 and line 9 in Algorithm 2), where the desired soundness property still holds.
See [55, Appendix C] for more details.

482 K. Watanabe et al.

Bottom-up GSC (BU-GSC). We obtain another global stopping criterion by
composing Pareto caches—computed in Algorithm 2 for each component A—in
the bottom-up manner in [54] (outlined in Sect. 2.1). Specifically, 1) Algorithm 2
produces an over-approximation UA for the Pareto curve of each component A;
2) we combine (UA)A along � and ⊕ to derive an over-approximation U of the
global Pareto curve; and 3) this U is queried on the weight w in question (i.e.
the input of CVI), in order to obtain an over-approximation u of the weighted
reachability probabilities. BU-GSC checks if this over-approximation u is close
enough to the under-approximation l derived from g in Algorithm 1.

Correctness. CVI (Algorithm 1 with Pareto caching under either GSC) is
sound. The proof is in [55, Appendix C].

Theorem 6.1 (ε-soundness of CVI). Given a string diagram D, a weight
w, and ε ∈ [0, 1], if CVI terminates, then the output f satisfies

f(i) ≤ WRPr�D�
max(w, I�D�) ≤ f(i) + ε,

for each i ∈ I�D�.

Our algorithm currently comes with no termination guarantee; this is future
work. Termination of VI (with soundness) is a tricky problem: most known
termination proofs exploit the uniqueness of a fixed point of the Bellman oper-
ator, which must be algorithmically enforced e.g. by eliminating end compo-
nents [10,24]. In the current compositional setting, end components can arise by
composing components, so detecting them is much more challenging.

7 Empirical Evaluation

In this section, we compare the scalability of our approaches both among each
other and in comparison with some existing baselines. We discuss the setup, give
the results, and then give our interpretation of them.

Approaches. We examine our three main algorithms. Opt-GSC with either
exact caching (OCVIe) or Pareto-caching (OCVIp), and BU-GSC with Pareto-
caching (Symb). BU-GSC needs a Pareto cache, so we cannot run BU-GSC with
an exact cache. We compare our approaches against two baselines: a monolithic
(Mono) algorithm building the complete MDP �D� and the bottom-up (BU)
as explained in [54]. We use two virtual approaches that use a perfect oracle
to select the fastest out of the specified algorithms: baselines is the best-of-the-
baselines, while novel is the best of the three new algorithms. All algorithms are
built on top of the probabilistic model checker Storm [32], which is primarily
used for model building and (O)VI on component MDPs as well as operating on
Pareto curves.

Compositional Value Iteration with Pareto Caching 483

Setup. We run all benchmarks on a single core of an AMD Ryzen TRP 5965WX,
with a 900 s time-out and a 16GB memory limit. We use all (scalable) bench-
mark instances from [54]. While these benchmarks are synthetic, they reflect
typical structures found in network protocols and high-level planning domains.
We require an overall precision of 10−4, we run the Pareto cache with an accep-
tance precision of 10−5, and solve the LPs in the upper-bound queries for the
Pareto cache with an exact LP solver and a tolerance of 10−4. The components
are reverse topologically ordered, i.e., we always first analyse component MDPs
towards the end of a given MDP �D�. To solve the component MDPs inside the
VI, we use OVI for the lower bounds and precise policy iteration for the upper
bounds. We use algorithms and data structures already present in Storm for
maintaining Pareto curves [45], which use exact rational arithmetic for numeri-
cal stability. Although our implementation supports exact arithmetic throughout
the code, in practice this leads to a significant performance penalty, performing
up to 100 times slower. For algorithms not related to maintaining the Pareto
cache, we opted for using 64-bit floating point arithmetic, which is standard in
probabilistic model checking [11]. Using floating point arithmetic can produce
unsound results [26]; we attempt to prevent unsound results in our benchmark.
First, we check with our setup that our results are very close (error < 10−5)
to the exact solutions (when they could be computed). Second, we check that
all results, obtained with different methods, are close. We evaluate the stopping
criteria after ten iterations. These choices can be adapted using our prototypical
implementation, we discuss some of these choices at the end of the discussion
below.

Fig. 12. Benchmark scatter plots, time in seconds, OoR=Out of Resources

484 K. Watanabe et al.

Table 1. Performance for different algorithms. See Results for explanations.

Baseline Novel

Mono BU OCVIe OCVIp Symb

D M |S| |L| t t |P | t ts t ts |P | t ts |P |
Birooms10 RmB 1.1e+06 16 56 TO TO 84 25 58 25 1155 TO TO TO

Birooms100 RmS 8.5e+05 16 15 TO TO 32 8 TO TO TO TO TO TO

Birooms200 RmS 3.4e+06 16 126 TO TO 187 58 TO TO TO TO TO TO

Chains100 RmB 1.1e+06 6 TO 7 46 57 26 27 24 40 4 0 44

Chains3500 RmB 3.7e+07 6 OOM 8 46 TO TO TO TO TO 8 1 40

ChainsLoop500 Dice4 4.9e+06 4 28 TO TO 13 13 25 12 54 21 16 50

ChainsLoop500 Dice5 4.9e+06 4 25 TO TO 13 13 47 20 66 TO TO TO

Chains500 RmS 4.2e+04 6 1 0 67 0 0 TO TO TO 0 0 38

Rooms10 RmB 1.1e+06 14 183 8 84 42 21 31 20 108 11 0 108

Rooms250 RmB 6.6e+08 14 OOM OOM OOM TO TO TO TO TO 273 226 134

Rooms500 RmS 2.1e+07 13 TO OOM OOM 100 57 TO TO TO TO TO TO

Results. We provide pairwise comparisons of the runtimes on all benchmarks
using the scatter plots in Fig. 122. Notice the log-log scale. For some of the
benchmark instances, we provide detailed information in Tables 1 and 2, respec-
tively. In Table 1, we give the identifier for the string diagram and the compo-
nent MDPs, as well as the number of states in �D�. Then, for each of the five
algorithms, we provide the timings in t, for each algorithm maintaining Pareto
points, we give the number of Pareto points stored |P |, and for the three novel
VI-based algorithms, we give the amount of time spent in an attempt to prove
convergence (ts). In Table 2, we focus on our three novel algorithms and the
performance of the caches. We again provide identifiers for the models, and then
for each algorithm, the total time spent by the algorithm, the time spent on
inserting and retrieving items from the cache, as well as the fraction of cache
hits H and the number of total queries Q. Thus, the number of cache hits is
given by H · Q. The full tables and more figures are given in [55, Appendix A].

Discussion. We make some observations. We notice that the CVI algorithms
collectively solve more benchmarks within the time out and speed up most bench-
marks, see Fig. 12(top-l).3 We refer to benchmark results in Table 1.
OCVIe Mostly Outperforms Mono, Fig. 12(top-c). The monolithic VI as
typical in Storm requires a complete model, which can be prohibitively large.
However, even for medium-sized models such as Chains100-RmB, the VI can run
into time outs due to slow convergence. CVI with the exact cache (and even
with no cache) quickly converges – highlighting that the grouping of states helps

2 A point (x, y) means that the approach on the x-axis took x seconds and the tool
on the y-axis took y seconds. Different shapes refer to different benchmark sets.

3 We highlight that we use the benchmark suite that accompanied the bottom-up
approach.

Compositional Value Iteration with Pareto Caching 485

Table 2. Cache access times for CVI algorithms. See Results for explanations.

OCVIe OCVIp Symb

D M t ti tr H Q t ti tr H Q t ti tr H Q

Birooms10 RmB 84 0 0 0.03 206 58 14 4 0.66 1500 TO TO TO TO TO

Birooms100 RmS 32 0 0 0.24 65545 TO TO TO TO TO TO TO TO TO TO

Birooms200 RmS 187 1 3 0.25 477157 TO TO TO TO TO TO TO TO TO TO

Chains100 RmB 57 0 0 0.50 204 27 0 0 0.62 306 4 0 0 0.84 102

Chains3500 RmB TO TO TO TO TO TO TO TO TO TO 8 0 1 1.00 3502

ChainsLoop500 Dice4 13 0 0 0.84 15508 25 0 13 0.84 15592 21 0 5 1.00 5532

ChainsLoop500 Dice5 13 0 0 0.84 15511 47 0 26 0.84 15592 TO TO TO TO TO

Chains500 RmS 0 0 0 0.50 1004 TO TO TO TO TO 0 0 0 0.97 502

Rooms10 RmB 42 0 0 0.50 200 31 1 0 0.50 300 11 1 0 0.50 100

Rooms250 RmB TO TO TO TO TO TO TO TO TO TO 273 2 30 1.00 62499

Rooms500 RmS 100 0 0 0.50 500000 TO TO TO TO TO TO TO TO TO TO

VI to converge. On the other hand, a model such as Birooms100-RmS highlights
that the harder convergence check can yield a significant overhead.
Symb Mostly Outperforms BU, Fig. 12(top-r). For many models, the
top-down approach as motivated in Sect. 4.2 indeed ensures that we avoid the
undirected exploration of the Pareto curves. However, if the VI repeatedly asks
for weights that are not relevant for the optimal scheduler, the termination checks
fail and this yields a significant overhead.
OCVIe and Symb Both Provide Clear Added Value, Fig. 12(bot-l).
Both approaches can solve benchmarks within ten seconds that the other app-
roach does not solve within the time-out. Both approaches are able to save signif-
icantly upon the number of iterations necessary. Symb suffers from the overhead
of the Pareto cache, see below, whereas OCVIe requires somewhat optimal val-
ues in all leaves, regardless of whether these leaves are important for reaching
the global target. Therefore, Symb may profit from ideas from asynchronous VI
and OCVIe from adaptive schemes to decide when to run the termination check.
Pareto Cache Has a Significant Overhead, Fig. 12(bot-c/r) and Table 2.
We observe that the Pareto cache consistently yields an overhead: In particular,
OCVIe often outperforms OCVIp. The Pareto cache is essential for Symb. The
overhead has three different sources. (1) More iterations: Birooms10-RmB illus-
trates how OCVIe requires only 14% of the iterations of OCVIp. Even with a
66% cache hit rate in OCVIp, this means an overhead in the number of compo-
nent MDPs analysed. The main reason is that reusing approximation can delay
convergence4. (2) Cache retrieval : To obtain an upper bound, we must optimize
over Pareto curves that contain tens of halfspaces, which are numerically not
very stable. Therefore, Pareto curves in Storm are represented exactly. The lin-
ear program that must be solved is often equally slow5 as actually solving the LP,

4 Towards global convergence, we may eventually deactivate the cache.
5 We use the Soplex LP solver [21] for exact LP solving, which is significantly faster

than using, e.g., Z3. Soplex may return unknown, which we interpret as a cache miss.

486 K. Watanabe et al.

especially for small MDPs. (3) Cache insertion: Cache insertion of lower bounds
requires model checking Markov chains, as many as there are exits in the open
MDPs. These times are pure overhead if this lower bound is never retrieved and
can be substantial for large open MDPs.

Opportunities for Heuristics and Hyperparameters. We extensively stud-
ied variations of the presented algorithms. For example, a much higher tolerance
in the Pareto cache can significantly speed up OCVIp on the cost of not termi-
nating on many benchmark cases and one can investigate a per-query strategy
for retrieving and/or inserting cache results.

Interpretation of Results. Mono works well on models that fit into memory
and exhibit little sharing of open MDPs. BU works well when the Pareto curves
of the open MDPs can be accurately be approximated with few Pareto points,
which, in practice, excludes open MDPs with more than 3 exits. CVI without
caching and termination criteria resembles a basic kind of topological VI6 on the
monolithic MDP. CVI can thus improve upon topological VI either via the cache
or via the alternative stopping criteria. Based on the experiments, we conjecture
that

– the cache is efficient when the cost of performing a single reachability query
is expensive — such as in the Room10 model — while the cache hit rate is
high.

– the symbiotic termination criterion (Symb) works well when some exits are
not relevant for the global target, such as the Chains3500 model, in which
going backwards is not productive.

– the compositional OVI stopping criterion (OCVIe/OCVIp) works well when
the likelihood of reaching all individual open MDPs is high, such as can be
seen in the ChainsLoop500-Dice4 model.

8 Related Work

We group our related work into variations of value iteration, compositional ver-
ification of MDPs, and multi-objective verification.

Value Iteration. Value iteration as standard analysis of MDPs [29] is widely
studied. In the undiscounted, indefinite horizon case we study, value iteration
requires an exponential number of iterations in theory, but in practice converges
earlier. This motivates the search for sound termination criteria. Optimistic value
iteration [30] is now widely adopted as the default approach [11,29]. To accelerate
VI, various asynchronous variations have been suggested that prevent operat-
ing on the complete state space. In particular topological VI [2,15] and (uni-
directional) sequential VI [25,28,36] aim to exploit an acyclic structure similar
to what exists in uni-directional MDPs.
6 Topological VI orders strongly connected components, whereas CVI uses the hierar-

chical structure. This can also lead to advantages.

Compositional Value Iteration with Pareto Caching 487

Sequentially Composed MDPs. The exploitation of a compositional struc-
ture in MDPs is widely studied. In particular, the sequential composition in our
paper is closely related to hierarchical compositions that capture how tasks are
often composed of repetitive subtasks [5,6,23,31,35,48,50,51]. While we study
a fully model-based approach, Jothimurugan et al. [33] provide a compositional
reinforcement learning method whose sub-goals are induced by specifications.
Neary et al. [40] update the learning goals based on the analysis of the compo-
nent MDPs, but do not consider the possibility of reaching multiple exits. The
widespread option-framework and variations such as abstract VI [34], aggregate
policies [14,49] into additional actions to speed up convergence of value itera-
tions and is often applied in model-free approaches. In the context of OVI, we
must converge everywhere and the bottom-up stopping criterion is not easily
lifted to a model-free setting.

Further Related Work. As a different type of compositional reasoning,
assume-guarantee reasoning [7,12,16,18,19,38,39] is a central topic, and a com-
positional probabilistic framework [38] with the parallel composition ‖ is also
based on Pareto curves: extending string diagrams of MDPs for the parallel com-
position ‖ is challenging, but an interesting future work. We mention that there
are VIs on Pareto curves solving multi-objective simple stochastic games [1,13].
Due to the multi-objectivity, they maintain a set of points for each state during
iterations; CVI solves single-objective oMDPs determined by weights, thus we
maintain a single value for each state during iterations.

9 Conclusion

This paper investigates the verification of compositional MDPs, with a particular
focus on approximating the behavior of the component MDPs via a Pareto cache
and sound stopping criteria for value iteration. The empirical evaluation does not
only demonstrate the efficacy of the novel algorithms, but also demonstrates the
potential for further improvements, using asynchronous value iteration, efficient
Pareto caches manipulations, and powerful compositional stopping criteria.

References

1. Ashok, P., Chatterjee, K., Kret́ınský, J., Weininger, M., Winkler, T.: Approxi-
mating values of generalized-reachability stochastic games. In: LICS, pp. 102–115.
ACM (2020)

2. Azeem, M., Evangelidis, A., Kret́ınský, J., Slivinskiy, A., Weininger, M.: Opti-
mistic and topological value iteration for simple stochastic games. In: Bouajjani,
A., Hoĺık, L., Wu, Z. (eds.) Automated Technology for Verification and Analysis.
ATVA 2022. LNCS, vol. 13505. Springer, Cham (2022).https://doi.org/10.1007/
978-3-031-19992-9 18

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

https://doi.org/10.1007/978-3-031-19992-9_18
https://doi.org/10.1007/978-3-031-19992-9_18

488 K. Watanabe et al.

4. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

5. Barry, J.L., Kaelbling, L.P., Lozano-Pérez, T.: Deth*: Approximate hierarchi-
cal solution of large Markov decision processes. In: IJCAI, pp. 1928–1935.
IJCAI/AAAI (2011)

6. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discret. Event Dyn. Syst. 13(1–2), 41–77 (2003)

7. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis
for concurrent reactive programs with partial information. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 517–532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 50

8. Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram
rewrite theory I: rewriting with Frobenius structure. J. ACM 69(2), 14:1–14:58
(2022)

9. Bonchi, F., Holland, J., Piedeleu, R., Sobocinski, P., Zanasi, F.: Diagrammatic
algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL),
25:1–25:28 (2019)

10. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

11. Budde, C.E., et al.: On correctness, precision, and performance in quantitative
verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp.
216–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83723-5 15

12. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

13. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

14. Ciosek, K., Silver, D.: Value iteration with options and state aggregation (2015).
CoRR abs/1501.03959

15. Dai, P., Mausam, Weld, D.S., Goldsmith, J.J.: Topological value iteration algo-
rithms. Artif. Intell. Res. 42, 181–209 (2011)

16. Dewes, R., Dimitrova, R.: Compositional high-quality synthesis. In: André, É., Sun,
J. (eds.) Automated Technology for Verification and Analysis. ATVA 2023. LNCS,
vol. 14215. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45329-8 16

17. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Log. Methods Comput. Sci. 4(4)
(2008)

18. Finkbeiner, B., Passing, N.: Compositional synthesis of modular systems. Innov.
Syst. Softw. Eng. 18(3), 455–469 (2022)

19. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 11

20. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–
332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 25

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-031-45329-8_16
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-33386-6_25

Compositional Value Iteration with Pareto Caching 489

21. Gamrath, G., et al.: The SCIP optimization suite 7.0. Tech. Rep. 20-10, ZIB,
Takustr. 7, 14195 Berlin (2020)

22. Ghani, N., Hedges, J., Winschel, V., Zahn, P.: Compositional game theory. In:
LICS, pp. 472–481. ACM (2018)

23. Gopalan, N., et al.: Planning with abstract Markov decision processes. In: ICAPS,
pp. 480–488. AAAI Press (2017)

24. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

25. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 85–100. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47677-3 6

26. Hartmanns, A.: Correct probabilistic model checking with floating-point arith-
metic. In: TACAS 2022. LNCS, vol. 13244, pp. 41–59. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0 3

27. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

28. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost bounded tradeoff
analysis in MDP. J. Autom. Reason. 64(7), 1483–1522 (2020)

29. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: Sankaranarayanan, S., Sharygina, N. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. TACAS
2023. LNCS, vol. 13993. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-30823-9 24

30. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 26

31. Hauskrecht, M., Meuleau, N., Kaelbling, L.P., Dean, T.L., Boutilier, C.: Hierar-
chical solution of Markov decision processes using macro-actions. In: UAI, pp.
220–229. Morgan Kaufmann (1998)

32. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

33. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: NeurIPS, pp. 10026–10039 (2021)

34. Jothimurugan, K., Bastani, O., Alur, R.: Abstract value iteration for hierarchical
reinforcement learning. In: AISTATS. Proceedings of Machine Learning Research,
vol. 130, pp. 1162–1170. PMLR (2021)

35. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. CAV 2022.
LNCS, vol. 13371. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
13185-1 6

36. Klein, J., et al.: Advances in symbolic probabilistic model checking with PRISM.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 349–366.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 20

37. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-662-49674-9_20
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

490 K. Watanabe et al.

38. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Compositional probabilis-
tic verification through multi-objective model checking. Inf. Comput. 232, 38–65
(2013)

39. Majumdar, R., Mallik, K., Schmuck, A., Zufferey, D.: Assume-guarantee dis-
tributed synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11),
3215–3226 (2020)

40. Neary, C., Verginis, C.K., Cubuktepe, M., Topcu, U.: Verifiable and compositional
reinforcement learning systems. In: ICAPS, pp. 615–623. AAAI Press (2022)

41. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: FOCS, pp. 86–92. IEEE Computer Society (2000)

42. Park, D.: Fixpoint induction and proofs of program properties. Machine intelligence
5, 59–78 (1969)

43. Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest paths and global propa-
gation in bounded value iteration for stochastic games. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 349–371. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 19

44. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)

45. Quatmann, T.: Verification of multi-objective Markov models. Phd thesis
(2023). https://doi.org/10.18154/RWTH-2023-09669, https://publications.rwth-
aachen.de/record/971553

46. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

47. Quatmann, T., Katoen, J.-P.: Multi-objective optimization of long-run average and
total rewards. In: TACAS 2021. LNCS, vol. 12651, pp. 230–249. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72016-2 13

48. Saxe, A.M., Earle, A.C., Rosman, B.: Hierarchy through composition with multi-
task LMDPs. In: ICML. Proceedings of Machine Learning Research, vol. 70, pp.
3017–3026. PMLR (2017)

49. Silver, D., Ciosek, K.: Compositional planning using optimal option models. In:
ICML. icml.cc / Omnipress (2012)

50. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework
for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211
(1999)

51. Vien, N.A., Toussaint, M.: Hierarchical monte-carlo planning. In: AAAI, pp. 3613–
3619. AAAI Press (2015)

52. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: A compositional approach to
parity games. In: MFPS. EPTCS, vol. 351, pp. 278–295 (2021)

53. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional probabilistic
model checking with string diagrams of MDPs. In: Enea, C., Lal, A. (eds.) Com-
puter Aided Verification. CAV 2023. LNCS, vol. 13966. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37709-9 3

54. Watanabe, K., van der Vegt, M., Hasuo, I., Rot, J., Junges, S.: Pareto curves
for compositionally model checking string diagrams of MDPs. In: Finkbeiner, B.,
Kovács, L. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. TACAS 2024. LNCS, vol. 14571. Springer, Cham (2024). https://doi.org/10.
1007/978-3-031-57249-4 14

55. Watanabe, K., van der Vegt, M., Junges, S., Hasuo, I.: Compositional value iter-
ation with Pareto caching (2024). https://arxiv.org/abs/2405.10099, a longer ver-
sion

https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.18154/RWTH-2023-09669
https://publications.rwth-aachen.de/record/971553
https://publications.rwth-aachen.de/record/971553
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1007/978-3-031-37709-9_3
https://doi.org/10.1007/978-3-031-57249-4_14
https://doi.org/10.1007/978-3-031-57249-4_14
https://arxiv.org/abs/2405.10099

Compositional Value Iteration with Pareto Caching 491

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantum Systems

Approximate Relational Reasoning
for Quantum Programs

Peng Yan1 , Hanru Jiang2 , and Nengkun Yu3(B)

1 University of Technology Sydney, Sydney, Australia
pengyan.edu@gmail.com

2 Beijing Institute of Mathematical Sciences and Applications, Beijing, China
hanru@bimsa.cn

3 Stony Brook University: Stony Brook, New York, USA
nengkunyu@gmail.com

Abstract. Quantum computation is inevitably subject to imperfections
in its implementation. These imperfections arise from various sources,
including environmental noise at the hardware level and the introduc-
tion of approximate implementations by quantum algorithm designers,
such as lower-depth computations. Given the significant advantage of
relational logic in program reasoning and the importance of assessing
the robustness of quantum programs between their ideal specifications
and imperfect implementations, we design a proof system to verify the
approximate relational properties of quantum programs. We demon-
strate the effectiveness of our approach by providing the first formal
verification of the renowned low-depth approximation of the quantum
Fourier transform. Furthermore, we validate the approximate correct-
ness of the repeat-until-success algorithm. From the technical point of
view, we develop approximate quantum coupling as a fundamental tool
to study approximate relational reasoning for quantum programs, a novel
generalization of the widely used approximate probabilistic coupling in
probabilistic programs, answering a previously posed open question for
projective predicates.

Keywords: Relational Hoare Logic · Approximating Reasoning ·
Quantum Programming Languages

1 Introduction

Program equivalence [11,18,41] is a central concept in many areas of computer
science, including software engineering [31,36,54], translation validation of com-
pilers [38], program optimization [30], and program analysis [6,15,35]. Relational
verification aims to prove the relational properties between two programs. A typ-
ical Hoare-style relational judgment is of the form � c1 ∼ c2 : Ψ ⇒ Φ where c1
and c2 represent two compared programs, Ψ and Φ are relational assertions in
the deterministic scenario [10], where relational Hoare logic (RHL) predicates are

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 495–519, 2024.
https://doi.org/10.1007/978-3-031-65633-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_22&domain=pdf
http://orcid.org/0000-0003-2930-7447
http://orcid.org/0000-0002-5965-1209
http://orcid.org/0000-0003-1188-3032
https://doi.org/10.1007/978-3-031-65633-0_22

496 P. Yan et al.

binary relations over memories. The judgment states that for any initial memo-
ries m1 and m2 that satisfy the precondition Ψ , the resulting memories m′

1 and
m′

2 should satisfy postcondition Φ. For probabilistic programs [7], probabilistic
relational Hoare logic (pRHL) lifted the predicates into relations over probabilis-
tic distributions on memories. Furthermore, [9] introduced extra parameters to
allow approximate lifting of relations to distributions. To be specific, the judg-
ments defined in approximate probabilistic relational Hoare logic (apRHL) are of
the form c1 ∼α,δ c2 : Ψ ⇒ Φ with parameters α, δ for reasoning about differential
privacy.

Since the emergence of quantum programming languages, there have been
various works [25,27,32,44,57,59–62] about the formal verification of quantum
programs. Among techniques in program analysis, the exact relational logic for
quantum programs attracts lots of attention [8,33,51]. Relational logic provides a
more expressive approach to characterize the relation between two programs. For
instance, direct verification of the equivalence between quantum programs S1 and
S2 defined on register q̄ requires checking the equivalence between �S1�(ρ) and
�S2�(ρ) for all ρ in Hilbert space Hq̄ that involves enumerations of an infinite set.
A quantum relational judgment concerning the quantum equivalence predicate
can concisely explain the direct enumerations. However, none of the above works
considers approximate reasoning that is universal in practice.

– It is implausible to physically implement quantum gates with perfect accu-
racy on the hardware level, and the need to consider approximations is likely
inevitable. As noted by John Preskill, the noise in quantum gates will limit the
size of reliable quantum circuits, and technologies for more accurate quantum
gates are of great value in the Noisy Intermediate-Scale Quantum (NISQ) [42]
era.

– On the software level, the NISQ nature of hardware signifies the importance
of taking noise into account at the level of quantum algorithm design. More
specifically, approximate computation can be more efficient and less erroneous
than precise one since it can improve the depth of circuits and simplify the
calculation. A good example is the approximate quantum Fourier transform
[16], which achieves a lower circuit depth approximation of the exact quantum
Fourier transform used in Shor’s celebrated algorithm [45].

As for approximate reasoning in quantum settings, [66] discussed the robust-
ness of quantum programs by introducing the concept of approximate satisfac-
tion of predicates, [26] proposed a parameterized diamond norm to characterize
the distance between an ideal program and a noisy one. Despite the signifi-
cant advancements in quantum approximate reasoning and the recognition of
the importance of relational reasoning, there remains a notable gap in the field
— an absence of a robust logical framework for effectively reasoning about the
relational properties between quantum programs approximately. In quantum
approximate relational reasoning, the main obstacles are:

– There is no mathematical theory for a quantum version of approximate cou-
plings, an open question in [8]. The lack of such a theory significantly affects
the applications of exact quantum coupling and relations quantum Hoare

Approximate Relational Reasoning for Quantum Programs 497

logic. Usually, two quantum programs have different branching probabilities
in the presence of noise or approximations. Under these circumstances, their
corresponding quantum states have different traces, where exact quantum
couplings on these states do not exist. The main difficulties in defining an
approximate quantum coupling include defining a distance between quantum
states, which can be highly nonlinear. Previous knowledge about probabilis-
tic couplings may not directly apply: even for the exact quantum coupling,
fundamental properties of probabilistic coupling [24] are no longer true [67].

– Designing an approximate relational quantum Hoare logic system is indeed
highly challenging. The system needs to consider several factors, including
infinite executions of quantum while loops, approximated quantum couplings,
and the applicability of the logic rules. In quantum programming, a while loop
can have infinite executions of the loop body because of the probabilistic
feature of quantum measurements. Furthermore, when dealing with approx-
imate quantum couplings, the system must handle the inherent uncertainty
and approximation errors that arise when coupling with program branches.

– The applicability of logic rules adds another layer of complexity. To strike a
balance between the accuracy of the logic rules and simplicity, efficiency, and
usability is a crucial consideration when designing a logic system. Ensuring
the logic rules are powerful yet easy to use for reasoning relational properties
of complicated quantum programs requires careful consideration and analysis.

In this paper, we derive an approximate version of the existing quantum
relational Hoare logic, thus making approximate relational reasoning feasible.
Our judgment is of the form

S1 ∼δ S2 : A ⇒ B

where S1 and S2 represent compared quantum programs, A and B are projective
quantum predicates over the whole system. The validity of our judgment is
based on the idea of approximate (quantum) coupling and lifting. A state ρ
is a δ-coupling for the state pair 〈ρ1, ρ2〉 if trace distances D(ρ1,Tr2(ρ)) and
D(ρ2,Tr1(ρ)) are both not bigger than δ. A state σ is a witness of the δ-lifting
ρ1 ∼δ

P ρ2 if σ is a δ-coupling for the state pair 〈ρ1, ρ2〉 and satisfies the predicate
P (Pσ = σ). Informally, our judgment holds if for any quantum lifting ρ1 ∼0

A ρ2
of the inputs, there exists a witness of the δ-lifting �S1�(ρ1) ∼δ

P �S2�(ρ2) of the
outputs.1

Technical contributions include:

– Approximate quantum liftings. We propose a novel notion of approximate
quantum liftings concerning projection-based quantum predicates to make
approximate reasoning simple and powerful. We do not require two quantum
states to have the same trace in approximate quantum lifting. In other words,
the exact quantum coupling may not exist. We employ the existing distances,
including trace distance and diamond norm, and define a “Hausdorff-like”

1 See Sect. 2 and Sect. 5 for a detailed definition.

498 P. Yan et al.

distance between projections incorporated with quantum coupling to be the
metric of the approximation of the couplings.

– Sound aqRHL. We propose a formal relational judgment to incorporate
the spirit of classical apRHL with a new quantum explanation based on
the proposed approximate quantum liftings. A sound approximate quantum
relational Hoare logic (aqRHL) is built based on our relational judgments.
Our choice of quantum δ-lifting allows us to track the relational properties of
two programs with different classical branching probabilities. In particular,
our methodology allows us to compute proper upper bounds for approximate
liftings for quantum equivalence relations, which plays a central role in char-
acterizing the equivalence of quantum programs.

– Application. We demonstrate the first formal verification of the low-depth
approximate quantum Fourier transform (QFT) with an error bound that is
asymptotically equivalent to the one in [16]. Implementing QFT is a signifi-
cant step in the development of quantum algorithms such as period finding
[45], HHL algorithm [21] and quantum principal component analysis [34]. We
also apply aqRHL, particularly the loop rule, to reason the repeat until suc-
cess which is one of the essential loop programs in quantum computation.
Other applications covered in the complete edition of this paper include the
verification of appropriate decomposition of unitary gates, and the correctness
of bit flip code against an arbitrary single-qubit error.

2 Preliminary and Notations

This section offers a brief introduction to quantum computation and necessary
notations from [39].

The state space of a quantum system is a Hilbert space H. The Dirac notation
|ψ〉 denotes a unit complex vector (called pure state or vector state). The most
important orthonormal basis of one-qubit system is the computational basis, i.e.
{|0〉, |1〉}. Superposition is a key feature that makes quantum programs different
from classical ones, such as a qubit being in the superposition (|0〉±|1〉)/√2. An
operator acting on an d-dimensional Hilbert space H is represented as a d × d
matrix. A positive semi-definite, Hermitian operator, ρ acting on H, is called a
partial density operator if its trace satisfies Tr(ρ) ≤ 1. Particularly, ρ is called a
density operator if Tr(ρ) = 1. The partial density operators can represent both
pure and mixed quantum states. For a pure state |ψ〉, its partial density operator
is |ψ〉〈ψ|, where 〈ψ| is the conjugate transpose of |ψ〉. For a mixed state which is
a classical distribution {pi} over pure states {|ψi〉}, its partial density operator
is

∑
i pi|ψi〉〈ψi|. We use D(H) to denote the set of all partial density operators

acting on Hilbert space H.
Let q̄1 and q̄2 be two independent registers in states ρ1 ∈ D(Hq̄1) and ρ2 ∈

D(Hq̄2) respectively, the composite register q̄ = {q̄1, q̄2} is then in the state
ρ1 ⊗ ρ2 ∈ Hq̄ = Hq̄1 ⊗ Hq̄2 . Partial trace is a very useful tool for describing
subsystems of a composite quantum system. Formally, the partial trace over
Hq̄1 is a mapping Tr1(·) from operators in Hq̄1 ⊗Hq̄2 to operators in Hq̄2 defined

Approximate Relational Reasoning for Quantum Programs 499

by Tr1(|ϕ1〉〈ψ1| ⊗ |ϕ2〉〈ψ2|) = 〈ψ1|ϕ1〉 · |ϕ2〉〈ψ2| for any |ψ1〉, |ϕ1〉 ∈ Hq̄1 and
|ψ2〉, |ϕ2〉 ∈ Hq̄2 . The partial trace Tr2(·) can be defined symmetrically. If the
composite system q̄ = {q̄1, q̄2} is in the state ρ, then subsystems q̄1 and q̄2 are
in states Tr2(ρ) and Tr1(ρ) respectively.

The evolution of an isolated quantum system can be characterized by a uni-
tary operator U such that U†U = UU† = I, where † denotes the conjugate
and transpose. Here we introduce some commonly used unitary operators, also
known as “gates”, that will be used in later examples:

X =
(

0 1
1 0

)

Y =
(

0 −i
i 0

)

Z =
(

1 0
0 −1

)

H =
1√
2

(
1 1
1 −1

)

P (θ) =
(

1 0
0 eiθ

)

CNOT =
(

I 0
0 X

)

c-P (θ) =
(

I 0
0 P (θ)

)

The act of extracting information from a quantum system is known as quan-
tum measurement. A measurement M = {Mm} is described by a set of linear
operators over H such that

∑
m M†

mMm = I, where the subscript m refers to
the measurement outcome. Applying a quantum measurement M on |ψ〉, the
probability of observing outcome m is pm = 〈ψ|MmM†

m|ψ〉, and the state after
the measurement collapses into Mm|ψ〉/√

pm.
A projection is a linear operator P on H that satisfies P 2 = P = P †. This

paper adopts the convention from [12] and recent work [51,66] that constrains
quantum predicates to be Hilbert spaces or projections. The complete partial
order over Hilbert subspaces is equivalent to the inclusion relation ⊆. This choice
of predicates enables us to define the assertion about quantum states.

Definition 1 (Support). If A =
∑

i λi|ψi〉〈ψi|, where |ψi〉 is an unit vector
in H and λi > 0, then the support of A is the space spanned by {|ψi〉}. I.e.,
supp(A) = span{|ψi〉}.
Definition 2 (Satisfaction). A partial density operator ρ satisfies a predicate
P , denoted by ρ � P , if supp(ρ) ⊆ P .

A general quantum operation, described by a superoperator E , can be imple-
mented by combining unitary transformations with quantum measurements by
introducing ancilla systems and discarding post-measurement states. A super-
operator always maps density matrices to partial density matrices and has the
Kraus representation. Readers may refer to the system-environment model in
Sect. 8.2 [39] for more details.

3 Quantum Programming Language

In this section, we review the syntax and semantics of the quantum while-
language [59]. We use var(S) to represent the set of all variables present in
a quantum program S, and HS = ⊗q∈var(S)Hq to denote the Hilbert space of all
the quantum variables in program S. The syntax in Definition 3 is the same as
[59] except that the conditional statement is replaced by the if statement.

500 P. Yan et al.

Definition 3 (Syntax). The following syntax defines the quantum programs:

(Stmts) S ::= skip | q := |0〉 | q̄ := U [q̄] | S1;S2

| if (�m · M[q̄] = m → Sm) fi | while M[q̄] = 1 do S od

The denotational semantics of the quantum while-language are presented in
Fig. 1. By convention, we use �S� to denote the semantic function of a program S.
Statement q := |0〉 initializes a variable q in state ρ to |0〉〈0| while leaving other
variables unchanged, where |ψ〉q〈ϕ| denote the outer product of the vector states
|ψ〉 and |ϕ〉 in Hq. The statement q̄ := U [q̄] performs the unitary transition ρ →
UρU† over register q̄. Quantum measurements work as guards to set a variable
in a mixed state. For the if statement, if the measurement outcome is m, the
input state ρ will collapse into MmρM†

m/pm with probability pm = Tr(MmρM†
m)

and then executes subprogram Sm. Here we absorb the probability pm into the
collapse state, and MmρM†

m represents the corresponding measurement output.
The final output is the summation of the outputs of all branches. For the loop
statement, M0 ◦ (�S� ◦ M1)k denotes the k-th unrolling of loop statement.

Fig. 1. Denotational semantics of quantum while-language

Lemma 1 ([59]). For any quantum while program S defined in Fig. 1, its deno-
tational semantics function �S� : D(H) → D(H) is a superoperator.

4 Quantum Approximate Coupling and Liftings

4.1 Approximate Quantum Coupling and Lifting

We first review the quantum generalization of the classical trace distance, a
commonly used metric for the difference between two (partial) quantum states.

Definition 4. The trace distance of two partial density operators ρ and σ is
D(ρ, σ) ≡ 1

2Tr|ρ − σ|, where |A| =
√

A†A for any operator A, i.e., the positive
square root of A†A.

Approximate Relational Reasoning for Quantum Programs 501

In the classical setting, two discrete distributions μ1 and μ2 over sets A1 and
A2 are coupled by a distribution μ over A1×A2 if and only if the first and second
marginals of μ are exactly μ1 and μ2, respectively. This notion of coupling for
distributions naturally generalizes to an exact quantum coupling [8] for density
matrices. Formally, we say ρ is an exact coupling for 〈ρ1, ρ2〉 if Tr1(ρ) = ρ2
and Tr2(ρ) = ρ1. Commonly, the quantum measurements in two quantum pro-
grams produce different probability distributions. In such cases, exact quantum
coupling does not exist between branches. We propose approximate quantum
coupling parameterized by deviation δ to bound the trace distance between the
“marginal” density matrices.

Definition 5 (Approximate Quantum Coupling). Let ρ1 ∈ D(H1) and
ρ2 ∈ D(H2), then ρ ∈ D(H1 ⊗ H2) is a δ-coupling for 〈ρ1, ρ2〉 if

D(ρ1,Tr2(ρ)) ≤ δ D(ρ2,Tr1(ρ)) ≤ δ

The approximate quantum coupling degenerates to the exact version if δ =
0. Like the classical case, approximate quantum coupling induces approximate
semantics of projective predicates via approximate lifting.

Definition 6 (Approximate Quantum Lifting). Let ρ1 ∈ D(H1) and ρ2 ∈
D(H2), let P be a projection onto a closed subspace of H1 ⊗ H2, then ρ ∈
D(H1 ⊗ H2) is called a witness of the δ-lifting ρ1 ∼δ

P ρ2 if,

1. ρ is a δ-coupling for 〈ρ1, ρ2〉;
2. supp(ρ) ⊆ P .

where δ is the deviation from the exact quantum lifting.

A valid approximate quantum lifting implies the existence of an approximate
quantum coupling that satisfies a quantum predicate. The approximate lifting
ρ1 ∼δ

P ρ2 degenerates into the exact lifting ρ1 ∼P ρ2 when δ = 0. One of the most
important quantum predicates is the equivalence relation between two registers,
as defined below [8].

Definition 7 (Equivalence). Let register p̄ and q̄ are two disjoint registers of
the same size. The quantum equivalence predicate over (p̄, q̄), denoted by ≡(p̄,q̄),
is the projection

(Ip̄ ⊗ Iq̄ + SWAP)/2

over subspace Hp̄ ⊗ Hq̄. SWAP is the swap operator defined on (p̄, q̄) such that
by SWAP|ψ〉|ϕ〉 = |ϕ〉|ψ〉 for any |ψ〉 ∈ Hp̄ and |ϕ〉 ∈ Hq̄.

The quantum equivalence predicate in Definition 7 directly comes from a
natural observation. In the probabilistic world, if two probability distributions μ1

and μ1 over X are the same, then there exists a coupling μ whose support lives in
the identity relation {(a, a) | a ∈ X}. In quantum settings, this is not true due to
superposition. For example, the exact coupling of the state |+〉 = (|0〉 + |1〉)/√2
and itself is |+〉⊗|+〉, which is not in the space spanned by |0〉⊗|0〉 and |1〉⊗|1〉.

502 P. Yan et al.

Instead, we use the projection (I + SWAP)/2 to represent the corresponding
symmetric space. By doing so, we have (I + SWAP)(|+〉 ⊗ |+〉)/2 = |+〉 ⊗ |+〉.
The following lemma shows that approximate lifting concerning ≡2 effectively
encodes the trace distance of two partial density matrices.

Lemma 2. For any ρ1, ρ2, we have ρ1 ∼δ
≡ ρ2 ⇔ D(ρ1, ρ2) ≤ 2δ. Particularly,

if δ = 0, we have ρ1 ∼≡ ρ2 ⇔ ρ1 = ρ2.

The introduction of approximate couplings/liftings is necessary when the
comparison can not match the desired predicate exactly. For example, the
implementation of a unitary gate U can be approximated by a proper RUS
circuit [13,40]. Given an input ρ, quantum measurement in each iteration of
the RUS circuit will generate the desired output UρU† with a probability p,
where p is determined by the construction of the RUS circuit. If the itera-
tions of the RUS circuit are unbounded, the desired state can eventually be
achieved. The RUS algorithm’s function E converges to U , as expressed as
E(ρ) =

∑∞
k=1 p(1 − p)k−1UρU† = UρU†. In this case, the exact lifting can

accurately describe the equivalence E(ρ) ∼≡ UρU† with no problem. However,
in practical scenarios, there typically exists an upper bound N on the iteration
count k, leading to an approximate equivalence denoted as E ′(ρ) ∼δ

≡ UρU†,
where E ′ represents the function with bounded looping and δ = (1 − p)N/2.

4.2 Upper Bound of Approximation

The approximation usually arises when we use a desired postcondition to approx-
imate an exact postcondition. Formally, let (A,B) be the pair of two projections
A and B over Hilbert space H1 ⊗ H2, the inference

∀ρ1, ρ2, ρ1 ∼A ρ2 ⇒ ρ1 ∼δ
B ρ2 (1)

demonstrates a general way of introducing approximate reasoning. That is, given
a witness of the exact lifting ρ1 ∼A ρ2, does there exist a witness σ of the
approximate lifting ρ1 ∼δρ2

B ?. The optimal deviation δ in Eq. 1 is equivalent to
the following quantity,

δ = d(A,B) = sup
ρ�A

inf
σ�B

max{D(Tr1(ρ),Tr1(σ)),D(Tr2(ρ),Tr2(σ))} (2)

where d(A,B) can be upper bounded by sup
ρ�A

inf
σ�B

D(ρ, σ) introduced in [66].

In the following, we discuss a simple but important instance of Eq. 1 with
A = (U1 ⊗ U2)B(U1 ⊗ U2)† and B being the quantum equivalence predicate ≡.
Then Eq. 1 can be represented as follows,

∀ρ1, ρ2, ρ1 ∼≡ ρ2 ⇒ U1ρ1U
†
1 ∼A U2ρ2U

†
2 ⇒ U1ρ1U

†
1 ∼δ

≡ U2ρ2U
†
2

where δ can be upper bounded by ‖U1 ·U†
1 −U2 ·U†

2‖�. The diamond norm ‖ · ‖�
proposed by Kitaev [2] can better distinguish between two superoperators with
the help of the power of quantum entanglement by introducing auxiliary qubits.
2 The subscripts can be ignored without confusion.

Approximate Relational Reasoning for Quantum Programs 503

Definition 8 (Diamond Norm). Let A : L(H) → L(H) with L(H) denoting
the matrix space of H,

‖A‖� ≡ max
ρ∈D(H⊗H′)

1
2
Tr|(A ⊗ IH′)(ρ)| (3)

where H′ denotes a copy of H. The factor 1/2 is added to keep consistent with
trace distance.

It is straightforward to verify that D(E1(σ), E2(σ)) ≤ ‖E1 − E2‖� for any σ ∈
D(H) for superoperators E1, E2 by choosing ρ = σ⊗IH′/2Dim(H′).3 The distance
between two superoperators can be computed efficiently [53]. Particularly, the
distance between U1 and U2 is

‖U1 · U†
1 − U2 · U†

2‖� =

{
sin α/2 α < π

1 α ≥ π
(4)

where α is the smallest arc containing the spectrum of U†
1U2 [37].

5 Approximate Relational Logic

5.1 Judgment and Validity

Our logic, called aqRHL, “approximates” the quantum relational Hoare logic
described in [8]. The judgments in aqRHL take the following form S1 ∼δ S2 :
A ⇒ B, where S1 and S2 are quantum programs, A and B are projections
over subspaces of Hq̄1 ⊗ Hq̄2 such that q̄i contains all free variables of Si, δ ∈
[0, 1/2] is referred to as the deviation from the exact quantum lifting, respectively.
Registers q̄1 and q̄2 are often omitted since they rarely change along our reasoning
and are often clear from the context.

Definition 9 (Validity). The approximate relational judgement S1 ∼δ S2 :
A ⇒ B is valid, written as � S1 ∼δ S2 : A ⇒ B, if and only if

∀ρ1, ρ2. ρ1 ∼A ρ2 ⇒ �S1�(ρ1) ∼δ
B �S2�(ρ2)

where A and B are projections. If the deviation δ equals zero, it will be omitted
for simplicity.

In Definition 9, we choose projective predicates [12] over the joint system of
two programs because such predicates are the quantum analog of binary rela-
tions, the predicates used in pRHL [9]. Moreover, this definition will become a
judgment of [8] if δ = 0. One of the most important applications of relational
Hoare logic is to verify the equivalence between programs, as presented in the
following lemma. Naturally, the approximate equivalence between programs can
also be reasoned by the approximate relational judgment, where δ characterizes
the deviation of approximation.
3 Dim(H) denotes the dimension of H.

504 P. Yan et al.

Lemma 3 (Program Equivalence). Program S1 is equivalent4 to program
S2 if and only if � S1 ∼ S2 : ≡ ⇒ ≡.

The program equivalence can be expressed concisely with predicates being
the equivalence relation, instead of checking whether two quantum programs
perform uniformly by enumeration of an infinite number of states in Hilbert
space. The following example shows that superposition makes quantum program
equivalence more complex than its classical counterpart.

Example 1. Let S1 and S2 be two programs defined on a single bit or qubit. For
classical programs, the state space for programs S1 and S2 is the set {|0〉, |1〉}. Let
Ψ and Φ be the equivalence relation, the relational judgment S1 ∼ S2 : Ψ ⇒ Φ
holds for classical programs S1 and S2 if

�S1�(|0〉〈0|) = �S2�(|0〉〈0|) �S1�(|1〉〈1|) = �S2�(|1〉〈1|) (5)

However, this conclusion no longer holds in quantum programs since the input
state could be a superposition of |0〉 and |1〉. For example, let S1 ::= skip and
S2 ::= q := Z[q], it is clear that S1 and S2 are not equivalent5 although Eq. 5
still holds. To check quantum program equivalence, we need to verify the validity
of �S1�(ρ) = �S2�(ρ) for all ρ in the Hilbert space span{|0〉, |1〉} rather than the
set {|0〉, |1〉}, which involves enumerations of an infinite set.

5.2 Proof Rules

We are ready to provide some proof rules for our aqRHL judgments. These rules
include construct-specific rules (two-sided and one-sided) and structural ones,
as is typical in relational Hoare logic. Notice that rules for branching structures
are discussed in Sect. 7 later.

Simple Rules. Figure 2 includes the two/one-sided proof rules for basic state-
ments and sequence structure. The basic rules, namely [Skip], [Init], [Ut] are
similar to their counterparts in [8] with δ = 0, where they are presented in the
forward variant. Here we use proj(A) to lift non-projection A to its support
before assigning it as a predicate. Notice that the rule [Ut] gives the strongest
postcondition, which means the reverse � q̄1 := U−1

1 [q̄1] ∼ q̄2 := U−1
2 [q̄2] :

(U1⊗U2)A(U†
1 ⊗U†

2) ⇒ A still holds. The rule [Seq] demonstrates that the devi-
ation grows linearly with respect to the sequences, which directly comes from
the triangle inequality of trace distance. One-sided rules are necessary when two
programs do not share the same structure. We have only listed the one-side rules
(appended with “-L”) for the left side, and similar rules apply to the right side
symmetrically.

4 That is, �S1�(ρ) = �S2�(ρ) holds for any partial density operator ρ.
5 �S1�(|ψ〉〈ψ|) �= �S2�(|ψ〉〈ψ|) for any superposition |ψ〉 = a|0〉+ b|1〉, 0 < |a|2 + |b|2 ≤

1.

Approximate Relational Reasoning for Quantum Programs 505

Fig. 2. Simple aqRHL rules.

Rules for Equivalence Relation. We address a scenario regarding the rules [Ut],
where the precondition and postcondition are equivalence relations defined in
Definition 7. We use diamond norm to bound the deviation in rule [Ut-id], where
U · U† denotes the Kraus representation [39] of unitary U . The rule [Comp]
permits reasoning equivalence between programs by introducing intermediate
programs (Fig. 3).

Fig. 3. Rules for Equivalence Relation

5.3 Soundness Theorem

Theorem 1. [Soundness] For any program S1, S2, projections A and B, devi-
ation δ, we have,

� S1 ∼δ S2 : A ⇒ B ⇒ � S1 ∼δ S2 : A ⇒ B

The soundness of our proof system is proved with respect to the validity of
judgments defined in 9, while the completeness remains an open question. For
classical deterministic programs, relational Hoare logic has been demonstrated
to be relatively complete for terminating programs with the help of providing
additional supplementary one-sided rules. However, relative completeness does
not extend to probabilistic programs. As highlighted in [5], the probabilistic cou-
pling method lacks the robustness of the conductance method in demonstrating
the rapid mixing of Markov chains. Building upon the work laid by [8], the quan-
tum extension of probabilistic couplings and the introduction of approximation
in our judgments further complicate this problem.

506 P. Yan et al.

6 Approximate Quantum Fourier Transform

Objective. As a quantum analog of the classical discrete Fourier transform,
quantum Fourier transform (QFT) [17] performs a linear transformation on
quantum states and extracts the periodicity of the amplitudes of quantum states.
Due to the imperfectness of quantum gates, the approximate quantum Fourier
transform (AQFT) is proposed to improve the circuit depth of QFT for effi-
ciency. Reference [17] proposes a direct AQFT based on ignoring gates related
to high-order terms. Cleve and Watrous [16] parallelized the phase estimation
procedure to perform AQFT with lower circuit depth. Let SQFT and SAQFT be
the corresponding quantum programs for QFT and AQFT, respectively. This
section uses our logic to derive the judgment of form SQFT ∼δ SAQFT : ≡ ⇒ ≡
to reason about how well AQFT approximates QFT.

Specification. For an n qubit system, QFT on a computational basis state
|x〉 = |x1x2 . . . xn〉 is defined as the linear operation U such that

U |x〉 = |ψx〉 = 1√
2n

∑N−1
y=0 (e2πi/N)x·y|y〉 (6)

where N = 2n, |ψx〉 is called a Fourier basis state with respect to state |x〉,
x · y denotes the multiplication between the binary representation of x and y.
|ψx〉 can be described as |ψx〉 = |μ0.xn

〉|μ0.xn−1xn
〉 · · · |μ0.x1...xn

〉, where |μθ〉 =
(|0〉 + e2πiθ|1〉)/√2, 0.xi . . . xj denotes the binary fraction xi/2 + xi+1/4 + · · · +
xj/2j−i+1. State |μθ〉 can be obtained by applying the phase shift gate P (2πθ)
(mentioned in Sect. 2) on state |+〉 = (|0〉 + |1〉)/√2. The phase shift gate
P (2πθ) can be decomposed as the sequence of gates Rm = P (2π/2m) since
P (θ1)P (θ2) = P (θ1 + θ2). The controlled Rm gate is denoted by CRm[(q1, q2)],
which is the c-P (θ) gate (mentioned in Sect. 2) with θ = 2π/2m.

QFT can be parallelly implemented [16], as shown in Fig. 4. The unitary
V generates the Fourier basis state |ψx〉 without erasing |x〉. The unitary Add
introduces auxiliary (k − 1)n qubits to create k − 1 replicas of Fourier basis
state |ψx〉. The unitary oracle T introduces auxiliary n qubits to compute the
corresponding phase parameter |x〉 of the Fourier basis state |ψx〉 without erasing
|ψx〉. All these auxiliary qubits are not depicted in Fig. 4 since they are reset back
to |0〉 after the computation.

We can perform approximate computations for oracles V and T to achieve
a lower circuit depth. Oracle V can be approximated by ignoring CRm gates of
larger m. Oracle T can be approximated by performing quantum measurements
followed by classical post-processing on measurement outcomes [28]. Let unitary
V ′ and T ′ be the approximation of V and T respectively, the corresponding
program SAQFT is almost the same as SQFT but with oracles V and T replaced
by V ′ and T ′ respectively. Next, we use our logic to reason the approximate
equivalence between programs SQFT and SAQFT. That is,

SQFT ∼δ1+2δ2 SAQFT : ≡(q̄0,q̄′
0)

⊗|0〉〈0|aux ⇒ ≡(q̄0,q̄′
0)

⊗|0〉〈0|aux (7)

Approximate Relational Reasoning for Quantum Programs 507

Fig. 4. QFT circuit in [16]. Given a computational basis state |x〉 and corresponding
Fourier basis state |ψx〉, unitary V performs mapping |x〉|0〉⊗n �→ |x〉|ψx〉, unitary
Add performs mapping |ψx〉|0〉⊗n · · · |0〉⊗n �→ |ψx〉|ψx〉 · · · |ψx〉, and unitary T performs
mapping |ψx〉 · · · |ψx〉|0〉⊗n �→ |ψx〉 · · · |ψx〉|x〉.

Fig. 5. Proof sketch for programs SQFT and SAQFT. To easily refer to predicates, we
label each assertion a name //Pi on its right.

where δ = nπ2−k−1 + 2ne−k/8, |0〉〈0|aux denotes the tensor product of constant
projections |0〉〈0| over all qubits in other registers except q̄0 and q̄′

0. The main
proof sketch is shown in Fig. 5.

Create the Fourier Basis State. The computation of unitary U in Eq. 6 can
be parallelized by individually preparing every |μθ〉 by the following unitary

Qt,i : |0〉⊗t|x1 . . . xn〉 → |μ0.xi...xi+t−1〉|0〉⊗t−1|x1 . . . xn〉

508 P. Yan et al.

in [16], where i+ t− 1 ≤ n, qubits x1 . . . xi−1 and xi+t . . . xn in |x〉 are not used.
The unitary Qt,i acting on register (q̄, p̄) can be denoted as,

UGHZ [q̄];CR1[(p̄[i], q̄[1])]; . . . ;CRt[(p̄[i + t − 1], q̄[t])];U†
GHZ [q̄];H[q̄[1]]

where UGHZ denotes the unitary that generates a GHZ state, that is, UGHZ |0〉⊗t

= (|0〉⊗t + |1〉⊗t)/
√

2. Registers q̄ and p̄ are of size t and n, respectively. q̄[i]
denotes the i-th qubit in register q̄. For example, Fig. 6 in [16] represents the
circuit of unitary Q4,i on |x〉. Similar to the approximation in [17], unitary Qt,i

can be approximated by ignoring CRm gates of large m. That is, we could use
Qt,i to approximate Qt′,i if 1 ≤ t < t′ ≤ n. The approximation can be modeled
by the judgment

� (q̄, p̄) := Qt,i[(q̄, p̄)] ∼δ(t,t′) (q̄′, p̄′) := Qt′,i[(q̄′, p̄′)] :
|0〉〈0|(q̄,q̄′)⊗ ≡(p̄,p̄′) ⇒ ≡(q̄[1],q̄′[1]) ⊗|0〉〈0|(q̄[2,n],q̄′[2,n])⊗ ≡(p̄,p̄′)

(8)

with δ(t, t′) = 1
2 sinπ(2−t − 2−t′

). Pq̄ denotes a projection P over the register
q̄. Particularly, |ψ〉〈ψ|q̄ denotes the tensor product of |ψ〉〈ψ| over all qubits in
register q̄.

Figure 7 illustrates the circuit of the oracle V over register (q̄0, r̄, q̄1). To pre-
pare each |μθ〉 in |ψx〉 individually, we need to prepare n copies of state |x〉
beforehand, which is achieved by the unitary C. The unitary C can be imple-
mented by CNOT gates in a binary tree architecture to achieve a circuit depth
of log n. To make it concise, the auxiliary qubits q[2, n] in oracle Qt,i(q̄, p̄) that
reset back to |0〉 are ignored in Fig. 7 and the input of Qt,i is set as |0〉|x〉. The
circuit for oracle V ′ is almost the same as Fig. 7 except that Qt,i is approximated
by Qk,i, where k (0 < k < t ≤ n) denotes the number of significant phase shift
gates. Specifically, oracles V and V ′ can be represented as follows,

V = C[(q̄0, r̄)]; Q1,n[(q̄1[1], q̄0)]; Q2,n−1[(q̄1[2], r̄1)]; . . . ; Qn,1[(q̄1[n], r̄n−1)]; C
†[(q̄0, r̄)]

V ′ = C[(q̄′
0, r̄

′)]; Q1,n[(q̄′
1[1], q̄′

0)]; Q2,n−1[(q̄
′
1[2], r̄′

1)]; . . . ; Qk,n−k+1[(q̄
′
1[k], r̄′

k−1)];

Qk,n−k+1[(q̄
′
1[k + 1], r̄′

k)]; . . . ; Qk,n−k+1[(q̄
′
1[n], r̄′

n−1)]; C
†[(q̄′

0, r̄
′)]

where register r̄ = {r̄1, . . . , r̄n−1} contains n−1 registers r̄i initialized with |0〉⊗n

.
Based on judgement 8, we have the following judgment

� (q̄0, q̄1) := V [(q̄0, q̄1)] ∼δ1 (q̄′
0, q̄

′
1) := V ′[(q̄′

0, q̄
′
1)] : P0 ⇒ P1 (9)

where δ1 =
∑n

i=k+1 δ(k, i) = 1
2

∑n
i=k+1 sin π(2−k − 2−i) ≤ nπ2−k−1. Notice that

every register r̄i in Fig. 7 is reset back to |0〉, thus the predicate |0〉〈0|(r̄,r̄′) on
register (r̄, r̄′) can be ignored.

Replicate & Erase Fourier Basis State. We provide a brief overview of
the functionality of the oracle Add as described in [16]. We begin with the
state |ψx〉|0〉⊗n · · · |0〉⊗n

and apply Hadamard gates H⊗n

to each |0〉⊗n

, resulting
in |ψx〉|ψ0〉 · · · |ψ0〉. Then, we apply telescoping subtraction |x1〉|x2〉 · · · |xk〉 →

Approximate Relational Reasoning for Quantum Programs 509

Fig. 6. Circuit for oracle Q4,i on state |x1 . . . xn〉. Qubits x1 . . . xi−1 and xi+4 . . . xn

are not used and ignored.

Fig. 7. Circuit for oracle V . Given a computational basis state |x〉 = |x1 . . . xn〉, unitary
C performs the mapping |x〉|0〉⊗n · · · |0〉⊗n �→ |x〉⊗n

, and unitary Qt,i performs the
mapping |0〉|x〉 �→ |μ0.xi...xi+t−1〉|x〉.

|x1〉|x2−x1〉 · · · |xk −xk−1〉 to obtain |ψx〉|ψx〉 . . . |ψx〉. Reversely, we can use pre-
fix addition |x1〉|x2〉 · · · |xk〉 → |x1〉|x1 + x2〉 · · · |x1 + x2 + · · · + xk〉 to eliminate
the duplicates of the Fourier basis state. A log(k)-depth tree of 3-2 adders can be
used to generate two encoded numbers, followed by a quantum carry-lookahead
adder of log(n)-depth to add the encoded numbers. Since programs SAFT and
SQAFT share the same procedure to replicate and erase Fourier basis states, we
simplify replicating and erasing procedures by treating them as quantum oracles
Add and Add† respectively. Then we use rule [Ut] to get the following judgment.

� (q̄1, q̄2) := Add[(q̄1, q̄2)] ∼ (q̄′
1, q̄

′
2) := Add[(q̄′

1, q̄
′
2)] : P1 ⇒ P2 (10)

� (q̄1, q̄2) := Add†[(q̄1, q̄2)] ∼ (q̄′
1, q̄

′
2) := Add†[(q̄′

1, q̄
′
2)] : P5 ⇒ P6 (11)

Estimate the Phase of a Fourier State. The key to this step is based on
the idea [3] that quantum measurement can be simulated by unitaries with the
help of ancillary qubits. As shown in Fig 4, the oracle T generates the phase |x〉
in register q̄3 of the Fourier state |ψx〉, then the Fourier basis state |x〉 in register

510 P. Yan et al.

q̄0 can be erased by the following CNOT gate (CNOT |x〉|x〉 = |x〉|0〉). The gate
T †, the reverse of T , is applied subsequently to restore the state to the duplicates
of |ψx〉. Given the input |x〉 in register q̄0, the whole process of erasing |x〉 works

as |x〉|ψx〉 · · · |ψx〉|0〉⊗n T−→ |x〉|ψx〉 · · · |ψx〉|x〉 CNOT−−−−→ |0〉⊗n |ψx〉 · · · |ψx〉|x〉 T †
−−→

|0〉⊗n |ψx〉 · · · |ψx〉|0〉⊗n

where the auxiliary register q̄3 is initialized with |0〉⊗n

and reset back to |0〉⊗n

.
In order to reduce the circuit depth of oracle T , [16] parallelized the phase

estimation procedure proposed by [29]. Given k copies of each |μx2−i〉, we perform
two single-qubit measurements

M1 = {M0
1 = |μ0〉〈μ0|, M1

1 = |μ 1
2
〉〈μ 1

2
|} M2 = {M0

2 = |μ 1
4
〉〈μ 1

4
|, M1

2 = |μ 3
4
〉〈μ 3

4
|}

on k/2 of the copies independently, where {|μ0〉, |μ 1
2
〉} and {|μ 1

4
〉, |μ 3

4
〉} are

the eigenvectors of Pauli operators X and Y respectively. These measure-
ments on copies of |ψx〉 would generate a distribution {p(x,i)} over a nk-bit
string |m(x,i)〉 of measurement outcomes. Then a reversible classical process-
ing f is applied to infer x′

i based on measurement outcome |m(x,i)〉, that is
|m(x,i)〉|0〉 → |m(x,i)〉|x′

i〉, where the probability p(x,i) is close to 1 if |x′
i〉 = |x〉,

and a properly estimated |x′
i〉 can be used to erase the phase |x〉 on register q̄0.

The following lemma is proved using Chernoff bound.

Lemma 4. [16] Given any computational basis |x〉, measuring observables X
and Y randomly generates a distribution {p(x,i)} over {|m(x,i)〉}, followed by a
classical processing that generates phase |x′

i〉 from |m(x,i)〉. We have Pr(|x′
i〉 =

|x〉) = p(x,i) > 1 − 4ne−k/8.

We can convert the above whole process into a unitary operation T ′ with-
out actual measurements that can operate on data in superposition. First, the
following unitary UM ([q̄1, q̄2, r̄]),

UM ([q̄1, q̄2, r̄]) := ⊗n
i=1(⊗k/2

j=1UX [(r[ik+j], p[ik+j])])⊗(⊗k
j=1+k/2UY [(r[ik+j], p[ik+j])])

is applied to simulate measurements on copies of |ψx〉, where register p̄ = {q̄1, q̄2}
and auxiliary register r̄ is initialized with |0〉. Unitary gates UX and UY

UX [(q1, q2)] := (H[q1] ⊗ I[q2])CNOT [(q1, q2)](H[q1] ⊗ I[q2]);

UY [(q1, q2)] := (H[q1] ⊗ I[q2])CY [(q1, q2)](H[q1] ⊗ I[q2])

introduce auxiliary qubit q1 initialized with |0〉 to simulate single-qubit measure-
ments M1 and M2 on |μx2−i〉 in qubit q2.

|0〉|μx2−i〉 UX−−→ 〈μ0|μx2−i〉 · |0〉|μ0〉 + 〈μ 1
2
|μx2−i〉 · |1〉|μ 1

2
〉

|0〉|μx2−i〉 UY−−→ 〈μ 1
4
|μx2−i〉 · |0〉|μ 1

4
〉 + 〈μ 3

4
|μx2−i〉 · |1〉|μ 3

4
〉

where CY [(q1, q2)] denotes the controlled Pauli Y gate. Next, we set the outputs
of auxiliary register r̄ of UM to be the input of oracle O[(r̄, q̄3)] such that

UM |μx2−i〉 ⊗ |0〉 O−→ ∑
i
√

p(x,i)|ϕ〉 ⊗ |x′
i〉

Approximate Relational Reasoning for Quantum Programs 511

where oracle O denotes the corresponding quantum circuit of the classical pro-
cessing f on measurement outcomes. Thus, the oracle T ′ can achieved by UM [(q̄1,
q̄2, r̄)] and O[(r̄, q̄3)] sequentially. By lemma 4, we would have

� (q̄1, q̄2, q̄3) := T [(q̄1, q̄2, q̄3)] ∼δ2 (q̄′
1, q̄

′
2, q̄

′
3, r̄) := T ′[(q̄′

1, q̄
′
2, q̄

′
3, r̄)] : P2 ⇒ P3

� (q̄1, q̄2, q̄3) := T †[(q̄1, q̄2, q̄3)] ∼δ2 (q̄′
1, q̄

′
2, q̄

′
3, r̄) := T ′†[(q̄′

1, q̄
′
2, q̄

′
3, r̄)] : P4 ⇒ P5

(12)

where δ2 = 2ne−k/8.

Conclusion Finally, we use rule [Seq] to sum up all judgments to get Eq. 7.

7 Measurements Conditions and Additional Proof Rules

7.1 Measurement Conditions

Additional constraints must be imposed on programs to establish feasible rela-
tional proof rules for those with complex structures, such as if and loop state-
ments. In the classical pRHL approach in [7], the precondition m1Ψm2 satisfied
by the initial memories m1 and m2 requires the guards e1 and e2 in the if
or loop statements must be equal. Things get more complex in quantum pro-
grams since quantum mechanics are naturally probabilistic, and it is generally
impossible to require two if statements to give the same measurement or with
the same probability distributions. In [8], the term “synchronous execution” in
quantum programs means that two quantum measurements M1 = {Mm

1 } and
M2 = {Mm

2 } should produce the same distribution over branches for input ρ1
and ρ2, that is, Tr(Mm

1 ρ1M
m
1

†) = Tr(Mm
2 ρ2M

m
2

†). To study more general pro-
grams, we propose the approximate measurement conditions, which establish
appropriate upper bounds for the deviations in our judgments.

Definition 10 (Approximate Measurement Condition). Let M1 =
{Mm

1 } and M2 = {Mm
2 } be two measurements in H1 and H2 that share the

same set {m} of measurement outcomes, respectively. The measurement condi-
tion

M1 ≈{δm} M2 : A ⇒ {(pm, Bm)} (13)

means that for every measurement outcome m, we have

∀ρ1, ρ2. ρ1 ∼A ρ2 ⇒
{

Mm
1 ρ1M

m
1

† ∼δm
Bm

Mm
2 ρ2M

m
2

†

max{Tr(Mm
1 ρ1M

m
1

†),Tr(Mm
2 ρ2M

m
2

†)} ≤ pm

where pm ∈ [0, 1]. Deviations δm in the measurement condition can be ignored if
they equal zero. We write predicate {(pm, Bm)} as {Bm} for short if all pm = 1.

512 P. Yan et al.

7.2 Additional Proof Rules

Now, we introduce the rules for if and loop statements in Fig. 8. The rule [IF]
requires the measurement condition in the premises to provide a bound on the
whole approximation, where the deviation δ′

m of the branch body is scaled down
by pm. The rule [LP] does not require the synchronous execution of loop guards
[8,9], or the speed bound at which loops converge [26]. Instead, the measurement
condition only employs an upper bound p1 on the probabilities of entering loop
bodies for the first iteration. Rule [LP] requires p1 ∈ [0, 1) and provides better
deviation if p1 is smaller. If p1 equals one initially, we can unroll loop statements
several times to make p1 less than one.

We derive rule [LP*] as an alternative to rule [LP] by incorporating more
specific measurement conditions for the iterations of loops when we can not
find a good A for rule [LP]. When doing approximate reasoning about loops,
it is typical to set an upper bound N on the number of iterations. Notice that
the factor λn is not an upper bound on the probability of entering (n + 1)-
th iteration except for n = 0. Overall, rule [LP*] is a direct application of
rule [Seq] on a finite number of iterations, where measurement conditions are
used to scale the deviations. Since we can always make the skip statement
share the same probability distribution with any if and while statements, the
measurement conditions for one-side rules [IF-L], [LP-L], and [LP*-L] are more
straightforward.

Fig. 8. Rules for branching structure in aqRHL. The deviation of rule (LP*) is given by
f(αk, βk, pk) = (α0+

∑N−1
n=0 λnαn+1)+(Nβ0+

∑N−2
n=0 (N −n−1)λnβn+1)+(

∑N−1
n=0 (N −

n)λnδn) with λn =
∏n

k=0 pk.

Structural Rules. Unlike classical programs, the potential quantum entanglement
between subsystems brings a unique challenge in constructing a general frame

Approximate Relational Reasoning for Quantum Programs 513

rule for quantum programs [8,51,64]. We derive a simple frame rule [Frame]
to specify a specific instance that the predicate C on additional independent
system (r̄1, r̄2) is one-dimensional. Subscripts related to registers are displayed
explicitly for clarity. Rule [Order] adds an order relation ≤ over deviations.
In addition, an additional condition is introduced in rule [Approx] to allow
switching postconditions at the cost of bringing approximation (Fig. 9).

Fig. 9. Structural aqRHL rules.

8 Related and Future Works

With the fast development of quantum hardware [50], various quantum program-
ming languages [1,4,19,20,22,47,48] have been proposed for more straightfor-
ward implementation of quantum algorithms. Very recently, significant efforts
have been devoted to the research of quantum logic and quantum program anal-
ysis [14,23,43,49,55,56,63,65] for these emerging quantum programs.

Comparison with Quantitative Robustness Reasoning. [26] develops semantics
for erroneous quantum while programs and logic to prove robustness between
an ideal program and a noisy one. [66] derives applied quantum Hoare logic by
employing projection as predicates and reasons about the robustness of quantum
programs, i.e., error bounds of outputs. These two works focus on single-program
executions, while our work studies relational reasoning. In particular, the major
differences are as follows. a). Different formula: In the logic formula of [26,66], the
predicate lives in the space of the principle program. The predicate of our logic
lives in the joint space of the two programs. b). Different scope of applications:
The proof systems developed by [26,66] focus on studying the robustness of
quantum programs, i.e., equivalence or closeness. Our choice of relational Hoare
logic can reason about general relations beyond equivalence or closeness. We can
reason relational properties between programs with different numbers of qubits.
c). Different proof rules: The proof rules of [26,66] discuss programs with the
same syntax statement, while our one-side rules can track relational properties
for different statements.

Comparison with Relational Quantum Hoare Logics. Our work is primarily
inspired by the quantum relational Hoare logics recently proposed by [8,33,51].

514 P. Yan et al.

In particular, [8] suggests that casting approximate reasoning into the general
framework of relational quantum Hoare logic remains open. Generally, two quan-
tum while programs do not share the same probabilities for taking different paths
or outcomes during their execution. Under such circumstances, exact quantum
couplings cannot be found, as they only exist for partial density operators with
identical trace. This mathematical condition significantly restricts the flexibility
of the exact quantum relational Hoare logic. Our work provides a promising solu-
tion to this open question. In particular, by introducing approximate quantum
coupling, our logic system offers a more general scope of applications. Our logic,
aqRHL, is a quantum counterpart to apRHL [9], even from a technical point of
view: aqRHL employs projective predicates [12] over the joint systems of the pro-
grams, a natural quantum counterpart of binary relations, the predicates used
in apRHL.

Future Work. There are several promising directions for future work. Firstly,
we would like to extend our theory to the hybrid system, i.e., programs with
quantum and classical variables. Hybrid quantum-classical systems allow for the
exploitation of quantum advantages while leveraging the existing classical com-
puting infrastructure. A unified language incorporating both quantum and clas-
sical effects may offer advantages in analyzing hybrid programs [52]. Secondly, we
will investigate the potential applications of the newly developed approximate
relational quantum Hoare logic. Particularly, we are interested in applying it to
the construction and verification of quantum cryptographic proofs and ensuring
the correctness of optimized quantum compilers specifically designed for NISQ
(Noisy Intermediate-Scale Quantum) devices. Lastly, it is interesting to incor-
porate recently developed tools such as quantum abstract interpretation [62]
and quantum separation logic [64] to design over-approximation techniques [58].
Another interesting technique is Context-Free-Language Ordered Binary Deci-
sion Diagrams [46], which may serve as a backend representation and manipu-
lation technique in studying quantum Hoare logics.

9 Conclusion

We resolve the open question of [8] by designing an approximate relational Hoare
logic for robustly reasoning the relational properties of two programs. We show-
case the success of our methodology by formally verifying the well-known low-
depth approximation of the quantum Fourier transform, and the correctness of
the repeat-until-success algorithm and bit flip code.

Acknowledgement. We thank our anonymous referees for their comments and sug-
gestions on earlier versions of this paper. Hanru Jiang acknowledges the support from
the National Natural Science Foundation of China under Grant No. 62202265, and the
Beijing Natural Science Foundation under Grant No. Z220002.

Approximate Relational Reasoning for Quantum Programs 515

References

1. Abhari, A.J., et al.: Scaffold: quantum programming language. Princeton Univer-
sity NJ Department of Computer Science, Tech. rep. (2012)

2. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states
(1998). https://doi.org/10.48550/ARXIV.QUANT-PH/9806029, https://arxiv.
org/abs/quant-ph/9806029

3. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In:
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
pp. 20-30. STOC ’98, Association for Computing Machinery, New York, NY, USA
(1998). https://doi.org/10.1145/276698.276708

4. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum comput-
ing (2019). https://doi.org/10.5281/zenodo.2562111

5. Anil Kumar, V., Ramesh, H.: Coupling vs. conductance for the jerrum-sinclair
chain*. Random Struct. Algorithms 18(1), 1–17 (2001). https://doi.org/10.1002/
1098-2418(200101)18:11::AID-RSA13.0.CO;2-7

6. Badihi, S., Akinotcho, F., Li, Y., Rubin, J.: ARDiff: scaling program equivalence
checking via iterative abstraction and refinement of common code. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 13–24. ESEC/FSE
2020, Association for Computing Machinery, New York, NY, USA (2020). https://
doi.org/10.1145/3368089.3409757

7. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-
based cryptographic proofs. In: Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 90–101. POPL
’09, Association for Computing Machinery, New York, NY, USA (2009). https://
doi.org/10.1145/1480881.1480894

8. Barthe, G., Hsu, J., Ying, M., Yu, N., Zhou, L.: Relational proofs for quantum
programs. Proc. ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/
3371089

9. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational
reasoning for differential privacy. ACM Trans. Program. Lang. Syst. 35(3) (2013).
https://doi.org/10.1145/2492061

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 14–25. POPL ’04, Association
for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/
964001.964003

11. Bergstra, J., Tiuryn, J., Tucker, J.: Floyd’s principle, correctness theories and pro-
gram equivalence. Theor. Comput. Sci. 17(2), 113–149 (1982). https://doi.org/10.
1016/0304-3975(82)90001-9, https://www.sciencedirect.com/science/article/pii/
0304397582900019

12. Birkhoff, G., Neumann, J.V.: The logic of quantum mechanics. Ann. Math. 37(4),
823–843 (1936). http://www.jstor.org/stable/1968621

13. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient synthesis of universal repeat-
until-success quantum circuits. Phys. Rev. Lett. 114, 080502 (2015). https://doi.
org/10.1103/PhysRevLett.114.080502

14. Chen, Y.F., Chung, K.M., Lengál, O., Lin, J.A., Tsai, W.L., Yen, D.D.: An
automata-based framework for verification and bug hunting in quantum circuits.
Proc. ACM Program. Lang. 7(PLDI) (2023). https://doi.org/10.1145/3591270

https://doi.org/10.48550/ARXIV.QUANT-PH/9806029
https://arxiv.org/abs/quant-ph/9806029
https://arxiv.org/abs/quant-ph/9806029
https://doi.org/10.1145/276698.276708
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1002/1098-2418(200101)18:11::AID-RSA13.0.CO;2-7
https://doi.org/10.1002/1098-2418(200101)18:11::AID-RSA13.0.CO;2-7
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/2492061
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1016/0304-3975(82)90001-9
https://doi.org/10.1016/0304-3975(82)90001-9
https://www.sciencedirect.com/science/article/pii/0304397582900019
https://www.sciencedirect.com/science/article/pii/0304397582900019
http://www.jstor.org/stable/1968621
https://doi.org/10.1103/PhysRevLett.114.080502
https://doi.org/10.1103/PhysRevLett.114.080502
https://doi.org/10.1145/3591270

516 P. Yan et al.

15. Churchill, B., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment for
equivalence checking. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 1027–1040. PLDI 2019,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3314221.3314596

16. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum fourier transform.
In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
526–536. IEEE Computer Society, Redondo Beach, CA, USA (2000). https://doi.
org/10.1109/SFCS.2000.892140

17. Coppersmith, D.: An approximate fourier transform useful in quantum factoring
(2002). https://doi.org/10.48550/arxiv.quant-ph/0201067

18. Cousineau, G., Enjalbert, P.: Program equivalence and provability. In: Bečvář,
J. (ed.) Mathematical Foundations of Computer Science, pp. 237–245. Springer,
Berlin, Heidelberg (1979). https://doi.org/10.1007/3-540-09526-8 20

19. Developers, C.: Cirq (2021). https://doi.org/10.5281/zenodo.5182845, See full list
of authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors

20. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013).
https://doi.org/10.1145/2499370.2462177

21. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems
of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/10.1103/
PhysRevLett.103.150502

22. Heim, B., et al.: Quantum programming languages. Nat. Rev. Phys. 2, 709–722
(2020). https://doi.org/10.1038/s42254-020-00245-7

23. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: A verified optimizer for
quantum circuits. Proc. ACM Program. Lang. 5(POPL) (2021). https://doi.org/
10.1145/3434318

24. Hsu, J.: Probabilistic couplings for probabilistic reasoning (2017)
25. Huang, Y., Martonosi, M.: Statistical assertions for validating patterns and finding

bugs in quantum programs. In: Proceedings of the 46th International Symposium
on Computer Architecture, pp. 541–553. ISCA ’19, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3307650.3322213

26. Hung, S., Hietala, K., Zhu, S., Ying, M., Hicks, M., Wu, X.: Quantitative robustness
analysis of quantum programs. Proc. ACM Program. Lang. 3(POPL), 31:1–31:29
(2019). https://doi.org/10.1145/3290344

27. Kakutani, Y.: A logic for formal verification of quantum programs. In: Proceed-
ings of the 13th Asian Conference on Advances in Computer Science: Information
Security and Privacy, pp. 79–93. ASIAN’09, Springer-Verlag, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10622-4 7

28. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation.
American Mathematical Society, USA (2002). https://doi.org/10.1090/gsm/047

29. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. Elec-
tron. Colloquium Comput. Complex. TR96-003 (1996). https://eccc.weizmann.
ac.il/eccc-reports/1996/TR96-003/index.html

30. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. SIGPLAN Not. 44(6), 327–337 (2009). https://doi.org/
10.1145/1543135.1542513

31. Lahiri, S.K., Sinha, R., Hawblitzel, C.: Automatic root causing for program equiva-
lence failures in binaries. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided
Verification, pp. 362–379. Springer International Publishing, Cham (2015). https://
doi.org/10.1007/978-3-319-21690-4 21

https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1109/SFCS.2000.892140
https://doi.org/10.1109/SFCS.2000.892140
https://doi.org/10.48550/arxiv.quant-ph/0201067
https://doi.org/10.1007/3-540-09526-8_20
https://doi.org/10.5281/zenodo.5182845
https://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3290344
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.1090/gsm/047
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
https://eccc.weizmann.ac.il/eccc-reports/1996/TR96-003/index.html
https://doi.org/10.1145/1543135.1542513
https://doi.org/10.1145/1543135.1542513
https://doi.org/10.1007/978-3-319-21690-4_21
https://doi.org/10.1007/978-3-319-21690-4_21

Approximate Relational Reasoning for Quantum Programs 517

32. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime
assertions for testing and debugging quantum programs. Proc. ACM Program.
Lang. 4(OOPSLA) (2020). https://doi.org/10.1145/3428218

33. Li, Y., Unruh, D.: Quantum relational hoare logic with expectations. In: Bansal,
N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata,
Languages, and Programming (ICALP 2021). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 198, pp. 136:1–136:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/
LIPIcs.ICALP.2021.136, https://drops.dagstuhl.de/opus/volltexte/2021/14205

34. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis.
Nat. Phys. 10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

35. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. Form. Asp. Com-
put. 27(4), 701–726 (2015). https://doi.org/10.1007/s00165-014-0319-6

36. Ming, J., Zhang, F., Wu, D., Liu, P., Zhu, S.: Deviation-based obfuscation-resilient
program equivalence checking with application to software plagiarism detection.
IEEE Trans Reliab. 65(4), 1647–1664 (2016). https://doi.org/10.1109/TR.2016.
2570554

37. Nechita, I., Pucha�la, Z., Pawela, L., Życzkowski, K.: Almost all quantum channels
are equidistant. J. Math. Phys. 59(5), 052201 (2018). https://doi.org/10.1063/1.
5019322

38. Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN Not.
35(5), 83–94 (2000). https://doi.org/10.1145/358438.349314

39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, 10th edn.
(2011). https://doi.org/10.1017/CBO9780511976667

40. Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition
of single-qubit unitaries. Quantum Info. Comput. 14(15-16), 1277–1301 (2014).
https://doi.org/10.26421/QIC14.15-16-2

41. Pitts, A.: Operationally-Based Theories of Program Equivalence, pp. 241–298.
Publications of the Newton Institute, Cambridge University Press, Cambridge
(1997). https://doi.org/10.1017/CBO9780511526619.007

42. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

43. Rand, R.: Verification logics for quantum programs (2019)
44. Rand, R., Paykin, J., Zdancewic, S.: QWIRE Practice: formal verification of quan-

tum circuits in Coq. Electron. Proc. Theor. Comput. Sci. 266, 119–132 (2018).
https://doi.org/10.4204/eptcs.266.8

45. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134. SFCS ’94, IEEE Computer Society, USA (1994). https://doi.
org/10.1109/SFCS.1994.365700

46. Sistla, M., Chaudhuri, S., Reps, T.: CFLOBDDs: context-free-language ordered
binary decision diagrams (2023)

47. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set archi-
tecture (2016). https://arxiv.org/abs/1608.03355

48. Svore, K., et al.: Q#: enabling scalable quantum computing and development with
a high-level DSL. In: Proceedings of the Real World Domain Specific Languages
Workshop 2018. RWDSL2018, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3183895.3183901

https://doi.org/10.1145/3428218
https://doi.org/10.4230/LIPIcs.ICALP.2021.136
https://doi.org/10.4230/LIPIcs.ICALP.2021.136
https://drops.dagstuhl.de/opus/volltexte/2021/14205
https://doi.org/10.1038/nphys3029
https://doi.org/10.1007/s00165-014-0319-6
https://doi.org/10.1109/TR.2016.2570554
https://doi.org/10.1109/TR.2016.2570554
https://doi.org/10.1063/1.5019322
https://doi.org/10.1063/1.5019322
https://doi.org/10.1145/358438.349314
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.26421/QIC14.15-16-2
https://doi.org/10.1017/CBO9780511526619.007
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.4204/eptcs.266.8
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/1608.03355
https://doi.org/10.1145/3183895.3183901

518 P. Yan et al.

49. Tao, R., et al.: Giallar: push-button verification for the Qiskit quantum compiler.
In: Proceedings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 641–656. PLDI 2022, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3519939.3523431

50. Trabesinger, A.: Quantum computing: towards reality. Nature 543, S1 (2017).
https://doi.org/10.1038/543S1a

51. Unruh, D.: Quantum relational Hoare logic. Proc. ACM Program. Lang. 3(POPL)
(2019). https://doi.org/10.1145/3290346

52. Voichick, F., Li, L., Rand, R., Hicks, M.: Qunity: a unified language for quantum
and classical computing. Proc. ACM Program. Lang. 7(POPL) (2023). https://
doi.org/10.1145/3571225

53. Watrous, J.: Simpler semidefinite programs for completely bounded norms. Chicago
J. Theor. Comput. Sci. 2013, 8 (2013). http://cjtcs.cs.uchicago.edu/articles/2013/
8/contents.html

54. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: models and first results. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 356–366. ASE ’13,
IEEE Press, Silicon Valley, CA, USA (2013). https://doi.org/10.1109/ASE.2013.
6693094

55. Xu, A., Molavi, A., Pick, L., Tannu, S., Albarghouthi, A.: Synthesizing quantum-
circuit optimizers. Proc. ACM Program. Lang. 7(PLDI) (2023). https://doi.org/
10.1145/3591254

56. Xu, M., et al.: Quartz: superoptimization of quantum circuits. In: Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 625–640. PLDI 2022, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3519939.3523433

57. Yan, P., Jiang, H., Yu, N.: On incorrectness logic for quantum programs. Proc.
ACM Program. Lang. 6(OOPSLA1) (2022). https://doi.org/10.1145/3527316

58. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1), 308–
334 (2007). https://doi.org/10.1016/j.tcs.2006.12.036, https://www.sciencedirect.
com/science/article/pii/S0304397506009261, festschrift for John C. Reynolds’s
70th birthday

59. Ying, M.: Floyd–Hoare logic for quantum programs. ACM Trans. Program. Lang.
Syst. 33(6) (2012). https://doi.org/10.1145/2049706.2049708

60. Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edn. (2016). https://doi.org/10.1016/C2014-0-
02660-3

61. Ying, M., Duan, R., Feng, Y., Ji, Z.: Predicate Transformer Semantics of Quantum
Programs, pp. 311–360. Cambridge University Press, Cambridge (2009). https://
doi.org/10.1017/CBO9781139193313.009

62. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, pp. 542–558. PLDI 2021, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3453483.3454061

63. Yuan, C., McNally, C., Carbin, M.: Twist: sound reasoning for purity and entangle-
ment in quantum programs. Proc. ACM Program. Lang. 6(POPL) (2022). https://
doi.org/10.1145/3498691

https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1038/543S1a
https://doi.org/10.1145/3290346
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
http://cjtcs.cs.uchicago.edu/articles/2013/8/contents.html
http://cjtcs.cs.uchicago.edu/articles/2013/8/contents.html
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1145/3591254
https://doi.org/10.1145/3591254
https://doi.org/10.1145/3519939.3523433
https://doi.org/10.1145/3527316
https://doi.org/10.1016/j.tcs.2006.12.036
https://www.sciencedirect.com/science/article/pii/S0304397506009261
https://www.sciencedirect.com/science/article/pii/S0304397506009261
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1017/CBO9781139193313.009
https://doi.org/10.1017/CBO9781139193313.009
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3498691
https://doi.org/10.1145/3498691

Approximate Relational Reasoning for Quantum Programs 519

64. Zhou, L., Barthe, G., Hsu, J., Ying, M., Yu, N.: A quantum interpretation of
bunched logic & quantum separation logic. In: Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’21, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1109/
LICS52264.2021.9470673

65. Zhou, L., Barthe, G., Strub, P.Y., Liu, J., Ying, M.: CoqQ: foundational verification
of quantum programs. Proc. ACM Program. Lang. 7(POPL) (2023). https://doi.
org/10.1145/3571222

66. Zhou, L., Yu, N., Ying, M.: An applied quantum Hoare logic. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1149–1162. PLDI 2019, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3314221.3314584

67. Zhou, L., Yu, N., Ying, S., Ying, M.: Quantum earth mover’s distance, a no-
go quantum Kantorovich-Rubinstein theorem, and quantum marginal problem. J.
Math. Phys. 63(10), 102201 (2022). https://doi.org/10.1063/5.0068344

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1063/5.0068344
http://creativecommons.org/licenses/by/4.0/

QReach: A Reachability Analysis Tool
for Quantum Markov Chains

Aochu Dai1 and Mingsheng Ying1,2(B)

1 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

dac22@mails.tsinghua.edu.cn
2 Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China

yingms@ios.ac.cn

Abstract. We present QReach, the first reachability analysis tool for
quantum Markov chains based on decision diagrams CFLOBDD (pre-
sented at CAV 2023). QReach provides a novel framework for finding
reachable subspaces, as well as a series of model-checking subprocedures
like image computation. Experiments indicate its practicality in verifica-
tion of quantum circuits and algorithms. QReach is expected to play a
central role in future quantum model checkers.

Keywords: Reachability analysis · Quantum Markov chain ·
Quantum Model Checking

1 Introduction

A rapid growth of quantum computing hardware has been witnessed in the
last few years. As a recent breakthrough, IBM has introduced its new quan-
tum processor Condor, which breaks the 1000-qubit barrier. Many researchers
share the belief that quantum computation will be scalable and stable enough
for some meaningful quantum algorithms in the foreseeable future. In the era
of Fault-Tolerant Quantum Computing (FTQC), quantum systems may be too
complicated to be designed and verified manually. On the other hand, system-
atic ventures occurring in a quantum circuit or a communication protocol may
differ significantly from those in classical systems and may be counterintuitive.
The success of model checking techniques in classical computing and communi-
cation industry motivates us to extend it for analysis and verification of various
temporal properties of a quantum system. Indeed, several model checking algo-
rithms have been proposed for quantum automata and quantum Markov chains
[10,11,18]. Additionally, some basic communication protocols like BB84 have
passed the verification of the proposed quantum model checkers [2]. However,
these quantum model checkers cannot be applied to larger quantum systems.

As is well known, the scalability of classical model checkers heavily relies
on the data structures (in particular, various DDs (Decision Diagrams), e.g.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 520–532, 2024.
https://doi.org/10.1007/978-3-031-65633-0_23

https://doi.org/10.5281/zenodo.10939993
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_23

QReach: A Reachability Analysis Tool for Quantum Markov Chains 521

ROBDD) employed in them for representing the system under checking. Several
quantum generalisations of DDs have been introduced for modelling, simulation,
and verification of (combinational) quantum circuits, like QMDD [12], TDD [9],
and LimDD [17], providing different degrees of compression for quantum states
and operators. Based on these diagram structures, some simulation or verification
tools were developed for experimental tasks like equivalence checking and bug
finding [5,6]. Decision diagrams have well-defined canonicity and regularization,
which motivates us to implement quantum model-checking algorithms by means
of DDs. Up to now, however, these quantum DDs have not been used in quantum
model checking.

In this paper, we incorporate quantum DDs into quantum model checking
for the first time. Quantum Markov chains (QMCs for short) have been adopted
as a fundamental model of many quantum information processing systems (e.g.
quantum communication protocols, semantics of quantum programs, etc). So, we
choose to use QMCs as our system model. As is well-known, reachability anal-
ysis is a core task in classical model checking algorithms. In the quantum case,
indeed, reachability analysis has been applied in quantum communication, quan-
tum control and termination analysis of quantum programs among many oth-
ers. Therefore, we focus on the issue of reachability analysis of quantum Markov
chains. In addition, we decide to use Context-Free-Language Ordered Binary
Decision Diagrams [15] (CFLOBDD for short), one of the most efficient quan-
tum DDs as the backend of our tool to provide support for functionalities. We
also refer to Quasimodo [14], a quantum circuit simulator based on CFLOBDD,
for some of the code’s implementation details. Supported by the efficiency of the
DD representation, our tool is well scalable and has the potential to be expanded
into large-scale quantum circuit model checkers in the future.

Contributions of the Paper: This paper introduces the first reachability anal-
ysis tool for QMCs, called QReach1. It can efficiently compute reachable sub-
spaces of QMCs with the following techniques:

– Subspaces of QMCs, which are usually defined by atomic propositions in
Birkhoff-von Neumman quantum logic, are represented as CFLOBDDs in
QReach.

– Partitioning and frontier set simplification are introduced in our algorithm to
reduce the size of data structures, in analogy to corresponding techniques in
classical symbolic model checking.

2 Quantum Reachability Analysis

For convenience of the reader, we briefly review the model of QMCs and their
reachable subspaces. Recall that a Markov chain (MC for short) is a pair 〈S, P 〉,
where S is a finite set of states and P is a transition probability matrix P :
S × S → [0, 1] satisfying a normalization condition

∑
s′∈S P (s, s′) = 1 for any

s ∈ S. Similarly, a QMC is defined as a pair 〈H, E〉, where H is the state Hilbert

1 Available at https://github.com/Acdimy/qreach-tools.

https://github.com/Acdimy/qreach-tools

522 A. Dai and M. Ying

space of the quantum system under consideration and E is a quantum operation
describing the evolution of the system, i.e. a mapping from a quantum state ρ to
another E(ρ) (also called a quantum channel in quantum information literature).
Table 1 gives a detailed comparison between classical MCs and QMCs:

Table 1. Classical Markov chains vs quantum Markov chains.

(Discrete-time) Markov
Chain

Quantum Markov Chain

State space Finite or countable set Finite-dimensional or
separable Hilbert space

Initialization Probability distribution:
ιinit : S → [0, 1]∑

s∈S ιinit(s) = 1

Density matrix:
ρ =

∑
i pi|ψi〉〈ψi|∑

pi = 1

Transition Probability transition matrix:
P : S × S → [0, 1]∑

s′∈S P (s, s′) = 1

Quantum operation:
E(ρ) =

∑
i EiρE†

i∑
E†

i Ei = I

Logic Probabilistic temporal logic Temporal extension of
Birkhoff-von Neumann quantum Logic

– A pure state of an n-dimensional quantum system is represented by a unit
complex vector |ψ〉 ∈ C

n. In Table 1, the density operator ρ =
∑

i pi|ψi〉〈ψi|
is a mathematical representation of ensemble {(pi, |ψi〉}, meaning the system
is in state |ψi〉 with probability pi. Thus, ρ can be seen as a quantum analog
of the initial probability distribution in a classical MC.

– The quantum operation E is a quantum generalization of the transition prob-
ability matrix in a classical MC. According to the principles of quantum
mechanics, it can be mathematically modelled as E(ρ) =

∑
i EiρE†

i , where
each Ei is an n × n complex matrices (called Kraus matrices) satisfying the
condition

∑
E†

i Ei = I (the unit matrix), which is a counterpart of the nor-
malization condition in a classical MC. In particular, the evolution of a closed
quantum system is described by E(ρ) = UρU†, where U is a unitary matrix,
i.e. UU† = U†U = I.

Quantum Reachability Problem: Given a QMC C = 〈H, E〉 and any initial
state ρ in H, compute the reachable subspace:

RC(ρ) = span{|ψ〉 ∈ H : |ψ〉 is reachable from ρ in C} (1)

Intuitively, RC(ρ) consists of not only the states reached in the execution path
ρ → E(ρ) → E2(ρ) → · · · → En(ρ) → · · · but also their linear combinations.

Example 1 (Quantum random walk). Consider a quantum random walk on a 4-
cycle [16] with the Hadamard operator as a coin c, shown in Fig. 1. The walking

QReach: A Reachability Analysis Tool for Quantum Markov Chains 523

space is a 4-dimensional Hilbert space Hp on the bottom two qubits p1, p2, sup-
ported by four position states {|0〉p, |1〉p, |2〉p, |3〉p} in the computational basis.
After applying the coin H in each step, the evolution of the system is described
by a quantum conditional (shift operator):

S = |0〉c〈0| ⊗
∑

i

|i + 1〉p〈i| + |1〉c〈1| ⊗
∑

i

|i − 1〉p〈i|

where the neighbor-state |i + 1〉 and |i − 1〉 are computed modulo 4. It means
that the walker can simultaneously walk in different directions, which is the main
difference between classic and quantum random walks.

Fig. 1. Quantum random walk on a 4-cycle

This system can be modelled as a QMC with E being defined by the unitary
operator S(Hc ⊗ Ip). Let it start in pure state ρ = |000〉〈000|. Using the tool
QReach presented in this paper, one can compute that the reachable space of this
QMC is the 6-dimensional space with linear independent basis {|000〉, |001〉 +
|111〉, |100〉 − |110〉, |101〉 + |001〉, |010〉, |011〉 + |101〉}. It is surprising that not
the whole 8-dimensional state space Hc ⊗ Hp is reachable although any position
in Hp may be hit in some time.

3 Architecture and Data Structures

In this section, we elaborate on the architecture of QReach and some reasoning
techniques for quantum circuits based on the CFLOBDD backend. Although
our target is specified on quantum reachability analysis, we believe that some
functionalities of QReach are also useful for other tasks.

3.1 Architecture of QReach

An overview of the architecture of QReach is presented in Fig. 3. For conve-
nience of presentation, we describe QReach’s procedure with Example 1. Let the
system starting in state ρ = |000〉〈000|. To illustrate the capability of QReach
for handling general quantum operations, we consider a faulty quantum random
walk in which a bit-flip error happens in front of the Hadamard gate with proba-
bility p. The behavior of the system is then modelled by E(ρ) = E0ρE†

0 +E1ρE†
1,

524 A. Dai and M. Ying

Fig. 2. A Demo for reachability analysis of QMCs. channels is a list of quantum errors
and instructions like measurement and reset, containing their occurring positions.

where E0 =
√

1 − p S(Hc ⊗ Ip), and E1 =
√

p S(Hc ⊗ Ip)(X ⊗ Ip). Our purpose
is to compute the reachable subspace of E . An example Python program for this
process is shown in Fig. 2.

We implement our symbolic quantum reachability analysis algorithm with
CFLOBDD in a C++ core and provide Python interfaces for invoking. Some of
the key components are explained below:

Input and Output . QReach accepts a composite input specification to repre-
sent a QMC. A quantum program written in the QASM format [7] is parsed
as the main circuit body of the QMC. Some specified quantum errors, mea-
surements, and other non-unitary channels can be coded as a supplement in
the Qchannel type. Once results are obtained, some subspace characters (e.g.
dimensions and support vectors) can be output.

Simulation . A well-formed toolkit Quasimodo [14] based on CFLOBDD was
implemented for quantum algorithm simulation. Simulation for quantum cir-
cuits, or in other words, applying a sequence of quantum gates on a pure state,
is an essential process during the reachability analysis. Therefore, we referred
to some of the codes’ implementation details from Quasimodo. Specifically, we
adopted Quasimodo’s Pybind architecture, which links C++ APIs and Python.
However, a simulation framework like Quasimodo cannot handle situations in
reachability analysis like mixed states and super-operators. We fixed these issues,
added some new features, and stored gate sequences and intermediate projectors
to make the simulation execution process not just sequential.

These methods are covered in fromMarkovModel() and reachability(),
while still available to invoke independently for other purposes. For example,
qchecker.u3() conducts normal U3 gate simulation on the state vector in the
current workspace; setProjector() and applyProjector() methods provide
data manipulation in Projector and State vector as shown in Fig. 3. Detailed
techniques used in our CFLOBDD simulator different from that in previous
works [14,15] will be discussed in Sect. 3.2.

QReach: A Reachability Analysis Tool for Quantum Markov Chains 525

Reachability Analysis. The efficient algorithm for quantum reachability anal-
ysis to be elaborated in Sect. 4 has been implemented in QReach. We also imple-
mented the interfaces for some of mathematical tricks in [19] (e.g. Choi matrix
transformation and maximally entangled state preparation) on CFLOBDDs,
which will be critical in a future extension of QReach for computing reacha-
bility probabilities (rather than subspaces) of QMCs.

Fig. 3. Architecture of QReach.

3.2 CFLOBDD for Quantum Reachability Analysis

Now we introduce our CFLOBDD backend, which implements some support for
numerical algorithms and quantum instructions. In particular, we illustrate how
to expand simulation of a quantum system to its reachability analysis.

As a newly proposed DD-based structure, CFLOBDD attracts our attention
due to its distinctive features compared to other DDs for quantum systems.
CFLOBDD adopts a single-entry, multi-exit, non-recursive, hierarchical finite-
state machine architecture [15]. From a programming perspective, a certain form
of procedure call is invoked, leading to some exponential compression over BDDs.
Following the name “context-free language”, the incoming and outgoing edges
of groupings are matched according to certain principles. Figure 4 provides a
general insight into how the edges of CFLOBDDs are matched. The represent-
ing capability of the CFLOBDD is exploited in our tool QReach for symbolic
reachability analysis of QMCs.

Like any other type of DDs, the compression capability of CFLOBDDs only
stands out in specific instances. In these cases, canonical reduced forms reuse
parts in a DD and save storage from the raw data. However, in general cir-
cumstances, the number of nodes required to represent a large-scale matrix or
vector is still exponential. Reordering strategies for reduced ordered BDDs to
optimize storage usage are hard (NP-complete) [3]. This problem becomes even
more severe in algebraic DDs [1], where non-Boolean values make it harder to

526 A. Dai and M. Ying

Fig. 4. CFLOBDD for Hadamard gate. Indices are represented in the L0 groupings
consisting of fork nodes and don’t care nodes. A path from the entry of the topmost
grouping to the terminal values denotes an assignment to all indices. For example, the
bold blue path corresponds with the {x0 = 0, y0 = 1} entry of the Hadamard matrix,
resulting a value 1√

2
. (Color figure online)

find similar structures in a diagram. Therefore, we cannot simply represent a
quantum operation or a projector as a single CFLOBDD without a partition
strategy. Unlike classical symbolic model checking, a quantum circuit is usu-
ally difficult to partition due to entanglements. We chose an alternative in the
QReach backend: using an augmented simulation method to calculate quantum
operations. Thus, only state vectors and single quantum gates need to be stored,
rather than the whole matrix.

In particular, circuits in QMCs are usually complicated, involving noises
and dynamic operations. To handle them, we strengthen CFLOBDD with the
following techniques:

Non-unitary Operators. Apart from normal quantum gates like Hadamard,
Pauli, and generic U3 rotation gates, we specifically support two-dimensional
matrices of any form, covering those non-unitary operators in quantum noises
and measurements; for instance, amplitude damping channels with operators:

E0 =
[
1 0
0

√
1 − γ

]

, E1 =
[
0

√
γ

0 0

]

Another example of non-unitary operators is Z-basis measurements. The post
measurement states are obtained by applying P0 = |0〉〈0| and P1 = |1〉〈1| respec-
tively, followed by normalizations.

Basic Methods Extensions. Some operations are added to CFLOBDD as
a basis for top-level algorithms, incorporating the normalization and conjugate
transpose. In addition to these methods, an optimizing trick for complex number
representation is applied. We used a simplified version of the method proposed
in [20], constructing a Hash function and unique table for complex numbers.

QReach: A Reachability Analysis Tool for Quantum Markov Chains 527

Numerical Algorithms. Numerical algorithms are critical in QReach. Based
on them, some operations that are particularly important in modelling quantum
systems (e.g. partial trace and Choi matrix) are now available in QReach (see
Example 2). A key methodology is to decompose operands of calculations into
base vectors, replacing complicated operations with matrix-vector multiplication
or inner products of vectors. In Sect. 4, the high-level description of reachability
analysis algorithm also embodies this idea.

Example 2 (Partial trace). Consider a quantum system composed of qubits A
and B in state ρAB . Then the state of A can be described by the partial trace
operator:

ρA ≡ trB(ρAB) :=
∑

i

(IA ⊗ 〈i|B)ρAB(IA ⊗ |i〉B)

For simplicity, suppose the system is in a pure state |ψ〉 = |0〉|λ〉+|1〉|μ〉. Tracing
out qubit A, qubit B should be in the mixed state ρ = |λ〉〈λ|+|μ〉〈μ|. In QReach,
this procedure is conducted in the following steps to avoid redundant matrix
manipulations and adjustments to CFLOBDD’s internal structures: (1) Perform
a Z-basis measurement on A and get unnormalized post measurement states
|0〉|λ〉 and |1〉|μ〉; (2) Apply X gate to A conditionally on the measurement
result one; (3) Let the collection S = {|0〉|λ〉, |0〉|μ〉}. Then S can be viewed
as ρ’s representation and participate in later calculations. In some cases, like
reachability analysis, the norm of a state vector is not essential and could be
omitted thereby. Note that after these operations qubit A remains in a tensored
zero state, because the number of qubits in a CFLOBDD is required to be an
exponential power of 2. We apply an X gate on the measure-one result to make
the effect looks like resetting a qubit.

4 Algorithm for Reachability Analysis

The existing algorithm for reachability analysis of QMCs is based on Choi matrix
representation of quantum operations introduced in [19]. In this section, we
propose a more efficient algorithm for the same purpose (see Algorithm 1).

Our algorithm is a natural extension of reachability analysis in classical model
checking using a BFS-based technique. The main difference is that we are dealing
with reachable subspaces of the Hilbert space H rather than subsets of a finite
set of states in the classical case. Therefore, Algorithm 1 traverses each possible
dimension of a finite-dimensional Hilbert space non-repetitively rather than each
reachable state as in the classical case. Note that the code segment from Line
7 to Line 12 is the process of extracting vectors orthogonal to those that have
been searched, which is similar to frontier set simplification in classical symbolic
model checking.

The nontrivial subprocedures in Algorithm 1 differing from that in classical
reachability analysis are the projection and image computation (Line 5 and Line
7). To reduce the representing and temporal cost in the algorithm, our basic idea

528 A. Dai and M. Ying

Algorithm 1. Computing reachable space
Input: Super operator E in Hilbert space H with dimension d; set of initial states P
Output: A set of orthogonal basis P ′ of reachable subspace of H
1: P ′ ← Gram Schmidt(P), cnt ← size(P ′)
2: Initialize queue Q with P ′

3: while Q not empty and cnt < d do
4: curr state ← Q.pop()
5: expanded states ← Image(E , curr state)
6: for s in expanded states do
7: s ← s − Project(P ′, s)
8: s ← normalize(s)
9: if s is not zero vector then

10: Q.push(s)
11: P ′.append(s)
12: cnt ← cnt + 1
13: end if
14: end for
15: end while
16: return P ′

is to take eigenvectors into calculation instead of the whole matrix. In practice,
most of the projections are low-rank, which ensures the efficiency of this idea.

Implementation in QReach. For image computation, we exploit the simula-
tion functionality of our backend data structure CFLOBDD. The runtime of the
backend’s simulation highly determines our algorithm’s efficiency. In this step,
non-unitary operations like noises, measurements, qubit resets, and deallocations
will be simulated by the augmented simulator introduced in the past section. All
the simulations of channels together make up the image computation of Kraus
representations E(ρ) =

∑
i EiρE†

i .
A projector onto a subspace of the Hilbert space can be represented by a set

of orthogonal support vectors of the subspace. This technique can be viewed as a
quantum version of partitioning, which usually appears as forms of disjunctions
and conjunctions in classical symbolic model checking [4]. Formally, let P be the
projector onto a subspace with an orthonormal basis {|i〉}, that is, P =

∑ |i〉〈i|,
then we set P to be the set of |i〉’s, and

Project(P, |s〉) =
∑

〈s|i〉∗|i〉
We conduct conjugate-transposing on |s〉 instead of |i〉 to invoke vector opera-
tions as few as possible. The computational complexity of subprocedure Image
and Project are both O(d2) given a constant number of Kraus matrices.

The following theorem shows the correctness and complexity of our algo-
rithm.

Theorem 1. The output P ′ and input P of Algorithm 1 satisfies: span(P ′) =
RC(ρ) =

∨d−1
i=0 supp(E i(ρ)), where ρ is the initial state, and supp(ρ) = span(P).

The time complexity of Algorithm 1 is O(d3)

QReach: A Reachability Analysis Tool for Quantum Markov Chains 529

Proof. Following the theorem 1 in [19], for d = dim(H), and any density operator
ρ in H,

RC(ρ) = supp

(
d−1∑

i=0

E i(ρ)

)

(2)

And all reachable states can be reached in at most d iterations. The correctness
is proved in three steps:

i) The main while loop terminates in at most d steps;
ii) When terminates, span(Image(E , P ′)) = span(P ′);
iii) RC(P ′) = RC(ρ).

At last, combining the complexity of broad-first-search and subprocedures,
the Algorithm 1 has complexity O(d3), which is an improvement over O(d4.7454)
in [19]. 	

The dimension of a Hilbert space often grows exponentially larger in quantum
systems. Therefore, our algorithm will inevitably become inefficient on quantum
circuits with more than twelve qubits. Although limited on the scale of quantum
systems, Algorithm 1 is stable for the number of quantum operations and the
dimension of initial spaces. The BFS strategy and the frontier set simplification
ensure that only dimensions that are reached for the first time can be counted.

5 Use Cases and Experiments

Some cases are studied in this section, providing insight into practical applica-
tions of our tool QReach for quantum reachability analysis in the future. All
experiments were conducted on a personal computer with hardware configura-
tions: Intel i5-13600kf CPU with 14 cores; 32GB RAM. The experimental results
are presented in Table 2.
Grover Search . The Grover search algorithm provides a quadratic speedup
over a series of classical search algorithms [8]. The main idea of the Grover
search is to apply a quantum subroutine iteratively which leads to a rotation
from the initial state to the target state. QReach’s reachability analysis under
some float precision shows that during iterations, the state is always located in
the 2-dimensional subspace spanned by the initial state and the target state.

Quantum Random Walk . We tested quantum random walk circuits (QRW)
with different numbers of qubits which have a similar structure with Exam-
ple 1. To demonstrate more functionalities of QReach, mixed initial states and
amplitude dumping noises are introduced in front of the Hadamard gate. The
(dimension of) reachable space computed by QReach for these quantum circuits
are given in Table 2.

530 A. Dai and M. Ying

Table 2. Experimental results. The noise in QRW is amplitude dumping. For RUS, the
circuits implement (I+2iZ)/

√
5, (2X+

√
2Y +Z)/

√
7, and (3I+2iZ)/

√
13 respectively.

#Qubits Ope. type Initial dim. Time(s) #Edges Reachable dim.

Grover 7 Unitary 1 0.0252 268 2

15 Unitary 1 0.0303 350 2

31 Unitary 1 0.0516 432 2

63 Unitary 1 0.0885 514 2

QRW 3 Unitary 1 0.0284 435 6

5 Unitary 1 0.0561 1337 10

7 Unitary 1 0.196 7512 34

9 Unitary 2 379.64 608097 512

7 Noise 2 0.446 10211 64

9 Noise 2 110.70 447811 512

10 Noise 2 117.36 421038 1024

RUS 3 Measure 1 0.0262 130 2

2 Measure 1 0.0216 74 2

2 Measure 1 0.0203 60 1

Repeat-Until-Success Circuits. Repeat-until-success (RUS) circuits [13] are
a type of circuit that decides whether to repeat or terminate based on the mea-
surement results. It is usually used to design circuits with fewer non-Clifford
gates or ancilla qubits. In QReach, it can be modelled as a quantum Markov
chain with measurements and qubit resetting as parts of the channel. We tested
some of the examples in [13]. It is clear that the reachable dimensions should be
2 or 1, depending on whether the resulting quantum states differ by only one
global phase if the measurement succeeds or fails (Fig. 5).

Fig. 5. A repeat-until-success circuit for gate V3 = (I + 2iZ)/
√

5.

There is a consensus that every future tool released in quantum model check-
ing must face the problem of finding broader applications. Besides these cases,
we are improving the scope of QReach and exploring more possible applications
on sequential quantum circuits and protocols.

QReach: A Reachability Analysis Tool for Quantum Markov Chains 531

References

1. Bahar, R.I., et al.: Algebric decision diagrams and their applications. Formal Meth-
ods Syst. Des. 10, 171–206 (1997)

2. Baltazar, P., Chadha, R., Mateus, P.: Quantum computation tree logic-model
checking and complete calculus. Int. J. Quantum Inform. 6(02), 219–236 (2008)

3. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is np-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

4. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 13(4), 401–424 (1994)

5. Chen, Y.F., Chung, K.M., Lengál, O., Lin, J.A., Tsai, W.L.: AUTOQ: an
automata-based quantum circuit verifier. In: Enea, C., Lal, A. (eds.) International
Conference on Computer Aided Verification, pp. 139–153. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37709-9 7

6. Chen, Y.F., Chung, K.M., Lengál, O., Lin, J.A., Tsai, W.L., Yen, D.D.: An
automata-based framework for verification and bug hunting in quantum circuits.
Proc. ACM Program. Lang. 7(PLDI), 1218–1243 (2023)

7. Cross, A., et al.: OpenQASM 3: a broader and deeper quantum assembly language.
ACM Trans. Quantum Comput. 3(3), 1–50 (2022)

8. Grover, L.K.: Quantum computers can search rapidly by using almost any trans-
formation. Phys. Rev. Lett. 80(19), 4329 (1998)

9. Hong, X., Zhou, X., Li, S., Feng, Y., Ying, M.: A tensor network based decision
diagram for representation of quantum circuits. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 27(6), 1–30 (2022)

10. Mateus, P., Ramos, J., Sernadas, A., Sernadas, C.: Temporal logics for reasoning
about quantum systems. Semantic Tech. Quantum Comput., 389–413 (2009)

11. Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum
propositional logic. Inf. Comput. 204(5), 771–794 (2006)

12. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
efficient quantum function representation and manipulation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2015)

13. Paetznick, A., Svore, K.M.: Repeat-until-success: Non-deterministic decomposition
of single-qubit unitaries. Quantum Info. Comput. 14(15–16), 1277–1301 (2014)

14. Sistla, M., Chaudhuri, S., Reps, T.: Symbolic quantum simulation with Quasi-
modo. In: International Conference on Computer Aided Verification. pp. 213–225.
Springer (2023). https://doi.org/10.1007/978-3-031-37709-9 11

15. Sistla, M.A., Chaudhuri, S., Reps, T.: CFLOBDDs: context-free-language ordered
binary decision diagrams. ACM Trans. Program. Lang. Syst. (2023)

16. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf.
Process. 11(5), 1015–1106 (2012)

17. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD: a
decision diagram for simulation of quantum computing including stabilizer states.
Quantum 7, 1108 (2023)

18. Ying, M., Feng, Y.: Model Checking Quantum Systems: Principles and Algorithms.
Cambridge University Press (2021)

https://doi.org/10.1007/978-3-031-37709-9_7
https://doi.org/10.1007/978-3-031-37709-9_11

532 A. Dai and M. Ying

19. Yu, N., Ying, M.: Reachability and termination analysis of concurrent quantum
programs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 69–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-
1 7

20. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values?
Implementing decision diagrams for quantum computing. In: 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–7. IEEE
(2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-32940-1_7
https://doi.org/10.1007/978-3-642-32940-1_7
http://creativecommons.org/licenses/by/4.0/

Measurement-Based Verification
of Quantum Markov Chains

Ji Guan1(B) , Yuan Feng2 , Andrea Turrini1,3(B) , and Mingsheng Ying4

1 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
{guanj,turrini}@ios.ac.cn

2 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

3 Institute of Intelligent Software, Guangzhou 511458, China
4 Centre for Quantum Software and Information, University of Technology Sydney,

Sydney, NSW 2007, Australia

Abstract. Model-checking techniques have been extended to analyze
quantum programs and communication protocols represented as quan-
tum Markov chains, an extension of classical Markov chains. To spec-
ify qualitative temporal properties, a subspace-based quantum temporal
logic is used, which is built on Birkhoff-von Neumann atomic proposi-
tions. These propositions determine whether a quantum state is within
a subspace of the entire state space. In this paper, we propose the
measurement-based linear-time temporal logic MLTL to check quanti-
tative properties. MLTL builds upon classical linear-time temporal logic
(LTL) but introduces quantum atomic propositions that reason about
the probability distribution after measuring a quantum state. To facili-
tate verification, we extend the symbolic dynamics-based techniques for
stochastic matrices described by Agrawal et al. (JACM 2015) to handle
more general quantum linear operators (super-operators) through eigen-
value analysis. This extension enables the development of an efficient
algorithm for approximately model checking a quantum Markov chain
against an MLTL formula. To demonstrate the utility of our model-
checking algorithm, we use it to simultaneously verify linear-time prop-
erties of both quantum and classical random walks. Through this verifi-
cation, we confirm the previously established advantages discovered by
Ambainis et al. (STOC 2001) of quantum walks over classical random
walks and discover new phenomena unique to quantum walks.

1 Introduction

Model checking is a formal verification technique that is used to ensure the cor-
rectness of a system based on a given specification [1]. In recent years, model
checking has been applied to quantum systems and has become a powerful tool
for verifying the behaviors and properties of quantum programs or communica-
tion protocols [2,3]. Similar to the classical case, the main components of model
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 533–554, 2024.
https://doi.org/10.1007/978-3-031-65633-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_24&domain=pdf
http://orcid.org/0000-0002-3490-0029
http://orcid.org/0000-0002-3097-3896
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0003-4847-702X
https://doi.org/10.1007/978-3-031-65633-0_24

534 J. Guan et al.

checking quantum systems are the system model and the temporal logic, which
are used to mathematically describe the evolution of the system and specify its
temporal properties, respectively.

System Model. Quantum Markov Chains (QMCs), which are the quantum
extension of classical Markov chains (MCs), provide an exceptional paradigm
for modeling the evolution of quantum systems in various scenarios, including
quantum control [4], quantum information theory [5], quantum programming [6],
and quantum communication systems [7]. Notably, quantum walks, which are a
special class of QMCs, have been successfully employed in the design of quan-
tum algorithms (for a survey of this research line, see [8,9]). A QMC Q is
defined as a triple Q = (H, E , ρ0) that corresponds to a classical Markov chain
(S, P, s0), where H is a finite-dimensional Hilbert (linear) state space instead
of the finite state set S, E is a super-operator on H instead of the transition
stochastic matrix P on S, and ρ0, which is a density matrix, represents the ini-
tial state instead of s0. Intuitively, the super-operator E(·), which is a linear
mapping, models the dynamics of the system and transforms a state (density
matrix) ρ into another state E(ρ). Some special cases of QMCs have emerged,
such as open quantum walks [10] and classical-quantum (super-operator valued)
Markov chains [11], where the latter resemble classical Markov chains but with
the transition stochastic matrix P = {pi,j}i,j∈S being replaced by a transition
set {Ei,j}i,j∈S of super-operators, while still maintaining the finite state set S.

Temporal Logics. The dynamic extension of Birkhoff-von Neumann quantum
logic [12] was proposed to specify a wide range of temporal properties of quantum
systems. In this approach, atomic propositions are used to describe qualitative
properties of a quantum system, represented as closed subspaces of the system’s
state Hilbert space (whether or not a quantum state ρ is in a subspace X of
H). Furthermore, QMCs are abstracted as subspace transition systems, and the
temporal properties of interest are represented by infinite sequences of sets of
atomic propositions (subspaces) [3]. This subspace-based temporal logic allows
for the specification of linear-time properties, such as invariants and safety prop-
erties, for quantum automata (a simplified form of QMCs) [13]. Model-checking
algorithms have been developed for the subspace-based temporal logic in [14],
and the (un)decidability of model checking quantum automata has been studied
in [15]. However, a limitation of model checking QMCs against subspace-based
temporal logics is that it can only handle qualitative properties, which means
that only simple examples can be checked. Given that the power of quantum
systems lies in their probabilistic nature, it is crucial to be able to check proba-
bilistic (quantitative) properties.

To address this issue, in this paper, we propose a measurement-based linear-
time temporal logic to capture these properties and develop a model-checking
algorithm to check the quantitative properties of QMCs. More specifically, we
observe that the properties of the quantum systems in question can be described
using quantum measurements, which extract classical (probabilistic) information
from quantum states. Building on this observation, we introduce measurement-
based atomic propositions to describe static quantitative properties, namely, the

Measurement-Based Model Checking Quantum Statistical Systems 535

measurement outcome probability of a quantum state under a measurement.
This can be seen as a generalization of the subspace-based atomic propositions
of the Birkhoff-von Neumann quantum logic [12], where a quantum state ρ in a
subspace X ⊆ H can be regarded as having a measurement outcome probability
of 1 under the measurement onto X . By combining with standard linear-time
temporal logic (LTL) [1,16], we obtain MLTL, the measurement-based LTL, to
specify the temporal quantitative properties of quantum systems.

In order to develop an algorithm for model checking QMCs against MLTL
formulas, we extend the Thiagarajan’s approximate verification [17] of a stochas-
tic transition matrix P to encompass more general linear operators in quantum
systems, e.g., the super-operators. The key technique for this generalization is
based on the eigenvalue analysis of QMCs, which simplifies the previous work
based on the Bottom Strongly Connected Component (BSCC) decomposition [1]
of the state space of classical Markov chains [17]. Subsequently, we provide an
effective procedure for the approximate model checking of QMCs against MLTL
formulas. In Sect. 6, we provide several case studies to illustrate how our model
and algorithm can be applied in a quantum walk. These case studies help to ver-
ify the previously established advantages of quantum walks over classical random
walks, as discovered by Ambainis et al. [18]. Additionally, we explore new phe-
nomena unique to quantum walks when we verify the same MLTL formulas on
both types of walks.

In summary, this paper makes the following main contributions:

1. Introducing a quantum temporal logic, called measurement-based linear-time
logic (MLTL), which allows for specifying quantitative properties of QMCs.

2. Generalizing symbolic dynamics-based verification techniques of the transi-
tion stochastic matrix given in [17] to more general quantum linear operators
(super-operators) by eigenvalue analysis; based on this, a model-checking
algorithm for QMCs against MLTL is developed.

3. Verifying numerous quantitative properties of quantum walks through our
model-checking algorithm as case studies. This serves to validate the estab-
lished advantages of quantum walks over their classical counterparts and dis-
cover new phenomena unique to quantum walks.

1.1 Related Works and Challenges

To provide a suitable context for our work, let us delve deeper into the discussion
of related works and the challenges we encounter in this paper.

Hybrid vs. Quantum Temporal Logic. In a previous study [11,19], a spe-
cialized type of quantum Markov chain known as super-operator-valued quan-
tum Markov chain was proposed. This model was designed for the purpose of
modeling quantum programs and quantum cryptographic protocols. Addition-
ally, a quantum extension of the probabilistic computation tree logic (PCTL)
called quantum computation tree logic (QCTL) was introduced, along with a

536 J. Guan et al.

model-checking algorithm specifically tailored for this Markov model. In a subse-
quent development, algorithms for verifying ω-regular properties were also intro-
duced [20].

However, these hybrid temporal logic approaches heavily rely on the classical
state graph and are not applicable to quantum systems. This is because quan-
tum systems have a continuous state space and an infinite number of states,
making it impossible to obtain a connection graph. In order to address this
limitation and specify the properties of quantum Markov chains, we propose a
measurement-based linear-time temporal logic (MLTL) approach that does not
require a connection graph. This allows us to directly reason about the transi-
tions of measurement outcome probability distributions. Our MLTL approach
adopts classical LTL with quantum physical interpretation, providing the advan-
tage of utilizing existing classical techniques and facilitating contributions from
the classical model-checking community to the field of quantum computing.

Classical vs. Quantum Markov Chains. The main technique used for model
checking classical Markov chains in [17] involves studying the periodicity of states
in sub-chains obtained through BSCC decomposition [1], a widely-used method
in the field of model checking Markov chains. However, when it comes to the
quantum extension of this decomposition, as described in [21], the BSCC decom-
position of QMCs is not unique but there are infinitely many decompositions due
to the continuous state space, unlike the classical case. Consequently, we cannot
directly generalize Thiagarajan’s approximate verification [17]. To overcome this
unique challenge posed by quantum mechanics, we propose a method based on
eigenvalue analysis to directly explore the periodic properties of QMCs. As a
result, QMCs are not always periodically stable like classical Markov chains. We
provide a way to determine the periodic stability depending on the initial states
of QMCs. With these efforts, we successfully extend the idea of approximate
model checking to work for QMCs, pushing the application boundary of such
model-checking techniques to more general linear systems.

Model Checking Quantum Walks. As a result of the phenomenon known
as quantum interference [22], quantum walks can propagate at significantly
faster or slower rates compared to their classical counterparts [18]. Quantum
walks have gained attention due to their potential application in the develop-
ment of randomized algorithms, with various quantum algorithms incorporating
this concept [8,9]. Notably, in certain search problems, quantum walks can offer
quadratic or exponential speedups compared to classical algorithms.

Previously, researchers have conducted case-by-case studies on the dynamic
properties of quantum walks, requiring the introduction of various techniques
depending on the specific property and underlying topological structure of the
walks. In this paper, we introduce a model-checking method that overcomes this
limitation by allowing for the automatic verification of a wide range of proper-
ties of the walks. To model quantum walks, we utilize QMCs, and to specify the
relevant dynamical properties, we employ MLTL formulas. By simultaneously
verifying classical and quantum walks using our model-checking algorithm, we
can confirm the advantages of quantum walks that have already been estab-

Measurement-Based Model Checking Quantum Statistical Systems 537

lished in [18], as well as discover new phenomena that are distinct from classi-
cal random walks. We anticipate that these new phenomena, discovered by our
model-checking algorithm, will contribute to the development of more efficient
quantum walk-based algorithms with enhanced speedup capabilities.

2 Preliminaries

In this section, we aim to explain the three components that appear in a QMC
Q = (H, E , ρ0), as well as quantum measurements, an essential part of our MLTL.

Quantum State Space. H. The state space of a quantum system is a finite-
dimensional linear space H, which is commonly known as the Hilbert space in
the field of quantum computing. A quantum pure state is represented by a unit
complex column vector ψ in H. In the field of quantum computing, the bra-
ket notation is widely used to represent quantum states, making it easier to
perform calculations that frequently arise in quantum mechanics. This notation
uses angle brackets, 〈 and 〉, along with a vertical bar |, to construct “bras” and
“kets” that represent row and column vectors, respectively. The following list
provides the notation used in this paper to represent linear algebra concepts:

1. |ψ〉 represents a unit complex column vector (quantum pure state) in H,
labeled with ψ;

2. 〈ψ| := |ψ〉† denotes the complex conjugate and transpose of |ψ〉;
3. 〈ψ1|ψ2〉 := 〈ψ1||ψ2〉 represents the inner product of |ψ1〉 and |ψ2〉;
4. |ψ1〉〈ψ2| := |ψ1〉 · 〈ψ2| denotes the outer product of |ψ1〉 and |ψ2〉.

It is important to note that any vector in H can be linearly represented by
a computational basis, which is a set of mutually orthogonal unit vectors. In
order to compare with classical Markov chains denoted as (S, P, μ0), we use the
finite state set S = {s0, . . . , sd−1} to label the computational basis of H, with
dimension d, as {|s0〉, . . . , |sd−1〉}. Here, |sk〉 is a unit column vector with the
k-th element being 1 and the remaining elements being 0 (the index starts from
0). Then H is denoted as H = span{|s0〉, . . . , |sd−1〉}.

Using this basis, any quantum state |ψ〉 in H can be expressed as a linear com-
bination of {|s0〉, . . . , |sd−1〉} with complex coefficients ak: |ψ〉 =

∑d−1
k=0 ak|sk〉

with the normalization condition 〈ψ|ψ〉 =
∑d−1

k=0 aka∗
k = 1, where a∗

k is the com-
plex conjugate of ak. In the case of a 2-dimensional space, we have:

|s0〉 =
(

1
0

)

|s1〉 =
(

0
1

)

|ψ〉 =
(

a0

a1

)

〈ψ| =
(
a∗
0, a

∗
1

)
.

It is evident that a quantum pure state has the capability to depict a superpo-
sition of state set S = {s0, . . . , sd−1} as |ψ〉 =

∑d−1
k=0 ak|sk〉. The superposition

is a unique feature of quantum systems and the main reason for the advantages
of quantum algorithms over their classical counterparts [23].

538 J. Guan et al.

Quantum Mixed State ρ. In quantum mechanics, uncertainty is a common
characteristic of quantum systems, arising from quantum noise and measure-
ments. To describe the uncertainty of possible quantum pure states, the concept
of quantum mixed state ρ on H is introduced. It can be represented as

ρ =
∑

k

pk|ψk〉〈ψk|. (1)

Here, {(pk, |ψk〉)}k represents an ensemble, indicating that the quantum state
is at |ψk〉 with probability pk. This concept can also be used to describe the
uncertainty of a classical probability distribution, where each |ψk〉 represents sk

by |ψk〉 = |sk〉. Specifically, a (row) probability distribution μ = (p0, . . . , pd−1)
over the state set S = {s0, . . . , sd−1} can be represented by a quantum mixed
state. This representation involves a diagonal matrix on H, where the diagonal
elements correspond to the probabilities pk as follows.

ρμ =
∑

k

pk|sk〉〈sk| = diag(p0, . . . , pd−1). (2)

Hence, a quantum mixed state ρ is an extension of a probability distribution
μ. Generally, the quantum uncertainty is more complex because the ensemble
decomposition in Eq. (1) of a quantum state ρ can have infinitely many variants.
This means that ρ can represent multiple ensembles {(pk, |ψk〉)}k simultaneously.

From a mathematical perspective, a quantum mixed state ρ ∈ L(H) is a
linear operator (d-by-d matrix) on H that satisfies three conditions: 1) Hermitian
ρ† = ρ; 2) positive semi-definite 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉 ∈ H; and 3) unit trace
tr(ρ) =

∑
k〈sk|ρ|sk〉 = 1, where tr(ρ) is the trace of ρ and represents the sum

of the diagonal elements of ρ. Here, L(H) denotes the set of linear operators on
H. Let D(H) ⊆ L(H) be the set of all quantum mixed states on H. To avoid
any ambiguity, in the subsequent discussion, the term “quantum states” will
specifically refer to quantum mixed states, given that we are considering the
broader scenario.

Quantum Evolution E . In the realm of quantum computing, the evolution of
a quantum system is commonly represented by the equation

ρ′ = E(ρ). (3)

Here, E is referred to as a super-operator. Mathematically, E(·) is a linear map-
ping from L(H) to L(H), allowing for the transformation of one quantum state
ρ into another ρ′. As stated by the Kraus representation theorem [24], E can be
characterized by a finite set of d-by-d matrices {Ek : 0 ≤ k ≤ m − 1 } ⊆ L(H),
where m ≤ d2. The expression is given by E(ρ) =

∑m−1
k=0 EkρE†

k for all ρ ∈ D(H).
This representation also satisfies the trace-preserving condition

∑
k E†

kEk =
I, where I is the identity matrix on H and † denotes the complex conjugate and
transpose of matrices. In other words, for all ρ ∈ D(H), we have tr(E(ρ)) = tr(ρ)
by tr(E(ρ)) = tr(

∑
k EkρE†

k) = tr(
∑

k E†
kEkρ) = tr(ρ).

Measurement-Based Model Checking Quantum Statistical Systems 539

An example of the use of super-operators can be found in Sect. 3.1, where a
super-operator is employed to represent the evolution of quantum walks. In the
degenerate scenario, the Kraus operator is simplified to only include a unitary
matrix U on H (where U†U = U†U = I), and E(ρ) = UρU†.

Quantum Measurement. To extract information from a quantum state, a
quantum measurement is performed. This measurement yields a classical out-
come which is represented as a probability distribution over the possible results.
Mathematically, a quantum measurement is described by a set {Mk}k∈O of posi-
tive semi-definite matrices on the state (Hilbert) space H, where O is a finite set
of possible outcomes. The measurement process is probabilistic: if the quantum
system is in a state ρ before the measurement, the probability of obtaining the
outcome k is given as follows.

pk = tr(Mkρ).

Note that the measurement {Mk}k∈O satisfies the unity condition
∑

k Mk = I,
which guarantees that the total probability of all outcomes is equal to 1. In other
words,

∑
k tr(Mkρ) = tr(

∑
k Mkρ) = tr(ρ) = 1.

In the case where we want to extract the classical probability distribution μ
encoded in the quantum state ρμ as shown in Eq. (2), we can choose the mea-
surement {Mk = |sk〉〈sk|}sk∈S . In this scenario, the measurement probability of
obtaining outcome sk is given by

tr(|sk〉〈sk|ρμ) =
∑

l

〈sl||sk〉〈sk|ρμ|sl〉 = 〈sk|ρμ|sk〉 = 〈sk|(
∑

j

pj |sj〉〈sj |)|sk〉 = pk.

The above equations rely on the mutual orthogonality of the computational basis
{|s0〉, . . . , |sd−1〉}, meaning that 〈sj |sl〉 = 0 for j �= l, and also the fact that each
|sk〉 is normalized, represented by 〈sk|sk〉 = 1.

It should be noted that after the measurement, the state will collapse or be
altered, depending on the measurement outcome k, which distinguishes quantum
computation from classical computation. For instance, in the case of a projection
measurement denoted as {Pk}k∈O, the state after obtaining outcome k is given
by PkρPk/pk with pk = tr(Pkρ). Here, each positive semi-definite matrix Pk rep-
resents a projection operator (P 2

k = Pk), and a specific example of a projection
measurement is the above measurement {|sk〉〈sk|}sk∈S . Another concrete exam-
ple is provided in Example 2 for the case of quantum walks. For other scenarios
involving post-measurement states that are not encountered in this paper, please
refer to [23, Section 2.2.3].

3 Quantum Markov Chains

In this section, we present the formal definition of QMCs. For a more detailed
discussion, we refer the interested readers to [3].

540 J. Guan et al.

Definition 1. A QMC is a tuple G = (H, E , ρ0), where H is a finite-dimensional
Hilbert space, E is a super-operator on H, and ρ0 ∈ D(H) is an initial state.

The execution of G is naturally described by the trajectory of quantum states:

σ(G) := ρ0, E(ρ0), E2(ρ0), (4)

QMCs are a direct extension of classical Markov chains and can simulate
their execution; see the following example.

Example 1 (Classical Markov chains as QMCs). Not surprisingly, any classical
Markov chain (S, P, μ0) can be effectively encoded as a QMC. We can use H =
span{|s0〉, . . . , |sd−1〉} to encode S, and E can be a super-operator with Kraus
operators {Ek,l = √

pk,l|sl〉〈sk|}sk,sl∈S that encode the probabilities pk,l of P .
It can be easily verified that E is a valid super-operator, i.e.,

∑
k,l E

†
k,lEk,l =

I. Furthermore, let ρ0 =
∑

s∈S μ0(s)|s〉〈s| encode the initial probability distribu-
tion μ0. Then, the QMC (H, E , ρ0) can fully simulate the behavior of (S, P, μ0)
in the sense that for all n ≥ 0:

En(ρ0) =
d−1∑

k=0

μn(sk)|sk〉〈sk| = (μn(s0), . . . , μn(sd−1)).

Here, μn = μ0P
n, μn(sk) represents the k-th entry of μn, and E0 = idH, which is

the identity super-operator with only one Kraus operator {I}. The proof follows
a straightforward induction on n.

3.1 Quantum Walks

The case study of this paper is to explore the new and advanced properties of
quantum walks compared to classical random walks by model checking QMCs.
This exploration begins with modeling quantum walks using QMCs. Before
presenting this, we introduce one-dimensional quantum walks with absorbing
boundaries in the following example. Furthermore, we also need the bra-ket
notation |ψ1〉|ψ2〉 := |ψ1〉 ⊗ |ψ2〉 ∈ H1 ⊗ H2, which represents the composition
(tensor product) of |ψ1〉 and |ψ2〉 in the Hilbert spaces H1 and H2, respectively.

Example 2 (Quantum walk with absorbing boundaries). We consider an unbiased
quantum walk on a one-dimensional lattice indexed from s0 to sd, with the
boundaries s0 and sd being absorbing.

State Space. Let Hp = span{|s0〉, . . . , |sd〉} be a (d + 1)-dimensional Hilbert
space, where the pure state (unit vector) |sk〉 represents the position sk for
each 0 ≤ k ≤ d. In order to facilitate the evolution of the quantum walk, an
additional coin space is required. Let Hc be the coin (direction) space, which
is a 2-dimensional Hilbert space with orthonormal basis states |L〉 and |R〉,
indicating the directions left and right, respectively. Therefore, the state space
of the quantum walk is H = Hp ⊗ Hc.

Measurement-Based Model Checking Quantum Statistical Systems 541

Initial State. The initial state is ρ0 = |ψ0〉〈ψ0| with |ψ0〉 = |sk〉|X〉, indicating
the initial position sk and direction X, where 0 ≤ k ≤ d and X ∈ {L,R}.

Evolution. Each step of the walk consists of three operations:
First, measure the current position of the system to determine whether it is

absorbing positions s0 or sd. If the position is s0 or sd, then the walk terminates.
The measurement is described by

{Myes = (|s0〉〈s0| + |sn〉〈sn|) ⊗ Ic,Mno = I − Myes}.

Here, Ic and I are the identity operators on Hc and H, respectively. According to
the principles of measurements, from the current state ρ, the walk terminates at
state ρyes with probability pyes , and it continues with state ρno , with probability
pno , where

px = tr(Mxρ) and ρx = MxρM†
x/px for x = yes,no.

Second, apply an unbiased “coin-tossing” (unitary) operator on the coin space
Hc. This operator, denoted as UH , is given by:

UH =
1√
2

(
1 1
1 −1

)

= |+〉〈L| + |−〉〈R|.

Here, |±〉 = 1√
2
(|L〉 ± |R〉). The operator UH represents the Hadamard operator

on Hc, where the probabilities of going left and right are both equal to 0.5.
Third, perform a shift (unitary) operator on the space H. The shift operator,

denoted as US , is given by:

US =
d∑

k=0

|sk�1〉〈sk| ⊗ |L〉〈L| + |sk⊕1〉〈sk| ⊗ |R〉〈R|.

The intuitive meaning of the operator US is that the system walks one step left
or right based on the coin state on Hc. Here, ⊕ and � represent addition and
subtraction modulo d + 1, respectively.

In summary, in each step, given the current state ρ as the input, the quantum
walk transforms ρ into ρ′ = UρnoU

† with a probability pno, where U = US(Ip ⊗
UH) and Ip is the identity operator on Hp. Additionally, the walk terminates at
state ρyes with a probability pyes. The resulting state ρ′ then serves as the input
state for the subsequent step of the quantum walk.

For a better understanding, Appendix A in the full version of our paper [25]
provides a visual representation (Fig. 1) that showcases the evolution of the
quantum walk in Example 2 from a physical perspective.

Now, we demonstrate how to represent the quantum walk given in Example 2
using a QMC. To begin, we introduce the super-operator E , which incorporates
the unitary operator U representing the combined evolution of the second and
third operations of the quantum walk. For any given ρ ∈ D(H), we let E(ρ) be

E(ρ) = UMnoρM†
noU† + MyesρM†

yes .

542 J. Guan et al.

It is worth noting that MnoMyes = 0 and M2
yes = Myes , indicating that once

the QMC terminates, its state remains unchanged. By using induction on the
number of steps, we can easily verify that the evolution of the quantum walk
can be modeled by the QMC (Hp ⊗ Hc, E , ρ0 = |ψ0〉〈ψ0|).

4 Measurement-Based Linear-Time Temporal Logic

In this section, we introduce a specification language called Measurement-based
Linear-time Temporal Logic (MLTL) for describing the properties of quantum
systems. MLTL is similar to ordinary LTL, but its atomic propositions are inter-
preted in the context of quantum computing. It also expands on the subspace-
based atomic propositions introduced by Birkhoff and von Neumann [12].

4.1 Measurement-Based Atomic Propositions

As mentioned in Sect. 2, a quantum measurement is the process of extracting
classical information from quantum states. A quantum measurement can be
represented by a finite set {Mk}k∈O of positive semi-definite matrices with the
unity condition

∑
k Mk = I. Each matrix Mk is called a measurement operator

and it is associated with the probability tr(Mkρ) of obtaining the outcome k
when measuring the quantum state ρ. Mathematically, a measurement operator
M is positive semi-definite and satisfies M ≤ I, which means that I − M is also
positive semi-definite.

In the following discussion, our main focus is on the measurement operator
Mk and its associated probability tr(Mkρ). Therefore, we will often disregard
the specific outcome value k and simply refer to the measurement operator as
M . Additionally, we will not explicitly mention the measurement consisting of
M , as a binary quantum measurement {M, I − M} can be determined based on
M itself (as seen in Example 2 with the measurement operators Myes and Mno).

Our atomic propositions are designed to estimate the probability of the out-
come tr(Mρ) after measuring the quantum state ρ, given the measurement oper-
ator M .

Definition 2. Given a Hilbert space H,

1. an atomic proposition in H is a pair 〈M, I〉, where M represents a measure-
ment operator on H and I ⊆ [0, 1] is an interval;

2. a state ρ ∈ D(H) satisfies 〈M, I〉, written ρ |= 〈M, I〉, if the outcome proba-
bility of the measurement operator M applied to ρ falls within the interval I,
that is, tr(Mρ) ∈ I.
In terms of the expressive power of our measurement-based atomic propo-

sitions, it is worth noting that they extend the existing atomic propositions in
both the classical and quantum domains.

Measurement-Based Model Checking Quantum Statistical Systems 543

Classical: the atomic proposition 〈M, I〉 of ρ expands upon the proposition
〈sk, I〉 of μ in interval linear-time temporal logic. This classical logic has
been used to specify (static) properties of classical Markov chains [17] and
continuous-time Markov chains [26]. The proposition asserts that the prob-
ability of state sk ∈ S in distribution μ over S falls within the interval I.
The extension is achieved by utilizing ρμ =

∑
k μ(sk)|sk〉〈sk| in Eq. (2) and

M = |sk〉〈sk|, resulting in tr(Mρμ) = μ(sk). Consequently, tr(Mρμ) ∈ I if
and only if μ(sk) ∈ I.

Quantum: furthermore, an atomic proposition 〈M, I〉 of a mixed state ρ can
encode the subspace-based proposition X ⊆ H of a pure state |ψ〉 in the
Birkhoff-von Neumann quantum logic. This proposition asserts that |ψ〉 ∈ X .
This observation is made by setting M = PX , which represents the projection
onto X , I = [1, 1], and ρ = |ψ〉〈ψ|. As a result, we can conclude that ρ =
|ψ〉〈ψ| |= 〈PX , [1, 1]〉 (i.e., tr(PX ρ) = 1) is equivalent to |ψ〉 ∈ X .

To demonstrate the practicality of our atomic propositions, we will present a
series of specific instances in Example 3 later. These examples will effectively
illustrate the characteristics and properties of quantum walks.

From an algorithmic perspective, we gather a finite number of pairs 〈M, I〉
as the set of atomic propositions that are based on quantum measurements. This
set is denoted as AP .

4.2 Quantum Linear-Time Temporal Logic

In this section, we enhance the linear-time temporal logic [1,16] by incorporating
the newly introduced measurement-based atomic propositions. This will result
in the formation of our measurement-based linear-time temporal logic MLTL.

The MLTL formulas, which involve the use of measurement-based AP , are
defined according to the following syntax:

ϕ ::= true | a | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2,

where a = 〈M, I〉 ∈ AP . We can also derive additional standard Boolean oper-
ators and temporal modalities such as ♦ (eventually) and � (always) using
conventional methods.

The semantics of MLTL is also defined in a familiar manner. For any infinite
word ξ over 2AP and any MLTL formula ϕ over AP , the satisfaction relation
ξ |= ϕ is defined by induction on the structure of ϕ:

– ξ |= true always holds;
– ξ |= a iff a ∈ ξ[0];
– ξ |= ¬ϕ iff it is not the case that ξ |= ϕ (written ξ �|= ϕ);
– ξ |= ϕ1 ∨ ϕ2 iff ξ |= ϕ1 or ξ |= ϕ2;
– ξ |= ©ϕ iff ξ[1+] |= ϕ; and
– ξ |= ϕ1Uϕ2 iff there exists k ≥ 0 such that ξ[k+] |= ϕ2 and for each 0 ≤ j < k,

ξ[j+] |= ϕ1,

544 J. Guan et al.

where ξ[k] and ξ[k+] denote the (k + 1)-th element and the (k + 1)-th suffix of
ξ, respectively. The indexes start from zero so that, say, ξ = ξ[0+]. In addition,
the semantics Lω(ϕ) of ϕ is defined as the language containing all infinite words
over 2AP that satisfy ϕ: Lω(ϕ) = { ξ ∈ (2AP)ω : ξ |= ϕ }.

Now, let us extend the satisfaction relation ρ |= a to G |= ϕ between a QMC
G and an MLTL formula ϕ. To this end, we introduce the labeling function:

L : D(H) → 2AP , L(ρ) = { a ∈ AP : ρ |= a } (5)

which assigns to each quantum state ρ the set of atomic propositions in AP
satisfied by ρ. We further extend the labeling function to sequences of quantum
states by setting L(ρ0, ρ1, . . .) = L(ρ0), L(ρ1), . . . as usual. Then we define:

G |= ϕ if and only if L(σ(G)) ∈ Lω(ϕ)

where σ(G) is the state trajectory of G as defined in Eq. (4).
We now exhibit realistic settings where our approach leads to valuable

insights for the quantum walk presented in Example 2.

Example 3 (Quantum walk with absorbing boundaries, continued). Given a finite
set of intervals {Il ⊆ [0, 1]}L

l=0, let

AP = { 〈Msk
, Il〉 : Msk

= |sk〉〈sk| ⊗ Ic, 0 ≤ k ≤ d, 0 ≤ l ≤ L }
with the atomic proposition 〈Msk

, Il〉 asserting that tr(Msk
ρ) ∈ Il for 0 ≤ k ≤ d

and 0 ≤ l ≤ L. This allows us to trace the probability distribution on all positions
(including boundaries) of the quantum walk.

First, we can discuss the advantages of quantum walks over their classical
counterparts, as discovered by Ambainis et al. in [18]. When given the initial state
|s1〉|R〉, the absorbing probability at position 0 tends to 1/

√
2 in the limit as d →

∞, whereas in the classical case, the value is 1. This property can be expressed
as the MLTL formula ϕ0 = ♦�〈Ms0 , I0〉, where I0 = [1/

√
2 − γ, 1/

√
2 + γ] and

γ > 0 is a given precision parameter.
Next, we examine two properties of interest that demonstrate significant

differences between quantum walks and their classical counterparts. To the best
of our knowledge, these findings are new.

1. In the classical case, the absorbing probability at position d is always smaller
than 0.5 if the walk starts from the middle position and d is even. However,
this does not necessarily hold for quantum walks. Let ϕ1 = �〈Msd

, I1〉, where
I1 = [0, 0.5), be the MLTL formula that expresses this property. Assuming
the initial state is |sd/2〉|R〉, we will see in Sect. 6 that ϕ1 is false when d = 20.

2. Let I2 = (0.4, 1] and ϕ2 = �(〈Msd−1 , I2〉 =⇒ 〈Ms1 , I2〉), which states that
at any given time point, if the probability at position d− 1 is larger than 0.4,
then the probability at position 1 is also larger than 0.4. In the classical case,
ϕ2 is true due to the symmetry of the distribution over positions. However,
as shown in Sect. 6, ϕ2 does not hold in the quantum case. Therefore, the
distribution of the unbiased quantum walk over positions is asymmetric even
when the walk starts from the middle position.

Measurement-Based Model Checking Quantum Statistical Systems 545

5 Model Checking Algorithm

In this section, we present an algorithm that can be used to approximately verify
the satisfaction of G |= ϕ. For the convenience of the reader, we put all proofs
of theoretical results in the appendix.

Using the notations in Eq. (5), we can formally define the model checking
problem for σ(G) against MLTL formulas as follows.

Problem 1. Given a QMC G = (H, E , ρ0), a labeling function L, and an MLTL
formula ϕ, the task is to decide whether G |= ϕ, which means determining
whether L(σ(G)) ∈ Lω(ϕ).

Although MLTL extends LTL with quantum atomic propositions, the tra-
ditional model-checking techniques for LTL cannot be directly applied to solve
Problem 1. This is because the state space of a QMC is continuous and uncount-
ably infinite, even in the case where the state space is finite-dimensional. In
contrast, classical LTL model checking deals with a discrete and finite state
set. However, QMCs can simulate Markov chains as seen in Example 1, and
interval LTL formulas in [17] can be represented by MLTL formulas as dis-
cussed in Sect. 4. Despite this, the counter-example presented in [17] shows that
the language {L(σ(G))} is generally not ω-regular. Therefore, the standard app-
roach [27] of model checking ω-regular languages cannot directly solve Problem 1
either.

To address this, we turn to the problem of approximate verification for QMCs,
following the techniques introduced in [17]. The main idea in [17] involves study-
ing the periodicity of states in finitely many sub-chains obtained through BSCC
decomposition [1], and a key property of Markov chains known as periodic sta-
bility, which ensures their stability. However, extending this idea to the quantum
setting is not straightforward. It has been proven that the BSCC decomposition
of QMCs is not unique, but rather has infinitely many possibilities [21,28,29]
due to the continuous state space. Additionally, we will demonstrate below that
QMCs do not exhibit periodic stability.

Definition 3. A QMC G = (H, E , ρ0) is called periodically stable if there exists
an integer θ > 0 such that limn→∞ Enθ(ρ0) = ρ∗ for some limiting quantum state
ρ∗. The smallest value of θ, if it exists, is referred to as the period of G and is
denoted as p(G). Moreover, { Ek(ρ∗) : 0 ≤ k < p(G) } are called the periodically
stable states of G as limn→∞ Enθ(Ek(ρ0)) = Ek(ρ∗).

In the classical case, any Markov chain (S, P, μ0) is periodically stable [30]. This
means that there exists an integer θ > 0 such that limn→∞ μ0P

nθ = μ∗ for some
limiting distribution μ∗. Furthermore, θ is independent of μ0. However, this
property does not hold for QMCs, as demonstrated by the following example.

Example 4. Let H = span{|s0〉, |s1〉} and U = |s0〉〈s0| + ei2πψ|s1〉〈s1| be a uni-
tary operator on H, where ψ is an irrational number. It can be proven that the

546 J. Guan et al.

QMC (H, EU , ρ0), where EU (ρ) = UρU†, is not periodically stable for any generic
initial state ρ0. In fact, a simple calculation reveals that

Enθ
U (ρ0) = ρ00 · |s0〉〈s0|+ρ11 · |s1〉〈s1|+e−i2πψnθρ01 · |s0〉〈s1|+ei2πψnθρ10 · |s1〉〈s0|

where ρij = 〈si|ρ|sj〉. It is worth noting that since ψ is irrational, the set
{ ei2πψm : m ∈ N } is dense in the unit circle [31]. Therefore, for any integer
θ > 0, the limit limn→∞ Enθ

U (ρ0) cannot exist, except when ρ01 = ρ10 = 0.

Note that the operator EU in Example 4 has four eigenvalues (with multiplic-
ity taken into account): 1, 1, e−i2πψ, and ei2πψ. The corresponding eigenvectors
are |s0〉〈s0|, |s1〉〈s1|, |s0〉〈s1|, and |s1〉〈s0|, respectively. We have proven that the
system (H, EU , ρ0) is periodically stable if and only if the initial state ρ0 does
not have any components in the directions of |s0〉〈s1| and |s1〉〈s0|. Interestingly,
this is precisely why a QMC cannot be periodically stable (see Appendix B of
the full version of our paper [25]). To put it in another way, a QMC is periodi-
cally stable only if the initial quantum state does not contain any components in
the directions defined by the eigenvectors of the relevant super-operator (linear
operator) corresponding to eigenvalues of the form ei2πψ where ψ is an irrational
number. This result also offers an efficient method to verify the periodic stability
of a given QMC G (and determine the period p(G)). Specifically, symbolic com-
putation can be used to check whether the eigenvalues of QMCs are irrational by
analyzing their algebraic representations and mathematical properties. Such a
method can be utilized to confirm the periodic stability of the quantum walk in
Example 2. Therefore, the approximate verification technique described in this
paper can be applied to the quantum walk.

Proposition 1. Given a QMC G = (H, E , ρ0) with dim(H) = d, there is a way
to check whether G is periodically stable with computational complexity O(d8). If
it is indeed stable, we can compute the period p(G) with a complexity of O(d8).

The evaluation process for periodic stability, as described in Proposition 1,
involves examining the eigenvalues and eigenvectors of the super-operator E . To
calculate these eigenvalues and eigenvectors of E with Kraus operators {Ek}k,
we can use the matrix representation ME [32] of E , given by ME =

∑
k Ek⊗E∗

k .
Here, E∗

k represents the entry-wise complex conjugate of Ek. The linear operator
(matrix) ME acts on H ⊗ H. Based on this, we can derive the following lemma:

Lemma 1. For a non-zero A ∈ L(H), A is an eigenvector of E corresponding
to the eigenvalue λ if and only if |A〉 is an eigenvector of ME corresponding to
the eigenvalue λ. In other words, E(A) = λA if and only if ME |A〉 = λ|A〉.
In this context, |A〉 ∈ H⊗H represents the vectorization of A, denoted by |A〉 :=
(A⊗ I)|Ω〉. Here, |Ω〉 denotes the (unnormalized) maximally entangled state on
H ⊗ H [23]. Assuming H = span{|s0〉, . . . , |sd−1〉}, the maximally entangled
state can be expressed as |Ω〉 =

∑d−1
k=0 |sk〉|sk〉. In particular, for a quantum

state ρ ∈ D(H), we write |ρ〉 = (ρ ⊗ I)|Ω〉.

Measurement-Based Model Checking Quantum Statistical Systems 547

Now, our attention can be directed towards approximately model checking
the QMC G that is periodically stable. To achieve this with a desired level of
accuracy ε, we can adopt the following approach. First and foremost, we need
to identify the states of the chain that are periodically stable as defined in Def-
inition 3. After a sufficient number of steps, any state on the trajectory σ(G)
will be close to one of the periodically stable states. This approach can also
be applied to the labeled trajectory L(σ(G)). By doing so, we can obtain an
ω-regular language. Following that, we can utilize the standard Büchi automata
approach of model checking ω-regular languages to analyze the obtained lan-
guage. Therefore, in the following subsections, we will outline the step-by-step
process for handling this.

5.1 Periodically Stable States

Given a periodically stable QMC (H, E , ρ0), we can obtain the periodically stable
states by employing a specific super-operator called the stabilizer of G, denoted
by Eφ. This stabilizer is generated by the super-operator E .

Lemma 2. If a QMC G = (H, E , ρ0) is periodically stable with period p(G), then
the set {Eφ(Ek(ρ0))}0≤k<p(G) consists of the periodically stable states of G. The
computational complexity of obtaining such a set is O(d8), where d = dim(H).

The super-operator Eφ is constructed from E by retaining the eigenvec-
tors corresponding to eigenvalues with a magnitude of one, which do not van-
ish in the evolution En(ρ) as n tends to infinity. Specifically, let ME be the
matrix representation of E with Jordan decomposition ME = SJS−1, where
J =

⊕K
k=0 Jk(λk) =

⊕K
k=0 λkPk + Nk. Here, λk represents the eigenvalues of

ME , Pk is a projector onto the corresponding (generalized) eigenvector space,
and Nk is the corresponding nilpotent part. Furthermore, according to [7, Propo-
sition 6.2], the geometric multiplicity of any λk with a magnitude of one (i.e.,
|λk| = 1) is equal to its algebraic multiplicity, i.e., Nk = 0. Then we define
Jφ :=

⊕
k:|λk|=1 Pk as the projector onto the eigenspace corresponding to eigen-

values with a magnitude of one. By [7, Proposition 6.3], it is confirmed that
MEφ

= SJφS−1 is indeed the matrix representation of some super-operator Eφ.

5.2 Neighborhood of Quantum States

Now we proceed to introduce the concepts of (symbolic) neighborhoods for
(sequences of) quantum states using the labeling function L.

Definition 4. Let ρ ∈ D(H) be a quantum state and ε > 0. The (symbolic)
ε-neighborhood Nε(ρ) of ρ is the subset of 2AP defined as

Nε(ρ) := {L(ρ′) : ρ′ ∈ D(H), ‖ρ − ρ′‖ < ε },

where ‖A‖ :=
√

tr(A†A) represents the Schatten 2-norm (also known as the
Hilbert-Schmidt norm) for the linear operator A ∈ L(H).

548 J. Guan et al.

Now we show that, after a certain number of steps, the symbols L(En(ρ0)) will
be enclosed within the ε-neighborhood of one of the periodically stable states.

Lemma 3. Consider a periodically stable QMC G = (H, E , ρ0) with period p(G).
Let ηk = Eφ(Ek(ρ0)), for each 0 ≤ k < p(G), as the periodically stable states of
G. Then for any ε > 0, there exists an integer Kε > 0 such that for any n ≥ Kε,

L(En(ρ0)) ∈ Nε(ηnmod p(G)).

Moreover, the time complexity of computing Kε is in O(d8), where d = dim(H).

With Lemma 3, we can define the concept of the (symbolic) neighborhood of
trajectories for periodically stable QMCs.

Definition 5. Given a periodically stable QMC G = (H, E , ρ0) and ε > 0, the
(symbolic) ε-neighborhood of the trajectory σ(G) of G is defined to be the language
Nε(σ(G)) over (2AP)ω such that ξ ∈ Nε(σ(G)) if and only if

– ξ[n] = L(En(ρ0)) for all 0 ≤ n ≤ Kε − 1 and
– ξ[n] ∈ Nε(ηnmod p(G)) for all n ≥ Kε,

where the states { ηk : 0 ≤ k < p(G) } and Kε are as given in Lemma 3.

5.3 Approximate Verification of Quantum Markov Chains

Using Definition 5, we can formulate and address the problem of approximate
model checking for QMCs against MLTL formulas in the following manner.

Problem 2. Given a periodically stable QMC G = (H, E , ρ0), a labeling function
L, an MLTL formula ϕ, and ε > 0, decide whether

1. G ε-approximately satisfies ϕ from below, denoted G |=ε ϕ; that is, whether
Nε(σ(G)) ∩ Lω(ϕ) �= ∅;

2. G ε-approximately satisfies ϕ from above, denoted G |=ε ϕ; that is, whether
Nε(σ(G)) ⊆ Lω(ϕ).

To justify that Problem 2 is indeed an approximate version of Problem 1, we
first note that L(σ(G)) ∈ Nε(σ(G)). Then we have three cases:

1. if G �|=ε ϕ, then Nε(σ(G)) ∩ Lω(ϕ) = ∅, and hence L(σ(G)) /∈ Lω(ϕ) (G �|= ϕ);
2. if G |=ε ϕ, then Nε(σ(G)) ⊆ Lω(ϕ), and hence L(σ(G)) ∈ Lω(ϕ) (G |= ϕ);
3. if neither G �|=ε ϕ nor G |=ε ϕ, then whether or not G |= ϕ is unknown.

If we find ourselves in the third scenario (the unknown case), we have the option
to decrease the value of ε by half and then repeat the approximate model-
checking process described in the previous scenarios. We can continue this pro-
cess until we reach either of the first two cases, which will provide us with either
a negative or affirmative answer to Problem 1. In exceptional cases, diminish-
ing ε may not lead to termination. To prevent this, a predetermined number

Measurement-Based Model Checking Quantum Statistical Systems 549

Algorithm 1. ModelCheck(G, AP,L, ϕ, ε)
Require: A periodically stable QMC G = (H, E , ρ0) with Kraus operators {Ek}k, a

finite set of (measurement-based) atomic propositions AP , a labeling function L,
an MLTL formula ϕ, and ε > 0.

Ensure: true, false, or unknown, where true indicates G |= ϕ, false indicates G �|=
ϕ, and unknown stands for an inconclusive answer.

1: Put ME =
∑

k Ek ⊗ E∗
k

2: Get p(G) and MEφ = SJφS−1 by the Jordan decomposition form ME = SJS−1

3: Put |ρ0〉 = (ρ0 ⊗ I)|Ω〉
4: for each k ∈ {0, 1, . . . , p(G) − 1} do
5: Set |ηk〉 to be MEφMk

E |ρ0〉
6: Compute Nε(ηk) by semi-definite programming
7: end for
8: Get Kε by solving some inequalities
9: for each k ∈ {0, 1, . . . , Kε − 1} do

10: Put ρk = Ek(ρ0) and compute L(ρk)
11: end for
12: Put ζk = η(Kε+k)mod p(G) for 0 ≤ k < p(G)
13: Let Nε(σ(G)) be the ω-regular language

{L(ρ0)}{L(ρ1)} · · · {L(ρKε−1)} · (Nε(ζ0)Nε(ζ1) · · · Nε(ζp(G)−1))
ω

14: Construct the NBA Aϕ for ϕ // standard construction
15: Construct the NBA AG accepting Nε(σ(G))// standard lasso-shaped construction
16: if L(AG) ∩ L(Aϕ) = ∅ then // standard Büchi automata operation
17: return false
18: else if L(AG) ⊆ L(Aϕ) then // standard Büchi automata operation
19: return true
20: else
21: return unknown
22: end if

of iterations can be set for reducing epsilon. Determining when the procedure
terminates seems difficult, and we would like to leave it as future work.

Finally, to solve Problem 2, we represent Nε(σ(G)) in Definition 5 as the
ω-regular expression

Nε(σ(G)) = {L(ρ0)} · {L(E(ρ0))} · · · {L(EKε−1(ρ0))} · (Nε(ζ0) · · · Nε(ζp(G)−1)
)ω

where ζk = η(Kε+k)mod p(G), 0 ≤ k < p(G), and for any two sets X and Y , X ·Y =
{xy : x ∈ X, y ∈ Y }. Thus Nε(σ(G)) is ω-regular and standard techniques [1,33]
can be employed to check Nε(σ(G)) ∩ Lω(ϕ) = ∅ and Nε(σ(G)) ⊆ Lω(ϕ).

Theorem 1. The verification problem outlined in Problem 2 can be addressed
using Algorithm 1 within a time complexity of O(2O(|ϕ|) ·(Kε+p(G))+d8). Here,
d = dim(H), |ϕ| represents the size of MLTL formula ϕ, and p(G) and Kε are
as given in Proposition 1 and Lemma 3, respectively.

Algorithm 1 summarizes our techniques proposed above to answer Problem 2.
Starting from lines 1 to 7, we make use of the Jordan decomposition of the matrix

550 J. Guan et al.

representation ME of E to determine the period p(G) and the stabilizer Eφ. These
computations allow us to obtain the periodically stable states {ηk}p(G)−1

k=0 of G
and their corresponding symbolic ε-neighborhood {Nε(ηk)}p(G)−1

k=0 based on the
given approximation level ε. The steps involved in these computations utilize
Proposition 1 and Lemma 2. Afterwards, in line 8, we determine the truncation
number Kε using Lemma 3. Subsequently, we compute {L(ρk)}Kε−1

k=0 , which
represents the symbols in AP of the first Kε quantum states in the trajectory
σ(G), from lines 9 to 11. Finally, in lines 12 and 13, we obtain an ω-regular
language Nε(σ(G)) that represents the symbolic neighborhoods of the evolution
σ(G). The Büchi automaton Aϕ for the MLTL formula ϕ is constructed at line 14
by means of a standard construction for an LTL formula ϕ (see, e.g., [33]) while
the Büchi automaton AG at line 15 is obtained by an ordinary lasso-shaped
construction: it is enough to insert a new state between each letter, make the
state joining the stem and the lasso part accepting, and use the accepting state as
the target of the last action in the lasso. The two operations on Büchi automata
at lines 16 and 18 are standard: intersection and emptiness reduce to automata
product and strongly connected components decomposition, respectively, which
require quadratic time (cf. [33]). Language inclusion, however, in general, requires
exponential time and is PSPACE-complete (cf. [33]); in our case, however, we can
remain in quadratic time by replacing the check L(AG) ⊆ L(Aϕ) with L(AG) ∩
L(A¬ϕ) = ∅, since constructing the Büchi automata Aϕ and A¬ϕ requires the
same asymptotic effort (cf. [33, Section 4.6.1]).

Remark 1. The complexity of approximately verifying MCs against interval LTL
formulas in the work of Agrawal et al. [17] is challenging to analyze and remains
unknown. This is because the BSCC decomposition analysis, which is relied
upon, is not an analytical method. Our model-checking algorithm, however,
overcomes this by utilizing the Jordan normal form to create a linear-algebraic
representation of the graph-theoretic (BSCC-based) model-checking algorithm
mentioned in [17]. Consequently, our model-checking algorithm (Algorithm 1)
can effectively verify MC models against interval LTL formulas. This capability
stems from the ability of QMCs to emulate MCs, as illustrated in Example 1,
and the greater expressiveness of our MLTL compared to interval LTL in [17],
as discussed in Sect. 4. Notably, MCs are inherently periodically stable, which
extends to the modeled QMCs, making our model-checking algorithm suitable
for this context. Additionally, while Agrawal et al. [17] did not offer a complexity
analysis for their algorithm, our method establishes the first upper bound on the
computational complexity of approximate model-checking for MCs against inter-
val LTL specifications from their work. Specifically, when using our algorithm for
model checking MCs, the complexity is reduced to O(2O(|ϕ|) · (Kε + p(G))+ d4),
where d represents the number of states in the MC. This reduction is due to
the fact that the complexity of computing the Jordan decomposition of the d-
by-d stochastic matrix P in MCs is O(d4). As a result, the time complexity of
calculating Kε and p(G) is also reduced to O(d4).

Measurement-Based Model Checking Quantum Statistical Systems 551

6 Case Studies

To demonstrate the utility of the model-checking techniques proposed in this
paper, we conducted case studies on quantum walks to investigate their temporal
linear-time properties. We completed a prototype for implementing our model-
checking algorithm and used it to automatically model check all MLTL formulas
provided in Example 3. The prototype was built using Python for the quantum
part to generate an ω-regular language and Java for the classical part to model
check the language against LTL formulas by calling Spot, a platform for LTL
and ω-automata manipulation [34].

Before conducting the verification process, it is crucial to ensure the periodic
stability of the QMC model for the quantum walk in Example 2. By Propo-
sition 1, this can be achieved by computing the eigenvalues of the model and
confirming that they only have 1 as the eigenvalue with a magnitude of one.
Armed with this information, we can then employ Algorithm 1 to verify the
properties outlined in Example 3. The experimental results for these verifica-
tions can be found in Table 1.

The first experiment in Table 1 confirms the advantages of quantum walks
over classical random walks, which was previously established by Ambainis
et al. in [18]. The remaining two experiments aim to uncover new properties
of quantum walks. Moreover, we also utilized Algorithm 1 to verify these same
properties for one-dimensional unbiased classical random walks with absorbing
boundaries, which yielded contrasting results (false for the first experiment and
true for the last two experiments in Table 1). This confirms that these properties
are unique phenomena specific to quantum walks.

Table 1. The experimental result for position number d = 20 and different initial
states ρ0 = |ψ0〉〈ψ0|.

|φ0〉 Formula ϕ Parameter ε

0.5 0.25 0.125

|s1〉|R〉 ♦�〈Ms0 , [1/
√

2 − 0.1, 1/
√

2 + 0.1]〉 unknown unknown true

|s10〉|R〉 �〈Ms20 , [0, 0.5)〉 unknown unknown false

�(〈Ms19 , (0.4, 1]〉 =⇒ 〈Ms1 , (0.4, 1]〉) unknown unknown false

7 Conclusion

In this paper, we proposed a new quantum logic called measurement-based
linear-time temporal logic (MLTL) to specify the quantitative properties of quan-
tum Markov chains (QMCs). For model checking MLTL formulas, an algorithm
was developed. The measurement-based atomic propositions of MLTL build
upon the subspace-based quantum atomic propositions introduced by Birkhoff
and von Neumann [12]. Furthermore, we demonstrated the practical applicabil-
ity of our model-checking algorithm in quantum walks. This not only confirms

552 J. Guan et al.

the previously established advantages discovered by Ambainis et al. [18] of quan-
tum walks over classical random walks, but also uncovers new phenomena that
are unique to quantum walks.

As future work, we note that the quantum walk in Example 2 can also be
written as a while-loop quantum program [32], and the absorbing probabilities
are exactly the termination probabilities of the program. Indeed, any quantum
program written in the While language can be modeled by a QMC [6]. So our
model-checking approach can be naturally applied in the verification of quantum
program properties specified as MLTL formulas. Therefore, we plan to apply our
model-checking algorithms to verify quantum programs. Moreover, it would be
intriguing to broaden the application of the methods presented in this paper to
verify the behavior of non-periodically stable QMCs. One possible approach is
that any non-periodically stable QMC will be close to a periodically stable one
with arbitrary precision, as any irrational number (eigenvalue) will be close to a
rational number (eigenvalue) with the same precision.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able suggestions. This work was partly supported by the Youth Innovation Promotion
Association, Chinese Academy of Sciences (Grant No. 2023116), the Key Research
Program of the Chinese Academy of Sciences (Grant No. ZDRW-XX-2022-1), and the
Australian Research Council (Grant No: DP220102059).

This work is part of the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant no. 101008233.

References

1. Baier, C., Katoen, J.-P.: Principles of model checking. MIT press (2008)
2. Ying, M., Feng, Y.: Model-checking quantum systems. Nat. Sci. Rev. 6(1), 28–31

(2019)
3. Ying, M., Feng, Y.: Model Checking Quantum Systems: Principles and Algorithms.

Cambridge University Press (2021)
4. Ticozzi, F., Viola, L.: Quantum Markovian subsystems: Invariance, attractivity,

and control. IEEE Trans. Autom. Control 53(9), 2048–2063 (2008)
5. Guan, J., Feng, Y., Ying, M.: The structure of decoherence-free subsystems. arXiv

preprint arXiv:1802.04904 (2018)
6. Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann (2016)
7. Wolf, M.M.: Quantum channels & operations: Guided tour. Lecture notes available

at. https://mediatum.ub.tum.de/doc/1701036/document.pdf (2012)
8. Ambainis, A.: Quantum walks and their algorithmic applications. Inter. J. Quan-

tum Inform. 1, 507–518 (2003)
9. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys.

44(4), 307–327 (2003)
10. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks.

J. Stat. Phys. 147(4), 832–852 (2012)
11. Feng, Y., Nengkun, Yu., Ying, M.: Model checking quantum Markov chains. J.

Comput. Syst. Sci. 79(7), 1181–1198 (2013)
12. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals Math.,

823–843 (1936)

http://arxiv.org/abs/1802.04904
https://mediatum.ub.tum.de/doc/1701036/document.pdf

Measurement-Based Model Checking Quantum Statistical Systems 553

13. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theo-
retical Comput. Sci. 237(1–2), 275–306 (2000)

14. Ying, M., Li, Y., Nengkun, Yu., Feng, Y.: Model-checking linear-time properties
of quantum systems. ACM Trans. Comput. Logic (TOCL) 15(3), 22 (2014)

15. Li, Y., Ying, M.: (Un)decidable problems about reachability of quantum systems.
In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 482–496.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 33

16. Pnueli, A.: The temporal logic of programs. In : 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977)

17. Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.S.: Approximate verification
of the symbolic dynamics of Markov chains. J. ACM (JACM) 62(1), 2 (2015)

18. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional
quantum walks. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing (STOC), pp 37–49. ACM (2001)

19. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quantum
programs and protocols. In: BjOrner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 265–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 17

20. Feng, Y., Hahn, E.M., Turrini, A., Ying, S.: Model checking omega-regular prop-
erties for quantum Markov chains. In: LIPIcs-Leibniz International Proceedings in
Informatics, vol. 85. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

21. Ying, S., Feng, Y., Yu, N., Ying, M.: Reachability probabilities of quantum markov
chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol.
8052, pp. 334–348. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40184-8 24

22. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf.
Process. 11(5), 1015–1106 (2012)

23. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press (2010)

24. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra
Appl. 10(3), 285–290 (1975)

25. Guan, J., Feng, Y., Turrini, A., Ying, M.: Measurement-based verification of quan-
tum markov chains. arXiv preprint arXiv:2405.05825 (2024)

26. Guan, J., Yu, N.: A probabilistic logic for verifying continuous-time markov chains.
In: TACAS 2022. LNCS, vol. 13244, pp. 3–21. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99527-0 1

27. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the
automata-theoretic approach. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601,
pp. 265–276. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-
6 16

28. Baumgartner, B., Narnhofer, H.: The structures of state space concerning quantum
dynamical semigroups. Rev. Math. Phys. 24(02), 1250001 (2012)

29. Guan, J., Feng, Y., Ying, M.: Decomposition of quantum Markov chains and its
applications. J. Comput. Syst. Sci. (2018)

30. Gallager, R.G.: Discrete stochastic processes, vol. 321. Springer Science & Business
Media (2012)

31. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford
university press (1979)

32. Ying, M., Nengkun, Yu., Feng, Y., Duan, R.: Verification of quantum programs.
Sci. Comput. Program. 78, 1679–1700 (2013)

https://doi.org/10.1007/978-3-662-44584-6_33
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-642-40184-8_24
https://doi.org/10.1007/978-3-642-40184-8_24
http://arxiv.org/abs/2405.05825
https://doi.org/10.1007/978-3-030-99527-0_1
https://doi.org/10.1007/978-3-030-99527-0_1
https://doi.org/10.1007/3-540-48778-6_16
https://doi.org/10.1007/3-540-48778-6_16

554 J. Guan et al.

33. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

34. Duret-Lutz, A., et al.: From Spot 2.0 to Spot 2.10: What’s new? In: Proceedings
of the 34th International Conference on Computer Aided Verification (CAV 2022),
vol. 13372 LNCS. pp. 174–187. Springer (2022). https://doi.org/10.1007/978-3-
031-13188-2 9

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
http://creativecommons.org/licenses/by/4.0/

Simulating Quantum Circuits by Model
Counting

Jingyi Mei(B), Marcello Bonsangue, and Alfons Laarman

Leiden University, Leiden, The Netherlands
{j.mei,m.m.bonsangue,a.w.laarman}@liacs.leidenuniv.nl

Abstract. Quantum circuit compilation comprises many computation-
ally hard reasoning tasks that lie inside #P and its decision counterpart
in PP. The classical simulation of universal quantum circuits is a core
example. We show for the first time that a strong simulation of univer-
sal quantum circuits can be efficiently tackled through weighted model
counting by providing a linear-length encoding of Clifford+T circuits. To
achieve this, we exploit the stabilizer formalism by Knill, Gottesmann,
and Aaronson by reinterpreting quantum states as a linear combination
of stabilizer states. With an open-source simulator implementation, we
demonstrate empirically that model counting often outperforms state-
of-the-art simulation techniques based on the ZX calculus and decision
diagrams. Our work paves the way to apply the existing array of powerful
classical reasoning tools to realize efficient quantum circuit compilation;
one of the obstacles on the road towards quantum supremacy.

Keywords: Quantum Computing · Quantum Circuit Simulation ·
Satisfiability · #SAT · Weighted Model Counting · Stabilizer
Formalism

1 Introduction

Classical simulation of quantum computing [3,17,70,77] serves as a crucial task
in the verification [6,37,56,68], synthesis [2,13,62] and optimization [15,63] of
quantum circuits. In addition, improved classical simulation methods aid the
search for a quantum supremacy [8,39]. Due to the inherent exponential size
of the underlying representations of quantum states and operations, classical
simulation of quantum circuits is a highly non-trivial task that comes in two fla-
vors [55]: Weak simulators only sample the probability distribution over measure-
ment outcomes, i.e, they implement the “bounded-error” BQP-complete problem
that a quantum computer solves, whereas strong circuit simulators can compute
the amplitude of any basis state, solving a #P-complete problem [28,40].

Like SAT solvers [12,30], (weighted) model counting (WMC) tools have
shown great potential for solving problem instances arising from industrial appli-
cations [54,60], despite the #P-completeness of the problem of counting the
number (or weights) of satisfying assignments. Because strong quantum circuit
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 555–578, 2024.
https://doi.org/10.1007/978-3-031-65633-0_25

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_25&domain=pdf
https://doi.org/10.1007/978-3-031-65633-0_25

556 J. Mei et al.

simulation is #P-complete, WMC is a natural fit that nonetheless has not yet
been exploited. To do so, we provide the first encoding of the strong simulation
problem of universal quantum circuits as a WMC problem. Perhaps surprisingly,
this encoding is linear in the number of gates m or qubits n, i.e., O(n +m).

One of the key properties of our encoding is that it does not use complex
numbers to encode the probability amplitudes of quantum states, which would
prohibit the use of all modern model counters. We achieve this by exploiting a
generalization [76] of the Gottesman-Knill theorem [35], which in effect rewrites
the density matrix of any quantum state as a linear combination of stabilizer
states [33] with real coefficients. It turns out that many exact WMC tools do
support negative weights out of the box. Our encoding thus empowers them to
reason directly about the constructive and destructive interference ubiquitous in
quantum algorithms.

Like many, our method builds on the Solovay-Kitaev theorem [27] that in
particular shows that the Clifford+T gate set is universal for quantum comput-
ing, meaning that this gate set can efficiently approximate any unitary operator.
Since our encoding also supports arbitrary rotation gates (phase shift P , RX ,
RY and RZ), and since these rotations are non-Clifford gates, it can also support
other universal gate sets like Clifford+RX or Clifford+P , which allows for eas-
ier approximations. One important example is Quantum Fourier Transformation
(QFT), which can be simulated with O(n) rotation gates while needs at least
O(n log(n)) T gates to approximate [51]. Moreover, since the hardness of exact
reasoning about quantum circuits depends on the gate set (the classes EQP and
NQP are parameterized by the gate set as it defines the realizable unitaries), this
flexibility significantly enhances the power of our strong simulation approach.

We implement our encoding in an open-source tool QCMC. We demonstrate
the scalability and feasibility of the proposed encoding through experimental
evaluations based on three classes of benchmarks: random Clifford+T circuits
mimicking quantum chemistry applications [75] and oracles, and quantum algo-
rithms from MQT bench [58]. We compare the results of our method against
state-of-the-art circuit simulation tools QuiZX [41] and Quasimodo [64], respec-
tively based on the ZX-calculus [25] and CFLOBDD [65]. QCMC simulates
important quantum algorithms like QAOA, W-state, VQE, and others which can
not be directly supported by QuiZX. Additionally, QCMC outperforms Quasi-
modo on almost all random circuits and uses orders of magnitudes less memory
than Quasimodo on all benchmarks.

In sum, this paper makes the following contributions.

– a generalized stabilizer formalism defined in terms of stabilizer groups, which
form a basis for our encoding;

– the first encoding for circuits in various universal quantum gate sets as a
weighted model counting problem, which is also linear in size;

– an implementation based on the weighted model counting tool GPMC;
– new benchmarks for the WMC competition [4], and insights on improving

model counters and samplers for applications in quantum computing.

Simulating Quantum Circuits by Model Counting 557

2 Preliminaries

2.1 Quantum Computing

Similar to bits in classical computing, a quantum computer operates on quantum
bits, or short as qubits. A bit is either 0 or 1, while a qubit can be in states |0〉,
|1〉 or a superposition of both. Here ‘|〉’ is the Dirac notation, representing a unit
column vector, i.e., |0〉 = [1, 0]T and |1〉 = [0, 1]T, while 〈ψ| denotes the complex
conjugate and transpose of |ψ〉, that is a row vector: 〈ψ| = |ψ〉†.

In this paper, we fix n to be the number of the qubits. Let H be a Hilbert
space. An n-qubit quantum state is a 2n-dimension unit column vector in H. In
the case of n = 1, a pure state |ψ〉 is written as |ψ〉 = α|0〉 + β|1〉, where α and β
are complex numbers in C satisfying |α|2 + |β|2 = 1. To extend from single-qubit
states to multiple-qubit states we use the tensor or Kronecker product, which is
defined as follows: given rA×cA matrix A and rB×cB matrix B, the rArB×cAcB

matrix A ⊗B is

A ⊗B =

⎡
⎢⎢⎢⎣

A00B A01B . . . A0cA
B

A10B A11B . . . A1cA
B

...
...

. . .
...

ArA0B ArA1B . . . ArAcA
B

⎤
⎥⎥⎥⎦ .

A computational basis state |�x〉 for �x ∈ {0, 1}n is a vector with all entries set
to 0 except at index �x, which is 1. For two computational basis states |�x〉, |�y〉,
we have that |�x〉 ⊗ |�y〉 = |�x�y〉. For example, a two-qubit state |0〉 ⊗ |0〉 equals
|00〉 = [1, 0, 0, 0]T. Sometimes we represent a pure quantum state |ψ〉 by the
density operator obtained as the product |ψ〉〈ψ| of the state with itself. Density
operators U are Hermitian matrices, i.e., they satisfy U†

= U .
Operations on quantum states are given by quantum gates. For an n-qubit

quantum system, a (global) quantum gate is a function G ∶H→H, which can be
described by 2n×2n unitary matrix U , i.e., with the property that UU†

=U†U =I.
A quantum gate is local when it works on a subspace of a quantum system,
which can be extended to a global quantum gate by applying identity operators
on unchanged qubits, i.e. a local quantum gate U on qubit j can be represented
as a global quantum gate Uj = I⊗j

⊗ U ⊗ I⊗n−j−1. Examples of quantum gates
are the 2 × 2 Pauli matrices (or Pauli gates) X, Y , Z, and the identity matrix
I:

σ[10] � X �
[
0 1
1 0

]
, σ[11] � Y �

[
0 −ı̇
ı̇ 0

]
, σ[01] � Z �

[
1 0
0 −1

]
, σ[00] � I �

[
1 0
0 1

]
.

Together with the identity matrix I, the Pauli matrices form a basis
for 2 × 2 Hermitian matrix space. Let PAULIn be the set of the tensor
product of n Pauli operators (a “Pauli string”). The so-called Pauli group
is generated by multiplication of the local Pauli operators X,Z as follows:
Pn = 〈X0, Z0 . . . , Xn−1, Zn−1〉. Structurally, the Pauli group can be written as

558 J. Mei et al.

Pn = {λP ∣ P ∈ PAULIn, λ ∈ {±1,±ı̇}}. For instance, we have −X ⊗ Y ⊗ Z ∈ P3.
The Pauli strings form a basis for the full Hermitian matrix space [48,52].

Let [m] be {0, . . . , m−1}. The evolution of a quantum system can be modeled
by a quantum circuit, which is a sequence of quantum gates C ≡ (G0, . . . ,Gm−1),
Here Gt represents a global quantum gate at time step t ∈ [m]. Let U t be the
unitary matrix for Gt. Then C can be expressed by the unitary matrix U =
Um−1 · · · U0.

An important class of quantum circuits is the so-called Clifford group, as
it can describe interesting quantum mechanical phenomena such as entangle-
ment, teleportation, and superdense encoding. More importantly, they are widely
used in quantum error-correcting codes [18,66] and measurement-based quan-
tum computation [59]. The Clifford group is a set of unitary operators that map
the Pauli group to itself through conjugation, i.e. all the 2n×2n unitary matrices
U such that UPU†

∈ Pn for all P ∈ Pn. It is generated by the local Hadamard
(H) and phase (S) gate, and the two-qubit control-not gate (CX, CNOT):

H � 1√
2

[
1 1
1 −1

]
, S �

[
1 0
0 ı̇

]
and CX �

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Recall that Uj performs U on j-th qubit. Similarly, we denote by CXij the
unitary operator taking the i-th qubit as the control qubit and j-qubit as the tar-
get to execute a controlled-not gate. Clifford circuits are circuits only containing
gates from the Clifford group.

A (projective) measurement is given by a set of projectors {P0, . . . ,Pk−1} —
one for each measurement outcome [k]— satisfying

∑
j∈[k] Pj =I. A linear operator

P is a projector if and only if PP=P. For example, given a three-qubit system, mea-
suring the first two qubits under computational basis is given by the measurement
{ |0〉〈0| ⊗ |0〉〈0| ⊗ I, |1〉〈1| ⊗ |0〉〈0| ⊗ I, |0〉〈0| ⊗ |1〉〈1| ⊗ I, |1〉〈1| ⊗ |1〉〈1| ⊗ I }.

Weak simulation is the problem of sampling the measurement outcomes
according to the probability distribution induced by the semantics of the cir-
cuit. In this work, we focus on strong simulation as defined in Definition 1. Here
we assume, without loss of generality, that a circuit is initialized to the all-zero
state: |0〉⊗n.

Definition 1. (Strong simulation [21]). Given an n-qubit quantum circuit C
and a measurement M={P0, . . . ,Pk−1}, a strong simulation of circuit C computes
the probability of getting any outcome l ∈ [k], that is, the value 〈0|⊗nC†

PlC|0〉⊗n,
up to a number of desired bits of precision.

The Gottesman-Knill theorem [35] shows that Clifford circuits can be
strongly stimulated by classical algorithms in polynomial time and space.

2.2 Stabilizer Groups

The stabilizer formalism [35] is a subset of quantum computing that can be
effectively simulated on a classical computer. A state |ϕ〉 is said to be stabilized

Simulating Quantum Circuits by Model Counting 559

by a quantum unitary operator U if and only if it is a +1 eigenvector of U , i.e.,
U |ϕ〉 = |ϕ〉. For example, we say |0〉 is stabilized by Z as Z|0〉 = |0〉. Similarly,
|+〉 = 1√

2
|0〉 + 1√

2
|1〉 is stabilized by X, and all states are stabilized by I. The

stabilizer states form a strict subset of all quantum states which can be uniquely
described by maximal commutative subgroups of the Pauli group Pn, which is
called stabilizer group. The elements of the stabilizer group are called stabilizers.
Recall that the Clifford group is formed by unitary operators mapping the Pauli
group to itself. This leads to the fact that stabilizer states are closed under
operators from the Clifford group.

Given an n-qubit stabilizer state |ψ〉, let S|ψ〉 be the stabilizer group of |ψ〉.
While the elements of a Pauli group Pn either commute or anticommute, a
stabilizer group S must be abelian, because if P1, P2 ∈ S|ϕ〉 anticommute, i.e,
P1P2 = −P2P1, there would be a contradiction: |ϕ〉 = P1P2|ϕ〉 = −P2P1|ϕ〉 = −|ϕ〉.
In particular, −I⊗n can never be a stabilizer. In fact, a subgroup S of Pn is a
stabilizer group for an n-qubit quantum state if and only if it is an abelian group
without −I⊗n. Therefore, for any Pauli string P ∈PAULIn, if λP ∈S, then it holds
that λ =±1, since for all λP ∈ S, we have (λP)|ϕ〉 = (λP)2|ϕ〉 = λ2I|ϕ〉 = λ2|ϕ〉 ⇒
λ =±1.

Any stabilizer group S can be specified by a set of generators G so that every
element in S can be obtained through matrix multiplication on G, denoted as
〈G〉 = S. The set of generators G needs not to be unique and has order |G| = n,
where n represents the number of qubits, and the corresponding stabilizer group
S has order 2|G|.

Example 1. The Bell state |Φ00〉 = 1√
2
(|00〉 + |11〉) can be represented by the

following stabilizer generators written in square form:

1√
2
(|00〉 + |11〉) ≡

〈
X ⊗X
Z ⊗ Z

〉
≡
〈

X ⊗X
−Y ⊗ Y

〉
. �

We can relate the (generators of the) stabilizer group directly to the stabilizer
state |ψ〉, as the density operator of the stabilizer state can be written in a linear
combination of Pauli matrices as follows [69].

|ψ〉〈ψ| =
∏

G∈G|ψ〉

I +G

2
=

1
2n

∑
S∈S|ψ〉

S. (1)

where S =±P for P ∈PAULIn in Clifford circuits. If a Clifford gate U is applied
to the above state, i.e. U |ψ〉, and let S ∈ S|ψ〉, the corresponding stabilizers of
U |ψ〉 can be obtained by USU† since USU†U |ψ〉 = U |ψ〉. Thus we have SU |ψ〉 =
{USU† | S ∈S|ψ〉} and the density operator of the resulting state will be obtained
by conjugating U on |ψ〉〈ψ|, i.e. U |ψ〉〈ψ|U†

=
1
2n

∑
S∈S|ψ〉 USU†. To be specific,

consider performing a Clifford gate Uj , denoting a single qubit gate U applied to
j-th qubit as given in previous section, to a stabilizer S=±P0⊗. . .⊗Pn−1. We have
UjSU†

j =±P0⊗ . . .⊗UPjU
†
⊗ . . .⊗Pn−1. Since Uj is a Clifford gate, UjSU†

j ∈Pn.
Thus the j-th entry needs to be updated, which can be done in constant time

560 J. Mei et al.

Table 1. Lookup table for the action of conjugating Pauli gates by Clifford gates. The
subscripts “c” and “t” stand for “control” and “target”. Adapted from [32].

Gate In Out Gate In Out

X Z CX Ic ⊗Xt Ic ⊗Xt

H Y −Y Xc ⊗ It Xc ⊗Xt

Z X Ic ⊗ Yt Zc ⊗ Yt

X Y Yc ⊗ It Yc ⊗Xt

S Y −X Ic ⊗ Zt Zc ⊗ Zt

Z Z Zc ⊗ It Zc ⊗ It

following the rules in Table 1 for H and S. Applying a two-qubit gate CXij is
similar to updating the sign and Pauli matrices in i-th and j-th position (see
Table 1), which also takes constant time. Overall, updating all generators after
performing one Clifford gate can be done in O(n) time.

Example 2. The Bell state |Φ00〉 = 1√
2
(|00〉 + |11〉) is a stabilizer state, as it can

be obtained by the following circuit, which evaluates to CX01 · H0 · |00〉 = |Φ00〉:

|0〉 H •
|0〉

|ϕ0〉 |ϕ1〉 |ϕ2〉
We can simulate the above circuit with the stabilizer formalism. The stabilizer

generator set for each time step can be obtained using the rules shown in Table 1:
〈

Z ⊗ I
I ⊗ Z

〉
H0
−−−−→

〈
HZH†

⊗ I
HIH†

⊗ Z

〉
=

〈
X ⊗ I
I ⊗ Z

〉
CX0,1
−−−−−−−→

〈
CX(X ⊗ I)CX†
CX(I ⊗ Z)CX†

〉
=

〈
X ⊗X
Z ⊗ Z

〉
. �

The above explains the essence of the Gottesmann-Knill theorem [35], which
states that Clifford circuits can be classically simulated by describing n-qubit
stabilizer states by their stabilizer generator set instead of a 2n complex vector.
It is important to note that Clifford gates do not constitute a universal set of
quantum gates. However, by adding any non-Clifford gate, such as the T =|0〉〈0|+
eı̇π/4|1〉〈1| gate, it becomes possible to approximate any unitary operator with
arbitrary accuracy, as shown in [14,42]. Moreover, the space of n-qubit density
matrices has a basis in the n-qubit stabilizer states [33], which allows us in Sect. 3
to extend the stabilizer formalism to a general quantum state.

2.3 Weighted Model Counting

Weighted model counters can solve probabilistic reasoning problems with real-
valued probabilities like Bayesian inference [20]. By reinterpreting quantum
states in the stabilizer-state basis, we obviate the need for complex amplitudes
typical in quantum computing, as shown in the next section. It turns out that

Simulating Quantum Circuits by Model Counting 561

existing weighted model counting tools, like GPMC [36], already support nega-
tive weights (see Sect. 4).

Let B be the Boolean set {0, 1}. A propositional formula F ∶ BV
⇒B over a

finite set of Boolean variables V is satisfiable if there is an assignment α∈BV such
that F (α) = 1. We define the set of all satisfiable assignments of a propositional
formula F as SAT (F) ∶ = {α ∣ F (α) = 1}. We write an assignment α as a cube (a
conjunction of literals, i.e. positive or negative variables), e.g., a∧b, or shorter ab.

A weight function W ∶ {v, v ∣ v ∈ V }⇒R assigns a real-valued weight to pos-
itive literals v (i.e., v = 1) and the negative literals v (i.e., v = 0). We say a
variable v is unbiased iff W (v) = W (v) = 1. Given an assignment α ∈ BV , let
W (α(v)) =W (v = α(v)) for v ∈ V . For a propositional formula F over variables
in V and weight function W , we define weighted model counting as follows.

MCW (F) �
∑

α∈BV

F (α) · W (α), where W (α) =
∏
v∈V

W (α(v)).

Example 3. Given the formula F =v1v2 ∨v1v2 ∨v3 over V ={v1, v2, v3}, there are
two satisfying assignments: α1 = v1v2v3 and α2 = v1v2v3. We define the weight
function W as W (v1)=−1

2 , W (v1)= 1
3 and W (v2)= 1

4 , W (v2)= 3
4 , while v3 remains

unbiased. The weight of F can be computed as MCW (F) =−1
2 × 1

4 × 1+ 1
3 × 1

4 ×
1 = − 1

24 . �

3 Encoding Quantum Circuits as Weighted CNF

3.1 Generalized Stabilizer Formalism

Clifford circuits together with T gates generate states beyond stabilizer states,
enabling universal quantum computation. As is shown in Table 1, Clifford gates
map the set of Pauli matrices to itself, keeping stabilizers within the Pauli group.
In contrast, T gates can transform a Pauli matrix into a linear combination of
Pauli matrices. To be specific, Table 2 gives the action of T gates on different
Pauli gates. Given a Pauli string, after performing Clifford+T gates, we will get
a summation of weighted Pauli strings, e.g., T0 ·(X⊗X) ·T †

0 =
1√
2
(X⊗X +Y ⊗X)

where T0 = T ⊗ I as defined in Sect. 2. This leads to the definition of generalized
stabilizer state extended from standard stabilizer formalism.

Definition 2. In an n-qubit quantum system, a generalized stabilizer state |ψ〉
is the simultaneous eigenvector, with eigenvalue 1, of a group containing 2n

commuting unitary operators S. The set of S is a generalized stabilizer group.

The above definition is adapted from [76] by defining a generalized stabi-
lizer state using a generalized stabilizer group instead of generalized stabilizer
generators. In this way, we can easily get the corresponding stabilizer state by
a weighted summation of its stabilizers to avoid multiplications between Pauli
strings (the middle part of Eq. 1). The following proposition is also adapted from
[76], where they demonstrate that any pure state can be uniquely described by
a set of stabilizers. We additionally show that there exists a set of stabilizers,
forming a group, which uniquely describes any pure state.

562 J. Mei et al.

Proposition 1. For any pure state |ϕ〉 in an n-qubit quantum system, there
exists a generalized stabilizer group S|ϕ〉 such that |ϕ〉〈ϕ| = 1

2n ·∑S∈S|ϕ〉 S.

Proof. Given a pure state |ϕ〉, we have |ϕ〉 = U |0〉⊗n, where U is a uni-
tary operator. Let S|ϕ〉 = {USU†

∣ S ∈ S|0〉⊗n}, which is an isomorphic group
to S|0〉⊗n since U is unitary. For any S ∈ S|ϕ〉, we have S′

∈ S|0〉⊗n satisfy-
ing S = US′U† and S|ϕ〉 = US′U†U |0〉⊗n

= US′|0〉⊗n
= U |0〉⊗n

= |ϕ〉. Hence
S|ϕ〉 is the generalized stabilizer group of state |ϕ〉. Furthermore, we have
|ϕ〉〈ϕ|=U |0〉〈0|U†

=U(1
2n

∑
S′∈S|0〉⊗n

S′)U†
=

1
2n

∑
S′∈S|0〉⊗n

US′U†
=

1
2n ·∑S∈S|ϕ〉 S.

In fact, given that any generalized stabilizer S ∈S|ϕ〉 is a Hermitian matrix, since
S =US′U†

=US′†U†
=S† where S′

∈S|0〉⊗n , according to [48, Lemma 1], it can be
expressed as S =

∑
P ∈PAULIn

λP P , where λP ∈R. Thus a generalized stabilizer is
always a linear combination of stabilizers. 	

For an n-qubit quantum space, let GStab be the set of generalized stabilizer
states, which is also the set of all pure states. Let Q be the set of quantum
states generated from a Clifford+T circuit starting from the all-zero state, i.e.
Q = {Um−1 . . . U0|0〉⊗n

∣Ui ∈ {H,S,CX, T}}. We have Stab ⊂Q ⊂GStab and any
pure state in GStab can be approximated by some state in Q with arbitrary
accuracy [27]. For any |ϕ〉 ∈ Stab, we have S|ϕ〉 = {±P ∣ P ∈ PAULIn}. For any
|ψ〉 ∈GStab, we have S|ψ〉 = {∑λP P ∣ P ∈ PAULIn, λP ∈ R}. E.g., when applying
Clifford+T gates on |ϕ〉, the stabilizer group S|ψ〉 has λP equal to 0 or 1√

2
k for

k ∈ N+ (as derived by updating S|ϕ〉 based on Table 1 and Table 2). Combining
this with Proposition 1, we may flatten summations of generalized stabilizers:

|ψ〉〈ψ| = 1
2n

∑
S∈S|ψ〉

∑
λP P ∈S

λP P =
1
2n

∑
P ∈PAULIn

λP P, (2)

Hence the density operator is determined by a summation of weighted Pauli
strings and there is no need to distinguish which of the 2n generalized stabilizers a
Pauli string belongs to. (Stated differently, the density matrix can be decomposed
in the Pauli basis [48].) We exploit this fact in our encoding and Example 4.

Example 4. Reconsider the circuit in Example 2 and add T , CX and H gates:

|0〉 H • T • H

|0〉
|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉 |ϕ4〉 |ϕ5〉

Table 2. Lookup table for the action of conjugating Pauli gates by T gates.

Gate In Out Short

X 1√
2
(X + Y) � X ′

T Y 1√
2
(Y −X) � Y ′

Z Z

Simulating Quantum Circuits by Model Counting 563

Continuing from Example 2, we obtain the following generalized generators,
where X ′

=
1√
2
(X + Y) and Z ′

=
1√
2
(Z − Y) as in Table 2.

〈
X ⊗X
Z ⊗ Z

〉

︸ ︷︷ ︸
|ϕ2〉

T0
−−−→

〈
X ′
⊗X

Z ⊗ Z

〉

︸ ︷︷ ︸
|ϕ3〉

CX0,1
−−−−−−→

〈
X ′
⊗ I

I ⊗ Z

〉

︸ ︷︷ ︸
|ϕ4〉

H0
−−−→

〈
Z ′
⊗ I

I ⊗ Z

〉

︸ ︷︷ ︸
|ϕ5〉

.

In our encoding, as in the above definition of generalized stabilizer states,
we let satisfying assignments represent not just the generator set, but the entire
stabilizer groups. These groups are: S|ϕ2〉 ={X ⊗X,Z ⊗Z,−Y ⊗Y, I ⊗ I}, S|ϕ3〉 =
{X ′
⊗X,Z ⊗Z,−Y ′

⊗ Y, I ⊗ I}, S|ϕ4〉 = {X ′
⊗ I, I ⊗Z,X ′

⊗Z, I ⊗ I} and S|ϕ5〉 =
{Z ′
⊗ I, I ⊗ Z,Z ′

⊗ Z, I ⊗ I}, where Y ′
=

1√
2
(Y −X).

Finally, according to Eq. 2, we may equally expand e.g. S|ϕ5〉 to:
S ′

|ϕ5〉 = { 1√
2
Z ⊗ I, − 1√

2
Y ⊗ I, I ⊗ Z, 1√

2
Z ⊗ Z, − 1√

2
Y ⊗ Z, I ⊗ I}. �

3.2 Encoding Clifford+T Circuits

Since generalized stabilizer states can be determined by a sum of weighted Pauli
strings as shown in Eq. 2, we encode a state by Boolean constraints whose satis-
fying assignments represent those weighted Pauli strings. The idea is to encode
the sign, the Pauli string, and the weights separately. We will start with encoding
the Pauli string and the sign.

A Pauli string P ∈ PAULIn can be encoded by 2n Boolean variables as
σ[x0, z0] ⊗ . . . ⊗ σ[xn−1, zn−1], where the j-th Pauli matrix is indicated by vari-
ables xj and zj . To encode the sign, only one Boolean variable r is needed. We
introduce weighted model counting to interpret the sign by defining W (r) = −1
and W (r)=1. Thus ±P ∈±PAULIn can be interpreted as (−1)r

⊗i∈[n]σ[xi, zi]. For
example, consider the Boolean formula r ¬ x0z0x1z1. Its only satisfying assign-
ment is {r→1, x0→0, z0→1, x1→1, z1→1} ≡ −Z⊗Y . Without loss of generality,
we set the initial state to be all zero state |0 . . . 0〉, whose stabilizer group is
S|0...0〉={⊗i∈[n]Pi ∣Pi ∈{Z, I}} ≡ {(−1)r

⊗i∈[n]σ[xi, zi]∣xi=0, zi ∈{0, 1} and r=0}.
Hence the Boolean formula for the initial state is defined as Finit(x0,z0, r0) �
¬r0 ∧

∧
j∈[n] ¬x

0
j , where we use superscripts, e.g., rt, xt

0, z
t
0, to denote variables

at time step t (after t gates from the circuit have been applied). Note that we
assign a weight to r only on the final time step, as explained later.

Table 3. Boolean variables under the action of conjugating one T gate. Here we omit

the sign (−1)rt

for all operators G and sign (−1)rt+1
for all TGT †.

G xtztrt TGT † xt+1 zt+1 rt+1 u

I 00 rt I 0 zt rt 0

Z 01 rt Z

X 10 rt 1√
2
(X + Y) 1 {0,1} rt 1

Y 11 rt 1√
2
(Y −X) rt ⊕ ¬zt+1

564 J. Mei et al.

Example 5. Consider the initial state |00〉 in Example 4. The corresponding con-
straint at time step 0 is ¬r0 ¬ x0

0 ¬ x0
1, which has satisfying assignments:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{r0 → 0, x0
0 → 0, x0

1 → 0, z00 → 1, z01 → 1}
{r0 → 0, x0

0 → 0, x0
1 → 0, z00 → 1, z01 → 0}

{r0 → 0, x0
0 → 0, x0

1 → 0, z00 → 0, z01 → 1}
{r0 → 0, x0

0 → 0, x0
1 → 0, z00 → 0, z01 → 0}

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≡

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Z ⊗ Z

Z ⊗ I

I ⊗ Z

I ⊗ I

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

�

While we encode those signed Pauli strings using variables from
{xj , zj , r ∣ j ∈ [n]}, to encode the weights, we introduce new variables u. When a
Tj is performed and xj = 1, which means executing a T gate on j-th qubit with
certain stabilizer being either ±X or ±Y , we set u=1 to indicate a branch of the
operator, i.e. TXT †

=X ′
=

1√
2
(X + Y) and TY T †

= Y ′
=

1√
2
(Y −X). Therefore,

for each generalized stabilizer state in a circuit with m gates and n qubits, the
encoding uses the set of variables V t

={xt
j , z

t
j , r

t, ut ∣ j ∈ [n]}, where t∈{0, . . . ,m}
denotes a time step. Table 3 illustrates the details of how the Boolean variables
in V t change over a T gate. Here each satisfying assignment indicates a weighted
Pauli string, for example, there are two assignments for a stabilizer 1√

2
(X + Y).

Using Table 1 and Table 3, given a single-qubit Clifford+T gate Gj on qubit j
at time step t (or CXj,k on qubits j, k), we can derive a Boolean formula
FGj

(V t, V t+1), abbreviated as Gt
j , as in the following.

Ht
j � rt+1 ⇐⇒ rt ⊕ xt

jz
t
j ∧ zt+1

j ⇐⇒ xt
j ∧ xt+1

j ⇐⇒ zt
j

St
j � rt+1 ⇐⇒ rt ⊕ xt

jz
t
j ∧ zt+1

j ⇐⇒ xt
j ⊕ zt

j

CXt
j,k � rt+1 ⇐⇒ rt ⊕ xt

jz
t
k(xt

k ⊕ ¬zt
j) ∧ xt+1

k ⇐⇒ xt
k ⊕ xt

j ∧

zt+1
j ⇐⇒ zt

j ⊕ zt
k

T t
j � xt+1

j ⇐⇒ xt
j ∧ xt

j ∨ (zt+1
j ⇔ zt

j) ∧
rt+1
i ⇐⇒ rt ⊕ xt

jz
t
j ¬ zt+1

j ∧ ut ⇐⇒ xt
j .

(3)

The above omits additional constraints vt+1 ⇔ vt for all unconstrained time-
step-t + 1 variables, i.e., for all vt

∈ V t
l with l � =j, k. In fact, it is not necessary

to allocate new variables for those unconstrained time-step-t + 1 variables. The
constraint vt+1 ⇔ vt can be effectively implemented by reusing the Boolean
variables vt for vt+1. Thus for each time step, only a constant number of new
variables need to be allocated. For instance, when applying Hj gate, we only
need one new variable rt+1, since we can reuse the variable of xt

j for zt+1
j and zt

j

for xt+1
j . And when applying CXij gate, we need three new variables for rt+1,

xt+1
j and zt+1

j . Additionally, since variables for all x0
j and z0j with j ∈ [n] are

allocated initially, and as shown below, performing a measurement introduces
no new variable, the size of our encoding is O(n +m).

Simulating Quantum Circuits by Model Counting 565

To this end, given a Clifford+T circuit C =(G0, . . . ,Gm−1) without measure-
ments, we can build the following Boolean constraint.

FC(V 0, . . . , V m) � Finit(V 0) ∧
∧

t∈[m]

FGt(V t, V t+1). (4)

The satisfying assignments of our encoding will represent weighted Pauli strings,
so that we can get the density operator at time m by ranging over satisfying
assignments α ∈ SAT (FC):

ρm
=

∑
α∈SAT (FC)

FC(α) · W (α) ·
⊗
j∈[n]

σ[α(xm
j), α(zm

j)], (5)

where W (rm) = −1, W (rm) = 1, W (ut) = 1√
2
, W (ut) = 1 for all t ∈ {0, . . . , m}

(and all other variables are unbiased). So we will get the weight as W (α) =
W (α(rm))

∏
t∈[m] W (α(ut)). As mentioned before, we only assign weights to rm

where m is the final time step. We allocate a new rt+1 for each time step t
as we always get rt+1 from a constraint related to rt, but the sign of the final
state is given by rm. So we leave rt unbiased except when t is the final time
step. Additionally, all the weights are real numbers —there are no complex
numbers— enabling the application of a classical weighted model counter that
allows negative weights. It is worth noting that in Eq. 2, a generalized density
matrix is a linear combination of stabilizers, which can be further decomposed
to a sum of weighted Pauli strings. In the encoding, each weighted Pauli string
corresponds to a satisfying assignment. In the case of Clifford circuits, since each
stabilizer is a single Pauli string, the satisfying assignments can be interpreted
as stabilizers. Therefore, for Clifford circuits, there are 2n satisfying assignments
for a n-qubit circuit at each time step. While for Clifford+T circuits, the number
of satisfying assignments exceeds 2n.

Example 6. Reconsider Example 4, after solving the constraint Finit(V 0)∧H0
0 ∧

CX1
0,1 ∧ T 2

0 ∧ CX3
0,1 ∧ H4

0 , the satisfying assignments encoding |ϕ5〉 will be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 1, z51 → 0, u2 → 1},

{r5 → 1, x5
0 → 1, x5

1 → 0, z50 → 1, z51 → 0, u2 → 1},

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 0, z51 → 1, u2 → 0},

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 1, z51 → 1, u2 → 1},

{r5 → 1, x5
0 → 1, x5

1 → 0, z50 → 1, z51 → 1, u2 → 1},

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 0, z51 → 0, u2 → 0}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
Z ⊗ I

−
1√
2
Y ⊗ I

I ⊗ Z
1√
2
Z ⊗ Z

−
1√
2
Y ⊗ Z

I ⊗ I

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where W (r5) = 1, W (r5) = −1, W (u2) =
√
2
2 and W (u2) = 1. Here we omit the

satisfying assignments for {rt, xt
0, x

t
1, z

t
0, z

t
1 ∣ 0 ≤ t ≤ 4}. �

566 J. Mei et al.

3.3 Encoding Arbitrary Rotation Gates

Our encoding can be extended to other non-Clifford gates, which we demonstrate
by adding rotation gates RX(θ), RY (θ), and RZ(θ), where θ is an angle in
radians. The matrices for these gates are given in Table 4.

Table 4. Lookup table for the action of conjugating Pauli gates by rotation gates.

Gate Matrix Form In Out

[
cos(θ

2
) −i sin(θ

2
)

−i sin(θ
2
) cos(θ

2
)

] X X

RX(θ) Y cos(θ)Y + sin(θ)Z

Z cos(θ)Z − sin(θ)Y

[
cos(θ

2
) − sin(θ

2
)

sin(θ
2
) cos(θ

2
)

] X cos(θ)Z + sin(θ)X

RY (θ) Y Y

Z cos(θ)X − sin(θ)Z

[
exp(−i θ

2
) 0

0 exp(i θ
2
)

] X cos(θ)X + sin(θ)Y

RZ(θ) Y cos(θ)Y − sin(θ)X

Z Z

In particular, we have T = exp(−iπ
8)RZ(π

4), S = exp(−iπ
4)RZ(π

2) and X =
−iRX(π), Y =−iRY (π), Z =−iRZ(π). Note however that the stabilizer formalism
discards the global phase of a state as it updates stabilizers by conjugation,
e.g., TPT †

=

(
exp(−iπ

8)RZ(π
4)
)
P
(
exp(−iπ

8)RZ(π
4)
)†
= RZ(π

4)P RZ(π
4)†. Based

on Table 4, the constraints for rotation gates are as shown below, where we write
RX for RX , RY for RY and RZ for RZ . We keep the coefficients cos(θ) and sin(θ)
by defining the weights of the new variables as W (u1t) = cos(θ), W (u2t) = sin(θ),
and W (u1t) =W (u2t) = 1.

RXt
j � zt+1

j ⇐⇒ zt
j ∧ zt

j ∨ (xt+1
j ⇔ xt

j) ∧ rt+1 ⇐⇒ rt ⊕ zt
j ¬ xt

jx
t+1
j ∧

u1t ⇐⇒ zt
j(x

t
jx

t+1
j ∨ ¬xt

j ¬ xt+1
j) ∧ u2t ⇐⇒ zt

j(¬x
t
jx

t+1
j ∨ xt

j ¬ xt+1
j).

RY t
j � (xt

j ⊕ zt
j) ⇐⇒ (xt+1

j ⊕ zt+1
j) ∧ (xt

j ⊕ ¬zt
j) =⇒ (xt

jz
t
j ⇔ xt+1

j ⇔ zt+1
j) ∧

rt+1 ⇐⇒ rt ⊕ zt
jz

t+1
j ∧ u1t ⇐⇒ (xt+1

j zt
j ⊕ xt

jz
t+1
j) ∧

u2t ⇐⇒ (xt+1
j xt

j ⊕ zt+1
j zt

j).

RZt
j � xt+1

j ⇐⇒ xt
j ∧ xt

j ∨ (zt+1
j ⇔ zt

j) ∧ rt+1 ⇐⇒ rt ⊕ xt
jz

t
j ¬ zt+1

j ∧

u1t ⇐⇒ xt
j(z

t
jz

t+1
j ∨ ¬zt

j ¬ zt+1
j) ∧ u2t ⇐⇒ xt

j(¬z
t
jz

t+1
j ∨ zt

j ¬ zt+1
j).

3.4 Measurement

We now consider projective measurement both on a single qubit and on multi-
ple qubits of a quantum system. Single-qubit measurement [43] can be used to

Simulating Quantum Circuits by Model Counting 567

extract only one bit of information from a n-qubits quantum state, effectively
protecting quantum information [57]. It is also used in random quantum circuits,
contributing to the study of quantum many-body physics [31]. Measurement on
multiple qubits is generally used in quantum algorithms, such as in Grover and
Shor algorithms, to get the final result. We implement both measurements using
Pauli measurement, where projectors are Pauli strings.

Single-Qubit Pauli Measurement. Let Pk,0 = I ⊗ · · · ⊗ |0〉〈0|k ⊗ · · · ⊗ I =
1
2 (I⊗n

+ Zk) and Pk,1 = I ⊗ · · · ⊗ |1〉〈1|k ⊗ · · · ⊗ I = 1
2 (I⊗n

− Zk) for k ∈ [n]. When
measuring k-th qubit of a n-qubit state |ψ〉 using projectors {Pk,0,Pk,1}, we get
two possible outcomes: 0 with probability pk,0 and 1 with probability pk,1. It
follows that pk,0 = tr(Pk,0|ψ〉〈ψ|), where tr is the trace mapping [52]. As shown
in Eq. 2, the density operator |ψ〉〈ψ| can be written as a weighted sum of Pauli
strings, i.e., |ψ〉〈ψ| = 1

2n

∑
λP P for P ∈ PAULIn, λP ∈ R. The probabilities pk,0

and pk,1 can be obtained as

pk,0 = tr(Pk,0
1
2n

∑
λP P) = 1

2n

∑
1
2 (tr(I⊗nλP P) + tr(ZkλP P)),

pk,1 = tr(Pk,1
1
2n

∑
λP P) = 1

2n

∑
1
2 (tr(I⊗nλP P) − tr(ZkλP P)).

(6)

In Eq. 6, the trace tr(I⊗nP) (resp. tr(ZkP)) is non-zero if and only if P =λP I⊗n

(resp. P = λP Zk) where λP ∈ R. This follows from two facts: First, given an n-
qubit Pauli string P = P0 ⊗ . . . ⊗ Pn−1, where Pi are Pauli matrices, the trace
tr(P) = tr(P0) · · · tr(Pn−1) is non-zero if and only if P = I⊗n, since Pauli matrices
are traceless, i.e., tr(X) = tr(Y) = tr(Z) = 0. Second, given P1, P2 ∈ PAULIn we
have P1P2 = I⊗n if and only if P1 = P2. Together with the fact that tr(I⊗n) = 2n,
we can now simplify Eq. 6 to:

pk,0 =
1
2n

∑
1
2 (tr(I⊗nλP P) + tr(ZkλP P)) =

1
2
(λI⊗n + λZk

) (7)

Similarly, we have pk,1 =
1
2 (λI⊗n − λZk

). In other words, to get the probability
of obtaining outcome 0 when measuring the k-th qubit, we need to sum up the
weights of all elements:

Zk ≡ zk ∧
∧

j∈[n]

xj ∧
∧

j∈[n],j �=k
zj and I⊗n ≡

∧
j∈[n]

xj ∧
∧

j∈[n]

zj

in the flattened Pauli strings of Eq. 2. Thus the measurement can be encoded as
follows, for the final time step m.

FPk,b
(V m) � w ∧

∧
j∈[n]

xm
j ∧

∧
j∈[n],j �=k

zm
j , (8)

where W (w) = 1
2 to represent the constant factor in pk,0 and the weight of zk is

unbiased when b = 0 or W (zm
k) = −1, W (zm

k) = 1 when b = 1.
A Clifford+T circuit with a single-qubit Pauli measurement at the end can

be encoded by conjoining the constraint of initial state and gates in Eq. 4 with
the one for the measurement at the end, as Example 7 illustrates.

568 J. Mei et al.

Example 7. Consider the circuit in Example 6 and assume we want to perform
single-qubit Pauli measurement on the first qubit using { I⊗I+Z⊗I

2 , I⊗I−Z⊗I
2 }.

|0〉 H • T • H ���

|0〉
By adding the measurement constraint FP0,0 � w ∧ x5

0 ∧ x5
1 ∧ z51 to the

circuits constraints in Example 6, we get Finit(V 0)∧H0
0 ∧CX1

0,1 ∧T 2
0 ∧CX3

0,1 ∧
H4

0 ∧FP0,0(V
5). The satisfying assignments will be the subset of the solutions in

Example 6 with the constant variable w:
{

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 1, z51 → 0, u2 → 1, w→ 1},

{r5 → 0, x5
0 → 0, x5

1 → 0, z50 → 0, z51 → 0, u2 → 0, w→ 1}

}
≡
{

1
2
√
2
Z ⊗ I

1
2I ⊗ I

}

where we only show the variables in V 5 representing the final state. The resulting
probability is W (r5)W (u2)W (w) +W (r5)W (u2)W (w) = 1

2
√
2
+

1
2 . �

Multi-qubit Pauli Measurement. Similar to the single-qubit Pauli measure-
ment, we can resolve the constraint of n-qubit Pauli measurement based on
the measurement projector P. Given a quantum state |ψ〉〈ψ| = 1

2n

∑
P λP P , let

Q⊆[n] be the set of qubits being measured. Without loss of generality, we explain
how to obtain the probability of obtaining the outcome zero (0) for all qubits
q ∈Q. The projector measuring qubits in Q is defined as PQ �

⊗
q∈Q Pq where

Pq = (I + Z)/2 for q ∈Q and Pq = I for q ∈ [n] \ Q. We can derive the constraint
FPq

(xm
q , zm

q) = xm
q for q ∈Q and no constraint for q ∈ [n] \ Q. By conjoining them,

we obtain the measurement constraint FPQ
= w ∧∧q∈[n] x

m
q ∧∧q∈[n]\Q zm

q where
w is a constant variable for the factor and W (w) = 1

2|Q| .
We conclude Sect. 3 with Proposition 2, which also shows that our encoding

implements a strong simulation of a universal quantum circuit.

Proposition 2. Given an n-qubit quantum circuit C, a subset of qubits Q ⊆ [n]
and the WMC encoding of the corresponding simulation problem F (V 0, . . . , V m)=
FC(V 0, . . . , V m) ∧ FPQ

(V m) with according weight function W , the weighted
model count of F equals the probability of the measurement outcome corre-
sponding to PQ (outcome 0 for all qubits q ∈ Q) on circuit C, i.e., MCW (F) =
〈0|⊗nC†

PQC|0〉⊗n.

4 Experiments

To show the effectiveness of our approach, we implemented a WMC-based
simulator in a tool called QCMC. It reads quantum circuits in QASM for-
mat [26], encodes them to Boolean formulas in conjunctive normal form (CNF)
as explained in Sect. 3, and then uses the weighted model counter GPMC [36]
to solve these constraints. We choose GPMC as it is the best solver supporting

Simulating Quantum Circuits by Model Counting 569

negative weights in model counting competition 2023 [4]. The resulting imple-
mentation and evaluation are publicly available at [46].

We compare our method against two state-of-the-art tools: QuiZX [41] based
on ZX calculus [25] and Quasimodo [64] based on CFLOBDD [65]. In partic-
ular, this empirical analysis is performed on two families of circuits: (i) ran-
dom Clifford+T circuits, which mimic hard problems arising in quantum chem-
istry [75] and quantum many-body physics [31]; (ii) random circuits mimick-
ing oracle implementations; (iii) all benchmarks from the public benchmark
suite MQT Bench [58], which includes many important quantum algorithms
like QAOA, VQE, QNN and Grover. All experiments have been conducted on a
3.5 GHz M2 Machine with MacOS 13 and 16 GB RAM. We set the time limit
to be 5 min (300 s) and include the time to read a QASM file, construct the
weighted CNF, and perform the model counting in all reported runtimes.

4.1 Results

First, we show the limits of three methods using the set of benchmarks generated
by [41]. They construct random circuits with a given number of T gates by
exponentiating Pauli unitaries in the form of exp(−i(2k + 1)π

4P) where P is a
Pauli string and k ∈{1, 2}. We reuse their experimental settings, which gradually
increase the T count (through Pauli exponentiation) for n = 50 qubits, and we
add an experiment with n = 100 qubits. Accordingly, we generate 50 circuits
with different random seeds for each n = 50 and T ∈ [0–100] and each n = 100
and T ∈ [0–180]. We then perform a single-qubit Pauli measurement on the first
qubit. We plot the minimal time needed and the rate of successfully getting the
answer in 5 min among all 50 simulation runs in Fig. 1.

Second, we also consider random circuits that more resemble typical oracle
implementations — random quantum circuits with varying qubits and depths,
which comprise the CX, H, S, and T gates with appearing ratio 10%, 35%,
35%, 20% [56]. The resulting runtimes can be seen in Fig. 2.

In addition to the random circuits, we empirically evaluated our method on
the MQTBench benchmark set [58], measuring all qubits, as is typical in most
quantum algorithms. We present a representative subset of results in Table 5.
The complete results can be found in [47]. All benchmarks are expanded to the
Clifford+T+R gate set, where R denotes {RX , RY , RZ}. The first two columns
list the number of qubits n and the number of gates |G|. Columns T and R give
the number of T gates and rotation gates. Then, the performance of the WMC-
based tool QCMC, the performance of the ZX calculus-based tool QuiZX (ZX),
and the performance of CFLOBDD-based tool Quasimodo (CFLOBDD). The
performances are given by the runtime and the corresponding memory usage.
Given that the variation in each run is minimal, we present the results of a single
run for all experiments.

570 J. Mei et al.

Fig. 1. The upper two figures, are percentages of random 50- and 100-qubit circuits
with increasing depth which can be successfully measured in 5min. The below two
figures, both of which have y-axes on a logarithmic scale, are the minimum running
time among the 50 samples for each configuration.

Fig. 2. Computational basis measurement of typical random Clifford+T circuits. (Both
vertical axes are on a logarithmic scale.) CFLOBDD runs out of time for all benchmarks
so we do not add it here.

Simulating Quantum Circuits by Model Counting 571

4.2 Discussion

For all cases, QuiZX gives algebraic answers while the QCMC and CFLOBDD
methods give numerical answers. Because of the imprecision of floating-point
arithmetic, we consider a equal to b if |a− b|<10−8. With this equality tolerance,
all three methods produce the same answers.

For random circuits, Fig. 1 illustrates that the minimum runtime barely
increases for QCMC, while it seems exponential for QuiZX (note the log scale).
However, when the number of qubits is n= 50 and the T count is larger than 70,
or when, n = 100 and the T count is larger than 110, QuiZX has a better suc-
cess rate, i.e., it completes more simulations than QCMC in 5 min. In contrast,
CFLOBDD exhibits the lowest success rate among the three methods. When it
comes to a typical random Clifford+T circuit Fig. 2 shows that the runtime of
both QCMC and ZX exhibits a clear correlation with the size of the circuits,
while CFLOBDD can not solve all benchmarks in 5 min. The proposed imple-
mentation consistently outperforms QuiZX by one to three orders of magnitude
especially when the size is getting larger (note again the log scale). However, the
story changes when considering structural quantum circuits.

For MQT benchmarks, Table 5 shows that QCMC performs better than
QuiZX except for GHZ state and Graph State where QCMC is slightly slower in
milliseconds. CFLOBDD significantly surpasses QCMC on Grover and quantum
walk algorithms, primarily due to the decision diagram-based method’s profi-
ciency in handling circuits featuring large reversible parts and oracles. While for
those circuits featuring a large number of rotation gates with various rotation
angles, like Graph state, QFT, and VQE, QCMC demonstrates clear advantages.
This distinction arises from the fact that when dealing with rotation gates, it
might happen that two decision diagram nodes that should be identical in theory,
differ by a small margin in practice, obstructing node merging [53]. In contrast,
the WMC approach —also numerical in nature— avoids explicit representation
of all satisfying assignments, by iteratively computing a sum of products. This
not only avoids blowups in space use but, we hypothesize, also avoids numer-
ical instability, a problem that has plagued numerical decision-diagram based
approaches [53,56]. In terms of memory usage, CFLOBDD always uses more
than 340 MB, in some cases uses more than 6 GB (graph state, n = 64), while
QCMC and QuiZX use less than 13 MB (OS reported peak resident set size).

Overall, both QCMC and QuiZX outperform CFLOBDD in handling ran-
dom circuits. Moreover, QCMC has better runtime performance than QuiZX.
For structural circuits, QuiZX faces a limitation as it does not efficiently sup-
port rotation gates with arbitrary angles, so it is incapable of simulating many
quantum algorithms, like VQE, directly. In terms of runtime, CFLOBDD is bet-
ter at circuits featuring structure, while QCMC performs better at circuits with
arbitrary rotation gates. However, CFLOBDD has a significantly higher memory
cost compared to both QCMC and QuiZX.

572 J. Mei et al.

Table 5. Results of verifying circuits from MQT bench. For cases within time limit,
we give their running time (sec) and corresponding memory usage (MB). We use ✕

when QuiZX does not support certain benchmarks, while >300 represents a timeout
(5 min). For those benchmarks having a timeout or are not supported, we omit their
memory usage by �.

Algorithm n |G| T R WMC ZX CFLOBDD

t(sec) RSS(MB) t(sec) RSS(MB) t(sec) RSS(MB)

GHZ State 32 32 0 0 0.044 10.5 0.007 12.28 0.03 354.81

64 64 0 0 0.049 10.5 0.008 12.30 0.03 356.02

128 128 0 0 0.048 10.75 0.013 12.44 0.04 355.77

Graph State 16 64 0 0 0.046 10.125 0.005 12.44 0.06 355.68

32 128 0 0 0.045 10.5 0.008 12.40 0.11 355.39

64 256 0 0 0.045 10.63 0.015 12.47 243.22 6116.93

Grover’s (no ancilla) 4 162 8 58 0.18 10.5 89.18 12.06 0.04 345.56

5 470 0 195 3.86 11.5 >300 � 0.07 345.73

6 1314 0 552 >300 � >300 � 0.21 346.52

QAOA 7 63 0 28 0.03 10.5 >300 � 0.05 355.98

9 81 0 36 0.036 10.13 0.05 355.89

11 99 0 44 0.035 10.75 0.06 355.42

QFT 16 520 0 225 0.02 10.75 0.09 12.30 6.58 516.19

32 2064 0 961 0.03 11.375 0.16 12.53 >300 �

64 8224 0 3969 0.11 35.83 0.57 12.32 >300 �

QNN 16 1119 0 400 >300 � ✕ � 57.36 2232.14

32 3775 0 1312 >300 �

64 13695 0 4672 >300 �

Quantum Walk (no ancilla) 5 1071 24 448 70.79 12.70 ✕ � 0.13 345.19

6 2043 24 844 >300 � 0.28 345.58

7 3975 24 1624 >300 � 0.80 347.58

VQE 14 236 0 82 0.23 10.875 ✕ � 2.84 610.54

15 253 0 88 0.49 10.875 6.29 680.64

16 270 0 94 0.51 10.875 17.97 943.67

W-state 32 435 0 124 0.11 11.125 ✕ � >300 �

64 883 0 252 0.28 11.87

128 1779 0 508 0.66 13.25

5 Related Work

In this section, we give an overview of the related work on classical simulation of
quantum computing with a focus on those methods applying SAT-based solvers.

SAT-based solvers have proven successful in navigating the huge search spaces
encountered in various problems in quantum computing [49,73], initial attempts
have been made to harness the strengths of satisfiability solvers for the simula-
tion of quantum circuits. For instance, [11] implements a simulator for Clifford
circuits based on a SAT encoding (our encoding of H,S,CX in Eq. 3 is similar to
theirs). The authors also discuss a SAT encoding for universal quantum circuits,
which however requires exponentially large representations, making it impracti-
cal. Besides quantum circuits, [10] presents symQV, a framework for verifying

Simulating Quantum Circuits by Model Counting 573

quantum programs in a quantum circuit model, which allows the encoding of the
verification problem in an SMT formula, which can then be checked with a δ-
complete decision process. There is an SMT theory for quantum computing [23].

Another method is based on decision diagrams (DDs) [1,16], which represent
many Boolean functions succinctly, while allowing manipulation operations with-
out decompression. DD methods for pseudo-Boolean functions include Algebraic
DDs (ADD) [9,24,70] and various “edge-valued” ADDs [44,61,67,74]. The appli-
cation of DDs to quantum circuit simulation, by viewing a quantum state as a
pseudo-Boolean function, was pioneered with QuiDDs [71] and further developed
with Quantum Multi-valued DDs [50], Tensor DDs [38] and CFLOBDDs [65].
All but CFLOBDD are essentially ADDs with complex numbers.

Another way is to translate quantum circuits into ZX-diagrams [25], which is
a graphical calculus for quantum circuits equipped with powerful rewrite rules.

Classical simulation is commonly used for the verification of quantum circuits,
with extensive research focused on their equivalence checking [5,7,72]. It can also
be applied to bug hunting in quantum circuits. In [22], the authors proposed a
tree automata to compactly represent quantum states and gates algebraically,
framing the verification problem as a Hoare triple.

6 Conclusions

In this work, we proposed a generalized stabilizer formalism formulated in terms
of a stabilizer group. Based on this, we provided an encoding for various universal
gate sets as a weighted model counting problem with only real weights, obviating
the need for complex numbers that are not supported by existing WMC tools.
Besides T gates, we also extended our encoding to general rotation gates. Fur-
thermore, we demonstrated how to perform computational basis measurements
using this encoding, enabling strong quantum circuit simulation.

We have implemented our method in an open-source tool QCMC. To give
empirical results on the practicality of our method, we have applied it to a
variety of benchmarks comparing one based on ZX-calculus and one based on
decision diagrams. Experimental results show that our approach outperforms
both in several cases, particularly with circuits of large sizes. The performance
of our approach is quite different from the other approaches, demonstrating the
unique potential of WMC in various use cases.

This work provides a new benchmark paradigm for weighted model counting
problems. It would be interesting to see whether WMC tools can be improved
for this novel application domain. In the future, it could also be worthwhile to
apply our encoding to approximate weighted model counting [19,29]. Moreover,
using weighted samplers [34,45], we could achieve weak circuit simulation with
the same encoding. The main obstacle now is incorporating negative weights
into approximate weighted model counters and samplers. Additionally, it would
be valuable to explore more applications of this encoding, such as checking the
equivalence of two quantum circuits and entanglement purification.

574 J. Mei et al.

Acknowledgements. We thank all anonymous reviewers for their helpful comments.
This work is supported by the Dutch National Growth Fund, as part of the Quantum
Delta NL program.

References

1. Akers. Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)
2. Amy, M., Bennett-Gibbs, O., Ross, N.J.: Symbolic synthesis of Clifford circuits

and beyond. Electron. Proc. Theor. Comput. Sci. 394, 343–362 (2023)
3. Anders, S., Briegel, H.J.: Fast simulation of stabilizer circuits using a graph-state

representation. Phys. Rev. A 73(2) (2006)
4. Hecher, M., Fichte, J.: Model counting competition (2023). https://mccompetition.

org/. Accessed 01 Jul 2024
5. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Equivalence checking of quantum

protocols. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
478–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 33

6. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Verification of concurrent quantum
protocols by equivalence checking. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 500–514. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 42

7. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Verification of concurrent quantum
protocols by equivalence checking. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 500–514. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 42

8. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574, 505–510 (2019)

9. Iris Bahar, R., et al.: Algebraic decision diagrams and their applications. In: Pro-
ceedings of 1993 International Conference on Computer Aided Design (ICCAD),
pp. 188–191 (1993)

10. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: automated symbolic verifica-
tion of quantum programs. In: Chechik, M., Katoen, J.-P., Leucker, M., ed, Formal
Methods, pp. 181–198. Springer International Publishing, Cham (2023). https://
doi.org/10.1007/978-3-031-27481-7 12

11. Berent, L., Burgholzer, L., Wille, R.: Towards a SAT encoding for quantum cir-
cuits: a journey from classical circuits to clifford circuits and beyond. In: Meel, K.S.,
Strichman, O., ed., 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2022), volume 236 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pp. 18:1–18:17, Dagstuhl, Germany (2022). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik

12. Biere, A., Heule, M., van Maaren, H., Walsh, T., ed. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

13. Brand, S., Coopmans, T., Laarman, A.: Quantum graph-state synthesis with SAT.
In: Proceedings of the 14th International Workshop on Pragmatics of SAT co-
located with the 26th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2023), Alghero, Italy, July 4, 2023, volume 3545 of
CEUR Workshop Proceedings, pp. 1–13. CEUR-WS.org (2023)

14. Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated
by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016)

https://mccompetition.org/
https://mccompetition.org/
https://doi.org/10.1007/978-3-642-36742-7_33
https://doi.org/10.1007/978-3-642-36742-7_33
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-27481-7_12

Simulating Quantum Circuits by Model Counting 575

15. Bravyi, S., Shaydulin, R., Shaohan, H., Maslov, D.: Clifford circuit optimization
with templates and symbolic Pauli gates. Quantum 5, 580 (2021)

16. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

17. Burgholzer, L., Wille, R.: Improved DD-based equivalence checking of quantum
circuits. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 127–132. IEEE (2020)

18. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys.
Rev. A 54, 1098–1105 (1996)

19. Chakraborty, S., Fremont, D., Meel, K., Seshia, S., Vardi, M.: Distribution-aware
sampling and weighted model counting for sat. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 28 (2014)

20. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6), 772–799 (2008)

21. Chen, Y., Chen, Y., Kumar, R., Patro, S., Speelman, F.: QSETH strikes again: finer
quantum lower bounds for lattice problem, strong simulation, hitting set problem,
and more. arXiv preprint arXiv:2309.16431 (2023)

22. Chen, Y.-F., Chung, K.-M., Lengál, O., Lin, J.-A., Tsai, W.-L., Yen, D.-D.: An
automata-based framework for verification and bug hunting in quantum circuits.
Proc. ACM Program. Lang., 7(PLDI) (2023)

23. Chen, Y.-F., Rümmer, P., Tsai, W.-L.: A theory of cartesian arrays (with appli-
cations in quantum circuit verification). In: International Conference on Auto-
mated Deduction, pp. 170–189. Springer (2023). https://doi.org/10.1007/978-3-
031-38499-8 10

24. Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral transforms
for large Boolean functions with applications to technology mapping. In: Proceed-
ings of the 30th international Design Automation Conference, pp. 54–60 (1993)

25. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011)

26. Cross, A., et al.: OpenQASM3: a broader and deeper quantum assembly language.
ACM Trans. Quantum Comput. 3(3), 1–50 (2022)

27. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Inf. Com-
put. 6(1), 81–95 (2006)

28. Van den Nest, M.: Classical simulation of quantum computation, the gottesman-
knill theorem, and slightly beyond. Quantum Inf. Comput. 10(3), 258–271 (2010)

29. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. In: Advances in Neural Information Processing
Systems, vol. 26 (2013)

30. Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Early verification of legal
compliance via bounded satisfiability checking. In: Enea, C., Lal, A., ed., Com-
puter Aided Verification, pp. 374–396. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-37709-9 18

31. Fisher, M.P.A., Khemani, V., Nahum, A., Vijay, S.: Random quantum circuits.
Ann. Rev. Condensed Matter Phys. 14(1), 335–379 (2023)

32. Garćıa, H.J., Markov, I.L., Cross, A.W.: On the geometry of stabilizer states.
Quantum Inf. Comput. 14(7&8), 683–720 (2014)

33. Gay, S.J.: Stabilizer states as a basis for density matrices. CoRR, abs/1112.2156
(2011)

34. Golia, P., Soos, M., Chakraborty, S., Meel, K.S.: Designing samplers is easy: The
boon of testers. In: 2021 Formal Methods in Computer Aided Design (FMCAD),
pp. 222–230. IEEE (2021)

http://arxiv.org/abs/2309.16431
https://doi.org/10.1007/978-3-031-38499-8_10
https://doi.org/10.1007/978-3-031-38499-8_10
https://doi.org/10.1007/978-3-031-37709-9_18

576 J. Mei et al.

35. Gottesman, D.: Stabilizer codes and quantum error correction. PhD thesis, Cali-
fornia Institute of Technology (1997)

36. Hashimoto, K.: GPMC (2020). https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/
GPMC

37. Hong, X., Feng, Y., Li, S., Ying, M.: Equivalence checking of dynamic quan-
tum circuits. In: Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, ICCAD ’22, New York, NY, USA (2022). Association
for Computing Machinery

38. Hong, X., Zhou, X., Li, S., Feng, Y., Ying, M.: A tensor network based decision
diagram for representation of quantum circuits. ACM Trans. Design Autom. Electr.
Syst. 27(6), 60:1–60:30 (2022)

39. Huang, C., et al.: Classical simulation of quantum supremacy circuits, Mario
Szegedy (2020)

40. Jozsa, R., Van den Nest, M.: Classical simulation complexity of extended Clifford
circuits. Quantum Inf. Comput. 14(7–8), 633–648 (2014)

41. Kissinger, A., van de Wetering, J.: Simulating quantum circuits with ZX-calculus
reduced stabiliser decompositions. Quantum Sci. Technol. 7(4), 044001 (2022)

42. Kliuchnikov, V.: Synthesis of unitaries with Clifford+T circuits. arXiv e-
printsarXiv:1306.3200 (2013)

43. Kocia, L., Sarovar, M.: Classical simulation of quantum circuits using fewer gaus-
sian eliminations. Phys. Rev. A 103, 022603 (2021)

44. Lai, Y.-T., Pedram, M., Vrudhula, S.B.K.: EVBDD-based algorithms for integer
linear programming, spectral transformation, and function decomposition. IEEE
Trans. Comput.-Aid. Design Integr. Circ. Syst. 13(8), 959–975 (1994)

45. Meel, K.S., Yang, S., Liang, V.: INC: a scalable incremental weighted sampler. In:
FMCAD 2022, vol. 3, p. 205. TU Wien Academic Press (2022)

46. Mei, J.: The Quokka# repository. https://github.com/System-Verification-Lab/
Quokka-Sharp. Accessed 29 Mar 2024

47. Mei, J., Bonsangue, M., Laarman, A.: Simulating quantum circuits by model count-
ing. arXiv:2403.07197 (2024)

48. Mei, J., Coopmans, T., Bonsangue, M., Laarman, A.: Equivalence checking of
quantum circuits by model counting. In: IJCAR (accepted for publication), Pre-
print available at arXiv:2403.18813 (2024)

49. Meuli, G., Soeken, M., De Micheli, G.: SAT-based CNOT, T quantum circuit
synthesis. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 175–
188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 12

50. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible
and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic
(ISMVL’06), pp. 30–30. IEEE (2006)

51. Nam, Y., Su, Y., Maslov, D.: Approximate quantum fourier transform with
o(n log(n)) t gates. NPJ Quantum Inf. 6(1), 26 (2020)

52. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation.
Cambridge University Press, Cambridge, vol. 2, issue 8, p. 23 (2000)

53. Niemann, P., Zulehner, A., Drechsler, R., Wille, R.: Overcoming the tradeoff
between accuracy and compactness in decision diagrams for quantum computa-
tion. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(12), 4657–4668
(2020)

54. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
IJCAI’15, pp. 3141–3148. AAAI Press (2015)

55. Pashayan, H., Bartlett, S.D., Gross, D.: From estimation of quantum probabilities
to simulation of quantum circuits. Quantum 4, 223 (2020)

https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC
https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC
http://arxiv.org/abs/1306.3200
https://github.com/System-Verification-Lab/Quokka-Sharp
https://github.com/System-Verification-Lab/Quokka-Sharp
http://arxiv.org/abs/2403.07197
http://arxiv.org/abs/2403.18813
https://doi.org/10.1007/978-3-319-99498-7_12

Simulating Quantum Circuits by Model Counting 577

56. Peham, T., Burgholzer, L., Wille, R.: Equivalence checking of quantum circuits
with the ZX-calculus. IEEE J. Emerging Sel. Top. Circ. Syst. 12(3), 662–675 (2022)

57. Polla, S., Anselmetti, G.-L.R., O’Brien, T.E.: Optimizing the information extracted
by a single qubit measurement. Phys. Rev. A 108, 012403 (2023)

58. Quetschlich, N., Burgholzer, L., Wille, R.: MQT bench: benchmarking software
and design automation tools for quantum computing. Quantum 7, 1062 (2023)

59. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett.
86, 5188–5191 (2001)

60. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining compo-
nent caching and clause learning for effective model counting. In: International
Conference on Theory and Applications of Satisfiability Testing (2004)

61. Sanner, S., McAllester, D.: Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In: Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’05, pp. 1384–1390, San
Francisco, CA, USA (2005). Morgan Kaufmann Publishers Inc

62. Schneider, S., Burgholzer, L., Wille, R.: A SAT encoding for optimal Clifford circuit
synthesis. In: Proceedings of the 28th Asia and South Pacific Design Automation
Conference, ASPDAC ’23. ACM (2023)

63. Shaik, I., van de Pol, J.: Optimal layout synthesis for quantum circuits as classical
planning. arXiv preprint arXiv:2304.12014 (2023)

64. Sistla, M., Chaudhuri, S., Reps, T.: Symbolic quantum simulation with quasimodo.
In: Enea, C., Lal, A., editors, Computer Aided Verification, pp. 213–225. Springer
(2023). https://doi.org/10.1007/978-3-031-37709-9 11

65. Sistla, M., Chaudhuri, S., Reps, T.: Weighted context-free-language ordered binary
decision diagrams. arXiv preprint arXiv:2305.13610 (2023)

66. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77,
793–797 (1996)

67. Tafertshofer, P., Pedram, M.: Factored edge-valued binary decision diagrams. For-
mal Methods Syst. Design 10(2), 243–270 (1997)

68. Thanos, D., Coopmans, T., Laarman, A.: Fast equivalence checking of quantum
circuits of Clifford gates. In: André, É., Sun, J., eds, Automated Technology for
Verification and Analysis, pp. 199–216. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-45332-8 10

69. Tóth, G., Gühne, O.: Entanglement detection in the stabilizer formalism. Phys.
Rev. A 72, 022340 (2005)

70. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving gate-level simulation of
quantum circuits. Quantum Inf. Process. 2(5), 347–380 (2003)

71. Viamontes, G.F., Markov, I.L., Hayes, J.P.: High-performance QuIDD-based simu-
lation of quantum circuits. In: Proceedings Design, Automation and Test in Europe
Conference and Exhibition, vol. 2, pp. 1354–1355 (2004)

72. Wang, Q., Li, R., Ying, M.: Equivalence checking of sequential quantum circuits.
IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 41(9), 3143–3156 (2022)

73. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simulation,
Boolean satisfiability, and pseudo Boolean optimization. In: 2011 IEEE Computer
Society Annual Symposium on VLSI, pp. 120–125 (2011)

74. Wilson, N.: Decision diagrams for the computation of semiring valuations. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence, pp.
331–336 (2005)

75. Wright, J., et al.: Numerical simulations of noisy quantum circuits for computa-
tional chemistry. Materials Theory 6(1), 18 (2022)

http://arxiv.org/abs/2304.12014
https://doi.org/10.1007/978-3-031-37709-9_11
http://arxiv.org/abs/2305.13610
https://doi.org/10.1007/978-3-031-45332-8_10

578 J. Mei et al.

76. Zhang, Y., Tang, Y., Zhou, Y., Ma, X.: Efficient entanglement generation and
detection of generalized stabilizer states. Phys. Rev. A 103, 052426 (2021)

77. Zulehner, A., Wille, R.: One-pass design of reversible circuits: combining embed-
ding and synthesis for reversible logic. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(5), 996–1008 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abate, Alessandro III-161, III-395
Abdulla, Parosh Aziz II-19
Alt, Leonardo I-466
Althoff, Matthias III-259
Amir, Guy II-249
An, Jie III-282
Ang, Zhendong II-182
Antonopoulos, Timos II-233
Armborst, Lukas II-3
Athavale, Anagha II-329
Atig, Mohamed Faouzi II-19
Azeem, Muqsit II-265

B
Barrett, Clark I-3, II-249
Bartocci, Ezio II-329
Basin, David II-156
Bassa, Alp I-3
Bassan, Shahaf II-249
Baumeister, Jan II-207
Becchi, Anna II-219
Berger, Martin III-209
Bertram, Noah II-109
Besson, Frédéric I-325
Beutner, Raven III-3
Biere, Armin I-133
Bjørner, Nikolaj I-26
Bonakdarpour, Borzoo III-3
Bonsangue, Marcello III-555
Bos, Pieter II-3
Bosamiya, Jay I-348
Brauße, Franz I-219
Britikov, Konstantin I-466
Brockman, Mikael I-453
Bryant, Randal E. I-110
Bu, Lei III-329

C
Cai, Shaowei I-68
Cano, Filip II-233
Cao, Jialun II-302

Chajed, Tej II-86
Chaudhuri, Swarat III-41
Cheung, Shing-Chi II-302
Chiari, Michele I-387
Cho, Chanhee I-348
Christakis, Maria II-329
Cimatti, Alessandro I-234, II-219
Cohen, Albert I-279

D
D’Antoni, Loris III-27
Daggitt, Matthew II-249
Dai, Aochu III-520
Das, Sarbojit II-19
Dillig, Işil I-3, III-41
Dimitrova, Rayna III-135
Ding, Jianqiang III-307
Dohmen, Taylor III-184
Drachsler-Cohen, Dana II-377
Dureja, Rohit I-203
Dxo, I-453

E
Eilers, Marco I-362
Elacqua, Matthew II-233

F
Faller, Tobias I-133
Fazekas, Katalin I-133
Fedyukovich, Grigory I-466
Feldman, Yotam M. Y. II-71
Feng, Yuan III-533
Ferles, Kostas I-3
Fijalkow, Nathanaël III-209
Finkbeiner, Bernd II-207, III-3, III-64, III-87
Fleury, Mathias I-133
Frenkel, Eden II-86
Frenkel, Hadar III-87
Froleyks, Nils I-133

© The Editor(s) (if applicable) and The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 579–582, 2024.
https://doi.org/10.1007/978-3-031-65633-0

https://doi.org/10.1007/978-3-031-65633-0

580 Author Index

G
Geatti, Luca I-387
Giacobbe, Mirco III-161, III-395
Gigante, Nicola I-387
Griggio, Alberto I-234
Grobelna, Marta II-265
Grosser, Tobias I-279
Guan, Ji III-533

H
Habermehl, Peter I-42
Hasuo, Ichiro III-282, III-467
Havlena, Vojtěch I-42
He, Mengda II-302
Hečko, Michal I-42
Heim, Philippe III-135
Heule, Marijn J. H. I-110
Hipler, Raik II-133
Holík, Lukáš I-42
Hsu, Justin II-109
Hsu, Tzu-Han III-3
Huang, Pei II-249
Hublet, François II-156
Huisman, Marieke II-3

I
Irfan, Ahmed I-203
Isac, Omri II-249

J
Jiang, Hanru III-495
Johannsen, Chris I-203
Johnson, Keith J. C. III-27
Jonsson, Bengt II-19
Judson, Samuel II-233
Julian, Kyle II-249
Junges, Sebastian III-467

K
Kallwies, Hannes II-133
Kanav, Sudeep II-265
Katz, Guy II-249
Khasidashvili, Zurab I-219
Kincaid, Zachary I-89, I-431
Kohn, Florian II-207
Kokke, Wen II-249
Komendantskaya, Ekaterina II-249
Könighofer, Bettina II-233
Konsta, Alyzia-Maria III-373

Korovin, Konstantin I-219
Křetínský, Jan II-265
Krstić, Sr -dan II-156

N
Laarman, Alfons III-555
Lahav, Ori II-249
Lai, Tean II-109
Lengál, Ondřej I-42
Lercher, Florian III-259
Leucker, Martin II-133
Li, Haokun II-302
Li, Jianwen I-234
Li, Xuandong III-329
Li, Yixuan II-280
Liang, Zhen III-307
Lima, Leonardo II-156
Lin, Fangzhen I-409
Lin, Yi III-112
Liu, Jiamou III-420
Liu, Si II-401
Liu, Wenxia III-329
Lluch Lafuente, Alberto III-373
Löhr, Florian II-207
Lundfall, Martin I-453
Luo, Ziqing II-44

M
Maffei, Matteo II-329
Manfredi, Guido II-207
Martinelli Tabajara, Lucas III-112
Matheja, Christoph III-373
Mathur, Umang II-182
McMillan, Kenneth L. I-255
Meel, Kuldeep S. I-153
Meggendorfer, Tobias III-359
Mei, Jingyi III-555
Metzger, Niklas III-64, III-87
Miltner, Anders III-41
Mohr, Stefanie II-265
Moses, Yoram III-64
Muduli, Sujit Kumar I-480
Müller, Peter I-362
Murphy, Charlie I-89
Myreen, Magnus O. I-153

N
Nachmanson, Lev I-26
Nayak, Satya Prakash III-135

Author Index 581

Nickovic, Dejan II-329
Niemetz, Aina I-178
Nukala, Karthik I-203

O
Ong, C.-H. Luke II-401
Ozdemir, Alex I-3

P
Padon, Oded II-71, II-86
Padulkar, Rohan Ravikumar I-480
Pailoor, Shankara I-3
Paraskevopoulou, Zoe I-453
Parno, Bryan I-348
Parsert, Julian II-280
Perez, Mateo III-184
Piskac, Ruzica II-233
Pitchanathan, Arjun I-279
Polgreen, Elizabeth II-280
Pollitt, Florian I-133
Pradella, Matteo I-387
Preiner, Mathias I-178

Q
Qian, Yuhang I-68
Qin, Shengchao II-302

R
Reeves, Joseph E. I-110
Refaeli, Idan II-249
Ren, Dejin III-307
Reps, Thomas III-27
Reynolds, Andrew III-27
Rieder, Sabine II-265
Roy, Diptarko III-395
Roy, Subhajit I-480
Rozier, Kristin Yvonne I-203
Rubbens, Robert II-3

S
Sagonas, Konstantinos II-19
Şakar, Ömer II-3
Sánchez, César II-133
Sato, Sota III-282
Scaglione, Giuseppe II-219
Schirmer, Sebastian II-207
Schmuck, Anne-Kathrin III-135
Schnitzer, Yannik III-161
Schwerhoff, Malte I-362

Seidl, Helmut I-303
Shabelman, Shahar II-377
Shankar, Natarajan I-203
Shapira, Yuval II-377
Shapiro, Scott J. II-233
Sharygina, Natasha I-466
Shi, Yuhui III-329
Shoham, Sharon II-71, II-86
Siber, Julian III-87
Siegel, Stephen F. II-44
Somenzi, Fabio III-184
Soos, Mate I-153, I-453
Stade, Yannick I-303
Su, Jie II-302
Sun, Jun II-352

T
Tagomori, Teruhiro II-249
Takisaka, Toru III-420
Talpin, Jean-Pierre I-325
Tan, Yong Kiam I-153
Tasche, Philip II-3
Tian, Cong II-302
Tilscher, Sarah I-303
Tinelli, Cesare I-203
Torens, Christoph II-207
Traytel, Dmitriy II-156
Trivedi, Ashutosh III-184
Turrini, Andrea III-533

V
Valizadeh, Mojtaba III-209
van den Haak, Lars B. II-3
Vardi, Moshe Y. I-203, III-112
Vegt, Marck van der III-467

W
Wang, Changjiang III-420
Wang, Chenglin I-409
Wang, Jiawan III-329
Wang, Peixin II-401
Wang, Yuning III-232
Wang, Ziteng III-41
Watanabe, Kazuki III-467
Wei, Jiaqi III-329
Weininger, Maximilian III-359
Weissenbacher, Georg II-329

582 Author Index

Wen, Cheng II-302
Wiesel, Naor II-377
Wilcox, James R. II-71
Wu, Chenyu III-307
Wu, Haoze II-249
Wu, Min II-249
Wu, Taoran III-307

X
Xia, Yechuan I-234
Xu, Zhiwu II-302
Xue, Bai III-307

Y
Yan, Peng III-495
Yang, Jiong I-153
Ying, Mingsheng III-520, III-533

Yu, Nengkun III-495
Yuan, Shenghao I-325

Z
Zeljić, Aleksandar II-249
Zhang, Libo III-420
Zhang, Min II-249, II-401
Zhang, Muzimiao III-329
Zhang, Ruihan II-352
Zhang, Yunbo III-443
Zhang, Zhenya III-282
Zhao, Mengyu I-68
Zhi, Dapeng II-401
Zhou, Yi I-348
Zhu, He III-232
Zhu, Shaowei I-431, III-443
Zinenko, Oleksandr I-279
Zlatkin, Ilia I-466
Zohar, Yoni I-178

	 Preface
	 Organization
	Invited Talks
	 How to Solve Math Problems Without Talent
	 Bridging Formal Mathematics and Software Verification
	 The Art of SMT Solving
	 Contents – Part III

	Synthesis and Repair
	Syntax-Guided Automated Program Repair for Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Program Repair by Symbolic Execution
	3.1 Symbolic Execution
	3.2 Symbolic Paths and Safety Automata
	3.3 Encoding for HyperLTL
	3.4 Program Repair Using SyGuS

	4 Transparent Repair
	4.1 Transparency
	4.2 Encoding for Transparent Repair

	5 Iterative Repair
	5.1 Encoding for Iterative Repair
	5.2 Iterative Repair Loop

	6 Implementation and Evaluation
	6.1 Iterative Repair for Hyperproperties
	6.2 Scalability in Solution Size
	6.3 Evaluation on k-Safety Instances
	6.4 Evaluation on Functional Properties

	7 Related Work
	8 Conclusion
	References

	The SemGuS Toolkit
	1 Introduction
	2 The SemGuS Format 1.0
	3 A Baseline SemGuS Solver
	3.1 Verifying Candidate Solutions
	3.2 Baseline Enumerative Solvers
	3.3 Extensibility

	4 Benchmarks and Performance of Baseline Solvers
	5 Related Work
	References

	Relational Synthesis of Recursive Programs via Constraint Annotated Tree Automata
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Constraint Annotated Tree Automata
	4.1 CATA Operations for Synthesis

	5 Synthesis Algorithm
	5.1 Problem Statement
	5.2 Basic Synthesis Algorithm
	5.3 Lazy Synthesis Algorithm

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Information Flow Guided Synthesis with Unbounded Communication
	1 Introduction
	2 Running Example: Sequence Transmission
	3 Preliminaries
	4 Prefix Information Flow
	5 Unbounded Communication in Distributed Systems
	5.1 Receiving Information
	5.2 Transmitting Information
	5.3 Safety Hyper Implementations

	6 Synthesis with Prefix Information Flow Assumptions
	6.1 Automata for Assume and Guarantee Specifications
	6.2 Compositional Synthesis

	7 Experiments
	8 Related Work
	9 Conclusion
	References

	Synthesis of Temporal Causality
	1 Introduction
	1.1 Temporal Causality
	1.2 Contributions and Structure

	2 Preliminaries
	3 Overview: The Topology of Causality
	3.1 Actual Causes as Downward Closed Sets of Traces
	3.2 Causality Without the Limit Assumption

	4 Generalized Temporal Causality
	4.1 Similarity Relations and the Limit Assumption
	4.2 A General Definition of Temporal Causality
	4.3 Proving Generalization

	5 Cause Synthesis
	5.1 Proving Our Characterization
	5.2 Cause-Synthesis Algorithm for -Regular Effects

	6 Implementation and Evaluation
	6.1 Cause Synthesis
	6.2 Cause Checking

	7 Related Work
	8 Conclusion
	References

	Dynamic Programming for Symbolic Boolean Realizability and Synthesis
	1 Introduction
	2 Preliminary Definitions
	2.1 Boolean Formula and Synthesis Concepts
	2.2 Dynamic Programming Concepts - Project-Join Trees

	3 Realizability CheckingProofs for All Lemmas and Theorems Can Be Found in the Appendix A.
	3.1 Theoretical Basis and Valuations in Trees
	3.2 Determining Nullary, Partial and Full Realizability

	4 Synthesis of Witness Functions
	4.1 Monolithic Approach
	4.2 Synthesis Using Graded Project-Join Trees

	5 Experimental Evaluation
	5.1 Realizability-Checking Phase
	5.2 Synthesis
	5.3 Tree Widths and Realizability
	5.4 Comparison with Non-BDD-Based Synthesis

	6 Concluding Remarks
	References

	Localized Attractor Computations for Infinite-State Games
	1 Introduction
	2 Preliminaries
	3 Attractor Computation with Caching
	4 Abstract Template-Based Cache Generation
	4.1 Generating Attractor Caches from Sub-Games
	4.2 Constructing Sub-games from Abstract Strategy Templates

	5 Game Solving with Abstract Template-Based Caching
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	Learning
	Bisimulation Learning
	1 Introduction
	2 Illustrative Example
	3 Stutter-Insensitive Bisimulations of Deterministic Transition Systems
	3.1 Model Checking

	4 Counterexample-Guided Bisimulation Learning
	4.1 Learner-Verifier Framework for Bisimulation Learning
	4.2 Binary Decision Tree Partition Templates

	5 Experimental Evaluation
	5.1 Discrete-Time Clock Synchronization
	5.2 Conditional Termination

	6 Conclusion
	References

	Regular Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Regular Languages
	3.2 Rational Transductions
	3.3 Markov Decision Processes

	4 Regular Markov Decision Processes
	4.1 Undecidability of Values
	4.2 Discounted Optimization
	4.3 Finiteness Conditions
	4.4 Q-Learning in RMDPs

	5 Deep Regular Reinforcement Learning
	5.1 Token Passing
	5.2 Duplicating Pebbles
	5.3 Shunting Yard Algorithm
	5.4 Modified Tangrams

	6 Conclusion
	References

	LTL Learning on GPUs
	1 Introduction
	2 Formal Preliminaries
	3 High-Level Structure of the Algorithm
	4 In-Memory Representation of Search Space
	5 Correctness and Complexity of the Branch-Free Implementation of Temporal Operators
	6 Relaxed Uniqueness Checks
	7 Divide & Conquer
	8 Evaluation of Algorithm Performance
	9 Conclusion
	References

	Safe Exploration in Reinforcement Learning by Reachability Analysis over Learned Models
	1 Introduction
	2 Problem Setup
	3 Verified Exploration Through Learned Models
	3.1 Symbolic Environment Models
	3.2 Shielding for Verified Safe Exploration
	3.3 Neural Controller Approximation

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Cyberphysical and Hybrid Systems
	Using Four-Valued Signal Temporal Logic for Incremental Verification of Hybrid Systems
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries and Problem Statement
	2.1 Intervals
	2.2 Truth Values
	2.3 Signals
	2.4 Reachability Analysis of Hybrid Systems
	2.5 Signal Temporal Logic with Boolean Semantics
	2.6 Problem Statement

	3 Basic Idea and Solution Concept
	4 Four-Valued Signal Temporal Logic
	4.1 Computing Boolean Satisfaction Signals
	4.2 Computing Three-Valued Satisfaction Signals
	4.3 Computing Four-Valued Satisfaction Signals

	5 Incremental Verification of Hybrid Systems
	5.1 Incremental Verification Algorithm
	5.2 Refinement via Branching the Reachability Analysis

	6 Evaluation
	6.1 Bouncing Ball
	6.2 Autonomous Driving
	6.3 Genetic Oscillator

	7 Conclusion
	References

	Optimization-Based Model Checking and Trace Synthesis for Complex STL Specifications
	1 Introduction
	2 Preliminaries
	2.1 Signal Temporal Logic
	2.2 Finite Variability

	3 Problem Formulation
	4 Variable-Interval Encoding of STL to MILP
	4.1 -Stable Partitions
	4.2 Variable-Interval MILP Encoding

	5 System Models and Their MILP Encoding
	5.1 HAs with Closed-Form Solutions
	5.2 HAs with Double Integrator Dynamics

	6 Implementation and Experiments
	References

	Inner-Approximate Reachability Computation via Zonotopic Boundary Analysis
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Problem Statement

	3 Methodology
	3.1 Inner-Approximation Computation Framework
	3.2 Extraction of Zonotopes' Boundaries
	3.3 Zonotopal Tiling and Boundary Refinement
	3.4 Contracting Computed Outer-Approximation

	4 Experiments
	4.1 Advantage in Efficiency and Precision
	4.2 Advantage in Long Time Horizons
	4.3 Advantage in Big Initial Sets

	5 Conclusion
	References

	Scenario-Based Flexible Modeling and Scalable Falsification for Reconfigurable CPSs
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Motivating Example: A Multi-UAV System

	3 Scenario-Based Formalism for Reconfigurable Systems
	3.1 Scenario-Based System Modeling
	3.2 Specifying System Requirements in Topology-Aware STL

	4 Path-Oriented Optimization-Based System Falsification
	4.1 Falsification Framework
	4.2 Path Generation for Hierarchical Scenario Tasks
	4.3 Optimization-Based Falsification for Paths

	5 Implementation and Evaluation
	5.1 Implementation and Research Questions
	5.2 Experimental Evaluation and Analysis
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	Probabilistic Systems
	Playing Games with Your PET: Extending the Partial Exploration Tool to Stochastic Games
	1 Introduction
	2 Preliminaries
	3 Complete-Exploration Algorithm for Solving SGs
	4 Partial-Exploration Algorithm for Solving SGs
	5 Tool Description
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

	What Should Be Observed for Optimal Reward in POMDPs?
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes (MDPs)
	2.2 Partially Observable Markov Decision Processes

	3 The Optimal Observability Problem
	3.1 Problem Statement
	3.2 Undecidability

	4 Optimal Observability for Positional Strategies
	4.1 Positional and Deterministic Strategies
	4.2 Positional Randomized Strategies

	5 Implementation and Experimental Evaluation
	5.1 Solving Optimal Observability Problems with Parameter Synthesis Tools
	5.2 Implementation and Setup
	5.3 Experimental Results

	6 Conclusion and Future Work
	References

	Stochastic Omega-Regular Verification and Control with Supermartingales
	1 Introduction
	2 Streett Supermartingales
	3 Stochastic Omega-Regular Verification and Control
	4 Algorithmic Synthesis of Streett Supermartingales
	4.1 Piecewise Polynomial Systems and Templates
	4.2 Piecewise Linear Systems and Templates with Parametric Guards
	4.3 Piecewise Linear Systems and Templates with Known Guards

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Lexicographic Ranking Supermartingales with Lazy Lower Bounds
	1 Introduction
	2 Key Observations with Examples
	3 Preliminaries
	3.1 Syntax and Semantics of Probabilistic Programs
	3.2 Lexicographic Ranking Supermartingales

	4 Fixable LexRSMs
	5 Lazy LexRSM and Its Soundness
	6 Automated Synthesis Algorithm of LexRSM
	7 Experiments
	8 Related Work
	9 Conclusion
	References

	Probabilistic Access Policies with Automated Reasoning Support
	1 Introduction
	2 Overview of the Probabilistic Access Control Paradigm
	3 Formalization and SMT Encoding of PAPL Policies
	3.1 Syntax and Semantics of Access Requests and Policies
	3.2 Automated Reasoning About Policies with Probabilities

	4 Implementation and Evaluation
	4.1 Case Study: Location-Based Access Control with Uncertainty
	4.2 Case Study: Administering Deny-Lists for Machine Learning Based Access Control

	5 Related Work
	References

	Compositional Value Iteration with Pareto Caching
	1 Introduction
	2 Overview
	2.1 Approximate Bottom-Up Model Checking
	2.2 Key Idea I: From Bottom-Up to Top-Down
	2.3 Key Idea II: Pareto Caching
	2.4 Global Stopping Criteria (GSCs)

	3 Formal Problem Statement
	3.1 Markov Decision Process (MDP)
	3.2 String Diagram of MDPs

	4 VI in a Compositional Setting
	4.1 Value Iteration (VI) and Optimistic Value Iteration (OVI)
	4.2 Going Top-Down in Compositional Value Iteration

	5 Pareto Caching in Compositional VI
	5.1 Approximating Pareto Curves
	5.2 Pareto Caching

	6 Global Stopping Criteria (GSC)
	7 Empirical Evaluation
	8 Related Work
	9 Conclusion
	References

	Quantum Systems
	Approximate Relational Reasoning for Quantum Programs
	1 Introduction
	2 Preliminary and Notations
	3 Quantum Programming Language
	4 Quantum Approximate Coupling and Liftings
	4.1 Approximate Quantum Coupling and Lifting
	4.2 Upper Bound of Approximation

	5 Approximate Relational Logic
	5.1 Judgment and Validity
	5.2 Proof Rules
	5.3 Soundness Theorem

	6 Approximate Quantum Fourier Transform
	7 Measurements Conditions and Additional Proof Rules
	7.1 Measurement Conditions
	7.2 Additional Proof Rules

	8 Related and Future Works
	9 Conclusion
	References

	QReach: A Reachability Analysis Tool for Quantum Markov Chains
	1 Introduction
	2 Quantum Reachability Analysis
	3 Architecture and Data Structures
	3.1 Architecture of QReach
	3.2 CFLOBDD for Quantum Reachability Analysis

	4 Algorithm for Reachability Analysis
	5 Use Cases and Experiments
	References

	Measurement-Based Verification of Quantum Markov Chains
	1 Introduction
	1.1 Related Works and Challenges

	2 Preliminaries
	3 Quantum Markov Chains
	3.1 Quantum Walks

	4 Measurement-Based Linear-Time Temporal Logic
	4.1 Measurement-Based Atomic Propositions
	4.2 Quantum Linear-Time Temporal Logic

	5 Model Checking Algorithm
	5.1 Periodically Stable States
	5.2 Neighborhood of Quantum States
	5.3 Approximate Verification of Quantum Markov Chains

	6 Case Studies
	7 Conclusion
	References

	Simulating Quantum Circuits by Model Counting
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computing
	2.2 Stabilizer Groups
	2.3 Weighted Model Counting

	3 Encoding Quantum Circuits as Weighted CNF
	3.1 Generalized Stabilizer Formalism
	3.2 Encoding Clifford+T Circuits
	3.3 Encoding Arbitrary Rotation Gates
	3.4 Measurement

	4 Experiments
	4.1 Results
	4.2 Discussion

	5 Related Work
	6 Conclusions
	References

	Author Index

